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Abstract

We describe a method for the acquisition of deformable human geometry from sil-
houettes. Our technique uses a commercial tracking system to determine the motion
of the skeleton, then estimates geometry for each bone using constraints provided by
the silhouettes from one or more cameras. These silhouettes do not give a complete
characterization of the geometry for a particular point in time, but when the subject
moves, many observations of the same local geometries allow the construction of a
complete model. Our reconstruction algorithm provides a simple mechanism for solv-
ing the problems of view aggregation, occlusion handling, hole filling, noise removal,
and deformation modeling. The resulting model is parameterized to synthesize ge-
ometry for new poses of the skeleton. We demonstrate this capability by rendering
the geometry for motion sequences that were not included in the original datasets.
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Title: Assistant Professor
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Chapter 1

Introduction

A digital replica of a moving human body has applications in video games, teleconfer-

encing, automated news shows, and filmmaking. For example, the physical appear-

ance of a celebrity actor could be recorded and later animated with acrobatic motions

controlled by an animator or performed by a stunt double in a motion-capture suit. In

current filmmaking, this application requires extensive manual labor to position and

adjust skin around each bone and muscle. In some cases, months are spent matching

a virtual character to an existing actor [22].

We demonstrate an automatic method for reconstructing skin geometry from ob-

servations of a moving person. We build a model of the subject's skin deformations

using video of the subject and motion data that describes how the subject's skeleton

moves throughout the video recording. To build the model from this data, we ex-

ploit the idea that video of a moving person provides many observations of the same

surface. A single set of silhouettes (even from several viewpoints) provides a highly

incomplete characterization of the geometry. By having the subject move through

many different poses, local configurations of the body parts are repeated, allowing

the construction of complete models for each section of the body.

The deformation of each body part is represented using prototype shapes that

are parameterized according the skeleton pose. After reconstructing multiple shapes

of each body part, we combine these shapes to fill an exponentially larger space of

complete body poses. The junctions between the parts remain consistent because
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each body part takes the correct shape for the local skeleton pose.

We obtain a high level of reconstruction accuracy through the use of silhouettes.

In an environment that allows good segmentation, silhouettes never underpredict

the true geometric volume. Because this error is one-sided, it can be removed with

relative ease. Within our algorithm, all possible sources of two-sided error (such

as mistakes in calibration and synchronization) are carefully minimized, while the

one-sided error is accepted and subsequently removed using a simple reconstruction

technique. This allows our approach to simplify the traditionally difficult issues of

visibility and occlusion.

Figure 1-1: We extract silhouettes from video sequences to build a deformable skin
model that can be animated with new motion.

1.1 Dependence on Tracking Systems

Our approach is dependent on having high-quality positions of the skeleton of the

subject. Fortunately, such information can be obtained from commercial hardware

and software systems that track the motion of the skeleton in a process known as

motion capture. Motion-capture systems can use optical, magnetic, or mechanical

sensors. Our implementation uses an optical system that tracks reflective markers

placed on the body surface.

Throughout our work, we assume that we know the positions of the markers placed

on the subject's skin and the 3D locations of the subject's major bones. Obtaining

bone positions from skin marker positions is an open research problem, but effective

solutions have been implemented in commercial motion-capture software. Our ap-

proach relies heavily on the accuracy of bone localization; we need the bone locations

9



to be close biologically correct.

The reliance on a motion-capture device is a limitation of our approach, but it

allows a complex problem to be solved by using a pre-built system (literally a black

box) to handle a difficult sub-problem. Our work is the first that has effectively used

a motion-capture system to acquire human skin geometry.

1.2 Summary of Contributions

This thesis describes a set of algorithms for combining silhouette observations into

a complete 3D model that can be animated with new motions. In Chapter 3, we

describe a simple skin model that represents a complex articulated figure using a

collection of intersecting deformable primitives. Our acquisition algorithm, described

in Chapter 4, uses the silhouettes from video footage to obtain constraints on the

geometry of the deformable primitives. The reconstruction algorithm, described in

Chapter 5, parameterizes these deformations with the motion of the skeleton, allowing

the skin model to predict skin geometries for a new skeleton pose.

While each of these components is similar to methods that have been previously

developed, the manner in which we combine the techniques is new. By selecting

the right combination of components-a needle-based skin representation, silhouette-

based constraints, and specialized reconstruction-we are able to find a simple and

effective solution. Our choice of how to gather and represent our data allows the

difficult problem of 3D reconstruction to be reduced to a much simpler problem of

filtering and estimation. The system produces results of a quality that has not been

obtained before for models of a moving person.
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Chapter 2

Related Work

2.1 Reconstruction of General Moving Objects

The most general 3D reconstruction systems build a model of the scene at each

successive time frame, allowing the acquisition of moving objects. These systems use

vision methods such as binocular stereo [16] and voxel coloring [26]. For certain kinds

of scenes, the geometry can be reasonably represented using a visual hull: the space

carved about by silhouettes from a set of viewpoints [14, 29].

Some of these methods make frame-to-frame comparisons of the geometry [29, 26],

but they do not accumulate observations to improve the geometry. The strength of

gathering information from temporally distinct views is illustrated in recent work in

real-time model acquisition, in which a rigid object can be moved while it's digitized

[20]. Real-time feedback and freedom of movement allow the operator to fill in holes

and build a complete model. While this technique allows accurate and complete

models to be generated from multiple observations of an object, it is limited to rigid

objects.

Factorization techniques, in contrast, can build models of deforming objects. Sur-

face deformations are represented as a linear combination of prototype shapes, found

via matrix factorization [4, 3, 25]. The algorithms use texture or surface intensity

to estimate motion in the image. These methods overcome the uncertainty that tra-

ditionally troubles image-based motion estimation by assuming that the observed
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object is a morphable model (a linear combination of basis shapes), which constrains

possible optical flow measurements. A matrix of image observations is then factored

into a matrix of pose vectors, which defines the object's motion, a matrix of geometry

vectors, which defines the basis shapes, and a vector of basis weights, which define

the deformation of the object. While these factorization methods are quite powerful,

they have not been applied to capture deformations of an entire human body.

All of these methods are intended to reconstruct models of generic subjects. In

contrast, our approach is aimed specifically at reconstruction of skeleton-driven bod-

ies, which allows the approach to be used in conjunction with skeleton-based anima-

tion. Furthermore, by assuming the existence of a skeleton, we are able to create

human models with greater spatial and temporal resolution than any of the methods

for capturing general moving objects.

2.2 Model-Based Object Reconstruction

To overcome the difficulties of general reconstruction, a model of an object class

can be fit to observations of a particular object. For example, numerous methods

reconstruct and reanimate the human face [10, 7, 2]. These techniques are successful

at modeling a range of human faces, but would be difficult to extend to capturing

an entire human body, due to large-scale occlusions and deformations. Nonetheless,

they would be an excellent complement to our current system, which cannot capture

facial expressions.

Several systems reconstruct human bodies by fitting prior model to observations

of a moving person. For the purpose of motion tracking, these models can be quite

simple, using a set of ellipses and cylinders to represent the human form. To improve

tracking quality, the dimensions of these model components can be fit to observations

of a particular person. Mikid and colleagues [15] use silhouettes to set the dimensions

of ellipses used to represent a tracked subject.

Plinkers and Fua [19] use an elaborate anatomical model, in which the skin surface

is implicitly described by the level-set surface of various Gaussians rigidly attached
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to a skeleton. Observations from silhouettes and stereo reconstruction are used to

optimize the dimensions of the Gaussians in order to match the anatomical model to

an observed human. The demonstrated results do not model any deformation and do

not show substantial changes from the original anatomical model, which is assumed

to be given.

Kakadiaris and Metaxas [11] develop a technique that combines orthogonal 2D

contours to estimate a deforming 3D body shape. The subject moves through a

pre-defined protocol of motions aimed at given a set of three mutually orthogonal

cameras the necessary views to construct a complete body model. Silhouettes provide

2D contours that are combined across multiple frames in time; 3D geometry and

deformation are generated by interpolating the 2D contours. This method is similar

to ours in that it combines silhouette data from multiple poses, but the resulting

model is not shown in its entirety and not demonstrated through animation.

2.3 Interpolation of Static Poses

Allen and colleagues [1] acquire multiple poses of the human body using a 3D laser

scanner to obtain a high level of detail and accuracy. Each of the reconstructed poses

is related to a skeletal configuration through the use of dots placed on the skin. New

poses are then synthesized by interpolating nearby key poses. This method has suc-

cessfully created animations of the upper body, but it requires a substantial amount

of time and effort in order to acquire hundreds of 3D range scans. In contrast, our

system acquires the deformation automatically as the subject moves freely through

various poses, building a complete model using only a few minutes of motion. How-

ever, because our models are built from video, rather than laser scanning, we do not

obtain the same level of detail.

Like many of these acquisitions systems, our work uses interpolation to combine

models of different poses. These interpolation techniques (such as [13, 21, 28]) vary

in the interpolation mechanisms, the particular quantities being interpolated, and

the way in which the skeleton drives the interpolation. Several of these papers give

13



theoretical results on the relative strengths and limitations of different representations

of geometry and deformation-a subject not addressed in this thesis. Instead, we

focus on how to position and reconstruct prototype shapes in a fast and automatic

manner.
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Chapter 3

Skin Model

Our skin model simplifies the complex process of acquiring geometry of a moving

human body. We represent the skin surface using points along needles that are rigidly

attached to a skeleton. This model describes complex areas near joins by combining

nearby samples. Deformation is parameterized with a configuration space for each

bone.

3.1 Deformable Primitives

We represent the geometry of an articulated human figure using a collection of elon-

gated deformable primitives. Each deformable primitive consists of a rigid axis, which

usually corresponds to a bone in the skeleton, and a set of needles, which are rigidly

attached to the axis. Each needle originates at a point along the axis and extends

outward in a fixed direction with respect to the axis.

Our deformable primitive is equivalent to a discrete sampling of a pose-varying

generalized cylinder [18]. Smooth surfaces can be reconstructed from the point sam-

ples by fitting an arbitrary function to the needle endpoints. Our implementation

triangulates the needles to create a piece-wise linear surface model. Triangulation is

simplified by positioning the needles in rings around the axis, as shown in Figure 3-1.

We can vary the sampling density by changing the number of needles in the radial and

axial directions. Although we use regular sampling for rendering purposes, our acqui-

15



sition and estimation algorithms do not require any particular needle arrangement.

Indeed, irregular sampling density may provide a more economical representation of

the human form (e.g. using additional samples near joints).

As an alternative to our needle model, a surface could be represented by oriented

particles that model deformation by moving in three dimensions [23]. This would

complicate our acquisition and estimation algorithms because the position of each

particle would be a function of three parameters instead of one. By using a scalar

value for each needle, we can infer how a particular observation changes with the

motion of the skeleton.

Axial View

Radial View

Figure 3-1: Deformable primitives describe the human body with variable-length

needles (red) attached to a fixed axis (black). The left skeleton uses needle counts

given in Table 3.1. The skeleton on the right uses one quarter as many needles (half

as many radially and half as many axially). In both cases, the needles are shown at

half the maximum length indicated in the table.

3.2 Representation of Junctions

Junctions between limbs are traditionally difficult to model: the combination of linked

bone structures, muscles, and tendons create complex surface behaviors. We represent

16
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a junction between two deformable primitives by taking the union of the their volumes,

as illustrated in Figure 3-2. These interpenetrating objects work together to describe

the deformation of the skin near a joint. We do not use explicit constraints to ensure

continuity between the surfaces from different skin models. The continuity arises

naturally because each deformable primitive deforms appropriately.

Although this representation is well-suited to our acquisition process, it is more

expensive to render. Because each primitive renders as a separate mesh, rendering the

entire body requires merging all the meshes. Furthermore, the nodes on the surface

do not move like the real skin, which complicates texturing. Possible solutions to

these problems are discussed in Chapter 7.

Figure 3-2: We represent an elbow using overlapping deformable primitives for the

upper arm and forearm. Both primitives deform as the elbow bends, maintaining

continuity in the junction. The image on the right shows how the segments overlap

in a complete body.

3.3 Parameterization of Skin Deformation

The length of each needle can depend on parameters that influence skin deformation.

For example, we may wish that the geometry of the upper arm varies as a function

of the angle of the elbow and as a function of the angle of the shoulder. We could

17



Name of
Deformable
Primitive
Torso
Hips
Right Upper Arm
Left Upper Arm
Right Forearm
Left Forearm
Right Thigh
Left Thigh
Right Calf
Left Calf
Right Foot
Left Foot

Table 3.1: Each
tion 3.3), needle

Configuration
Depends On
Upper Arms, Hips
Torso, Thighs
Torso, Right Forearm
Torso, Left Forearm
Right Upper Arm
Left Upper Arm
Hips, Right Calf
Hips, Left Calf
Right Thigh, Right Foot
Left Thigh, Left Foot
Right Calf
Left Calf

Dim. of
Config.

Space
9
9
6
6
3
3
6
6
6
6
3
3

Radial
Needles

30
30
20
20
20
20
20
20
20
20
20
20

Axial
Needles

30
30
20
20
20
20
30
30
30
30
20
20

Maximum
Needle
Length

30cm
30cm
15cm
15cm
10cm
10cm
20cm
20cm
15cm
15cm
15cm
15cm

deformable primitive is described with a configuration space (Sec-
counts (Section 3.1), and a maximum needle length (Section 4.3).

also make the geometry vary as a function of muscle force (for muscular people) and

the direction of gravity (for heavy people).

The results in this thesis demonstrate deformations caused by the motion of a

skeleton. Each deformable primitive has a limited configuration space that is a subset

of the configuration of the entire body. For example, the deformation of the left arm

does not depend on the configuration of the right knee. We make this assumption

to cope with the combinatorial complexity of the human pose space. By decoupling

remote parts of the body, we can capture a wide range of deformations in a short

amount of time.

To avoid the issues of joint-angle representation, we use marker coordinates to

determine the configuration space. For example, the configuration of the right thigh

depends on markers attached to the hip and the right calf, where the positions are

expressed with respect to the local coordinate frame of the thigh bone. Table 3.1

summarizes the configuration parameters for each deformable primitive.

18



Chapter 4

Acquisition of Skin Observations

Our system extracts surface observations by combining information from two separate

sources: a commercial motion-capture system and a set of standard video cameras.

The motion-capture system tracks reflective markers, which are used to compute

the motion of each bone. Because the motion-capture cameras in our system use

infrared strobes and filters, they are not suitable for silhouette extraction. Instead, the

silhouettes are extracted from one or more video cameras placed around the motion-

capture workspace. Our system does not require any special camera arrangement; we

position the cameras such that the subject is within the view throughout the motion,

as shown in Figure 4-1. In a multi-camera system, we allow some cameras to be

placed closer to the subject in order to obtain more detail for certain parts of the

model.

Our system first calibrates and synchronizes the video and the motion data. It

then combines these two data sources to measure the intersection of needles and sil-

houettes. The reconstruction algorithm described in Chapter 5 subsequently processes

the resulting measurements to parameterize the motion of the skin surface.

4.1 Calibration

Camera calibration relates the motion data (the location of markers and bones in a

single 3D coordinate system) to the image coordinates of each camera. We perform

19



Figure 4-1: The input video includes images of the subject in a wide variety of poses.

As discussed in Section 6.5.3, the quality of the final model depends on the range of

motion in the input sequence.

calibration using a simple device, shown in Figure 4-2, which allows us to match an

image point to an identical point in the motion data.

The calibration process starts with synchronization of video and motion data. We

move the calibration device up and down in a plane roughly parallel to the image

plane of a particular camera and correlate the vertical image coordinate with the

vertical world coordinate.

After synchronization, the calibration device can be moved freely in three dimen-

sions. We resample the resulting motion-capture sequence to obtain a sequence of

matching image pi E 2 and world wi E R3 points. The mapping between these points

depends on camera position, camera orientation, focal length, aspect ratio, and radial

distortion. Our system estimates these parameters by minimizing Euclidean error in

image space:

min pi - Dc,r(PqJ,awi)||
q,fa,c,r

The matrix Pq,f,a describes a perspective projection (parameterized by camera

20
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pose q, focal length f, and aspect ratio a) and the function Dc,() describes first-

order radial distortion (with center of distortion c and a distortion coefficient r).

For simplicity we simultaneously optimize the parameters using the downhill simplex

method [17]. The method quickly converges to a solution that obtains a sub-pixel

RMS error over several hundred (wi, pi) input points.

Figure 4-2: Our calibration device consists of a green sphere with two motion-capture

markers. We find the center of the sphere in image coordinates by detecting green

pixels. We find the center of the sphere in world coordinates by taking the midpoint

of the two marker positions. This gives a single correspondence that be varies through

time to obtain a number of spatial correspondences for calibration.

4.2 Silhouette Extraction

Our system uses standard background subtraction to obtain silhouettes from video

data. For each pixel, background subtraction finds the difference between the current

frame and an empty background frame and labels pixels with a high difference as

part of the foreground. Our system uses a large subtraction threshold to overcome

shadows and video compression artifacts. The threshold near the head is smaller to

account for the closeness of skin color to the background (where the head position is

determined directly from the motion capture data). These thresholds are sufficiently

robust that the same values can be used across multiple cameras and across multiple

sequences.

We use the silhouettes and camera calibration to synchronize the video data and

motion data for a human subject. Because we are synchronizing observations of a
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human, we use a different method than used for synchronizing the calibration data.

Our system uses simplex optimizer (the same one used for camera calibration) to

minimize an objective function that measures the image-space distance from projected

arm and leg markers to the silhouettes over a number of video frames.

4.3 Accumulation of Skin Observations

After calibrating and synchronizing the video and motion data, the system projects

each needle into each video frame to compute the needle length from its intersection

with the silhouette. Starting at the origin of the needle, we traverse the image out-

ward until the needle projection leaves the silhouette, as illustrated in Figure 4-3.

If the traversal extends beyond a prescribed maximum length, the measurement is

discarded. Thus the system discards observations for needles that are nearly per-

pendicular to the image plane or that extend into distant parts of the body. Our

maximum length values (specified in Table 3.1) are relatively large; the same values

can be used for a wide variety of people.

Based on the world-space orientation of the needle, we convert the image-space

measurement into a world-space length. For example, we may compute that in frame

117, viewed from camera 2, needle 17 of bone 3 intersects the silhouette at a distance

of 10cm from the bone axis.

For each needle length observation, we also record the bone's current position in

configuration space, as described in Section 3.3. By annotating each observation with

the conditions under which the observation was made (a location in configuration

space), we can estimate skin deformation, as described in the next section.
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(b) B

A

Camera Center

Figure 4-3: Left: To obtain a needle length observation, we project the needle into the

image plane. We traverse the image along the needle (from (a) towards (b)), to find

the image space distance from the bone to the edge of the silhouette (in blue). This

length is converted to a world space distance and later used to estimate deformation.

Right: The black lines indicate the silhouette observed for the pair of objects A

and B. The length of needle 1 is overestimated because the background is occluded

by object A while the length of needle 2 is overestimated because the background

is occluded by object B. In general, the silhouette provides an upper bound on the

geometry.
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Chapter 5

Skin Reconstruction

The acquisition process accumulates observations of needle lengths. Subsequent re-

construction will refer only to these observations, not the original video and motion

data. Because the needle observations do not give a complete description of the

geometry at any time instant, reconstruction integrates observations over time to ob-

tain a complete model. Skin reconstruction determines which observations are valid

measurements of the true needle length and which are invalid due to occlusion.

As shown in Figure 4-3, multiple types of invalid observations occur. In each case,

the measurements overestimate the true geometry. Thus, by taking the minimum of

these observations, we find the least upper bound on the true geometry. Equivalently,

we seek the maximal geometry that is consistent with the observations.

Because the silhouettes provide an upper bound on the geometry, the needle data

effectively has a one-sided error. This contrasts the two-sided errors that occur with

other reconstruction methods (e.g. stereo and factorization). This is a key element of

our approach: a one-sided error can be removed more easily than a two-sided error.

The reconstruction algorithms uses the following design goals to compute the

maximal consistent geometry:

" occlusion handling. Invalidate measurements that are incorrect because of

visibility.

* time aggregation. Combine multiple observations to complete partially ob-
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served shapes.

* hole filling. Borrow an observation from a nearby configuration if there are

no valid observations for a given configuration.

" noise filtering. Remove outliers caused by errors in silhouette extraction and

motion capture.

" deformation modeling. Obtain geometry estimates that vary smoothly with

configuration.

Surface smoothness is one criterion we choose not to include in our list of design

goals. Although we seek temporal smoothness, we do not wish to impose artificial

spatial smoothness. Needle-to-needle smoothness constraints could possibly improve

some parts of the model, but they would remove detail from other parts of the model.

Our experiments suggest that spatial smoothness constraints are unnecessary for our

system.

5.1 Deformation Model

The skin deforms with the motion of the skeleton. We model this relationship with

a set of functions lij(x) that each map a joint configuration x to an appropriate

needle length, where the index i ranges over all deformable primitives in the body

and the index j ranges over all needles in that primitive. Each function depends on a

configuration point x E C, that describes the configuration of a deformable primitive

as discussed in Section 3.3.

We represent each length function lij(x) using a normalized radial basis function

(NRBF) [5], which interpolate prototype shapes via distance-weighted averaging:

lii(x) = k VijkK(x, Pik)
EkK(x,pik)

where index k ranges over all prototypes. Each prototype has a location Pik in the

configuration space C, and a shape Vijk, which gives the length of the jth needle in
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the kth prototype of primitive i. The weighting function K(xi, x 2) is an arbitrary

distance kernel. We choose a Gaussian kernel because it is well-behaved over a range

of dimensionalities.

This formulation obtains better extrapolation than non-normalized radial basis

functions (which go to zero as they move further from the basis locations). The NRBF

extrapolates by replicating the nearest values outside the realm of observed data. In

the context of skin modeling, we prefer this kind of extrapolation because it avoids

generating extreme geometry for extreme configurations. Allen and colleagues [1] use

nearest-neighbor interpolation for the same reason.

Although NRBF interpolation is simple and effective, more sophisticated tech-

niques have been developed for interpolating skin prototypes [13, 21, 28]. The use of

these other techniques could provide better results (at the cost of increased conceptual

complexity).

We use the term prototype because it is a conceptually useful way to think about

our model. Many other methods represent deformation via the interpolation of pre-

defined prototypes [13, 21, 2, 1]. In our work, however, the prototypes are not pre-

defined. Their locations are randomly scattered in the configuration space and their

shapes are inferred from the data.

5.2 Prototype Locations

Before we estimate the prototype shapes (vijk) we neeed to determine the prototype

locations (Pik). We want the prototypes to be well scattered across the space of

training poses so that we can model the complete range of observed deformations.

For each deformable primitive, we greedily select prototype locations from among

the set of observed points in the configuration space. We choose the first prototype

location pio at random from the known configurations. We then select pii to be the

furthest (in Euclidean distance) from pio and proceed by selecting each additional

prototype Pik to be furthest from the previously selected prototypes (pa for 1 < k).

An exhaustive search, which is linear in the number of datapoints and quadratic in
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the number of prototypes, can be used to find each prototype location. The results are

illustrated in Figure 5-1. Unlike clustering the observed configurations or sampling

from the observed configurations, this results in prototypes being placed even where

the data density is low.

++
+ + +T

++ ++++
+

Figure 5-1: Prototype locations in configuration space: the small dots represent ob-

served poses of the forearm (left) and lower leg (right). The configuration space

consists of 3D marker coordinates in the bone's local coordinate system (projected

into 2D for these plots). The red marks show projected locations of prototypes, which

are randomly scattered across the observed configurations.

5.3 Prototype Shapes

Once each prototype has been assigned to a particular location in configuration space,

we can determine the shape of the prototype by finding lengths for each needle in the

prototype. Due to occlusion, the length observations may include many incorrect val-

ues, so we must select multiple observations to form a reliable estimate of the correct

length. Because the geometry varies with pose, we want to select these observations

from nearby points in the configuration space. For each needle of each prototype,

we select the n nearest observations. To remove dependence on the dataset size, we

choose n to be equal to the number of observations multiplied by a fixed fraction

Fnear. By selecting the points according to this fraction instead of a fixed distance,

we consider a narrow range of data where the observations are dense and a wide
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range of data where the observations are sparse. This satisfies the hole-filling goal by

borrowing observations from other poses when there are no observations for a given

pose.

To estimate the prototype shape based on these nearby observations, we compute

a robust minimum by taking the Fmin percentile observation after sorting by needle

length. This achieves the goal of finding the maximal consistent geometry while

allowing a small number of outliers.

The complete reconstruction algorithm is illustrated in Figure 5-2 and summarized

as follows:

for each bone i do

C, +- get config-space-observations(i)

for each prototype k do

Pik +- find-prototype-location(k, Ci)

end for

for each needle j do

Sij +- get-needle-observations(i, j)

for each prototype k do

R +- nearest-neighbors(Sij, Pik, Fnear)

Vijk <- robust-minimum(R, Fmin)

end for

end for

end for

The nearest-neighbors(S, p, f) function finds the fraction f of points in S that are

closest to the point p.

5.4 Animation

The prototype locations and shapes provide a representation that is sufficient to

synthesize new geometry. When animating the model for a new motion sequence, we

are given a pose for each frame of the animation. The given pose determines a point
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Figure 5-2: A plot of observed lengths for a single needle in a deformable primitive.

To estimate the length of a needle at a given prototype location (blue dotted line),

we consider a set of nearby observations (between black dashed lines). The neigh-

borhood is selected as the closest fraction F,,,,, of observations, resulting in a narrow

neighborhood where the data is dense (left) and a wide neighborhood where the data

is sparse (right). Once the neighborhood is selected, we find a low percentile length

value (red line) to be the length of the needle in this prototype shape.

in the configuration space of each deformable primitive. We then interpolate the

prototype shapes (using the NRBF equation from Section 5.1) to obtain a complete

geometry.

To animate our model using motion from a different person, we need to retarget

the motion to the original skeleton. This retargeting is a well-studied problem that

can be performed by commercial software (for example, Kaydara's FilmBox [12]).

Our models can also be animated using standard key-framing techniques by mapping

the motion onto the original subject's skeleton.

5.5 Selection of Reconstruction Parameters

For a given placement of needles, our prototype estimation algorithm has four free

parameters: the fraction of nearby points F,,,,,, the percentile of the minimum point

F,,,i,, the kernel width W (part of K(xi,,X2)), and the number of prototypes per bone

N. We seek a way to select these parameters using a training dataset or validation
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dataset of the same form. Because these datasets do not include any 3D surface

information, we perform our parameter evaluation in image space.

We determine quality of a set of reconstruction parameters by measuring how well

the reconstructed skin matches the observed silhouettes. Our system renders synthetic

silhouettes by triangulating the needles and projecting these triangles according to

the parameters of one of the source cameras. This can be done quickly using standard

graphics hardware.

To reduce the effect of unmodeled geometry (such as the head), we consider only

pixels near the projected silhouette boundary. We define the silhouette error of our

algorithm on a particular dataset to be the fraction of pixels for which the predicted

and observed silhouette do not match, as shown in Figure 5-3. We normalize the

error value by dividing by the number of frames. This notion of silhouette error is

effectively equivalent to the silhouette mapping error used by [9].

Figure 5-3: Pixels are colored according to differences between the estimated geometry

and video silhouette: red denotes overprediction while yellow denotes underprediction.

Regions that are more than a few pixels from the estimate geometry are ignored (i.e.

the head and fingers). The silhouette error for a given frame is defined to be the

fraction of pixels overpredicted or underpredicted. Potential causes of the error are

discussed in Section 6.5.

When reconstructing geometry, matching the silhouette is necessary but not suffi-

cient for matching 3D reality. Our error measure is biased towards parts of the body

that tend to appear on the silhouette and ignores concave parts of the surface that

never appear on the silhouette from any viewpoint (such as the navel). Nonetheless,
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the silhouette error provides an automated way to perform various experiments about

the trade-offs of our design decisions.

The parameter selection algorithm varies the reconstruction parameters and com-

putes the silhouette error for each set of values. We perform repeated optimizations

of each individual parameter to account for the dependence between the parameters.

Figure 5-4 shows plots of each parameter vs. silhouette error. In each plot, the other

parameters were held near their optimal values (Fe, = 0.022, Fmin = 0.10, W = 7).

Setting the number of prototypes is more difficult because the error continues to de-

crease as more prototypes are added; we selected N = 100 based on the silhouette

error plot.

)5 Fnear 0.050

0 Kernel Width (W) 20

0.0080- -

0

0.0035
0.00 Fin 0.20

0.0050

0

0.0038

0 Prototype Count (N) 150

Figure 5-4: We use the silhouette error to automatically determine values of the

estimation parameters Fnea,, Fmin, and the kernel width W. The fourth plot demon-

strates that the error drops as we increase the number of prototypes per bone.
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Chapter 6

Results

Using the methods described in this thesis, we have successfully reconstructed de-

formable models from video sequences. These models can be animated with new

motion, as shown in Figure 6-1.

6.1 Experimental Setup

Our default model configuration is given in Table 3.1. The number of prototypes

per deformable primitive and other reconstruction parameters are determined as de-

scribed in Section 5.5. Unless otherwise specified, all models were trained using 8

minutes of motion recorded with 3 cameras (for a total of about 24 minutes of video).

The cameras were placed on one side of the workspace to allow easy segmen-

tation using a cloth backdrop. Each camera uses the MiniDV tape format with a

resolution of 720 by 480 pixels, recorded at 30 frames per second. In some cases,

the cameras recorded interlaced video, in which case we used software de-interlacing

(effectively reducing the vertical resolution to 240 pixels). Progressive-scan (non-

interlaced) recording was used when available.

The motion capture system uses 10 Vicon MCAM cameras with mega-pixel reso-

lution to track 41 reflective markers at a rate of 120 frames per second. The Vicon

iQ software [27] extracts the position of each bone from these marker trajectories.
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Figure 6-1: These meshes were synthesized for a motion sequence that was not in the

training set.

6.2 Computational Efficiency

Our system is intended for off-line reconstruction of geometry, but it is reasonably

efficient. The data acquisition phase is linear in the number of frames: the background

subtraction and traversal of the needles in image space is performed separately for

each frame and can be done in real time. The prototype reconstruction phase is a

batch process that is super-linear in the number of frames, but nonetheless can be

performed quickly (we process observations from 30 minutes of video in less than 30

minutes).

6.3 Visualization

To visualize the results, we use radial basis functions (RBFs) to extract a continuous

mesh from our needle endpoints. We generate points that are both on and above

the surface, then label exterior points with the distance to the surface. This data (a
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total of about 15,000 points) is given to a software package (FastRBF version 1.4 [6])

that fits a radial basis function to the point/distance data and extracts an isosurface

mesh.

This entire process can be scripted to render long motion sequences, but it is

much too slow for real-time rendering on current hardware. Building the RBF and

extracting a high-quality iso-surface mesh takes about 20 seconds per frame on current

desktop hardware. Chapter 7 discusses faster alternatives.

6.4 Qualitative Discussion

By inspection of the rendered geometry, the reconstructed models for the training

poses capture as much detail as a human observer can see in the source videos.

Examining the surfaces, one can discern the location of geometric features such as

protruding hip bones and the belt of the motion-capture suit. The primary flaws seem

to occur in regions of high deformation (e.g. a twisting torso) or where the surface

was rarely on the silhouette (e.g. at the junction of the legs).

When the poses in the test motion sequence are substantially different than the

poses in the training sequence, we observe significant artifacts. This and other limi-

tations of our approach are discussed in more detail in the following chapter.

Ideally we would compare our 3D reconstruction results to those obtained via

another method. Unfortunately, no other method is able to acquire a 3D model of a

moving person with a suitable level of resolution. Because other methods [26, 16, 11]

appear to have lower accuracy, a comparison with them would not establish the

relative or absolute correctness of our models.

A comparison with a static 3D scan would be useful, but such a comparison would

be entirely dependent on the positioning of bones within the scanned body. We would

effectively be measuring how well we could match the pose of our model to the pose

of the scanned person, not measuring the actual accuracy of our model.

Alternatively, we could compare the generated results to a known synthetic model

by rendering silhouettes of this model in various poses. However, this comparison

34



would be dependent on a number of technical details which are not within the scope

of this work.

6.5 Sources of Error

The quality of our reconstructed geometry is influenced by many factors, such as the

camera resolution and the range of input motion. Some of these sources of error can

be avoided by our algorithm or minor variations of of our algorithm. However, a few

of these error sources are due to fundamental limitations of our approach.

6.5.1 Constraints of the Needle Model

The number of needles can be increased arbitrarily without concern for overfitting.

Thus, at the cost of increased computation, our model does not limit the spatial

resolution of surfaces.

Even with an arbitrarily high needle density, certain geometries cannot be accu-

rately represented. For example, when using a perpendicular needle arrangement, the

model cannot represent deep folds in the skin such as those that occur under droop-

ing breasts and stomachs. Not only are these kinds of surfaces hard for the model to

represent, but they are difficult for our algorithm to acquire because they rarely (if

at all) appear on the silhouette. In practice, however, these parts of the body would

typically be covered with clothing placed on top of the acquired model.

The number of prototypes can also be increased arbitrarily (again at a computa-

tional cost). Overfitting is possible, but this is determined by the fraction (Fnear) of

nearby points contributing to each prototype. Adding prototypes without adjusting

this fraction does not cause overfitting so long as the fraction is sufficiently high that

valid observations are selected for each prototype.
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6.5.2 Input Resolution and Noise

In practice, the expressiveness of the model is not fully exploited because of flaws in

the data acquisition and estimation processes. Camera resolution is one limitation

that results in an error on the order of a pixel for each sample. However, because

we typically have multiple observations of each surface patch, we can in principle

combine these observations in a way that allows sub-pixel accuracy.

This super-resolution effect is lost due to other sources of error, such as the ac-

curacy of the motion-capture system. Modern motion-capture systems are able to

track markers with high precision, but the markers do not provide a perfect estimate

of bone position because they are placed on the deforming skin. Inconsistent bone

estimation appears to be a substantial source of error in our reconstructions.

Another possible source of reconstruction error is silhouette extraction. If too

many pixels are mislabeled as background when they are really foreground, the robust

minimum could fail, resulting in holes in the geometry. Fortunately, we can easily

avoid this by reducing the background subtraction threshold. This will result in

labeling some background pixels as part of the foreground, but such errors are not a

problem because the algorithm assumes that the silhouette provides only an upper

bound on the geometry.

The quality of the silhouettes can also be effected by motion blur. Because the

video cameras use a relatively large exposure window (e.g. 1 of a second), the mo-

tion of the subject introduces up to a couple pixels of blur. We were unable to use

shorter exposure times due to interference with the fluorescent lighting. An ideal cap-

ture environment would use bright incandescent lights (allowing very short exposure

windows) and a chroma-key background (allowing better foreground extraction).

6.5.3 Range of Motion

The final and most complicated source of error is the range of input motion. Ideally

we would make a valid (non-occluded) observation of each needle at each prototype

location. When this is not the case, we need to increase Fa, to borrow values from
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other parts of the configuration space. Since we take a minimum (albeit a robust

minimum) of the borrowed values, we will underestimate the geometry in regions of

deformation.

Clearly we cannot expect the subject to move through all possible human poses.

Fortunately, we can cope with an exponential number of body poses by observing a

small number of poses for each body part. However, in some cases, we may not have

good observations for a desired pose of a particular body part. This may result in

dramatically incorrect prototype shapes that can be exposed during the animation of

a new motion sequence.

To minimize this extrapolation problem, we direct the subject to move through

a wide range of poses. This is not an ideal solution, but it is certainly feasible for

filmmaking and video-game applications, where the desired kinds of motion are known

in advance. The subject does not need to act out the desired motion, but at least

move through a suitable range of configurations for each joint.

In our experiments, we found that a few minutes of video from a single camera was

sufficient to build a decent model. We also considered larger datasets consisting of

multiple video cameras and up to 8 minutes of video footage per camera. By adding

cameras, we effectively reduce the amount of performance time needed to obtain a

given level of quality. In Figure 6-2 we illustrate the influence of the amount of data

on the quality of the results.

37



(C)

Figure 6-2: Part (a): With 3 minutes of motion observed with a single camera,
we can obtain a good model, but its range of motion is limited. Part (b): With

only 30 seconds of motion observed from a single camera, the model has a number of

unpleasant artifacts. Part (c): When we train a model without any deformation (by

setting Fnear = 1), the joints are poorly represented, illustrating that deformation is

essential to an accurate human skin model.
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Chapter 7

Conclusion

We have presented a new method for digitizing skin geometry using a motion tracking

system and video cameras. Our method attaches needles to a skeleton obtained

from motion capture, then determines where these needles intersect the silhouettes

to obtain estimates of geometry. These estimates are accumulated and filtered-

simultaneously solving the problems of occlusion, hole-filling, deformation modeling,

and noise-removal.

Using a few minutes of video footage, we can create a human model that can be

animated with new motions. The quality of our reconstruction is primarily limited by

the amount of detail captured in the silhouette, the accuracy of skeleton estimation

from motion-capture markers, and the range of motion in the training set.

Despite these limitations, this work provides progress in the direction of automat-

ically acquiring human geometry. This has a wide range of uses, such as 3D video

conferencing, documenting important speeches, analyzing sporting events, identify-

ing people, fitting custom clothing, performing physical evaluation of athletes and

medical patients, and creating synthetic actors for video games and films.

7.1 Short-term Extensions

This work leaves open a variety of improvements that can be made via variations

on our technique. For example, the input fidelity could be improved by using mega-
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pixel FireWire cameras, better lighting, a chroma-key background, and improved

estimation of skeleton positions from the motion-capture data.

In addition to improving the input quality, we could consider a more sophisticated

reconstruction algorithm. Advanced visibility reasoning could remove excess errant

observations, reducing the robustness demands on the reconstruction process. Sepa-

rately or in conjunction with this, probabilistic models of noise and occlusion could

be used to develop a method that finds a maximum likelihood deformation function.

Another aspect of our algorithm that deserves improvement is the representation

of the reconstructed geometry. For real-time rendering applications, we would need

much faster ways to obtain a continuous surface mesh from the interpenetrating

deformable primitives. One option would be to reorient the needles (as a function

of pose) such that they do not overlap, permitting a single continuous triangulation

over the entire body. Alternately, we could fit a mesh to our existing geometry and

iteratively re-fit the mesh as the underlying skeleton moves. (Not only would this

speed rendering, but it could improve skin texturing, so long as the surface mesh

moves across the underlying geometry like skin moves across the underlying muscles

and bones.) In either case, our acquisition and reconstruction algorithm could be

used without modification.

7.2 Long-term Extensions

Once these core technical issues have been addressed, further work remains in making

this a wide-spread technology. One such improvement would be generalizing the

models across multiple people. This could reduce the difficulty of extrapolation: if

we see how one body deforms in a particular pose, we can by analogy determine how a

different body deforms. In addition to extrapolating to new poses, we could generate

body geometries that are different from ones that have been previously captured.

Given data for a variety of people, we could build a basis of human geometries,

including variations such as male vs. female (see Figure 7-1), thin vs. fat, muscular

vs. smooth. By interpolating the prototype shapes, we would automatically obtain
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not only new geometry but also new deformations. This would allow animators to

synthesize a wide range of fully-deformable figures.

Recent work in markerless motion capture [8, 24] suggests that we may be able

to use our method without requiring special motion-capture equipment. Using a

basis of human shapes, we could quickly fit a model to an observed person and

use this approximate model for tracking (as in [15, 19]). Throughout tracking, the

model could undergo further specialization to the geometry of the subject. Because

our geometry has the potential to be substantially more accurate than many of the

models previously used for human tracking, there is hope that the tracking quality

could be improved.

By eliminating the need for a marker-covered suit, we could capture meaningful

skin texture by projecting video images onto the model and examining how the texture

appearance changes as a function of pose. Because we have estimates of geometry, this

method could even account for variations in reflectance and lighting. Furthermore,

by capturing body texture, we could make use of the factorization methods described

in Section 2, allowing reconstruction of concave regions such as the eyes.

We hope that research in this direction will continue, making this work a step

toward the long-term goal of acquiring, modeling, and animating 3D human geometry.
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Figure 7-1: This model was generated from a female subject using 5 minutes of

motion and silhouettes from three viewpoints. In the future we would like to capture

a wide variety of people and interpolate their geometries to synthesize new deformable

models.
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