
SIREN: A SQL-based Implementation of Role-based

access control (RBAC) for Enterprise Networks

by

Arundhati Singh

S.B., Electrical Engineering and Computer Science (2001)

Massachusetts Institute of Technology

Submitted to the Department of Electrical Engineering and Computer Science in partial
fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the MASSACHUSETTS INSTITUTE1 OF TECHNOLOGY
MASSACHUSETTSINSTITUTE OF TECHNOLOGY

July 26, 2002 JUL 3 0 2003

LIBRARIES
© Massachusetts Institute of Technology, 2002. All Rights Reserved.

A uthor.........................

Department of Electrical Engineering and Computer Science

July 26, 2002

C ertified B y...................................

Sanjay E. Sarma

Associate Professor of Mechanical Engineering

Thesis Supervisor

A ccepted B y........................

Arthur C. Smith

Chairman, Department Committee on Graduate Theses

BARKER

SIREN: A SQL-based Implementation of Role-based

access control (RBAC) for Enterprise Networks

by

Arundhati Singh

Submitted to the

Department of Electrical Engineering and Computer Science

July 26, 2002

In partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT

Increasingly, enterprises are collecting and aggregating key business information in
distributed database networks. Doing so allows data about the company's sales,
organizational structure, logistics practices, pricing, customer base and more to be made
available online. With the capability to dynamically query this data, enterprises can
automate and streamline many important business processes. Due to the business critical
and potentially sensitive nature of this information, the data must be adequately protected
from inappropriate access. In this thesis we present SIREN, an access control framework
for the unique design constraints of these distributed enterprise environments. Our
implementation provides maximum expressive power for privilege specification and the
guarantee of system-wide security policy coherency in such database networks by
unifying the concepts of Role Based Access Control (RBAC) and query rewriting. We
also examine several key considerations in actually deploying SIREN within an
enterprise environment.

Thesis Supervisor: Sanjay E. Sarma

Title: Associate Professor of Mechanical Engineering

2

ACKNOWLEDGEMENTS

Foremost, I owe my thanks to Sanjay Sarma for placing his faith in my abilities. As an
advisor and mentor, he has constantly encouraged me to think in different ways and push
the envelope of creativity. His keen insight, patient guidance, boundless energy and
humor have made working with him a great opportunity and true pleasure.

Many thanks also to all the other members of the Auto-ID Center whom I have had the
privilege of knowing this past year. In particular, Dan Engels was a wonderful source of
practical advice about research and life in general. I am also very grateful to Prasad Putta
and his colleagues at OATSystems, who have so often given generously of their time and
knowledge to further my research along.

To my labmates Amit Goyal, Junius Ho and Nosh Petigara - Over this past year, I have
come to value your friendship greatly. You guys were simply the best part of coming
into lab every day. Thanks for all the laughter and camaraderie, the intellectual
conversations and the silly ones, and the research advice and suggestions.

I owe many thanks to the friends who have given balance to my life throughout my time
at MIT. In particular, my heartfelt gratitude goes to Jaspal Sandhu for his unfailing
support, for listening and for sharing, and for a smile on cloudy days. Thanks also to
Shounak, Erick, Liz, Mona, the Rearhousers, and my fellow Warehousers, especially
Priya and Satwik. You have all truly given me a home away from home.

In this, as with every other endeavor I have undertaken, my family has always supported
me with so much love and understanding. Any real credit for my successes has always
been due in large measure to them. To Dad, Mom, Achal and our three beloved doggies
- all my love and deepest appreciation.

3

TABLE OF CONTENTS

1 INTRODUCTION 7

1.1 The AutolID Center 7

1.2 AutolD Technology 7

1.2.1 Tags and Readers 7

1.2.2 Electronic Product Code (EPC) & Physical Markup Language (PML) 9

1.2.3 Savants 10

1.3 Motivation 12

1.4 Design Considerations 13

2 ACCESS CONTROL PARADIGMS 15

2.1 Mandatory Access Control (MAC) 16

2.1.1 MAC Model 16

2.1.2 Implementing MAC 18

2.1.3 Evaluating MAC 19

2.2 Discretionary Access Control (DAC) 20

2.2.1 DAC Model 20

2.2.2 Implementing DAC 21

2.2.3 Evaluating DAC 24

2.3 Role-Based Access Control (RBAC) 25

2.3.1 RBAC Model 26

2.3.2 Implementing RBAC 28

2.3.3 Evaluating RBAC 31

2.4 Selecting a Model 32

3 IMPLEMENTING RBAC: SIREN 34

3.1 Concept 34

3.2 Implementation 38

3.2.1 Leveraging Database Views 40

3.2.2 Session Activation and Multiple Roles 44

3.2.3 Savant Integration 47

3.2.4 Completeness 48

3.3 Summary 50

4 DEPLOYING SIREN 51

4.1 Role Engineering 51

4.2 Authentication 53

4

4.2.1 Server-Pull Architecture 53
4.2.2 User-Pull Architecture 54

4.3 Privilege Management 56

4.3.1 Local Domains 56
4.3.2 Distributed Queries 59
4.3.3 Inter-organization Access Privileges 61

4.4 Integration With Other Access Control Systems 63

5 CONCLUSIONS 64

5.1 Evaluation 64

5.2 Further Work 66

REFERENCES 69

APPENDIX: PROTOTYPE DETAILS 72

5

LIST OF FIGURES

Figure 1.1: Tagging an object 8

Figure 1.2: Electronic product code partitions 9

Figure 1.3: Reader reads data and stores it to savant 10

Figure 1.4: Savant hierarchy 11

Figure 2.1: A sample multilevel relation 18

Figure 2.2: Starships relation as it appears to users with Confidential access 19

Figure 2.3: Starships relation as is appears to users with Secret access 19

Figure 2.4: Schema for System R's ACL relation 23

Figure 2.5: Relationship between NIST RBAC models 27

Figure 3.1: Query rewriting as suggested by Stonebraker 35

Figure 3.2: Excerpt from conceptualized Role-Privileges relation 36

Figure 3.3: The same query is rewritten differently for different users 37

Figure 3.4: Modified query rewrite architecture in SIREN 38

Figure 3.5: Creating a role view to restrict access to Products table 41

Figure 3.6: How rewriting occurs in our prototype 42

Figure 3.7: Sample rules for update behavior of ProductsSalesClerk role view 43

Figure 4.1: Server-Pull Architecture 53

Figure 4.2: User-Pull Architecture 54

Figure 4.3: Local domains allow decentralized administration 59

Figure 4.4: External domain exposes inter-organization services 61

Figure 4.5: Role server certificates can be used by multiple RBAC modules 63

Figure A. 1: Screen shot of web interface to rewriter 73

6

CHAPTER 1

INTRODUCTION
This thesis presents SIREN, an access control framework for enterprise data networks.

The ideas presented here were developed within the larger context of the current research

at the Auto-ID Center, an international research program headquartered at the

Massachusetts Institute of Technology. In this chapter, an overview of the Auto-ID

Center and its research is provided to understand the need for such an access control

framework and its key design requirements.

1.1 The Auto-ID Center
Recent advances in radio frequency identification (RFID) have allowed us to begin

envisioning a world that is interconnected via embedded wireless technology. The Auto-

ID Center is creating the standards and technologies that will transform ordinary, every

day objects into "smart products" that can communicate with each other, with businesses

and with consumers. This network of wirelessly interconnected physical objects will

revolutionize our interactions with even the simplest of supermarket items. Every such

object will be uniquely identified by Auto-ID technologies and relevant information

about each will be stored and retrieved on demand. An immediate, significant

application of this research is to provide greater automation and intelligence capabilities

to global supply chains [14], which account for approximately 75% of product cost [23].

1.2 Auto-ID Technologies

1.2.1 Tags and Readers
The first step in networking physical objects is to replace traditional UPC barcodes on

product packaging with very inexpensive embedded chips, called tags. An important

7

research goal the Center is working towards is developing RFID tags with a production

cost of only 50 each [29]. Such a tag would necessarily be very simple in design, holding

only an identifying electronic product code (EPC) number, and a small amount of logic

for communication via the chip's RF antenna.

F127.C238.Dr1B.17cC

Mad fc k- I $rnb r PO betrtoies iq
Ur f4 tber - 96 bisL Made micw hip Thi Lo e

Transmits eP code be use :J Sr a Tag"

Figure 1.1: Tagging an object

A reader is a device that can repeatedly poll any tags within its read range every

second. Read ranges vary among different reader models and transmission frequencies,

but a typical reader might be used to monitor all the items on several supermarket

shelves. A key advantage of RFID technology is that readers are not line-of-sight

technology, so they do not require that objects be manually scanned by a human operator

to be registered. A reader will simply register the EPC information of any tag in its read

range. Based on the different RF readers that recorded a particular chip's presence within

their field at different times, the location history of an object can be tracked as it is moved

around a warehouse or shipped between distribution locations. Readers may also take

other environmental records, such as the room temperature at the time of a particular set

of reads. In this way, other information pertinent to an object is also recorded in its

traceable history.

8

1.2.2 Electronic Product Code (EPC) and Physical Markup Language
(PML)
Similar in concept to an Ethernet MAC address, the Electronic Product Code (EPC) is a

96-bit number that can uniquely identify over 1 billion tagged items [5]. Each tag stores

its own unique EPC value in on-chip memory. The current proposal is to break the EPC

down into the following 4 partitions:

XX .XXXXXXX .XXXXX .XXXXXXXXXX
Header Manufacturer Product Serial Number
8 bits 28 bits 20 bits 40 bits

Figure 1.2: Electronic Product Code Partitions

The Header bits are used for version control, so that any future changes to the

partition structure can be transparently adopted. The Manufacturer bits uniquely identify

the particular manufacturer for the product with this EPC. These bits tell us where to

look for general information related to the product with this EPC. The Product code

identifies a class of items, and the Serial bits uniquely identify distinct items within that

product class. The Serial bits of the EPC number are what allow us to distinguish

between two different instances of the exact same product. This capability is another key

advantage of EPC technology over traditional barcodes, which can only identify items

down to product-level, not individual instance-level, granularity.

There are many other features of an object that we may be interested in recording,

apart from those captured by the EPC partitions. For instance, we may want to know an

object's size, weight, position, color, price or temperature at various times. The Physical

Markup Language (PML) is an XML-like language that provides a general, standardized

format for describing the characteristics of any physical object [6]. PML is the lingua

franca of the Auto-ID System, providing objects, consumers and businesses a common

9

format to represent information of interest. Any two entities expect to exchange

information about an object's history or features in PML representation, though either

entity could then choose to transform that information to its own proprietary format.

1.2.3 Savants
The functionality provided on tags is limited so that they can be manufactured cheaply

enough to be a feasible alternative to barcodes. Since the tags themselves are so simple, a

supporting network infrastructure must be able to intelligently process the large quantity

of simple data snapshots collected from various readers. The PML data captured by the

readers is sent to a network of servers known as savants [25]. The savant network is the

backbone of the Auto-ID infrastructure. Within a savant, incoming PML data is parsed

and stored into a relational database.

Spedka Can--d

Trasmis rx yd, from loc o cun d irnh ws Proc e eC C Ode
mbeddrd ' mart Tag on ' d nci ,, dolk donr_. , lon r fi nraicn

tieo c3urflmit; ePC tr riarr 1 1sf frmai

Figure 1.3: Reader reads data and stores it to the savant

These savants can be thought of as Leg T' blocks, which can be stacked together

in various configurations. A tree structure of savants, illustrated below, provides

different depths and breadths of information at each level. In this typical configuration

for a retail organization, each store-level savant holds detailed inventory and sales

information for that day at that location. In contrast, a regional-level savant may only

store weekly data, but aggregated over all stores in that region. Finally, the national-level

savant would likely aggregate data into a monthly granularity.

10

Data is further aggregated at national office
to monitor company-wide performance

National
Savant

Regional distribution
Northeast and accounting Midwest

Savant centers aggregate Savant
local data by week or

month

Boston Stamford Portland Chicago Detroit
Savant Savant Savant Savant Savant

Local-level savants store daily sales, inventory
and other data for a particular store

Figure 1.4: Savant hierarchy

Hierarchical arrangement of savants is an intuitive organization for PML data,

corresponding to the structure of the organization. However, to be useful this data must

be available to be monitored, aggregated or queried by other applications. Typical

applications include real-time monitoring programs such as theft-detection for store

shelves, online analytical processing (OLAP) applications for inventory and sales trend

analysis and batch processing programs to aggregate and transfer data up along the savant

hierarchy. These programs access the information in a savant's database via the Task

Management System (TMS). The TMS is a software component within each savant.

The TMS exposes a Simple Object Access Protocol (SOAP) interface that allows

applications to run tasks on the savants. Tasks are customizable and can be created to

perform any action on the PML data, or to interface savant data with other applications in

an enterprise's network. The TMS supports tasks that cascade down the savant

hierarchy. For instance, an SQL query task against a national-level savant may require

data from each regional level savant. In response to such a task, the TMS component of

11

the national-level savant would automatically spawn sub-queries to each regional savant

and compile the results. Recurring tasks can be set to automatically repeat on some

specified schedule.

1.3 Motivation
Much of the data collected and aggregated by the savant database network is potentially

sensitive business data, providing insight into a company's sales, organizational structure,

logistics practices, pricing, customer base and more. Ensuring the security of this

information is absolutely vital to the acceptance of the Auto-ID system. Data security

incorporates three main goals: protection against imposters, protection against

eavesdroppers and protection against unauthorized actions by legitimate users. Therefore

a truly secure system must provide: authentication to verify the identity of a user,

encryption to protect the privacy and integrity of user transactions, and access control to

limit the actions allowed by different users.

Authentication and encryption are lower level problems in that providing these

services on a communications channel requires no knowledge of the specifics of a

requested transaction. Any message sent across the channel is encrypted and signed in

the same way, regardless of the actual message contents. Access control, on the other

hand, inherently requires examining the contents of each message, analyzing whether the

user is allowed to make that particular request.

This thesis focuses on developing an efficient and flexible framework to address

the access control problem for enterprise databases in such a large, distributed

environment. A protocol for authentication and encryption is assumed to be present and

available as a service.

12

1.4 Design Considerations
Database access control is a broad and widely researched area. However, there are

specific challenges and unique requirements that constrain the realm of feasible solutions

for a system of the scale envisioned by the Auto-ID Center. We attempt to find a good

solution within our constraints, with the expectation that such a solution will generalize

well to other large, hierarchical data networks. In evaluating any solution, the following

factors are key considerations.

Performance: The PML data stored in the savants is often business critical

information. Ideally, access control should affect the speed of queries and other tasks as

minimally as possible.

Scalability: The sheer number of users and amount of data for which access must be

monitored is one of most challenging aspects of this problem. An effective solution

should support compartmentalizing access control in domains, each of which regulates a

smaller subset of the users and data.

Flexibility: Any solution must be easily adaptable to the needs of disparate

organizations and capable of expressing a range of access control policies. For a single

element of data, different types of access, such as read, modify or delete permission, may

be required for different users. PML data is also more complex because of it is 3-

dimensional in nature, in the sense that all data has three attributes:

* Datatype: such as EPC data, Sales data, Environmental/Sensor data, etc.
* Topology: the location in the savant network (local, regional, national, etc.)
* Time Range: can range from minutes to years

The access control solution should support policies that define any arbitrary region in this

3-dimensional space as permissible for a particular user and type of access.

13

Application Agnosticism: The access control solution must provide a suitable

level of service to a variety of different applications: ah-hoc queries, batch processing or

online analytic processing programs.

Platform Independence: Many large organizations operate in heterogonous

computing environments, with different protocols, database software, operating platforms

and hardware resources. To be viable at an enterprise level, a suitable access control

solution must be as platform independent as possible.

Ease of Administration: Access control for a large enterprise may potentially

involve monitoring privileges for thousands of users. A feasible solution must ease the

administrative burden of creating, reviewing and updating privileges as much as possible.

14

CHAPTER 2

ACCESS CONTROL PARADIGMS
A variety of access control frameworks have been proposed by security researchers over

the years. The most widely accepted models in the literature are Mandatory Access

Control, Discretionary Access Control and Role Based Access Control. In this chapter,

we review the major concepts behind each of these models and existing implementation

strategies for each. The different models all share a basic conceptual framework in which

users require privileges to perform actions on system resources. System resources are

"containers of information", and might typically be operating system directories and files,

or database relations and tuples.

The goal of access control is to protect these system resources from improper

actions by users. The definition of "improper actions" is derived from an organization's

security policy, which defines the principles on which access to resources is granted or

denied to different users. The existence of a coherent security policy is a prerequisite to

any meaningful data protection, as access control mechanisms are merely tools set up to

enforce these policies. There are two important constraints that any viable security policy

must encompass to ensure data integrity:

Separation of Duties: Roles and responsibilities are divided so that a single user

does not have the privileges to compromise critical procedures. Separation of Duties

constraints are usually specified by administrators as pairs of job functions or privileges

that can not be simultaneously granted to a user. The access control system must then be

able to enforce these constraints by ensuring that no user is assigned a privilege or group

pair in violation of them.

15

Principle of Least Privilege: Each user shall have exactly as much access as

necessary to fulfill his job function, but no additional privileges. In practice,

implementing the Principle of Least Privilege translates to giving system administrators

enough flexibility and expressive power to set fine-grained access control policies on

different data for different users.

Therefore an important consideration in examining access control models is whether they

support enforcement of these constraints effectively and efficiently.

2.1 Mandatory Access Control (MAC)
The Mandatory Access Control (MAC) model is based on the lattice framework and

information flow models of Denning [8], and was first formalized by Bell and LaPadula

[4]. Sandhu presents a summary of MAC concepts as well as several more recent

extensions of this framework [27].

2.1.1 MAC Model
The principle behind the MAC model is that every user and every resource is assigned to

some pre-defined security class. The security class to which a user is assigned defines

that user's privileges. A security class is a combination of a hierarchical sensitivity level

and any subset of non-hierarchical categories that define what domains the clearance

level applies to. The hierarchical nature of MAC sensitivity levels is why this approach

is sometimes referred to as the multilevel security (MLS) model. Whenever information

is transferred from one resource to another, or between a user and a resource, the

information is said to be flowing from the security class of the original resource or user to

the security class of the requesting resource or user. The MAC model requires the formal

16

definition of a precise information flow policy that regulates the information flow

between any two security classes.

As a concrete example, MAC systems are typically found in defense-related

applications, where the security class is composed of a military clearance (Confidential,

Secret, Top Secret, etc.) as the sensitivity level plus a set of departments or projects as the

categories in which the user has this clearance. Any file or other system resource is

classified as belonging to one of these security classes, and every user is also assigned to

a security class. A user can access any resources in his security class. A resource is in a

user's security class if they share the same sensitivity level, and the user has category

permissions for the department to which the resource belongs. The set of resources

outside his own security class that a user may access is determined by the information

flow policy. A basic information flow policy in a MAC system would incorporate the

Bell-LaPadula restrictions [4]:

Simple Security Property: A user can only read a resource if the security class of the

user is greater than or equivalent to the security class of the resource. This means a user

can read any information of a lower or equivalent security class. However, he can not

access information that is more highly classified than his own clearance level permits.

*-Property: A user can only append a resource if the security class of the user is less

than or equivalent to the security class of the resource. Note that this restriction means

that users can not write to resources at lower classification levels. While this may seem

unintuitive because presumably the user's clearance level ensures his trustworthiness, this

is an information flow restriction intended to prevent highly classified users from

accidentally writing highly classified information in less classified resources. That

17

accidentally written information would then be viewable by other users who should not

have had access to it. However, the *-Property does allow a user to append information

to files of a higher security class, despite the fact that he can not read the contents of the

rest of the file. Such capability can be useful in classified systems, where intelligence

analysts can append notes into classified files for their supervisors, without having read

access to the rest of the classified file's contents. However, other systems find it more

intuitive to use a modified *-Property in which users can only write to resources within

their own security class. This prevents a user from appending contradictory information

to a file because he was unable to access its other contents.

2.1.2 Implementing MAC
The actual implementation of the MAC framework in database systems is based on the

notion of multilevel relations [15, 28]. A multilevel relation is similar to a normal

database relation, except that the value of each field in a tuple is actually a pair: (field

data, security class). The example Starships relation below contains information from

three security classes: Confidential [C], Secret [S] and Top Secret [TS]. Such a relation

is multilevel in the sense that it appears differently when queried by users with different

security levels. The security class of the fields requested by a query must be authorized

by the security policy to the requesting user's security class.

Starship Objective Destination

Enterprise [C] Exploration [C] Talos [C]

Voyager [C] Spying [S] Mars [TS]

Figure 2.1: A sample multilevel relation

18

If a user with Confidential access requested to read this relation, they would see output

shown in Figure 2.2, whereas a user with Secret access would see the output shown in

Figure 2.3. A user with Top Secret access would see the full table, as it appears above.

Starship Objective Destination

Enterprise [C] Exploration [C] Talos [C]

Voyager [C] NULL NULL

Figure 2.2: Starships relation as it appears to users with Confidential access

Starship Objective! ! Destination

Enterprise [C] Exploration [C] Talos [C]

Voyager [C] Spying [S] NULL

Figure 2.3: Starships relation as it appears to users with Secret access

2.1.3 Evaluating MAC
The key advantage of the MAC model is that it ensures consistent enforcement of the

access control policy system-wide. This is due to the centralized nature of MAC; the

information flow policy and all security class assignments are centrally administered with

no access control policy decisions delegated to users. Among the frameworks we will

discuss, MAC systems generally rate higher on the Department of Defense's Trusted

Computer System Evaluation Criteria [33].

A disadvantage of the MAC model is that it is not as flexible as other approaches

in terms of the range of access policies that can be expressed within this framework. The

centralized nature of MAC administration, which provides much of the model's security,

also makes it unsuitable for many non-military environments. In a typical commercial

enterprise, there are often no uniform clearance levels that are used throughout the

19

organization. Even if users can be classified into a clearance hierarchy, it is usually more

difficult to fit system resources into such classifications. Additionally, it is often more

desirable and practical for the users in various departments to determine the appropriate

access restrictions on their resources and privileges for their staff members, rather than a

having centralized security administrator assign security classes. In large, non-military

organizations, the overhead costs to centrally administer a MAC system would be

considerable. Finally it is possible to imitate a MAC-like security policy within newer,

more flexible access control frameworks by setting up appropriate constraints [19] and

this is often a better alternative than a strict MAC implementation for commercial

enterprises. In practice, MAC remains mostly limited to military and defense systems.

2.2 Discretionary Access Control (DAC)
Discretionary Access Control (DAC) is the most prevalent model for regulating data

access in civilian businesses and non-military organizations. The term DAC is applied as

an umbrella term to a group of related approaches that share common principles. The

National Computer Security Center provides an overview of several variations of the

DAC model [11].

2.2.1 DAC Model
The central concept of DAC is that every resource has some user who "owns" it. This

user can then set the permissions for others to access that resource at his discretion. DAC

completely contrasts the MAC model in that the overall access policy is decentralized

among all the resource owners. One feature of DAC models is the concept of delegation,

whereby a user who does not own a resource but has some permissions for that resource

20

can assign whatever permissions he has to another user, without the intervention of the

resource owner.

One important point on which various DAC models differ is the delegation of

privilege-granting authority. Hierarchical control gives ownership and delegation

authority to the head of each organizational unit in the hierarchy. That unit's head user

then handles delegation of access granting privileges to various resources to the

appropriate sub-groups of users within that unit. In this way, access control is partitioned

into hierarchical domains, easing administrative overhead and allowing policy decisions

to correlate to the organizational power structure. A more flexible approach is Laissez-

Faire control, which allows any user with access granting privileges on a resource to

delegate that access granting privilege to any other user. In contrast, Strict Ownership

control means that only the creator of a resource can set access permissions on an object

and can not delegate his permission granting capabilities to any other users.

2.2.2 Implementing DAC
Although there are many variations in details among DAC implementations, most

systems fall in one of two general categories: Access Tokens or Access Control Lists.

2.2.2.1 Access Tokens
The idea behind Access Tokens, sometimes called Capabilities, is that when a user

wishes to access some resource, he must present a token of proof to verify his privileges

on the resource. The token is an identifier that specifies the resource for which it is valid,

and the access permissions which its possessor is entitled to for that resource. When a

user attempts to access a resource, the system will ask for the requisite token before

granting access. Tokens may be passed from one user to another, and the contents of a

21

token can not be modified without the intervention of the system's token granting facility.

In this type of system, a user has a set of tokens granting him access to various system

resources. Each user's tokens are stored in a special file that is protected by encryption

or other hardware or software safeguards.

In theory, access tokens could be useful in creating systems that adhere to the

Principle of Least Privilege and Separation of Duties, because each user can be given

only those tokens which he requires and no other tokens, and it is easy to check whether

the set of tokens possessed by a user gives him unchecked permissions on any critical

procedures. Tokens can also result in faster processing since the access control system

needs only quickly check the user's requested action against the user's token, rather than

a potentially expensive permission table look-up.

In practice, a token based systems are rare because in these systems it is difficult

to list all the users who posses a particular token, making it difficult for administrators to

get a clear picture of the overall security policy. Also, the question of token revocation is

tricky when an object is deleted, or if a user needs to revoke all delegated tokens. One

alternative to revocation is to simply have tokens expire after a fixed interval. However,

this approach is still vulnerable to temporary privilege creep, where a user retains old

permissions after changing job functions because his old tokens are still valid for some

time. Redell [22] provides a more complete discussion of token revocation issues.

2.2.2.2 Access Control Lists
Access Control Lists (ACLs) are the inverse approach of Access Tokens. Instead of

associating a collection of resource permissions with each user, an ACL is a list of users

associated with a particular resource. For each user in the list, the ACL specifies what

22

actions the user may perform on the resource. The owner of a particular resource has edit

privileges on the resource's ACL.

An important feature of ACLs is support for user groups [1]. Rather than listing

permissions for many individual users, an ACL may contain an entry detailing

permissions for a group name, and any users in that group will then automatically have

the associated permissions. The use of groups allows ACLs to scale to a large number of

users without creating files of unwieldy size. This also eases the administrative burden of

maintaining ACLs, since simply removing a user from a group will automatically remove

his access privileges on any ACLs which list that group.

In databases, ACLs are actually implemented as separate relations that store

information about user access privileges for all other relations. This relation-based ACL

approach was first suggested by Griffiths and Wade for the System R database system

[13]. In their paper, they describe a SYSAUTH relation to store this ACL information.

Column Name Data Type Significance

UserID String Database username or groupname

TableName String Another relation in the database; this row
defines the specified user's privileges on this
table

Type Character "T" = table; "V" = view

READ Boolean Indicates user can read specified table

INSERT Boolean Indicates user can append specified table

DELETE Boolean Indicates user can delete from specified table

UPDATE Boolean Indicates user can update specified table

GRANT Boolean Indicates user can grant any privileges he
possesses to another user

Figure 2.4: Schema for System R's ACL relation

23

Figure 2.4 illustrates the SYSAUTH relation schema. Similar approaches are still used in

many popular modem databases, such as the open-source PostgreSQL database, where

access information for all other relations is stored in the PGCLASS relation [21].

Note that an "ACL relation" differs from the multilevel relations described earlier

in that access control information is not stored within each relation. Rather, the access

control information is stored in a separate relation, such as SYSAUTH. Another

difference is that since "ACL relations" are DAC implementations, grant permissions are

supported so that users can modify the ACL information by granting some of their

permissions to other users, which is not supported in MAC systems. However, multilevel

relations can support a finer granularity of access control (attribute/field level), whereas

ACL relations can only support access control at the relation or column level.

2.2.3 Evaluating DAC
The major benefit of DAC is that it affords much more flexibility than the MAC model.

The approach naturally supports different domains of access, where access policy can be

set at resource-by-resource level granularity by users within those domains. This eases

the burden on system administrators, who no longer have to set access policy to meet the

disparate needs of various units across a large enterprise. Presumably, in a DAC

approach, the access policy for a resource is set by the user who is best able to judge the

minimal subset of other users who need access to the object. Every resource can have

slightly different access permissions in the DAC model, whereas in the MAC model each

resource must be force fitted into one of the pre-existing security classes. The resulting

security class assignment may give access to a larger subset of users than the minimal

24

subset of users who actually require access. In theory, this means that the Principle of

Least Privilege should be more easily implemented in DAC systems.

ACL-based approaches are the most widely implemented DAC solution and offer

the distributed policy-making ability required by many non-military organizations.

Though these ACL implementations are generally considered a better access control

alternative than token-based systems, they still suffer from the certain fundamental

problems with the DAC framework.

The major drawback of the DAC model is the difficulty of monitoring whether

users are setting appropriate access permissions on resources within their control.

Because the access decisions are distributed throughout the organizations, it becomes

difficult to ensure that some minimal access control policy is enforced system-wide. In

particular, it is hard for system administrators to ascertain whether the Separation of

Duties constraint holds when many different users own critical resources and are setting

access permissions on those resources independently of each other.

2.3 Role-Based Access Control (RBAC)
Role-Based Access Control (RBAC) is a relatively new framework that has been

attracting attention from the research community and security vendors in recent years. It

is intended to better suit commercial requirements than the MAC model does, while still

providing guaranteed enforcement of a coherent security policy across the enterprise.

The RBAC framework incorporates the MAC concepts of centralized policy definition

and centralized (as opposed to user) ownership of resources. It also draws upon the

concept of user groups and ACLs from DAC. The research community has only recently

begun to converge on a standardized, formal definition of RBAC [10].

25

2.3.1 RBAC Model
RBAC is centered around the concept of roles. A role is an access control category that

maps to a particular job function in an organization. In a hospital, typical roles might

include Surgeon, Physician, Resident, Nurse, Clerk, Pharmacist and so on. Users can

then be assigned to one or more of these role categories based on their job functions.

Each role is defined to have certain permissions, which are available to all users in the

role. One difference between roles and MAC security classes are that a role's privileges

are not defined by classification of system resources into different classes. The question

of how privileges are defined is left to the implementation. By not classifying system

resources into security classes, slightly different access policies can be set for each

resource and role rather than specifying a monolithic information flow policy for all

resources in the same class. Role-based permissions are attractive because they provide a

layer of abstraction between users and privilege assignment. In most organizations, the

security policy defining privileges for any job function changes much less often than the

assignments of users to various job functions.

The proposed standard for RBAC [10] submitted by the National Institutes of

Standards and Technology (NIST) defines 4 levels within the RBAC model. The first

level, RBACO, represents the simplest feature set required for a system to be considered

an RBAC implementation. RBACO requires the ability to make many-to-many user/role

assignments and role/permission assignments. It also includes the concept of a session,

where a user must log-in and activate some subset of his roles before making access

requests.

26

A higher level of functionality in this model is RBACI, which supports role

hierarchies. The hierarchy is a seniority ranking of roles in which more senior roles

automatically inherit the permissions of their juniors. Continuing with the hospital

example, some set of actions can be defined for the role of Resident. To avoid

redundancy, the role of Doctor does not have to redefine all these privileges, but can

instead inherit them from Resident. Additional privileges available only to the Doctors

can then be defined. RBACI is an administrative enhancement that simplifies

role/privilege assignment.

RBAC2 supports for constraint setting and checking. Static checking of a

Separation of Duties constraint makes certain that no user is assigned to a set of roles that

would violate this constraint. Any attempt to assign a user to two conflicting roles would

fail. Dynamic constraint checking allows such conflicting role assignments to be made to

a user, but enforces Separation of Duties at session initialization by never allowing two

conflicting roles to be activated in the same session.

RBAC3 support combines the features of RBACI and RBAC 2, and by transitivity

RBACO. The relationship between the models is shown below.

RBAC
3

RBA RBAC2

RBAC

Figure 2.5: Relationship between NIST RBAC models

Providing the features of the higher-level RBAC models is often very difficult in existing

decentralized DAC frameworks.

27

2.3.2 Implementing RBAC
Many existing RBAC implementations are research prototypes and do not satisfy the

requirements for all 4 levels of the NIST RBAC standard. Security vendors have only

recently started to incorporate parts of RBAC framework into their products. The

existing implementations tend to fall into one of 2 categories: ACL-based or Object-

Oriented.

2.3.2.1 ACL-based Approach
Several existing implementations of RBAC systems use ACLs under the sheets as the

actual privilege authorization mechanism. Users are isolated from the details of

maintaining these ACLs by application-level code that manages them and checks that no

user interactions with the application produce ACLs in violation of the RBAC

constraints.

Ferraiolo, et al. present such an implementation for a web server, where access to

any URL is governed by an ACL for that URL [9]. The ACL contains a list of roles that

have the requisite permissions. The web server is configured so that a CGI script maps

any URL request to the appropriate ACL. User sessions are also implemented via an

ACL mechanism, which lists the possible roles that a user may choose to activate at

session initialization. Once a user has established a session on the server, any request

made by the user results in checking the URL's ACL to see whether it includes any of the

roles in the user's ARS ACL. Each URL's ACL just has a list of user names in that

ACLs can only be modified via the Administrative interface, which enforces certain

consistency checks.

28

A more sophisticated but conceptually similar approach is outlined in [26]. In this

implementation, every time a user opens an application, that application queries an access

control server for information about the user's privileges for that particular application.

The access control server looks up the user's privileges in an ACL and returns the

information to the requesting application. The applications are then responsible for

ensuring that the user is not allowed to execute any privileges beyond those returned by

the access control server. Similar functionality can also be implemented by leveraging

the security features built-in to the Java programming language, as detailed in [12].

The question of what differentiates RBAC roles and role/privilege assignments

from DAC user groups and ACLs is a common point of confusion. The two models

actually provide equivalent functionality in terms of the security policies they can express

when considering simple RBAC implementations [2]. These implementations take the

view that RBAC is simply a set of guidelines and tools for setting up and maintaining

groups and ACLs in a structured way across the entire system.

2.3.2.2 Object-Oriented Approach
Barkley suggested a different implementation strategy for RBAC systems that leverages

object-oriented concepts [3]. Each role is represented by its own class, and the methods

defined within that class represent the actions authorized for that role. While ACL-based

RBAC systems simply provide a better framework to administer ACL functionality, an

object-oriented implementation actually provides more flexibility in the types of policies

that it supports. This is because within each object's method, conditional checks can be

performed or data can be filtered to provide arbitrarily complex, fine-grained control over

what permissions are allowed and under what circumstances. As an example, a

29

getRecordData(patientID) method in the role class Nurse might include code to perform

the following checks:

* Is this nurse currently marked as on-duty in the scheduling program?
" Does the patientID correspond to a patient in the same department as this

nurse is assigned to?
" Filter the returned record data so that no billing/financial information from the

patient record is shown to the nurse.

However, the getRecordData(patientID) method in the role class Financial Clerk could

provide different checks and data filters for the same patient records. It would be

difficult to support such complex access restrictions on top of an ACL-based

implementation, whereas in an object-oriented implementation, this involves only a few

lines of code for each method.

In [16], Neumann and Strembeck describe an object-oriented RBAC

implementation using the extended Object Tcl (XOTcl) scripting language. A single

instance of a RoleManager class is the application interface to this RBAC system. This

RoleManager object then manipulates relationships between User, Role and Permission

objects. This approach differs slightly from Barkley's proposal in that it creates separate

Permission objects, rather than defining permissions within Role class methods.

Different subclasses of Permission objects can be created for different types of system

resources. Each such object can be coded to represent as coarse or fine grained a

privilege on the resource as desired. This implementation takes advantage of certain

dynamic class inheritance features of XOTcl known as per-object mixins [18] to register

different Permission objects with different Role objects, and different Role objects with

different User objects. The use of per-object mixins, which allow users to modify the

class inheritance order on an object-by-object basis, is also used to support the formation

30

of role hierarchies. Methods for privilege review and specification of constraints of

privilege-role and role-role relationships are also provided by the RoleManager object.

Object-oriented implementation strategies provide fine-grained control and

support a wider range of security policies than implementations that rely on ACLs under

the sheets. However, there are a variety of drawbacks that make this approach less

desirable for large enterprise networks. The primary concern is performance; in [16] the

authors note that the type of XOTcl or Java based object oriented implementations they

suggest are better suited to small or mid-sized environments. Another issue with object

orientation implementations is maintenance. Changes to the permissions require the

system administrators to modify the source code for the relevant classes and redeploy

them, which may be impractical in large organizations that already place many demands

on their system administrators. Administrative effort is also required to verify the

correctness of the permission code against the security policy; this again requires a

system administrator to step through the code in each of the relevant class files.

2.3.3. Evaluating RBAC
The real value of the RBAC framework is not based solely on its ability to provide some

additional functionality as the extent of additional functionality varies based on the

implementation strategy. Rather, the real advantage that the RBAC framework provides

is ease of administration and policy verification. This is an important issue for large

enterprises where accurately maintaining access control information for thousands of

users and resources is a major factor in overall security. RBAC allows an organization's

existing structure and security policy to be directly mapped to the access control

31

mechanism. In effect, it is a methodology to reduce the semantic gap between the

description of the policy and the underlying implementation mechanism.

There is no need to determine what groups, ACLs or objects must be created to

correctly implement the security policy, because the structured framework of RBAC

provides this information intuitively. If a user changes positions within the organization,

a system administrator only needs to make a change in one place: the user's assigned

roles. There is no need to delete the user from multiple lists all over the system.

Privilege review and modifications to the security policy are easy because they can be

done simply by checking each role's permissions, independently of any other roles.

Overall, the RBAC approach is a good compromise between DAC's flexibility and

MAC's security.

2.4 Selecting a Model
For the needs of enterprise environments, Role-Based Access Control seems to be the

best alternative as a fundamental model. In fact, RBAC systems can actually be

configured to imitate either MAC or DAC policies [19]. We note that the RBAC model

does not specify the nature of privileges. This key detail varies widely among

implementation strategies and greatly affects their expressive power, performance and

ease of administration. One drawback of both the ACL-based and object-oriented

implementations discussed is that they require system administrators to define a finite set

of methods or actions that can be performed on system resources. While this may be

feasible when defining an API for standard applications to utilize, it will generally limit

the ability to run very complex database queries. However, key applications such as

online analytic processing (OLAP) to identify data trends often require complex multi-

32

level queries. Another drawback is that defining a fixed API to access data also prevents

users from running ad-hoc queries directly in SQL against the database. To run ad-hoc

queries, the users must be aware of the API calls that are provided, meaning that the

access control implementation is not transparent to the end-user.

In the next chapter, we present SIREN, an implementation strategy that provides

more flexibility than traditional ACL-based access control but that we believe is easier to

administer than object-oriented approaches. It also addresses the access control needs of

OLAP applications and ad-hoc queries while maintaining transparency of the access

control implementation to the end user.

33

CHAPTER 3

IMPLEMENTING RBAC: SIREN
As discussed in the previous chapter, Role Based Access Control is a useful model for

thinking about access control in enterprise environments because it maps intuitively from

the organization's written security policy. In designing an effective implementation

strategy for RBAC in database networks, we emphasize transparency and flexibility: the

end user should not need to be aware of any details of the access control application or be

constrained to use a particular API when expressing data queries. In other words, a user

or application should be free to run any SQL query without regard to permissions and

assume that an underlying service is prepared to handle the query appropriately. In this

chapter we describe SIREN, an implementation strategy for RBAC in database networks

that adheres to these principles.

3.1 Concept
An implementation strategy that performs access control directly on an SQL query

eliminates the semantic gap between the way an application or user expresses its request

and the way the access control system expresses its restrictions. Stonebraker first

proposed query rewriting to perform database access control [31]. The idea is simply to

take an incoming query and modify it so that it no longer requests access to data the end

user doesn't have privileges for. The result set can then never contain data that the end

user is not authorized to see. Stonebraker suggests that such query rewriting be

implemented within a separate module of a database. This preserves the transparency of

the solution to end users, who connect to the database normally. The query is then

modified internally by the rewriter and passed on to another module for execution.

34

User Application

SQL Query
6

2

Database Rewriter
4

New Query Result Set

Relational 5
Tables Optimizer &

Executor

Figure 3.1: Query rewriting as suggested by Stonebraker [31]

1. An end-user (application or user) generates some SQL query.
2. End user establishes a connection to the database and transmits the query.
3. A rewrite module looks up rewrite information, stored in special system relations, for

each table mentioned in the query.
4. The rewrite module then uses this information to add conditional clauses that restrict

the scope of the query.
5. The rewritten query is then passed on to the database's optimizer and executor

modules.
6. The result set is returned to the end-user.

As described above, query rewriting is a local solution for access control on a

single database. The implementation proposed in this chapter generalizes the query

rewrite concept to an enterprise environment of interconnected database servers, such as

the savant network outlined in Chapter 1. The Stonebraker approach presents the query

rewrite system from a Discretionary Access Control perspective. Rewrite rules are seen

as a tool similar to ACLs, but providing a finer-grained specification of privilege. In this

view, each relation is owned by some user who created it. That user may then specify

portions of the table as accessible to other users [32]. However, we noted previously that

in the DAC model it is difficult to verify that the security policy is enforced system-wide.

35

SIREN is an implementation strategy that unifies query rewriting with RBAC

principles; it provides a framework that leverages query rewriting in a structured way to

provide the benefits of RBAC. As specified in the RBAC model, permissions are still

granted to specific roles and users are then assigned to those roles. However, the RBAC

model leaves defining the nature of permissions up to the implementation. Our

suggestion is that the permissions be conditions specified in SQL that limit what data any

role may access for any table. For an incoming query, these conditional expressions are

retrieved based on the requestor's role. The query is then rewritten to take into account

the SQL restrictions specified in the permission.

The permission information for the different roles can be conceptualized as a

relation. The combination of [Role, Table] is the primary key of the relation. The

Privilege attribute in this relation is a SQL SELECT statement which describes the

portion of the data in the specified Table available to a certain Role. Consider the

following relation:

PRODUCTS: pid, name, price, quantity, discount

Privilege information for this table can be conceptualized as the following relation:

Role Table Privilege

SalesClerk Products Select pid, name, price, discount from
Products where quantity > 0

HumanResources Products Select NULL from Products

Stockroom Products Select pid, name, quantity from
Products

Figure 3.2: Excerpt from conceptualized Role-Privileges relation

36

The rewriter module then takes an incoming query and rewrites it to run within the

restricted scope specified by the privileges for this role. Running the same query

produces different results if run by users with different roles depending on the conditions

specified in their privileges.

Human Resources Salesclerk Stockroom
Select * From Products Select * From Products Select * From Products
Where name = 'Coke" Where name = 'Coke" Where name ='Coke"

Select NULL from Products Select pid, name, price, discount Select pid, name, quantity
From Products From Products

Where name = 'Coke" AND Where name ='Coke"
quantiby > 0

Figure 3.3: The same query is rewritten differently for different users

The example above is based on the privileges given in Figure 3.2.

This approach may seem similar to the "ACL relations" mentioned in the previous

chapter, but is in fact more expressive. SIREN provides very fine-grained control since

any constraint expressible in a SQL conditional can be used to specify privileges,

meaning that any arbitrary section of the table can be specified for each role rather than

simple column-wise constraints. Additionally, the SQL conditional can include any

functions or system calls that the database administrator wishes to make available to

users from the database. An example of this could be an isOnDuty(employeeID) function

that makes an external call to the company's electronic scheduling program and returns a

Boolean value indicating whether the indicated employee is scheduled for the current

shift. Including such a restriction in the privilege conditional dynamically changes an

employee's access rights, making the information available only at certain times. Finally,

37

this approach works for complex queries involving joins or multiple subquery levels

without the need for defining special functions in an API to handle these cases.

3.2 Implementation
In this section, we outline design issues in implementing SIREN. Given the

heterogeneity of computing resources in large enterprises, the ability to be platform

agnostic is important. To support access control across a connected network of database

servers, the rewrite system should be moved up out of the database. The architecture

shown below gives us the flexibility to implement the same rewrite interface for different

backend databases. If we changed the backend, only the rewrite module is affected and

the change is transparent to the applications. This architecture can also take advantage of

connection pooling between the rewrite module and the database, as discussed in Section

3.2.3.

User Application

SOL Qunry

L 2

Rewriter

3

New Query

4

Database
5 Optimizer &

Executor
Result Set

Figure 3.4: Modified query rewrite architecture in SIREN

1. An end-user (application or user) generates some SQL query.
2. End user connects to Rewriter and transmits query.

38

3. Rewriter modifies query based on stored rewrite information and produces a new
query.

4. The Rewriter opens a database connection and transmits the new query.
5. The query is passed to the database's optimizer and executor modules, producing a

result set.
6. The result set is returned to the end-user via the Rewriter.

In this architecture, the application must be aware of the presence of the rewriter,

since it connects to the rewriter and not the database directly. However, we still preserve

a great deal of transparency because the application does not have to tailor its queries in

any way; it can still send any SQL query to the rewriter. To the application, the rewriter

interface is simply a connection proxy.

The Rewriter module is the central component of the SIREN architecture. An

industrial strength implementation of the Rewriter would probably be based on an

internal parser and rules engine that examines incoming queries and applies appropriate

rewrite rules to them. Rewrite rules for the various roles and their permissions would be

created by an administrator via a grammar defined for the rules engine. However, our

implementation is intended to be a proof-of-concept prototype that demonstrates the

feasibility of RBAC via query rewriting.

The Rewriter module is written in Java for a PostgreSQL database. Java was

chosen for its platform independence. PostgreSQL is a powerful, extensible open-source

database system and is the database around which the Auto-ID savant is built. Since this

is a prototype system, we leverage database views as a tool to simplify the Rewriter

implementation.

39

3.2.1 Leveraging Database Views
Base relations are those relations that are physically stored by the database in memory.

Views are virtual relations composed from these base relations. Views are generally non-

materialized, meaning that the view is not stored as a separate relation. Rather, they are

recreated on-the-fly from its definition when it is needed. A view can be defined to be

the result of any SQL SELECT statement. Since we have defined our notion of a

privilege to be any portion of a table described by a SELECT statement, each such

privilege definition is really just a view definition. Our prototype implementation

represents a structured methodology for view administration as the basis for RBAC.

No access privileges to the base data tables are given to any roles. Instead for

each role, we create a view for each table that role can access. This "role view" specifies

exactly which parts of the table a user of that role is allowed to read. The standard

naming convention used for role views in our implementation is to append the role name

to the table name this view is defined for. For example, a view defining a portion of the

Products table accessible to a SalesClerk would be called "ProductsSalesClerk".

Note that the view definition must include every column of the base relation, even

if the column simply returns NULL data. This allows us to perform certain logical

operations on views such as the UNION operation, which are required to support multiple

active roles as discussed later. It also preserves transparency in that operations such as

JOINs are performed automatically by the database, without the need for additional

checks in the rewriter to ensure that a column is actually present in both views.

PostgreSQL will generate an error if an end user attempts to join on a column that is not

40

present in his role view, but the database will handle a case in which the join column is

simply full of NULL entries.

pia name price quantity discount

1000 Soda $2 100 10% off

1001 Diet Soda $2 75 10% off

1002 Caffeine-free Soda $2 0 None

1050 Orange Juice $3 0 2 for $5

1060 Apple Juice $2.50 65 None

CREATE VIEW ProductsSalesClerk AS

SELECT pid, name, price, NULL as quantity, discount

From Products WHERE quantity > 0

pid name price quantity discrount

1000 Soda $2 NULL 10% off

1001 Diet Soda $2 NULL 10% off

1060 Apple Juice $2.50 NULL None

Figure 3.5: Creating a role view to restrict access to Products table

Standard naming of role views allows the rewrite module to automatically rewrite

any query on the base tables to be a query against the appropriate role views of those

tables. A query against a role view is automatically circumscribed by the access control

restrictions of the view definition. The view system of the database automatically takes

care of the rest of the query rewriting based on the view definition, as shown in Figure

3.6 below.

41

Select * From Products
Where pid < 1020

Salesclerk

Select * From
Rewriter ProductsSalesClerk

Where pid < 1020

Select pid, name, price,
NULL as quantity, discount

From Products
Where quantity > 0 AND

pid < 1020

pid name price quantity discount

1000 Soda $2 NULL 10% off

1001 Diet Soda $2 NULL 10% off

Figure 3.6: How rewriting occurs in our prototype

The framework outlined above applies to SELECT queries and provides a way to

specify read privileges. To perform access control for other types of SQL commands in

our prototype, we take advantage of updateable views. A view is updateable if the

database can take the actions specified in an INSERT, UPDATE or DELETE statement

on that view and perform those actions on the appropriate underlying base tables.

Updateable views are supported by most major databases, including Oracle,

DB2/Informix, Sybase, MS SQL Server and PostgreSQL.

In PostgreSQL, updateable views are supported via an internal rule system [32,

21]. The PostgreSQL Rules System (PRS) is a module that lies between the query parser

and the planner/optimizer modules of the database. Using PRS, we create rules that

specify how actions that update columns in a view are broken down into actions on the

actual base table. Therefore, in addition to defining each view with the naming

42

convention noted above, we also define three rules for each role view. These rules detail

how the role view responds to INSERT, UPDATE and DELETE queries.

ON EATE TO products-salesclerk 3 fields of an existing, in-stock product

DO INSTEAD If the incoming query attempts to updateUPDATE poduct SET quantity or discount, that portion of the query
name = NEW.name, is discarded by the rewrite rule.

WEEEp = Dupruc If the incoming query attempts to update an
WHERE pid = OLD.pid AND quantity > 0; out-of-stock product, the query is disregarded

CREATE RULE deleteproducts salesclerk AS The SalesClerk role is allowed to delete any
ON DELETE TO productssalesclerk existing, in-stock product
DO INSTEAD

DELETE FROM products If the query attempts to delete an out-of-stock
WHERE pid = OLD.pid AND quantity > 0; product, the query is disregarded

CREATE RULE insert-products-salesclerk AS The SalesClerk role is not allowed to insert
ON INSERT INTO products-salesclerk any new products.
DO INSTEAD

NOTHING; Any INSERT attempt by this role is discarded

Figure 3.7: Sample rules for update behavior of ProductsSalesClerk role view

This approach gives even more fine-grained control over access privileges since

we can specify different behavior for the different types of SQL statements. For

example, using appropriate rules we can specify that a user has append privileges

(INSERT) but can not otherwise write data (DELETE or UPDATE). Since PostgreSQL

supports a conditional clause in each rule, update rules can be even more fine-grained in

that a user may have a particular update privilege only under certain conditions. Note

that this view-based framework assumes that a user will always have read privileges (by

the view definition) on any data that he has write privileges on (by update rules for that

view). In existing standard security policies, this is usually a basic assumption.

43

3.2.2 Session Activation and Multiple Roles
The RBAC standard proposed by NIST includes the notion of a user session and multiple

active roles in the definition of a basic RBACO system. Session establishment is

necessary before any data queries can be made. To establish a session, a user must

authenticate himself to the access control service and designate a current Active Role Set

(ARS). Authentication is a separate implementation issue and several architectural

options are discussed further in Chapter 4. Our prototype uses simple username and

password authentication. The rewriter uses this information to retrieve roles assigned to

that username from a UserRoles relation in the database.

In the simple scenario where each user is only assigned one role, that role forms

the user's ARS. In our implementation, if the user is assigned to multiple roles, all roles

are automatically added to the user's ARS. Query rewriting in the presence of multiple

active roles is supported through the use of the UNION operator. UNION is a standard

SQL keyword that combines the result set of two or more queries into a single result set

that includes all rows from each of the original result sets. As noted earlier, a view

definition is really the result set of a SQL SELECT statement, and hence we can take the

UNION of any two role views. Again, the database system then takes care of the actual

rewriting of the UNION conditions for us. Since we required that every role view is

defined to include every column of the base table, even if that column contains only

NULL elements, the UNION of two different role views for the same table will not lose

any data due to missing columns.

One problem with the UNION operator is the case of role views with different

permissions for the same column. As an example, the ProductsSalesClerk view defines

44

the Quantity column as NULL. Another role view, such as ProductsStockroom, might

allow the user to see the actually values in the Quantity column. If a user is assigned to

both the SalesClerk and Stockroom roles, we would want that user to be able to see the

quantity information, since a user's privileges should be the sum of all privileges of his

roles. However, in this situation, the UNION operator creates a result set in which the

rows are duplicated. Half of the rows in the result set would contain a NULL in the

quantity column. The remaining rows of the result set would contain data identical to the

first half, except that the actual quantities would be shown in the QUANTITY column.

This reduces the coherency of the result set, though it does contain all the necessary data.

A more sophisticated query rewriter could avoid this problem by explicitly rewriting the

combined role view definition, rather than relying on the database system to do this by

using the UNION operator on role views. Such a rewriter would examine the role

definitions and intelligently combine which column definitions and conditional clauses to

use from each role view to ensure that the combined view includes all privileges from

each of the individual views.

Note that a large active role set would considerably slow down query time in our

implementation as it would require the UNION of a large number of role views. Using a

more sophisticated rewriter would also mitigate this performance penalty. Such a

rewriter produces a more efficient role definition query by eliminating overlapping or

contradictory conditionals, resulting in fewer time-consuming conditionals than a

UNION of role views would have. However, large active role sets may not be an issue in

actual systems. The implementers of a real-world RBAC system for a bank noted that in

45

most cases, their users only required a single role assignment, and no users required more

than four [26].

Role hierarchies are simply an administrative extension of multiple active role

support. Forming role hierarchies is a way to reduce the effort of role/permission

assignment by allowing a role to inherit the permissions of other roles. An additional

benefit is that such hierarchies more intuitively reflect an organization's structure and

security policy. Support for role hierarchies would require creating an administrative

application that could automatically compute a senior role's view by taking the UNION

of privileges of junior roles and any additional privileges manually specified by the

administrator. Users are only explicitly assigned to the senior-most roles they need to be

authorized for; membership in the junior roles is granted automatically by the UNION of

permissions that occurred when the administrator first set up the hierarchy. Because the

set of explicitly assigned roles is kept small this way, query rewriting is simplified. At

run time, only the explicitly assigned roles are included in the user's ARS. Additionally,

this makes user privilege review and revocation more straightforward.

Finally, the proposed RBAC standard includes static and dynamic Separation of

Duties constraint enforcement. Again, these features are intended as an administrative

aid. Once a Separation of Duties constraint is specified by the administrator, it prevents

him from inadvertently allowing a user access to two potentially conflicting roles. Static

Separation of Duties (SSD) means that this constraint checking occurs when the

administrator is assigning roles to the user. If a constraint has previously been specified

between two roles, the administrator can not accidentally assign both roles to the user.

Implementing SSD is again simply a matter of creating an appropriate administrative

46

application within which administrators could specify constraints and make user/role

assignments. Any time a new user/role assignment is attempted, the application would

then enforce any existing constraints.

With Dynamic Separation of Duties (DSD), the administrator is allowed to make

the assignment of two potentially conflicting roles to a single user. However, the

constraint is checked at every session establishment, and the user can never request an

ARS in which the two conflicting roles are both active at once. To implement DSD, we

would have to modify our prototype so that it no longer defaulted to including all

assigned roles in a user's ARS. Instead, whenever a user had multiple assigned roles,

they would be prompted to select some subset of those roles to activate at session

establishment. The rewrite system would then need to check the requested ARS against

the existing constraints before initializing the session. In this way, our prototype of

SIREN could be extended to support the full RBAC 3 model in NIST's proposed standard.

3.2.3 Savant Integration
The savant network is intended to support both ad-hoc queries from users as well as

queries generated by applications. The Rewriter is made available as a SOAP service for

applications that wish to run queries against the savant database. The service exposes

methods to establish a session, run a query and close a connection. The applications view

this SOAP service simply as a proxy to the database. For ad-hoc queries, a simple servlet

application was created to allow users to enter their username, password and a query

against the savant via a web browser. The servlet calls the Rewriter interface to pass the

query to the savant database. The result set is displayed in the user's browser window.

47

Connection pooling is another important integration issue. The Rewriter can

make use of a connection pool to more efficiently connect to the database. The Rewriter

connects to the database on its login, and not with the login information of the user

sending the query. We can also utilize connection pooling between the end user's

application and the Rewriter. However, if the applications use a connection pool to the

Rewriter, they must be able to transmit the username information as a separate argument

so that the Rewriter can look up the appropriate role information. This can easily be

supported by exposing another SOAP method that takes this login information as a

separate parameter.

3.2.4 Completeness
There are several issues related to the completeness of our implementation with respect to

the SIREN concept. The first is the use of NULL to mask unauthorized data from a user

in a role view. Because NULL is also a valid value for normal field data, there may be

ambiguity as to what semantic meaning a particular instance of NULL has; the user may

not be able to distinguish whether he simply doesn't have authorization for a particular

piece of data or whether the value of that data is simply NULL. However, it is not clear

what a more appropriate label to mask unauthorized data would be in our

implementation. Because databases enforce type-checking, we can not simply use a text

string label such as "Not Viewable" to mask data in non-text columns, such as columns

of a numerical data type. The use of any other values to mask this data for columns of

different datatypes has the same ambiguity problem as NULL in that a user might not be

able to discern between the masking label and real data. In fact, using NULL in our

48

prototype is less complicated than any other possible masking label since a NULL value

can be used in a column of any data type.

Eventually, the correct way to handle this situation is to not mask data with any

label. Rather, using a more sophisticated rewriter module with rewrite rules for different

roles, a query is rewritten such that the only data displayed is the data that a user

specifically has access privileges for. Unlike in role views where every column is

included in the view, with the more sophisticated approach no unauthorized data would

be included in the display, and therefore no data has to be masked. If a user requests to

view data he doesn't have privileges for, the rewriter either ignores that portion of the

request, or rejects the request entirely and tells the user what portion of the request was

illegal.

Another important completeness issue is the whether every possible query can be

handled by a particular implementation. Our prototype can easily handle all SQL queries

because the rewriter is simply changing base table names to role view names. The

underlying view implementation performs the rest of the rewriting and this view system

is designed to appropriate rewrite any valid query against a valid view.

Finally, there is the issue of policy verification with our implementation. In other

words, how does an administrator know whether a set of privilege assignments and

constraints accurately reflects the intended security policy? Our implementation relies on

a framework in which for every role, for every table, some role view is defined on that

table. This approach forces system administrators to do privilege assignment in a

systematic way, decreasing the likelihood that there are holes in the implemented policy.

Additionally, a simple application could easily look at the database schema information

49

to verify that a role view is actually defined for each role for each table. This would

further help administrators identify and correct gaps in the privilege definitions.

3.3 Summary
The concept of query rewriting for access control is not new, but what we have presented

here is a structured way to use this concept to achieve the benefits of RBAC model for

database networks. Using the SIREN framework provides a security policy that is

enforced system wide and intuitively mapped from the organization's written security

policy. There are a number of other benefits of this implementation strategy.

This implementation has a high degree of transparency because an application can

safely send any SQL query to the database. Query rewriting increases the flexibility of

RBAC by allowing a wider range of security restrictions to be easily expressed. Any

combination of restrictions that are representable in SQL can define a user's privilege

space. Additionally, it is platform agnostic in that the Rewriter can be implemented for

multiple database back-ends. Higher performance can be achieved by implementing a

more sophisticated Rewriter instead of relying on existing database functionality. And

ease of administration requires only a few simple administrative applications as outlined

above. In short, the SIREN implementation strategy meets the key considerations for

access control in a large enterprise. In the next chapter, we discuss the issues involved in

deploying and maintaining SIREN in a distributed environment.

50

CHAPTER 4

DEPLOYING SIREN
In the previous chapter, we detailed the basis for a new implementation strategy for

RBAC. A functional overview of SIREN for a single database was presented. In this

chapter, we survey a variety of related design issues that must be addressed when

deploying such a solution in a distributed enterprise environment. The discussion is

intended to provide appropriate context for enterprise-wide deployment of RBAC

implementations and as a reference to existing research in these areas. While we explore

feasible solutions, it is not our intention to provide definitive answers for these design

challenges.

4.1 Role Engineering
Deploying any RBAC system requires defining roles that accurately reflect the activities,

responsibilities and privileges within an organization. Role Engineering is the process of

defining an appropriate role set, defining the requisite Separation of Duties constraints

between the roles and defining the correct permissions for each role [7]. In effect, Role

Engineering is the process of mapping a security policy into the required RBAC

components to implement that policy. This is a complex task for large, distributed

enterprises. A limited amount of research exists for formal processes to design

appropriate RBAC components within a specific enterprise.

Nuemann and Strembeck [17] take a software engineering approach,

demonstrating how to define a role set based on usage scenarios for resources. A

scenario is composed of a series of steps that require some particular access. Different

scenarios can be grouped into classes of related actions. A preliminary role set is then

51

defined from these classes. A role must have permissions to complete each step for every

usage scenario in its job definition. The role set can then be refined to take to account

inheritance relations and separation constraints. However, the authors note that scaling

such a scenarios-based process to large enterprises is often very difficult. In particular,

they suggest that Role Engineering be a collaborative process between centralized

security officers and domain experts throughout the enterprise. The issue of local

domains for role and privilege administration is discussed further in Section 4.3.

In [24], the authors define several different classes of roles. Organizational Roles

corresponding to various departments can be determined easily. Special Roles are for

temporary or special case privileges and must be created manually. However, most roles

fall into the Functional Roles category, whose members represent specific job functions.

Access to resources requires users to have some combination of Organizational and

Functional (and possibly Special) roles assigned to them. The authors describe a

RoleFinder software tool to help derive the required Functional Roles from a model of

enterprise processes using a specific top-down Role Engineering process.

Although research continues on stream-lined methodologies and software tools to

accurately model organizational structure in RBAC components, the sheer size of the

undertaking in enterprise environments introduces a substantial coordination problem

across distributed departments and physical locations. In the Auto-ID system, we expect

that certain basic roles can be globally specified with general privileges. However, a

manageable solution to the problem of role definition will require support for creation of

local roles within specific domains. This allows privileges to be specified by users with

greater knowledge of the true business requirements of users in their domain. Domain-

52

based role administration must be limited so that local permissions can only be assigned

within the restricted sphere of permission allowed at a local site by the global security

policy.

4.2 Authentication
To make access restrictions specified in SIREN meaningful, the system must verify that a

particular user is who he claims to be and determine what roles have been assigned to

him. Although authentication is considered a lower level service which the access

control implementation can take advantage of, the design of the authentication service

affects the overall architecture of the access control deployment. There are two basic

architectures for authentication in RBAC for web systems: server-pull vs. user-pull [20].

These architectural principles can be adapted to a deployment of a SIREN system.

4.2.1 Server-Pull Architecture
In a server-pull architecture, the end-user sends his authentication information, usually a

username and password, to the database via the rewriter proxy. It is the rewriter's

responsibility to verify the user's identity based on this login information. The rewriter

then retrieves the user's assigned roles from a database table or role server.

User
Roles

2: Retrieve
User's Role Set

1: Query+ I
{usernamne, passwordlRwie rx 3: Rewritten Que svn

5: Query Result Set 4: Query Result Set
User

Figure 4.1: Server-Pull Architecture

53

One interesting design issue in this architecture is implementing the notion of a user

session. Certainly it would be inconvenient to have the user submit a username and

password every time he wanted to query the database. In this case, each query would be

a separate user session. This approach would have a high overhead because the user is

reauthenticated and roles re-retrieved for each query. Another option is to have the end-

user's application maintain a single authenticated connection, perhaps via SSL, to the

rewriter for the duration of the user's session on the application. While this reduces set-

up overhead, it also reduces the overall availability of the rewriter module since each

connection persists longer.

4.2.2 User-Pull Architecture
In contrast, the user-pull architecture requires the end-user to first authenticate himself to

an independent role server, which then grants him some sort of credentials certifying

which roles he belongs to. Applications can then present these credentials to the rewriter

on behalf of the user when making queries against the data. The user-pull architecture

can be easily implemented using PKI-based certificates to store the role credentials.

Park, et al. [20] describe an implementation of such role certificates by using the

extension fields of standard X.509 web certificates.

Senter
1: Username +

Password
2: Role

Certificate

3: Query +
Role Certificate jo Rewriter Proxy 4:. Rewritten Query M n

DB
User 6: Query Result Set 5: Query Result Set-

Figure 4.2: User-Pull Architecture

54

In this architecture, a single certificate represents a user session. The set of roles granted

in the certificate is the user's active role set for the session. One issue to be addressed is

the lifetime of the user session. It may not be unreasonable to have certificates expire

daily, requiring an employee to obtain a fresh one at the start of their work day. Even if

the standard role certificate lifetime is longer, support for temporary certificates increases

flexibility. For instance, temporary certificates can grant additional privileges to a user

when he is filling in for another user on leave.

Since the rewriter is responsible for role retrieval, the server-pull architecture for

RBAC is more transparent to end-user applications. The applications are only aware of

the rewriter as a proxy to the database, and do not need to know any details about the role

information and where it is stored. User-pull architectures are less transparent in that

they require the user to have knowledge of a credential-granting authority and obtain

privileges as a separate step prior to initiating data queries. However, the user-pull

architecture is conceptually cleaner because it separates authentication and role

verification logic from the access control logic, resulting in more modular and reusable

components. A benefit of a separate authentication step is that the authentication scheme

does not have to be standardized throughout the enterprise, while the access control

module can be. Different domains may choose to have users authenticate themselves to

the role server with a simple username and password, or with more sophisticated

authentication devices such as smartcards with pin numbers. Separating the functionality

may also reduce the size of the overall deployed code base since a single role certificate

server could potentially serve several rewriters, or even other applications. A user-pull

architecture seems to be the better choice to support SIREN in distributed enterprises.

55

4.3 Privilege Management
Data access privileges must be managed throughout the enterprise in a manner that

provides for local flexibility while ensuring that enterprise-wide security policies are not

circumvented. A framework for privilege management makes the necessary central and

local cooperation possible. Such a framework must also address how privilege

information is shared when a query requires data that is distributed across the enterprise.

We assume a hierarchical organization of data within the enterprise, as in the savant

network outlined in Chapter 1.

4.3.1 Local Domains
Centralized access control management is not feasible in large, distributed environments

due to the administrative overhead required by the sheer size of the task. Nor is

centralized administration necessarily desirable since local administrators often have

greater expertise in what permissions are really required for users at their site and can

more effectively enforce the Principle of Least Privilege. For this reason, the notion of

local domains of administration is necessary for enterprise access control.

Administrative domains could be created along any arbitrary divisions; one

reasonable approach is to have each physical site within the enterprise comprise a

separate domain under the control of a local site administrator. We assume that every

user is primarily associated with a specific home domain, and that domain administrator

is responsible for maintaining the user's role profile. Each local administrator can further

delegate administrative responsibilities within the local site. For instance, each

department within a specific domain may have a separate department administrator, who

has a subset of administrative privileges granted by the domain administrator. In [29],

56

the delegation of administrative privileges within a single domain is implemented using

role ranges and conditional restrictions to specify the actions allowed to each local

administrator.

However, the drawbacks of a traditional decentralized approach such as DAC

have already been discussed. Effective enterprise security administration entails a

combination of centralized and decentralized control. A successful implementation of

local domains requires an architecture that allows the scope of local administrative

privileges to be bounded by a centralized security policy. In other words, a generalized

set of global roles and privileges are centrally created. These centrally defined privileges

for global roles limit access to global data. Global data refers to data that is collected

throughout the enterprise, such as inventory, sales or customer data. This is in contrast to

local data, which is unique to some specific domain. An example of such local data

might be internal employee performance notes collected by department managers at a

specific site to help write their personal reviews. If this data is separate from the

enterprise's formal employee ratings data, then all department managers at other sites do

not need privileges defined for the data specific to this single site.

Local administrators then assign users within their domains to these global roles.

To maintain consistency of the base security policy, local administrators should not be

able to modify the privileges assigned to global roles in any way. However, the local

administrators can create local roles valid within their specific domain. Locally created

roles can be specified as inheriting from some global role. In this case, the local role

inherits all privileges of that global role. The domain administrator can then further

restrict the global privileges by adding extra conditionals, but can not otherwise modify

57

the inherited privileges. The local administrator can now assign his users to this more

restricted local role instead of the global role it inherits from. This gives local

administrators the discretion to provide even greater security of global data if they deem

this necessary to enforce Separation of Duties or the Principle of Least Privilege. Locally

created roles that do not inherit from any global role can only be granted privileges on

local data specific to that administrative domain. This prevents domain administrators

from accidentally defining local roles that ignore the privilege restrictions of centrally

created roles on global data. Local role names should be qualified by adding a domain

identifier to the name, thereby avoiding any potential naming conflicts with global roles.

A malicious domain administrator could still violate enterprise security by

creating local roles that inherit from very high-level global roles and then assigning them

to inappropriate users. One way to further enhance security is for central security officers

to restrict the set of global roles which a local administrator can assign to his users. The

local administrator would also not be able to create local roles that inherit from these

restricted global roles. For example, in most cases there will be no need for local

administrators to create a role that inherits directly from the global CEO role. The subset

of global roles that are restricted can vary among administrators of different local

domains, so a regional domain administrator might have access to different global roles

than a local domain administrator.

In a user-pull architecture, each domain maintains its own domain role server.

The central security officers would create the definitions of global roles at a single global

role server. This centralized global role server could then push the role information out

to each of the domain role servers whenever changes are made. Since the central

58

administrators can also set which global roles are available to a particular domain, the

global role server only pushes the appropriate role definitions for a particular domain.

The local administrator can then add local roles to the role server in his domain.

Global Roles:
CEO

Engineer
User 1: I Admin

CEO Global Role Server --

Central Headquarter s

Allowed Global Roles:
Engineer

Admin
+ Local Domain Roles:

User 2: Software Engineer
Software Engineer Domain e evr Hardware Engineer

+ Adm in ~-~-~- ~ -~ - ~~

Figure 4.3: Local domains allow decentralized administration

Distinguishing between global and local scope supports the Role Engineering

notion that defining appropriate roles and privileges across a large enterprise requires

collaboration between central security officers and local domain experts. The approach

outlined here provides flexibility to local administrators to fine-tune privileges while

guaranteeing that enterprise-wide policies are not violated.

4.3.2 Distributed Queries
The savant network supports distributed queries, in which a single query at one savant

spawns multiple subqueries that run on remote savants. The results are then aggregated

at the original machine. Such distributed queries must work within the domain-based

framework outlined above; the key issue is to ensure that the subqueries use consistent

access control information when gathering data across several domains.

59

One solution is to require that users always initiate queries at a savant within their

home domain. This ensures that any local roles assigned to the user will be locatable and

well-defined to the rewriter that handles the query. Assuming a user-pull approach, each

user obtains role certificates for global and local roles from the role server for his home

domain. The query is rewritten to take into account both globally and locally defined

privileges assigned to this user's roles. The rewritten query is then passed on by the

rewriter to a savant. The savant spawns any appropriate subqueries and forwards them to

other savants. Note that once the rewriter modifies the original query and passes it to the

savant, the query is permanently out of the control of the rewrite system. The subqueries

will automatically have the appropriate access control restrictions and they are passed to

remote savants directly, not via the remote rewriters. Each subquery therefore runs with

a consistent set of access control privileges without any complicated privilege

coordination between the domains.

The privileges used by the distributed subqueries are based on the global and local

roles assigned to a user by his home domain. The privilege management framework

discussed earlier ensures that this combination of local and global roles will not violate

the global security policy. Therefore it is safe to run queries with the privileges specified

in the home domain on remote savants anywhere in the enterprise network. This

distributed query framework is simple in that it avoids syncing of local privilege

definitions across each savant that runs a subquery. This requires that queries are always

initiated within a user's home domain. This restriction is likely to be feasible in typical

enterprise situations. However, a more sophisticated system in which a query can be

initiated anywhere in the enterprise can be envisaged. Efficiently locating and retrieving

60

the user's role and privilege information from the appropriate domain would be the main

design issue in such an approach.

4.3.3 Inter-organization Access Privileges
To automate the supply chain and other key processes, two organizations must be able to

share relevant data with each other. For example, a retail organization would like each

supplier to be able to dynamically monitor overall inventory levels at its distribution

centers to help automate the reordering process. However, that supplier should not be

able to access data about any other supplier's products.

The simple solution to this problem is just an extension of the local domain

concept. Each organization can create a separate external domain composed of a set of

servers beyond its firewall, as shown below.

Incoming Query From
Partner Company

Rewriter Proxy -d~N -OW-71 16

1' Allwe Gobal Res:
-cNone>

+ Local Domain Roles:
Company A Role

r er Inve ory er Company B Role
Server Server Services External Domain etc.

External Domain
- -------- Firewall - - - - - - - - - - - - - - - - - - -

Internal Euterprise Network

Distributed DB Network

Figure 4.4: External domain exposes inter-organization services

61

The servers in this external domain provide the interface that other companies use to

access this organization's data. Different services and data can be exposed by different

servers. A tracking server could allow customers to track the progress of their orders

within a supplier's enterprise, while an inventory server would allow suppliers to monitor

their product sales at a specific customer enterprise.

The administrator of this external domain can create local roles and assign them

to partner companies. There is one important difference between the external domain and

any other domains within an enterprise. Whereas standard domain administrators can not

grant privileges on global data to local roles, the administrator of the external domain

may do so. This gives him the freedom to define different roles for each company as

local roles, but grant those roles privileges on any relevant enterprise data. Since each

organization will only have a single external domain, the actions of this domain

administrator can be easily audited to ensure he does not abuse the ability to grant global

permissions to local roles. It makes more sense to create local roles for each partner

company, rather than global roles; these companies will only ever run queries from

servers in the external domain so no other local domains should need to store this role

information.

If a partner company runs a query that requires data from within the enterprise

firewall, that query will first be rewritten based on the access control restrictions set in its

external domain role definition. Assuming that the external domain administrator set

appropriate role privileges, the rewritten query can then be safely passed to the savant's

Task Management System, which runs the distributed subqueries on the organization's

internal savant hierarchy.

62

4.4 Integration With Other Access Control Systems
Our primary purpose has been to describe an effective access control implementation and

system-wide deployment strategy for enterprise database networks. However, we note

that elements of the SIREN architecture can be reused to provide access control over non-

database resources such as file systems. Since the RBAC specification leaves the

definition of privileges up to the implementation, separate access control modules could

be built for file systems and other resources.

Authentication
Information

Role
Role Server

User Credentials
User Requests Proxied

Through Different
RBAC Modules

Rewriter PFixy Systde

Savant File System
DB

Figure 4.5: Role server certificates can be used by multiple RBAC modules

These other modules may be based on ACLs or some other underlying definition of

privileges. If separate role servers are maintained in each domain, these other access

control modules may also leverage the role certificates they distribute. Once they have

obtained a user's role certificates, these other systems can perform access control as

specified by their own definition of privileges for these roles. The reuse of the same

global and local roles by different access control modules is very important because it

reduces the overall administrative overhead and allows for a consistent security policy

based on a single set of roles.

63

CHAPTER 5

CONCLUSIONS

5.1 Evaluation
In this thesis we have presented SIREN, a framework for efficient database access

control using RBAC principles. Key management and architectural issues for

deployment in enterprise environments were also outlined. In Chapter 1, we enumerated

several important design goals and will now briefly evaluate our solution against these

criteria.

With respect to performance, we note that our implementation is only intended to

be a prototype, relying on the database to do much of the rewriting automatically. While

sufficient for a proof-of-concept, this is not the most efficient approach. As discussed in

Chapter 3, performance concerns can be addressed by designing a more sophisticated

rewriter that optimizes the way in which queries are rewritten. We believe that a

sophisticated query rewrite solution will provide good performance when compared to

DAC or MAC solutions that require checking column-wise or element-wise restrictions

for each query.

The concept of domains increases the scalability of the system in several ways.

First, the amount of user, role or permission data maintained within a single domain is

smaller, limiting storage requirements within each domain and increasing the look-up

speed against this data. Second, the ability to create local roles that inherit from global

roles allows us to limit the size of the global role set, since it doesn't have to encompass

every possible role needed anywhere in the enterprise. Local role servers within each

domain prevent a bottleneck at the central role server, increasing scalability. Domains

64

also greatly reduces the complexity of the Role Engineering process, which can be quite

complex in large organizations.

The flexibility to support many different security policies is the biggest benefit

provided by our solution. Because the access control permissions are expressed directly

in SQL, we have maximum expressive power in setting fine-grained permission,

including the use of conditionals and function calls in privilege definition. Additionally,

the ability to create local roles and privileges further increases flexibility by allowing

domains to express their unique security needs within the overall enterprise access

control framework. Yet, central security administrators also have the flexibility to limit

the administrative privileges of different domain administrators by restricting the set of

global roles available to their domains.

Since the rewriter is a separate module outside of the database, it is independent

of the specific database or server platforms being used in the backend. Using tools such

as Java and JDBC increase the platform independence of the rewriter code. Additionally,

because our solution performs access control directly on the SQL query, it works equally

well for ad-hoc, OLAP or batch processing queries and is application agnostic in this

sense.

Finally, ease of administration is an important issue in large enterprises. As

discussed in Chapter 2, RBAC approaches have the benefit that roles serve as a layer of

abstraction between users and privileges. While users may change roles fairly frequently,

the permissions assigned to a specific role are usually pretty static. Having roles as an

intermediate abstraction greatly reduces administrative effort since privileges need only

be modified for a single role, and not for each user in that role individually. Additionally,

65

using the concept of domains, the administrative duties can be reasonably divided over

the enterprise. And as mentioned in Chapter 3, GUI-based applications can be created to

help administrators manage user/role/privilege assignments using hierarchies and

constraint checking.

We conclude that SIREN is an appropriate access control solution for enterprise

data networks. While there are a variety of deployment issues, the potential solutions

discussed in Chapter 4 meet many of the design requirements of enterprise environments.

5.2 Further Work
We have selected an appropriate access control model, laid out a new implementation

framework aimed at database networks and discussed several key enterprise deployment

issues. However, further research is still necessary in several important areas.

The next key step in developing SIREN is the design and implementation of a

more sophisticated rewriter module. We expect that such a rewriter would be based on

an internal rules engine that applies rewrite rules to incoming user queries. This also

entails designing an appropriate grammar and user interface to create the rewrite rules.

Implementing a more sophisticated rewriter is basically a software engineering project.

However, it is a substantial one. In implementing such a rewriter, performance and

expressiveness would be the key design goals. Another software design issue is creating

the administrative software to assist in user/role/permission management by allowing

administrators to manage role hierarchies and assignment constraints via a GUI.

Much of the deployment discussion in Chapter 4 is based on our assumptions of

how enterprises would structure and utilize their savant networks. Once such networks

are deployed, feedback from these enterprises would provide further clarity about the

66

deployment issues that need to be addressed. The trade-offs of various architectural

configurations and authentication schemes need to be examined in greater depth.

Another interesting question is the possibility of using the access control modules

to provide scheduling capabilities. Because of the business critical nature of the data in

these enterprise networks, we expect that there will be a high load on the system from

user queries. However, certain types of queries should have higher priority. For

example, a batch process that runs for a while to transfer large amounts of data from one

savant to be aggregated at another should not prevent real-time queries from accessing

key data resources. Since the access control module already has all the necessary

information about who is making a data request and what resources they are requesting,

then this module may also be able to assign priorities to these requests. The challenge is

that query priority does not necessarily correspond to role hierarchy. A company's chief

financial officer may run large analytic queries over a large data set. A quick response to

this query is not as urgent as a real-time query on incoming product information is to

stockroom workers unloading a shipment at the dock door. Designing a framework for

specifying priority rules and applying to incoming queries within the SIREN framework

would be an interesting research topic.

Finally, there are many possible variations that could be imagined in the

framework itself. One interesting idea is a distinction between inheritable and non-

inheritable privileges in role hierarchies. Whether such functionality would be truly

useful and how to implement it efficiently are interesting questions. There may be other

such possible extensions to the basic model presented here that need to be examined more

67

thoroughly. Again, feedback from enterprises that deploy SIREN systems will assist in

revising the model and fine-tuning implementation features.

68

References

[1] Baldwin, R.W. Naming and Grouping Privileges to Simplify Security Management
in Large Databases. Proceedings of the Symposium on Security and Privacy. Los
Alamitos, California. IEEE Press, 1990. pp 116--132.

[2] Barkley, J. Comparing Simple Role Based Access Control Models and Access
Control Lists. Proceedings of the second ACM workshop on Role-based Access
Control. Fairfax, Virginia. ACM Press, 1997. pp 127-132.

[3] Barkley, J. Implementing Role Based Access Control Using Object Technology.
Proceedings of the first ACM workshop on Role-based Access Control.
Gaithersburg, Maryland. ACM Press, 1996.

[4] Bell, D.E. and L. J. LaPadula. Secure computer systems: Mathematical foundations
and model. Technical Report M74-244. The MITRE Corporation, 1973.

[5] Brock, D.L. The Electronic Product Code (EPC) - A Naming Scheme For Physical
Objects. Technical Report MIT-AUTOID-WH-002. The Auto-ID Center, MIT.
Cambridge, Massachusetts. Published Jan 1, 2001.
http://www.autoidcenter.org/research.asp

[6] Brock D.L., T. P. Milne, Y.Y. Kang and B. Lewis. The Physical Markup Language.
Technical Report MIT-AUTOID-WH-005. The Auto-ID Center, MIT. Cambridge,
Massachusetts. Published Jun 1, 2001. http://www.autoidcenter.org/research.asp

[7] Coyne, E.J. Role Engineering. Proceedings of the first ACM Workshop on Role-
based Access Control. Gaithersburg, Maryland. ACM Press, 1996.

[8] Denning, D.E. A Lattice Model of Secure Information Flow. Communications of the
ACM. Vol. 19, No. 5 (May 1976): 236-242.

[9] Ferraiolo, D., J. Barkley and D.R. Kuhn. A role-based access control model and
reference implementation within a corporate intranet. ACM Transactions on
Information and System Security (TISSEC). Vol. 2, No. 1 (February 1999): 34-64.

[10] Ferraiolo, D., R. Sandhu, S. Gavrila, D.R. Kuhn and R. Chandramouli. Proposed
NIST Standard for Role-Based Access Control. ACM Transactions on Information
and System Security (TISSEC). Vol. 4, No. 3 (August 2001): 224-274

[11] A Guide to Understanding Discretionary Access Control in Trusted Systems.
National Computer Security Center. September 1987.
http://www.radium.ncsc.mil/tpep/library/rainbow/NCSC-TG-003.html

69

[12] Giuri, L. Role-Based Access Control on the Web Using Java. Proceedings of the
fourth ACM workshop on Role-based Access Control. Fairfax, Virginia. ACM
Press, 1999. pp 11-18.

[13] Griffiths, P.P. and B.W. Wade. An Authorization Mechanism for a Relational
Database System, ACM Transactions on Database Systems (TODS). Vol. 1, No 3
(1976)

[14] Koh, R., Y.Y. Kang, D. McFarlane, V. Agarwal, A.A. Zaharudin and C.Y. Wong.
The Intelligent Product-Driven Supply Chain. Technical Report CAM-AUTOID-
WH-005. The AutoID Center, Cambridge University. Cambridge, England.
Published Feb 1, 2002. http://www.autoidcenter.org/research.asp

[15] Lunt, T.F., D. Denning, R. R. Schell, M. Heckman and W. R. Shockley. The
SeaView Security Model. IEEE Transactions on Software Engineering (TOSE),
Vol. 16, No. 6 (1990): 593-607.

[16] Neumann, G. and M. Strembeck. Design and Implementation of a Flexible RBAC-
Service in an Object-Oriented Scripting Language. Proceedings of the Conference
on Computer and Communications Security, 2001. Philadelphia, Pennsylvania.
pp 58-67.

[17] Neumann, G. and M. Strembeck. A Scenario-driven Role Engineering Processfor
Functional RBAC Roles. Proceedings of the Seventh ACM Symposium on Access
Control Models and Technologies. Monterey, California. ACM Press, 2002.
pp 33-42.

[18] Neumann, G. and U. Zdun. Implementing object-specific design patterns using per-
object mixins. Proceedings of the Second Nordic Workshop on Software
Architecture (NOSA), August 1999.

[19] Osborn, S., R. Sandhu and Q. Munawer. Configuring Role-Based Access Control to
Enforce Mandatory and Discretionary Access Control. ACM Transactions on
Information and System Security (TISSEC). Vol. 3, No. 2 (May 2000): 85-106.

[20] Park, J.S., R. Sandhu and G. Ahn. Role-Based Access Control on the Web. ACM
Transactions on Information and System Security (TISSEC). Vol. 4, No. 1
(February 2001): 37-71

[21] PostgreSQL Interactive Documentation. http://www.postgresql.org/idocs/

[22] Redell, D.D. Naming and Protection in Extensible Operating Systems. AD-
AOO 1721, MIT Press. Cambridge MA. November 1974.

[23] Reinventing Technology. The Auto-ID Center.
http://www.autoidcenter.org/technology reinventing.asp

70

[24] Roeckle, H., G. Schimpf and R. Weidinger. Process-Oriented Approach for Role
Finding to Implement Role-Based Security Administration in a Large, Industrial
Organization. Proceedings of the Sixth ACM Symposium on Access Control
Models and Technologies. Chantilly, Virginia. ACM Press, 2001. pp 103-110.

[25] The Savant Installation Guide. Internal Technical Report. The Auto-ID Center,
MIT. Cambridge, MA.

[26] Schaad, A., J. Moffett and J. Jacob. The Role-Based Access Control System of a
European Bank: A Case Study and Discussion. Proceedings of the Sixth ACM
Symposium on Access Control Models and Technologies. Chantilly, Virginia.
ACM Press, 2001. pp 3-9.

[27] Sandhu, R. Lattice-Based Access Control Models. IEEE Computer. Vol. 26, No. 11
(November 1993)

[28] Sandhu, R. and F. Chen. The Multilevel Relational Data Model. ACM Transactions
on Information and System Security (TISSEC). Vol. 1, No. 1 (November 1988).

[29] Sandhu, R. and J. Park. Decentralized User-Role Assignmentsfor Web-based
Intranets. Proceedings of the third ACM workshop on Role-based Access Control.
Fairfax, Virginia. ACM Press, 1998. pp 1-12.

[30] Sarma, S. Towards the 5 cent tag. Technical Report MIT-AUTOID-WH-006. The
AutoID Center, MIT. Cambridge, Massachusetts. Published Nov 1, 2001.
http://www.autoidcenter.org/research.asp

[31] Stonebraker, M. and E. Wong. Access Control in a Relational Data Base
Management System by Query Modification. Proceedings of the 1974 ACM Annual
Conference. ACM Press, 1974. pp. 180-186.

[32] Stonebraker, M., A. Jhingran, J. Goh and S. Potamianos. On Rules, Caching,
Procedures and Views in Data Base Systems. Proceedings of the 1990 ACM
SIGMOD International Conference on Management of Data. Atlantic City, New
Jersey. ACM Press, 1990. pp 281-290.

[33] Trusted Computer System Evaluation Criteria. United States Department of
Defense. December 1985.
http://www.radium.ncsc.mil/tpep/library/ rainbow/5200.28-STD.html

71

Appendix

Prototype Details
Our prototype rewriter is written in Java. The rewriter is based on the open-source

freeware package SQL4J developed by Jianguo Lu [1]. SQL4J examines string

representations of SQL queries, parses them and fills in Java structures representing these

statements and expressions. Conceptually, an incoming SQL query is represented as a

Java SQLStatement object. Actually, SQLStatement is an abstract class, and the actual

instances created by the parser are instances of more detailed subclasses such as

InsertStatement, UpdateStatement, CreateTableStatement, etc. The fields of these

objects are other Java objects that represent the various clauses, predicates and variables

in the SQL query, such as WhereClause, LikePredicate, Table, etc. Some of these field

objects, like WhereClause further contain other objects such as AtomicWhereCondition or

CompoundWhe reCondition.

First, the source code of the SQL4J package was modified by the addition of a

rewrite method, rewriteTableNames(rolename). This method is called on a specific

instance of a SQLStatement object, and takes a role name as a parameter. It examines the

fields of the SQLStatement and recursively examines the clause objects that form this

SQLStatement. In each clause object, any reference to a database table is rewritten as a

reference to the role view for that table. After the method has recursed through all the

components of the SQLStatement, the query represented by this SQLStatement has been

rewritten in accordance with the RBAC framework described in Chapter 3.

Next, to demonstrate the rewriter's functionality we created a Java servlet-based

application that allows a user to input his login information and a database query in an

72

html form using a web browser. The web application was deployed using the Tomcat

servlet engine. After a user fills out the form data and hits the "Submit Query" button,

the Tomcat engine would call our Java servlet, DBQuery. Using the login information,

the servlet first retrieves the user's role information. In our implementation, this we do

this by establishing a JDBC connection to a PostgreSQL database and querying a

UserRoles table. However, a more sophisticated implementation might choose to cache

some of this role information in the rewriter so that a database lookup is not always

necessary.

Query the database

Ths simple formlets you ru queries aginst the database "rbacdb".
To run a quezy, emter your database username and password in the text boxes. Then enter your quey and hit submit.
The result set will display only that data from the query which you ext authorized to see.

Password:

Emte your queay below:

Figure A.1: Screen shot of web interface to rewriter

The DBQuery servlet then calls the SQL4J package to create a SQLStatement

object based on the query string entered by the user. The servlet then calls the

rewriteTableNames(rolename) method on this object, with the user's assigned role as a

73

parameter. This method call modifies the SQLStatement so that the query now attempts

to access only the appropriate role views. Finally, the servlet code uses a toString()

method to translate the SQLStatement back to a string representation and runs this query

against the database. The servlet then displays the result set in the user's browser

window.

The web servlet is intended as a demo interface to our rewriter. The same

functionality can also be exposed as an API for applications to call directly. To do this,

we create a SOAP service that such applications can use. The SOAP service exposes an

interface method that takes login information and a query. Using a deployment

descriptor, this interface method name is associated with the method of a specific Java

class. When an application invokes the SOAP interface method, this Java class method is

actually called. Similarly to the servlet described above, the method looks up the user's

role information, calls the SQL4J package to create a SQLStatement object, calls the

rewrite function using the appropriate rolename, then runs the modified query and returns

a result set. The result set is then passed by the SOAP service back to the requesting

application.

[1] Lu, Jiango. SQL4J. http://www.cs.toronto.edu/-jglu/sql4j/index.htm

74

