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Abstract

We present a method for integrating data from genome-wide location of DNA-binding
proteins and gene expression to uncover relevant transcriptional regulators without
any previous biological knowledge. We show that this method correctly identifies
known regulators for the biological processes under study in three expression datasets.
While other computational methods have been proposed to suggest transcriptional
regulators, most have not integrated genome-wide binding data, which describes phys-
ical interactions between transcription factors and the regions upstream from a gene.
Our method suggests likely regulators of the biological process under study in an ex-
pression dataset and is not limited to coexpressed regulators. The method comprises
three steps: (i) assign a relevance score to the binding information of a transcrip-
tion factor with respect to the correlation of all genes under study in the expression
dataset; (ii) calculate the significance of the score; (iii) analyze the over-representation
of the number of such significant interactions for a given transcription factor when
compared to randomized datasets. This tool allows researchers to uncover those reg-
ulators whose genome-wide binding events are predictive of an expression dataset.
It suggests the biological processes in which the regulators are active. The syner-
gistic approach of this work represents a valuable tool for researchers in functional
genomics.
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Chapter 1

Introduction

We present computational methods for integrating different types of genome-wide

data for the discovery of the transcriptional regulators of a biological process under

study. This introduction gives the necessary background in order to understand this

work in its biological context. In following sections, we present the method, compare

it with other related work in computational biology and present the results obtained

from applying it to genomic datasets.

1.1 Background

1.1.1 Brief biological background

We first present the minimal biological background needed to understand this work.

Cells are comprised of a variety of molecules whose coordinate behavior form a

complex system that is able to adapt to the environment and reproduce. Some of the

most important molecules in a cell are DNA (deoxyribonucleic acid), RNA (ribonu-

cleic acid) and proteins. The central dogma of biology posits that DNA, considered a

stable information storage polymer, is transcribed into RNA, an intermediate short-

lived polymer, that may then be translated into proteins. Proteins are the ubiquitous

polymers in the cell, involved in most chemical reactions. They can serve as biochem-

ical catalysts, intra- and extra-cellular signalling molecules or as structural elements

13



among other functions.

The flow of genetic information within a cell is a complex multilevel process. DNA

is coiled together with other proteins into what is called the genome of an organism.

The short DNA segments that are transcribed into messenger RNA are called genes,

although the formal definition of a gene is still subject to some controversy. Not all

DNA is comprised of coding regions. The so-called intergenic regions may or may

not have a known function. It is currently believed that short DNA regions close to

genes are involved in recruiting DNA-binding proteins, known as transcription factors,

involved in the transcriptional regulation of genes. There are also other known levels

of biological regulation. The RNA polymers are subject to degradation, and a single

polymer can be translated multiple times. Proteins are additionally subject to post-

translational modifications. The understanding of gene regulation is foundational for

most biological work.

1.1.2 Genomics

The recent sequencing of the genome of several organisms is revolutionizing biology.

These efforts have ushered in the "post-genomic" era, in which we have the possi-

bility to understand organisms from a new perspective. Genomics has fostered sev-

eral computational subdisciplines, traditionally computational sequence analysis and

structural genomics, which have developed different tools and models for the analysis

of genomic sequences. A variety of resulting algorithmic proposals address the com-

putational recognition of genes (open reading frames) and the prediction of secondary

and tertiary structures of proteins, among other biological problems. Nevertheless,

the tools developed for biological sequence analysis are limited by the information held

in the sequences, lacking insight into the dynamic nature of the cell and without the

perspective offered by other increasingly available sources of biological information.

The need for understanding gene regulation and the biological context in which genes

are active has spawned the emergence of another genomic field, functional genomics.

Functional genomics makes use of data from emerging high-throughput technologies

for gathering data at a genome-wide scale. In this work, we combine such datasets in

14



order to extract the transcriptional regulators of various biological processes without

applying any prior knowledge of their relevance.

DNA-microarrays have become a particularly widespread high-throughput tool.

They provide genome-wide insight into how genes are expressed by giving the simul-

taneous measurement of the mRNA levels of the transcribed genes under different

experimental conditions. Two microarray technologies have emerged: oligonucleutide

and cDNA arrays. Nevertheless, these technologies depend on similar principles, rely-

ing on the base pairing recognition of complementary nucleutide pairs. Unfortunately,

error and noise appear at different levels of the fabrication process, arising from the

sequences used as probes on the chip, from experimental variation introduced by the

bench scientists, and from the image scanning software, among others.

Microarray expression analysis has already uncovered known and candidate inter-

actions in biological pathways [8]. In addition, these technologies show promise in the

diagnosis and treatment of diseases, as well as the understanding of the basic biology

of the organism under study [8]. Recently, new research has analyzed the expression

levels of genes from different cancer tissue samples, uncovering candidate sets of genes

that can serve for cancer diagnosis [11]. Additionally, microarray expression analy-

sis promises to help in identifying drug targets and may eventually revolutionalize

pharmacology, forming a new subdiscipline: "pharmacogenomics" [15].

Recently, Ren et al. developed a chromatin-immunoprecipitation microarray assay

for the genome-wide detection of DNA-binding proteins [16]. This new source of

high-throughput data gives additional insight into biological processes by providing

knowledge about potential transcriptional regulators of a gene, that is, proteins that

bind to its upstream intergenic region. These DNA-binding proteins are known as

transcription factors. Transcription factors mediate biological processes in that they

can be modified in response to cellular activity, and they influence the expression of

target genes. The understanding of gene regulation is fundamental for most biological

work.

Ren's assay has been successsfully used to investigate the genome-wide binding of

transcriptional factors known to be involved in specific biological processes such as

15



the cell cycle, signaling, stress, and metabolism [18, 21]. Additionally, Young et al.

have applied Ren's assay in order to characterize the comprehensive binding of the set

of all known transcriptional factors in Saccharomyces Cerevisiae (brewing yeast) [14].

They collected this genome-wide binding ("location") data from the wild-type strain

under normal growth conditions. It is believed that some of these transcription factors

are bound to DNA, becoming active under certain biological processes, enviromental

conditions, or stresses. Our work analyzes the Young binding dataset combined with

various expression datasets in order to uncover transcription factors involved in a

given biological process.

1.2 Overview

The present work combines data from two high-throughput technologies DNA mi-

croarray expression data and the location of genome-wide DNA-binding proteins to

identify potential transcriptional regulators to the biological process studied in the

expression dataset. In the following sections of this work we present our method.

We contrast this approach with other candidate approaches and present a literature

review of previous approaches for combining microarray expression data with genome-

wide location of DNA-binding proteins. We then apply the methods to real biological

datasets and analyze the biological significance of the results. We conclude that this

approach is able to uncover well-known regulators, and represents a valuable tool for

functional genomics.
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Chapter 2

Method

This chapter presents the motivation of the method and comparison with previous

approaches.

2.1 Motivation

Our method combines genome-wide binding and expression datasets in order to un-

cover transcriptional regulators for which the binding information of a given factor

is predictive of the correlation for an over-represented number of genes. Uncovering

the regulators of a biological process is a major step in understanding the underlying

mechanism: a candidate list of such regulators can guide biologists in the design of

experiments in order to confirm their relevance. Biologically speaking, relevance im-

plies that the regulators coordinate the behavior of a number of genes involved in the

process. Our identification of an over-represented number of significant interactions

for a given transcription factor suggests that it is potentially involved in the biological

process under study. This approach is based on three steps:

9 assigning a relevance score to the binding information of a transcription factor

with respect to the coexpression of genes in the expression dataset.

* calculating the statistical significance of the relevance scores.

17



* estimating the significance of the number of relevant interactions found for a

given transcription factor.

In other words, the method can be understood as a dual-filtering process. The first

filter is the significance of the relevance score of a given gene with respect to the

binding information of a transcription factor. The second is the significance of the

number of such relevant interactions per transcription factor.

In section 2.2, we present formal mathematical definitions for our information-

theoretic measure of relevance as well as for our procedure to calculate its significance.

Similar ideas have been successfully applied to the discovery of cancer subclasses and

in cancer classification by Friedman and Ben-Dor et al. [3, 2, 4].

Transcriptional regulators of a biological process may affect only a subset of all

the genes (one does not necessarily expect the expression levels of all genes of an or-

ganism to be affected by a given biological process) and some of the subsets affected

by different transcription factors might overlap. Our method uncovers the transcrip-

tion factors for which there is a higher number of significant interactions than that

obtained by randomization, suggesting that these transcription factors play a role in

the regulation of the biological process under study in the expression dataset.

Our technique is tolerant of noise because it identifies transcription factors that

simply have more than the expected number of interactions when compared with

randomization. Moreover, it does not depend, as other methods do [20], on scoring

only single gene-to-gene interactions, an approach that may not be reliable given

the noise levels, the limited number of data points in a time series dataset, and the

few replicate experiments. Of course, if a factor regulates only a small number of

genes or if the genes are not coexpressed, its relevance will be difficult to distinguish

from chance. Overall, our method offers a list of candidate regulators with an over-

represented number of significant interactions with respect to the expression of genes

studied during a given biological process. It is a robust and valuable tool for the

discovery of transcriptional regulators and the elucidation of regulatory circuits.

Clustering approaches, which have been successful in the analysis of expression

datasets [9], do not offer an appropriate solution for combining different data sources
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in the discovery of relevant transcriptional regulators. It is important to note that the

genome-wide binding data of DNA-binding proteins was collected from the wild-type

strain of Cerevisiae under normal growth conditions,1 not necessarily under the con-

ditions in the expression dataset. Moreover, binding per se does not imply regulation.

Thus, if one clusters only the binding data, the clusters do not offer context-specific

regulation information. On the other hand, if one merges the clusters from the binding

data together with the clusters of an expression dataset and if the distances between

two given elements in the two datasets disagree, there does not seem to be a prin-

cipled way of resolving the conflict. Furthermore, since the number of transcription

factors expected to regulate a given biological process is small, most of the binding

clusters (when using all of the binding data from all transcription factors) offer irrel-

evant information. Even if these obstacles were surmounted, clustering approaches

would produce clusters in which the expression and binding data are both highly

similar, and would not uncover more subtle relationship in which the expression and

binding data are not highly similar. It is necessary to look for other approaches, such

as the ones presented in this work, in order to filter out the relevant transcriptional

regulators from the set of all candidate transcription factors.

2.1.1 Previous approaches for combining genome-wide bind-

ing and expression data

Previously, biologists have performed a limited number of experiments on the genome-

wide binding of a small subset of transcription factors already known to regulate

specific biological processes [16, 18]. Other research has been stimulated by this

available binding data, merging it with additional data sources in order to build

regulatory network models. Nevertheless, because of the limited amount of binding

data, they could only use transcription factors already known to regulate a given

biological process, in contrast with the approach taken in this work that aims at

uncovering these regulators themselves.

'There are plans for experiments in additional conditions, but this data is not yet available.
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Hartemink et al. build genetic regulatory networks in the Cerevisiae pheromone

response pathway by using binding data for Ste12 and expression data. They use

heuristic search methods combined with Bayesian Networks [13]. Segal et al. infer

a predictive model of the cell cycle based on probabilistic relational models, merging

promoter sequence analysis, transcription factor binding data for the set of all known

cell-cycle regulators, and Spellman's cell-cycle gene expression data [17].

The recent availability of the genome-wide binding data for several known tran-

scription factors in S. Cerevisiae stimulates the study of computational approaches

for uncovering transcription factors that are related to a given biological process.

Lee et al. [14] use this data in order to build regulatory abstractions that they call

"multi-input motifs refined for common expression (MIM-CE)." MIM-CEs are com-

prised of genes that share both a strong correlation in the expression datasets and a

subpattern of bound transcription factors in the location dataset within some very

stringent thresholds. They apply their algorithm to the available genome-wide loca-

tion data and to expression data from over 500 experiments, selecting those MIM-CEs

that have a significant number of cycling genes from Spellman's cell-cycle expression

dataset[19]. They discover known cell-cycle regulators from these enriched MIM-CEs.

In contrast, our approach to uncover regulators does not rely on the use of a

large number of expression datasets. We are able to recover several known tran-

scriptional regulators by combining only a given time-series dataset with the com-

prehensive genome-wide transcription-factor location dataset. This is a valuable tool

for researchers in functional genomics. In addition, one could envision that applying

our methods to uncover relevant regulators can serve as a preliminary step for auto-

matically building regulatory networks with models such as Bayesian networks and

probabilistic relational models. Nevertheless, those tools by themselves would not be

able to uncover the regulators due to the combinatorial explosion of the search space.
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2.1.2 Previous relevance and overabundance analysis of high-

throughput microarray data

Researchers have previously successfully applied relevance scores in order to uncover

relevant biological information from high-throughput microarray data. Butte et al.

use pair-wise mutual information to analyze microarray datasets and threshold the

results to build relevance networks which they find to be biologically meaningful [6].

Xing et al. apply a mixture of filter and wrapper methods using information-gain

ranking and Markov-blanket filtering in order to select genes that are informative in

cancer classification [22]. They further extend their method combining information-

theoretic feature selection with spectral clustering in an algorithm, CLIFF [23]. Par-

ticularly influential to this work has been a series of papers by Nir Friedman and

Ben-Dor et al., in which they develop scores for ranking gene relevance using mutual

information and threshold number of misclassification. They evaluate the significance

of their scores by calculating p-values, and apply their method in several papers in

tissue and cancer classification [3, 2, 4, 5].

2.2 Information-theoretic relevance score and sig-

nificance calculations

This section describes the measure of relevance used in this work. We use an information-

theoretic score, Info (information gain) for short. The following sections present our

notation, the mathematical formulation of the score and the procedure to calculate

its statistical significance as well as the significance of the number of such relevant

interactions.

Let B be a binary matrix with elements representing significant binding events of

transcription factors to genes. Specifically, Bij = 1 whenever transcription factor i

binds to gene j at the cut-off p-value of 0.001, the threshold that the experimentalists

found to be significant [14]. We denote as Bi the vector of significant binding events

between transcription factor i and all the genes in the dataset. Let PC be another

21



binary matrix with elements representing significant pairwise correlation between

the expression vectors of the genes. The significance of the correlation between two

expression vectors was calculated by randomizing the time points. Specifically PCi, =

1 whenever gene i is significantly correlated with gene j at the cut-off p-value of 0.001.

We denote as PC, the vector of significant correlations between gene j and all the

genes in the dataset.

2.2.1 Transcription-factor information-theoretic relevance

The information gain between two random variables X and Y is H(X) - H(XIY),

where H(X) = E[-logP(X)] is the entropy of X and H(XIY) = E[-logP(X|Y)]

is the conditional entropy of X given Y. Let Inf oB,PC(i, j) be a real-valued ma-

trix whose elements are the information gain between Bi and PC. Informally,

InfoB,Pc(i, j) is indicative of how predictive the binding data of transcription factor

i is, in an information-theoretic sense, of the correlation of gene j with all other genes.

Formally,

InfoB,PC(i, j) = H (PC) - H (PCIB )

We calculate InfoB,PC(i, j) by using the empirical distribution induced by Bi

and PC, thus defining two jointly distributed random variables in the following way.

Recall that Bi is the vector comprised of the significant binding events BigVg, and that

PC is the vector comprised of the significant correlations PCjgVg. For b, E {0, 1}

and b2 E {0, 1}, let Nij(bi, b2 ) be the number of genes g for which Big = b1 and

PC9 = b2 . We then define the empirical distribution PBS,Pc, (bi, b2 ) = G

where G is the number of genes in the dataset.

For example, if Bi = (1, 0, 1, 0, 1, 1) and PC =(0, 1, 0, 1, 0, 1) for some tran-

scription factor i and gene j, then this implies that G = 6 and that Nij (1, 1) =

1, Ni,(1,0) = 3, Ni,,(0,0) = 0, Nij(0,1) = 2. Therefore, PBi,pc,(1,1) = 6,

PBi,Pc3 (1, 0) = 1, PBi,PC (0, 0) = 0 and PBi,PCj (0, 1) This allows us to calculate

H(PCj) = 1 and H(PCjIBi) = 0.54. From these values we calculate InfoB,PC(ii) =
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0.46.

2.2.2 Statistical significance of the Info score

We assign a statistical significance, or "p-value," to the Inf oB,PC (i, j) score by esti-

mating the probability of obtaining the given value of the score at random. In order

to calculate a p-value, we randomly permute the vector of pair-wise correlation co-

efficients for gene j, PCj. Let us denote the vector drawn from the distribution of

random permutations of PC as RPCj. Then, we calculate the number of times that

the score InfoB,RPC(i, j) is greater than or equal to the original score between Bi

and PCj.

Formally:

p(Inf oB,PC(i, j)) =

Pr(Inf B,RPC(i, ) Inf OB,PC(i, j))

Informally, the lower p(InrfoB,PC(i, j)), the less likely it is to get Inf OB,PC(i, j)

by chance, which suggests that interaction between transcription factor i and gene j

is significant.

2.2.3 Statistical significance of the transcription factor over-

representation

We define the number of significant interactions for Bi with genes in the dataset as

the integer valued matrix NB,pc(i) = 2j(Pr(InfOB,RPC(i, j) InfOB,PC(i, j))

0.001]. In order to assign a p-value to NB,pc(i), we calculate the number of times that

the number of significant interactions for Bi was higher in the randomizations in the

following way.
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p(NB,Pc(i)) =

Pr[>E2((InfoB,RPC(i, j) InfOBPC(i, j)))

> NB,PC(i)]

Informally, the lower the p(NB,pc(i)), the less likely it is to get NB,pc(i) at ran-

dom, which suggests that transcription factor i regulates a larger number of genes

than expected by chance.
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Chapter 3

Empirical Evaluation

The comprehensive genome-wide location data was collected in rich-media conditions.

It is unclear how to extract the biological regulators of a given biological process

without the use of additional datasources. We apply the information-theoretic anal-

ysis described in Section 2.2 in order to combine different expression datasets with

the comprehensive genome-wide location of the DNA-binding protein dataset. We

use three expression datasets, Spellman's cell-cycle expression dataset [19], Gasch's

oxidative-stress-response dataset [10], and Causton's oxidative-stress-response dataset

[7] in combination with Young's comprehensive DNA-binding of transcriptional regu-

lators [14]. First, we calculate the Info score of the transcription factors with respect

to the correlation vector of each gene in the expression datasets. Then, we calculate

the statistical significance of the Info scores, as described in Section 2.2.2, obtaining

the distributions shown in Figure 3-1. There, we find that there are few transcription

factors with a large number of significant interactions.

The information-theoretic relevance analysis yields significant biological results

by uncovering known regulators of the biological processes studied in the expression

datasets. Listing the top transcription factors according to the number of significant

interactions in Table 3.1, the following known cell-cycle regulators (Swi6, Nddl,

Mbpl, Fkh2, Mcml, Swi4 and Swi5) appear among the first few regulators.

Seven out of the nine known cell-cycle regulators [18] are thereby uncovered with-

out the use of any previous biological knowledge. Our method additionally uncovers
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Spellman's Cell Cycle
Ntf tf
336 Gat3
324 Swi6
318 Nddl
316 Mbpl
296 Fkh2
261 Yap5
251 Maci
235 Cup9
213 Rgm1
208 Msn4
206 Mcm1
195 Pdrl
180 Swi4
161 Zapi
144 Swi5

Table 3.1: Top transcription factors for the cell cycle dataset, sorted according to their
number of information-theoretic relevant interactions with respect to the respective
expression dataset. Known regulators are shown in bold. These relationships were
uncovered without the use of any previous knowledge of their biological relevance to
the processes.

other transcription factors. For the genes that are in non-bold type, the Yeast Pro-

teome Database (YPD) [1] suggests that Maci is involved in stress response, in copper

binding, and in cell growth and maintenance; Yap5 and Msn4 are involved in stress

response. One possible explanation for the significance of the non-bold type regula-

tors is that given the experimental process to which the yeast cells were subjected,

namely cell-cycle arrest, one might expect that stress-response mechanisms were ac-

tivated. Gat3 has no specific biological function listed in YPD; Pdrl is involved in

drug susceptibility and resistance; Cup9 is involved in copper homeostasis and in the

regulation of peptide import; Zapi is involved with zinc homeostasis. This suggests

that cell-cycle regulation might play a relevant role in homeostasis. Transcription fac-

tors whose functions are imperfectly understood become candidate genes for future

experimentation to understand their potential involvement in the cell cycle.

We apply the same information-theoretic relevance analysis to two independent

hyperoxia expression datasets [7, 10]. Listing the top transcription factors according
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Causton's Hyperoxia Gasch's Hyperoxia

Ntf tf Ntf tf
3872 Fhll* 4092 Fhl1*
1007 Yapi* 1393 Cadl*
638 Swi4 912 Yapl*
528 Hsfl* 552 Yap5
526 Rgml* 345 Swi5
496 Cadi* 319 Basi
323 Cin5 275 Nddl
294 Abfl 212 Phd1
191 Leu3 183 Rgml*
185 Stbl 179 Gcn4
174 Skn7 153 Pdrl

149 Gal4 148 Maci
141 Ste12 148 Hsfl*

Table 3.2: Top transcription factors from the location datasets, sorted according
to their number of information-theoretic relevant interactions with respect to the
respective expression dataset. Known regulators are shown in bold. Transcription
factors marked with asterisks are present in the lists for the two oxidative-stress
response expression datasets. These relationships were uncovered without the use of
any previous knowledge of their biological relevance to the processes.

to the number of significant interactions in Table 3.2, the following known stress-

response regulators (Yapl*, Yap5, Cadl*, Skn7, Maci, Hsfl*, Pdrl) [10, 7]

appear among the regulators in the ranking, as can be seen in Table 3.2. Yapl*, Skn7

and Cadl* are among the few well known oxidative-stress-response regulators. The

method additionally uncovers other transcription factors. Fhl1 is the top regulator

in both data sets. Recently, it has been reported that Fhll is the central regulator

responsible for ribosomal gene regulation [14]; inspection of both hyperoxia datasets

used here shows that almost every ribosomal mRNA level is strongly repressed after

exposure to hydrogen peroxide [10, 7]. Other regulators appear to be involved in

numerous processes including for example nuceotide metabolism (Basi), cell-cycle

(Swi5, Nddl), and filamentous growth (Phdl). The method also identifies numerous

stress-response factors. This result suggests that, consistent with previous reports,

stress-response mechanisms might share a similar pattern of expression regardless of

the stimulus [10, 7]. After applying out method to the two oxidative-stress response

28



Cell cycle

00

-*- Yap5

300 - Fh

- -#- Mac1
+ Mcml Alpha

200- Cup9
- --Rgm1

Mcml
C Swi4

100-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P-value

Figure 3-2: The number of genes influenced by a transcription factor at a given p-
value is higher than that predicted by the null hypothesis (random labels). The figure
shows plots from all the transcription factors that were found to be relevant.

expression datasets, we note that over a third of the top transcription factors are

shared by both lists. These common transcription factors are marked by asterisks

in Table 3.2. Their apparent relevance in two completely independent datasets is a

strong argument for their involvement in oxidative-stress response.

Furthermore, we applied our over-representation analysis in order to obtain a final

list of candidate regulators with a number of significant interactions larger than that

obtained in the randomization. For the cell-cycle, all known transcription factors,

except for Swi5, appear in the final list of regulators that can be seen in Table 3.3.

We observe in Figure 3-2 that, for the transcription factors in the final candidate list

for the cell cycle, there are a large number of relevant interactions with respect to the

genes in the the cell-cycle expression dataset, further confirming their relevance.

Over-representation analysis of the hydrogen peroxide expression datasets reveals
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p(Ntf) Ntf tf
.001 336 Gat3
.001 324 Swi6
.001 318 Nddl
.001 316 Mbpl
.001 296 Fkh2
.001 261 Yap5
.001 251 Maci
.001 235 Cup9
.001 213 Rgml
.001 206 Mcml
.001 180 Swi4

Table 3.3: This table shows the list of transcription factors that were found to have a
significant number of information-theoretic relevant interactions with respect to the
cell-cycle expression dataset. Known cell-cycle regulators are shown in bold.

one transcription factor, Fhll (see discussion above), which shows a highly significant

number of relevant interactions when compared to those from the randomization. The

remaining factors listed in Table 3.2 show a large number of significant interactions

when compared to the other transcription factors in the dataset.
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Chapter 4

Conclusions

This thesis presents methods for uncovering transcriptional regulators by combining

the comprehensive genome-wide binding dataset of transcription factors with a given

expression dataset. Our technique recovered known biological regulators for both

the cell-cycle and oxidative-stress-response expression datasets. Such a tool has the

ability to impact functional genomics by suggesting which transcription factors may

be involved in regulating the biological process studied in an expression dataset.

It is remarkable that the cell-cycle analysis largely reiterated the transcription

factors known to be involved in the cell cycle. Many of the remaining factors that

we identified may be induced as a result of stress caused by the method used to

obtain cell-cycle synchrony. Similarly, a comparable analysis on the hydrogen peroxide

datasets revealed eight factors previously suggested to be involved in either oxidative

response or a related stress response.

Importantly, however, the candidates identified under oxidative-stress response do

not make the same rigorous over-representation analysis as do the cell cycle regulators.

One explanation of this may be that oxidative-stress regulators are not be fully active

under rich media conditions. In contrast, the cell cycle regulators are known to be fully

bound and functional under the rich-media conditions used to obtain the genome-wide

binding data[18]. Much of the regulatory network responsible for stress-response is

quiescent under nonstressful conditions, like rich media[12]; and many stress-related

transcription factors may not be present in the location analysis datasets because

31



of the mechanisms used to regulate their function. For example, Msn2 and Msn4

are known to be largely excluded from the nucleus under unstressed conditions[12].

Thus, it is remarkable that our analysis identified numerous known stress-response

genes. In particular over a third of the top transcription factors are common for both

datasets, which were collected completely independently. These common factors can

serve to initiate further study.

We further predict that complete characterization of the genome-wide binding

of these regulators under the relevant conditions, when combined with expression

analysis using our method, will allow us to identify regulators in those conditions.

Furthermore, one can envision that when similar datasets from humans or from or-

ganisms used to model certain diseases become available, this tool could have a major

impact on human health by identifying the regulators that affect the conditions under

study.

Some possible extensions of this work include the study of the combinatorial inter-

actions of these transcriptional regulators; that is, when several transcription factors

jointly coordinate the behavior of a group of genes in a given biological process. A

possible approach could be to study the overlapping genes that have significant scores

with respect to the candidate regulators. These candidate combinatorial interactions

suggest protein complexes or mechanisms by which the regulators jointly affect the

regulation of the biological process. Another possible extension of this work would be

the derivation of a closed form for the p-value calculations of the information-theoretic

score. This would avoid the need for repeated randomizations of the dataset in or-

der to obtain the significance values of the scores. Finally, one could investigate

alternative statistical measures of relevance, correlation and over-representation.
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