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Abstract

Finishing is the final phase of the gene sequencing process employed in the Human
Genome Project. During the finishing process, analysts inspect and resolve ambiguous
regions of DNA. While other phases of gene sequencing have evolved into high-volume,
automated processes, finishing has remained manual, time-consuming, and costly. This
thesis studies finishing as an example of a broader class of processes it terms data analysis
production lines. Unlike traditional production lines, data analysis processes typically
consist of complex, information-oriented tasks in which skilled analysts play a central role.
Because task complexity and analyst skill level tend to vary, however, processes like
finishing are often difficult to monitor, predict, and control.

This thesis identifies a series of workflow policies and organizational changes
designed to help managers regain control of data analysis production lines. Using insights
gained from a six-month internship at the Whitehead/MIT Center for Genomic Research, it
shows that process variability can be greatly reduced through disciplined workflow
policies. Specific policy recommendations include: breaking complex tasks into simpler
ones before assignment; limiting analysts' workloads; requiring analysts to process work in
first-in-first-out order; and, matching task complexity to analyst skill level. A simple
modeling framework serves as the basis for proving the efficacy of these policies. The
thesis concludes with an analysis of the organizational dynamics at Whitehead. A new
performance review and incentive system is proposed as a means of encouraging better
teamwork and knowledge sharing between analysts.
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Introduction
In genomics, software development, and a variety of other emerging data-intensive

industries, manufacturer seems a poor label for most companies. The products created by these

companies are not physical; more often they are collections of analyses assembled by human

experts who study, manipulate, and characterize large datasets. In the gene sequencing case

considered by this thesis, expert analysts calledfinishers attempt to resolve ambiguities in DNA

sequence through visual inspection and the application of various laboratory procedures. In

finishing, as this process is called, and in other data-intensive businesses, experts play a central role

in what this thesis terms a data analysis production line.

Data analysis production lines resemble traditional production processes in spirit but differ

in some critical ways. Certainly, success in either type of process hinges on a detailed analysis of

classic manufacturing parameters such as cycle time, yield, and quality. Automation is also an

important, common lever for reducing system variability and cost. In many ways, though,

similarities between the two types of processes end with these shared conceptual goals. Data

analysis tasks tend to be lengthy, complex procedures that preclude simple automation, leaving

human analysts to perform a majority of the truly valuable analytic work. These analysts, in turn,

exercise more discretion over their tasks than typical production personnel, deciding which

procedures to apply, what work to prioritize, and when to seek assistance from fellow co-workers.

Thus, data analysis workflows differ from traditional production lines in important ways: tasks tend

to be complex and human analysts play a central role in the production process.

These same characteristics that set data analysis processes apart also make them highly

variable. Data analysis tasks are complex, but their true complexity is also difficult to predict a

priori. Often, an analyst must begin a task before he or she can understand the time and resources

needed to complete it. Similarly, analysts' skills tend to vary significantly. These differences are

amplified when there is limited collaboration between analysts. Together, variations in task

complexity and analyst skill make for a volatile process. At the Whitehead/MIT Center for

Genomic Research, where this research was conducted, week-to-week output of the Finishing

Group varied by as much as 50% of the mean. In short, the very complexity that necessitates expert

analysis also renders it highly unpredictable.

Not surprisingly, highly variable processes like finishing are difficult to monitor, predict,

and control. When output fluctuates as significantly as it has at Whitehead, managers find it

difficult to identify and triage individual sources of variability amidst the overall system noise.

Similarly, long-term productivity trends become obscured by short-term fluctuations. Planning in
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this environment quickly breaks down. Management finds it difficult, if not impossible, to forecast

and plan future productive capacity. High process variability also takes a toll on a group's

psychology. Analysts and management alike grow frustrated with their inability to predict

productivity. Short-term initiatives tend to rule the day. Thus, high variability poses a variety of

process control and morale problems. By most measures, data analysis processes are out of control.

Drawing upon insights gained during a six-month internship at Whitehead, this thesis

studies data analysis production lines from two perspectives. First, it argues that the variability

present in data analysis processes is often unnecessarily amplified by ineffective workflow policies.

Disciplined approaches to how tasks are assigned to and managed by analysts can greatly reduce

variability over that seen in Whitehead's current process. Second, this thesis argues that analyst

performance variability can be reduced through teamwork and collaboration. Analysts' skills

diverge not just as a result of differences in natural aptitude, but also from their having limited

training and knowledge sharing opportunities. A proposal is put forth that encourages teamwork

through changes to Whitehead's current performance review and incentive system.

In summary, this thesis targets the process control problems inherent in an emerging class

of production processes whose primary output is data analysis. These processes are characterized

by high task complexity and a heavy dependence on human experts - elements that combine to

produce variable, difficult-to-control processes. This thesis proposes a number of policies designed

to stamp out variability stemming from ineffective workflow practices. At the same time, it

advocates a number of organizational changes that can lead to better collaboration and teamwork.

These proposals are put forth in the context of work conducted at Whitehead, but have broad

applicability to other data analysis production lines.

The thesis proceeds as follows:

Chapter 2, Genomics Background provides a background on modern gene sequencing

technology. It concludes with a detailed discussion of the finishing phase of the gene sequencing

process, providing insights into the characteristically iterative and variable nature of finishing.

Chapter 3, Formalizing the Problem builds upon the discussion of Chapter 2, providing

historical data on the variability of the finishing process and the problems it has created. It also

establishes a modeling framework that forms the basis for the analyses of Chapters 4 through 7.

Chapter 4, Task Bundling shows that Whitehead's practice of assigning complexprojects

to its analysts unnecessarily amplifies the variability of their output. Instead, a case is made for

breaking complex projects down into simpler, single-task projects.
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Chapter 5, Task Assignment shows that proper timing of new task assignments ensures

efficient analyst utilization while keeping work-in-process levels low. The chapter concludes by

providing guidance on how to optimally assign tasks to a group of analysts with disparate skill

levels.

Chapter 6, Workflow Management shows the unnecessary variability and productivity

losses that can occur when analysts are given large workloads and the discretion to prioritize tasks

as they see fit. Stricter control over this aspect of the workflow removes a potent source of process

variability.

Chapter 7, Teamwork outlines several team-based scenarios that can boost productivity,

lower process variability, and improve organizational communication and knowledge sharing.

Chapter 8, Organizational Studies examines the structural, political, and cultural aspects

of Whitehead's organization that inhibit higher performance. It concludes with a recommendation

for a new performance review and incentive system that emphasizes teamwork and training.

Chapter 9, Conclusion ties the discussion of the preceding chapters together and offers

some perspectives on how their conclusions can be applied outside the field of genomics.
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2 Genomics Background
This chapter provides a brief introduction to the Human Genome Project and today's gene

sequencing process. It concludes with a detailed discussion of the finishing portion of the process,

which is the chief focus of this thesis. The objective of this chapter is to provide the reader with a

sufficient background in genomics to understand finishing process optimization.

2.1 The Human Genome Project

The Human Genome Project (HGP) began in 1990 with the simple but ambitious goal of

sequencing the entire genetic makeup of the human species. While simpler organisms had

previously been sequenced, the HGP represented a significant increase in both genomic size and

complexity. Primary responsibility for the sequencing fell to large genome centers like the

Whitehead Institute at MIT, Washington University, Baylor University, and the Sanger Center in

Great Britain, with dozens of smaller centers around the world also contributing.

In 2000, a draft sequence of the human genome was published. For much of the research

community, this represented a fulfillment of the major objectives of the HGP. However, the

publishing of the draft sequence meant only that basic sequencing was complete. The draft

sequence contained many absent, ambiguous, or conflicting regions of DNA. In the time since the

draft's publication, genome centers like Whitehead have focused their energies on systematically

clarifying these problematic regions. This clarification process is calledfinishing. In April 2003,

timed to coincide with the fiftieth anniversary of the discovery of DNA by Watson and Crick, a

final version of the human genome was at last completed.

In the thirteen years that comprised the HGP project, the technologies underlying gene

sequencing were revolutionized in both technique and process speed. In 2000 alone, three times as

much DNA sequence data was produced than in the first five years of the HGP. Indeed, the science

behind gene sequencing has evolved so significantly that sequencing of the mouse (a similarly

complex genome) is budgeted to cost less than 20% of the HGP. Looking forward, we can expect

to see a continued acceleration of the gene sequencing process until, as some predict, we are

capable of sequencing an individual's genetic code in just one day.

In the meantime, the HGP has laid down a lattice of genetic knowledge upon which

decades of future medical and evolutionary research will be transacted. Already, scientists have

begun to conduct broad cross-genomic comparisons between humans and other species to

determine which genes have been preserved through evolution and which genes are uniquely

human. From a medical perspective, too, doctors will begin to use HGP data to develop tests that
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determine whether a person is at risk for certain diseases. If a person is proven to be at risk,

scientists may be able to introduce corrective genetic material into his or her body.Data from the

HGP is a critical enabler for this type of medical research.

2.2 DNA Basics

Deoxyribonucleic acid (DNA) is the genetic building block upon which all known life

regulates its daily function and long-term evolution. DNA is comprised of long strings of just four

nucleotide bases called adenine (A), guanine (G), cytosine (C), and thymine (T). Active sequences

of DNA that are hundreds or thousands of base pairs long, called genes, are translated into proteins

during the course of cell activity. Proteins, in turn, regulate all of life's most basic functions,

including: forming structural elements in cells; acting as catalysts for chemical reactions in the

body; and regulating the generation and activity of still other proteins.

Structurally speaking, DNA is a stable polymer that arranges itself into a helical structure

of the sort shown in Figure 1. Long sequences of nucleotide bases form one half of the structure.

Each base also bonds to its complementary base in the other half of the structure: A pairs with T

and G pairs with C. Thus, a sequence of "ATTGC" bonds to its complementary sequence

"TAACG". Each additional pair of bases in the structure tends to rotate the molecule by several

degrees. Over long sequences, a helical structure results, giving the DNA molecule itsdouble helix

appearance, as first recognized by James Watson and Francis Crick in 1953.

Figure 1. Relationship between cells, chromosomes, DNA, and proteins.'

c US D ntono it

IL DEPARTMENT UF ENERGY

Source: U.S. Department of Energy, http://www.oml.gov/TechResour-ces/HumanGenome/publicat/primer200l/l.htm-l
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Every cell in the human body contains a complete copy of a person's entire genetic

makeup. Forty-six chromosomes, each an average length of 130 million base pairs long, sit inside

the nucleus of every cell. These 46 chromosomes represent 23 pairs of mostly identical

chromosomes. One chromosome in each pair is derived from each parent. Slight differences

between the genes on these parental chromosomes, and the manner in which they are manifested,

are what cause people to demonstrate attributes to varying degrees from each parent.

Differences between individuals are a complex function of variations in both the genetics

of those individuals and the environment in which they are raised. The genetic contribution to these

differences derives from the tendency of genetic material to mutate and recombine over many

generations. The first of these differentiation processes, mutation, is rare but influential. On

average, human beings differ genetically by no more than 1 in 1000 DNA base pairs. Mutation is

the source of this seemingly miniscule 0.1% difference. The second differentiation process,

recombination, plays a more significant role in human diversity. Recombination occurs when

material from one chromosome in a pair is exchanged with similar material in the other

chromosome. Mutation and recombination, together with environmental pressures that favor some

genes and gene combinations over others, are responsible for the incredible genetic diversity

observable in all living things.

All told, the human genome consists of more than three billion DNA base pairs and an

estimated 30,000 genes. For many years following DNA's discovery by Watson and Crick,

scientists could sequence only a few DNA base pairs at a time. In the 1980's, it became possible to

sequence hundreds and thousands of DNA base pairs. Finally, in the 1990's, genome centers like

Whitehead gambled that they could apply recent advances in DNA science to sequencing the entire

human genome. This ambitious, but ultimately successful, gamble turned into the gene sequencing

process described in the next section.

2.3 Gene Sequencing Basics

Today's state-of-the-art gene sequencing technology proceeds by breaking large DNA

samples into small segments, determining the exact DNA sequence of those small segments, then

reconstructing sequence from these segments into a composite view of the original sample. The

description that follows is time-sensitive because the technology it describes is constantly evolving
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and varies to some degree between genome centers. Nonetheless, this divide-and-conquer process

forms the basis for all modem, high-volume sequencing operations.

The process begins with the identification of the individual specimens to be sequenced. In

the case of the HGP, DNA was donated by a small set of consenting, anonymous individuals. After

the DNA is purified, enzymes are used to break it down into smaller segments. From the mix that

results, segments with a length of approximately 165,000 base pairs (165kbp) are isolated. These

samples, called BAC templates, constitute a library of genetic material. In the HGP, for example,

templates derived from one individual became known as "RP- 11." Figure 2 illustrates the process

of breaking down a genome into templates.

Figure 2. Splitting of genome into 165kbp templates.

Genome,
~ 3 bbp

BAC templates,
- 165 kbp

A sample size of 165kbp is chosen such that an engineered version of the bacteria

Escherichia coli, more commonly called E. coli, can be tricked into carrying and reproducing the

human genetic material. By wrapping the 165kbp template with engineered bacterial DNA,

scientists fool the bacteria into assuming the human DNA is a circular chromosome just like the

one already present in E. coli. When the bacteria replicate, instructions in the DNA wrapper tell

them to also duplicate their human DNA. The combination of a human genetic template and

engineered bacterial DNA is called a Bacterial Artificial Chromosome, or BA C. Figure 3 illustrates

the basic relationship between a BAC and its host E. coli.

Figure 3. BAC structure and E. coli host.

human DNA

bacterial chromosome .- Bacterial
ArtificialE coli ceI

a Chromsome
artificial chromosome engineered

.fbacterial DNA _ A )

In this sophisticated manner, the bacteria's machinery is co-opted to replicate human

genetic material many millions of times in just hours, the same amount of time it takes a single

2 U.S. Genomics was recently funded on the promise that it could deliver a technology for directly "reading" long sequences of DNA.
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bacterial cell to reproduce itself millions of times under ideal conditions. Massreplication of the

human genetic sample is critical to the gene sequencing process. It would be difficult to manipulate

and sequence a single strand of DNA. By amplifying the original human genetic material, E. coli

help produce volumes sufficient for the many reactions that comprise the gene sequencing process.

The BAC is still a large unit of genetic material that cannot be directly sequenced.

Therefore, it must be further broken down before its DNA can be deciphered. To accomplish this

further reduction in sample size, BACs are sheared through a physical process. The resulting mix is

then filtered for DNA segments of uniform size, usually between 4kbp and l0kbp. Once isolated,

these segments are tagged with bacterial DNA, becoming what is known as a plasmid. Plasmids are

then inserted into host E. coli for amplification, in much the same manner that BACs are amplified.

Figure 4 illustrates the successive processes of first breaking a genome into 165kb templates and

then into 4kb plasmids.

Figure 4. Two phase break-down of genome into BACs and then plasmids.

Genome,
~ 3 bbp

BAC templates,
- 165 kbp

Plasmids, - _ - -- -
- 4 kbp --

not drawn to scale

Plasmids are the units upon which direct DNA base pair detection is conducted. After

being amplified through E. coli, plasmids are stripped from their host bacteria. The resulting

material is then placed in a solution containing special DNA base pairs that are tagged with a

fluorescent dye. By raising the temperature of the solution, the plasmid DNA, which normally

resides in a paired helical structure, can be induced to separate. When the temperature is lowered,

an enzyme in the solution reconstructs the helical structure by grabbing base pairs from the

surrounding solution. Whenever the enzyme selects a dyed base pair, however, the reconstruction

process stops, leaving a DNA segment that is prematurely terminated by a dyed A, T, G, or C. By

cycling the heat many times, technicians can produce a solution containing a wide array of segment

sizes. Figure 5 illustrates the resulting, dyed sub-segments:
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Figure 5. Plasmid dye-tagging process. 3

5'-3TACCAT TC#
5'-GTACCATTC60

plasmid 5'-GTACCATTCGG*
subsegments,

each terminatedT CGGC
by a dyed 5-TCAT6C
nucleotide 5'-6TACCATTC66CA*

5'-GTAC CAT T CGGCAA*SA-TACCATTC66CAA
5'-GTACCATTCGCAAAf 500 to 800 bases long

original plasmid- 3'-CATGGTAAGCCGTTTAGTTAGCGAG CTCTT-5'

The resulting solution of dye-terminated segments becomes the input to detection, the last

of the laboratory stages of the gene sequencing process. The solution of dyed plasmid segments is

placed at one end of a long capillary. A charge causes the DNA to migrate through this capillary,

with smaller segments racing ahead of larger segments because of their lighter molecular weight.

At the end of the capillary, where the segments gradually emerge, a laser illuminates the dyed base

pairs at the end of the DNA molecules. A sensor detects the continuously varying illumination and

records it in a data file. A piece of software then analyzes this data and makes a base-pair

determination. Figure 6 shows the illumination seen by the sensor and the base-pair determination.

Figure 6. Example output from detection process.

CACAG T TH0 G Ai A G T Tf 0 1 T G H 'F

What remains of the gene sequencing process is strictly information processing. A software

tool called an assembler attempts to match plasmids from a BAC by similarities in their sequence.

If everything works correctly, the assembler will reconstruct a single view of a BAC's underlying

sequence. Figure 7 illustrates this reconstruction process. The top rows represent the sequence data

for eight plasmids. Note that the assembler has aligned each plasmid such that their base pairs at

each column match exactly. The last row represents the assembler's reconstructed, consensus view

of the underlying BAC sequence.

' This graphic is from an animated educational toolkit provided by the National Human Genome Research Institute,
http://www.genome.gov. The toolkit is available at http://www.genome.gov/Pages/Education/Kit/main.cfm
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Figure 7. Example assembly with eight reads and consensus.

CTTTCTCACAGAAGCTCCCTCTAGTTTT
CTTTCTCACAGAAGCTCCCTCTAGTTTTCTATG

sequence data CTTTCTCACAGAAGCTCCCTCTAGTTTTCTATGTCTGAAAGTTCTTGAGGA
from eight CTTTCTCACAGAAGCTCCCTCTAGTTTTCTATGTCTGAAAGTTCTTGAGGA
plasmids CTTTCTCACAGAAGCTCCCTCTAGTTTTCTATGTCTGAAAGTTCTTGAGGAI

TAGTTTTCTATGTCTGAAAGTTCTTGAGGA1
consensus TGTCTGAAAGTTCTTGAGGA1

AGTTCTTGAGGAIsequence asAGCTAGA
determined by

assembler

In many cases, unfortunately, the assembler fails to construct a complete rendition of the

BAC due to insufficient or poor quality sequence data. The reasons for this failure and how it is

managed are the focus of the next section.

Figure 8 recaps the overall gene sequencing process flow.

Figure 8. Gene sequencing process flow for Human Genome Project.

Select -\Break DNA Break BACs
Individuals to Purify DNA down; construct down; construct

be Sequenced 165kbp BACs 4kbp plasmids

TagPlsmis eadPlsmis ssmble Finishing

with Dye on Detector Plasmis into (InspectQ

2.4 The Finishing Stage of Gene Sequencing

Finishing represents the stage of gene sequencing process where analysts triage

problematic BAC assemblies. Wherever the assembler cannot find DNA sequence for a region in a

BAC assembly, a gap results. Human analysts, calledfinishers, attempt to close these gaps through

a variety of laboratory techniques. Generally speaking, finishers triage two types of gaps. A

captured gap is spanned by genetic material from a single plasmid. The finisher may be able to

perform a lab procedure on the plasmid in order to discover the missing sequence. An uncaptured

gap, on the other hand, is not spanned by a plasmid.4 The finisher must use other, more

complicated techniques to discover the missing DNA sequence. For a variety of reasons,

uncaptured gaps usually prove more difficult than captured gaps. Finishers perform other functions

as well, including clarification of ambiguous DNA sequence. However, gap closure is a finisher's

primary function and is therefore the chief focus of this thesis.

4 A gap occurs between the sequences of two or more plasmids. Thus, the assembler has no basis for joining the sequence on either side
of the gap.
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A typical finishing group, like the one at Whitehead, consists of as many as twenty to forty

finishers. Finishers employ a variety of software tools that help them track and analyze gaps. In

some cases, finishers can close a gap by simply editing the data already present in the BAC

assembly. In other cases, finishers must order laboratory procedures in order to discover missing

sequence information. In classic manufacturing terms, the finishing process represents the

inspection, quality assurance, and rework phases of the gene sequencing process. The high-volume

portion of the gene sequencing process, called production sequencing, generates most of the

sequence information in a genome without quality problems. Where problems arise, however, it is

the responsibility of finishing to correct this sequence.

Production sequencing can yield low-quality data for a variety of reasons: the DNA in a

plasmid may prove toxic to E. coli; the DNA may resist certain chemicals in the laboratory; or, an

operator error may have occurred somewhere in the process. There are many other reasons for why

the process may fail, few of which are fully understood. In general, the real reason for failure is

difficult to precisely determine. Different failure modes often manifest similar symptoms.

Moreover, multiple problems may occur concurrently. Finally, even if it were technically feasible

to determine why a failure occurred, it is often not economical to do so.

While it is often difficult to determine why a region of DNA did not sequence correctly,

having such information would be extremely valuable. Knowledge about the sequence in and

around a gap can help the finisher to select the most appropriate laboratory technique. For example,

one laboratory technique employed by finishers, called resequencing, repeats the basic process

used in production sequencing but utilizes more sophisticated chemistries. While resequencing

often succeeds where basic sequencing did not, both technologies fail when applied to DNA

sequence containing long stretches of G and C nucleotide bases. Thus, if the original gap occurred

because of GC-rich content, the finisher would not be able to determine whether resequencing is

likely to succeed. In essence, finishers find themselves in a catch-22: to select an appropriate

laboratory procedure, they must understand the underlying sequence, but the sequence is missing.

The scenario just outlined is one of the many sources of uncertainty a finisher faces. In

their decision making process, finishers must make educated guesses about the underlying

sequence and the likelihood that various laboratory techniques will succeed Their decision is

influenced by the condition of the DNA near the gap. It is also influenced by the ability of their

informatics tools to highlight those conditions. Most importantly, finishers' decisions are guided by

their skill and experience. Whereas some experienced finishers may be able to close a gap based on

the information already present in an assembly, less experienced finishers may feel they need
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laboratory work. Worse still, some finishers may be unable to close the gap without help. In short,

finishing is fraught with uncertainty that is amplified by differences in finisher skill.

Given the uncertainty inherent in the finishing decision process, finishers are often unable

to close a gap and must try again until they succeed in closing the gap. The gap is closed when all

base pairs in a BAC are accounted for and of sufficiently high quality. Each attempt generates

information that offers new insights into how the finisher should proceed. For example, the gap

may have been partially closed, indicating that the previous procedure worked, albeit

incrementally. Alternatively, a failure may indicate that the underlying DNA is resistant to the

chosen procedure. In still other cases, the procedures may fail uniformly, raising the possibility that

the lab committed an error. With the information they gain at each attempt, finishers proceed in a

trial-and-error, iterative fashion until they succeed in closing the gap.

Several other finishing process characteristics are important to note because they play an

important role in the finishing workflow. First, BACs are spliced out of a genome by means of an

enzymatic process that is unaffected by the sequence problems that may lead to a gap. As a result, a

single BAC assembly may contain one or more gaps. This "gap bundling" phenomenon adds

another layer of uncertainty to the process and is the subject of Chapter 4. Second, because

finishing is an iterative, complex workflow, finishers often develop a familiarity with specific gaps.

Because their knowledge of a gap may be subtle and intuitive, it is often not written down. As a

result, it is difficult to transfer work-in-process gaps between finishers. At Whitehead, finishers

have historically retained full responsibility for a gap until it is closed. The inability to transfer gaps

between finishers hampers collaboration and heightens process variability. These issues are the

subject of discussions in Chapters 7 and 8.

2.5 Summary

This chapter explained the divide-and-conquer strategy that characterizes today's gene

sequencing process. Specific attention was given to the finishing phase of the process, which

readers from a manufacturing background will recognize as the inspection, quality assurance and

rework phases of a production process. No doubt, these same readers observed with some alarm

that finishing is an iterative, trial-and-error workflow. Uncertainty, like that seen in finishing, is

usually the harbinger of an out-of-control process. In the next chapter, we see the extent to which

this is the case and identify a framework for studying workflows like finishing.

5 NHGRI defined standard quality metrics for all genome centers. These limited, for example, the number of consecutive base pairs
below a specific certainty level. Certainty, in turn, was estimated by means a software routine shared across all genome centers.
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3 Formalizing the Problem
The description of finishing in the previous chapter should have given the reader a sense

for the iterative, variable nature of the process. This chapter begins by presenting data showing the

historical variability of Whitehead's finishing process. It then examines why this variability is

problematic from a process control and planning perspective. With this discussion as the backdrop,

the chapter poses the central problem statement of this thesis: How can one mitigate process

variability in data analysis workflows like finishing? The chapter concludes by presenting a

modeling framework that serves as the basis for analyzing solutions proposed in the remainder of

the thesis.

3.1 Finishing Process Variability

Figure 9 shows the output of Whitehead's Finishing Group in 2002. In this graph, output is

measured as the number of projects completed by the group over the period of a week or a month.

A project is defined as the set of all finishing work needed to clarify the DNA sequence in a single

BAC assembly. As subsequent discussion will show, project complexity can vary significantly,

making project completions an imperfect measure of productivity. Nonetheless, it is the measure

currently employed by Whitehead and therefore a sensible point from which to start the discussion.

As one can see from the graph, the output of Whitehead's finishing process is highly

variable. The standard deviation of output relative to its mean (y/p) in 2002 is 36% and 20% on

weekly and monthly bases, respectively. In one two-week period in June, for example, output

dropped from 75 projects in one week to 27 projects in the next week.
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Figure 9. Whitehead Finishing Group output in 2002.6
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Variability in data analysis processes like finishing stems from a wide variety of sources.

However, three systemic sources of variability stand out: high task complexity; variations in analyst

skill level; and, ineffective workflow policies. Figure 10 provides a conceptual framework for

thinking about how these factors contribute to process variability. Variations in analyst skill and

task complexity make it difficult to predict how long an analyst will need to complete a task,

independent of the workflow policies controlling how tasks are assigned and managed. When

workflow policies are ineffective, they serve merely to amplify the uncertainty present in task

completion time. Together, these three sources of uncertainty create a highly variable process.

Figure 10. Key sources of variability in data analysis processes.
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Analysts' skills vary according to differences in natural aptitude, experience, and training.

Figure 11 illustrates just how large these discrepancies can be. It shows the average time and

6 Monthly completion rates are converted to weekly rates (i.e. divided by ~4) in order to facilitate comparison.
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laboratory costs needed by finishers at Whitehead to close a captured gap. Each dot in the graph

represents the performance of a single finisher. A finisher's performance is calculated as the

average time and cost across all of the captured gaps he or she completed in 2002. Time, in this

case, is measured as the number of work cycles (trial-and-error attempts) a finisher needed to close

a gap.7 Cost is estimated as the sum of materials cost and an allocation of laboratory overhead' As

one can see from the graph, the performance discrepancy between finishers is large. Some analysts

require three times the resources to complete the same task. For a manager, this means that task

completion time is difficult to predict because it depends intimately on which analyst receives the

task.

Figure 11. Average per-gap time and cost for finishers to close captured gaps.
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Wide variations in task complexity also make it difficult to predict task completion time,

even for a single analyst. Finishers often find that two seemingly similar tasks require significantly

different levels of effort. Figure 12 shows the distribution of work cycles needed by one of

Whitehead's more senior finishers to close captured gaps. The incremental probability line shows

the percentage of captured gaps closed by the finisher in any given work cycle. The cumulative

probability line shows the percentage of all gaps closed by the given work cycle. While this

experienced finisher completes over 5 0% of his captured gaps in just one or two cycles, 10% of his

gaps required more than 6 cycles. Clearly, even at the hand of a highly skilled finisher, accurately

predicting task completion time can be difficult.

7 A finisher may spend different amounts of time in each work cycle making this is an imperfect measure. This issue is discussed shortly.
' Robert Barrett, a project manager at Whitehead, served as a source for these rough cost estimates
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Figure 12. Observed time to close captured gaps for one expert finisher.
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The third basic source of process variability is workflow policy. In this thesis, the term

workflow policy refers to all operational decisions that affect the movement of work through the

process. In some cases, workflow policy is the product of explicit managerial decisions. For

example, a manager may tell his or her analysts to prioritize certain work over others. Workflow

policy may also emerge in a distributed, ad hoc fashion. For example, an individual analyst might

segment his or her day, performing some types of tasks in the morning but others in the afternoon.

Each of these policy decisions has a potential impact on process variability. If, as in Whitehead's

case, analysts are lent wide discretion over how they manage their workload, process control

problems can be unnecessarily amplified.

This thesis analyzes opportunities to remove uncertainty from data analysis workflows like

finishing. Workflow policy is the initial focus. In Chapters 4 through 7, newpolicies regarding task

assignment and management are identified that substantially reduce process variability over

Whitehead's current practices. Then, in Chapters 7 and 8, we turn to analyst skill, focusing on

teamwork and incentives as a means to normalize analyst performance.

3.2 The Evils of Variability

Variability in the finishing process has numerous deleterious effects, including:

Large work-in-process (WIP) queues. To buffer themselves against the low utilization that

often results from process variability, finishers must accumulate large WIP queues. Large queues,

in turn, lead to longer project cycle times. They also tempt finishers to prioritize work according to
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short-term, often sub-optimal objectives (e.g. the desire to boost output before a performance

review). When finishers game their workload like this, they merely amplify process variability.

Reduced process flexibility. Long cycle times reduce management's flexibility to plan

future production. At Whitehead, difficult HGP projects often took a year or more to complete.

Long cycle times act as a liability against future productive capacity. Resources must be committed

far into the future, precluding their use on new projects that may emerge.

Capacity planning difficulties. High process variability makes it difficult for management

to monitor and plan productive capacity. In Whitehead's case, process variability in the HGP was

so significant that it took months to identify a long-term trend towards reduced output. In the

meantime, preventative action like better training and additional hiring was not taken, causing the

group to nearly miss its production deadlines.

Process control difficulties. Even when management is cognizant of its process variability

problems, identifying and triaging individual sources of that variabilitymay be difficult in systems

as noisy as the finishing process. At Whitehead, variability seemed to emanate from all corners of

the system at once: lab yields, finisher performance, task complexity, and workflow policy. With

so many sources of variability, it may be difficult to know where to start.

Negative psychological impacts. Faced with high variability, limited insight into its causes,

and an aggressive deadline, a manager may react with short-term policies that are ineffective or

counterproductive. At Whitehead, efforts to boost short-term output often had the effect of

reducing long-term productivity. Process variability can also have deleterious effects on line

workers. Finishers grew frustrated with their own unpredictable output and reacted negatively to

management's short-term initiatives.

3.3 Formal problem statement

Finishing appears to be a uniquely iterative, analytical workflow prone to high uncertainty.

In many ways, though, it resembles some familiar processes. In a technical support call center, for

example, operators field phone calls from customers facing a variety of problems. In some cases,

the problem can be resolved immediately; in other cases, it requires multiple phone calls or

escalation to a supervisor. During the course of the phone call, the operator may walk the customer

through several procedures before finding a successful resolution. The call center's problems

mirror those facing finishing: tasks are complex and difficult to predict a priori; they may require

multiple passes; and, success pivots on the operator's communication and deduction skills.

In considering solutions to the Finishing's variability problem, we are challenged to think

about the broader class of processes that it represents. Because they are analytical, information-

22



intensive production processes, this thesis refers to finishing, technical call centers, and similar

processes as data analysis production lines. Data analysis production lines generally share the

following characteristics:

The product is information analysis. Though physical material may be manipulated

during the process, the output of the production process is informational. In some cases, like

finishing, the product is a quality-assurance seal. In other cases, like the technical call center, the

product is advice.

Human analysts perform a majority of the value-added tasks. Unlike many production

operations, data analysis tasks are usually complex enough to preclude simple automation. Human

analysts fill the void, providing the necessary breadth and dexterity.

Analyst productivity varies significantly. An unfortunate byproduct of a heavy reliance on

human capital is that their skill levels tend to vary significantly. Analysts bring different levels of

natural aptitude, experience, interest, and learning potential to their jobs. These differences

inevitably manifest themselves in skill and performance discrepancies.

Quantifying analyst skill and task complexity is difficult. It isoften difficult to objectively

measure analyst skill and task complexity because they are interdependent. Analysts will excel in

different tasks. Yet management must find an equitable means to measure and incentivize analyst

performance.

Definition of task completion may be subjective. In some cases, like the call center that

offers technical advice, it may be difficult to determine when an analysis task is complete. The

analyst or the supervisor must make a subjective determination to cease work on a task because it

meets some quality metric or would not benefit from additional effort.

The workflow is iterative. Because task complexity and analyst skill level varies so

significantly, analysts rarely know with certainty which decision is best. As a result, analysts must

often proceed in a trial-and-error, iterative fashion until the task is completed successfully.

While this thesis focuses on specific data and examples gathered from the Whitehead's

genome finishing process, its lessons are targeted at the broader class of data analysis production

lines. In each, management must control the production line in spite of its high natural variability.
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3.4 Modeling data analysis workflows like finishing

Before proceeding, we first establish a formal framework for thinking about data analysis

production lines. This section defines the terminology, metrics, and modeling representations that

form the basis for analyses in the remainder of the thesis.

3.4.1 Terminology
The following terms are used repeatedly throughout this document. Some of the terms have

corollaries in other industries; some have a meaning that is particular to the finishing process

Analyst. This term refers to the human expert performing the bulk of the value-added

analysis task in the production process. At Whitehead, the analysts in the finishing process are

called finishers. These terms are used interchangeably throughout this document.

Task. This term refers to a single, indivisible unit of work. In Whitehead's Finishing

Group, the act of closing a gap is the most common task handled by a finisher.

Project. In Whitehead's Finishing Group, this term refers to the unit of work assigned to an

analyst. A project may consist of one or more tasks. At Whitehead, the terms BAC and project are

used interchangeably because projects are usually formed around BAC assemblies.

Work Cycle. This term refers to a single iteration of work performed by an analyst during

his or her attempts to complete a project. At Whitehead, each work cycle usually entails ordering

laboratory procedures. Because a project may contain more than one gap, finishers often work on

several gaps in each work cycle.

Procedure. This term refers to an analytical or laboratory method employed by an analyst

in the process of trying to complete a task. At Whitehead, the terms laboratory procedure and lab

work are also used.

3.4.2 Key metrics
This thesis concerns itself primarily with techniques for reducing the variability inherent in

data analysis production processes. This section describes how output and variability are measured.

Measuring output. Whitehead has historically used projects as its chief measure of

productivity. Because a project is often comprised of multiple tasks, however, this measurement

technique obscures the real level of work required by a project. For this reason, productivity in this

thesis is usually presented in terms of both project and task completions rates.
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Measuring variability. In the analyses and simulations presented, process variability is

generally measured as the standard deviation of output divided by its mean over some time frame.

Mathematically, this is i/ t. Variability is measured on weekly or monthly bars.

3.4.3 Modeling Considerations
Modeling complex systems inevitably pitches the desire for accurate representation against

the need to be economical and focused in the model's design. Because this thesis focuses on

variability stemming from task complexity, analyst skill, and workflow policy, these parametersare

given priority in the modeling effort. Other system characteristics, like variability stemmingfrom

variations in lab yields or delays, are given less attention. As a result, the models put forth in this

thesis should be interpreted in a qualitative light. They are not perfectly representative of the

dynamics at work in the finishing process.

3.4.4 Modeling the Finishing Workflow
A workflow simulation package called Simul8 is used to model the finishing workflow.

Figure 13 illustrates how the workflow of an individual finisher is modeled in Simul8 for this

thesis:

Figure 13. Model finishing workflow.
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Newly assigned projects, generally assumed to be in infinite supply, are deposited into the

finisher's Assigned New Projects queue. After selecting a new project out of this queue, the finisher

performs an initial cycle of work. When the finisher processes a project, he works on all unclosed

gaps within that project. Gaps are considered independent; that is, success in one does not confer

information about the others. Each captured gap is assumed to require one hour of work per cycle;
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each uncaptured gap requires two hours of work per cycle. (The rationale for these parameters is
discussed shortly.) The finisher works 35 hours per week.

If, after processing a project, the finisher has closed all of its gaps, he sends the project to

his Completed Projects queue. If one or more of the gaps in a project remains open, the finisher

sends the project to his Submitted Labwork queue for lab processing. Projects submitted to the lab

are returned after an average of 70 hours (approximately two workweeks) with a standard deviation

of 10 hours. The lab, while shared across all finishers, is assumed to have infinite capacity.

When the lab has finished processing a project, it returns the project to a finisher's

Completed Labwork queue. The finisher may select projects out of either this queue or the

Assigned New Projects queue. Finishers' policy for which queue they select from is one subject of

study in this thesis.

3.4.5 Modeling Individual Tasks
The state of individual tasks (gaps) in the finishing workflow can be described as a Markov

chain. The states in the chain represent the number of times the finisher has ordered laboratory

procedures for the task. The transitions between states represent the probability that the task is

either completed after a laboratory procedure or requires another round of work.

A Markov model allows us to capture two important characteristics of the finishing

workflow: first, each additional cycle of work yields new information that affects a finisher's

decision in the next cycle; and second, a finisher's chances of being successful changes according

to this information. For example, a task may require one hour of work and complete with

probability 0.5 in its first cycle; if the task is not completed, it might require an additional two

hours of work and succeed with probability 0.3 in the second cycle. An example Markov chain is

shown in Figure 14.

Figure 14. Markov model of finishing task state.
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To represent the finishing workflow as a Markov chain, we must determine the state

transition probabilities and the duration of time spent in each state. Considering transition

probabilities first, Figure 15 shows the observed probability of gap closure by work cycle for

Whitehead's finishers in 2002. Data for both captured and uncaptured gaps are shown. The

conditional probability lines represent the chances that a gap is closed in its N"' work cycle given

that it was not closed in the preceding N-1 cycles. The cumulative probability lines represent the

chances that a gap is closed by the end of the Nl' work cycle.9

Figure 15. Observed gap-closing probabilities at Whitehead.
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There are a number of biases in Figure 15 that bear mentioning. First, as will shortly be

discussed, projects typically contain more than one gap. Because of the way projects are tracked at

Whitehead, it is difficult to determine when individual gaps in a multi-gap project are closed. To

generate the data above, a small population of 340 projects containing only one captured or

uncaptured gap was pruned from the corpus of over 3000 projects completed by Whitehead.

Because the sample data set was small, it is not perfectly representative of the overall population.

There are also a number of data collection inaccuracies: gaps thought to exist were often later

found to be data errors; uncaptured gaps were preferentially allocated to experienced finishers; and

cycle counts were sometimes inflated by finishers that processed their labwork incrementally.

Because of these biases and a desire to simplify the analyses of this thesis, a simpler model

of gap closing probabilities is used. For an average finisher, captured gaps are assumed to close

with probability 0.4 at each and every cycle; similarly, uncaptured gaps are assumed to close with

probability 0.2 at each cycle. The incremental and cumulative gap closing probabilities for captured

9 Please note that there was limited data available for higher cycle counts. Thus, the dip in the conditional probability line for uncaptured
gaps at the 7th cycle is a data collection anomaly.
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and uncaptured gaps are shown in Figure 16. Though these simplified models exaggerate the

differences between captured and uncaptured gaps, they capture the essential aspects of the original

distribution: captured gaps close with higher probability on average in each cycle than uncaptured

gaps; and, the probability of gap closure demonstrates an exponential approach to 1.0.

Figure 16. Idealized gap-closing probabilities.
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Data on how much time finishers spend in each work cycle is more difficult to gather.

Finishers do not currently log the time they spend on each gap. The time they spend also depends

on the procedures they ordered. If a finisher opts to use one of the more sophisticated laboratory

procedures, his or her processing time during that cycle will be higher. Using anecdotal evidence

and a rough analysis of the number of gaps processed by a finisher each day, a simplified model of

gap processing time is assumed in the modeling of this thesis. An average finisher is assumed to

spend one hour per captured gap per work cycle and one and a half hours per uncaptured gap per

cycle.

Table 1 summarizes the performance assumptions used in this thesis when analyzing

individual finishers:

Table 1. Model of individual finisher performance.

Conditional gap closing probabilities
Captured gap / cycle 0.4
Uncaptured gap / cycle 0.2

Average time / gap / cycle
Captured gap (hrs) 1.0
Uncaptured gap (hrs) 1.5
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In summary, due to data collection and analysis issues, idealized models of the finishing

workflow are assumed. Though these simplifications exclude certain features of the finishing

process, they preserve its essential characteristics. They also greatly simplify the analyses and

simulations of this thesis.

3.4.6 Task Distribution within Projects
Genomes are split into BACs by means of an enzymatic process, as described in Chapter 2.

Because the splitting process is noisy, we might expect the incidence of gaps within BACs to be

fairly random. Figure 17 shows the observed frequency of projects according to their gap count in

Whitehead's portion of the human genome. Balloon size indicates the relative frequency of a

project with [x,y] captured and uncaptured gaps. Projects with zero gaps ([0,0]) are excluded from

the distribution because they generally require little finishing work.0

Figure 17. Observed gap distribution.
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The mean rate of gap occurrence in Whitehead's projects was 2.1 captured gaps per project

and 0.5 uncaptured gaps per project. Further analysis of the data revealed a 30% correlation

between the incidences of captured and uncaptured gaps. Thus, gap distribution was not truly

independent. The correlation arises out of the fact that a problematic region in the genome is likely

to cause a number of captured and uncaptured gaps within a fairly localized region.

As in the previous section, there are a number of data collection problems that complicate

direct use of the empirical data shown in Figure 17. Gap counts were often inflated due to problems

in the BAC assembly; once these assemblies were resolved, gap counts were greatly reduced.

'0 Occasionally, however, there are low quality regions (i.e. not strictly gaps) that require significant work.
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There was also an incentive for coordinators and finishers to inflate gap counts when they became

the primary measure of productivity in 2002.

For these reasons, and to simplify our analyses, we make a number of assumptions about

the rates at which gaps occur. First, we assume captured and uncaptured gaps occur independently.

Second, we assume that the number of gaps in a project occur according to a Poisson process with

the same observed means as the empirical data (i.e. 2.1 captured gaps per project and 0.5

uncaptured gaps per project). Figure 18 shows gap distribution according to this simplified model.

Here again, projects with no gaps ([0,0]) are excluded from the distribution, as they require little or

no finishing work.

Figure 18. Idealized gap distribution.
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A number of discrepancies with the empirical model are easily spotted. Gap counts fall off

more precipitously in the theoretical model. Also, projects with one uncaptured gap appear more

common than in the empirical data. For the purposes of this thesis, however, these discrepancies

are more than outweighed by the ease of analysis enabled by the theoretical model.

3.4.7 Modeling the Interaction Between Skill and Task Complexity.
The modeling discussion thus far has ignored the role that analyst skill level plays in the

finishing process. Chapters 5, 7, and 8, however, analyze the role that skill plays in optimal task

assignment, teamwork, and training. Thus, in addition to the in-the-average performance

characteristics assumed above, we require a model of how finisher performance varies by skill.

Three classes of finisher skill level are assumed: beginner, intermediate, and advanced.

Assumptions about probabilities of gap closure and time per gap per cycle are shown in Table 2.
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Table 2. Model finisher performance by skill level.

Beginner Intermediate Advanced
(average)

Conditional gap closing probabilities
Captured gap / cycle 0.32 0.40 0.48
Uncaptured gap / cycle 0.16 0.20 0.24

Average time / gap / cycle
Captured gap (hrs) 1.20 1.00 0.80
Uncaptured gap (hrs) 1.80 1.50 1.05

In both types of gaps, advanced finishers are assumed to 1) have a higher chance of closing

a gap in each work cycle, and 2) require less time per gap per cycle. Moreover, because uncaptured

gaps generally require more experience, advanced analysts are assumed to have a relative

advantage in uncaptured gaps over captured gaps. Thus, while advanced analysts are assumed to

require 67% (0.8/1.2) of the time that beginner analysts require on captured gaps, they require only

58% (1.05/1.8) on a relative basis for uncaptured gaps. The impact of this relative advantage is

explored in more detail in Chapter 5.

The modeling parameters of Table 2 correlate with qualitative observations of finisher

performance at Whitehead, but are nonetheless artificially precise. Direct use of empirical

performance data is difficult because of the collection errors and biases mentioned in previous

sections. Instead, we begin our analyses with the assumptions of Table 2, and then explore the

sensitivity of our analyses to those assumptions.

3.5 Deriving Simple Results from the Modeling Framework

Using the assumptions of the preceding sections, some simple analytical derivationscan be

derived about the probability of single- and multi-gap projects.

3.5.1 Task Completion Probabilities

Let PN denote the conditional probability that a task is completed during its N"' cycle of

work, given that it has not been closed during its last N-I cycles. The probability that the task is

completed on exactly its N"' cycle of work is then:

PN = (1 -P1)(1~ P2) '(1 - PN-I)PN

If, as this thesis assumes, the conditional probability of closing a gap is the same in each

cycle, then pi = P2 = PN and the above formula simplifies to:

PN ( P)N-P
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Similarly, the cumulative probability that a task is completedon or before its Ntl lab cycle

can be derived as the complement of the probability that the task is completed after its N" cycle:

PN = 14-[1 -pI)( - P2)' ... - PA

Here again, if we assume that the probability of closing a gap is equal on every cycle, then

the above formula reduces to:

P* =-(1-p)N

Finally, assuming task independence, the cumulative probability, Z* (X), that a project

with X constituent tasks is completed on or before its N"' cycle of work can be derived as the

product of the cumulative probabilities of each independent gap.

Z*(X) =(P*)X

3.5.2 Expected Task Completion Time
Utilizing the above derivations, we can calculate the expected cycles and time needed to

complete a task. The expected number of cycles is just the probability that the task requires N

cycles, multiplied by N, and summed over all N. Mathematically, this can be rearranged as follows:

ExpectedCycles = I PN N= 1(1-p) N-I . p - N = " Z(1-p)N -N
N=]..oo V=L..OO 0 P) N=]..-,,

The last representation is simply p/(l -p) times a powcr series of the following form:

nx" =2
n=L. (1 - x),

Substituting (l-p) for x in the power series, we arrive at the greatly simplified:

ExpectedCycles = - 2 -
(1 - p) p p

Using the above formula with the gap completion probabilities of Table 2, we can estimate

the number of cycles required by each finisher skill level for captured and uncaptured gaps. These

are indicated in the first two rows of Table 3. Combining these values with our assumptions about

the time spent per gap per cycle (also in Table 2), we can further calculate the total expected

finisher time required per gap. These are indicated in the second two rows of Table 3.
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Table 3. Expected Cycles and Time Per Task.

Beginner Intermediate Advanced
Average cycles / gap

Captured gap (cycles) 3.1 2.5 2.1
Uncaptured gap (cycles) 7.1 5.0 3.9

Average total time / gap
Captured gap (hours) 3.8 2.5 1.7
Uncaptured gap (hours) 13.9 7.5 4.0

Summary

This chapter has presented data showing the historic variability of Whitehead's finishing

process. It has explained why that variability is problematic. Finally, it has provided a modeling

framework with which to evaluate the proposals that follow. Though the models reflect actual

performance characteristics observed at Whitehead, they are nonetheless simplifications. As such,

results based on models should be interpreted in a qualitative light.
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4 Task Bundling
Genomes are divided into BACs by means of an enzymatic process, as described in

Chapter 2. For a variety of process and technology reasons, Whitehead has historically converted

each BAC assembly into a finishing project and then assigned it to a finisher. Because BACs

contain a variable number of gaps, however, the volume of finishing work associated with each

project assignment may vary significantly. The practice of assigning multiple gaps at a time is

referred to as task bundling in this chapter.

Task bundling has long been suspected of leading to high output variability, long project

cycle times, and a host of other process control problems. Using a model of Whitehead's finishing

process, this chapter derives both analytical and simulation-based estimates for the degree to which

task bundling aggravates efficient process control. It makes a case for why multi-gap projects

should be broken down into single-gap projects before being assigned.

The analysis of this chapter proceeds as follows. First, we analyze the effect that task

bundling has on project processing time, showing that when projects contain multiple gaps, their

processing time is longer relative to single-gap projects. Next, we use information about how gaps

are distributed across BACs to estimate project completion time over a large population of projects.

Finally, we use simulation to understand the effect that queuing and lab processing time have on

overall project cycle time and process variability. The chapter concludes by presenting a variety of

managerial reasons to favor single-gap projects.

4.1 Processing Time for Multi-gap Projects

In this section, we estimate the processing time required by multi-gap projects. We define

processing time as the active time a finisher spends on a project, as distinguished from cycle time,

which also includes finisher time, lab time, and queuing delays. Cycle time is considered in more

detail in Section 4.3.

To calculate the expected processing time for a multi-gap project, we must calculate the

probability that a project takes time T for all T = 0.. oo. Consider, for example, the probability that a

project containing two captured gaps is completed after four hours of finisher processing (i.e. T =

4). We assume, as described in Chapter 3, that each captured gap requires one hour of processing

per cycle, undergoes at least one initial cycle of processing, and closes with probability p = 0.4 in

each cycle.

The probability that our two-gap project requires four hours of work is the cumulative

probability of all possible allocations of four hours across those two gaps. The first gap may require
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one cycle (one hour) of work, while the second gap requires three hours. Conversely, the first gap

may require three hours of work while the second gap requires one. A final alternative is that both

gaps require two hours of work each. Table 4 shows these allocations.

We can calculate the probability of each of these scenarios by Tecalling that a captured gap

requires N cycles of work with probability PN N-! p. The probability that the first

captured gap requires 3 hours is therefore 0.144, while the probability that the other gap requires 1

hour is 0.4. The joint probability of this occurring is 0.144 * 0.4 = 0.05 8. Completing this analysis

for all possible scenarios, we determine that our two-gap project requires four hours of processing

with probability P(T=4) of 0.173.

Table 4. Example scenario: probability that a 2-captured-gap project requires 4 hours of processing.

First gap Second gap Entire project

Work cycles Probability Work cycles Probability Total time (Hrs) Joint probability

1 0.400 3 0.144 4 0.058
2 0.240 2 0.240 4 0.058
3 0.144 1 0.400 4 0.058

1 1_ 1 1Cum. Prob. P(4) = 0.173

By performing this same analysis over all time T, we can calculate expected processing

time for the project using the following calculation:

Expected Processing Time = P(T) * T
T

Extending this analysis to all projects with all possible numbers of captured and uncaptured

gaps, we arrive at the following graph of expected project processing times:

Figure 19. Expected processing time for multi-gap projects.
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Figure 19 shows that project processing time increases linearly with the number of

captured and uncaptured gaps. Each additional captured gap increases expected processing time by

2.5 hours, while each uncaptured gap increases processing time by 7.5 hours. These values

correspond exactly to those derived in Chapter 3.

We can extend this analysis to understand the impact of gap bundling not just on expected

project processing time, but also on processing time variability. Using the same probabilities

calculated above, we can compute the standard deviation of a project's processing time as follows:

2

Standard Deviation of Processing Time = P(T) - T2- P(T).T

Figure 20 shows standard deviation as a function of a project's captured and uncaptured

gap count:

Figure 20. Standard deviation of processing time for multi-gap projects.
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While the relationship is not linear, the graph clearly shows that variability increases with

gap count. As Figure 21 shows, however, the standard deviation of processing time as a percentage

of the mean decreases with additional gaps:
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Figure 21. Standard deviation of processing time as percentage of mean for multi-gap projects.
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Figure 21 shows that projects with higher gap counts demonstrate less variability relative

to their mean than lower gap count projects. This implies an averaging effect. Because gaps are

independent, the variability of multiple gaps in a single project tends to cancel out. Exactly how

this impacts a finisher's overall productivity is difficult to determine without two additional

analyses. In the next section, we synthesize the above analyses with our Poisson model of gap

distribution in order to determine the expected processing time of a project selected at random from

the larger population. In the section after that, we simulate the finishing workflow in order to

account for queuing and lab processing effects.

4.2 Predicting aggregate project lifetimes

In Chapter 3, we made the assumption that captured and uncaptured gaps occur according

to Poisson processes with means of 2.1 and 0.5 gaps per project, respectively. By convolving this

gap occurrence model with the processing time estimates from the previous section, we can

calculate the distribution and mean processing time across all projects in the population.

To calculate the probability that a randomly selected project requires time T to process, we

multiply the probability that a project with C captured and U uncaptured gaps occurs by the

probability that that the project requires time T, over all C and U. Using A(X,X) to represent the

probability of X events in a Poisson process with mean k, and Pc,u(T) to represent the probability

that a project with [C,U] gaps requires time T, this is:

Prob. that random project takes time T = A(C,2. 1) * A(U,0.4) * Pc,u (T)
C U
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By computing this probability over all time T, we can calculate a distribution of the

processing time for all projects in the population. Using this distribution, we can then calculate the

mean and standard deviation of the processing time for a randomly selected project. Table 5

compares these values against the mean and standard deviation of several other projects.

Table 5. Mean and standard deviation of processing time for a randomly selected project.

Project Mean (Hrs) Stdev (Hrs) Stdev (% of Mean)
Random project 9.0 8.5 94%

Project with 1 captured gap 2.5 1.9 77%
Project with 1 uncaptured gap 7.5 6.7 89%

Project with 1 cap + 1 uncap gap 10.0 7.0 70%

The analyses indicate that a randomly selected project has a low mean processing time (9.0

hours), but high variability (94% of mean.) If the distribution of project processing time is not

symmetric around the mean, we can interpret this high variability to mean that the distribution has

a "long tail." In fact, this is confirmed by examining the processing time distribution for a

randomly selected project, as shown in Figure 22. Over 80% of projects are completed within 14

hours of processing; however, the last 3% require over 30 hours.

Figure 22. Processing time distribution for a randomly selected project.
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Because the finishing workflow is iterative, we expect that the long tail on this distribution

would translate into a small population of projects getting "stuck" in a finisher's workflow for

many work cycles. We might further suspect that this stickiness would likely heighten a finisher's

output variability. To confirm this intuition, we must simulate the effects of queuing and cyclical

processing in the finishing workflow. This is the subject of the next section.
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4.3 Impact of Queuing and Cyclical Workflow

In an iterative workflow, analysts must eventually revisit any tasks that they are unable to

complete in a given work cycle. As consumers of their own work, any variability present in their

output will ultimately impact the rate at which they are able to take on and complete new work.

The system is, in effect, a giant feedback loop. In this type of a system, we might expect work to

"bunch up" as analysts work their way through random patches of easy and hard projects.

Using Simul8, we model two finishing scenarios in order to understand the effects of

queuing and lab processing on finishing process variability. In the first, Bundled scenario, captured

and uncaptured gaps are inserted into projects according to Poisson processes with means of 2.1

and 0.5 gaps per project, respectively. In the second, Unbundled scenario, single-gap projects are

inserted into the workflow with captured gap projects occurring 81% of the time and uncaptured

gap projects occurring 19% of the time. The relative frequency of the two gap types is therefore

identical in both scenarios.1

Figure 23 shows our simulated finishing workflow. In both Bundled and Unbundled

scenarios, captured gaps are assumed to require one hour of work per cycle and complete with

probability 0.4 at each cycle, while uncaptured gaps were assumed to require 1.5 hours of work per

cycle and complete with probability 0.2 during each cycle. Only when all gaps in a project are

closed does the finisher deliver the project to his Completed Projects queue. Otherwise, the project

is submitted for another cycle of lab work. After completing work on a project, the finisher selects

his next project from his Completed Labwork queue. If no projects are available in that queue, the

finisher selected a project from his Assigned New Projects queue." Projects are selected out of both

queues in strict FIFO order. Lastly, for the purposes of these simulations, an infinite amount of

work is assumed to be available for assignment.

Figure 23. Model finisher workflow as represented in Simul8.

A Assied New Projects Finisher Processing Complted Projects

Corrq~leed Labwork Submi1tted Lebwork
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Captured gaps occur w. p. 2.1/(0.5+2.1) 81%; uncaptured gaps occur w. p. 0.5/(0.5+2.1)= 19%.
" In Chapter 5, we show that this prioritization strategy ensures that the finisher is fully utilized.
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Because of the sensitivity of the system to random number seeds, ten trials are conducted

for each of the two scenarios. The simulations are run for 2200 hours (approximately 11/4 years).

The first 200 hours of each simulation are considered warm-up and excluded from the results. For

each trial, the number of completed projects, captured gaps, and uncaptured gaps are noted at five-

hour intervals. These data are then analyzed on a weekly and monthly basis to determine the

variability of output.

Table 6 shows the results of these test trials. For each time base, the mean and standard

deviation of output is measured for projects, captured gaps, and uncaptured gaps.

Table 6. Simulated results comparing bundled and unbundled task assignment.

Bundled Unbundled

Weekly output
Project completions

Mean rate (projects/week) 3.6 10.1
Standard deviation of rate (% mean) 53% 26%

Captured gap completions

Mean rate (gaps/week) 8.3 8.3
Standard deviation of rate (% mean) 61% 31%

Uncaptured gap completions

Mean rate (gaps/week) 1.7 1.9
Standard deviation of rate (% mean) 70% 58%

Monthly output
Project completions

Mean rate (projects/week) 14.4 40.5
Standard deviation of rate (% mean) 28% 14%

Captured gap completions

Mean rate (gaps/week) 33.3 33.0
Standard deviation of rate (% mean) 30% 16%

Uncaptured gap completions

Mean rate (gaps/week) 7.0 7.4

Standard deviation of rate (% mean) 45% 34%

Note that by all measures, on either a weekly or monthly basis, finisher throughput is

nearly identical under both scenarios. (The reader should compare captured and uncaptured gap

completion rates; project completion rates are not directly comparable because projects in two

scenarios have different numbers of gaps.) Output variability, however, is substantially reduced in

the Unbundled scenario. On weekly and monthly bases, captured gap output variability is nearly

halved. Uncaptured gap output variability is also reduced.

With these simulated results, we confirm what preceding analyses suggested - that

breaking multi-gap projects down into single-gap projects can substantially reduce the variability
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of a finisher's output. Together with shorter project processing times, as demonstrated earlierin the

chapter, task unbundling promises more predictable, manageable workflows.

4.4 Managerial Reasons to Favor Unbundling

Even without these analytical arguments, there are a host of other managerial reasons to

favor task unbundling. One natural consequence of projects that require longer, more variable

processing time is that analysts must maintain higher WIP levels. High WIP levels, however,

frustrate efficient process monitoring and control. Analysts with large queues are often tempted to

process work selectively according to short-term objectives. In Chapter 5, this WIP gaming

phenomenon is proven detrimental not only to analysts' individual performance, but also to the

stability of the group's output.

Perhaps more importantly, bundling multiple tasks into a project obfuscates the state of

individual tasks, leaving management powerless to identify problematic tasks. At Whitehead, for

example, there are formal mechanisms for tracking projects, but individual gaps are not tracked in a

standard, disciplined manner. As a result, management's ability to identify and triage problematic

tasks is hampered. Similarly, because management has limited insight into the status of individual

tasks, it cannot measure analysts' aptitude with individual tasks. It is also difficult for management

to identify best practices from among the many methods employed by finishers. In short, task

bundling obscures management's insight into the real unit of work - the task.

Thus, there remain significant process control reasons - beyond the analytical arguments

presented earlier in this chapter - to warrant task unbundling. Analysts managing discrete, single-

task projects are less likely to game their workload. Moreover, unbundled tasks are easier to

monitor and, as such, pave the road towards the identification and development of best practices.

4.5 Summary

This chapter has shown that task bundling, while a natural artifact in some data analysis

workflows like finishing, unnecessarily inflates project-processing times, boosts WIP levels, and

increases process variability. From a management perspective, bundling also hides important

process details and impedes organizational learning. To the extent possible, then, managers should

consider policy changes that enable the delivery of single-task projects to analysts.

The chapters that follow start from this assumption and probe more deeply into other

important workflow policies.
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5 Task Assignment
This chapter examines how to optimally assign tasks to a group of analysts. Task

assignment can be broken down into two basic policy questions: timing policy defines when new

tasks should be assigned to analysts; and routing policy defines which tasks should be assigned to

which analysts. The first half the chapter deals with timing, demonstrating that a just-in-time

assignment policy ensures 100% analyst utilization, low variability, and reduced work-iniprocess.

The second half of the chapter deals with routing, showing that, under certain circumstances,

assigning complex tasks to senior analysts yields higher group productivity. Implementation of

both policies can ensure high utilization and optimal productivity in analysis workflows like

finishing.

5.1 Timing of New Task Assignments

Analysts are a limited resource, requiring significant time to hire and train. As such,

analysis groups like Whitehead's Finishing Group often prove to be a major bottleneck in the

production process. Prompt assignment of new tasks is critical to ensuring that analysts stay fully

utilized. At the same time, overly aggressive task assignment can drive up WIP levels, lengthen

project cycle times, and increase process variability. Proper timing of new task assignments can

ensure high analyst utilization without these negative side effects.

Whitehead has historically utilized an on-demand policy, in which analysts solicit new

tasks from their managers at will. The productivity implications of this policy are comparedto two

potential alternatives: kanban assignment, in which analysts are fed a new task whenever they

complete a previously assigned task; andjust-in-time assignment, in which analysts are assigned a

new task whenever they have no other tasks to process. Just-in-time assignment is shown to ensure

100% utilization and low WIP levels. Moreover, it is simple to implement and eliminates analysts'

tendency to selectively prioritize their workload - a behavior that increases process variability.

In the following analyses, a simplified model of the finishing workflow is assumed as

described in Chapter 3. Building on the analyses of Chapter 4, projects are assumed to consist of

one gap each, with captured gap projects and uncaptured gap projects occurring 81% and 19% of

the time, respectively. Simulations were conducted in Simul8. The chief metrics for comparison

between the policies are finisher utilization (working time divided by elapsed time), output

variability (standard deviation of output on a weekly basis), and project cycle time (time between

assignment and completion). For each policy, ten trials of 2200 hours each were conducted. The
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data presented represents results averaged across all trials. Finally, the model assumes that there is

no shortage of projects available for assignment.

The following table summarizes finisher performance assumptions used in the simulations

of this chapter (these assumptions are copied from Chapter 3):

Table 7. Finisher performance characteristics used in simulations.

Gap closing probabilities
Captured gap / cycle 0.4
Uncaptured gap / cycle 0.2

Average time / gap / cycle
Captured gap (hours) 1.0
Uncaptured gap (hours) 1.5

Average cycles / gap
Captured gap (cycles) 2.5
Uncaptured gap (cycles) 5.0

Average total time / gap
Captured gap (hours) 2.5
Uncaptured gap (hours) 7.5

The diagram below shows the basic workflow for an individual finisher. New projects are

placed into the Assigned New Projects queue according to the given task assignment timing policy.

Projects that have been processed by the lab are returned to the finisher's Completed Labwork

queue. The finisher can select his next task from either of these two queues, as determined by the

task assignment timing policy.

Assignment Assigned New Projects Firfsher Processing Completed Projects
0 00

Completed Labwork Su mitted Labwork
0 0

LJ Li
LbProcftsin

5.1.1 Status Quo: The On-Demand Model
Historically, Whitehead has followed an on-demand task assignment policy in which

finishers are allowed to request new projects at will. Modeling this policy is difficult because, in

practice, each finisher follows different criteria for requesting new work. In the simulations that
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follow, we assume that our model finisher follows a simple rule-of-thumb behavior: whenever the

number of projects in his Completed Labwork queue falls below some watermark, he requests a

new project and begins work on it immediately. 3

The table below reflects the utilization, variability, and project cycle times across a variety

of these watermark levels. (Note that a watermark of zero is not shown, as it is essentially the just-

in-time assignment model analyzed in a subsequent section.)

Table 8. Simulation results for on-demand task assignment.

Watermark Level
3 6 9

Finisher utilization (%) 100% 100% 100%
Average weekly output (projects/week) 10.4 10.5 10.6
Average weekly output variability (stdev/avg) 26% 26% 26%
Active finisher time per project (hours) 3.45 3.45 3.45
Lab Submissions queue

Queue delay on each cycle (hours) 70.2 70.2 70.2
Total delay over all cycles (hours) 138.6 138.6 138.6

Completed Labwork queue
Queue size (projects) 2.7 5.6 8.5
Queue delay on each cycle (hours) 4.8 9.8 15.0
Total delay over all cycles (hours) 9.5 19.4 29.6

Total project cycle time (hours) 151.5 161.5 171.6

As the table illustrates, the performance of each finisher -

and utilization - is nearly identical for all watermark levels. The

- in terms of output, variability,

critical difference between each

lies in queue levels and project cycle time. Finishers using a watermark of 9 projects have an

average of 8.5 projects in their Completed Labwork queue and an associated queuing delay of 15

hours.

To see how this added queuing delay translates into higher total project cycle time, note

that cycle time is the sum of finisher processing time, lab processing time, and queuing delays

between the finisher and the lab. Finisher processing time can be calculated as the expected time

the analyst spends on either of the two gap types:

Capgaps/Project * Time/Capgap + Uncapgaps/Project * Time/Uncapgaps = Time/Project

81% * 2.5 + 19% * 7.5 = 3.45 hours/project

3 This model overlooks the fact that finishers' behaviors tend to change over time. Also, coordinators an decline a finisher's request if
they feel the finisher already has sufficient work. Nonetheless, the model does reflect finishers' oft-stated desire to not wait until they
have nothing to do before requesting new work. Finishers also tend to respond totheir Completed Labwork queue, since it is the most
visible indicator of how much work they have to do in the near future.
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To determine lab processing time and queuing delays, we must first know how many times

a project is cycled between the finisher and the lab. In the finisher workflow, projects are processed

once initially without labwork. Captured gap projects receive an average of 1.5 cycles of lab work,

while uncaptured gap projects receive 4.0 cycles of lab work. With a ratio of 81:19 between

captured and uncaptured gap projects, the average project is sent to the lab 81%*1.5 + 19%*4

1.98 times.

We assume the lab begins processing labwork immediately. Delays due to the Submitted

Labwork queue are therefore zero. The lab requires an average of 70 hours to perform its work.

Average total delays due to lab processing are therefore 70 * 1.98 = 138.6 hours. Finally, as

determined by the simulations above, with a watermark of 9, projects spend an average of 15 hours

in the Completed Labwork queue for each lab cycle. Total average delay for a project due to the

Completed Labwork queue is therefore 15 * 1.98 = 29.6 hours.

Total project cycle time for a watermark of 9 is then: 3.5 of hours finishing time plus 138.6

hours lab processing time plus 29.6 hours queuing, for a total of 171.6 hours.

Comparing this against watermarks of 3 and 6 projects, it is clear that higher watermarks

mean higher queue levels and longer project cycle times. High queue levels have a number of

disadvantages, most notably the temptation they create for finishers to selectively prioritize their

work. These issues are discussed in more detail in Chapter 6.

Beyond these issues, the on-demand model is problematic mostly because it is so varied

and unpredictable. At Whitehead, finishers followed a wide range of personal policies. Some

maintained fairly lean work queues (i.e. low watermarks), while others stockpiled large numbers of

projects. From a management perspective, this added unnecessary uncertainty to the system. It was

difficult to estimate how long projects would take to complete.A project might be delayed because

it was particularly difficult; on the other hand, it might be delayed simply because its finisher

maintained a large work queue.

5.1.2 Kanban Assignment
In the kanban model, the number of projects an analyst can possess at any point in time is

limited. Once an analyst has reached this limit, he or she can only acquire a new project after

completing an in-process project. In the model below, whenever our model analyst acquires a new

project, he begins work on it immediately before returning to other work.

A theoretical kanban limit enabling 100% finisher utilization can be calculated as the ratio

between the average elapsed time and active time required by a project. For example, if it takes an
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average of 100 hours to move a project through the system, but our model finisher performs only

2.5 hours of work on each project, he would require at least 100/2.5 = 40 tasks to stay fully utilized.

In the finishing example provided, we have already calculated the average finisher time

required per project as 3.5 hours. Elapsed time is more difficult to calculate since it depends on

queuing. Ignoring queuing delays, the elapsed time is just the sum of finishing time and lab

processing time. In the previous section, lab processing time was calculated as 138.6 hours This

yields an expected project cycle time, excluding queuing, of 138.6 + 3.5 = 142.1 hours. Ignoring

queuing, then, a theoretical lower bound for the number of projects a finisher must have in order

stay fully utilized is 142.1 / 3.5 = 41 projects.

Table 9 compares the simulated performance of a kanban level of 41 with a variety of other

kanban levels:

Table 9. Simulation results for kanban task assignment.

Kanban Size
30 35 41 45 50

Finisher utilization (%) 69% 79% 90% 96% 99%
Average weekly output (projects/week) 7.3 8.4 9.6 10.1 10.5
Average weekly output variability (stdev/avg) 47% 42% 34% 32% 27%
Active finisher time per project (hours) 3.5 3.5 3.5 3.5 3.5
Lab Submissions queue

Queue delay on each cycle (hours) 70.3 70.2 70.3 70.3 70.3
Total delay over all cycles (hours) 138.8 138.7 138.6 138.6 138.5

Completed Labwork queue
Queue size (projects) 0.6 1.2 2.3 3.9 7.3
Queue delay on each cycle (hours) 1.6 2.6 4.6 7.1 12.9
Total delay over all cycles (hours) 3.1 5.0 9.0 14.0 25.4

Total project cycle time (hours) 145.3 147.2 151.0 156.0 167.4

The results indicate the system is extremely sensitive to proper setting of the kanban level.

The theoretical lower bound of 41 projects proves insufficient to maintain high finisher utilization

(90%.) As a result, output suffers both in terms of total output (9.6 projects/week) and variability

(34%) relative to higher kanban levels. Clearly, the kanban limit must be set large enough to

account for queuing delays. Increasing the limit to 50 projects proves sufficient to achieve nearly

100% utilization, higher output (10.5 projects/week), and low variability (27%).

However, this improved utilization comes at the cost of increased queue size. The finisher

has an average of 7.3 projects in his Completed Labwork queue. The delay each project

experiences due to this queue is 25.4 hours, yielding a project cycle time of 167.4 hours. This

represents an 18% increase over the 142 hours we estimated for a system with no queuing delays.
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Next, we consider the other extreme. Reducing the kanban limit too much can have

deleterious effects on the finisher's productivity. Had the kanban limit been set to 30 projects, for

example, output would have fallen to 7.3 projects/week with a variability of 47%.

In short, the efficiency of a kanban-based assignment policy depends critically on setting

the kanban limit correctly. Since precise determination of an analyst's capacity is difficult when

task mix and skill level vary so significantly, this limit is nearly impossible to set incorrectly. The

negative effects of setting the kanban limit incorrectly are significant. If it is set too high, large

WIP levels result. If it is set too low, finisher efficiency falls precipitously.

5.1.3 Just-in-time Assignment Policy
In a just-in-time policy regime, an analyst is assigned a new project only when he or she

has no projects to be processed in his or her Completed Labwork queue. By definition, then, a just-

in-time policy ensures 100% utilization since a finisher always has a project to process." The

performance of this policy is compared against the top-performing kanban scenario in the table

below:

Table 10. Simulation results for just-in-time task assignment.

JIT Kanban-50
Finisher utilization (%) 100% 99%
Average weekly output (projects/week) 10.5 10.5
Average weekly output variability (stdev/avg) 27% 27%
Active finisher time per project (hours) 3.45 3.45
Lab submissions queue

Queue delay on each cycle (hours) 70.2 70.2
Total delay over all cycles (hours) 138.6 138.5

Lab returns queue
Queue size (projects) 0.9 7.3
Queue delay on each cycle (hours) 1.6 12.9
Total delay over all cycles (hours) 3.1 25.4

Total project cycle time (hours) 145.1 167.4

In all productivity-related factors, a just-in-time policy is comparable to the highest

performing kanban (50 project limit) model: the finisher maintains 100% utilization, has an output

of 10.5 projects/week, and an output variability of 27%. However, the just-in-time policy

accomplishes this without the increased WIP, queuing delays, and longer project cycle time

associated with the kanban model.

4 This is true as long as new projects are available for assignment, as assumed in these models.
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Moreover, from a process management perspective, a just-in-time policy is far easier to

implement than a kanban model. It requires no a priori knowledge about a finisher's capacity, nor

does it create the risks of underutilization or high WIP levels that are associated with incorrectly

estimating a finisher's capacity, as in the kanban model.

5.1.4 Assignment Timing Policies: Conclusions
Just-in-time task assignment enables 100% finisher utilization, while ensuring low WIP

levels and minimal project cycle times. Allowing analysts to request new tasks on their own can

lead to increased WIP levels and process variability. Likewise, the kanban model, while attractive

for its apparent discipline, is difficult to implement correctly, and costly when it is done wrong. A

just-in-time assignment policy enables high analyst utilization, is trivial to implement, and ensures

low WIP levels."

5.2 Routing of New Assignments

Having identified a timing policy that ensures 100% analyst utilization, the question now

becomes one of how to optimally route tasks to a group of analysts. In the model below, there are

two types of tasks and three analyst skill levels as described in Chapter 3. The analysis shows that

it is only optimal to route difficult tasks to senior analysts when they possess a relative

performance advantage in those tasks over junior analysts. Thus, if senior analysts are three times

as fast as junior analysts in processing simple tasks, they must be at least three times as fast in the

difficult task to warrant being assigned difficult tasks.

5.2.1 Linear Optimization Setup
Using the linear optimization routine in Microsoft Excel's Solver, optimal task allocation

was explored for a finishing group consisting of two analysts at each of three skill levels: beginner,

intermediate, and advanced. The planning horizon for task allocation was 3600 hours, or

approximately 2 years. An infinite supply of the two basic task types (captured and uncaptured

gaps) was assumed to exist. Tasks can be allocated in any way to the analysts. However, the group

must collectively complete captured and uncaptured gaps in the same ratio that they naturally occur

(i.e. 81% captured and 19% uncaptured.)

The average gap completion rate for each analyst skill level is shown in Table 11. The

relative performance of each skill level, normalized to the intermediate skill level, is indicated in

" In the analyses of this thesis, we assume that new work is always available for assignment. In the genomics context, this is a
reasonable assumption because BACs are produced, sequenced, and assembled within a short timeframe at the outset of a genome.
Additional work is needed to qualify the results of this thesis in contexts where new work is not consistently available for assignment.
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the last two rows. (Note that these numbers were first derived in Chapter 3. Gap completion rates

are calculated as the reciprocal of the average time per gap, as calculated in Table3.)

Table 11. Gap completion rates and relative performance by finisher skill level.

Beginner Intermediate Advanced
Average gap completion rate

Captured gap (gaps/hour) 0.27 0.40 0.60
Uncaptured gap (gaps/hour) 0.09 0.13 0.23

Relative performance v. intermediate
Captured gap 67% 100% 150%
Uncaptured gap 67% 100% 171%

The two figures that are of particular importance in this analysis are highlighted in gray.

Advanced analysts are assumed to have a slight relative advantage in uncaptured gaps over

beginner and intermediate analysts. The advanced analysts are faster than their peers in either task,

but they are proportionately faster when processing uncaptured gaps. They process captured gaps

50% faster than intermediates, but can process uncaptured gaps 71% faster.

5.2.2 Optimal Task Allocation
To determine the benefits of optimal task allocation in this (or any other) system

configuration, we must first establish a baseline performance. If we assume that there were no

advantages to preferential task allocation, then by default we would distribute tasks randomly to

analysts regardless of skill. The output for the group over a period of two years is shown in Table

12. Because task distribution is random, 81% of each skill groups' output is captured gaps, while

the remaining 19% is uncaptured gaps.

Table 12. Productivity of random task distribution.

Beginner Intermediate Advanced Total Gaps
Captured gaps completed 1132 1699 2688 5519
Uncaptured gaps completed 270 404 640 1314
Total gaps completed 11402 2103 3328 6833

To understand how this system might be optimized, we formulate a linear program (LP).

Six finishers (two from each skill level) are assumed to work for a period of two years. They

complete captured and uncaptured gaps according to the skill-based rates indicated in Table 11.

Gaps may be allocated in any manner to the six finishers. However, the gioup's total output over

the two years must consist of 81% captured gaps and 19% uncaptured gaps. The goal of our LP is

to maximize the total number of gaps completed, subject to this gap-mix constraint.
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Table 13 shows the group's optimal output as determined by this LP formulation. An

output of 7026 projects shows that there is, in fact, a more optimal allocation of tasks relative to the

random distribution model, which completed only 6833 projects. Studying the allocation of gaps in

Table 13, we see that it is optimal to allocate uncaptured gaps exclusively to advanced analysts,

while all skill levels contribute to the completion of captured gaps.

Table 13. Productivity under optimal task distribution.

Beginner Intermediate Advanced Total Gaps
Captured gaps completed 1941 2912 821 5675
Uncaptured gaps completed 0 0 1351 1351
Total gaps completed 1941 2912 2172 7026

5.2.3 Sensitivity Analysis
A closer analysis shows that the optimal task allocation derived above is sensitive to the

advanced analysts' relative performance advantage in uncaptured gaps over captured gaps.

Mathematically, this relative advantage can be expressed as the ratio of the advanced analysts'

performance advantage in uncaptured gaps to their performance advantage in captured gaps, or:

UncapturedRateAdvanced

UncapturedRateBeginner

CapturedRateAdvanced

CapturedR ate Beginner

In the system configuration being considered, the advanced analysts' relative performance

advantage in uncaptured gaps over beginner analysts is therefore:

0.23

0.60 =
0.27

By varying our estimate of the advanced analysts' rate of uncaptured gap completion

(initially, 0.23 gaps/hour), we can explore the sensitivity of the optimal solution just derived.

The graph below shows how the group's performance with optimal task allocation varies

according to advanced analysts' relative performance advantage. The top curve represents the

performance of optimal allocation relative to random distribution; the bottom curve represents the

minimum (i.e. worst possible) task allocation. The dotted line represents the case just discussed (a

performance advantage of 1.14.)
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Figure 24. Performance gains from optimal task distribution.
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Note that the gains from optimal task allocation versus a random approach increase as the

advanced analysts' performance advantage increases. Thus, a relative performance advantage of

300% means that the group's output could be improved by over 15% through optimal task

allocation. Conversely, the group's output could be reduced by over 15% if tasks were allocated

incorrectly.

Note, too, that when advanced analysts possess no relative advantage in uncaptured gaps

over beginner analysts (i.e. X=100% in the above graph), there are no gains from optimal task

allocation. In this case, any task distribution yields optimal performance. Random distribution

would likely be preferred since it is easiest to implement.

Finally, note that when advanced analysts are at a performance disadvantage on

uncaptured gaps (to the left of X=100% in the graph above), it is still possible to achieve

performance in excess of random task distribution. These gains are achieved, however, by

allocating uncaptured gaps to beginner and intermediate analysts.

The next graph shows the relative portion of uncaptured gaps allocated to each skill group

as it varies according to the advanced analysts' relative performance advantage in uncaptured gaps.

When advanced analysts possess a relative advantage, they are assigned all of the uncaptured gaps.

When they are at a disadvantage, however, uncaptured gaps are allocated exclusively to

intermediate and beginner analysts.

51



Figure 25. Optimal allocation of uncaptured gaps between skill levels.
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5.2.4 Task Routing Policies: Conclusions
It is tempting to assume that difficult tasks should preferentially be assigned to more highly

skilled analysts. In fact, this is true only when advanced analysts are faster in those difficult tasks

relative to other tasks. If the advanced analysts possess no relative advantage, there are no benefits

to preferential task allocation and random distribution will suffice. If, however, advanced analysts

perform at a relative disadvantage in difficult tasks, then preferentially assigning them can actually

reduce group productivity versus a random distribution approach.

In Whitehead's Finishing Group, experienced finishers almost certainly possess relative

performance advantages in some of the more difficult tasks. Beginner finishers are often unable to

complete more complex tasks without assistance. Thus, in these circumstances, preferential

assignment of difficult tasks to experienced finishers can result in higher group productivity.

Nonetheless, management must scrutinize finishers' relative performance across the spectrum of

tasks to determine if and when these relative advantages disappear. Continuing the preferential

assignment of difficult tasks to experienced finishers may eventually harm group productivity.

Finally, note that we have ignored the training value that beginner and intermediate

finishers derive from working on difficult tasks. Doing so may reduce short-term productivity but

boost long-term productivity by giving finishers important learning opportunities. This issue is

studied in more detail in Chapter 8.
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5.3 Summary

Proper timing and routing of new tasks is critical to maintaining high analyst utilization,

low WIP levels, and optimal group performance. Ajust-in-time timing model ensures high analyst

utilization without the high WIP and long cycle times associated with Whitehead's existing policy

or a kanban-based approach. Preferential routing of difficult tasks to advanced analysts was shown

to be a performance enhancer, but only when advanced analysts possess a relative performance

advantage in those tasks.
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6 Workload Management
It is tempting for the manager of a complex data analysis process to grant analysts broad

discretion in how they manage their workload. Indeed, some would argue that doing so is critical to

giving analysts a sense of empowerment and ownership of their work. Through simulation and

anecdotal evidence gathered at Whitehead, this chapter shows that the advantages of granting

analysts broad discretion must be balanced against the process control problems that it creates.

Specifically, analysts that function with few constraints tend to prioritize work according to short-

term, sub-optimal objectives. Doing so increases process variability and wreaks havoc with

management's ability to manage and predict the group's productivity. This chapter illustrates the

importance of enforcing a first-in-first-out (FIFO) workflow order.

6.1 The Temptation to "Harvest"

Large WIP levels and a discretionary workflow create conditions under which both

management and analysts will be tempted to reprioritize work according to short-term objectives.

Without proper controls, this reprioritization tends to favor simpler tasks because they can be

completed more easily and boost short-term productivity. This phenomenon of favoring simpler

tasks is referred to as "harvesting" in this chapter. When large work queues build up, analysts

harvest simpler tasks out of those queues to meet short-term goals.

Harvesting rarely boosts long-term productivity. Rather, it simply moves easy tasks

forward, while deferring complex tasks. At best, this reprioritization is a wash in terms of net

productivity. More likely, however, reprioritization will have negative long-term effects on the

process. It creates a false sense of progress, it makes the process harder to predict, and it results in a

buildup of difficult future work. If the harvesting is achieved through short-term initiatives,

efficiency may also be lost to the overhead associated with those initiatives. Finally, there are

psychological effects: as tasks become increasingly difficult, analysts and management may

become increasingly frustrated with their slow progress.

Analysts and management both play important roles in harvesting. For analysts, the

temptation to harvest is driven by a variety of short-term, often personal objectives. The analysts

may be frustrated by an influx of difficult tasks; thus, they seek temporary respite in easier tasks.

Or, their performance reviews may be imminent, giving them an incentive to temporarily boost

output by deferring complex tasks. Just as analysts are tempted to harvest to meet short-term

objectives, so too is management. When production deadlines loom, managementmay be tempted

to pressure analysts to boost their output. Without specific guidelines about how that boost should
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be achieved, analysts inevitably turn to harvesting. Thus, while analysts do the actual harvesting,

management is often complicit in the behavior.

These phenomena were readily apparent in Whitehead's Finishing Group, particularly near

the end of the Human Genome Project. Finishers were allowed to carry workloads many times in

excess of their true capacity. In response to looming HGP deadlines, management implemented a

variety of short-term initiatives to boost output. Because finishers carried large workloads, they had

the flexibility to dip into their queues, find easy tasks, and complete them in order to meet

management's goals. Over time, however, their ability to do so diminished. As the HGP neared

completion in early 2003, all that remained were difficult tasks. Management and analysts grew

increasingly frustrated with their inability to boost or even predict output. The price for harvesting

had come due.

6.2 Simulations

The following simulations show that the combination of large work queues and a

discretionary workload management policy results in higher output variability and long-term

caching of difficult tasks in the workflow. Two contrasting workflow policies are explored: FIFO

and Harvest. In the FIFO policy, finishers process tasks in the order that they are returned from the

lab. In the Harvest policy, finishers survey their queue of tasks returned from the lab and process

captured gaps first (before uncaptured gaps) because they require less work to complete.

Like previous chapters, we assume that projects contain either a single captured gap with

probability 0.81 or a single uncaptured gap with probability 0.19. Captured gaps require one hour

of work per cycle and close with probability 0.4 in each work cycle. Uncaptured gaps require one

and a half hours of work per cycle and close with probability 0.2.

Both the FIFO and Harvest models are explored using three task assignment

configurations. In the first configuration ("just-in-time"), our model finisher is assigned tasks only

when he has no tasks in his lab completions queue. In the second configuration ("kanban-50"), the

finisher is limited to having 50 projects in circulation at a time.In the third configuration ("kanban-

75"), the finisher is limited to having 75 projects in circulation. We examine the three task

assignment configurations in order to understand the potential interactions between the FIFO and

Harvest workload policies and the level of WIP in the system. From the previous chapter, we know

that the just-in-time configuration has the least WIP, while the kanban-75 configuration has most.

The following table shows the results of simulating the FIFO and Harvest policies in each

of the three task assignment configurations. Twenty trials were conducted for each configuration,

with results averaged across the trials. The simulations were run for 2200 hours (approximately 1/4
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work years.) The first 200 hours were considered warm-up and are excluded from the figures

below. The first set of rows in the table represents raw finisher output; the second set shows output

variability (/t); the third set shows average WIP maintained by the finisher; finally, the last set

shows project cycle times.

Table 14. Workload management policy simulations.

Harvest FIFO
kanban-kanban- kanban- kanban-

Task assignment configuration JIT 50 75 JIT 50 75

1. Completed Projects 645 655 686 647 649 658
2. Captured Gap Projects (% total) 82% 83% 85% 82% 82% 83%
3. Uncaptured Gap Projects (% total) 18% 17% 15% 18% 18% 17%

4. Project output variability (a/t, weekly) 27% 31% 31% 26% 28% 27%
5. Captured Gap output variability 32% 37% 38% 31% 35% 32%
6. Uncaptured Gap output variability 60% 60% 70% 59% 60% 61%

7. Work-in-process (WIP) Projects 44 48 73 44 49 73
8. Captured Gap Projects (% total) 62% 56% 42% 63% 63% 64%
9. Uncaptured Gap Projects (% total) 38% 44% 58% 37% 37% 36%

10. Average Project Cycle Time (hours) 149 164 232 150 165 242
11. Captured Gap Project (% of avg) 77% 70% 52% 78% 78% 80%
12. Uncaptured Gap Project (% of avg) 192% 224% 308% 190% 190% 182%

Looking first at the finisher's output, we see that the finisher is able to complete more

projects as his WIP levels are increased. Only 645 projects are completed in the JIT configuration,

whereas 655 and 686 projects are completed in the kanban-50 and kanban-75 configurations.

Examining the captured/uncaptured gap mix (rows 2-3), however, we see that the finisher did so by

increasing his output of captured gaps. Captured gaps are easier; by favoring them, we would

expect the finisher's output to increase. The FIFO model, on the other hand, maintains nearly

constant project output and captured/uncaptured gap mixes, regardless of the task assignment

configuration.

Looking next at output variability (rows 4-6), we see that the finisher's weekly variability

increases with his WIP level in the Harvest policy regime. From JIT to the kanban-75

configuration, the variability of captured gap output increases from 32% to 38%, while the

variability of uncaptured gap output increases from 60% to 70%. Output variability in the FIFO

configurations, however, remains unaffected by the increased WIP levels. From this, we can

deduce that it is the combination of both increased WIP levels and discretionary workflow policies

like the Harvest model that lead to increased output variability.
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The next set of data (rows 7-9) shows that the Harvest and FIFO policies demonstrate

similar WIP level increases as the kanban limit is raised. However, in the case of the Harvest

policy, the relative portion of uncaptured gaps in the WIP increases. In the JIT configuration, 38%

of WIP projects are uncaptured gap projects. This rises to 62% in the kanban-75 configuration.

This confirms what we should already have suspected from the finisher's output. By favoring

captured gaps in his workflow, the finisher ends up caching large numbers of uncaptured gaps. In

the FIFO model, where this form of discretion is not permitted, the finisher's mix of uncaptured

and captured gaps remains constant regardless of the WIP levels.

Examining rows 10-12, we see finally that caching of uncaptured gaps translates into

increased cycle times for those projects. In the FIFO policy regime, cycle times for all projects

increase with WIP level, but the increase is proportionately the same for captured and uncaptured

gap projects. Relative to the average project cycle time, uncaptured gap projects take roughly twice

as long (190%) regardless of the kanban limit. For the Harvest policy regime, however, we see that

caching uncaptured gaps results in higher and higher queuing delays for those projects. Whereas

uncaptured gaps take twice as long as the average project in the JIT configuration (190%), they

take three times as long in the kanban-75 configuration (310%). The cycle time for captured gaps,

on the other hand, falls relative to the average project cycle time. In summary, the combination of

high WIP levels and preferential treatment of captured gaps results in significantly higher cycle

times for uncaptured gaps. For the finishing example considered here, this means that a captured

gap takes on average 3 weeks to pass through the system, while an uncaptured gap takes almost 20

weeks!

One additional observation worth noting is that both the FIFO and Harvest policies

perform similarly when tasks are assigned in a "lean" JIT manner. Productivity is high, output

variability is low, and the WIP task mix remains constant. These results show that when analysts

are prevented from building up large work queues, the potential negative effects of harvesting are

virtually eliminated. For managers considering implementation of the FIFO policy, these results

reveal a convenient alternative: rather than force FIFO ordering on analysts, who may view the

policy as draconian, management may be able to eliminate harvesting and its effects through JIT

task assignment.

6.3 Managing Exceptions to FIFO Workflow

The preceding section showed that a FIFO workflow policy reduces output variability and

eliminates the caching of difficult tasks. While attractive for these reasons, the FIFO policy also

has some practical limitations. Specifically, analysts may find themselves unable to complete a task
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if it proves too difficult for their skill set. In a FIFO policy regime, however, analysts would be

forced to continue processing these tasks ad infinitum, long after it became clear that they would

not be able to complete them. Clearly, for the FIFO policy to work, analysts must have a procedure

(an "escape hatch") by which they can pull a stalled task out of their workload.

In the Harvest policy regime that existed at Whitehead, analysts had the discretion to defer

stalled tasks and thereby focus on other, more productive tasks. Allowing analysts to defer stalled

tasks in a FIFO policy regime, however, would effectively turn it into a discretionary, Harvest-like

workflow policy. Difficult tasks would be deferred at will, resulting in largerand larger queues of

untreated, problematic tasks. Instead, what we seek is an explicit, institutionalized process by

which analysts can escalate stalled tasks and receive assistance from senior personnel. Having such

a policy ensures that tasks will not stall the FIFO workflow and will be handled in a timely manner.

One solution we might consider is a policy in which incomplete tasks are reviewed with

senior personnel after a certain time period or number of work cycles. Until that time has elapsed,

analysts are required to continue processing the task in FIFO order. If the task proves difficult and

eventually stalls, then a forced periodic review will give the analyst the opportunity to seek advice

on the task. An alternative, related solution is a policy by which incomplete tasks are transferred to

senior personnel after a certain time window. This "task transfer" option is explored in more detail

in the next chapter. Both solutions are attractive in that they enable the enforcement of a strict

FIFO workload policy while giving analysts a mechanism to disposition tasks that are legitimately

stalled.

6.4 Summary

High WIP levels and a discretionary workload policy create a dangerous situation in which

both managers and analysts will be tempted to prioritize tasks according to short-term objectives.

The long-term process impacts are significant. Process variability increases, large numbers of

difficult tasks are cached, and cycle times for difficult tasks explode. A FIFO workload policy

effectively eliminates this potential.
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7 Teamwork
The discussion to this point has focused primarily on the impact of individual analysts'

workflow policies on process variability and efficiency. This chapter expands the scope of the

investigation to study the performance of teams. In particular, we explore team structures as a

means to boost productivity while simultaneously encouraging collaboration and knowledge

sharing among analysts. The latter, team-oriented effects are a critical point of interest. Previous

chapters have assumed that large performance discrepancies between analysts are an immutable

artifact of data analysis production lines. This chapter challenges that assumption by seeking a

team structure that reduces these discrepancies through improved collaboration and knowledge

sharing.

The chapter begins by analyzing the skills-based team structure currently employed by

Whitehead's Finishing Group. The structure groups analysts by their skill level, routing more

difficult tasks to experienced analysts. The reader will recall from Chapter 5 that a team's

productivity can be improved by this routing when advanced analysts possess a relative advantage

in difficult tasks. Skills-based task assignment has other benefits: analysts manage tasks until their

completion, giving them a sense of ownership; it also reduces the chances that complex tasks will

get stuck with junior analysts who do not know how to handle them. However, calling skills-

based task assignment "teamwork" is somewhat of a misnomer. Analysts continue to work

independently. Junior analysts' growth opportunities are reduced because they are no longer

exposed to complex tasks. And, because analysts do not share tasks, the structure also does little to

encourage collaboration and knowledge sharing. Thus, while improving short-term productivity,

skills-based routing does not invest in teamwork or the long-term growth of team members.

Following the analysis of skills-based structures, an alternative concept, called the triage

model, is considered. In this structure, tasks are distributed uniformly to analysts. However, junior

analysts must transfer tasks to more senior analysts if they are unable to complete them within a

certain amount of time. The triage approach has important training-related advantages over skills-

based routing: junior analysts are repeatedly exposed to complex tasks, giving them the opportunity

to learn the skills necessary for advancement; junior analysts also learn from the feedback they

receive from senior analysts. The model, nonetheless, has complications: analysts must share credit

for tasks. Like the skills-based model, there may also be a stigma for analysts labeled as beginner

or intermediate.

6 The models have not adequately represented the potential for tasks to become permanently lodged in analysts' queues as a result of
their inability to find a solution. In practice, however, this happens quite frequently.
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Complexities aside, the triage model is shown to be an attractive alternative to both random

and skills-based task distribution models. Through discussion and simulation, this chapter shows

that the triage model achieves some of the productivity gains of skills-based routing while

simultaneously creating an environment poised for knowledge sharing and collaboration.

7.1 Simulation setup

In the simulations that follow, there are six analysts: two beginner, two intermediate, and

two advanced analysts. Two types of tasks enter the workflow: captured and uncaptured gaps. An

analyst's chance of completing the task is related to his or her skill level. Advanced analysts are

assumed to have a strong relative advantage in uncaptured gaps over captured gaps, as indicated in

Table 15. (These figures are slightly different from the baseline assumptions of Chapter 3.)

Table 15. Finisher performance assumptions by skill level.

Beginner Intermediate Advanced
Gap closing probabilities

Captured gap / cycle (%) 0.32 0.40 0.48
Uncaptured gap / cycle (%) 0.14 0.20 0.26

Average time / gap / cycle
Captured gap (hrs) 1.20 1.00 0.80
Uncaptured gap (hrs) 1.95 1.50 1.05

Effective gap completion rate (based on above)
Captured gap (gaps/hour) 0.27 0.40 0.60
Uncaptured gaps (gaps/hour) 0.07 0.13 0.25

Relative performance v. intermediate
Captured gap 67% 100% 150%
Uncaptured gap 54% 100% 186%

7.2 Scenario 1: Skills-based Teaming

In skills-based team structures, analysts are organized into teams according to their

estimated skill levels. As tasks enter the group's incoming queue, they are binned according to

difficulty. Using linear optimization in Chapter 5, we showed that in the current system

configuration it is optimal for advanced analysts to work on difficult tasks (i.e. uncaptured gaps.)

Beginner and intermediate analysts, on the other hand, should work on easy tasks (i.e. captured

gaps.) When advanced analysts have spare capacity, they too should contribute to work on easy

tasks. Finally, we assume that, once routed to an analyst, a task is processed to completion.
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7.2.1 The Weaknesses of Skills-based Teaming
While skill-based grouping yields improved productivity as shown in Chapter 5, it does

little to encourage the collaboration and knowledge sharing reminiscent of true teams. First,

analysts continue to function as independent contributors, owning tasks from start to finish.

Moreover, while they are now teamed with analysts of similar skill, the structure per se does not

encourage collaboration and exchange. In fact, skills-based grouping may reduce collaboration

relative to the old team structure. Previously, beginner analysts were often grouped with advanced

analysts and therefore likely to benefit from their insights and advice.

A skills-based team structure also precludes the exchange of ideas that inevitably occurs

when tasks are shared. When analysts exchange tasks, different methodologies are vetted, creating

a context in which the advantages of each method can be compared. If a task is passed from a

beginner analyst to a senior analyst, the senior analyst may be able to offer comments and advice

that will help improve the beginner's skills. If a task is passed from one analyst to another of

similar skill level, the new owner may have an insight that the old owner did not consider. If, with

its previous owner, a task had not meaningfully progressed for several cycles, then transferring it to

another analyst might yield new insights, saving the group valuable work cycles.

Finally, and perhaps most importantly, skills-based task assignment eliminates a key

learning opportunity for junior analysts and raises the specter of monotony for all. Certainly,

specialization means that some analysts will be able to hone their productivity on a small range of

tasks. However, analysts' exposure to the broad range of tasks entering the group is greatly

reduced. Beginner and intermediate analysts see very few of the complex tasks assigned to

advanced analysts, eliminating an important opportunity to learn through exposure. Likewise,

advanced analysts no longer have the opportunity to work on simpler tasks; they may become

frustrated with their consistently difficult workload.

Thus, while team-like in appearance, a skills-based grouping of analysts does little to

encourage the type of knowledge sharing and collaboration one might expect from true teams.

Analysts continue to function in relative isolation. Knowledge sharing and cooperation is illusive.

7.2.2 Implementation Complexities
Skills-based analyst grouping also faces a number of practical issues that make its

implementation difficult. First, creating skills-based teams requires labeling analysts, a process that

is bound to be imperfect and alienate some analysts. Analysts may resist being designated as

"beginner" or "intermediate". Worse still, stigmatized analysts may reduce their effort in protest or

out of alienation, making the designation self-fulfilling. A successful shift to skills-based teams
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requires strong leadership skills from management. Objective performance measures must form the

basis for any skill-based grouping of analysts. More importantly, management must be able to

explain the criteria by which analysts can advance into higher skill groups.

In addition to the management-related difficulties that arise out of placing analysts into

skills-based groups, it proves difficult in practice to optimally route tasks. In Chapter 5, optimality

was found by making assumptions about analyst skill level and task complexity. In practice, it is

difficult to judge analyst skill and task complexity a priori. Determinations are usually made on

empirical bases (i.e. by observing the analysts' performance over some period of time). However,

empirical observations are problematic because analyst skill and task complexity are typically in

flux. Analysts' skills improve with time. Likewise, task mix (i.e. the ratio of easy to difficult tasks)

may change according to the state of the project, time of year, and customer needs.

The net result is that optimal task routing is a theoretically convenient but difficult-to-

achieve goal. In its stead, managers must use assignment heuristics that strive for optimality while

also meeting day-to-day process constraints. Hence, when an advanced analyst needs another task

but there are no difficult tasks available, a manager should probably assign him or her an easy task,

even though optimality suggests that advanced analysts should work only on difficult tasks.

Similarly, because managers may not know the long-term task mix of their process, they should

probably assign tasks in rough proportion to their arrival rate, even if that requires assigning tasks

in a sub-optimal manner. For example, an influx of particularly difficult projects should be

assigned broadly to all skill levels because the manager does not know how long the influx will last

and cannot afford to underutilize the group's analysts.

Managerial and operational realities, therefore, make implementation of a skills-based team

structure difficult. Analysts may resent the designation. Moreover, the optimality implied by

carefully planned spreadsheets are often undone by operational realities.

7.2.3 Simulation Results
The diagram below illustrates the simple heuristic usod to implement skills-based routing

in simulation. New tasks are sorted into queues of uncaptured and captured gaps prior to

assignment. In the simulation, 50 tasks are available for assignment at any point in time. An

Advanced Selector selects tasks for the Advanced Analysts team from either queue; however,

preference is always given to uncaptured gaps. Intermediate and beginner analysts receive only

captured gaps.

This routing heuristic, while still somewhat stylized, should give the reader a sense for how

optimal, skills-based routing would be implemented in practice. Unlike our linear optimization
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exercises of Chapter 5, which assumes we have a priori knowledge of all tasks, managers have only

a small number of tasks available for assignment at any point in time.

Figure 26. Simulation of skills-based task routing.
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Table 16 shows the results of this skills-based routing heuristic. Results are contrasted

against the optimal productivity predicted in Chapter 5 using linear optimization. They are

contrasted against simulated results for random task distribution, as well as the predicted random

distribution results from Chapter 5.

Table 16. Simulated results of skills-based task routing.

Optimal distribution Random distribution
Simulated Predicted (Ch. 5) Simulated Predicted (Ch. 5)

Total tasks completed 7168 7240 6754 6808
Captured gaps (% total) 81% 81% 81% 81%
Uncaptured gaps (% total) 19% 19% 19% 19%
Performance v. random (predicted) 105% 106% 99% 100%

As predicted in Chapter 5, the simulations show that advanced analysts' relative

performance advantage in uncaptured gaps can be translated into higher group productivity through

skills-based task assignment. Moreover, our skills-based routing heuristic nearly matches the

productivity predicted through linear optimization. The simulated system is simple enough that the

heuristic is near optimal. In particular, by assigning from a large queue of 50 projects, we virtually

guarantee that our optimality criteria can be met.17 In a real operation, the heuristic might not

17 Namely, the large queue ensures that there are easy tasks ready for assignment to beginner and intermediate analysts. This, in turn,
permits us to assign difficult tasks exclusively to advanced analysts.
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perform as well due to task mix fluctuations, unavailability of new projects for assignment, and

other sources of noise not simulated in the above system.

7.2.4 Skills-based Teaming: Conclusions
On the surface, organizing analysts into teams according to their skill level is attractive: it

boosts overall productivity and preserves analysts' sense of ownership over their tasks.

Unfortunately, it also stigmatizes some analysts and is operationally difficult to implement. Most

importantly, it does not encourage knowledge sharing and collaboration. Analysts continue to work

as individual contributors, unaffected by the fact that their workgroup association has changed.

7.3 Scenario 2: Triage-model Teaming

The triage team model is an alternative solution that offers some of the advantages of

skills-based task assignment while simultaneously encouraging knowledge sharing and

collaboration. In the triage model, any analyst can be assigned any task. However, analysts that are

unable to complete a project in some fixed number of cycles must pass it to the next skill level. In

these simulations, a cutoff of two cycles was assumed. Correct setting of this value is a function of

the number and capability of analysts at each skill level. This is discussed in detail in section 7.3.3.

When a task is transferred between teams, it is picked up at random by the next analyst in

need of a new task. Intermediate and advanced analysts select their next task according to the

following prioritization policy: they handle tasks returning from the lab first; next they look for

projects being transferred from lesser-skilled teams; finally, when no other tasks are available, they

select a new project.

The model is called a "triage" because junior analysts transfer projects that they have been

unable to complete to more senior analysts. Figure 27 illustrates this team structure.
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Figure 27. Triage Task Assignment Model.
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In the simulations that follow, we assume that there is no value conveyed during the

transfer of a project to a more senior person. More specifically, the fact that a junior analyst works

on a task does not impact senior analysts' probability of completing the tasks. Thus, an advanced

analyst closes an uncaptured gap with 26% probability on each cycle, regardless of whether the

project was his or her own or transferred from another team. There are two contrary perspectives

on this assumption: on the one hand, the junior analyst may rule out certain approaches to

completing the task, saving the senior analyst time; on the other hand, the fact that the project was

transferred may indicate that it is harder than originally estimated. In these simulations, we make

the same simplifying assumption made throughout this thesis: that the probability of closing a gap

in each cycle is independent of preceding cycles, and that it depends solely on the skill level of the

analyst.

7.3.1 Standardization, Collaboration, and Knowledge Sharing
The triage model offers important advantages in both process control and team-orientation

over skills-based grouping. First, merely because they may have to transfer a task, analysts will be

driven towards standardized ways of describing tasks and their work. At Whitehead, project

transfer is encumbered by the fact that analysts frequently use their own shorthand to describe

work, making interpretation by other analysts difficult. With the prospect of tasktransfer, analysts
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will be driven formally (e.g. by published methods) and informally (e.g. by peer pressure) to

describe their work in shared terminology. Once implemented, this standardization enables a higher

degree of process monitoring and control than previously possible. Tasks can be inspected quickly

to understand why they have not been completed within the expected number of work cycles. They

can also be easily transferred if an analyst quits or takes a vacation.

By exposing all analysts to the full spectrum of tasks entering the group, the triage model

also eliminates the boredom of specialization, while giving junior analysts important experiential

learning opportunities. Though they may be unable to complete them, junior analysts are exposed

to difficult tasks, without which they would find it difficult to learn the skills necessary to advance

in the organization. Senior analysts benefit, too, through broad exposure. The routine of their job is

reduced through exposure to easy and difficult tasks, lessening the chances that they grow bored or

frustrated. Moreover, they continue to refresh their skills on less complex tasks, should they ever

need to return to those tasks or offer advice to junior analysts.

True to its name, the triage model also reduces the chances of tasks becoming "stuck" in

the workflow of analysts that are unable or unwilling to complete them. At Whitehead, particularly

near the end of the HGP, there were many projects that had received eight or more cycles of work

In most cases, the finisher had long since exhausted his or her "bag of tricks" and had begun using

techniques that were inappropriate or unlikely to succeed. The triage model keeps tasks moving in

both literal and psychological senses. Analysts that are unable to complete tasks are now able to

transfer them to someone with higher skill and a fresh perspective. Psychologically, the triage

model is also likely to create a sense of urgency: analysts know that they must complete a task in

two cycles; failure means that their work becomes someone else's burden.

Lastly, and most importantly, the triage model establishes an organizational structure that

encourages collaboration and knowledge transfer between analysts of different skill levels. If a

junior analyst follows inappropriate methodology and, as a result, is unable to complete a task, he

or she will no doubt receive a rebuke from the senior analyst who inherits the task. Conversely,

junior analysts that have successfully boosted their skill level may be able to communicate new

strategies to senior analysts; in turn, senior analysts are pressured to continue boosting their own

skill level in order to solve tasks that their juniorpeers have been unable to complete. Additionally,

because a junior analyst's task may be transferred to any analyst in a more senior team, the junior

analyst also has the opportunity to collaborate with many people in the organization, gaining a

variety of perspectives. Over time, the net effect of all of these communications is that senior

analysts transfer knowledge and capability to junior analysts.
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From process control and teamwork perspectives, the triage model offers many advantages

over skills-based team structures.

7.3.2 Simulation Results
Despite the triage model's apparent advantages, they come at the cost of sub-optimal

performance. Rather than routing difficult tasks (uncaptured gaps) immediately to senior analysts,

as the optimality results of Chapter 5 might indicate, difficult tasks may also be routed to junior

analysts. Only when junior analysts fail to complete the tasks are they then transferred to senior

analysts. Because junior analysts possess a relative performance disadvantage in difficult tasks, the

net effect is lower overall performance relative to the skills-based model.

Table 17 contrasts the simulated results of the triage model against simulated runs of skills-

based and random task distribution. Results represent the average of 10 simulated trials for each

team structure.

Table 17. Performance of triage-model teams versus skills-based teams.

Triage Model Random Optimal (skills-based)
Total tasks completed 6862 6754 7168
Captured gaps (% total) 82% 82% 81%
Uncaptured gaps (% total) 19% 19% 19%
Performance v. Random 102% 100% 106%

The data shows that the triage model does not perform as well as the optimal, skills-based

model, but slightly outperforms the random task distribution model. The gains are nonetheless

fairly negligible (102% for triage v. 100% for random). As discovered in Chapter 5, the

discrepancy between skills-based and random task distribution is most significant when senior

analysts possess a strong relative advantage in one task over junior analysts. In these models,

senior analysts are only slightly stronger in a relative sense when dealing with difficult tasks.

With such meager performance discrepancies, it is tempting to conclude that team structure

and task routing are insignificant until one considers all of the factors not properly represented in

the simulations above. First, the random model does not adequately represent the possibility that a

portion of the difficult tasks will becomepermanently stuck with junior analysts who are incapable

of completing them. This liability promises to lower the performance of a random model in

practice. The triage model effectively eliminates the sticking problem. Second, as discussed earlier,

there are operational constraints that preclude reaching optimal performance. These factors, such as

short-term fluctuations in task difficulty, would reduce the performance of the optimal model but

have no impact on the performance of the triage model, which is insensitive to task mix.
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Most importantly, the simulated figures above cannot account for the long-term

performance gains that come from the knowledge sharing enabled by the triage model. The random

distribution model enables some degree of analyst training by ensuring that junior analysts get

exposed to complex tasks; however, that exposure is not accompanied by the insights or oversight

of more experienced analysts. In some respects, the skills-based model actually stifles learning by

denying junior analysts exposure to more complex tasks. Only the triage model is able to achieve

broad, institutionalized collaboration between analysts.

7.3.3 Load Balancing
The triage model has an additional attribute that makes it easy to manage: it is simple to

balance the workload across analysts. Because senior analysts place a high priority on work being

transferred from junior teams, they can automatically compensate for an influx of incomplete

projects by not taking on new projects. Conversely, if the capacity of junior teams increases, senior

teams can augment their reduced workload with new projects.

To see what percentage of tasks is transferred between teams, we calculate the probability

that the tasks are not completed before the proposed cycle limit. Recall that in our model tasks are

transferred after two cycles, and that there are two analysts in each skill group. Table 18 reflects the

percentage of tasks started by each team that are either completed by that team or passed to a

higher skill level team. For example, of the captured gaps started by beginner analysts, 54% are

completed by the beginner analysts themselves, 30% are completed after being transferred to

intermediate analysts, and 16% are completed after being transferred first to the intermediate

analysts and then later to the advanced analysts.

Table 18. Task transfer rate in two-cycle triage model.

Completes Task
Starts Task Beginner Intermediate Advanced
Captured Gaps

Beginner 54% 30% 16%
Intermediate 64% 36%
Advanced 100%

Uncaptured Gaps
Beginner 26% 27% 47%
Intermediate 36% 64%
Advanced 100%

To see how these transfers translate into time use, we need to first calculate the rate that

tasks are transferred, and second, calculate the time required by the receiving team to complete the

transferred tasks. Because the senior teams are more efficient than junior teams, they will generally
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require less time to complete the transferred tasks. For example, if the beginner team transfers 30%

of its tasks to the intermediate team, those tasks will require less than 30% of the intermediate

team's capacity. The exception, however, is the advanced team, which must finish tasks transferred

to it. Thus, while beginner and intermediate analysts' contribution is limited to two cycles,

advanced analysts may require more than two cycles to complete the task.

The table below summarizes the percent of capacity consumed by tasks transferred from

junior teams. The calculations assume that the teams work on either captured or uncaptured gaps

exclusively. Thus, if all teams processed nothing but captured gaps, advanced analysts would spend

14% of their time working on tasks transferred from beginner finishers; 24% of their time working

on tasks from intermediate finishers; and 63% of their time working on new tasks of their own.

Table 19. Capacity utilized by transferred tasks in triage model.

Completes Task
Starts Task Beginner Intermediate Advanced
Captured Gaps

Beginner 100% 37% 14%
Intermediate 63% 24%
Advanced 63%

Uncaptured Gaps
Beginner 100% 55% 53%
Intermediate 45% 43%
Advanced 4%

The situation for uncaptured gaps is somewhat different. The calculations indicate that

advanced analysts spend most of their time processing tasks transferred from other teams, and very

little time (4%) processing their own tasks. If the flow of uncaptured gaps from junior teams grew

slightly, it would outstrip the advanced analysts' capacity to complete them. ihis data indicates

that given the current system configuration, transferring uncaptured gaps after only two cycles may

unbalance the system. To compensate, management might consider increasing the transfer

threshold to three cycles or attempting to increase the number of advanced analysts on staff.

These figures indicate that some explicit management of the workload allocated to analysts

is necessary. However, relative to skills-based grouping, little a priori knowledge of analysts'

capacity is required. Management can simply observe whether transferred tasks are taking too

much or too little of senior analysts' time and then adjust the transfer threshold accordingly.

7.3.4 Implementation Complexities
While offering many obvious advantages, the triage-model faces a number of

implementation complexities. First, as in the skills-based model, analysts may still feel stigmatized
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from being placed in a beginner or intermediate skill group. The sting of this stigma is at least

mollified by the prospect of learning the skills necessary to advance to the next skill level,

something that would not be possible if their scope were limited to easy tasks asin the skills-based

model. The stigma is nonetheless a liability and presents similar management and incentives

problems as the skills-based model.

For managers, the triage model offers a unique means for measuring analyst performance.

By looking at the percentage of tasks an analyst is able to complete without transferring to a more

senior team, a manager can determine the analyst's efficiency relative to his or her peers. Thus, a

beginner analyst that completes 60% of his tasks (transferring 40%) is performing significantly

better than a peer that completes only 30% of his tasks. This turnover metric represents a rather

precise and convenient means of measuring analyst performance. However, its use must be

balanced against the pressure it places on the analyst: the analyst may be tempted to cut corners and

force the completion of tasks in order to boost their turnover. A turnover metric, therefore, must be

used in conjunction with other quality and performance metrics.

Finally, there is the question of how to assign credit for completed tasks to analysts. In

scenarios where multiple analysts contribute to the completion of a task, do they share credit

equally? Does the last analyst that worked on the task receive exclusive credit? Or, should the

credit be weighted by seniority or time committed to the task? Each approach has advantages and

disadvantages in terms of the incentives it creates. Regardless, success of the triage model clearly

depends on a sense of camaraderie and teamwork between analysts. An incentive system that fails

to engender this will render the triage model divisive. This is the topic of the next chapter.

7.3.5 Triage-model Teaming: Conclusions
The preceding discussion has highlighted the advantages of the triage model, while also

exposing its fundamental tradeoff. In exchange for the training and collaboration opportunities that

triaging enables, the system's overall performance is degraded slightly. The true nature of the

tradeoff is difficult to explore since the advantages of better teamwork are prospective and not

easily quantified. However, because optimality is difficult to achieve and comes at the cost of

improved teamwork and collaboration, the tradeoff appears worthwhile. Institutionalizing the

exchange of tasks and ideas between analysts is an important enabler of their continued growth.

Ultimately, the triage model represents an investment in a group's long-term productivity; the same

cannot be said of other team structures.
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7.4 Summary

This chapter contrasted two team structures. Skills-based teaming promises near-optimal

performance; however, it is difficult to implement and stifles analysts' learning and growth

opportunities. The proposed triage model offers somewhat lower performance, but in the process

enables a high degree of knowledge sharing and collaboration among analysts.
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8 Organizational Study
Thus far, the thesis has focused on the impact that workflow policies have on process

variability. In this chapter, we expand our scope to look at the impact that organizational dynamics

have had on the process. In particular, we examine the reasons behind the significant performance

discrepancies that persist between finishers. Some of these discrepancies can be attributed to

differences in natural aptitude. This, however, is only part of the story: an organizational emphasis

at Whitehead on individual contribution has undermined finishers' incentives to work as a team.

Without incentives to collaborate and share their knowledge, finishers' differences remained

insulated from change, leading to still wider performance discrepancies. These discrepancies, in

turn, have made the process difficult to predict and control.

The chapter begins by setting the organizational context in which my internship began.

Next, it analyzes the formal structure, politics, and culture of the finishing organization, showing

that they are geared more towards individual contribution than teamwork. With these analyses as

background, I then review several change initiatives I undertook during my internship and discuss

why they met with only partial success. Finally, the chapter concludes with a recommendation for a

new performance review and incentive system that clearly emphasizes and rewards teamwork.

8.1 Organizational Background

8.1.1 Finishing the Human Genome Project
My internship with the Finishing Group at Whitehead's Center for Genomic Research

began under auspicious but tense circumstances. By March 2002, the group was just one year from

finishing Whitehead's portion of the Human Genome Project (HGP.) The HGP represented the

largest, most ambitious genomics effort ever undertaken. Whitehead had played a majorrole in the

thirteen-year effort and looked forward to sharing in the celebration of its completion. At the same

time, for a variety of reasons, Whitehead found itself at risk for not finishing on time. Because

funding for future projects hinged on proving its capabilities in the HGP, senior management at

Whitehead applied significant pressure to accelerate the project. As the final stage in the gene

sequencing process, the Finishing Group inevitably bore a great deal of this pressure.

8.1.2 Organizational Structure
Whitehead's Computer Finishing group is structured in a hierarchical fashion typical of

many production-oriented organizations. At the time my internship began, the group was organized

into three groups of approximately six finishers each. Each group of finishers sat together in a
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bullpen office and reported to a coordinator. The three coordinators, in turn, reported to the

manager of the Computer Finishing Group.

Computer Finishing is supported by two other organizations: the Finishing Lab is

responsible for executing laboratory procedures ordered by the finishers; and, a group called

Finishing Informatics is responsible for developing database and software tools used by the

finishers. The managers of Computer Finishing, the Finishing Lab, and Finishing Informatics

report to the Co-Directors of Genome Sequencing. The two directors are jointly responsible for all

of Whitehead's gene sequencing operations, including finishing. The most significant project

underway at the center, in terms of both revenues and staffing, was the Human Genome Project.

These directors, in turn report to the Director of the Genome Center, who holds both

production and research responsibilities at Whitehead. Outside the Genome Sequencing group, the

Genome Center primarily conducts long-term research into fields such as cancer and comparative

genomics. In fact, with the exception of the production-oriented Genome Sequencing group,

Whitehead is primarily a research institution like its parent organization, MIT. Figure 28 reflects

the organization as described. Solid lines reflect formal reporting relationships. Dotted lines reflect

informal relationships and are a subject of discussion in the next section.

Figure 28. Organizational chart for Whitehead's gene sequencing group.
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8.2 Organizational Analysis

In this section, we look at the finishing organization's structure, politics, and culture in

order to understand why teamwork has been difficult to achieve. Together, these perspectives paint

the picture of an organization that holds individual achievement high, but fails to adequately

recognize the importance of teamwork.

8.2.1 Formal Structure
Whitehead's Finishing Group has a hierarchical, control-oriented structure that

characterizes many production organizations. Hierarchy can be a successful approach to running a

complicated operation; at the same time, successful hierarchical organizations depend on informal

networks and strong management to bridge otherwise rigid organizational boundaries.

Unfortunately, because it was a young organization that grew quickly, the Finishing Group lacked

many of these important organizational capabilities. As a result, the group tended to lack a sense of

teamwork and collaboration.

In early 2002, the Finishing Group tripled in size as management increased its staffing to

meet the pressures of the HGP. The growth occurred so rapidly, however, that many finishers

failed to develop informal relationships with other members of the gene sequencing operation.

Twenty finishers sat in three neighboring rooms, but often knew only the people in their own room.

Even within a room, the strength of finishers' relationships varied greatly. One room of finishers

grew quite fraternal, while the other two rooms tended to be quiet and formal. This sense of

isolation extended beyond the finishing group. Few finishers had relationships with the Finishing

Lab or Finishing Informatics, despite the fact that the groups worked together closely. In short, the

organization had grown ahead of its members' abilities to develop robust personal networks.

Leadership problems tended to aggravate finishers' sense of isolation. Coordinators were

saddled with large workloads that limited their ability to train their finishers or facilitate team-

related activities. As recently promoted finishers, the coordinators also had limited experience in

leading large teams. As a result, a finisher's placement on a team tended to have limited direct

consequence on their daily affairs. Team meetings were rare, as were individual meetings between

finishers and their coordinators. Finishers tended to work in isolation. What little collaboration did

occur was the result of the few personal relationships that they managed to develop.

In summary, Finishing grew into a large hierarchical organization, but unfortunately lacked

many of the capabilities important for success. Limited informal networks left finishers feeling

isolated from their peers. And, coordinator groups tended to be teams in name only.
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8.2.2 Political perspective
Two themes dominated the political landscape at Whitehead's Genome Center in late 2002.

First, there was the pressure to complete the Human Genome Project by April 2003. This pressure

started at the top of the organization and radiated downward in a manner that sometimes harmed

long-term productivity and group morale. A second important political theme was thedifference in

career objectives that existed between the Center's management and its finishers. This gap created

a level of distrust between the two parties. It also hampered management's ability to recognize the

morale and incentive problems stirring in the finishing organization. Together, these political

trends made teamwork and collaboration a difficult proposition.

By the summer of 2002, the pressure to complete the HGP was palpable. Work upstream of

finishing had begun to dry up, shifting focus to the finishing group, which held the last cluster of

work to be completed. For a variety of reasons, Whitehead found its finishing efforts behind those

of other centers. As 2002 progressed, enormous pressure was applied to the finishing organization

to accelerate its progress. At a loss for how to achieve this acceleration, management pursued a

number of short-term initiatives to boost output. Many of these initiatives did not entail true gains

in operational efficiency; rather, difficult work was simply deferred. The initiatives took a heavy

toll on finishers, who found them disruptive and inefficient. Moreover, as the year progressed, the

difficult work that had been deferred came back to haunt the finishers. Remaining work became

increasingly difficult, but the pressure to boost output continued unabated. With little guidance on

how to achieve these gains, finishers became increasingly frustrated and demoralized.

These pressures were aggravated by the differences between finishers and senior

management. The Center's senior management consisted primarily of academics and researchers,

many of whom had pioneered modem gene sequencing. Typically Ph.D.'s, these managers held

long-term career interests in the field of genomics. Though they ran a production facility, their

ambitions also included publication, tenure, and senior roles in industry. This background

contrasted sharply with that of the finishing personnel. Coordinators and finishers were typically

young, in possession of a bachelor's degree, and at an early stage in their career. Some aspired to

long-term careers in genomics or medicine. For others, finishing represented a temporary stopping

point on the way to other careers. Unlike senior management's leadership roles, a finisher's job had

few obvious growth opportunities; Whitehead was a research organization with limited long-term

potential for someone in a production role. Thus, although they worked closely together, finishers

and management approached their work from very different circumstances.

What tied these disparate groups together - and what should have formed the basis for

bridging the gaps between them - was the sense that everyone was contributing to something of
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great importance. The Center's management and finishers shared a common inspiration in their

work on the HGP: to perform the genomics equivalent of landing a man on the moon. Finishers, by

virtue of their rank in the organization, did not stand to capitalize on the success of the HGP in the

same manner as senior management. Nonetheless, they were sufficiently inspired by the endeavor

that simple recognition of their contribution represented a significant incentive. This was

particularly valuable for an institution that had little leeway in its financial incentives because it

was publicly funded.

The Center's management, however, failed to take advantage of these opportunities. In one

instance, a coordinator and several senior finishers complained that their names had not been added

to the authors list associated with DNA submissions to NHGRI, the government body coordinating

the Human Genome Project. The situation was eventually righted, but it took many months. There

were other lost opportunities. A visit to another major sequencing center, Washington University,

revealed that they used a variety of innovative, non-financial incentives: high-performing finishers

might be recognized in front of their peers at a monthly meeting or receive a signed letter from

Francis Collins, Director of NHGRI. Other genome centers established standing policies whereby

accomplished finishers were sent to conferences, talks, or other sequencing centers.1 8

In summary, though the finishing organization was under significant pressure, there

remained important opportunities to incentivize finisher productivity and boost morale. The

Center's management did not act, perhaps because it was unable to sense just how frustrated

finishers truly were. Inaction, however, communicated the message that finishers' contributions

weren't important. In several discussions, the manager of the finishing process intimated that these

initiatives would be taken up once the HGP was complete. Yet these tense circumstances were

precisely the time at which such incentives were so important.

8.2.3 Cultural Perspective
Whitehead's history as an innovative research center created culture that prides itself on

individual achievement and new technology development. These capabilities helped propel

Whitehead to the forefront of gene sequencing. At the same time, however, Whitehead's continued

emphasis on individual contribution and technology tended to overshadow teamwork, coordination,

and other capabilities that became increasingly important as the organization grew.

Like Whitehead at large, Finishing's emphasis on individual contribution grew out of its

history and the complex nature of its work. When the Finishing Group was created, finishing was

essentially a research process. A small group of finishers developed many of the methods used by

8 Source: Jane Wilkinson, on staff at Whitehead, previously led a finishing group at the Sanger Institute.
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today's finishers. Because the team remained a small group for several years, its self-image tended

to reflect the dedication and individuality of its members. This selfimage was still evident when I

joined the Finishing Group: the coordinators and several senior finishers continued to work evening

and weekend hours, particularly near the end of the HGP. While this dedication proved invaluable

to the group's productivity, it set a high bar for the fourteen finishers that joined the organization in

2002. It also meant that when pressure was applied to boost output, the group tended to rely on the

heroic acts of a few members rather than invest in the long-term productive capacity of some of its

slower finishers.

Finishing's cultural emphasis on individual contribution is also an outgrowth of the work

itself. Finishers perform complex tasks that often require hours of sustained concentration.

Naturally, they develop a strong sense of pride and ownership for their work. Pride in their work is

critical because, without it, finishers might easily become frustrated and fail to complete some of

their more difficult tasks. At the same time, the sense of ownership that finishers bring to their

work heightens the perceived value of individual contribution. Team-oriented activities become

counter-culture. Consider the example of two finishers sharing a task: neither finisher would feel a

strong sense of ownership for the task; there might also be concerns about who would receive

credit for the task's completion. Finishing's complex nature therefore proves to be a double-edged

sword: it inspires a strong sense of ownership, but it also makes teamwork more difficult.

A history of innovative technology development may also have made it difficult for the

Finishing Group to recognize when a problem necessitated better teamwork, rather than a

technological solution. One such example arose late in the HGP. Failed coordination between

finishers had led to a situation in which redundant portions of the genome were being processed.

To accelerate the HGP, it became critical to eliminate this redundancy. Almost instinctively,

several managers proposed using a spreadsheet to collect redundancy information. Unfortunately,

technical solutions such as these were part of the problem: informatics-based tools had insulated

finishers from the need to communicate and collaborate.

As an alternative to the spreadsheet-based approach, I proposed that we use a rudimentary,

paper-based system in which finishers would post their work on a large shared wall. To determine

if they were working on a redundant part of the genome, finishers had to leave their offices,

examine the work of their peers, and then jointly strategize a solution. The process proved

considerably messier than an informatics-based solution, but was an instant organizational success.

For three days, finishers were out of their office, communicating and collaborating more than I had

seen them do in the preceding six months. The project eventually came to an end and finishers
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returned to their old norms of largely independent work. For a short while, however, the

importance of old-fashioned, face-to-face communication was vetted for everyone to see.

In summary, though an emphasis on individual contribution and innovation played a

critical role in Finishing's success, this emphasis also limited the organization's ability to recognize

the importance of teamwork and other organizational capabilities.

8.2.4 Analysis: Summary
By early 2002, the Finishing Group had reached a size and complexity that made teamwork

critical. The organization was simply too large for its members to learn without the aid of better

communications and collaboration. In many ways, however, the organization's structure, politics,

and culture remained focused on individual achievement.

8.3 Change Initiatives Undertaken

This section describes several change initiatives I undertook during my six-month

internship with the Finishing Group. Each of these initiatives met with moderate, but not

unqualified, success. Two initiatives, in particular, highlight important characteristics of the

Finishing Group, while pointing to future areas in need of change: the rollout of a new performance

measurement system and the implementation of a new peer review process.

8.3.1 New metrics for finisher performance
Historically, management has measured productivity by counting the number of projects a

finisher completes. Unfortunately, the method is not entirely fair and is also susceptible to

manipulation. First, it does not account for project complexity, which may vary significantly.

Second, coordinators control project assignments and may be tempted to preferentialy assign easy

projects to their own teams. Finally, because the group lacked strict project assignment protocols,

finishers often accumulated large queues of work, making it easier to "skim" easy projects off the

top of their workload and temporarily boost output. In short, a project-based measure of finisher

output provides a partial, and often biased, view of their true productivity.

To counter this inequity, in September 2003, I proposed a new project-rating scheme that I

called the Difficulty Index. In the proposed scheme, individual projects would be scored according

to their estimated difficulty, with complex projects scoring higher than easy projects. By summing

the scores of the projects a finisher completed over the course of a year, a manager could determine

how productive that finisher was relative to his or her peers. Because the system might still be
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prone to manipulation, I further proposed that projects be assigned randomly without coordinator

intervention.

The response to my proposal was mixed. On the one hand, it was very hard to deploy a

new performance measurement system amidst the stresses of the HGP. On the other hand, the

organizational support I had expected was missing. Finishers, despite having clamored for an

objective system, greeted it with skepticism, suspicious that it represented yet another vehicle for

management control. The three coordinators in the group felt that the system was too simplistic.

The only significant support the new system received came from senior management. They wanted

to deploy it but were wary of doing so given the late stage of the HGP.

In fact, the proposal lay dormant until the end of 2002, when it came time to do

performance reviews. These were awkward circumstances under which to introduce a new

measurement system. First, finishers had not yet had the system adequately explained to them.

Second, the original proposal called for new project assignment policies, most of which had not yet

been implemented. In essence, the system was deployed at a time that was convenient for

management. An important opportunity to hold a frank, open discussion about the merits of the

new system with finishers had been missed.

8.3.2 Peer review
In December 2002, working with finishers and managers, I sketched out a finisher peer

review process. In the proposed process, finishers would meet regularly to review each other's

projects and offer recommendations. The plan seemed like a novel solution to the organization's

training needs. It would provide finishers with the opportunity to discuss problems without fear of

being judged by their coordinator. It would also give the group a natural means to identify best

practices from among the many methods employed in finishing. Finally, we thought peer reviews

would improve the level of communication and collaboration in the group.

For the process to be a success, I knew it would be critical to gain finisher support.

Meeting individually and in small groups, I discussed implementation details with the finishers. In

these meetings, finishers made suggestions about the size of the peer review committees, the

frequency of the meetings, and the process for reviewing projects. I also let it be known that

finishing management was in full support of the process, since many finishers were concerned that

management would not condone this use of time. I contributed only two constraints to the

implementation: everyone had to participate or else the process would fall apart; and, the

committees needed to note their recommendations so that they could eventually be compiled into a
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list of best practices. Though there remained some open debate about specific details, a majority of

the finishers seemed to favor implementing a peer review process.

One week before the end of my internship, a group of seven finishers held Whitehead's

first finisher peer review meeting, while I joined as an onlooker. By all measures, the meeting was

a success. Everyone participated and a large number of attendees told me later that they learned

something valuable from their peers. I left my internship confident that we had installed a process

that would improve knowledge sharing and collaboration between finishers.

Three weeks later, however, I learned that the meetings had fallen apart. Expert finishers

complained that they spent most of their time teaching - but learned little. Others complained about

the meetings' time requirements, suggesting that they be shorter, less frequent, and optional. As

attendance became increasingly spotty, management responded by making peer reviews

mandatory, a move which had the unfortunate effect of increasing finishers' distaste for the

process. The peer review process had failed. In retrospect, the reason seems clear: finishers had

very little incentive to think and act as a team.

8.4 Recommended future organizational changes

Ideally, in their efforts to embrace teamwork, Whitehead's managers would address the

structural, political, and cultural impediments to teamwork simultaneously. Unfortunately, an

organization's structure is usually the only aspect that can be changed on command. The political

and cultural climate of an organization inevitably evolves more slowly and is difficult to manage

explicitly. Nonetheless, revamping an organization's structure is a powerful change agent: done

correctly, it can set the stage for positive changes in the political and cultural climate.

In this section, I outline a proposed revisal to the performance review and incentive system

in Whitehead's Finishing Group. The proposal is based on the belief that team-oriented behavior

will emerge if it is measured and rewarded. First, I provide a framework for thinking about the

relationship between Whitehead's core values, its performance review process, and its incentive

system. Next, I describe a simple performance review template that clearly links Whitehead's core

values to the performance characteristics it values in its employees. Finally, I conclude by

recommending changes to the organization's incentive system.

8.4.1 Review and incentive system should flow from core values
For an organization's performance review system to be successful, its stakeholders must

share a common view of their organization's core values. This common understanding is often

assumed to exist, but does not. Even when employees comprehend their organization's core values,
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they may fail to see how those values translate into personal performance goals. At Whitehead,

finishers certainly recognize the importance of high productivity. They can see its importance in

the way they are measured and rewarded. However, other core values are probably less obvious.

Would finishers have been able to explain how their last performance review exemplified

Whitehead's belief in innovation and employee growth? Probably not. Such disconnects create a

major incentive problem: when employees do not understand their company's core values, or the

link between those values and their own performance, they inevitably behave in ways that

undermine the organization's objectives.

Understanding core values and how they relate to employee incentives is the focus of this

section. Figure 29 illustrates the conceptual framework I used for thinking about Whitehead's core

values and the link between those values and employee performance. In this framework, core

values derive from a compromise between the organization's strategic objectives and the needs of

its key stakeholders. Once core values are understood, managers can set specific goals and metrics

to measure progress. Finally, incentives encourage performance towards those goals.

Figure 29. Linking core values to incentives.

Stakeholder Strategic
Needs Objectives

Core Values

- are made con rete through...

ca

Goals,
Metrics

E

are encou aged by...

Incentives

Consider, first, the assumption that core values flow from both stakeholder needs and

strategic objectives. The connection between a company's core values and its strategic objectives is

obvious. Whitehead participates in a competitive industry. Dozens of commercial and educational

institutions are in constant pursuit of technologies that will permit faster and faster gene
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sequencing. Whitehead's ability to stay competitive through technology and process innovation is

critical to its ability to secure funding for future projects like the HGP. The strategic imperative of

innovation is clear in Whitehead's case. Innovation is a core value.

The connection between stakeholder interests and an organization's core values is less

obvious but equally important. Organizations, particularly those centered on human, analytically

intensive processes like finishing, depend on the productivity and well being of their employees.

Understanding employees' needs - career, personal, and otherwise - is critical to defining an

organization's core values. The more an organization's core values reflect the needs of its

stakeholders, the easier it will be for that organization to inspire its people to help meet its strategic

objectives. Doing so, however, may put stakeholder needs at odds with strategic objectives.

Therefore, determination of an organization's core values inevitably involves compromise.

When considering stakeholders' needs, it is important to recognize that some needs are

shared while others are unique. For example, teamwork serves all stakeholders' needs by helping to

eliminate boundaries between individuals and fostering a sense of cooperation. Some stakeholder

needs, however, are quite different. Reconciling these different needs falls to the proper definition

of an organization's core values. Finishers, by virtue of their background and role, have different

objectives than their managers. They seek a learning environment and growth opportunities that

will help jump-start their careers. These needs are different from those of Whitehead's managers,

for whom research and public recognition are more important than basic learning opportunities.

Whitehead's core values must embrace finishers' need for personal growth in the same way that it

embraces managers' desire to forward their research.

In many ways, then, reconciling strategic objectives and stakeholder needs falls to proper

definition of an organization's core values. For the Finishing Group, as with any organization, this

reconciliation process is complex. Nonetheless, the preceding discussions provide insight into what

those core values may be:

> Individual Performance - As a production organization that depends on the skills and

dedication of its analysts, Whitehead must continue to recognize and reward individual

performance. The organization has a history of emphasizing this value, but nonetheless

must strive to define clear, objective measures of what constitutes exceptional

performance. The Difficulty Index is one example system by which this can be

accomplished. Nonetheless, the organization must also recognize the limitations of simple

metrics. Quality of work, leadership, flexibility, and a variety of other factors must also be

considered when measuring a finisher's individual performance.
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Employee Growth - This chapter has highlighted the sense among finishers that their

efforts are inadequately recognized and that their growth opportunities in the organization

are limited. This perception was enhanced by short-lived circumstances: the pressures of

the HGP, leadership issues, and differences between finishers and management. Finishers'

frustration, however, points to an important weakness in the current incentive system.

Whitehead's core values, and the review process and incentive system that flows from it,

must place renewed emphasis on the growth of its employees. Employees should be

incentivized to seek out new learning and career opportunities within the organization.

> Teamwork - Collaboration, communication, and knowledge sharing are all critically

lacking in the finishing organization. Some of this stems from temporary circumstances,

but much of it owes to an historic emphasis on individual contribution. Finishers refuse to

participate in team-oriented processes like peer reviews because the link between that

participation and their own incentives is tenuous. Whitehead must establish teamwork as a

core value and then seek out goals, metrics, and incentives that encourage it. Teamwork

promises a more cohesive, collaborative work environment. More importantly, it promises

to improve productivity and eliminate the glaring performance discrepancies that exist

between the finishers.

> Innovation - The long-term competitiveness of Whitehead's Genome Center depends on

its ability to continue innovating. Because Finishing continues to be a manual process, it

has become increasingly expensive relative to the automated gene sequencing process.

Finishers are in an excellent position to identify new techniques to improve the efficiency

of their process. Yet, because the current incentive system fails to adequately reward this

core value, many finishers have failed to invest time into the skills that might enable them

to innovate. Several finishers have already ventured into software development; some have

worked with the Finishing Lab to prototype new laboratory procedures. Finishers should be

encouraged to channel some of their energies into new process development,

documentation, data analysis, and other fruitful areas for innovation.

8.4.2 Alignment of current review system and core values
The current performance review process at Whitehead embodies the core values just

described but possesses a number of weaknesses. Table 20 lists the characteristics (called
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performance factors) used to rate Whitehead employee performance on a yearly basis. 9 Factors in

the left column reflect characteristics by which all employees are judged; factors in the right

column are used primarily for managers.

Table 20. Performance factors used to measure Whitehead employees.

All employees
Job knowledge & skills

Quality of work
Commitment & dedication

Initiative
Meeting set objectives/tasks

Dependability
Planning & organizational skills

Communication
Critical thinking & problem-solving

Collaboration & cooperation

Supervisors only
Leading & influencing

Coaching, training, & mentoring
Planning & goal-setting

Judgment & decision-making
Performance management

Budget & financial operations

Managers are asked to rate their employees for each of the factors on a scale that includes

unsatisfactory, acceptable, commendable, and exceptional (UACE). The criteria for these ratings

are specified in Table 21. Employees' overall performance is then determined by averaging their

performance across all of the factors.

Table 21. Scale for Whitehead performance factors.

Rating Description
Exceptional (E) Performance clearly and consistently exceeds significant and demanding

position requirements and expectations. The employee's results frequently
exceed objective(s). This employee is easily recognized as exceptional
among his/her colleagues in particular factor areas and/or in overall
performance. There are no significant performance deficiencies. The
quality and quantity of work consistently exceed that expected of someone
fully qualified.

Commendable (C) Performance consistently meets expected requirements and also
occasionally exceeds expectations in significant areas. Capably handles all
assignments, requiring only normal supervisory guidance.

Acceptable (A) Key responsibilities and assignments performed reasonably well, but
occasionally does not fully meet expectations and/or job requirements.
Closer supervision and guidance usually required either in general or in
particular job areas that need specific development or improvement.

Unsatisfactory (U) Does not sufficiently meet several significant job requirements and/or
frequently falls below standard performance expectations. Employee
should be put on a performance improvement plan if not already on one,
and must improve performance to retain employment.

On first glance, each of the four core values outlined above can be found in one or more

performance factors. The factors also highlight a broad range of desirable features in an employee.

Moreover, the system appears to strike a balance between objectivity (i.e. clear factors, clear

definition of ratings) and subjectivity (i.e. manager has leeway to call out exceptional

performance.)

Closer consideration, however, reveals a number of potential pitfalls. First, several of the

factors overlap in meaning. Commitment & dedication seems a close cousin to Dependability;

'9 Courtesy of Nicole Bama, HR Director at the Genome Center
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likewise, Planning & goal-setting is indistinguishable from Planning & organizational skills.

Second, the factors appear to be of equal importance. Simply averaging the factors to produce an

overall rating overlooks the fact that the relative importance of factors will vary by group,
employee, and current work circumstances. Third, it is not clear which metrics should be used in

determining the UACE rating. The qualitative bases shown in Table 21 do not tell a manager how

to determine whether an employee "consistently exceeds" or "falls below" expectations. The

ratings system also fails to capture the fact that some performance factors, like a finisher's

productivity, actually have quantitative measures.

Perhaps the weakest aspect of the current review system is that it does not clearly link an

employee's performance back to the organization's core values. While the performance factors hint

as to what core values may exist in the organization, the link is tenuous and surely subject to

interpretation. Moreover, teamwork, which has been a frequent focus of this thesis, is largely

absent from the "all employees" set of performance factors. Collaboration & cooperation is the

only factor used for a finisher. Other seemingly relevant characteristics likeLeading & influencing

and Coaching, training & mentoring are reserved for supervisors.

In summary, the current review system is broad in its coverage but weak in its link to core

values and its commitment to specific goals and metrics.

8.4.3 Proposed Performance Review System
Table 22 reflects a proposed alternative to the performance factors currently used for

finishers. It reflects a simpler, more direct approach to the review process There are fewer

performance factors and each is clearly linked to one of the four core values.
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Table 22. Proposed performance review system.

Core Value
Individual
Performance

Performance Factor
Productivity

Quality

Non-production activity

Performance improvement

Training completed

Standardization

Knowledge sharing

Cross-functional work

Team leadership

New tools, methods

New initiatives

8.4.4 Measuring Performance
By itself, the proposed performance factors are insufficient to encourage the type of team-

oriented behavior desired from finishers. These factors must also be accompanied by clear metrics,

objectives, and incentives. Table 23 illustrates a number of techniques that Whitehead should

consider for measuring finishers' performance in the factors above.

Table 23. Techniques for measuring performance.

Metric Description Where to apply it
Scored project output Direct measurement of productive output, weighted by Performance, Growth

difficulty.
3600 peer review Review from immediate peers commenting on employee's Teamwork, Innovation

mentorship, communications, and teamwork.
Customer/supplier review Review from members of other groups that supply or receive Teamwork

work from employee, commenting on his or her quality of
work, responsiveness, and communications.

Subordinate review Review from direct report commenting on manager's Performance, Teamwork
leadership, communications, and organization.

Manager review Review of employee from manager commenting on all Performance, Growth, Teamwork,
aspects of employee performance. Innovation

All but one of the measurement techniques listed above, scored project output, are

qualitative. In fact, several of these metrics are already in use at Whitehead. The critical problem

with the current system is not that its performance metrics are qualitative or subjective in nature.

Rather, the problem is that these feedback collection mechanisms are not clearly linked to the

performance factors. Thus, when a manager reviews an employee's Communication performance
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Individual
Growth

Teamwork

Innovation

Description
Raw productive output, weighted by
average difficulty
Quality of work completed

Work that did not directly contribute to
production
Improvement in any of the performance
factors listed above over previous
performance periods
Formal training completed; may include
qualifying exams proving capacity in
certain tasks
Efforts undertaken to standardize the
group's approach to common tasks
Efforts to distribute knowledge
throughout organization; may be mentor
or simply facilitator
Efforts to improve communications and
coordination with external groups
Leadership of peers by influence or
example
Development of new techniques or tools
that improve the quality or efficiency of
group
Assistance in identifying, exploring, or
validating new techniques

Example
Number of projects submitted last
quarter
Number of projects rejected because
they failed to meet quality standards
Assisted efforts to expedite a special
project outside normal production
Reduced quality problems in project
submissions over last quarter by 25%

Worked in lab for a day to learn new
process; completed a training seminar
on programming/scripting
Documenting current best practices,
methods, tools so others can use them
Participated in peer review process; did
a case review with peers; spent time
mentoring peer
Worked closely with lab to debug nex
laboratory procedure
Organized or facilitated peer review,
training seminar
Wrote a script that automated a common
task

Volunteering to work on an
experimental project



factor, it is not clear how much of that feedback is the result of his or her own assessment or the

feedback of others. Giving managers a set of measurement tools and clear guidelines on where to

apply them is critical. Finishers must know that there are multiple constituencies, besides their

manager, that factor into their performance review.

8.4.5 Setting Objectives
Even with clear performance metrics, employees need to know how high to aim in their

performance. Whitehead's finishers have persevered without performance objectives - an

ambiguous situation that has heightened the anxiety associated with performance reviews and

ensured that some finishers do not aim as high as possible. In addition to a new performance

review process, Finishing should consider a quarterly or semi-annual process in which performance

objectives are set and reviewed for each finisher. In the proposed process, the employee would

meet with his or her manager to review the previous period's objectives and discuss how well they

were met. The meeting would conclude with a new set of objectives designed to address

performance shortfalls and any new strategic needs that may have arisen for the organization.

Establishing an objective-setting process is essential not only to guiding employee

expectations but also to establishing a framework for continued dialogue about performance

between the manager and the employee. Setting quantifiable, objective performance goals is bound

to be a difficult and imperfect process, even in a quantitative, production-oriented environment.

However, it is less critical for a manager and the employee to scrutinize individual goals than it is

for them to meet regularly, discuss basic objectives, and align expectations. The meetings will

provide a forum for the manager and employee to express performance-related concerns. More

importantly, the meetings will give the employee an opportunity to correct performance issues long

before a year-end performance review, when the stakes are high and it is arguably too late.

8.4.6 Incentivizing Performance
Whitehead's ability to incentivize its finishers is constrained not just by the fact that the

Genome Center is publicly funded but also because of the HR practices of its parent organization,

the Whitehead Institute. Specifically, strong financial incentives are often cited as being difficult, if

not impossible, to arrange. With regards to these apparent constraints, two perspectives are worth

considering. First, as mentioned earlier in this chapter, there are several non-financial incentives

that have not yet been fully utilized. Recognizing high performance through public

acknowledgement, trips to conferences, time off, and signed letters are all practices employed to

some success by other genome centers. Finishers may also respond positively to title changes and

additional responsibility, whether or not those are accompanied by financial compensation.
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While non-financial incentives are viable, the Genome Center must also consider breaking

with Whitehead tradition and developing a compelling set of production-oriented financial

incentives for its finishers. Doing so has been difficult because portions of the Institute continue to

labor under the belief that it is possible to construct an incentive system that can simultaneously

serve the needs of both its research- and production-oriented organizations. Finishers are

production personnel who should be rewarded on the basis of their productivity. Their goals are

inherently more short-term and precise than those of professional researchers. For researchers,

there is always the implicit incentive of publication, tenure, and fame to compensate for below-

industry salaries. Finishers and other production personnel lack these same incentives, making

financial compensation more critical.

There are two other reasons why Whitehead should consider more active use of financial

incentives. First, as long as finishers' salaries remain low, Whitehead risks significant attrition. The

financial costs of this attrition, given the slow learning curve of finishing, are significant. There are

also indirect costs associated with attrition. High turnover inevitably reduces morale and teamwork,

both of which impact the long-term productivity of a group. Whitehead has been insulated from

attrition by a bad economy, but it may lose personnel to industry when the economy recovers. The

second reason to consider financial incentives is far more mercenary. When senior finishers are two

to three times as productive as junior finishers, incentivizing them through overtime or salary

increases may be sufficient to boost their capacity beyond that enabled by another junior finisher.

In short, Whitehead's incentive options are limited but critical to encouraging the kinds of

performance it requires from its finishers. Finishers will not respond to the same incentives that

inspire professional researchers. Whitehead's management must consider more creative uses of

non-financial incentives. At the same time, it must also recognize the motivational and competitive

importance of financial incentives. The costs for not doing so are significant.

8.5 Summary

In complex, analytical professions like finishing, much of the performance discrepancy

observable between analysts can be attributed to differences in their natural aptitude. At

Whitehead, organizational dynamics have unfortunately served to amplify those differences.

Individual contribution continues to be the formal and informal focus of the organization, while

teamwork remains a sought-after but institutionally unsupported objective. Teamwork, however, is

critical to driving out process variability and boosting long-term productivity. For teamwork to

become a reality at Whitehead, finishers must see a clear link between their daily behaviors and

year-end rewards. That link can be made explicit through a performance review process that
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recognizes teamwork as a core value; a periodic, disciplined review of employee objectives; and an

incentive system that recognizes the unique motivations of production personnel.
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9 Conclusion
In many ways, data analysis production lines represent the vanguard of a new, service-

oriented economy. Unlike traditional production lines, whose objective is a physical product, data

analysis processes produce value-added information. Traditional concerns about the staging and

consumption of physical materials are absent. They are replaced by complex information-

processing tasks that must typically be handled by skilled human analysts. These differences have a

profound impact on how data analysis processes are monitored and controlled. Variations in task

complexity and analyst skill lead to higher process variability than that typically seen in traditional

production processes. Managers, in turn, must focus more of their energy on gaining control of

these processes.

The Finishing process at Whitehead is an excellent case study in the unique problems faced

by managers of data analysis processes. Finishing tasks are inherently complex, leading to an

iterative, trial-and-error process that is highly variable. This variability is heightened by large,

persistent performance discrepancies that exist between finishers. Inefficient workflow policies

have further aggravated the problem by lending finishers wide discretion in their activities. These

three factors - high task complexity, varied skill levels, and inefficient workflow policy - have

made it exceedingly difficult to predict and plan productive capacity. For the Human Genome

Project, these process control problems had significant consequences: the group met its objectives

but only after a sustained push that strained relations between finishers and management.

This thesis has sought to demonstrate that, although data analysis workflows are inherently

variable processes, managers nonetheless have a number of valuable levers with which to temper

their process control problems. Chapters 4, 5, and 6 identified workflow policies that reduce

process variability stemming from how tasks are assigned to and managed by analysts. Chapters 5

and 7 analyzed team structures and the need to balance optimal task allocation against training and

knowledge sharing opportunities. Finally, Chapter 8 analyzed the impact that organizational

dynamics can have on analysts' motivation to work together and function as a team.

In summary, the key findings of this thesis are:

> Break complex projects into simpler tasks. Grouping multiple tasks into a single project

boosts cycle times and increases output variability. To the extent possible, individual tasks

should be assigned, tracked, and completed independently. Cycle times and variability will

be reduced, making it easier to predict and plan capacity. The group will also be better
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positioned to study tasks and identify best practices, a capability that is masked when tasks

are not tracked independently.

> Assign tasks only when analysts have nothing else to do. A just-in-time task assignment

policy ensures high analyst utilization, while reducing WIP levels, cycle times, and process

variability. Analysts that are allowed to build up large queues of work tend to prioritize

that work according to short-term objectives. Judicious, timely task assignment eliminates

their opportunity to do so.

> Require analysts to process tasks in FIFO order. When analysts have the discretion to

prioritize their work, they tend to favor simpler tasks. FIFO processing ensures that tasks

are processed in a timely fashion. Project cycle times are reduced and productivity

becomes more predictable. FIFO processing also prevents analysts from building up large

queues of difficult tasks.

> Assign tasks to analysts based on their relative performance advantage. Advanced

analysts should be assigned difficult tasks only when they possess a relative performance

advantage in those tasks. Managers, however, should actively monitor this relative

advantage. If it proves illusory, assigning complex tasks to advanced analysts may actually

harm the group's overall productivity. Managers should also balance optimal task

assignment against the educational opportunities enabled by occasionally assigning

difficult tasks to junior analysts.

> Use team structure and task exchange to drive collaboration. Data analysis is an

inherently individualistic enterprise. When analysts labor in isolation, however, important

opportunities for training and knowledge sharing are lost. A team structure that forces

analysts to exchange tasks ensures that best practices are broadly disseminated and that

skills are transferred from senior to junior personnel.

> Make teamwork a central focus of the incentive system. Structural changes to the

organization are necessary but not sufficient conditions for getting analysts to think and act

as a team. Teamwork must be rewarded by a company's performance review and incentive

system. Only when analysts see a clear link between team-oriented behavior and personal

rewards will they invest time into collaborating with their peers.
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Data analysis production lines present unique process control problems. The study of one

such production line, Whitehead's Genome Finishing Group, has yielded valuable insights into

how these problems may best be managed. While the policies detailed in this thesis are far from

complete, they establish a new baseline for controlling data analysis processes. These policies

eliminate unnecessary sources of variability, freeing managers to focus on the production issues

that matter most: scheduling, planning, and leading.

With the completion of the Human Genome Project in April 2003, Whitehead's Finishing

Group at last finds itself in a position to consider long-term, strategic changes to the organization.

Several of the changes proposed by this thesis have been implemented or are under serious

consideration. Finishing projects are now being assigned in an objective manner that eliminates the

conflict of interest that existed when coordinators controlled the process. Difficult tasks are being

preferentially assigned to experienced finishers. And, finishers must now seek advice on projects

that are not completed within a fixed number of work cycles.

With work just beginning on the mouse genome, Whitehead is also implementing the

process and technology changes necessary to isolate and assign individual gaps from within BACs.

This change is considerably more difficult than some of the others. Whitehead's entire process -

indeed, even the exchange of information between genome centers - is geared towards the

processing of BACs, not gaps. Nonetheless, Whitehead's management considers a gap-centric

model of finishing to be an important, strategic change that will improve their ability to monitor

and control the finishing process.

While these changes are underway, many of Whitehead's biggest challenges lie ahead.

Analyst discretion will continue to be a major source of process variability until workflow policies

such as just-in-time task assignment and FIFO work ordering are implemented. These policies

represent a significant cultural change for an organization that has historically lent its analysts wide

discretion. Likewise, Whitehead must overcome many organizational hurdles as it attempts to

reduce the large performance discrepancies that exist between analysts. New team structures and

better training programs are part of the solution, but these will pose significant cultural and

incentive challenges for an organization that has traditionally focused on individual contribution.

Whitehead's efforts are significant not just because they impact the burgeoning and

important field of genomics, but also because they are emblematic of the issues facing many

businesses today. Success in an increasingly service-oriented economy requires managers that can

lead despite the high process variability associated with information-processing tasks. The

finishing process at Whitehead offers valuable insights into this endeavor.
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