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ABSTRACT

In this project, a theoretical and experimental study of hole mobility and effective masses
was performed to determine the influence of strain on holes in SiGe heterostructure-based
PMOS devices.

For that, the hole effective mass and the structure of the valence bands in relaxed silicon-
germanium, strained silicon-germanium, and strained silicon under different strain
conditions and at different temperatures were determined. The structure of the valence
bands directly influences the drift mobility of holes. The effective mass directly
influences the carrier concentration.

Also, the inversion mobility of holes in SiGe PMOS devices was measured at low
temperatures. Together with the room-temperature mobility data available for these
devices, the mechanisms of mobility degradation in strained silicon and strained SiGe
layers were studied. Finally, from simulations and experimental mobility data, the values
for inversion hole mobility in the individual strained silicon, relaxed SiGe and strained
SiGe layers of buried-channel PMOS device were extracted.

Thesis Supervisor: Dimitri A. Antoniadis
Title: Professor of Electrical Engineering
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Chapter 1

Introduction

1.1 MOTIVATION

High-performance digital circuits have been based on silicon technology due to the

low cost of the material and to properties of silicon and its compounds, properties that

have been exploited in a very efficient processing technology. The goal of industry has

been to make faster and faster devices, however, the silicon-based MOSFETS are

reaching a limit in the speed they can attain, as they are approaching their limit of

scalability. To maintain the performance improvement predicted by Moore's Law, one

needs to look into additional methods and materials to improve the performance of

MOSFET devices, besides what silicon can offer at its best.

SiGe is one of the successful solutions to the silicon crisis. SiGe layer epitaxy is

nowadays a well-developed method, which creates high-quality strained and relaxed

SiGe layers. The strained SiGe layers exhibit high electron and hole mobilities, and

herein lays the potential of SiGe to be incorporated in novel fast MOSFET devices. A

plus to the SiGe alloys is that they are silicon-compatible. Their fabrication methods and

conditions are similar to those of Silicon.

The fabrication of small-scale SiGe MOSFET is made easy by optimizing the

properties of strained and relaxed SiGe layers in large-scale MOSFETS. Such large-scale

MOSFETS have been studied in a number of papers, especially from the point of view of

6



mobility [40],[41],[44], [45], [46]. The electron mobility in SiGe alloys has been

thoroughly studied. It is the hole mobility that still needed to be increased to a value

proportional to the increase achieved in electron mobility, to make SiGe MOSFETS

capable to create CMOS gates. The highest hole mobility values up to date in SiGe

MOSFETS (600cm 2/Vs, much higher than in silicon MOSFETS) has been obtained by

Leitz [40].

1.2 GOALS

This thesis furthers the knowledge of SiGe hole behavior, along two tracks. One

track is theoretical, and it studies the valence bands of strained Si and SiGe alloys. The

energy structure of the valence-bands determines the drift mobility, as well as the

effective mass of the holes, which is an essential component in the intrinsic carrier

concentration. In this thesis, I am determining the values for effective mass of holes in

strained SiGe alloys versus strain, and in relaxed SiGe alloys. This mass is determined

for room and for low temperatures.

The other track is experimental and studies the mobility of inversion holes in

SiGe based PMOS at room and low temperatures. The mobility mechanisms in strained

Si and strained SiGe are identified and the mobility laws are studied. This is done by

using mobility data at room and low temperature, as well as associated simulation results

1.3 OUTLINE

Chapter 2 presents the theory of valence-band structure in SiGe alloys. From the

theory, effective masses and energy structures are extracted using the Mathematica

simulator.
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Chapter 3 presents results for SiGe MOSFETS hole mobility at low temperatures.

From low temperature and room temperature data, the mobility dependencies are studied

and the mobility of the individual strained layers is determined.

Chapter 4 summarizes the contributions of this thesis.

Appendix A presents data and graphs related to Chapter 2.

Appendix B presents data and graphs related to Chapter 3.
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Chapter 2

Band Structure, DOS and Carrier Concentration Mass
in SiGe Alloys

2.1 OVERVIEW

The band structure and the density of states effective masses have been studied

for unstrained silicon and germanium [2], [3], [5], [10],[12],[13],[26], [28], for strained

silicon and germanium only under certain conditions [1], [4], [6], [7], [8], [9],[11],[16],

[17],[27], and some strained Si1 _,GeX alloys on silicon [4], [14], [15]. These studies have

been incomplete however, because, for example, the density of states effective mass for

holes has not been determined for all valence band energies. Also, carrier concentration

masses have not been determined except for unstrained silicon and a few strained

Si1_,Gex percentages on silicon. The decrease of the carrier concentration mass at low

temperatures and the effect on carrier concentration has not been investigated. In this

chapter I will be studying the density of states effective masses and the carrier

concentration masses of relaxed Si1_,Gex and strained Si1_,Gex on relaxed SisGe, , for

any percentages x and y of germanium. This study focuses on the hole masses, which

are much harder to obtain than electron masses. The temperature dependence of these

masses will be thoroughly investigated.
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2.2 INTRODUCTION TO DENSITY OF STATES MASSES

The Density Of States (DOS) Effective Masses of electrons and holes are

important parameters in the evaluation of carrier distribution functions in

semiconductors. The intrinsic carrier concentration in a semiconductor is

E
n.= N N, exp(- ) (1)

2kBT

where

Eg is the energy gap of the semiconductor,

N= 2 2mnccekBTj32  (2)C ~h2

NV 2mnhkBT 3/ (3)
h2

kB is Boltzmann constant, T is temperature, h is Planck's constant, and mcce and mcch

are the carrier density effective masses for electron and holes respectively. These masses

are called DOS Effective Masses, but as we will see later, this is a misnomer.

mce and mcch represent the carrier concentration masses in research literatures,

[4], [25]. The correct description of DOS effective Masses (mdos) and their relation to

the carrier concentration masses mcce and mcch will be explained later on in this

document.

Density of states masses mdos of carriers have different characteristics for a

spherical-parabolic band and for a nonspherical-nonparabolic band. mdos for a spherical-

parabolic band does not depend on energy (as explained in a later section). This type of
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constant mdos is due to the curvature of the band, and is often called band-edge

curvature mass.

It will now be shown how mdos for a spherical-parabolic band is different from

the mdos for a nonspherical-nonparabolic band, and what this difference means for the

density of states and for the carrier concentration of the spherical band versus the

nonspherical band.

2.3 ENERGY BAND STRUCTURE

For a nonspherical-nonparabolic band, the band structure is given by

f(E,0,p) = h2k2  (4)
2mo

where

m0 is the electron mass

f (E, 0, 0) is an energy function depending upon band energy and the spherical coordinate

angles 0 and 0.

k is the wave-vector of the electron or holes concerned.

For a spherical-parabolic band, k is independent of spherical coordinate angles.

Hence, expression (4) holds true, but now the energy function f(E, 0, 0) has the simple

form

Em
f(E,0,p)= Em" (5)

where md0 , is a constant and is the same as mdos explained earlier.

Consequently, the band structure for a spherical-parabolic band is
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h 2k2

2mdos
(6)

2.4 DENSITY OF STATES OF AN ENERGY BAND

For the general nonspherical-nonparabolic band, the density of states of the

band has the expression

2in0 (7)

where

f '(E,0,) = af(E,0,#)
aE

(8)

For the special case of spherical-parabolic band, since

and

the density of states becomes:

I) 3/2 7r 27r1(E = 2-n0
81r 3 h2 ff

F mi"dos sin(O)dOd)
in 10 inM0

which reduces to expression (12):

g(E) I 2mo /2

87 ' h 2

_1 2mdo /

27r2 h 2

Emdos mdos fsin(O)dOd= 1
Mo MO 00 8;T'

2mo/ EmdOs d

h 2 ) Mo mo

f(E,0,q))= Ems
in0

(9)

f (E,,)= E= a n ,

aE min

indo

min
(10)

(11)

12

g (E) = I
f(E,0,0)f (E,0,#)sin(0)d~d#



Comparing the density of states g(E) for spherical (eqn 12) and nonspherical

(eqn 7) bands, we choose mdos for a nonspherical-nonparabolic mass as:

2/3

f (E,0, )f (E,0,)sin()dd

mdo, (E) = mo 0 (13)

and with this value of mdos, the density of states for the nonspherical band becomes

(14)g(E) = I 2mdo(E) 3/2

I2 ( h )

similar to the density of states of the spherical band. Clearly, for the nonspherical-

nonparabolic band, the density of states effective mass mdos(E) is not a constant

anymore, because it depends on the energy E in the band.

2.5 CARRIER CONCENTRATION OF AN ENERGY BAND

The carrier concentration for an energy band is defined as

n = fg(E)F(E)dE
0

(15)

where

F(E) is the Fermi-Dirac distribution function.

For the spherical parabolic band, such as the conduction band of silicon, the carrier

concentration is

1 2m do, 3/2f

no272T2h21 f E-EF) dE,0 1+ exp( )T
k B

(16)
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while for a nonspherical-nonparabolic band, such as the valence band of silicon, the

carrier concentration is

2mo 3/2

h 2
f(E,0, )ff(E,0, )

dE sin(O)d~d . (17)
E - E

1+exp( F
kBT

Comparing the carrier concentrations for spherical (eqn 16) and non-spherical (eqn 17)

bands, we can choose the value of carrier concentration mass mcc for the non-

spherical band as

0 0 27r

0 0 0
3/2m0

f (E,0,#)f'
E

(E,0, )
-dE sin(6 jd~d

1 -

+-exp( E)F
kBT

(18)41r
dE

0 1+ exp( kBT

Using the density of states mass mdos (E) for non-spherical bands chosen above, we

finally obtain

3 /2 1
Mcc = Ek T3/f

(kBT) 3 F11 2 ( F ) 0
kBT

m 2(E) VIEdE

I + B F
kB

where F 1/ 2 is the Fermi integral of order 1/2. Using this carrier concentration mass, the

carrier density for the nonspherical band is written as

2r~2mcc 3/2

h 2
Po =

21r2
(20)E dE

0 1+ exp( F)

kT

similarly in form to the carrier concentration no of the spherical band.

For spherical parabolic bands,

14
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1j ' 3/2' E dE (21)
2r 2 h 2 Ef

0 1+ exp( kBT

For spherical-parabolic bands, mdos has a constant value that is the same as ne. It is a

constant value because the mass in the spherical-parabolic bands has no energy

dependence. On the other hand, for a nonspherical-nonparabolic band, the mass that

appears in the density of states g(E) is different from the mass that appears in the carrier

concentration. mdos is dependent on energy , and, by integrating it over energy weighted

by the Fermi-Dirac distribution we obtain the carrier concentration mass which, finally,

has no energy dependence.

Another interesting observation is that for spherical-parabolic bands the carrier

concentration mass has no temperature dependence, while for nonspherical-nonparabolic

bands the carrier concentration mass clearly depends on temperature T.

2.6 mdos AND m, OF ELECTRONS

Since the conduction band is spherical-parabolic for silicon, germanium, and their

strained and unstrained alloys Si1 - Ge.,, the density of states/carrier concentration mass

of electrons does not depend on energy. Fischetti and Laux [4] have calculated and

plotted the electron longitudinal and transverse mdos.

In silicon the conduction band minima are along the [100] directions, and there

are 6 symmetry equivalent minima leading to 6 equivalent ellipsoids in k-space. Fig. 2.1

below shows the geometry of the conduction and valence bands of silicon.
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L r X

(a) (b)

Fig. 2.1. (a) Band structure and (b) conduction band minima, in silicon.

Therefore, the longitudinal and transverse masses correspond to the three ellipsoid

axes (each axis having 2 of the 6 ellipsoids of the conduction band minima), and the total

mass that enters in the carrier concentration formula is a composite of these longitudinal

and transverse masses, by the formula

mdi3 = 64mLmm (22)

This formula is derived from a solid-state calculation of the total density of states due to

all three masses.

In germanium the situation is somewhat different. The conduction band

minimum is along the [111] direction at the zone boundary (boundary of the first

Brouillon Zone), and there are 8 symmetry-equivalent [111] directions. However, the

ellipsoids are cut in half by the zone boundary, and this leads to 4 conduction band

minima in Ge.
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Fig. 2.2. Band structure and conduction band minima in germanium.

The total mass that enters in the carrier concentration formula is a composite of

these longitudinal and transverse masses, by considering the 4 equivalent ellipsoids, and

the expression is

3/2 =4mL T T (23)

To the best knowledge of the author, no literature is available about strained

Si iGe on relaxed Sii_, Ge1,. Only strained SiGe on Si and Si _ Ge1 on Ge has been

studied to date by contemporary researchers [4]. By using the data in [4] for strained

SiI_,Ge on Si and on Ge and interpolating between the two, effective electron masses

for strained Sii_,Ge,,, for various strains can be obtained.

2.7 mdos AND m, OF HOLES

The situation is much more complicated for holes, because the valence band is

nonspherical-nonparabolic. Therefore the energy dependent m ,,(E) is needed in order

to obtain the carrier concentration mass mic (T), where T is temperature.

2.7.1 RELATED WORK

17
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To my best knowledge, the work by Fischetti and Laux [4] is the best

compilation to date of available density of states masses for holes in SiGe. Their paper

has only one mdos(E) value, namely the value at thermal energy, 25meV is plotted by

them for

1. Relaxed Si1 _,Ge, for x between 0 and 1.

2. For strained Si and strained Ge submitted to various stresses.

3. For strained Si_,Gex on Si and strained Sis Gex on Ge.

Their data thus does not allow to find the carrier concentration mass mcc (T) and its

dependence of temperature for these SiGe alloys, because mdos (E) is calculated only for

one energy value (25meV).

Two papers by Manku and Nathan [15], [20] find Mdos (E) for the entire energy

spectrum for strained Sil-xGex on Si for only four values of x (0.05, 0.1, 0.2, 0.3).

However, they also have not covered relaxed SilxGex or strained Si xGex on relaxed

Sis, Ge,.

A survey of the literature shows that mdo, (E) for the entire energy

spectrum and mcc (T) have never been determined for relaxed Si1 -xGex and for strained

Si1-Gex on relaxed Si1 ,Ge, .

2.7.2 CALCULATION OF mdos FOR ENTIRE SPECTRUM FOR
RELAXED SiGe AND STRAINED SiGe OVER RELAXED SiGe.

In this section, I will show

1. The formal methodology for the calculation of aforementioned masses.
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2. Results for mdos (E) for the entire energy spectrum for relaxed Si1 ,Gex for any value

of x between 0 and 1.

3. Results for strained Si xGex on relaxed Si1 ,-Ge for any values of x between 0 and

1 and of y between 0 and 1.

4. mcc (T) for all the above-mentioned combinations of SiGe.

5. Plots of Energy spectra capturing the correspondence between valence band structure

changes and the percentage of Ge .

6. Constant energy surface plots to capture the relation between valence band structure

changes and the amount of strain (deformation energy).

The implementation for this project has been on Mathematica, which is a well-known

engineering tool.

2.7.3 OBTAINING BAND STRUCTURE BY THE KP METHOD

The band structure of a semiconductor can be obtained by using various methods,

of which a few are listed here:

1. The pseudopotential method

2. The LCAO (linear coupled atomical orbital) method

3. The free-electron approximation method

4. The kp perturbation method.

I will use the kp method developed by Pikus and Bir [23], [24], in my approach.

In this method, one starts by writing the one-electron Schrodinger equation for a periodic

lattice

2 h -h22
2m+V()+--( ) U n() Elk - 2 U n,() (24)

2 m0 "'hk m

19



where

V(F) is the potential of the unstrained unit cell

EK is the energy spectrum of the unstrained material at k

UK (7) is the unstrained electron Bloch wave function which is cell-periodic

mO is the electron mass.

At ko = 0, the above Schrodinger equation is

--2

P+V(j) I() E (F)

The essence of the kp method lies in treating the term (k j) as a perturbation, for

k # 0. From perturbation theory, the energy at k (that is, including the perturbation

effects) is

k-Iu 6 (7)) 2
E - E6 (26)E =E n+ h+ h 2

2mo MO j n

The easiest way of finding E for a given semiconductor is to solve the

perturbation eigenvalue equation directly, rather than applying the above formula. The

eigenvalues we want to find are

2 k 2m2
E k= E k - .m (27)

These eigenvalues are all we need in order to determine effective masses. The solution

has three energy eigenvalues that correspond to three types of holes, the heavy-holes,

light-holes and split-off holes. For silicon and germanium which have lattices where

inversion is a symmetry operation (diamond lattices), the first order matrix elements of

20
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the k - perturbation vanish at k = 0 [10]. For a complete orthonormal finite set u ,,

of cell-periodic wave functions at k = 0 , where J indexes different energies and i refers

to degenerate functions for a given energy, any vector in the vector space of one given

energy (a given J ) can be expressed as a linear combination of u ) , that is, it can be

expressed as cu", +c 2u 2 ,J +....+ cun,

perturbation vanish as explained above.

and will manifest themselves in energy.

eigenvalues of the finite matrix equation

The first order matrix elements of the k

The second order effects will have influence,

The energies are found by determining the

C1

C2

Hkp.

cn

Cl

C 2

zEk

Cn

= n . .

h
Hkp is the perturbation term due to the (k - ) term in the Schrodinger equation.

m0

(28)

Hkp

can be expressed in matrix form, with elements having the units of energy. The form of

the Hkp matrix has been determined for cubic and diamond lattices. For the silicon and

germanium lattices, HkP is a 3x 3 matrix written as below:

Lk H + M (k + k 2)

Hk[ Nk k,
Nk~k

Nk k,
Lk2 + M (k2 + k 2)

Nkykz

Nk~kz

Nkyk

Lk 2 + M (k2 +k )

The L, M, N parameters are called valence band parameters. They are the essential data

needed to obtain the valence-band structure for a material. The full details about L, M,

and N would be provided shortly.

21
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Both Si and Ge have three valence bands. Two are degenerate but have different

curvatures. The third band is split-off from the other two bands by the spin-orbit

coupling, and is called the split-off band. It is located below the two degenerate bands,

by 44meV for Si and by 296meV for Ge. The ko = 0 for the valence bands is at the F -

point, center of the Brouillon zone. The valence bands are atomic p-like near the F -

point. Because of this, the three valence bands are often classified according to their

angular momenta. As in an atom, the p-orbitals are classified according to j, and

1 3 .3j= , are the resulting angular momenta. The j = - states form the heavy hole and
2'2 2

1light hole bands, and the j= - state forms the split-off band. The three states for heavy,2

light, and split-off bands are called E, e . They form our degenerate basis

functions.

I Energy

I E (k)
4-

3-

-

-2-

EI(k)
-6-

-1,0 -0.5 0,0 0,5 1.0
wavevector k

Fig. 2.3. The valence bands of Si and Ge.

The matrix elements L, M, N are determined by the coupling of the valence bands

to all other energy bands (usually, the conduction bands). The coupling is mainly

22



determined by the interaction between the valence bands and the first 3 conduction bands.

Denoting these three conduction bands involved in the coupling with a, where i =1,2,3,

the terms L, M, N are:

(1+ IP, I a )(aI p. I1+)
EO - Ea

(1+ p, I a,)(a Ip, 11+)
EO - Ea

12 +)+(1+1 p, I a)(a, I pI, 12+)
(32)

EO -Ea

where p, , p, , 1+ and 2+ operators refer to the valence bands ( p, and p refer to the

momentum operator p), E0 is the valence band energy that we seek, and Ea are the

energies of the conduction bands ac where i = 1,2,3. The theoretical expressions of L, M

and N are complicated. Luckily, these coefficients have been calculated and plotted for

relaxed SiI_,Ge . For Si the coefficients are L= -6.53, M= -4.64 , N= -8.75 and for Ge

L= -31.53, M= -5.64, N=-33.64, in units of . Rieger and Vogl [25]
2mo

have calculated

from theory the L, M and N coefficients, but their data does not fit the Ge values.

0.0

-5.0

8 -25.0

-30.0

-35.0
0.0
S1

0.2 0.4 0.6 0.6 1.0
x Ge

(30)

S (31)

M
L

N

SI-Xe
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N =



Fig . 2.4. Calculated valence-band parameters in an unstrained SiixGex alloy by Rieger
and Vogl [25]. For pure Si and Ge the experimental results are shown for comparison.

The valence-band parameters are given in units of .
2mo

Merkler has corrected the theory and obtained the L, M, N dependence on Ge percentage

correctly, theoretically fitting both the Si and the Ge values. Below is the graph of

Merkler.

0

-5

E -10

-a20
(D3

-25

-30
(3-30

0.0

Si
0.2 0.4 0.6 0.8 1.0

x Ge

Fig. 2.6. Calculated valence-band parameters in an unstrained Sii-xGex alloy by Merkler
[29]. For pure Si and Ge the experimental results are shown for comparison. The

valence-band parameters are given in units of . The calculation is a non-linear
2mo

interpolation following the scheme of Lawaetz [12].

I will describe now how, using the coefficients L, M and N, we can find the band

structure of the valence band, namely, the eigenvalues E, = E(k). Once we have the

dependence E(k), or, reciprocally, k(E), we can find the function

f(E,0,0)=
2mo

M

Sil-Gex

(4)
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and from that the effective masses that we are looking for. The Hkp matrix is written

below [19]. I will rename the Hk, matrix as S:

Lk +M(k +k2) Nk k Nk k
S=H Nk k Lk2 +M(k2 +k 2) Nk k (33)

Nk k Nk k Lk 2 + M(k +k )

By solving the eigenvalue equation ST = Ek i we obtain the band structure of the

unstrained valence bands, without including any spin-orbit interaction.

In case of strained Si xGex we must include the effect of strain. This effect is

easy to quantize by the deformation matrix whose general form is:

tEi + M(E,, + E1 nE , nE,

D= nEY le,, + m(EX + EZ) nEj. (34)

nEX nEZ 1EZ + m(E& + E-I-

The deformation matrix D is the first-order correction that arises due to straining effects.

We will describe now what the terms that enter the deformation matrix are for our

particular case of strained of Si1 _,Ge, grown on relaxed (001) Si1 -Ge,. This growth

results in biaxial in-plane compression of the strained SiGe, and consequently in the

straining of SiGe both parallel and perpendicular to the growth direction. With the z axis

along the direction of growth, the strained components of SiGe are easy to deduce [22].

The strain is in-plane, so there are no shear strain components:

0 = EX, = 8E = EZ . (35)

The other three strain components are, as follows from People's paper [22]:

EXX = E, = aS(y)-b(x) (36)
b(x)
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Ezz= E- +o +vb(x)- a, (y)
E,= E ____+___

_1-_ a, (y)

where

a, (y) is the lattice constant of the Si1_,Ge, substrate

b(x) is the unstrained lattice constant of Si _,Ge .

V is the Poisson ratio.

So SiIXGeX has a lattice of b(x) when by itself, but it will assume a lattice of a, (y)

when strained, that is, when grown on the Si1_,Ge, substrate.

(37)

Now we have the EX, E ,, E , , E, and Ez terms in the deformation matrix

D above, we also need the 1, m, n values to be able to compute the matrix D. It does not

2 2matter what n is since 0 = E , = E .= EZ . For uniaxial strain, m = -Dd + -Dy, and
3 3

2 4
2 = d -D D, where D, is the band splitting deformation potential
3 3

and Dd is the

volume deformation potential [8] [9] [15].

The deformation matrix therefore becomes:

2
D=- D (2Ex

3

+
+ E7Z) 0

L0

2-- D, (Ez
3

0

0

0

2
3 D (E ZZ

0

0

0

4
D (E - E )

3

(38)

Denoting

2
Eun = -D (2 E + ezz)

3 (39)
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and

E f = -- Du (EZ - )3

the matrix D becomes

1 0 0 ][def

D= Eun 0 1 0 + 0

0 0 1 0

0 0

def 0]

0 - 2Eef

The parameters involved in the deformation coefficients above are summarized below

[7], [8], [9]:

Parameters Si Ge

a(A) 5.4309 5.646

V 0.280 0.273

Du (eV) 2.04 3.32

Table 1. Parameters that enter the deformation coefficients

For a given Si .Ge, alloy, the values of the lattice constant, Poisson ratio and

D, potential are found by a linear interpolation of values for Si and Ge. The value of Dd

is not known exactly, but, as we will see, we do not need the Dd value to determine the

density of states masses or the energy spectrum.

The effect of strain is included by using the matrix S+D instead of S in the

eigenvalue equation:

(S + D)i = Ek. (42)

We have yet to include the spin-orbit coupling effect. When spin-orbit effects are

included, we take as our degenerate basis functions E +1', E +, E 1", Ec +, e ,
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E' ( , where 1 and I designate the spin functions spin-up and spin-down, or and
3 0

1 . In this representation, the k -independent spin-orbit perturbation has the form:

0 i 0 0 0 -1

-i 0 0 0 0 i

A 0 0 0 1 -i 0
HSO- (43)

3 0 0 1 0 -i 0

0 0 i i 0 0

-1 -i 0 0 0 0

where A is the spin-orbit splitting energy. A is 44meV for Si and 296meV for Ge. For a

given Si1_,Gex alloy, the value of the spin-orbit splitting is found by a linear interpolation

of values for Si and Ge [4], [22]. The spin-orbit interaction depends only on the constant

A, that is, only on the lattice spacing. This happens because of the symmetry properties

of the diamond-lattice crystal.

Also, in this representation, the Hamiltonian S from the eigenvalue equation,

which was a 3 x 3 matrix, becomes a 6 x 6 matrix which may be written schematically

S 0 . We call this new matrix S,.

S1 = (44)

+M(k +k2) Nkk, Nk k 0 0 0

Nk k Lk2 + M(k 2 + k') Nk k 0 0 0

Nk k Nk k, Lk2 +M(k +k2) 0 0 0

0 0 0 Lk 2 + M (k + k ) Nkk, Nk k
0 0 0 Nk k Lk + M (k 2 + k ) Nk k,
0 0 0 Nk k Nk k Lk +M(k +k )
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The deformation matrix D from the eigenvalue equation also becomes a 6 x 6

matrix which may be written schematically
D

0

0

D
and will be called D,

E
un

0

0

0

0

0

0 0

Eun

0

0

0

0

U

0

0

0

0

0

0

Eun

0

0

0

0

0

0

Eu

0

0

0

0

0

0

Eun

+

I Edef

0

0

0

0

0

0 0 0 0 0
8def 0 0 0 0

o - 2 Edef

0 0
0 0 0

E df 0 0

0 0 0 def 0
0 0 0 0 - 2Edf

(45)

It is important to say here that the diagonal identity matrix-like in Eun above will

only contribute to a relative shift in energy and not to the curvature of the band.

Therefore the Eun part of the matrix above will not influence the effective mass and

energy band structure calculation and will be ignored, so the matrix Di we will work with

(the deformation that influences the curvature of the band) will be only

Edef 0 0 0 0 0

0 V def 0

0 0 - 2Edgf
0

0

0

0 0 0

0 0 0

0 0 Edf 0 0

0 0 0 Edef 0

0 0 0 0 - 2EdJ

(46)

Now all three matrices H,0, S, and DI, which are all 6 x 6 matrices, have to be

added together and the eigenvalue equation becomes

(H +S 1+D)i = E'v . (47)
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We could go ahead and solve this equation for its eigenvalues, but this task would

prove very difficult. The reason for this difficulty is that the matrix H,, + S1 + DI is not

symmetrical across the diagonal (because, although S, + D, is symmetrical across

diagonal, the matrix H,0 is not).

The way to circumvent this difficulty is to try to diagonalize the matrix H, . This

is done by finding a unitary matrix U , which has the property that it makes U -1Hs0 U be

diagonal. (The eigenvalues of a matrix do not change when the matrix is multiplied by a

unitary matrix in this way.) The matrix U that does the trick is

1 1 1
0 0 0

0 0 0 - -

0 2 0 0 0
U = F - (48)

0 1 1 0 0

0 0 0

0 0 0 0 2 1

This matrix is in fact the unitary transformation matrix of the JM, quantum mechanical

representation.

The transformed H matrix will be

A/3 0 0 0 0 0

0 A/3 0 0 0 0

H' U 1 H U -- 0 0 -2A/3 0 0 0
0 0 0 A/3 0 0

0 0 0 0 A/3 0

0 0 0 0 0 -2A/3
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The final matrix whose eigenvalues we will find is

H,, =H I +U- 1(Si + D)U =U -1(SI + Di + H ,)U (50)

and the eigenvalue equation is:

H,,, I J;M1 ) = A(k) J;M' ) (51)

where A(k) are the eigenvalues of Ho,, and they depend on k that is on k , k,, and k,,

and IJ;M, ) are the eigenvectors. The energy-band structure of the valence band for

each eigenvalue is obtained in the following way:

E(k )= + A(k) (52)
2m

The matrix H,0 , is a 6 x 6 matrix. To find the eigenvalues of a matrix we must

solve the determinant equation:

0 0 0 0 0

0 0 0

0 0 0

0 0 0 1(k) 0

0 0 0 0 A(k)
0

0

0 0 0 0 0 11(k)

(53)

This is clearly a 6th order equation, so we would expect it to have 6 eigenvalues

solutions A(k) . In fact, it turns out that the determinant 6th order eigenvalue equation

above is actually the square of a 3rd order equation: Y(order6) = (Z(order3))2 = 0

This fact is due to the matrix Ho, being block-diagonal. The 3 d order equation

Z(order3) = 0 has 3 different eigenvalues A(k) and consequently 3 energy-band
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structures, which will correspond to the heavy-hole band, light-hole band, and spin-off

hole band.

Since

h2 k 2 h2 k 2

E = 2m+ A(k), then (k )= E -
2m 2m

(54)

We replace 1L(k) by E - 2 m in the eigenvalue equation Z(order3)
2m

= 0 and we

obtain the 3'd order equation in E and k 2 . The 3 rd order equation, as derived by Kane, or

as derived by Maple formula manipulation, is:

h Ih ' +2h h h -h h2 - h 2 -h h2  (h 11h 3 + 3hlhI +h 22h11 22 33 12 23 31 11 23 22 13 33 12 3 h22 33 h 2 3 -h2 - h2 -hi ) =0

(55)

where

h. = St. + D

S1 and D.. are the matrix elements of the initial 3 x 3 matrices S and D

2 2

hi =- hi +-2m E (56)

where k = Ikv + I2k +Iskz =iIksin cos+i 2ksin sin±+i3 k cos0 in polar

coordinates. This is a third order equation in k 2 . We would like to solve it and obtain

k2 versus E. There will be three solutions, k 2 (EHH), k 2 (ELH), ks2 (Eso). Once we

have k 2 (E) for each band we can find the density of states effective mass, the carrier

concentration effective mass, the energy-spectrum for each band and the constant energy

surfaces for each band.
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Luckily, it is possible to find the solutions of a third order equation by a closed

formula.

Our eigenvalue 3 d order equation is of the form

ak 6 +bk4 +ck2 +d =0 (57)

(where a, b , c and d depend on E ); it is proved that the three solutions of any 3rd

order equation like above are as follows [28]:

1. k =2 cos(
3

2. k H = 2 LCos(a
3

b) - for heavy hole band

4)T b
+ ) b

3 3a

3. kso =2 COS(a + )3
3 3

where

c b 2

a 3a

qd -c( b )+ b)

a a 3a 3a

I
a = - arcco

3

b

3a

for light hole band

for split-off band

-q

2.

We have now finished our analysis of the solutions to the 3rd order equation, and we must

say what a, b, c and d are in terms of Si, D, E , A etc. (all the parameters that enter

in the hi terms of the equation written above).

It can be shown, that the a, b , c and d parameters are as below:

* a =-(A+ 2B)(A-B) 2 + 3(A - B)C 2 u -(N -3B) 2 (2N +3B)v
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* b = 3[(A 2 - B2)- C2U](EA+-)-g3
3

2A A
* c = -3AE(E +-)+-g 1 -g 2 + gE

3 3
A 2A

* d=E 2(E + A)+--(pq+ pr+qr)- pqr - E (p+q+r)+ E(pq + pr+ qr)- E2 (p+q+r)
3 3

(59)
where the various letters appearing in the expressions above are:

E is the negative hole energy taken from the top of the valence band downwards;

1 h
A = -(L + 2M) +--

3 2mo

1
B =-(L -M)

3

21C' =-I[(N2 -(L-M) 2 )]
3

where

L, M, N are the valence band parameters;

u =sin 2O(sin 2 Ocos2 sin 2 +cos 2O)

v = sin 4 O cos 2 O cos 2 0 sin 2 / where 0 and 0 are the polar coordinates angles;

2
P = Eef =-D (Ezz - E")

3

2
q = p= -D (Ezz - El3

4
r =-2def =4 D u(e, - E )

3

g = cos2 0[(p+ q)(M +L)+2rM]+sin2 [(p+q)M]+sin2 cos2 [M(p + r) L(q r)]+

+ sin 2 0 sin 2 q[M(q + r) + L(p + r)] + (h2 /m)(p + q + r)
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g 2 =cos 2 [pqL+ rM(p +q)] + sin 2 0(pqM) + sin 2 Ocos 2 4(prM +qrL)+

+ sin 2 0 sin 2 O(qrM + prL)+(h 2 / 2m)(pq + pr + qr)

93 = sin 2 0 cos 2 0 cos 2 O[ML(p + r)+ rM 2 + q(L 2 - N 2)]+

+ sin 2 O cos 2 0 sin 2 O[ML(q + r)+ rM 2 + p(L2 - N 2 )]+

+ sin 2 0cos 2 O[M 2 (p + q - r) -ML(p +q + r)]+

+sin2COS2 h 2 [M(p+r)+L(q+r)] +sin2s2 0 h 2 [M(q+r)+L(p+r)]
2mo 2mo

+ sin 2 0 h2M(P+ q) + rML -3rC 2 sin 4 0 sin 2 Ocos 2 q + sin 4 0 sin 2 f(M 2q + MLp) +
2mo

+ sin 4 0 cos 2 (M 2 p + MLq) + COS2 h2M(p+q + 2r) + h 2L(p + q) + ML(p + q) +M2r +
2mo 2mo

+ -h- (p + q + r)
2mo

where the p, q, r, g, g2 , g 3 parameters are due solely to strain.

Once we have kHH2 (E), kLH 2(E), kso2 (E), we can look at the energy spectrum,

by plotting energy E versus k-vector, for the k-vector in the [010] and [001] directions.

We can also look at the constant energy surfaces for any given energy, by plotting kz

versus ky for that particular energy. And finally, we can calculate the density of states

effective mass mdos and the carrier density effective mass which depends on

temperature.

Based on the analysis done at the beginning of this chapter when we discussed

effective masses, we first calculate:

V(E) = 3fd6f d k3(E,0, 0)sin(0) (60)
0 0

Then we obtain the density of states effective mass from:
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mdos = dVj h' (61)
27ifE dE 2mo,

The carrier concentration effective mass is found from the integral

3 3/2 mdos 3/2(E)E1 /2 E(62)
c = F1/2 (# ) 1+ exp[#(E - EF

1
where P = . The expression reduces to

kB

32 2 p33/2 / dS/
MCC (T) 2 E (E)exp(-E)dE (63)

Tr0

for the Fermi level sufficiently negative, that is, for F B -3kBT

This study is done for the heavy Hole, light hole and spin-off hole bands, and the total

carrier concentration effective mass is a composite of all the masses, by the formula:

mCttl(M3/2~ + + 3/2 j+M )/2/ (64)
CCtota = cc c, H H cC, LH cSO)2/3

2.7.4 Implementation and Results

The main difficulty in implementing the study above in a computer language is

given by the double integral in equation above. I tried to use Matlab, Maple, and

Mathematica. Matlab can do simple double integrals, but it has problems with

complicated integrals (it can not do them correctly and, in an effort to still do them it

makes overrated approximations which give an erroneous result to the integral at the

end), especially the ones that can not be expressed in closed form but only calculated

numerically, such as our integral is.

Maple, while great for manipulating mathematical formulae, opening

parenthesis and simplifying formulas, takes a computationally infeasible amount of time
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in evaluating a double integral of the kind we have. The problem is exacerbated by the

fact that we need to evaluate this double integral for many values of E.

Mathematica was the only one of the programs that worked. This is

probably because Mathematica is geared towards numerical computation, while Matlab is

geared more towards linear algebra and vector calculations, and Maple is rather good for

symbolic (analytic) formula manipulation.

Running one program in Mathematica took between half an hour to 5 hours,

depending on the complexity of the program.

The first study was of relaxed Si1_Ge . I used the L, M, N parameters from the

Merkler graph (Fig.2.6). Since in relaxed SiGe there is no deformation matrix, the terms

p, q, r, g1 , g2, 9 3 , are all 0. We implement k 2(E) by one of the expressions in

formula 58, depending what types of holes are studied, then we implement V(E) by

formula 60 for energies E between 1meV and 70meV in steps of 1meV , mdos by

formula 61 for the same energy range and finally mcc versus temperature T by formula

63.

Fig.2.7. shows the heavy hole dos mass versus energy for Si, Si9oGeo%,

Si70%Ge30% , Si5 o% Geses , Si30%Ge7O% , Silo Ge~o% , Ge. The highest effective masses are

for silicon. To check the correctness of my calculations, I have compared the silicon

effective mass curve I obtained to the silicon one obtained by Manku and Nathan [20],

and the one obtained by Zukotinski [28], and they are identical. The values for the

density of states effective mass at 25meV of Fischetti and Laux [4] (the only one they

have calculated), are identical to my values at 25meV.
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Heavy Hole Mass in Relaxed SiGe
61.4 --
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Energy(meV)

Fig . 2.7. Heavy Hole Mass in relaxed Si , Si9oGelo%, Si70%Ge3O% , Si50%Ge5O,,
Si30%Ge7 O, , Si 0% Ge90%, Ge. Si is the highest graph and Ge is the lowest, with SiGe in

between, Si90%GeIO% closest to silicon, Si oGe9o% closest to germanium.

Fig.2.8. shows the values of the carrier concentration mass m, (T) for relaxed Si,

Si9oGeo%, Si70%Ge3O%, Si50 ,Ge5o%, Si30%Ge7O%, SioGe%,a, Ge. The graph is correct

down to about 50K. This is due to the fact that the integration has been calculated as a

sum and this would make formula blow up at very low temperature.
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Fig . 2.8. Heavy Hole mcc versus temperature in relaxed Si , Sigo, Geo0 , Si70yGe30%,

Si50% Ge5o% , Si30%Ge7o% , SiI% GeqO%, Ge. The order of the graphs is the same as in

Fig.2.7.

Fig2.9. shows the energy spectra for Si , Si90% GeIO%, Si70%Ge3O% 1 Si50%Ge5O% ,

Si30%Ge70% , SiI% Ge90 , Ge'. This is basically the plot of E(k), which can be easily

done once one has the function k 2 (E).
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Fig. 2.9. Energy spectrum for heavy holes in relaxed Si, Si9oGeo0 , Si70%Ge3o% ,
Si 0 Ge 0 , Sio Ge 0%, Si 0 Ge 0%, Ge. As before, Si% Ge0% is closest to silicon,

SioGeo% is closest to germanium.

Fig.2.10. shows the direct p-s energy gap for Si, Si9oGeio% , Si70%Ge3 O,,

Si50%Ge5 O% , Si30%Ge7 O% , Silo% Ge90 % , Ge.

Direct p-s energy gap EU versus Ge percentage in relaxed Si(1-x)Gex
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Fig.2.10. Direct p-s energy gap for relaxed Si , Sio% Geio%, Si 0 Ge 0%, Si 0 Ge 0 ,

Si30%Ge7O% , Silo% Ge9o%, Ge.

Fig.2.11. shows the sigma factor of relaxed Si, Si90 % Geo%, Si70%Ge30% , Si5 o% Ge50% ,

Si30%Ge70 %, Silo% Ge90 % , Ge. Sigma factor is - where N is the number of electrons
4

that participate in covalent bonding. It can be seen that silicon has about N = 4, while

germanium has about N = 5.6. The deviation from the usual number of 4 covalent

electrons, for germanium, is due to the interaction of the existing 4 covalent electrons

with other energy bands, which creates the apparent number N = 5.6 for covalence.

Sigma factor versus Ge percentage in relaxed Si(1-x)Gex
1.4

Ge

1.35 -

1.3

1.25

1.2-

0 0

1.1-
0

1.05 0

1 0

0.95

0.9t
0 0.2 0.4 0.6 0.6 1

x(Ge percentage)

Fig. 2.11. Number of electrons that participate in covalent bonding in relaxed Si ,
SioGelo% , Si70%Ge3O% . Si50%Ge5O% , Si30%Ge7O% , Silo Ge~o% , Ge.

Finally, Fig.2.12. shows the constant energy surfaces for E = -25meV . The most

outer one is silicon , the most inner one germanium. We can see that even 10%

germanium in the SiGe alloy drastically deforms the energy surface from that of silicon.
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x 100 Constant Energy Surfaces for Relaxed SiGe; E=-25meV
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Fig . 2.12. Constant heavy holes energy surfaces (E = -25meV ) for relaxed Si,
Si9oGeo%, Si70%Ge30%, Si50%Ge5 O%, Si30%Ge7 O%, SioGe9 o%, Ge. The relaxed SiGe

alloys are in between the Si and Ge energy surfaces, with Si4oGe 1% closest to silicon

and Silo% Ge9 o% closest to germanium.

The next study is that of strained SiGe. For strained Si1 _ GeX I used the L, M, N

parameters of the relaxed Si1.XGeX alloy from the Merkler graph. This was justified by

papers [8] and [9], where the L, M, N of strained Si and Ge were experimentally obtained

and it turned out they equaled the values for the relaxed Si and Ge respectively, and by

the use of L, M, N in paper [4], for example.

Fig.2.13 shows the heavy hole dos mass of strained silicon, where the strained

silicon lattice is 1.008 times higher that the unstrained silicon lattice. The value for 25

meV agrees with the 25meV value of Fischetti and Laux [4]. Please compare this graph
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with the topmost in Fig.2.7 (unstrained silicon dos mass). Strain always makes the

effective mass decrease.

Strained Silicon Heavy Hole rridos

-

10 20 30 40
Energy (meV)

50 60

Fig. 2.13. Heavy Hole mdos for strained silicon, when grown on a lattice with lattice
constant 1.008 times larger than the unstrained silicon lattice.

Fig.2.14. shows the mdos at 25meV for various stresses applied to Si50%Ge5 O% At

stress 0 the mass is the one for 25meV for Si50%Ge5 O% in Fig.2.7. . We see that as the

stress increases (compressive stress), the effective mass drastically decreases until it

levels off at a very low value for any higher stress value.
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Fig . 2.14. Heavy Hole mdos at 25meV for Si50%Ge5 O for various strains.

Fig.2.15 is very interesting. It shows mdos(E) for relaxed Si 50%Ge5 o, , for

strained Si50%Ge5 O% on relaxed Si70%Ge 30% (stress 1), for strained Si50 %GeO% on relaxed

Si (stress2), and for strained Si50%Ge50O under a stress 10 times smaller than that on

relaxed Si70%Ge3O (stress 3, very small stress). It is seen that at low energy the density of

states mass approaches the same low value, very different from the unstressed value.
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Fig. 2.15. Heavy Hole mdos(E) for relaxed Si50%Ge5o% ,for strained Si50%Ge5O% on

relaxed Si70%Ge3O% , for strained Si50%Ge5 O% on relaxed Si , and for strained

Si50%Ge5O under a stress 10 times smaller than that on relaxed Si70%Ge3 O% .

Fig.2.16. shows the constant energy surfaces at 25meV for relaxed Si 50%Ge5 O,,

for strained Si50%Ge5 O% on relaxed Si70%Ge30%, and for strained Si50%Ge5 O% on relaxed

Si. The strain is applied along kz. We can see that the energy bands retain their

unstrained shape in the plane perpendicular to the strain (ky), but change drastically in the

plane parallel to strain (kz).
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Fig . 2.16. Constant energy surfaces (E=25meV) for heavy hole in relaxed Si50 Ge, 50%,

for strained Si50%Ge5 O% on relaxed Si70%Ge30% (stressl), and for strained Si50%GeO% on

relaxed Si (stress 2).

Fig.2.17 is the same as Fig.2.16, but with the unstrained Si and Ge energy

surfaces added for comparison.
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Fig. 2.17. Comparison of the heavy hole constant energy surfaces (E=25meV) for
relaxed Si50%Ge5 O% , for strained Si50%Ge5 O% on relaxed Si70%Ge30%, and for strained

Si50%Ge5O% on relaxed Si, with unstrained silicon and germanium energy surfaces.

Appendix A at the end of this work, contains more analysis and graphs related to

Heavy Holes in relaxed and strained SiGe. Appendix A also contains the similar study

as the one done here but for Light Holes and for Split-Off Holes. The influence of strain

on energy band structure and effective masses in Light Holes and Split-Off Holes is

thouroughly investigated in Appendix A.

Having determined the energy spectrum E(k) of the valence band of each type of

hole, the drift mobility can be determined. The formula for drift mobility is [30]:

q aE aiz af
2 fd

3 kr(E) E E V

h2 aki aki a E
-ii= fd f 3 kf(E, EF ,T) -

where f is the Boltzmann distribution, EF is the Fermi level, T is the temperature,

r(E) is the total relaxation time of the holes, and E(k) is the energy spectrum of holes.

In the formula above, pij are the tensorial components of the mobility tensor.

2.7.5 Conclusion

A general observation is that with more stress, the masses decrease. The effective

masses decrease very much the higher the stress, (the effective masses of a crystal can

decrease even by a factor of 5 due to stress). It is interesting to notice that the density of

states effective masses mdos do not depend on temperature. They depend only on

energy. The temperature dependence comes in only when the carrier concentration mass

is calculated. It is very important to realize then that, when calculating the carrier

concentration at other temperatures than the room temperature, we must use a different
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mcc and consequently a different Nv in the calculation of pi. The intrinsic hole carrier

concentration pi will thus decrease significantly due to temperature. However, for

electrons, mcc does not vary with temperature, and therefore the electron mass that enters

Nc in the intrinsic electron carrier concentration ni is the same at all temperatures.
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Chapter 3

Inversion Hole Mobility in Si/SiGe Strained-Layers

3.1 INTRODUCTION

In this chapter strained silicon and strained buried-channel SiGe PMOS devices

are studied. These devices were fabricated by Leitz [40],[45], who also measured their

mobility at room temperature. I measured the low-temperature mobility of these devices.

This chapter presents this data and compares it to the room-temperature data.

Mobility degradation at high effective fields can be observed both at room and

low temperatures. The mechanisms that lead to mobility degradation are studied

qualitatively and quantitatively. Simulations of these devices in Medici shed new light on

the behavior of mobility and permit the determination of individual mobility values for

each of the strained layers in the buried-channel PMOS.

3.2 DEVICE TOPOGRAPHY

The devices of Leitz [40] are PMOS ring devices with gate oxide thickness of

about 300nm and the topography shown below.
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Source

Gate L

- Drain S

Isolation Ring

Fig. 3.1. Ring MOSFET mask layout.

The vertical topography of these devices is also shown here.

Metal

3000 A
LTO

Substrate

Fig. 3.2. Schematic cross-section of the MOSFET.

Since the only isolation between source/drain and gate is air, high vertical fields

(very high voltages) cannot be applied, since they would produce electrical arcs, which

would connect the gate to the source/drain.

Device operation is similar to the conventional rectangular FET, with the

exception that the channel length is variable along the gate length. The channel is longer
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in the corners than on the sides. The dimensions of the devices are L = 200pm,

S1 = 250pm, S2 = 250Mm.

By approximating the inversion layer as a region of uniform sheet resistance

bounded by ideal contacts at the source and drains, the resistance between the contacts

being given by R = RAG where R, is the sheet resistance and G is a geometry-

dependent value, or "geometry factor". Values for G have been deduced by Matt Currie

[41] . For the device with the dimensions given above, the geometry factor is G = 0.138.

The current in the linear region of the MOSFET is given by the formula:

ID =1 f m (VGS -V )VDS
G

The composition of the MOSFETS measured was of strained Si on relaxed SiGe

and of strained Si on strained SiGe on relaxed SiGe. The relaxed SiGe buffers were

grown at 10% Ge / pm and capped with a 1.5 pm uniform composition cap. All wafers

were grown on 1-20 Q - cm n-type substrates and doped ~ 1016 cm-3 n-type during run.

As will be shown later, the actual doping is quite lower than this, due to the low

temperature activation of the dopants (SiGe relaxes at high temperatures, so low

temperatures must be used when processing), and due to uncertainties in the initial

doping itself.

The I-V measurements were performed with the following parameters:

" VS= -70V,

" VD= -69.9V,

" VB= -70V,

" VG=100 to -100V.
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The biasing of the source, drain and body at -70V is necessary because the HP4145

analyzer only goes to 100V, but our range of interest is larger than that due to the high

oxide thickness of the devices. By biasing the body, source and drain negative, VGS is

swinging from 30 to -170V, which is the range we need for inversion (negative VGS) in

these devices.

3.3 COLD STATION SETUP

The low-temperature current and capacitance characteristics of the devices were

measured in a liquid nitrogen cold station. The cold station used in these low-

temperature experiments contains four essential system modules:

1. Purging nitrogen line: Purging eliminates any impurities and humidity that may

be present inside the cold-station.

2. Liquid nitrogen line: This serves to cool the wafers.

3. Vacuum pumps for the probes: This vacuum pump creates the vacuum

necessary to stabilize the probes onto the stage.

4. Vacuum pump for the chuck: This vacuum pump creates the vacuum necessary

to hold the wafers onto the chuck, for stability during measurements and good

backside contact.

3.3.1 Experimental Details

The wafers with the devices to be measured are introduced inside the drybox of

the cold-station. These are let to purge overnight by leaving the purging nitrogen line

open. The next day the measuring process takes place. The vacuum pumps for the cold-

station and the probes are turned on. The devices to be measured are identified on each

wafer by row and column.
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The liquid nitrogen is let to flow. The liquid nitrogen line runs parallel to the

purging nitrogen line, thus cooling the purging nitrogen line, which reaches the chuck

and thus cools the chuck. The temperature set point and feedback is provided by a

standard temperature controller and a voltage controller. The system works in the

following way: when the temperature is still higher than the set-point we want, the heater

is inactive and cooling takes place due to the liquid nitrogen which continually flows and

cools the chuck. When temperature becomes less that the desired set point, the heater

ramps up and heats just enough to bring the temperature back to the set point. An

equilibrium is thus established where the temperature is at set point. The wafers need to

be taken off the chuck at low temperature to vaporize the nitrogen ice collected on them.

It takes about 20 minutes to reach the temperature of 100K. When the

temperature is at about 200K, ice crystals (seen as black points in the microscope) will

appear on the surface of the wafer. As the temperature keeps decreasing, the whole

surface of the wafer will become covered in ice, making it difficult to see the devices

anymore and probe them.

When the desired temperature is reached, the wafer is taken off the chuck and the

ice is again blown off it with the house nitrogen gun located inside the drybox. The

wafer is then put on the chuck, left there for a few minutes to reach the cold temperature

back, and them immediately measured, before ice formation occurs again. If more

measurements are necessary, the wafer needs to be lifted every time and the ice blown off

it. Ice will tend to form back in about 6 minutes.

3.3.2 Measurement Details
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CV and IV measurements are taken with caution by following the right grounding

procedure of each. Lack of correct grounding for each type of measurement will lead to a

great amount of noise due to the fact that the drybox is not grounded.

3.4 FREEZE-OUT EFFECT

This subchapter discusses the freeze-out effect observed on the C-V curves that

were taken for the devices at low temperatures. The figure below shows this effect in the

C-V curves of a PMOS device which has a stack of 85 A strained Si / 90 A strained

Si. 2 Geo on relaxed Si0 5 Ge0 5. The G, /a) -V curves corresponding to the C-V curves

are also shown.

x
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x 10-18 G/omega for different temperatures

10 10100K

150K

8-

200K,250K and 300K

-2
-40 -30 -20 -10 0 10 20 30 40

(b) VG(V)

Fig. 3.3. (a) Full C-V curves at different temperatures for one buried-channel SiGe
PMOS device and (b) G, /1w -V curves corresponding to the C-V curves.

The explanation of the effect seen in the C-V curves is given below.

The response of semiconductor devices to externally applied time-varying

voltages is limited by the slow formation of the accumulation region at low temperatures.

The time taken for the formation of the accumulation region at low temperatures can be

influenced by two time constants [31], [34],[33]:

1. The emission time constant of the dopant atoms[32].

2. The RC time constant of the substrate resistance RSb and capacitances such as

the substrate capacitance Csub, the depletion region capacitance Cd and the oxide

capacitance C0., [36].

The slow formation of the accumulation region gives rise to dispersion in the

capacitance-voltage (CV) and the conductance-voltage (G-V) characteristics. This
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dispersion extends to the accumulation region. Basically, the capacitance in

accumulation does not reach Cox but a lower value. This effect decreases with increasing

temperature and the constant accumulation capacitance approaches Co as the

temperature approaches 200K.

Since this effect happens in accumulation, we have to look at the flow of carriers

in the low-temperature region. In accumulation, it is the majority carriers that flow, and

their flow in and out of the semiconductor at room temperature happens with the

dielectric relaxation time constant. Since the source and drain are doped with the

opposite charge of the majority carriers, the majority carriers get in and out of the

semiconductor through the substrate. At low temperatures when freeze-out effects set in,

the resistance of the substrate increases. The time constant of the substrate resistance and

substrate capacitor is no longer negligible and hence influences the rapidity with which

majority carriers flow in and out of the substrate. Similarly the emission time constant of

the dopant atoms becomes longer at low temperatures and hence the time taken for the

majority carriers to be emitted by the dopant atoms becomes large. Therefore the gate

accumulation charge in the surface of the substrate of the MOS device will respond

slowly to varying gate voltages at low temperatures due to the fact that majority carriers

are not able to flow out readily in and out of the substrate.

The equivalent circuit of the device at temperatures at which freeze-out effects set

in is shown below.
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Fig. 3.4. Equivalent circuit of PMOS device at low temperatures.

Freeze-out effects in silicon devices are observed usually at temperatures lower

than 100K. Also, the higher the doping, the lower the temperature at which freeze-out

effects set in. In SiGe devices, the higher temperatures at which these freeze-out effects

are observed (100K, 150K) could be due to the small percentage of dopants that were

activated during processing, and to an interaction (absorption) of dopant carriers by the

silicon-germanium alloy.

3.5 MOBILITY RESULTS AT LOW TEMPERATURE

C-V and I-V curves were taken for devices at 250K, 200K, 150K and 100K. We

did not go much lower than 100K because it was not safe for the machine, as the cooling

agent is liquid nitrogen whose temperature is 77K.

3.5.1 Experimental Issues

The IV curves were relatively easy to obtain. Taking C-V's was a more complex

matter, as the station has a lot of electrical noise. At small COX for large oxide thickness,

the noise of the cold station is overwhelming. The full C-V at room temperature was
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taken at 100kHz with a step voltage of 25mV. It was observed that except for the dummy

control silicon wafers, all the other wafers (the SiGe wafers) had extremely noisy C-Vs at

100kHz with a step voltage of 25mV. The frequency and the voltage step were varied

within limits in which we still have a high frequency measurement and a small enough

step voltage.

It was determined that the combination of 25kHz and 200mV voltage step gave

the least noisy C-V's. The C-V may still look noisy compared to standard silicon dummy

C-V's, but they are fully correct and readable.

3.5.2 Methodology and Results

By applying the simplified mobility extraction algorithm used by Armstrong,

Currie and Leitz [39],[41],[40], effective mobility vs. effective field curves for wafers at

low temperatures has been obtained. This algorithm is described in Section 3.7.

Below are a few graphs for some of the SiGe wafers measured. Additional

relevant graphs can be found in Appendix B.
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Hole Mobility at 300K and 200K

0.5 0.6 0.7 0.8
Effective field (MV/cm)

Fig. 3.5. (a) Mobility at 300K and 150K, of a PMOS device containing a stack of 40 A

strained Si / 85 A strained Si 4 4GeO 6 on relaxed Si, 7Ge,.3 . (b) Mobility at 300K and

200K, of a PMOS device containing a stack of 85 A strained Si / 50 A strained

SiO2 Geo g on relaxed Si0 7 GeO3 .

The graphs show the expected result that mobility at low temperature goes up as

compared to room temperature. The enhancement factor of mobility is dependent upon

temperature.

3.6 EFFECTIVE FIELD DEPENDENCIES FOR MOBILITY IN
BURIED CHANNEL SIGE PMOS

The wafers discussed in this section are numbered 370, 371, 372, 374, 391, and

have the following compositions:

Wafer# 370 40 A strained Si/85 A strained Si04 Ge06 on relaxed Si07 Ge. 3

Wafer# 371 85 A strained Si / 40 A strained SiO4 Ge0 6 on relaxed SiM7 GeO.3
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40 A strained Si / 40

85 A strained Si / 50

85 A strained Si / 85

A strained Si AGeO.6 on relaxed Si0 7 GeO.3

A strained SiO.2GeO.8 on relaxed Si0 7Ge 3

A strained Si. 2 GeO* on relaxed Si 5 Ge0 5

The stack of layers for these PMOS devices is shown in the figure below. The strained

silicon region is called the cap , the strained SiGe layer is called the buried channel.

Gate

Oxide

Strained Silicon -the cap

Strained SiGe-the buried channel

Relaxed SiGe

Fig .3.6. Buried-channel SiGe PMOS structure.

Three more wafers
SiU7 Geo* :

Wafer#

Wafer#

Wafer#

329

342

346

have been analyzed, which have only strained Si on relaxed

40 A strained Si on relaxed Si0 .7 GeO3

85 A strained Si on relaxed Si0 7 Ge.3

100 A strained Si on relaxed Si05 GeO5

The figure below shows the architecture of these PMOS devices.
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Gate

Oxide

Strained Silicon

Relaxed SiGe

Fig. 3.7. Strained Si PMOS structure.

3.6.1 Effective Mobility at 300K.

Below is a graph of mobility of all five strained SiGe wafers (wafer# 370, 371, 372, 374

and 391) at room temperature (300K).

Hole Mobility at 300K for Wafers 370, 371, 372, 374 and 391
550
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Fig . 3.8. Room-temperature hole mobility versus effective field for buried-channel
PMOS devices 370, 371, 372, 374, 391.

We observe the following:
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1. The wafer with the largest mobility overall is 391, which has a thick channel and

the highest concentration of Germanium in its strained channel (Si 02Geo.8 ) among

the five wafers.

2. Among the 3 strained SiO Geo.6 channel wafers (370, 371, 372), the highest

mobility of holes is found on the wafer with the thickest channel and the thinnest

cap (370).

3. The lowest mobility among these 3 Si04 Geo.6 buried channel wafers is found in

the one with the thinnest strained channel and thickest cap, namely wafer#37 1.

Wafer#372 has a higher mobility than wafer# 371 because its cap thickness is

smaller than the cap of wafer# 371. Wafer# 372 is lower than wafer# 370 because

although their caps are the same thickness, the channel of wafer# 372 is thinner

than the channel of wafer# 370.

4. It is clear that the high mobility of the wafers is due to the strained SiGe channel.

This is because wafer# 329, 342 and 346 have hole mobility much lower than any

of the buried channel devices, while having strained Si caps of the same thickness

as the buried channel devices. To restate, wafers# 329, 342 and 346 have surface

channel devices in which no strained SiGe is present. Plots of mobilities of these

three wafers can be found later in this chapter.

DEDUCED MOBILITY RULES:

The above analysis, leads to the inference of the following mobility rules:

1. In the strained SiGe channel, the Ge concentration is directly proportional to

hole-mobility. The higher the Ge concentration of the channel, the higher the

intrinsic mobility of holes in the channel.
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2. The thickness of the strained SiGe channel dictates favorably the number of

channel holes. These two are directly proportional to hole mobility. The thicker

the channel, the more hole carriers there are in the channel. Similarly, the

thicker the strained Si cap, the more hole carriers are in the cap.

3. The strained Si cap always has lower mobility to contribute to the aggregate

hole mobility than the strained SiGe channel. Thus the ratio of carriers in the

strained Si cap to the number of carriers in the strained SiGe channel (this

translates into the ratio of thickness of the two layers), is inversely proportional

to mobility.

Finally, wafer# 374 was found to have the lowest mobility. This is not explained by

just the above three laws. Comparing, wafer# 371 and wafer# 374 compositions.

Wafer#371 85 A strained Si/40 A strained Si0 4Ge06 on relaxed Sie7 Ge. 3

Wafer#374 85 A strained Si / 50 A strained Si0 2GeO.6 on relaxed Si0 7 Geo.3

the two wafers have the same Si cap thickness and the same relaxed buffer composition.

Wafer# 374 however has higher Ge composition in the strained channel and thicker

channel layer! By the above three laws, wafer# 374 should have higher mobility that

wafer# 371. Careful and repeated measurements on a number of devices on wafers# 371

and 374 and then the plots of effective mobility versus gate voltage and of mobility

versus VGS-VT always show that wafer#371 has higher mobility than wafer#374. This

shows that the phenomenon is real. The explanation is that in wafer# 374 the strained

Si. 2 Geo.8 channel has started to relax. This would degrade the mobility. A natural

question arises regarding why wafer# 374 started to relax, and not wafer#391, which also
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has a SiO.2 Geo. channel? The reason probably lies in the relaxed buffer composition.

Wafer#391 has a Si0.5 GeO.5 relaxed buffer, while wafer#374 has a Si 0 7 GeO3 relaxed

layer. The strain the channel material SiO.2 Geo.8 is subjected to becomes larger with the

difference between the Ge percentage of the strained and relaxed layers (which comes

from larger difference in lattices), and therefore wafer# 374 SiO.2 Ge.8 is much more

strained that wafer# 391 SiO2 Geo 8*

3.6.2 Effective Mobility at 150K

Below is the effective mobility of wafers# 391, 370, 372, and 371 at 150K. The

mobility of the wafers preserves the expected order. Wafer# 391>370>372>371.

Hole Mobility at 150K for Wafers 370, 371, 372, 391
14 An
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Effective Field(MV/cm)

0.8 0.9

Fig . 3.9. 150K hole mobility versus effective field for buried-channel
370, 371, 372, 391.
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The only difference between 371 and 372 wafers is the cap thickness. Everything else is

identical. As we will see in a future section, the inversion hole carriers first appear in the

buried channel, and later in the strained Si cap. After that, the charge in the Si cap will

start screening the charge in the buried channel, and the charge in the buried channel does

not increase anymore. The mobility quickly decreases because it is dominated by carriers

in the strained Si cap. This is confirmed by the fact that hole-mobility of wafer#371 and

372 are nearly identical at 300 K with low Effective Fields (when the buried channels,

which are identical, dominate), but clearly diverge at higher fields where the higher ratio

of cap carriers to channel carriers in the thicker cap of wafer#371 affects stronger that the

relatively lower ratio found in wafer# 372. (Rule 3) Hence, the mobility of wafer# 371

decreases a lot compared to wafer#372. At 150K, this phenomenon is even more

pronounced. The mobility of wafers is identical at low effective fields, and diverges

sharply at higher fields. For the buried channel carriers, there is no surface scattering.

At room temperature phonon scattering influences the buried channel carriers, but at

low temperatures phonon scattering decreases and the mobility of buried channel

carriers becomes virtually constant. Thus, at low temperatures the mobility is

influenced mainly by surface scattering for the cap carriers. The difference in hole-

mobility between wafers# 372 and 371 becomes larger at low temperatures and high

effective fields. This is because at high effective field mobility is dominated by carriers

in the Si cap. At room temperature they are influenced by both surface roughness and

phonon scattering. However at low temperature only surface roughness matters, and

wafer# 372 has fewer strained Si holes to be slowed down by surface scattering (only

40A thickness) than that in wafer#371 (85 A thickness). Also, since wafer#372 has less
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screening effect than wafer#371, there will be more buried channel carriers in 372 than in

371. The difference in the hole-mobility of wafers# 371 and 372 at high effective fields

and low temperature is starker due to simply the difference in number of carriers in the

respective buried channels.

Another observation is that, since at low temperatures the mobility of buried

carriers is virtually constant (and equal to each other in the two wafers considered here),

the difference in mobility between the two wafers is given solely by the cap carriers.

Since the caps are of different thickness, the difference will be very sharp. At room

temperature the same difference in cap carrier mobilities apply, but the buried channel

carriers contribute by smoothing out the difference due to their also slowly decreasing

mobility due to room temperature phonon scattering.

371 85 A strained Si / 40 A strained Si AGeO.6 on relaxed Si07 GeO3

372 40 A strained Si / 40 A strained Si0AGeO.6 on relaxed Si0 7 GeO.3

Basically, low temperatures will only make the differences in mobility between wafers

starker. This is clear also if we look at the difference in mobility between any 2 wafers

at 300K and 150K (the difference is always larger at 150K).

3.6.3 Comparison of Mobility at Room and Low Temperatures

For individual wafer comparison at room and low temperatures, below is the

graph of hole-mobility of wafer# 372. All the other graphs (for wafers# 370, 371, 374

and 391) are in Appendix B .
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Wafer 372: Hole Mobility at 300K and 150K

0.3 0.4 0.5 0.6 0.7
Effective Field (MV/cm)

Fig . 3.10. Comparison of hole mobility at room and low temperature for buried-channel
device 372. At 150K the device broke down at high effective field.

It is observed that there seems to be a sharp change of slope for mobility at about

0.4MV/cm , due to probably the point where cap carriers start to overwhelm the buried

carriers. Doing simulations on Medici for a buried channel PMOS, and plotting the

inversion carriers, we obtain the graph below.
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Simulated inversion charges in buried-channel PMOS

0 60 100
VGS(V)

150

Fig. 3.11. Medici simulation of Inversion charges in buried channel
voltage.

and cap versus gate

The value of the effective field at the point where the strained silicon carriers start

overwhelming the buried channel carriers (about 100V on the graph above) is calculated

using the Armstrong formula (described in the next section) and taking into consideration

the fixed oxide charge that must be present on order to have the threshold voltage at

about 20V as the measured Leitz devices have.

68

inversion
charge in strained
silicon

inversion charge
in straine d Si e
channel

200-50



16

14

12

10

4-
2 -

0-

-2
-5

10-5 Measured I-V for buried-channel PMOS

0 50
VGS(V)

100 150 200

Fig. 3.12. I-V curve of one of the buried channel PMOS devices of Leitz [40].

The value obtained for effective field from this calculation is 0.48MV/cm. Thus

we confirm that the change in slope on the mobility graphs does correspond to the cap

carriers starting to overwhelm and screen the buried carriers.

3.6.4 Comparison of Buried Channel SiGe PMOS Mobility with Surface
Channel Strained Si PMOS Mobility

The following graph shows the hole-mobility of wafers# 370 and 372

370 40 A strained Si/85 A strained Si 4 Ge06 on relaxed Si07Ge. 3

372 40 A strained Si/ 40 A strained SiO4 GeO6 on relaxed Si07 GeO.3

along with the strained silicon on relaxed SiGe wafer

329 40 A strained Si on relaxed Si07 Ge0 3
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Hole Mobility Comparison of Wafers 370, 372 and 329
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Fig. 3.13. Hole Mobility of devices 370, 372 and 329.

As we can see, these three wafers have the same strained silicon cap thickness.

At large effective fields, that is, at large VGS, when the holes in strained Si dominate the

effective mobility in wafers# 370 and 372, we would expect the mobilities of

wafers#370 and 372 to approach the mobility of wafer#329. However this does not

happen, and the fact that this does not happen indicates that the buried SiGe channel

holes in wafers#372 and 370 still have an important influence on the overall mobility,

even if they are screened by the cap charge.

In the following two graphs we see the mobility of wafers# 371 and 374 plotted

together with wafer:

342 85 A strained Si on relaxed Si0 7 Ge. 3
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Hole Mobility for wafers 371, 374, 342

700 1 1 1 1

600 - er 371, 150K

500 - wafer 374, 200K

E 400 - wafer 374, 300K

wafer 37 1,\
300K

o 300 - 0-E
0

200

100 - er 342, 300K

0 1 1 1 1 1 1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Effective Field(MV/cm)

Fig. 3.14. Hole mobility of devices 374, 371 and 342.

Again, the cap thickness of all three wafers is the same. It seems that the mobilities of

the buried channel devices 371 and 374 approach the mobility of 342 at high fields

much more than in the previous graph, which means that the influence of holes from

the buried layer is less, which is due to the thicker cap and the thinner buried channel.

Same discussion applies to the following graph where wafer# 346 mobility is

plotted with the mobility of wafer 391 at 300K and 150K.
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Fig. 3.15. Hole mobility of devices 391 and 346.

3.6.5 Slopes of Mobility Graphs

Great insight into the mechanics of mobility mechanisms is provided by the slope

of the mobility/effective field graph. By plotting effective mobility versus effective field

in the log-log scale, the slope is obtained. The log-log plots are in Appendix B, and they

all have a linear region at higher effective fields. The slopes are taken in this linear

regions of the log-log plots, and, also, in cases when the graph is more nonlinear, at a

lower effective field in the middle of the nonlinear region.

Below is the list of the slopes obtained. Where there are two values for the same

wafer at one temperature, it means that the mobility curve has two regions of different
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slopes. Also in the table is the slope of inversion holes in silicon PMOS , from the

seminal papers by Takagi [42],[43].

TABLE 3.1

Slopes of mobility curves of PMOS devices

Wafer Slope at 300K, Holes Slope at 200K, Slope at 150K,

Holes Holes

370 low field -0.72 -1.33

high field -1.2

371 -1.33 -2.22

372 low field -0.6 -1.6

high field -1.33

374 -1.42 -1.6

391 -1.42 -2

Silicon > No single power Shifts towards Shifts towards
law -1 -1

> Somewhat
stronger than -
0.3

> Not so abrupt
change in slope
at high Eeff

3.6.6 Inference from the Results

A few important inferences can be made in the above table. For ease of reference,

the compositions of the 5 wafers are listed here below again.

370 40 A strained Si / 85 A strained Si04 GeO.6 on relaxed Si0 7 GeO.3

371 85 A strained Si/ 40 A strained Si04 GeO6 on relaxed Si07 GeO3

372 40 A strained Si/ 40 A strained Si04 GeO6 on relaxed Si0 7 GeO3
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374 85 A strained Si /50 A strained Si02Ge08 on relaxed Si07 Ge. 3

391 85 A strained Si / 85 A strained Si0 2Geo0 8 on relaxed Si05 GeO5

The observations are summarized below:

* Wafers #371, 374, 391 all have a reasonably straight graph which has one unique

slope; what these three wafers have in common is the thicker 85 A strained silicon

cap. We conclude that the unique slope must be related to holes in strained silicon.

The slopes of these three wafers are similar: about -1.3 at room temperature and

about -2 at 150K. The wafer# 374 slope is in fact at 200K and its value is -1.6, while

the 150K slope of the other two wafers is about -2. It seems that the slope of these

wafers decreases with temperature, from about -1.3 at room temperature to -1.6 at

200K and further -2 at 150K.

* Wafers 370 and 372 have slopes similar to each other, on regions. These are the two

wafers among the 5 studied, which have a thin cap, of thickness 40 A. The thinner

the cap the lesser the influence from the surface channel there is and the higher the

effective field at which the buried channel will be screened. Two kinds of holes have

now significant influence, the strained silicon holes and the strained SiGe holes. The

slope of about -0.7 is related to the buried channel holes, since it applied to lower

effective fields, and -1,2 is related to the surface channel.

* The slope of approximately -1.4 (-1.4 or-1.33 , -1.2), is common to all 5 wafers! This

further endorses the fact that the slope of -1.4 is related to the surface strained silicon

holes, because this slope always applies to higher fields (and for 3 of the wafers, to lower

fields as well).
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e We conclude that when only one slope appears in the mobility graph, the influence of

only one kind of holes is important (the cap holes); when two slopes appear, the influence

of buried channel carriers is felt at low fields and of surface channel carriers at high

fields.

The table below summarizes the behavior of each type of holes and the mechanisms that

influence it.

Mechanisms

TABLE 3.2

that degrade mobility in SiGe PMOS devices

Mobility Component Surface Channel (strained Buried Channel (strained

Si) Holes Mobility Slope SiGe) Holes Mobility Slope

300K -1.4 -0.7

(due to phonon scattering) (due to phonon scattering)

150K -2 should be just about

(due to surface scattering) constant

Phonon scattering, 300K strong strong

Phonon scattering, 150K Weak Weak

Surface scattering, 300K weak at low Eeff Absent

strong at high Eeff

Surface scattering, 150K weak at low Eeff absent

strong at high Eeff

The decrease in mobility at low temperatures is due to the holes in the strained

silicon cap which are subjected to surface scattering (phonon scattering is weak at low

temperatures). The power of the surface scattering for the strained silicon holes
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should then be about -2, which is what we see for the slope of wafer# 371 and 391 with

thick caps (85A) where the cap carriers dominate.

The reason the slope at low temperatures for wafer# 370 and 372 wafers is not -2

is because in these wafers, the cap is thin (40A), so the buried channel carriers have a

stronger influence, so the slope we see is a strong mix of buried and surface channel

mobilities. This is also confirmed by the fact that at low temperatures, the smallest

absolute slope (the least degradation of mobility with effective field) is seen for wafer#

370 where the channel is the thickest and the cap is the thinnest, so the buried holes

strongly sustain the mobility at the initial higher value. The slope get larger for wafer#

372 (-1.6) because more degradation starts occurring (less channel thickness), and finally

the slope gets really large ( a lot of degradation) for wafer# 371 and 391 (-2) where the

buried channel holes are overwhelmed by the many carriers in the thick silicon cap whose

mobility degrades fast due to surface scattering. We can even see that wafer#371 (slope -

2.2) degrades more that wafer#391 (slope -2), because 391 has a thicker and more

strained channel, so the buried carriers have more of an influence that they do in 371.

371 85 A strained Si/ 40 A strained Si Ge on relaxed Si07 Ge. 3

391 85 A strained Si / 85 A strained SiOAGeO.6 on relaxed SiU GeO.

So, in conclusion, strong degradation of mobility with effective field signals the

effect of surface channel carriers. Less degradation of mobility with effective field

signals the effect of buried channel carriers.

3.7 MOBILITY EXTRACTION BY ARMSTRONG METHOD
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This method for extracting mobility has been described by Armstrong [39]. The

effective mobility was extracted from the I-V and the C-V experimental data by a

simplified analysis. As described before, the drain current of the ring MOS device is

I D = G-1
eff Co,(VGS VT )VDS

where

G is the geometry factor.

To obtain pejf form the above equation one needs the oxide thickness and the threshold

voltage. The threshold voltage is found from the I-V curve at the point where the

conductance a is has the maximum value. The oxide thickness is found from the
3VGS

accumulation capacitance in the C-V measurement.

IDG
Mef = CO,(VGS -VT )DS

The effective field is also, in a simplified formula that treats the device as a one-

inversion layer device:

Qb +-Q

ES

Because the doping of the substrate is not accurately known, Nd xdmax approximation for

Qb is not appropriate. Instead, dielectric continuity at the semiconductor/oxide interface

is used to express bulk charge:

Qb + Qin = EsfEs = Ex 8
- GS E =VGS C,

t 
x 

C
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because

Eox = VGS when VDS «VGS,
tox

which is true in our case of VDS = 100mV and VGS from 0 to 170V.

Since Q,, = Cox (VGs - VT), from the above expression the bulk charge is

extracted

Qb =VTC.

Therefore, the effective field will be:

Eeff =

1
Cox(VT +- I(VGS - VT))

3
ES

To obtain mobility graphs, pff is plotted vs. Eef.

3.8 EFFECTIVE FIELD THEORY IN HETEROSTRUCTURES

We will now show how to calculate the effective fields for holes in each of the

inversion layers formed in the strained Si devices and the buried channel devices.

3.8.1 Strained Silicon PMOS
Consider the device below which has a strained layer of silicon grown on a

relaxed SiGe buffer.

Oxide

Strained Silicon

Relaxed SiGe

Fig. 3.16. Gate stack of Strained Si on Relaxed SiGe PMOS. The Silicon is strained by
the relaxed SiGe layer below.
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The band offsets of the hetero-structure are as drawn below.

Oxide

Strained Si

Relaxed Si e

Fig. 3.17. Band offsets of the Strained silicon on Relaxed SiGe shown above at
VG=0Volts.

Because of the band offsets arrangement, inversion holes will first appear in the

relaxed SiGe. At sufficiently high gate voltages, inversion holes will appear in the

strained Si as well. We will then have two layers of inversion charge , one in strained Si

and another in relaxed SiGe. Electrostatically, the situation is shown below.

Strained Relaxed
Si SiGe

Oxide QiI
Qi2

A CIC 2  D,
x 0

Fig . 3.18. Electrostatic situation in the strained Si on relaxed SiGe PMOS.
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Q1 and Q2 are the inversion charges in the strained silicon and relaxed SiGe

respectively, and QB is the bulk charge.

We want to find out formulas for effective fields for holes in each of the inversion

layers. By writing Gauss law, and taking into consideration that the electric field is zero

x=O, we have:

EsiEA = QB +QiI + Q2 which gives EA = QB + QI2 +
Esi

and,

Esi ECl= QB +Qi 2 which gives Eci = QB +2
Es

EA& ECi are the electric fields just above and just below the strained silicon inversion

layer, and E, is the permittivity of the strained silicon layer.

The effective field to which the strained silicon inversion layer is subjected is [Tsividis,

ref. 47] the average of these two fields:

E - EA+ ECi
so2

so

Ef - EA+ECI _ I 2 QB+2Q 2 +Q I
2 2 E

QB Q2 iI
- 2

ESi

1The -
2

coefficient applies to electrons, and to obtain the final hole formula

replaced by I
- [6].
3

1
- must be
2
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1
QB +Qi 2 +IQi

E = 3'EefflI-

si

The same analysis is done for the inversion charge in the relaxed layer:

QB+EsigeEC2 = QB + Q 2 which gives EC2 =
sige

and

EsigeEDl = QB which gives ED1 = QB
Esige

EC2and EDI are the electric fields just above and just below the relaxed SiGe inversion

layer,

Esige is the permittivity of the relaxed SiGe layer.

The effective field to which the strained silicon inversion layer is subjected is the average

of these two fields:

E = Ec 2 + EDl I2QB +Q 2
eff2 2 2 EF

2

sige

This formula applies to electrons. The hole formula has - replaced by
2

1
- [6].
3

QB I2

Eff2 = F.
sige

To obtain the bulk charge QB we use dielectric continuity at semiconductor/oxide

interface:

QB +Q1 +Q2 = EsEsi = EAE, = EOXEO
SVGS EOX =VGS Cx

to x
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Consequently QB = VGS Cox - - Q12. Plugging this in the expressions for Eeff I and

Beff 2 we obtain finally

1
QB +Qi 2  i (VGSC Q1 -Qi2) +Q 2 +IQi1  VGS COx -Q1 + - Q 1  VGS Cox

Eeffl = 3 __3_ _ ________3 __ _3

si sSEi

QB +I-Q 2  (VGS COX- QiQ2 )I-Q 2  VGS COx - 2
Ee= _2 3 __ 3 3

sige sige sige

In conclusion:

VGS Cx 2 Qil

Eeff I esi3

VGS COx -Q 1  2
Eef 2 =

sige

3.8.2 Buried-Channel PMOS

By the same analysis, in the case of a buried channel device, where the band offsets are

as below and thus give rise to three inversion layers at sufficiently high gate voltages, the

respective effective fields are:

Oxide

Strained Silicon

Strained SiGe

Relaxed SiGe (a)
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Oxide

Strained Si

S rained SiG

elaxed SiGe

(b)

Strained Strained Relaxed
Si SiGe SiGe

Oxide Qil
Qi2 Qi3

(c)

4 - I QB
x 0

Fig . 3.19. (a) Gate stack of Strained Si/Strained SiGe/Relaxed SiGe PMOS. The very
thin layers of silicon and strained SiGe are strained by the relaxed SiGe layer below.(b)

Band offsets of Strained Si/Strained SiGe/Relaxed SiGe PMOS at VG=OVOlts (c)
Electrostatic situation in the Strained Si/Strained SiGe/Relaxed

SiGe PMOS.

QB +Q 2 +Q 3  (Vgs C, i2 - Qi 3)+Q 2 +Q3 iI
Eff= 3 _ 3 _

V8.C Q

Vgs C', 2Qii
3

Esi
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QB +Q3 + 2
eff 2 = 3

sigestrained

1
(VgCx - Qi - Q2 - Q 3)+ Q 3 + I-Q 23

Esigestrained

Vs gC" - Qii- Q23

Esigestrained

1
Bf B+ IQ 3  (Vgs Cox

seffg3ereaxe
Esigerelaxed

-Q1 -Q 2 Q3 )Q+I)Q33
8sigerelaxed

VgsC.- Q Q2- 2 Qi3
3

Esigerelaxed

3.8.3 The Influence of Fixed Oxide Charge

Strained
Si

QiiOxide

QFf

Relaxed
SiGe

Q2

k-i '%-2

QB

DU -

0

3.20.Electrostati situation of strained Si on relaxed SiGe PMOS in the presence of
fixed oxide charge QF.

If fixed oxide charge is present at the oxide/semiconductor interface, then

QB + Q i1 = EsE,

EO EO = GS Ex =VGS Co for low VDS
t.
ox

ESEs =Eo~o - QF
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Therefore

QB = Esesi - Qi1 - Q2 = (E, 0 , - QF - 1 -Q 2  VGS Cox -!QF Qil Q42

and that makes the effective fields :

VGS Cox -2 Q
eff1= 3 _

Esi Esi

VGS Cox -Q 1 2 Q2

E sige

The term F
Elayer

must be subtracted to obtain the correct effective fields.

3.9 CURRENT THEORY IN HETEROSTRUCTURES

The total drift current density when two layers of inversion charge are present is:

J = q( 1p1 + P2P 2)E(y)= (pQ 1 (y) + 2Q 2 y)) dV(y)
dy

Here Q1= qp, and Q2 = qP 2 are the inversion charges per unit area in each of the two

inversion layers.

Layer 1 Qi

Layer 2 Q2 I
Fig . 3.21. Current generated by two parallel inversion layers.

From the MOSFET theory of inversion we know the inversion charge in an inversion

layer has the expression:

Q,(y) =Co(VGS -V(y)-Vl)

Q2(Y) = CO,(VGS -V(y) -VT 2 )

85



where V, and VT2 are the threshold voltages for each inversion layer (the layers have

different threshold voltages),

VGS is the gate voltage that the first inversion layer feels,

VGS ' is the gate voltage that the second inversion layer feels

(VGS ' might be different from VGS due to screening effects of one layer by the other layer

as an example).

The current becomes

I = WC (VGS dV(y)
dy

Solving the above equation further, we get:

ILdy= WC (VGS TV(y) -VT)dV(y)+

(VGS -V(y)-VT 2 ) 2

dV(y)

dy

WCoxp 2 (VGS - V(y)-VT 2)dV(y) =

WCox1 L(VGS -VT)VDS D I + xWC0  2 [(VS - VT2 )VDS ]

IL = WCO, p 1 (VGS -VTl )VDS ]+WC, p 2 [(VGS -VT 2 )VDS

This gives the value of I to be

W WI =-C~ox(VGS VT)VDS + 2- Coxh 2 (VGS -VT 2)VDS
L L

If we replace the total inversion charges and the geometry factor in the above equation

with:

Qi = COx(VGS -VT)

i2= Cox(VGS ~VT2 )

W I
L G
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We get

I = ( 1 Ql + p2Qi2)VDS
G

Hence,

Au1Q1 + p2Q 2 = GI
VDS

3.10 SIMULATIONS AND EXTRACTION OF INDIVIDUAL LAYER
MOBILITY IN Si/SiGe STRAINED-LAYERS

3.10.1 Medici Fitting of C-V Characteristics

The wafers studied in this part of the work are:

Waferi: PMOS device, 40 A strained Si on relaxed Si07 Ge0 3

Wafer2: PMOS device, 120 A strained Si on relaxed Si07GeO.3

Wafer3: PMOS device, 85 A strained Si/ 85 A strained SiOAGeO6! relaxed SiM7 GeO.3

The full C-V curves of each of the 3 wafers are fit in Medici by simulating the

MOS capacitor. The parameters to be fit are substrate doping, density of interface traps

Dit, and fixed oxide charge.

The C-V of wafer I was fit with the following parameters:

>Dit=9.5e I1

> Threshold voltage shift due to fixed oxide charges is 9.6V

> Substrate Doping is 3e14cm-3

The C-V of wafer 2 was fit with the following parameters:

> t=9.7ell

>Threshold voltage shift due to fixed oxide charges is 10.3V
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> Substrate Doping is 3el4cm~3

The C-V of wafer 3 was fit with the following parameters:

>Dit=8.9el1

> Threshold voltage shift due to fixed oxide charges is 18V

> Substrate Doping is le15cm~3

The experimental and simulated C-V's for each of these wafers can be found in

Appendix B.

3.10.2 Medici Extraction of Inversion Charges

Fitting the C-V allows the extraction in Medici of inversion charges for each of

the layers in the wafers.

Fig.3.22 shows the inversion charges in wafers 1 and 2, in the strained silicon and

relaxed Si0 7 GeO3 layers. The inversion charge in the surface channel screens the

inversion charge in the relaxed channel at higher gate voltages.
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Inversion Charges per Micron of Depth for Wafers 1 and 2

12

10

8

6

V

41

2

01
-50

vafer 2, surface silicon layer total chares

2

wafer 1, surface silicon laye

1

wafer 2, relaxed SiGe laye

wafer 1, relaxed SiGe layer

2

0 100 150
VGS(V)

200

Fig.3.22. Inversion charges in wafers 1 and 2 strained silicon and relaxed Si0 7 GeO3

layers.

Fig.3.23 shows the inversion charges in wafer 3, in the strained silicon, strained

Si0 4 GeO.6 and relaxed Si .GeO.3 layers. The inversion charge in the surface channel

screens the inversion charge in the buried (strained Si 4 GeO.6 ) and the relaxed channel at

higher gate voltages.
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Inversion Charge (charge/um of depth) in Wafer 3

7000
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1000

0 20 40 60
VGS(V)

80 100 120 140 160 180

Fig.3.23. Inversion charges in wafer 3 strained silicon , strained

Si0 7 GeO3 layers.

Si0 4 Geo.6 and relaxed

3.10.3 Effective Fields Calculation

Having the inversion charges allows the calculation of the effective fields to

which each of the inversion layers is subjected, using the formulas derived in section 3.

The effective fields of the buried layer and of the relaxed layer attain a constant value

very soon due to the screening of these layers by the strained silicon inversion charge.

The figures below show the effective fields for the inversion layers in each of the

wafers.
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Effective Fields for Wafer 3
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Fig.3.24. (a) Effective fields in wafers 1 and 2. (b) Effective fields in wafer 3.
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3.10.4 Mathematical Method for Mobility Extraction and Results

In this part it will be shown how, with the simulated and experimental information

available at this point, the effective mobility of holes in each of the layers can be

extracted.

Considering first wafers 1 and 2 with strained silicon on relaxed SiGe, suppose a

table of data like the one below is obtained. The effective fields and inversion charges are

the ones obtained from Medici, while the I-V information comes from experimental I-V

measurement.

In the table below, the subscript "a" refers to wafer 1 and "b" to wafer 2, while

"1" refers to strained silicon layer and "2" to the relaxed Si0 7 GeO.3 layer. Thus, for

example, EeffaI and Eefi are the effective fields felt by the strained silicon inversion

charge and relaxed Si0 7 GeO3 inversion charge respectively, in waferl. Qu, and Q2, are

the inversion charges in the strained silicon layer and relaxed Si0 7 GeO.3 layer respectively.

Table 3.3.
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VGS Eei Eeffa2 Qiia Qa GIa IVDs Eb1 Eefb2 Qb Qi2,b GIb IVDS

(V) Si sige si sige si sige si sige

30 0.31 0.20 9e2 1e3 2e-5 0.45 0.22 5e2 6e2 le-4

40 0.36 0.21 9.3e2 1.2e3 4e-5 0.50 0.23 7e2 8e2 3e-4

50 0.42 0.22 9.5e2 1.3e3 5e-5 0.53 0.23 9e2 1e3 4e-4

60 0.48 0.22 1e3 1.4e3 8e-5 0.58 0.25 1e3 1.1e3 5.5e-4

70 0.50 0.23 1.4e3 1.5e3 le-4 0.65 0.26 3e3 2e3 6e-4



80 0.56 0.23 3e3 1.6e3 2e-4 0.70 0.27 5e3 2.5e3 7e-4

90 0.61 0.24 5e3 1.8e3 5e-4 0.75 0.27 6e3 3e3 7.4e-4

It is possible to find in the table of data 2 pairs (EeffaII Eeffa2) and (Eef , Eegb2 )

such that

Eejfa ~= Efjb I

Eefa2 ~ Eelb2

For the effective fields above then, we have one pair of mobilities ( pt, P 2 ),

where y, is the mobility of strained silicon inversion holes and Y 2 is the mobility of the

relaxed Si0 Ge. 3 inversion layer that correspond to the effective fields Ef (which is

about equal to Befb), and Eeffa2 (which is about equal to Eefl2)- These two mobilities

will satisfy the following equations (which were derived in Section 3.9):

GIa
Qil,a Y1 + i2,a P2 -Ga

VDS

Qil,b Y1 + Qi2,bP 2 - Gib
VDS

from which pu and p2 can be found. Once they are found, the method is applied

iteratively through the whole table, thus finding the mobilities p, and P2 for all the

effective fields in the table. The iteration method takes advantage of the fact that, for

example, the effective field Eeffa2 or a value very close to it will be present in a number of

other places in the table, and then once the mobility of the relaxed layer is known , the

corresponding mobility of the strained layer can be found.
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By this analysis, the mobility of relaxed Si07 GeO.3 holes was found to be about

124cm2/Vs, in the whole region where the effective field associated with the relaxed

inversion layer is constant. The strained silicon hole mobility is then extracted. The

results are shown below.

Strained Silicon Mobility versus Effective Field
4UU

350

300

250

200

150

100

50

0
0.3 0.35 0.4 0.45 0.5 0.55

Effective Field (MV/cm)
0.6 0.65 0.7

Fig.3.25. Strained Silicon Inversion Hole Mobility versus Effective Field.

Once the mobility dependence on effective field has been found for strained

silicon and relaxed Si07 GeO.3, the results can be used for wafer 3 where the equation

GI
i + Q2P2 + Q3 = VDS applies. Here, Qjj and y, refer to the strained silicon layer,

VDS

Q2 and p2 to the relaxed Si07GeO3 , and Q3 and p3 to the strained Si0 4GeO6 layer.

With y, and p2 determined from the study done on wafers 1 and 2, yU, can be

determined. Below is the graph obtained.
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miu(cm2fVs) Inversion H ole mobility in Straine d Si0.4Ge0. 6
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Fig.3.26. Strained Si0AGeO.6 Inversion Hole Mobility versus Effective Field. The jitters in
the graph are due to Matlab meshing and limits in the mathematical processing.

One more observation is interesting to make here. Below is the graph of the hole

mobilities of wafers 329 and 342 as extracted by Leitz[40] (by the Armstrong method).

The mobility for each wafer is a mix of strained silicon and relaxed Si.7 Ge 3 mobility.

Wafer# 329

Wafer# 342

40 A strained Si on relaxed Si07 GeO.3

85 A strained Si on relaxed Si0 7 GeO3

0.15 0.16 0.17 0.18 0
Effective Field(MV/cm)

I I I I I I

I I I I I I

4
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Fig.3.27 Composite Mobility of wafers 329 and 342.

It is clear that the thicker the strained silicon cap, the higher the mobility at low effective

fields. In view of the study done on individual mobilities and effective fields in this

chapter, the phenomenon can be explained in the following way. The percentage of

inversion hole carriers in the silicon cap is larger for wafer 342 than for wafer 329. That

is because the thicker the cap, the more inversion carriers there are in the cap. The more

carriers there are in the cap, the fewer carriers there are in the relaxed layer because the

cap screens the relaxed layer to some extent even at low effective fields. The fewer

carriers there are in the relaxed layer, the smaller the effective field the cap carriers feel

(because the inversion charges in the relaxed layer contribute to the effective field felt by

the cap carriers, as shown in Section 8). Therefore, the mobility of holes in the cap will

be higher in the wafer with a thicker cap (lower effective field). Also, the mobility of the
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relaxed hole carriers is much smaller than that of strained hole carriers. Thus, with

higher mobility of cap carriers and more percentage of cap carriers, the wafer with

thicker cap will have higher composite mobility.
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Chapter 4

Conclusion

4.1 SUMMARY

This thesis has examined several properties of SiGe alloys and SiGe PMOS. The

contributions are summarized below.

> Valence Band Structure and Effective Mass of Holes in SiGe

Alloys

The theoretical formalism for the calculation of effective mass of holes for any

relaxed SiGe alloy, or strained SiGe alloy subjected to any vertical strain, has been

described. Values for density of states and carrier concentration effective mass of holes

in these alloys have been calculated for room temperature and low-temperature. Also,

the energy spectra of the strained and relaxed SiGe alloys have been obtained, as well as

the constant energy surfaces.

The values for effective masses of holes in SiGe alloys can now be used in

simulations of SiGe MOSFETS at room and low temperature. The low-temperature

values especially, have never been calculated before.

The influence of stress on the effective mass spectrum has been thoroughly

investigated. Since effective mass and energy spectrum give drift mobility, this study can
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shed new light on the mobility of holes in SiGe alloys and on the optimum composition

of SiGe alloys that would give highest hole mobility.

> Experimental Determination of Hole Mobility of Strained SiGe

Buried-Channel PMOS at Low Temperatures

The inversion mobility of holes in strained SiGe buried-channel PMOS at low

temperatures has never been measured before. In this thesis this mobility has been

measured for temperatures down to lOOK, for a number of SiGe channels.

> Inversion Hole Mobility Mechanisms in Strained Si and Strained

SiGe

Using the experimental data for hole mobility at room and low temperatures for

buried-channel SiGe PMOS, mechanisms for mobility degradation have been discussed

Theoretical effective field dependencies of mobility have been proposed as drawn from

the experimental results.

> Determination of Individual Strained Si , Strained SiGe and

Relaxed SiGe Hole Inversion Mobilities

Using the experimental data available for room-temperatures, as well as MEDICI

simulations, the mobilities for inversion holes in each of the channels of the PMOS

studied - the strained Si channel, the strained SiGe channel, and the relaxed SiGe

channel- have been determined. Also, the number of the carriers in the three channels

has been investigated and it was determined how these populations of carriers give rise to

the earlier observed experimental composite mobility of buried-channel SiGe PMOS.
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Appendix A

A.1 Heavy Holes
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Fig.A. 1. Heavy Hole Spectrum of relaxed Si, relaxed SiO.5GeO.5 and relaxed Ge.
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Fig.A.2. Heavy Hole Mass of Strained Si versus lattice strain (at E=-25meV from the top
of the corresponding energy band). Here all is the strained Si lattice and aO is the

unstrained Si lattice. The 5 points are at aII/aO of values 1.05, 1.025, 1 (unstrained),
0.975, 0.950. The values agree with the strained Si masses obtained by Fischetti and

Laux [4] .
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Fig.A.3. E(K) dependence (spectrum) of heavy hole valence band in relaxed Si, and in
strained Si for 2 strains. The strained Si lattice is larger than the unstrained lattice. The

strain is applied in the [001] direction.
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Fig.A.4. E(k) dependence (spectrum) of heavy hole valence band in relaxed Si, and in
strained Si for 2 strains. The strained Si lattice is smaller than the unstrained lattice. The

strain is applied in the [001] direction.

A.2 Light Holes

0 10 20 30 40 50 60 70
Energy(meV)
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Fig. A.6. Light Hole mdos(E) for strained SiO.5GeO.5 under various stresses. Relaxed
SiO.5GeO.5 light hole mass is also shown for comparison.
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Fig.A.7. Constant Energy Surfaces (E=-25meV) for light hole relaxed Si, relaxed Ge and
relaxed SiO.5GeO.5.
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0.975, 0.950. The values agree with the strained Si masses obtained by Fischetti and
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Fig.A. 12. Spin-Off Hole Spectrum of relaxed Si, relaxed SiO.5GeO.5 and relaxed Ge.
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Fig.A. 14. E(k) dependence (spectrum) of spin-off hole valence band in relaxed Si, and in
strained Si for 2 strains. The strained Si lattice is larger than the unstrained lattice. The

strain is applied in the [001] direction.
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Appendix B

Experimental Data: Hole Mobility of SiGe PMOS
Devices for Section 3.6.3

Hole Hobility at 300K and 150K Wafer 370
900

800 I

700

600 -
E

p500
0
E
E 400 -
0

300r

200 I

0.3 0.4 0.5 0.6
Effective field(MV/cm)

0.7 0.8 0.9

150K

300K

100

112



Wafer 371, Hole Mobility at 300K and 150K
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Hole Mobility at 300K and 200K Wafer 374
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Experimental Data: Slope of Hole Mobility in SiGe
PMOS Devices for Section 3.6.5

Some of the graphs are presented below, in order to show the linear regions in the log-log

graph of mobility vs. effective field.
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Wafer 1, Experimental and Simulated C-V
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1.6 Wafer 3, Expenimental and Simulated CV
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