
The Application and Design of the

Communication Oriented Routing Environment

by

Lawrence J. Brunsman

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the MASSACHUSETTS INSTITUTE OF TEHCNOLOGY

May 21, 2003

Copyright 2003 Lawrence J. Brunsman. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and
distribute publicly paper and electronic copies of this thesis and to

grant others the right to do so.

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

JUL 3 0 2003

LIBRARIES

Author
Department oYElectrical Engineering and Computer Science

May 21, 2003

Certified by
Larry Rudolph

rhesis Supervisor

Accepted by_
Arthur C. Smith

Chairman, Department Committee on Graduate Theses

4



The Application and Design of the

Communication Oriented Routing Environment

by

Lawrence J. Brunsman

Submitted to the Department of Electrical Engineering and Computer Science

May 21, 2003

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science.

ABSTRACT

The Communication Oriented Routing Environment (CORE) is a software-based,
heterogeneous device interconnect system designed to facilitate interaction among
devices in pervasive computing environments. The purpose of CORE is to establish an
overlay network that allows devices and applications to interact while also providing
developers tools with which they can monitor, configure, and restore system state. In
doing so, CORE simultaneously functions as an application-level router and a debugging
tool. As a router it inherits many challenges, such as traffic control, congestion, and
quality-of-service. As a debugging tool it must provide users with the means to gain
access to and modify the behavior of the system. The current implementation of CORE
provides both of these functions as well as mechanisms for attributes, rollback, change-
point detection, and user-defined rules.

Thesis Supervisor: Larry Rudolph
Title: Principle Research Scientist

2



Acknowledgements

I would like to thank my advisor, Dr. Larry Rudolph, for his inimitable guidance and help
this past year.

I would like to thank the other members of the cast and crew of the Real World: LCS,
including Glenn Eguchi, Sonia Garg, Hana Kim, Kan Liu, Arjun Narayanswamy, and
Jorge Ortiz. They were all helpful, patient, and amusing friends.

I would like to thank my family, including my parents, Larry and Jackie Brunsman, and
my grandfather, Harry Hawkey, for their continued support.

3



Table of Contents

Introduction ............................................................................................................... 5 -7
M otivation ..................................................................................................... 5
Overview ....................................................................................................... 7

Background W ork ................................................................................................. 8 - 11

D esign of CO RE........................................................................................................ 12 -23
D esign G oals ............................................................................................... 12
Overview of CORE .................................................................................... 13
Com ponents of CORE................................................................................ 16

Special Functions of CORE .................................................................................... 24 - 30
Rollback ..................................................................................................... 24
Change-Point D etection ............................................................................. 27
U ser-D efined Rules .................................................................................... 29

Perform ance of CORE .............................................................................................. 31-37
Experim ent: H eavy Traffic with Light Load............................................. 32
Experim ent: H eavy Traffic with Heavy Load........................................... 33
Experim ent: Light Traffic w ith Light Load ............................................. 35
Experim ent: Links .................................................................................... 36

Conclusion................................................................................................................. 38 - 43
Future W ork ............................................................................................... 38
Conclusions ............................................................................................... 42

4



1 Introduction

The Communication Oriented Routing Environment (CORE), a device interconnect

system for pervasive environments, is designed to manage and simplify interaction

between networked devices. CORE operates as a platform independent, application-level

overlay network relying upon TCP [19] to communicate between devices. These devices

require little or no modification to join the CORE network, and once joined, can take

advantage of an array of tools, such as monitoring, configuring, and restoring the state of

the networked environment in which they operate. CORE provides these tools by

functioning as both an application-level router and a debugging tool capable of changing

its behavior upon request from an attached device.

1.1 Motivation

The need for a system like CORE is easy to convey: pervasive computing has begun to

live up to its name. Whether a laptop computer, handheld device, or smart phone,

today's mobile computing devices are indeed pervading our everyday lives for the better.

At least, they do so from the skewed view of the research laboratory while under the most

scrutinized conditions. Outside the laboratory walls and convention showrooms, it is a

rare sight to encounter the proverbial tourist asking his iPaq for directions or the smart

shopper scanning barcodes into his Bluetooth keychain. What prevents the migration

from theory to practicality for pervasive applications is not the lack of a killer application

or weak demand; rather it is simply the difficulty to debug and use them.

5



Pervasive applications are difficult to debug because, for the most part, they rely upon

dependability that developers have come to expect from the desktop computing

environment. That dependability is neither present in today's mobile devices nor is it

forthcoming. Additionally, developers have been slow to adapt to the varying

requirements of mobile devices, choosing instead to focus on user interfaces and

multimodal user input [10]. Rarely are applications developed to maximize battery life or

support inconsistent network connections.

Pervasive applications are difficult to use because they simply are not robust. In fact, the

old story of the tourist walking around an unfamiliar city with his iPaq needs to be

updated. Before the tourist can find his way he must check the batteries on the iPaq and

its sleeve; ensure the network card has been configured properly; move to a place where

there is sufficient network reception; and most importantly, hope that the application and

every application it interacts with are written with a degree of robustness far superior to

that of the common desktop application. Who can blame the tourist for instead

consulting a written guide when the use of persuasive devices is so arduous?

Clearly, the adoption of pervasive devices requires increased robustness and facility. To

achieve these requirements, developers in turn need a tool to ease the difficulty of

isolating and correcting errors that occur in pervasive systems. CORE was designed to

do just that, allowing pervasive applications to bypass the endpoint-to-endpoint model

that has proven to be unreliable and untenable in the mobile computing world. CORE's

6



goal is succinct: ease the difficulty of using various pervasive devices by mitigating the

complexity of device interaction.

The current implementation of CORE was built to improve the flexibility and robustness

of previous systems by making its behavior customizable by users and developers. Built-

in rules provide all the necessary functionality, while user-defined rules allow special

behavior for those devices desiring more control. The goal of this implementation is

equally succinct: ease the difficulty of debugging various pervasive devices.

1.2 Overview

This thesis describes the design, implementation, and performance of CORE. Chapter 2

provides an overview of related work and attempts to highlight the need for a system like

CORE. Chapter 3 describes the design and includes a detailed description of the

components of CORE. Chapter 4 continues with a description of the special functions of

the current implementation, and Chapter 5 presents an analysis of its performance.

Finally, Chapter 6 presents a discussion of unfinished work and conclusions.

7



2 Background Work

This chapter describes work related to CORE as well as a brief overview of its

predecessors. The designs described span both software and hardware in various

attempts to define the mechanics of device interaction. Again, it is this focus on

implementation and a subsequent neglect of pragmatism that prevents these designs from

ultimately achieving widespread use.

The initial purpose for a system like CORE [9, 12, 14] was to provide an overlay network

for device interaction. Implementation focused on supporting Bluetooth-capable devices

[18] rather than protocol-independent appliances. Furthermore, the system was not

designed to mitigate the difficulties of debugging pervasive applications but instead

focused on achieving meaningful communication through resource management. This

approach - that resource management will serendipitously yield robustness and facility -

is both a common and erroneous component of many pervasive systems' designs. Even

worse, the implementation of the system suffered from poor scalability, complex

compatibility requirements, and significant overhead to maintain the network.

Consequently, that implementation was not used in this project but instead treated as a

prototype with the ultimate goal of building upon its successes and avoiding its failures.

There are numerous other related projects that provide the infrastructure to unite various

devices. For example, MetaGlue [5], described below, provides a sophisticated but

complex framework for device interaction through extension of the Java programming

language [17]. MetaGlue provides the infrastructure for both device interaction and

8



resource discovery, while other systems, such as JNI [8], SLP [15], and INS [1], instead

focus only upon the latter. Finally, there are countless projects that classify themselves as

"ubicomp" or "interactive," such as the Interaction Spaces [21] project or the Intelligent

Room [3]. All of these projects, however, share in the neglect to provide developers with

sufficient tools to build effective and robust applications. The effort required to use these

systems outside of a strictly controlled environment in many cases exceeds their utility.

MetaGlue, developed at the MIT Laboratory for Computer Science and Artificial

Intelligence Laboratory, is a system that provides the infrastructure to maintain intelligent

environments [5]. These environments, essentially collections of pervasive devices called

agents, seek to bridge the physical and digital domains. For example, physical devices,

such as televisions or lights, have virtual representations controlled by agents. These

agents are implemented as an extension to the Java programming language and are

maintained in a global SQL database. MetaGlue's design goals highlight the need for a

distributed system with real-time response, knowledge of state and context, and support

for dynamically changing hardware and software capabilities. Where MetaGlue fails is

where CORE succeeds: MetaGlue's designers note the significant need for support for

debugging yet have made little headway in achieving that need. Without that support,

MetaGlue's immense capabilities will not be exploited outside of a laboratory.

Unlike the relatively high-level approach of MetaGlue, Universal Plug and Play (UPnP)

[16, 20] allows device and service manufacturers to build their own APIs independent of

language or platform. Service discovery is accomplished in UPnP using the Simple

9



Service Discovery Protocol (SSDP) [7], which uses XML for attribute storage. For a

device to offer services, it must advertise its type of service and a URL address for its

XML-based service description. This service advertisement can be done through IP

multicast, allowing directory services and other clients to listen for the presence of

devices. When a client needs a service, it multicasts a query request that can be

responded to by either the provider or a directory index that knows of such a service.

UPnP deserves credit for its robustness and usefulness, but it does not achieve these

properties by providing extensive support for debugging. Rather, it limits the domain

that engineers must consider: manufacturers need only provide the XML descriptions

and APIs for their own devices.

Finally, the Intentional Naming System (INS) [1], closely related to CORE, is a service

discovery and advertisement system. This project was designed as a resource discovery

and location system for mobile and dynamic networks, thus providing greater flexibility

than UPnP. INS consists of a network of Intentional Name Resolvers (INRs) that

provides a resolution service for clients making requests. Devices can join the INS

network by registering a name-specifier, which is essentially a description of the services

it will offer, with a nearby INR. A client can then locate a general service by sending

another name-specifier to an INR, which will return to the client a list of matching

services.

INS differs from many service discovery protocols mainly in the way it describes

services and routes requests: INS integrates service discovery with the actual routing of

10



packets across the network. This integration allows clients to request and access services

independent of physical or network location. In other words, INS allows clients to

specify their intent rather than guessing where a service is located. The advantage of

such a scheme is clear: within a mobile or dynamic network, services are constantly

changing physical or network locations and by sending intentional packets to name-

specifiers, clients need not know where a particular service is connected.

Service discovery, however, is neither CORE's primary goal nor its main benefit.

Instead, CORE borrows many ideas from these related systems but derives most of its

value from its simplicity and practicality. Independent of its service discovery

mechanism, CORE provides users with the ability to debug their connections to

discovered devices without having any prior knowledge of their address or location. This

ability is provided through attribute-based addressing and tools like rollback and change-

point detection.

11



3 Design of CORE

This chapter describes the design of CORE and the important features of its

implementation. Section 3.1 describes the design goals of the CORE system, and Section

3.2 follows with an overview of its important components. Finally, Section 3.3 continues

with a detailed description of the components of CORE.

3.1 Design Goals

The design of CORE is guided by four key requirements. First, the system must be

simple to use by both end-users and developers. Details of device interaction - among

both mobile and desktop devices - should be abstracted away from users and CORE itself

should be transparent to most applications. Furthermore, existing applications should

require little or no modification to be compatible with the CORE network.

Second, the system should be distributed and robust. Like any distributed system, failure

of one or more components within CORE should not seriously degrade the performance

of the rest of the system. Failures of nodes within the connected network are assumed to

be more common within CORE than within standard overlay networks due to its

distribution across both mobile and desktop platforms. Furthermore, since much of the

complexity of device interaction is removed from the individual applications and

assumed by CORE, many of the errors must also be assumed. Consequently, CORE

must be robust in the presence of errors that occur both within CORE and within the

applications that make use of it.

12



Third, the flow of data from a subset of connected components within CORE should be

dynamically regulated by communication from another component. In other words,

CORE should function as an application-level router that receives its forwarding

instructions from other applications. The effect of this behavior is that the flow of data

from one source can be directed to another source or sink by an independent third party.

This effect is both beneficial - for example, multicast can be easily accomplished - and

detrimental - a source may or may not have control over which or even how many

applications will serve as its sink.

Finally, there must be no standardized naming system or hierarchy required by devices

that connect to CORE. Any addressing scheme used by CORE and imposed upon other

applications would subsequently require modification to those applications.

Consequently, CORE must rely upon dynamic attribute caches through systems like INS.

3.2 Overview of CORE

A CORE overlay network is composed of one or more cores. A core is a software

application that can:

Create and remove connections to appliances. Appliances are hardware devices or

software applications that serve as the source of and sink for data transmission.

Connections bind an appliance to a core and are independent of protocol; they are treated

analogously to network flows or input-output streams. Appliances join the CORE

13



network by creating a connection to a core, and leave the CORE network by closing that

connection. Appliances may create multiple connections to a single core and may

connect to multiple cores simultaneously. For example, a printer spooler is a software

appliance that can connect to running cores through TCP sockets, allowing other

appliances to make use of the printer.

Create, remove, and forward data across links. Links are internal constructs within a

core and are similar to entries within a router's forwarding table: if a link exists between

connections X and Y, any data that arrives from the input queue of connection X is

summarily forwarded to the output queue of connection Y. Links are unidirectional and

are not required to be symmetric. Multiple links can be forged between any two active

connections.

Create and remove attributes. All cores contain a cache of attributes defined by name-

value pairs. Attributes serve to name and describe the various appliances connected to a

core and are used in a core's search mechanism. Attributes are added and removed

through instructions from appliances and can be merged with the attribute cache of other

cores. Attributes can be simple name-value pairs or hierarchically maintained as nested

attributes, themselves composed of name-value pairs.

Figure 1 shows an example of two running cores and three connected appliances. The

printer and mobile devices are each connected to a single core, while the desktop

machine is connected to both cores. Data sent by the mobile device is forwarded via a

14



link to the first core, where it is in turn forwarded to the printer. Data sent by the desktop

machine to the first core is also forwarded to the printer, but data sent to the second core

is dropped since there is no link. To the printer, the core is transparent since it does not

distinguish between receiving data from the core or directly from the mobile device or

desktop machine.

Core 1 Core 2

Connection

Appliance

Figure 1: An example scenario using CORE.

15

I

ZZ



3.3 Components of CORE

This section describes in detail the various components of CORE, as they are currently

implemented, and further describes the interaction between these components.

3.3.1 The CORE Database

Within each core is a database that provides storage to encapsulate its complete state,

including all connections, attributes, and recent events. Each core maintains a separate,

independent database that may be replicated and restored at any point. The database

includes state variables for each connection, such as their addresses and ports, attributes,

and frequency of transmission. Furthermore, the database maintains a history of events

that have occurred while the core has been running to provide support for rules and

rollback.

The CORE database provides several advantages over a stateless core. First, debugging

the system is greatly simplified since applications can observe the complete state of the

core both before and after they change it. Second, maintaining a history of events

provides the ability to undo changes that were detrimental or had unexpected results.

Finally, the database allows for increased robustness in the unusual case that the core

unexpectedly fails and must recover from an external source.

The CORE database is contained entirely within the memory of the running core's

process and, unlike a SQL database such as that used in INS, cannot be accessed directly

by other devices or processes.

16



3.3.2 Events

A CORE event is a wrapper for various system events that occur while a core is running.

Events are generated when an appliance connected to a running core transmits data or

instructions to the core, thereby altering its state. For example, a DATA-ARRIVAL event is

generated whenever a core receives data from one of its connections. The data is

wrapped into the newly created DATA-ARRIVAL event along with the identifier of the

transmitting connection and other status parameters. The event is then inserted into the

database to be used by the rule engine.

Events are purged from the database periodically, but this procedure occurs so

infrequently that events, for all practical purposes, may be considered as existing forever

within the core's database.

3.3.3 Rules

Rules in CORE allow users to define the behavior of the system without requiring them

to modify code or use complex object-access protocols. Rules are composed of a

predicate, consequent, and inverse. The predicate is a statement that evaluates to true or

false and, upon evaluating to true, triggers the consequent to fire. The predicate can

operate on any of the components of a core: connections, events, attributes, or even other

rules. For example, the predicate of a Link Rule might test for the presence of a DATA-

ARRIVAL event within the database from a specific, enabled connection.

17



A rule's consequent is an instruction that a core can interpret and carry out. A

consequent may or may not alter the core database. For example, the consequent of a

Link Rule would instruct the forwarding of data from one specific connection to the

outgoing data buffer of another specific connection. The successful completion of a

rule's consequent triggers an event notification that is stored within the core's database.

A rule's inverse is a unique feature to CORE which allows rules to be undone. The

inverse essentially reverses any effects caused by the consequent of a fired rule. Thus,

after applying a rule's inverse, the core cannot determine whether the rule ever fired or

whether it was fired and then undone. For example, if a rule were fired to remove a link

between two connections, that rule's inverse would be the restoration of the removed

link.

There are four rules native to a core: connect, link, attribute, and rollback. The connect

rule creates or removes a connection to a specified host on an indicated port. The link

rule creates a link between two indicated connections. The attribute rule adds or removes

an attribute to particular connection. Finally, the rollback rule initiates the rollback of

any number of previously fired rules.

Figure 2 shows an overview of the rule engine and database as it applies a link rule.

Upon arrival, data is wrapped into an event an inserted into the core's database. The rule

engine then tests the predicate of each rule stored within the database and triggers any

18



rules that can be fired. The result is the firing of two link rules, effecting the forwarding

of data.

Data: 0110..

From: Ob01
Data: 0001

From: Ob00
Data: 0001...

Link Rule 1: Link Rule 2:
Forward Data Forward Data
from Ob1l to from ObOl to

ObQl 0b00

Connection Rule Attribute Rule 3:

Connect to Add attribute

18245.2.12 "Client" to ObOl

Rule Engine
ij k

Database

Event 1 Event 2
Link Rule 1: Link Rule 2.

Fired Fired

/ ~ A

Event 3 Event 4

Attribute Rule 3: Connection Rule

Fired Fired

Figure 2: The rule engine architecture of CORE.

To: ObOl
Data: 0110...

DTo: bOO
~Data: 0001.. /I

3.3.4 Connections

A core's connections are implemented as TCP sockets and are thus bidirectional and

insecure. Connections have a limited state that includes a unique identifier, a status flag,

a time-to-live value, and diagnostic variables. The status flag is used to mark connections

as active or inactive independent of whether the underlying TCP socket is open or closed.

The time-to-live value may be set so that, if no data is received or transmitted via that

connection after the indicated time, the connection will be automatically closed. The

19



diagnostic variables are used by a core to provide debugging tools to users and are

described in detail in Chapter 4.

There are two types of connections: those that transmit application data and those that

transmit control data. Application data is defined to be data that is sent across a

connection to a core but is meant to be forwarded or ignored. That is, application data

does not contain instructions for a core and appears identical to data that would be

transmitted if the core were not present. Conversely, control data contains messages and

instructions intended to be parsed and used by a core. A core will only generate

responses to appliances that have forged a control connection, and thus the core is

transparent to any appliance capable of using only application data.

3.3.5 Links

As described, links instruct the forwarding of data from one connection to another. Since

links are applied so frequently, they are implemented outside the rule engine to improve

performance. Their implementation is via a modified hashtable that permits multiple

values per key. The table provides the ideal mechanism for links: fast lookups with very

little unused space. On average, lookups require constant time and in the worst case

require linear time with respect to the number of links created per key. Insertions into the

link table are achieved in constant time, while deletions require linear time with respect

to the number of links stored per key.

20



3.3.6 Attributes

Attributes within a core are based on those proposed in INS but are less rigidly defined.

Attributes are name-value pairs that can be used to name or describe an appliance

connected to a running core. For example, a printer spooler connected to a core might

install a series of attributes to define its printer's capabilities.

Many systems' implementations of attributes - including previous versions of CORE -

were too complicated to be of much use to applications unless they included a very robust

attribute parser. These parsers were needed to interact with the complex hierarchy used

to store and retrieve attributes. While conceptually a solid design, applications that rely

on CORE should not be forced to use a computationally intensive attribute parser

whenever they need to store simple attributes. Consequently, the standard hierarchical

attribute structure was augmented with a simpler, more flexible structure. Attributes are

not limited to pairs of names and values and are no longer required to be hierarchical

(although the attribute author can impose a hierarchy, if so desired). Instead, attributes

can be stored based entirely on the structure in which they are added.

Like INS, however, a core's attribute cache still supports the maintenance and use of a

hierarchy for complex attributes. This bipartite implementation has both benefits and

drawbacks. Its chief benefit is the allowance of simple, lightweight attributes for mobile

devices. Its chief drawback is that the lack of complexity within simple attributes inhibits

the ability to execute complex queries.

21



Figure 3 shows an example of the two types of attributes supported by CORE. The upper

right part of the figure shows attributes for two appliances defined by name-value pairs

that are stored as a list. Searching for a query using these attributes requires matching the

query against the names of each attribute. Given n attributes, this search requires 0(n)

time to visit each attribute, along with the time spent to search for the pattern within the

string.

The bottom left part of the figure shows the hierarchical structure used by a core to store

attributes similar to that of INS. Searching for an attribute is similar to traversing a tree:

when the branching factor is smaller than the number of attributes, its performance is

markedly better than the simpler list model. The drawback of using a hierarchical

attribute structure is its complexity to use and maintain.

22



Camera Printer

manufacturer type
hp- laser

resoluton pae.

2.mega pixel ettier

tray,.
automatic

Simple
mai

list attribute
ntenance

Hierarchical attribute
maintenance

Figure 3: Two different ways to store attributes within a core.

Special attributes, such as those related to a core's implementation of connections -

including host addresses, port numbers, and unique identifiers - are omitted from public

view. While the core still maintains theses attributes, they are presented only upon

request by an appliance for debugging information. In practice, this behavior greatly

simplifies the interaction between applications and attributes. Finally, users can

specifically instruct the addition of any of these special attributes into the public view of

an appliance's attributes.

23

Attributes

printer
(printer-capability, color)

(printer-type, laser)
(printer-tray, automatic)

camera
(resolution, 2 mega pixel)

(manufacturer, hp)

printer camera

(manufacturer, (resolution,
(type, laser) paper p2mgapx)hp) (2sz m) pixel)

(size, letter) I (tray, automatic)



4 Special Functions of CORE

The current implementation of CORE provides several mechanisms, including rollback,

change-point detection, and rules, that are specifically designed to overcome the

limitations of previous versions. First, rollback provides a tool that effectively undoes a

sequence of rules in order to rollback the current state of the system to a previous state.

Second, change-point detection, a relatively new technique borrowed from other fields of

study, uses observations of variables to aid in the diagnosis of errors. Finally, the rule

engine provides support for users to define their own rules and events, thereby altering

the behavior of the entire system if so desired. This chapter describes these special

functions.

4.1 Rollback

The rollback functionality provided within CORE allows applications to undo a series of

rules that may have caused unwanted side-effects. Applications can rollback any number

of rules, which will sequentially be undone by firing their inverses.

The rollback process begins when an application sends a rollback control message that

contains the rollback number, which specifies the number of rules to invert. The most

recently fired rules are retrieved from the database in a last-in, first-out manner, similar to

a stack. Next, an event is added to the database indicating the rollback process has

begun. Finally, the rules are undone by sequentially firing their inverses, completing the

rollback process.

24



Rollback within CORE is limited to the sequential inversion of its rules. That is, rollback

will not undo changes that occur outside of the scope of the core. For example, suppose a

chat application is connected to a core. Furthermore, suppose that a link is inadvertently

switched and another user receives unintended messages due to the malformed link. The

user can rollback that link and return the state of the system to the original link

configuration, but cannot retrieve the data forwarded erroneously.

The usefulness of rollback unfortunately depends directly upon its complexity. For

example, removing a mistakenly forged link through the use of rollback is convenient but

does not fully demonstrate the power of the rollback functionality. Instead, its behavior

is analogous to the "undo" command that users take advantage of daily. The undo

command, while useful, is by no means capable of the benefits of a well-designed and

well-implemented system restore. This feature of some databases and operating systems

allows users to set checkpoints before making significant changes, allowing them to

reverse those changes should they result in adverse effects. Analogously, as the undo

feature is markedly simpler than the system restore, so too is the rollback feature within

CORE. To achieve the richer benefits of system restore, users must define detailed

inversions of their own rules in order to guide the correct behavior of the rule engine.

Rollback within CORE is also limited by its implementation. Each core's database

maintains only one centralized event log for the entire system. Consequently, various

connections can generate events that are then interdigitated within the event log.

25



Rollback is difficult to achieve because the desired events can be separated by an

unknown number of unrelated events. This behavior cannot be corrected in the current

implementation of CORE but is correctable by modifying the system. For example, the

database can maintain an individual event log for each appliance, preventing events from

being interleaved. The immediate drawback to this division is that rollback is limited to

events that are generated only by a single appliance; it subsequently would not be able to

modify the entire system.

Figure 4 shows an example of the CORE database during the rollback process. In step 1,

the database contains events for three fired rules: an attribute rule, a link rule, and a

connect rule. In step 2, a rollback rule arrives with a rollback number of two. After it is

processed by the rule engine, three new events are added to the database. The first is an

event indicating the firing of the newly arrived rollback rule, while the second and third

events indicate the inversion of the connect and link rules, respectively.

26



1

Rule Engine

Rollback Rule
Rule ID: 4

Rollback Number:
2

Attribute Rule
Rule ID: 1

Fired

Link Rule
Rule ID: 2

Fired

Connect Rule:
Rule ID: 3

Rollback Rule
Rule ID: 4

Fired

Conne t Rule
Rule 1D- 3
Anti-Fired

Link Rule
Rule ID: 2
Anti-Fired

32

Figure 4: The rollback process's effects on a core's database.

4.2 Change-Point Detection

Change-point detection is a relatively new technique used to aid in the automatic

detection of problems within running code. Change-point detection has long been

employed as a tool in signal processing but is slightly modified in this context. A

variable is marked to monitor closely and whenever that variable takes on an unusual

value, a warning is issued. Over time, the accuracy of change-point detection increases

since the accuracy of the probability distribution of the variable's possible values is also

increased. Techniques such as Bayes Nets and Markov modeling lend themselves ideally

27



to change-point detection since they attempt to predict unknown probabilities based on

cause-effect relationships.

Change-point detection is included within CORE to monitor the input and output rates of

connections. Whenever the ratio of the current transmission rate to the average

transmission rate is extremely large or extremely small, a warning is generated. The

current transmission rate is measured by averaging the transmission rates of the

connection over the past ten seconds. The average transmission rate is measured by

using a weighted infinite average.

Observation has shown that the strongest benefit of change-point detection within CORE

is from the identification of failing connections. If a connection usually transmits

consistently but then stops transmitting or becomes intermittent, a core's change-point

detection would quickly identify that behavior as symptomatic of a possible problem.

Consequently, a warning would be presented to the user indicating the presence of a

possible failure in the connection.

Some connections, however, transmit sporadically and the change-point detection

mechanism is of little help in diagnosing problems. Warnings generated by a core's

change-point detection relevant to these types of connections are spurious. To avoid

seeing these warnings, change-point detection within the core can be disabled on a per-

connection basis through the use of attributes. Change-point detection is enabled on all

connections by default.

28



4.3 User-Defined Rules

CORE allows users to customize its behavior by installing their own rules. There are no

requirements placed upon user-defined rules, but the following subsections detail several

issues that should be considered by rule authors.

4.3.1 Event Consumption

There are many events that trigger rules to fire but should do so only once. That is, once

an instance of an event triggers a rule, that same instance should never retrigger the same

rule. For example, when a DATA-ARRIVAL event occurs, it should only trigger a Link-

Rule to fire once for each matching rule, thereby preventing the link from acting on old

events. In other words, data should not be linked repeatedly if it has already been linked.

Since rules cannot alter events themselves, they must instead consume events by utilizing

the event number, a unique identifier that is assigned to events upon insertion into a

core's database. This identifier is guaranteed to be sequential and increasing, allowing

rules to use a simple comparison when needed. The Link Rule, for example, never copies

an event with a previously-seen event number. Although most rules will need to

accommodate event consumption, it is important for rule authors to determine the

individual appropriateness of event consumption for their own rules.

29



4.3.2 Behavior of Rules and Past Events

In the case that a rule is added after an event that satisfies its predicate, the rule author

must dictate whether that past event should trigger the new rule. In some cases the rule

should not distinguish between event arrival time and rule arrival time. For example, a

Data Arrival event that occurred prior to a Link Rule's creation should not necessarily

trigger that rule to fire. In other cases, prior events should trigger a rule's predicate.

Consequently, rule authors must be careful to define the behavior of their rules with past

events. The Link Rule, for example, specifies that prior DATA-ARRIVAL events do not

satisfy the predicate.

4.3.3 Behavior of User-Defined Rules and Rollback

Rule authors may choose to include or omit an instruction to invert their rules. Rules that

omit instructions on reversing their behavior will not be undone during a rollback. They

will, however, be included in the rollback count. This behavior is adverse in that changes

to the system will not be undone despite the intent of the rollback to do so. It is advised

but not required that all rules include rollback instructions.

30



5 Performance of CORE

The performance of CORE was measured through controlled simulation of network

traffic and system load. Four different sets of experiments were conducted to measure its

performance under varying conditions. The following sections describe these

experiments and their results.

Throughout the following discussion of performance, the term load will be used to refer

to the number of connections simultaneously connected to a core. Thus, heavy load

would indicate that many connections are actively transmitting data to the core, while

light load would indicate the opposite. Additionally, the term traffic will indicate the

quantity of data a connection transmits to the core. Heavy traffic indicates that a

connection transmits a large amount of data, while light traffic indicates the opposite.

Finally, there has been some debate over the efficiency and performance of Java TCP-

sockets compared with those of the C programming language. Since CORE was

implemented in Java, the results of such debate are important to consider when

examining its performance. Fortunately, the difference in the performance between the

two languages' implementations appears to be negligible across the Internet, as shown in

[11]. These results, however, may not translate well to a mobile network and must be

treated with a degree of skepticism.

31



5.1 Experiment 1: Heavy Traffic with Light Load

The first experiment was conducted to measure the performance of a core with heavy

traffic and under light load. In this experiment, one connection was established to the

core to serve as a source of data, while a second connection was established to serve as

the sink. A single link was forged between the two connections, and a large file

containing 3,932,214 bytes was transmitted through the core. A special server was used

to time the transmission process by noting the time at which the first byte was transmitted

and the time at which the last byte was received. The times were measured to the nearest

millisecond. A series of control trials were then performed with the same client-server

pair transmitting and receiving the same file, but omitting the core. Figure 5 shows the

results of the first experiment.

The average time required to complete the core's trials was approximately twice as long

as the direct trial. The core's performance in this experiment suffers from the

transmission performance penalty, which is charged to the CORE system because unlike

direct client-server connections, each byte must be transferred twice (once to the core

from the source, and once more from the core to the destination). This penalty cannot be

avoided without the use of direct connections as a type of quality-of-service mechanism.

This approach is discussed further in Section 6.1.3.

32



Figure 5: The performance of a core under light load but with heavy traffic.

5.2 Experiment 2: Heavy Traffic with Heavy Load

The second experiment was conducted to measure the performance of a core when large

amounts of data were transferred under heavy load. In this experiment, four connections

were created to simulate four different data sources. Each of the four connections was

linked to another, unique receiving connection. The four connections then transmitted a

large file containing 3,932,214 bytes to the core concurrently with a random variation of

less than one second in their start times. Each of the four receiving connections was

attached to a dedicated server that received the data from the core. After the final byte

was received, the servers noted the time to the nearest millisecond. Finally, similar to

the first experiment, control trials were performed by connecting the same client to the

33

Performance of a Core:

Heavy Traffic and Light Load

3,500.00 -

3,000.00

2,500.00 -- Time without
CORE

2,000.00
-u-Time with CORE

1,500.00

1,000.00

500.00

0.00
1 2 3 4 5 6 7 8 9 10 11

Trials



receiving server and then transmitting the same file, but omitting the core. Figure 6

shows the results of the second experiment.

Figure 6: The performance of a core with heavy load and heavy traffic.

As expected, the time required to complete the transfer significantly increases, since

CORE's linking mechanism is round-robin. This behavior demonstrates the fairness of

such a strategy in that all four transfers require nearly the same amount of time. Also

note that while the traffic has increased by a factor of four, the time required increased by

slightly less than a factor of four.

34

Performance of a Core:
Heavy Traffic and Heavy Load

14000 -

12000-

10000_

8000 
-+- Server 2

- Server 2

EServer3
6000- Server 4

4000

2000

0

0 1 2 3 4 5 6 7 8 9 10

Trial



5.3 Experiment 3: Light Traffic with Light Load

The third experiment was designed to gauge the performance of connections that do not

transfer large amounts of data or do so sporadically. The same experimental setup was

used as in the first experiment, except that the file size was reduced to 117,550 bytes.

Performance of a Core:
Light Traffic and Light Load

1,800.00 -

1,600.00

1,400.00

1,200.00

c1,000.00 -+-Time without CORE

800.00 -- Time with CORE

600.00 -

400.00

200.00

0.00-
0 2 4 6 8 10 12

Trial

Figure 7: The performance of a core under light load and light traffic.

Figure 7 shows the results of the third experiment. The performance of the core,

compared to the control, is significantly poorer than in the large-file transfer experiments.

The chief cause for this degradation in performance is the overhead performance penalty.

The penalty is charged to the maintenance and monitoring of the various connections

required by the core as it runs. This performance penalty, unlike the transmission

35



penalty, can be mitigated in several ways. These options are also discussed further in 

Section 6.1.4. 

5.4 Experiment 4: Links 

The final experiment was conducted to measure the performance of a core's link 

mechanism. This experiment measured the total time required to multicast a large file of 

size 3,932,214 bytes. Two servers were setup as dedicated listeners and attached to the 

core, while one client transmitted the file. Two links were forged connecting the client to 

both servers simultaneously. Figure 8 shows the performance of the core under this 

experiment. 

Perfonnance of a Core: 

Heavy Traffic with Two Links 

10000 

9000 

8000 

7000 

.-.... 6000 g -+-Link 1 
(1) 5000 
E ---Link 2 
~ 4000 

3000 

2000 

1000 

0 

0 2 4 6 8 10 12 14 16 

Trial 

Figure 8: The performance of a core's link mechanism. 

36 



The results of the link experiment are difficult to interpret. The time required to complete

the multicast transmission ranges from a minimum of approximately 4000 milliseconds

to a maximum of nearly 8500 milliseconds. The expected time to complete the multicast

is approximately 5000 to 6000 milliseconds, or twice the time required to unicast the

same amount of data.

The wide disparity between the experimental trials is most likely due to CORE's

implementation. A core is broken up into several running threads to monitor its various

connections, the database, and the rule engine. Periodically, the database reaches its

maximum storage quota and old events are discarded. This garbage collection process

requires a significant amount of time - approximately one thousand milliseconds - during

which no data is forwarded through the core. This particular delay could have occurred

just before the second link was given control of the CPU and just after the first link ceded

control of the CPU. Consequently, in some trials the transmission time between the two

servers is markedly different.

37



6 Conclusion

This chapter presents the areas of research that remain open after the conclusion of work

on CORE. It then presents conclusions from the design of CORE and its implementation.

6.1 Future Work

The previous designs of systems like CORE led directly to the work completed for this

project, which included numerous improvements over its predecessors. Similarly, the

design and implementation of CORE have led to several problems that can be addressed

in future work.

6.1.1 Security

CORE is an insecure system that places no effort on providing users with privacy or

security. An easy addition to this system is the incorporation of a class of service that

includes a flag for secured communication. Connections can then be encrypted to

prevent plaintext transmission of sensitive data. Access control lists can be used to

manage creation and removal of links for specific connections.

Even with these enhancements, however, CORE remains an insecure system. A

malicious user can flood the system with traffic or control messages, causing the

equivalent of a denial-of-service attack. Significant design and implementation work

remains necessary before CORE is deployable in an untrustworthy environment.

38



6.1.2 Link Breaking

Unlike a traditional network connection, a CORE connection does not have a fixed

destination throughout its lifetime. Links may be added or removed without notifying the

affected appliances. This proves to be a problem for devices that depend upon

initialization when a new connection is formed. Without wrappers to modify such

devices, a core could switch links in midstream without providing proper initialization.

Thus, while the connection abstraction used by CORE - treating connections as streams

and disregarding their protocols and implementations - greatly simplifies the system

conceptually, it increases the difficulty of changing links. CORE is unable to determine

when it is safe to interrupt a sequence of data by removing an old link and creating a new

one. Consequently, if a source is transmitting data, a new link may be created in the

middle of an application's data unit. This causes the new destination to perceive the

middle of a data unit as the start of the data unit, leading to corruption. Solving this

problem without the use of wrappers remains an open question.

6.1.3 Rollback Boundaries

Additional improvements to the rollback mechanism can provide users with increased

control and improve the ability to debug pervasive applications. Exploring the creation

of rollback boundaries - divisions between rules and devices that can and cannot be

rolled back - is necessary before a complex rollback can fully be achieved. For example,

user defined rules that do not include rollback definitions or devices that cannot be rolled

back can be segregated to a specific core.

39



6.1.4 Quality-of-Service

Quality-of-service algorithms were not included in CORE other than those mechanisms

native to TCP. There is significant evidence indicating that QoS algorithms could vastly

improve the performance of future implementations of CORE. For example, it seems

wasteful that connections that communicate frequently through a stable link should have

to suffer from the CORE bottleneck. Their performance would greatly increase if the

communication between the two appliances was accomplished through a direct, point-to-

point connection.

There has been some investigation already into the incorporation of QoS into CORE.

Three classes of service for connections have been identified: a class composed of

connections that are monitored by a CORE at all times, a class that is monitored very

infrequently, and a class that bypasses CORE altogether. The first class represents that

which is already implemented. The second class would be useful for connections that

very infrequently transmit rules or requests. These connections should be checked only

occasionally by CORE's connection management threads. Finally, the third class of

service would be useful in situations like the example above in which connections desire

fast, point-to-point communication.

Networking research has produced significant advances in QoS algorithms and their

performance. This research should be reviewed in further detail and QoS should be

40



implemented in the next version of CORE. Finally, fair queuing algorithms [6] should be

investigated and possibly applied to a core's input buffers.

6.1.5 Limiting Overhead

The overhead required to maintain a core penalizes its performance, especially under

light traffic (see Chapter 5). There are several ways to reduce this penalty. For example,

implementation on a multiprocessor machine can reduce CPU overhead, while multiple

network interfaces can reduce multicast delay.

A more theoretical approach to reduce the overhead performance penalty is to maintain

links through the use of a Random Access Machine with Byte Overlap (RAMBO) [13].

This model of computation is similar to the familiar Random Access Machine but allows

byte overlap in memory. For example, a shared matrix memory configuration on a

RAMBO machine is setup such that both each row and each column represents a word in

memory. The ith row overlaps with the ith bit of each column, allowing for constant time

updates of multiple words; in other words, allowing for constant time updates of multiple

connections' output queues in the running core.

6.1.6 Bayes Nets and Change-Point Detection

The change-point detection algorithms implemented within CORE are primitive yet they

are also very effective. Nearly all problems with communication across pervasive

41



systems involve the cessation or gradual slowdown of transmission from a particular

device. This cessation or slowdown can be easily detected by the running core.

There remains a case, however, for enhancing the change-point detection algorithms used

within a core. For example, if rollback boundaries are developed and implemented,

change-point detection could be used to identify erroneous rollback subsets. This more

sophisticated detection would require more sophisticated techniques. One such technique

is the incorporation of Bayes Nets within the change-point detection mechanism. Bayes

Nets provide a mathematical tool to predict events based on probabilistic modeling of

causes and effects, seemingly an excellent fit for change-point detection. More work,

however, is necessary to confirm this hypothesis.

6.2 Conclusions

Any system that attempts to connect to and interact with other devices on behalf of a third

party must accept two tenets. First, as an application-level router, the system must be

capable of handling or delegating the same tasks performed as a network router,

including traffic control and congestion, quality-of-service, and security. Second, as an

ad-hoc overlay network, the system must provide an easy and efficient way for

appliances to join the network, to leave the network, and to carry out device discovery

and lookup. Adding to these two requirements, any system that attempts to interact with

pervasive devices must provide improved support for both software and hardware

debugging through means of diagnostics and tools.

42



This thesis has presented the design and implementation of CORE, a system that attempts

to satisfy these requirements. CORE makes pervasive systems easier to use by

emphasizing simplicity and providing tools for debugging. Much work remains to be

completed before CORE is usable in practice, including security and performance

improvements. Ultimately, however, the benefits of a system like CORE will become

increasingly important as more networked devices attempt to interact.

Pervasive systems, intelligent environments, interactive spaces, mobile computing, and

ubiquitous computing are meaningless labels. The systems bearing these labels are often

impractical and unwieldy, despite countless scenarios and demonstrations to the contrary.

The solution to this disparity seems simple: for the time being, pervasive devices must

become dependent on systems that provide debugging tools and must favor utility over

performance.

43



7 References

[1]. Adjie-Winoto, W., Schwartz, E., Balakrishnan, H, Lilley, J. "The design and
implementation of an intentional naming system." In Proceedings of the 17th
ACM SOSP, Kiawah Island, SC, Dec. 1999. http://nms.lcs.mit.edu/projects/ins/.

[2]. Balakrishnan H., Kaashoek F., Karger D., Morris R., and Stoica, I. "Looking up
data in P2P systems." In Communications of the ACM, February 2003.
http://nms.lcs.mit.edu/6.829/p2p-lookups.ps.

[3]. Brooks, R. "The Intelligent Room Project." In Proceedings of the 2nd
International Cognitive Technology Conference, Aizu, Japan, 1997.

[4]. Clark, D., and Tennenhouse, D. "Architectural consideration for a new
generation of protocols." In Proceedings of the ACM SIGCOMM, Philadelphia,
PA, September 1990. http://nms.lcs.mit.edu/6.829/alf.pdf.

[5]. Coen, M., Phillips, B, Warshawsky, N., Weisman, L., Peters, S., and Finin, P.
"Meeting the Computational Needs of Intelligent Environments: The Metaglue
System," in 1st International Workshop on Managing Interactions in Smart
Environments. December 1999: pp. 201-212.

[6]. Demers, A., Keshav, S., and Shenker, S. "Analysis and Simulation of a Fair
Queueing Algorithm." In Internetworking: Research and Experience, Vol. 1,
No. 1, pp. 3-26, 1990.

[7]. Goland, Y., Cai. T., Leach, P., Gu, Y., and Albright, S. "Simple service discovery
Protocol." Internet draft. < http://search.ietf. org/internet-drafts/draft-cai-ssdp-
v 1-02.txt>.

[8]. Jini. <http://java.sun.com/products/jini>.
[9]. Kao, A. "Design and Implementation of a Generalized Device Interconnect."

http://org.lcs.mit.edu/pubs/theses/akao/main.ps.
[10]. Kim, H. "Multimodal Animation Control. " Masters of Engineering Thesis.
[11]. Krintz, C., and Wolski, R. "Using JavaNWS to Compare C and Java TCP-Socket

Performance." In Journal of Concurrency and Computation: Practice and
Experience, Volume 13, Issue 8-9, pp. 815-859, 2001.

[12]. Leon, 0. "An extensible communication-oriented routing environment for
pervasive computing." http://org.lcs.mit.edu/pubs/theses/leon/leon thesis.pdf.

[13]. Fredman, M., and Saks, M. "The cell probe complexity of dynamic data
structures," in Proceedings of the 21st ACM Symposium on Theory of Computing,
pp. 345-354, 1989.

[14]. Ortiz, J, and Kao, A. "Connection oriented routing environment: A generalized
device interconnect." http://org.lcs.mit.edu/pubs/ortiz.pdf.

[15]. Perkins, C. "Service location protocol."
http://playground.sun.com/srvloc./slp-white-paper.html.

[16]. Rekesh, J. "UPnP, Jini and Salutation - A look at some popular coordination
framework for future network devices." Technical Report, California Software
Lab, 1999. http://www.cswl.conwhiteppr/tech/upnp.html.

[17]. See http://java.sun.com.

44



[18]. "Specification of the Bluetooth system."
http://www.bluetooth.com/pdf/Bluetooth_1 SpecificationsBook.pdf.

[19]. Transmission Control Protocol, in RFC 0793. http://www.ietf.org/rfc/rfc0793.txt.
[20]. Universal plug and play specification. <http://www.upnp.com>.
[21]. Winograd, T. "Interaction Spaces for 21st Century Computing." To appear in

John Carroll, Ed., HCI in the New Millennium, Addison Wesley. (in press)

45


