
An Analysis of the Developer-User Feedback Loop

in "The Edge"

by

Peter Weng

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Masters of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2003

© Peter Weng, MMIII. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document

in whole or in paru.MSA~blI NTTT11 WI1R~Ut11 pt . MASSACHUSETTS INSTITUTE
OFTECHNOLOGY

JUL 3 0 2003

LIBRARIES
................................Author .

U

Dek tmit5 of Electricl. Engineering and Computer Science
April 28, 2003

Certified by.
Harold Abelson

Class of 1922 Professor of Computer Science and Engineering
Thesis Supervisor

Accepted by
Arthur C. Smith

Chairman, Department Committee on Graduate Students

2

An Analysis of the Developer-User Feedback Loop in "The

Edge"

by

Peter Weng

Submitted to the Department of Electrical Engineering and Computer Science
on April 28, 2003, in partial fulfillment of the

requirements for the degree of
Masters of Engineering in Computer Science and Engineering

Abstract

As software becomes increasingly complex and development teams grow larger and
larger, developers find themselves more disconnected from the users of the software
and their varying needs. This is primarily because developers lack the time to develop
relationships with their users in order to fully understand what they are looking for in
the software. This thesis describes The Edge, a server/client platform for developing
web service applications that monitor and present useful data to users.

The interesting component of The Edge is the user feedback mechanism built into
the platform. It provides developers with first hand knowledge of how users are using
the software by collecting important usage statistics. This document analyzes the
developer-user feedback loop mechanism in The Edge and discusses how it may be
used by developers to improve software by focusing on user needs.

Thesis Supervisor: Harold Abelson
Title: Class of 1922 Professor of Computer Science and Engineering

3

4

Acknowledgments

I would like to thank Eric Carlson, Dave Mitchell, and Jeff Baxter of Microsoft for

helping develop the code for this project. I would also like to thank them for their

hard work and invaluable advice and direction they provided me, without which this

thesis would not have been a success. I would like to acknowledge the help, advice and

encouragement of professor Hal Abelson not only during this project but throughout

my MIT career. I would also like to thank Elaine for spending the time to proof

read and make corrections on my thesis. Also, without the funding provided by the

iCampus MIT-Microsoft alliance, this project could have never existed. Finally I

would like to thank my mother for her unconditional love and support for me in

everthing I do.

5

6

Contents

1 Introduction

1.1 M otivation .

1.2 D escription .

1.3 O verview. .

2 Extended Example

3 Design and Implementation

3.1 Overview

3.2 Edge

3.2.1

3.2.2

3.2.3

3.2.4

3.3 Edge

3.3.1

3.3.2

3.3.3

3.4 Edge

3.4.1

3.4.2

3.5 Edge

3.5.1

Ecosystem

Developer

Community

Users

Feedback

Client

Overview

Edge States

Data Collection . . .

Server

Overview

Data Processing . . .

Community

Overview

11

11

12

13

15

17

17

19

19

20

20

20

20

20

21

24

26

26

26

28

28

7

3.5.2 Data Posting .

4 Data Analysis 33

4.1 Feedback Statistics . 33

4.2 Feedback Analysis and Implementation 36

4.3 Developer-User Feedback Loop . 39

5 Related Work 41

5.1 User Driven Design . 41

5.2 Open Source M odel . 42

6 Conclusions and Future Work 43

A SQL Stored Procedures 45

8

28

List of Figures

3-1 The Edge client with three parts installed. 17

3-2 Auto-generated Lab Status part page........................ 18

3-3 The Edge Ecosystem . 19

3-4 A hidden Edge client running in the taskbar 22

3-5 Minimized edge client with the three parts showing indicator values . 22

3-6 A maximized edge client showing details of the DevHood part 23

3-7 The Edge Main Page . 29

3-8 The Contacts part page with the customization options for the part

author 31

9

10

Chapter 1

Introduction

1.1 Motivation

Software has quickly become an essential part of businesses as well as our everyday

lives. As computers get faster and more powerful, software will continue to expand

their feature set and become more and more complex which widens the gap between

developers and users. In order to keep software focused on the needs of users, there

must be an efficient yet thorough process for the developers to obtain feedback from

users.

However there are a few challenges in managing a piece of software and keeping it

tightly coupled with its user base. First is the inherent challenge in finding out what

the users want, what they would prefer changed, and how they use the software.

Currently, this is done through user feedback, which typically involves monitoring

message boards for user comments, distributing paper or electronic surveys to a po-

tential user base, or simply making a guess at what features users might want in the

next release. Once enough knowledge is gathered about what users really want in

the product, this information has to be communicated effectively to developers and

product managers.

The Edge is a research project that takes a novel approach to solving this problem.

At its core, the Edge is simply a piece of software that provides a shell to host web

service "parts" that monitor changes in data, such as stock quotes or local weather

11

data. The Edge is interesting in how well it mimics real software projects. In a typical

software project, the first version of the project will be released to the public, adopted

by a number of users, and then the development team will begin work on the next

version. In the same manner, each of these web service parts, which are developed

by users, may be consumed by a large number of users, and each of these parts will

likely go through revisions.

Additionally the Edge provides a mechanism which allows combining each of these

steps into a single programmatic process. The Edge has built user feedback mech-

anisms into the software which help developers not only quickly determine what

features users rate highly and what missing features users want the most, but it also

communicates this information programmatically and on-the-fly to the developer so

there is no time lost in the communication process. This thesis examines how the

idea of such a feedback mechanism can be useful in improving the efficiency of the

software development process.

1.2 Description

XML Web Services have quickly become the standard way to pass data across the

internet programmatically. As Web Services become more and more popular, the

vast amount of data on the internet will become more and more accessible. The Edge

takes a novel approach at bringing useful data to a client's desktop.

The Edge is a piece of software that provides a platform for web service develop-

ment on a client desktop. It allows developers to build "Parts" which consume Web

Services to monitor changes in data and present them to the user. This data can be

anything the developer chooses. Some examples might be stock quotes, number of

unread emails, or weather data.

The Edge can be thought of as a container for all these parts that run on the client

desktop. Not only does the Edge shell provide some added UI functionality for the

parts, most importantly it supports the parts by providing a platform which allows

users to rate each part, submit bug reports, provides each part with a discussion area,

12

and gathers usage statistics for the part. The novelty of the Edge is the ecosystem

that it creates. The added functionality supplied by the edge provides part developers

with important information concerning how users feel about the part and promotes

software revisions. As the cycle continues, parts will become more and more user-

centric which increases use and popularity.

1.3 Overview

In this chapter I have presented the idea of a direct user feedback mechanism and

motivation behind this project. I have also briefly described a user feedback mech-

anism which will form the basis of how developers can potentially analyze this data

to determine specific needs of users and ultimately better prioritize feature develop-

ment to cater to the user community. Chapter 2 will present a typical usage scenario

which will help to anchor the rest of the discussion. Chapter 3 will discuss the de-

sign and implementation of the Edge as well as an in depth description of the user

feedback mechanism provided by The Edge. Chapter 4 will discuss the type of data

collected by The Edge, the methodology and the heuristics behind the analysis of this

data, and how it can be used to improve software revisions. Chapter 5 will discuss

related systems and processes for user feedback analysis and chapter 6 will present

conclusions.

13

14

Chapter 2

Extended Example

In order to better understand the feedback mechanisms in the Edge, it may be useful

to examine a typical usage scenario. Let us take for example a developer Eric writes

a Weather part, which tracks the current temperature for the Boston area. Once Eric

completes the part, he publishes it to the Edge site, thus making the part available

to others.

A group of users install the part and begin to use it. Those in Boston love the

part and rate it highly since it provides them with useful information. Others install

the part, notice that it only provides weather information for Boston, and quickly

uninstall it. They immediately go to the weather part webpage and leave comments

for the developer, Eric, saying that the part would be more useful if the zip code

information was configurable so that the weather data could be collected for other

areas.

Now as Eric begins work on version 2 of the Weather part, he can review the

feedback from his users to prioritize the features which are important to them. Eric

first looks at the direct comments of the users and notices a message forum which

discusses the need for an option allowing users to configure which zip code the weather

data pertains to. Eric notices this forum is receiving a lot of activity, thus concludes

that this feature is important to the user base. Additionally Eric takes a look at the

usage statistics posted on the part webpage and notices that 80% of the users who

installed the Edge in fact uninstalled it the same day. This leads him to conclude that

15

the majority of users might be installing the weather part, but are quickly turned off

by the fact that the data provided is of no use to them since they are outside of the

Boston area. With this new configurable zip code, hopefully the overall popularity of

the weather part will increase.

After Eric finishes implementing the configurable zip code, he thinks about what

other options might be interesting for his users. He's already looked at the direct

feedback of the users, which comes in the form of comments and discussion postings.

The Edge feedback mechanism also provides Eric with important data for him to

infer what features might help to increase usability of his weather part. Eric goes to

the part webpage and again examines the usage statistics provided by the Edge and

notices that the majority of the users who have the weather part installed run it in the

minimized state (running in the Edge command bar with only a single indicator value,

in this case the temperature, visible). This gives Eric a clue that perhaps the weather

part isn't providing enough information to the user to make it worth maximizing.

Therefore Eric decides the next feature he will implement is to present more data to

the user, such as barometric pressure, relative humidity, and precipitation.

As the next version is released to the public, Eric can begin to look at the data

provided by the feedback mechanism to see if there is an increase in the number of

users, or an increased utilization of the part for current users. As this cycle of users

providing feedback and Eric improving the part continues, the software will become

better and better and the feature set will more accurately reflect what the users want.

16

Chapter 3

Design and Implementation

3.1 Overview

The Edge contains three main components, the client, server and web community.

The client component runs on a user's desktop from the windows taskbar. Its main

function is to provide the user interface container for the parts the user chooses

to install. While running, it can give important notifications to the user which is

provided by the installed parts. Figure 3-1 shows the Edge client running on a user's

desktop with three parts installed. The client provides the UI for minimizing and

maximizing installed parts.

Figure 3-1: The Edge client with three parts installed.

The Edge however is more than just a container or a nice shell to house these

parts. More importantly it also provides additional functionality to parts that allows

part developers to gain in-depth knowledge of how well-liked their software is in the

user community. The Edge also contains a backend server which is pivotal in data

collection and analysis for providing developers with usage statistics. In addition,

the server keeps aggregate logs of client installations and how they interact with the

17

Edge. This mechanism will be the basis of a tight feedback loop between Edge users

and developers.

The last component is the user community web site which provides an easily ac-

cessible location for users to exchange ideas, share comments, and submit bug reports

to part developers. For every part that is ever installed to the Edge, a web commu-

nity is automatically generated which provides message forums, part announcements,

and usage statistics for that specific part. Figure 3-2 shows an example of an auto-

generated web community for the Lab Status part. The user community web site is

central in the promotion of Edge parts and serves as the connection between devel-

opers and users in the feedback loop.

Figure 3-2: Auto-generated Lab Status part page.

The following section will discuss each of these components. While only the Edge

community and various tools used for data processing in the Edge server were devel-

18

bdsearomto F w7

Lab Status

Horne Parts Secion

Lab Status
by ariccarlOMICrosoftCm
Version: 1.0.1032.1276

monitors the status of an online laboratories

Rank: 5
Rating- 3
Usoers 0
Soaoofm,
Total Uptina. 10 hours
utilitzation: 0%

Pone
kIt"_t

oped by myself, it is important to know about the client to get an understanding of

the entire Edge system. Therefore the Edge client is being discussed only to serve as

a backdrop in understanding the entire feedback mechanism.

3.2 Edge Ecosystem

The Edge ecosystem consists of an ongoing feedback loop which promotes improved

software at each turn of the cycle. Figure 3-3 gives a graphical representation of

the lifecycle which will be described in more detail below. The following section will

discuss the lifecycle of a part as it progresses through the ecosystem.

A

User

Community

Figure 3-3: The Edge Ecosystem

3.2.1 Developer

The lifecycle starts with a developer writing a client part using the Edge SDK, such as

Eric implementing the Weather part in Chapter 2. The Edge SDK is responsible for

mapping part authors to parts and also handles the assignment of an unique identifier

19

(GUID) to each part. Once the developer is finished writing the part, it is compiled

and loaded into the Edge client.

3.2.2 Community

As soon as the part is loaded for the first time, a community webpage is automatically

generated and a link to the URL is provided via the Edge client where users may

interact with the developer as well as view statistics about the part. The community

webpage provides a mechanism for the part author to publish the part to the rest of

the community, at which point the part becomes discoverable by other users.

3.2.3 Users

Users may discover parts via the part catalog in the Edge client or by searching on

the main Edge community webpage. When a user finds a part they like, they may

download and install the part into the Edge client. At this point the user may rate

parts and provide comments, feature requests, and bug reporting.

3.2.4 Feedback

The user feedback is presented to the developer at which point the developer may

fix bugs, develop additional features, or incorporate user comments into future ver-

sions. As the developer completes improved releases, the author may publish the new

version, users reward the developer with better ratings and increased usage, and the

lifecycle repeats itself.

3.3 Edge Client

3.3.1 Overview

The Edge client is a piece of software that runs in the windows taskbar. The client

provides a nice user interface for housing Edge parts that the user may choose. The

20

Edge client shell is designed to minimize the amount of real estate taken on the

user's screen, but at the same time present enough information for the user to quickly

understand changes in data presented by the parts.

The client also provides users the ability to quickly view highest ranked and most

popular parts. By providing a catalog of parts to peruse, it allows users to immediately

find new or popular parts and install them with a single mouse click. This helps widen

the breadth of parts the user is exposed to which keeps usage statistics more fresh

and accurate while keeping the development cycle moving.

3.3.2 Edge States

Because the main purpose of the Edge is to constantly provide the user with real-time

data and notifications, it must be constantly running on the client's desktop for it to

be effective. With that in mind, the Edge was designed to minimize the amount of

real estate it requires of the desktop. However, minimizing real estate also minimizes

the amount of effective data that can be presented to the user. The Edge gets around

this problem by providing three different states that the user may choose to run in.

Hidden State

The hidden state occupies the least amount of real estate among the three states. In

fact, it occupies virtually no real estate, and at the same time provides virtually no

information to the user. The hidden state occurs when the Edge runs in the windows

taskbar in the lower right hand corner of the user's screen.

In this state the Edge icon, or the Edge connection light, is displayed in the taskbar

in either a green or red color. When the connection light displays green, the Edge

is connected to the Edge server and able receive data from the web services of the

various parts as well as send data to the Edge server about the usage characteristics

of the current client instance. Otherwise the connection light displays red. In this

state the Edge is unable to provide any visual information to the user other than

whether it detects a live connection or not. Figure 3-4 shows a connected Edge client

21

running in a hidden state.

Figure 3-4: A hidden Edge client running in the taskbar

Minimized State

The minimized state allows the user to get a quick view of all parts installed. The

minimized state only provides each part's indicator value to be viewed. The part

indicator value is a single value that part developers deem as most important. It is

typically the value that will generate notifications upon change. Again, an example

of a value that is shown in the indicator value would be the current temperature for

a weather part, or the NASDAQ index for a stock quote part.

In the minimized state, the Edge client runs in a rectangular box, known as the

"parts view", in the lower right hand portion of the users screen. This mode gives

a good balance between minimizing real estate and displaying significant data of the

parts installed to the user. Figure 3-5 shows a minimized Edge client running with

three parts installed. Additionally the Edge client is built to take advantage of the

Microsoft .NET GDI+ opaque windows form. The user interface of the Edge client

is transparent so that even in the minimized state, the little real estate the Edge

client occupies is in essence "shared" so that the user can still see what is in the

background behind the Edge. This design allows users to run the Edge in this state

without completely overtaking that portion of the screen.

Figure 3-5: Minimized edge client with the three parts showing indicator values

22

Maximized State

The maximized state provides the most information to the user, but unfortunately

also takes up the greatest amount of space on the users screen. The maximized state

runs in a large rectangular box, known as the "details view", in the lower right hand

corner of the user's screen. This mode is a combination of all three states, as the

connection light, the parts view, and the details view are all visible in the state.

When a user clicks on one of the installed parts shown in the parts view, the details

view shows additional information which is defined by the part. Going back to our

canonical weather part example, while the indicator value shown in the parts view

might be the current temperature, the details view might show additional information

such as barometric pressure, relative humidity, or extended forecasts just to name a

few.

The details view is also transparent. That is, even though the details view takes

up the most amount of screen space, it still allows programs or widgets shown in the

background to be seen so there is no need for the user to minimize the Edge client just

to view background programs. Figure 3-6 shows the a maximized Edge client which

displays the connection light, parts view, as well as the details view of the currently

selected part.

Nanw: Peter WCMa

Class: archer

TutFnd clerno
-News (0 perdrnq)

Figure 3-6: A maximized edge client showing details of the DevHood part

23

3.3.3 Data Collection

The Edge client was not only designed with the user interface in mind, it also has

the hidden responsibility of data collection. In order to understand the justification

behind some of the data collected by the Edge, it is necessary to understand the

different Edge states described in section 3.3.2. In the following section I will describe

not only the mechanisms built into the Edge for data collection, but also give an

introduction to the type of data collected. These statistics will be further discussed

in chapter 4.

The data collection mechanism built into the edge automatically tracks user be-

havior for each individual client. The user behavior is captured by the client, tracking

which elements the user most often uses, and which client states the user is most often

in. For example, one type of data used to determine Edge popularity is the utiliza-

tion, which is a percentage of how much time the Edge is in use. Since the Edge can

be running in any of three states, with each state being a different value as to how

much the Edge is actually "in use", a formula is used to determine overall utilization

with weights being applied to the time the client is in each of the three states.

Because some types of data are an aggregate value and others require multiple data

applied to a formula, rather than building this logic into the client, it was designed to

simply collect single data values and send those to the server where the logic exists

to perform analysis. The data values are sent to the server via a session object that

is responsible for collecting event information from the client.

Each Edge client is associated with a GUID that identifies that specific session.

After a part is loaded by the user to the client, the client calls on a session object

which handles the processing of events captured by the client. The session object

writes the type of event, in this case a PartLoaded event along with event arguments,

PartID and SessionID, to a session cache file.

The session cache file is used as a level of indirection in order to collect data in

the event that the client is disconnected or if the user is adding parts offline via a dll

file. The session cache file is kept entirely on the client's hard disk, therefore does not

24

require an internet connection in order to collect data. The client is set to attempt to

persist the data contained in the session cache file every 30 minutes. The persistence

is done through a web services architecture provided by the Edge server. It provides

asynchronous web methods that allow the client to send the contents of the session

cache data file to the server via remote procedure calls. When the server receives the

data it can perform appropriate analysis and persistence, which is described in more

detail in section 3.4.

As described above, the session data file is central on the client side in terms of the

data collection mechanism. The actual data collected by the Edge client is defined

to help the server perform the analysis to predict user behavior and give insight to

developers on how to improve their software. The actual data that is written to the

session cache data file is actually just a capture of the triggered events of the Edge

client. The following events are captured by the Edge client:

Edge Events

" New installation (date, user id) - occurs when an Edge client is newly installed

on a machine. This translates to a new session on the server.

" Load client (session id, date) - occurs when a previously installed Edge client is

started on the machine.

" Unload client (session id, date) - occurs when a previously installed Edge client

is terminated on the machine.

" Change state (session id, state type, date) - occurs when the user changes the

state of the current Edge client session. In other words, when the user minimizes,

maximizes, or hides the Edge client.

Part Events

" Load part (part id, date) - occurs when a new Edge part is loaded into the

current Edge client session.

" Unload part (part id, date) - occurs when an Edge part is removed from the

current Edge client session.

25

" Rate part (part id, user id, rating, date) - occurs when an Edge part is rated

by the current user.

" Add comment (part id, user id, comment, date) - occurs when the current user

leaves a comment for the developer of an active part from the current Edge

client session.

Each of these captured events is used by the Edge server to predict user behavior

and analyze popularity of parts and edge clients among other things. Section 4.1 will

discuss in more detail the formulas used to draw conclusions.

3.4 Edge Server

3.4.1 Overview

The Edge server is the portion of the Edge system that handles the processing of data

that is captured by the client. The server holds all the logic as to how to analyze the

data to provide useful information back to the developers as to the current state of

their part.

The Edge server is transparent in the sense that there is no user interface, nothing

concrete or substantial that a user could see. Rather it is a black box that is there

to simply gather data, process it, and spit it back out in a form that will educate

developers as to how their software is currently doing in the community and its

perception among its users.

In this section I will describe the design and implementation of this black box, as

well as discuss the logic and formulas used to analyze the data and its importance to

developers.

3.4.2 Data Processing

The design of the Edge server involves two layers. The first is the web services layer,

which gives the server the ability to receive data captured by the client as well as

26

the ability to post data to the user. With the standardization of web services and

the popularity of the TCP/IP protocol, a web services architecture was used for this

layer. It provides an extremely simple and effective way for the client to easily talk

with the server to asynchronously pass data to it. This layer exposes web methods

to the client so that it may perform remote procedure calls to let the server know of

triggered events on the client. Web methods are also exposed for the web community

to extract data and make them viewable to the users. This design abstracts the data

store and logic away from the client by simply providing methods for the client to

call. The client does not need any knowledge of what type of database or the formulas

the server uses for analysis.

The web methods simply act as an abstraction layer that provides access to the

backend data store. My implementation for the backend is a Microsoft SQL Server

database. The main advantage of using a relational database management system

(RDBMS) such as MS SQL Server is that the data is stored in a structured and

organized fashion. It has a nice feature which enforces cross references between rows

in separate tables. This is known as the "consistency" test for an RDBMS [4]. For a

system like the Edge where most of the statistics calculated are within the scope of

a single specific part, this consistency feature becomes a huge advantage.

The second layer is the analysis layer. This layer contains all the logic behind the

processing of the data received from the client. The goal of this layer is to try to make

assumptions of the overall popularity of a part based upon information provided by

the client. However, it's almost impossible to get this type of analysis perfect the

first time. In order for any formulas to work, it will inevitably have to be tweaked

to more accurately measure the overall success of a part and put a numerical value

to how well the user community has embraced it. It is for this reason the analysis

layer exists. Rather than building the logic into the Edge clients, the analysis layer

places all the logic, formulas, and data in a single point for processing where version

updates of the Edge client softare would not be required for tweaking the analysis

process. Section 4.2 will provide more of a discussion into the justifications behind

the analysis process.

27

3.5 Edge Community

3.5.1 Overview

The Edge community is the component which allows analyzed data to be communi-

cated not only to developers but also the users. Its main function is to serve as a

point of interaction between developers and users and provide the link between them.

The feedback mechanism in the Edge helps to analyze how well a developer's software

is being embraced by the community, but without the Edge community, the develop-

ers would never have access to this information, nor would the users have access to

information about the parts.

3.5.2 Data Posting

The Edge community serves as a portal type application for the Edge system. Its two

main areas are the Edge main page and the auto-generated parts pages. Each area

provides useful statistics information to both developers and users; however the parts

pages are more important to the feedback mechanism as described in the following

section.

Main Page

The Edge page has been designed to contain modularized components for each of

the distinct features of the main page. The advantage of using these modularized

component boxes is that each can be easily hidden or made visible to the user when

necessary. Each of the important components will be discussed in the following sec-

tion. Figure 3-7 shows a screen shot each of these components discussed.

The announcements component, as the name states, allows important Edge an-

nouncements to be conveyed to all Edge users. These might be messages about new

versions or features coming soon, or service outages. Also important is the discussion

component which is a typical message forum system where edge users may leave notes

for developers or discuss with other users about certain features they like, or they feel

28

E4e bk 91-79 199k D-t

Welcome to the Edge,

eR's howr to got Mtarted msinq *h Edge: tentisae n ef
" Make s-r you h v th- NET Framwoks iftalkd
. DOWninad the efte *An kntal it yAtoe at

44743~~1 7444,.a4Jt £9

* 0m46f1flnd 4odd th...

3. Sd,4. Tro-k Ccw M W W)

Psers a MMMMI

T.M1 T442074ham 1. T-s (U pu hi.hed)

U0l174ti77 35.34% 2. Wwher

Ths r a 4r9 y - -6-904 4 9mnm7.74 4. c-

S. hi -ta--
O CUsiGH6. D-vHwo

7. S*U9te Trck (Uspob7ihd)

Rug! 8' Ev, (LO-Ubkist.d)

Figure 37: The Edge Main Page

are missing.

Certain components on the Edge main page also serve a role in the Edge ecosystem

by promoting the adoption of parts. The ranked parts component lists the top ten

parts by order of how well they are ranked by the community. This component allows

users to quickly view popular parts and install them in their Edge client thereby

effectively promoting "good" software and increasing activity of popular parts. The

recent parts component is another one that promotes user activity. This component

displays the top ten newest parts born into the Edge ecosystem. These parts are

sorted by date so that new parts will be given a jumpstart at receiving user activity,

thus allowing developers to begin collecting data from its user base.

Other components are customized to the currently logged in user. The installed

parts component allows the current user to have quick links to the parts that the user

has installed in their Edge client. This information is available because the feedback

mechanism sends this information to the Edge server for each client. Thus the Edge

29

server is able to provide this customized information to the community web page.

The authored parts component works in a similar fashion, though providing different

information. The author parts component displays the list of edge parts that the

current user has developed, providing quick links to part pages that may be used by

the developer to perform administrative functionality on the part.

The last and probably most intriguing component is the statistics component.

This component displays the statistics of all Edge clients ever installed. The statistics

that are displayed are the number of active users, the number of sessions, the number

of new parts and active parts, the total amount of time the Edge has been running,

and the percent utilization of the Edge. These statistics are obtained from the Edge

server as described in section 3.4.

Part Pages

What's unique about the Edge community is that for each new part that is added,

a dynamic webpage is automatically generated for the part. This part page provides

each part with an area where its users can interact and obtain further information

about the part. Just as the Edge main page was designed, the part pages also contain

different components that display this information to the users. Figure 3-8 shows the

components of the part pages.

Like the Edge main page the part pages also contain an announcements and

discussion forums component. Both the announcements and discussion forums are

limited to the domain of that particular part. That is, each part has its own discussion

forums separate from all other parts.

The part pages also contain a statistics component similar to that of the Edge

main page. Specifically, the statistics components displays the rank, rating, number

of users of the part, number of active sessions of the part, the total uptime, and the

overall utilization of the part. Each of these statistics is described in more detail in

section 4.1.

Additionally the part pages provide administrative functionality for developers.

When a developer is visiting a part page of their part, they are provided with function-

30

A Bad : d m s rDde eaa

Home > Parts Section

'0Contacts

by ericcarl@microsoft.com
Version: 1.0.1032.12765

Provides Windows Messenger functionality in an Edge part

Rank: 4

Rating: 3
Users: 0
Sessions:
Total Uptime: 3 hours
Utilitzation: 0%

There ae currently no actve annomcemerns.

Figure 3-8:
author

The Contacts part page with the customization options for the part

31

ality to post announcements or create additional message forum categories specific to

their part. Also, if a part is unpublished, or not yet made available to the public, the

part page allows the developer the ability to publish the part. The developer does this

by specifying a URL location in the part page where the dll file can be downloaded

to load the part into the Edge client.

32

Chapter 4

Data Analysis

4.1 Feedback Statistics

As described above, the Edge system consists of three components, the client, data

server, and web community. While the client is responsible for the data collection,

the latter two components handle the backend of the feedback mechanism. This is

the area of my main contribution.

The Edge will be able to track data for individual parts. There are two main

categories of data which the Edge will track, that is direct user feedback and inferred

feedback. Together these statistics provide the tightly coupled feedback mechanism

the Edge uses to help developers improve their software.

The Edge allows users to rate parts as well as leave comments for the developers.

While the user comments cannot be used for statistical analysis, the ratings of parts

provide a very accurate means of evaluating the success as well as the worth of each

part. These ratings directly correlate to whether or not users in the community like

or dislike the part.

In addition to direct user feedback, the Edge also tracks usage data. While this

usage data cannot be directly translated into user feedback, it can be used by the

developer to determine usage patterns for its part and more importantly infer how

successful the part is doing in the community.

The data analysis process begins with calculating specific statistics that will be

33

used to form the basis of the feedback mechanism. These statistics are categorized

and defined as follows:

Edge Statistics

" Active Sessions - The number of distinct sessions which have been created in

the Edge over the last 24 hours. This statistic measures the current activity of

the Edge.

" Active Users - The number of distinct users who have used the Edge in the past

30 days. This metric defines the growth of the Edge in the last 30 days. Note

the difference from active sessions. This statistic measures the growth of the

user base whereas active sessions measures how many of those users are actively

using it.

* Active Parts - The number of distinct parts that are contained in any session

over the past 30 days.

" Newly Published Parts - The number of new parts that have been published to

the Edge in the last 30 days. Note that this does not include revisions of old

parts.

* Total Time - The total amount of time that the Edge has been run. That is,

an aggregate over all sessions for all users.

" Utilization - I consider the Edge to be running in three states, hidden, min-

imized, and maximized. See section 3.3.2 for more information about Edge

states. The utilization value of the Edge is a percentage of how much of time

the Edge is in use, with weights applied to each of the 3 states. Thus the total

utilization formula is (maximized + 0.5*minimized) / (maximized + minimized

+ hidden).

Part Statistics

* Online Users - The number of distinct users who have run the Edge in the last

24 hours which included this part.

34

" Active Users - The number of distinct users over the past 30 days who have run

this part.

" Total Uptime - The total amount of time that this part has been running in

any session.

" Utilization - The percentage of time that this part has been active in relation

to other parts within this session. This statistic is taken over the last 30 days

in order to avoid carrying dead weight with inactive parts.

" Average Rating - The average rating of this part taken over all active users. A

part rating is provided by users of the part.

" Total Comments - The number of total comments left for the developer of the

part.

" Ranking - The ranking is a single numerical value that is meant to get an

overall picture of the popularity of the part. It is a combination of utilization,

rating, and number of users actively using this part. The formula for calculating

ranking is simply utilization * average rating.

The part statistics are at the core of the data analysis of the feedback mecha-

nism. By examining the changes in ranking over time, matching the date with the

revision history of the part, one can find whether there is a correlation between the

popularity of the part among the user community and the improvement of a part by

the developer. This correlation of course can be attributed to the feedback mecha-

nism promoting the improvement of parts by providing developers with direct user

feedback about their part.

With the above statistics, it is easy to find usage patterns of certain parts. For

instance I can answer questions such as "Do users typically have my part active? Do

they have my part hidden?", "How many users are using my part?", or "How do users

rate my part?" These types of questions are important in first evaluating how good

a part is as well as a way to track improvement of a part over time.

35

Since the ranking statistic captures the overall popularity of the part by com-

bining usage statistics with direct user ratings, it is a good metric for determining

the improvement of a part. By relating this with the revision history of the part, I

can conclude whether part rankings help to initiate developer revisions which cause

higher rankings thus concluding an improvement on the software. In other words, if

a part's lifetime were broken down into time periods matching the revisions of the

part, by examining the change in rankings over part revisions I can conclude whether

the software has exhibited an improvement over revisions.

Additionally to show that user feedback has in fact promoted developer revisions of

a part we can look at how the volume of comments left by users as well as the number

of ratings, whether good or bad, correlate with the timing of revisions. For instance

if developer revisions seem to follow when the total number of comments grows large

or the number of ratings increases, this provides evidence that the feedback loop is

in fact stimulating developers to provide improved revisions of their software.

4.2 Feedback Analysis and Implementation

The part statistics are kept in a SQL table "PartRating". The part objects are

contained in a table "Part". The columns of the part table contain the properties of

the Part object. Some of the more important columns to this discussion include the

following:

* PartID - this is a GUID which simply assigns a unique identifier to this part.

Also the primary key for the table.

* Name - the string name of this part.

" Ranking - the integer value represents the ranking of this part. The ranking

value was described in the previous section.

" Utilization - this floating point value represents the percentage of the amount

of utilization by users of this part. This statistic is also described above.

36

The PartRating table stores the values of how each user rates the specified part. As

discussed above, the consistency property of the RDBMS helps to check consistency

in that each rating that is added to the PartRating table assures that it is for a

valid, existing part. The reason for this is that the PartRating table has a references

link from the partID column to the "Part" table. The PartRating table contains the

following columns:

* partRatingNo - this integer is the primary key of the table and assigns a unique

value to each particular rating.

" partID - this is the column that contains the reference link to the Part table.

This determines which part is the recipient of this rating value.

" email - this columns contains the reference link to the Owner table. This link

defines which Edge user was the rater for this rating value.

" rating - this integer value between 1 and 5 which corresponds to how well

received the part was by the user. A value of 1 corresponds to a "Hate It"

rating and a value of 5 corresponds to a "Love It" rating.

The ranking and utilization values are calculated using batch SQL query state-

ments that update the Part table every two hours. The batch update queries for

utilization work by first creating a temporary table, #utilization, to hold the uti-

lization value during processing. Next the total amount of active time that all parts

are calculated by summing the difference in the start date and end date of each ses-

sion. This value is then stored in a temporary value Atotal. Finally the total time

of activity in the last 30 days for each part is calculated individually and divided by

the @total time of activity of all parts. This now becomes the utilization value for

each part and is stored in our temporary table #utilization upon calculation. Finally

each row of the #utilization table can be used to update the utilization column of

the Part table to make the utilization values permanent. The following SQL query

statement is used to calculate the utilization value. See appendix A for a listing of

all SQL stored procedures used.

37

DECLARE @total float

select @total cast(sum(datediff(second, starttime,endtime))

as float)

from sessionpart

INSERT #utilization (partID, utilization)

SELECT partid,

cast(sum(datediff(second, starttime, endtime)) AS float)

/ @total AS utilization

FROM sessionpart 10

WHERE sessionPart.startTime > dateadd(day , -30

CURRENT-TIMESTAMP)

GROUP BY partid

The batch update queries for ranking work in a similar fashion. Remember that

ranking is meant to capture the overall popularity of a part. Utilization captures the

inferred feedback of the part by examining how often it has been in use. Additionally

there is the direct user feedback that is the rating values assigned by users saying

how much they liked or disliked the part. The ranking value simply combines these

two types of feedback into an overall popularity ranking. The SQL statement is as

follows:

SELECT part.partiD

FROM part

LEFT OUTER JOIN partrating ON(part.partid = partrating.partid)

GROUP BY part.partlD

ORDER BY MAX(utilization) *

Coalesce(cast(Sum (rating)AS float) /
cast(count(rating) AS float), 0.0)

DESC

This SQL statement works by simply selecting the ranking value by multiplying

the max utilization value of each part with the average rating of that part. Again

38

these values are stored in a temporary table #ranking which are then used to update

the ranking column of the Part table making the calculated value permanent.

4.3 Developer-User Feedback Loop

Probably the most intriguing aspect of the Edge is the research involved in the

Developer-User feedback loop. In the previous sections I have discussed the im-

plementation and design of the feedback loop. In this section I will discuss the theory

behind how the developer-user feedback loop can be an instrumental component in

helping to improve software and reduce development time.

The benefits of the Edge feedback loop is of course limited to this application

since the type of feedback collected is hard wired into the system, however this can

be considered a proof of concept for how this type of mechanism's benefits can be

realized in all types of software. What's interesting about the Edge is how well it

resembles that of real world software application. The Edge consists of various parts,

built by developers, which together make up the bulk of the Edge client. This is similar

to a typical software project which is built by teams of developers each working on

separate components which together make up the entire software product.

The feedback portion of the loop consists of course of feedback and usage statistics

provided by the users of the various parts. While most software products might not

have a community of users, they all have some market of users. These usage statistics

can just as well be applied to any market while providing the same type of information.

The example provided in chapter 2 has already shown how the data provided

by the feedback mechanism can improve "parts" in the Edge. Now let's take it a

step further and discuss what kind of benefits this type of feedback mechanism can

provide for other applications. Imagine a word processor application Macrosoft Word

1.0 with a built in developer-user feedback mechanism. Immediately the developers

can be notified of bug reports sent by users, prioritizing the most common occurrence

of bugs. Additionally when planning the next version of Macrosoft Word, developers

and product managers can look at the data provided by the feedback mechanism,

39

looking at the inferred feedback by the users. Since the mechanism performs some

user tracking they can look at data that will answer questions like "Do users prefer

to use the pull down menu to save a document, or click on the toolbar icon?" In fact

as Macrosoft Word enters into future releases you can even take the analysis a step

further by matching the feedback data along with how the software has changed to

determine how effective those changes were. For an example let's imagine Macrosoft

Word having a button in the bottom right hand corner of the screen that when pressed

prints the document. Now in version 2.0 the print button has been moved to the top

left hand corner of the screen. The feedback mechanism has the ability to tell you how

times that print button was pressed in version 1.0 and by how many different users.

By comparing that data with the amount of times it was pressed in version 2.0 (now

in its new location) could tell developers if that move made it more user-accessible or

not.

While this is obviously a fictitious example, the theories behind the potential of

such a user feedback mechanism are real. Chapter 2 already gave an example of the

benefits of a feedback mechanism in a real software application. In fact even with

the data collected by the Edge feedback mechanism, there are already benefits that

can be realized. If Macrosoft Word collected the same type of data as the Edge, a

program manager can already look at the total amount of time users use Macrosoft

Word per day, or compare the number of installs to uninstalls over the period of a

year. Each of these statistics are already giving insight into how the software might

be improved. By providing an electronic data collection mechanism one can begin to

see how software can be improved by directly incorporating information on how its

user base uses the software into future revisions.

40

Chapter 5

Related Work

User feedback has long been considered the most effective way of improving any type

of consumer products and software is no different. While the automated feedback

mechanism in the Edge is a novel idea with no current system quite like it, there

have been many attempts at finding the best way to build products to cater to

consumers. This section will discuss some of these processes as they relate to software

development.

5.1 User Driven Design

In this methodology, software designers often solicit user feedback via surveys or

interviews in the very early stages of the development cycle in order to understand

the needs of the user. The purpose of this is threefold:

1. To document software requirements that satisfy user needs

2. Analyze user tasks which can be improved or made more efficient through soft-

ware

3. Prioritize feature sets to design extensible software

While this is an integral part of software development, any data collected is essen-

tially just a prediction of how users will use the software. In addition it is generally

41

a time-consuming process where at best you may only survey a small subset of your

potential users. For instance a car manufacturer may have to send survey collectors

to a parking lot to collect data, where the bulk of the work will be in convincing

drivers to spend time to fill out such surveys. There may also be a question of how

valid the data collected is, since it is more an opinion of the user's perception of the

software rather than an inference based on the user's interaction with the software.

5.2 Open Source Model

The open source development model has been a recent trend in software development

that has shown success in many areas. One of the goals of open source projects is

to give users of open source software (OSS) the ability to remove inadequacies and

improve upon the project from the user's point of view. OSS works by providing users

with the source code for software projects to allow users to customize the software to

suit their needs.

This model of development does away with the need for user feedback by simply

allowing users the ability to directly modify the software. It is most flexible in terms

of allowing each user to have a customized version of the software that specifically

fits their needs. However, this model is limiting in that users are requiring to have a

fairly deep understanding of the source code, which in many cases is non trivial.

42

Chapter 6

Conclusions and Future Work

The Edge ecosystem and development cycle is a novel idea that at this time has no

known counterparts. Not only will the user feedback and inferred feedback collected

by the Edge provide developers useful information in gauging how well their software

is embraced by the public, the additional ranking system provides an ego-driven

environment that compels developers to respond to their users needs. Thus the results

of such a system may have a potential positive impact on how developers can improve

their software.

In this thesis I have described the current implementation of the Edge and the

built-in feedback mechanism. I have shown how such a system could be of potential

use to the improvement of existing software products in the market. However, up

to this point this is still only a proof of concept. There is much work left to be

done to make this a viable system. For example, the heuristics and metrics used

to measure software popularity and to track user behavior need to be tweaked. The

Edge was designed with this in mind, however more work needs to be done to actually

look at massive amounts of real data and tune the analysis process to most accurately

represent the users. This long term future work could significantly improve the results

of such a feedback mechanism.

Additionally, at this point the feedback mechanism built is specific to the Edge in

terms of the data collection and the analysis process. However such a system has ben-

efits for all different types of applications. One of the downsides is the need to rebuild

43

parts of this feedback mechanism into each different type of software application. One

possible extension to this project would be to build a standardized, extensible data

store and web methods that would be accessible to the public. This would allow any

developers who would like to have a similar feedback system in their software to only

have to build the client side. That is once the data collection agents are built specific

to that application, it would talk to the standardized data store and web services

provided by the Edge. This would eliminate the need to have to host your own server

to store this data. This would help in not only providing a central store for housing

massive amounts of data but also help to encourage the adoption of similar feedback

mechanisms by easing the development process for building these types of systems.

In this thesis I have described a prototype of a developer-user feedback system

as it exists in the Edge. There are however many privacy issues with such a system

that tracks user behavior and collects usage statistics. However, due to the research

nature of this project these privacy issues were of no concern at this point. Regardless,

the Edge has been shown to be a capable feedback mechanism that can be used for

improving software. Future work notwithstanding, I believe this project has been

a success, providing a useful starting point for anyone interested in incorporating

similar developer-user feedback mechanisms into a wider variety of applications.

44

Appendix A

SQL Stored Procedures

CREATE Procedure UpdateBatchStatistics

AS

-- now the utilization

-- drop table #utilization

create table #utilization

partID uniqueidentifier not null,

utilization float not null

)
10

declare @total float

select @total =

cast(sum(datediff(second, starttime,endtime)) as float)

from sessionpart

insert #utilization (partlD, utilization)

select partid,

cast(sum(datediff(second, starttime, endtime)) as float)

/ @total

as utilization 20

45

from sessionpart

where sessionPart.startTime > dateadd(day , -30

CURRENTTIMESTAMP)

group by partid

update part set part.utilization = #utilization.utilization

from #utilization

inner join part on (part.partID = #utilization.partID)

create table #ranking 30

rno int identity(1,1) not null,

partID uniqueidentifier not null

)
insert #ranking (partID)

select part.partiD

Coalesce(cast(Sum (rating)as float) /

cast(count(rating) as float)

0.0)

40

FROM part

left outer join partrating on(part.partid = partrating.partid)

group by part.partID

order by max(utilization) * Coalesce(cast(Sum(rating) as float)

/ cast(count(rating) as float), 0.0) desc

update part set

part.ranking = #ranking.rno,

rankingUpdateTime = CURRENt-timeSTAMP 50

46

from #ranking

inner join part on (part.partID = #ranking.partID)

drop table #ranking

drop table #utilization

go

-- statistics support

CREATE PROCEDURE GetEdgeStatistics 60

@activePeriod INT,

@minimizedWeighting INT,

@activeSessions INT OUTPUT,

@activeUsers INT OUTPUT,

@activeParts INT OUTPUT,

@newlyPublishedParts INT OUTPUT,

@totalTime bigint OUTPUT,

@utilization float OUTPUT

AS

70

SELECT @activeSessions = Count(distinct email)

FROM EdgeOwner INNER JOIN Session

ON EdgeOwner.EdgeID = Session.EdgeID

WHERE startTime > dateadd(hour, -24, CURRENTTIMESTAMP)

SELECT @activeUsers = Count(distinct email)

FROM EdgeOwner INNER JOIN Session

ON EdgeOwner.EdgeID = Session.EdgeID

WHERE startTime > dateadd(day, -1 * @activePeriod,

CURRENT-TIMESTAMP) 80

47

SELECT @activeParts = Count(distinct (cast (
partID as varchar(40))))

FROM SessionPart

WHERE startTime > dateadd(day, -1 * @activePeriod,

CURRENTTIMESTAMP)

SELECT @newlyPublishedParts = Count(*)

FROM Part

WHERE DatePublished > 90

dateadd(day, -1 * @activePeriod, CURRENTTIMESTAMP)

SELECT @totalTime =

coalesce(SUM(datediff(second, startTime, endTime)),O)

FROM Session

-- drop table #times

select a.actionNo, a.eventTime as startTime,

b.eventTime as endTime, 100

datediff(second, a.eventTime, b.eventTime) as timeDiff

into #times

from edgeevent as a

inner join

edgeevent as b on(a.sessionID = b.SessionID)

where b.eventTime =(select min(eventTime)

from edgeevent as c

where c.sessionID = a.sessionID

and c.eventTime > a.eventTime)

110

48

insert #times (actionNo, startTime, endTime, timeDiff)

select a.actionNo ,

max(a.eventTime) as startTime,

max (b.endTime) as endTime ,

datediff(second, max(a.eventTime), max(b.endTime))

from edgeevent as a inner join session as b

on (a.sessionlD = b.sessionID)

and a.eventTime =

(select max(eventTime) from edgeEvent as e

where e.sessionID = a.sessionID) 120

group by a.sessionID, a.actionNo

order by 2 desc

declare @rmaximized float

declare @minimized float

declare @hidden float

select @maximized = cast(sum(timeDiff)as float) from #times

where actionNo= 2

select @minimized = cast(sum(timeDiff) as float)from #times 130

where actionNo= 1

select @hidden = cast(sum(timeDiff) as float) from #times

where actionNo= 0

select @utilization = coalesce((@maximized + @minimized /2)

/ (@hidden + @maximized + @minimized),0.0)

GO

140

49

create PROCEDURE GetPartStatistics

OpartID uniqueldentifier,

OactivePeriod INT,

@onlineUsers INT output,

@activeUsers INT output,

@totalUptime BIGINT output,

@utilization float output,

@averageRating float output,

@ranking int output 150

AS

SELECT @onlineUsers = Count(distinct email)

FROM EdgeOwner

INNER JOIN Session ON EdgeOwner.EdgeID = Session.EdgeID

INNER JOIN SessionPart

ON Session. SessionID = SessionPart.SessionID

WHERE SessionPart.PartID = @partID

AND SessionPart.startTime > dateadd(hour, -24, 160

CURRENT-TIMESTAMP)

-- number of active edge clients

SELECT @activeUsers = Count(distinct email)

FROM EdgeOwner

INNER JOIN Session ON EdgeOwner.EdgeID = Session.EdgeID

INNER JOIN SessionPart

ON Session.SessionID = SessionPart.SessionID

WHERE SessionPart.PartID = @partID

AND SessionPart.startTime > 170

50

dateadd(day, -1 * @activePeriod, CURRENTTIMESTAMP)

-- total uptime

SELECT OtotalUptime -

coalesce(SUM (datediff(second, startTime, endTime)),O)

FROM SessionPart

WHERE PartID = @partID

SELECT @utilization = 180

coalesce(utilization, 0.0) from part

where partID = @partID

SELECT @averageRating =

coalesce(sum(rating) / count(rating), 0.0)

FROM PartRating

WHERE partID = @partID

SELECT @ranking = coalesce(ranking,0) from part

where partID = @partID 190

GO

51

52

Bibliography

[1] Liliana Ardissono and Robin Cohen. Extending the role of user feedback in plan

recognition and response generation for advice-giving systems: An initial report.

In Canadian Conference on AI, pages 109-120, 1996.

[2] Brian D. Davison. Web traffic logs: An imperfect resource for evaluation. In

Proceedings of the INET'99 Conference, 1999.

[3] Brian D. Davison. HTTP simulator validation using real measurements: A case

study, 2001.

[4] Philip Greenspun. Philip and Alex's Guide to Web Publishing. Morgan-Kaufman

Publishers, 1999.

[5] H Wagner. Tracking the navigation behavior of web communities. Master's

thesis, MIT, 2002.

[6] David M. Hilbert and David F. Redmiles. Collecting user feedback and usage

data on a large scale to inform software development.

[7] David M. Hilbert and David F. Redmiles. Agents for collecting application usage

data over the Internet. In Katia P. Sycara and Michael Wooldridge, editors, Pro-

ceedings of the 2nd International Conference on Autonomous Agents (Agents'98),

pages 149-156, New York, 9-13, 1998. ACM Press.

[8] David M. Hilbert, Jason E. Robbins, and David F. Redmiles. EDEM: Intelligent

agents for collecting usage data and increasing user involvement in development.

In Intelligent User Interfaces, pages 73-76, 1998.

53

[9] Hillol Kargupta, Ilker Hamzaoglu, and Brian Stafford. Scalable, distributed data

mining - an agent architecture. In Knowledge Discovery and Data Mining, pages

211-214, 1997.

[10] Hillol Kargupta, Brian Stafford, and Ilker Hamzaoglu. Web based paral-

lel/distributed medical data mining using software agents, 1997.

[11] H Lieberman and D Maulsby. Instructible agents: Software that just keeps

getting better. IBM Systems Journal, 35(3), 1996.

[12] D Martin and S McIlraith. Bringing semantics to web services. IEEE Intelligent

Systems, pages 90-93, January 2003.

[13] James E. Pitkow and Colleen M. Kehoe. Emerging trends in the WWW user

population. Communications of the ACM, 39(6):106-108, 1996.

[14] James E. Pitkow and Margaret M. Recker. Using the Web as a survey tool:

results from the second WWW user survey. Computer Networks and ISDN Sys-

tems, 27(6):809-822, 1995.

[15] R. Toward and W. Information. IEEE Computer.

54

