
AMPS: A Simulation System for Modeling and

Analyzing the Psychology of Risk-Taking

by

Lawrence C. Wang

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degrees of

Bachelor of Science in Electrical [Computer] Science and Engineering

and Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology
3 erg ;(;x~fMASSACHUSETTS N$TITUTE

May 19, 2003' - OFTECHNOLOGY

Copyright 2003 Lawrence C. Wang. All rights reserved. JUL 3 0 2003

LIBRARIES
The author hereby grants to M.I.T. permission to reproduce and

distribute publicly paper and electronic copies of this thesis
and to grant others the right to do so.

Author

Certified by

Certified by

Accepted by

Department of~t ectrical Engineering and Computer Science

May 19, 2P03

Andrew W. Lo
Harris and Harris Group Professor

Tpesis SOervisor

Dmitry ViRepin
Postdoctoral Associate

Thesis Supervisor

r Arthur C. Smith
Chairman, Department Committee on Graduate Thesis

I I -i r1i NOW61mi - y -2

40.5-wy*110

AMPS: A Simulation System for Modeling and

Analyzing the Psychology of Risk-Taking

by

Lawrence C. Wang

Submitted to the
Department of Electrical Engineering and Computer Science

May 19, 2003

In Partial Fulfillment of the Requirements for the Degrees of
Bachelor of Science in Electrical [Computer] Science and Engineering

and Master of Engineering in Electrical Engineering and Computer Science

Abstract

This thesis presents the design and implementation of Artificial Market Psychology
Simulator (AMPS), an autonomous, programmable simulation system designed to assist
research on the psychology of financial decision-making. The system enables researchers
to systematically control price patterns and generate other market events in a securities
market simulation, in order to analyze their impact on the emotional characteristics and
subsequent trading behavior of professional securities traders. Real-time trader behavior
and portfolio information is then fed back into the system to dynamically generate
subsequent price patterns and contribute to the desired emotional impact on the trading
subject.

AMPS enables researchers to program dynamic price patterns using rule-based scripting
mechanisms and a library of customized mathematical functions. The system leverages
MIT Web Market, an artificial securities market, for basic market-making operations and
transaction logging. AMPS is also integrated with RStudio, a physiological data
collection system, to log timestamps of critical simulation events.

Thesis Supervisor: Andrew W. Lo
Title: Harris and Harris Group Professor

Thesis Supervisor: Dmitry V. Repin
Title: Postdoctoral Associate

2

Acknowledgements

This thesis would not have been possible without the guidance and support from a

number of people.

My thesis advisor Prof. Andrew Lo granted me this remarkable thesis opportunity,

for which I am extremely grateful. His research guidance and advice have been crucial to

the project. His time and understanding have been most encouraging.

My direct supervisor Dr. Dmitry Repin has worked with me through the most

critical phases of the project. His collaboration in requirements and functional

specifications, ongoing feedback, innovations, and general supervision have made a

deciding difference.

Time and collaboration from Eric Ho have made possible the integration with the

RStudio system he developed. Adlar Kim has also provided critical help and information

to facilitate the integration with the Web Market system. The IT staff members of the

MIT Lab for Financial Engineering have consistently and promptly provided the system

and technical support I required, and their contribution must not be undermined.

My academic advisor Prof. Ron Rivest has been most encouraging, and I am

grateful for his general advice on research and academics. Anne Hunter, Course VI

Administrator, has also provided valuable administrative support.

Ultimately, this thesis would not have been completed without the support of my

beloved family and friends. Special thanks to the following individuals for being there

when I needed them the most: Mom, Dad, Fred, Grace, Icie, Elbert, Alex, Sue, Kevin,

Ernie, Steve, Paul, and Joey. They have shown unbelievable care and understanding as I

underwent long periods of solitary confinement during critical phases of the project. I

cannot say enough to express how deeply indebted I am to them.

3

Contents

1 INTRODUCTION... 11

1.1 BACKGROUND AND CHALLENGES... 11

1.2 PROJECT OVERVIEW .. 13

1.3 PROJECT REQUIREMENTS .. 13

1.3.1 Real-Time Data Requirements.. 14

1.3.2 Price Pattern Computation Requirements... 14

1.3.3 User Interface and Usability Requirements... 14

1.3.4 Data Storage and Retrieval Requirements ... 14

1.3.5 Interoperability Requirements ... 15

1.4 PROJECT SCOPE AND DEVELOPMENT METHODOLOGY 15

1.4.1 Requirements Collection and Planning ... 16

1.4.2 Functional Specifications... 16

1.4.3 Design Specifications.. 16

1.4.4 Iterative Development... 17

1.4.5 Quality Engineering.. 17

1.4.6 Deployment and Knowledge Transfer .. 17

1.4.7 Project Closure .. 17

1.5 W RITING CONVENTIONS .. 18

2 DESIGN CONSIDERATIONS.. 19

2 .1 U SA B ILITY ... 19

2.2 SCALABILITY AND PERFORMANCE ... 19

2.3 ROBUSTNESS AND MAINTAINABILITY ... 20

2.4 INTEGRATION WITH EXTERNAL DATA SOURCES.. 20

2.5 SEPARATION OF EMOTION, BID/ASK, AND MESSAGE PROCESSES................... 20

3 SYSTEM DESIGN SPECIFICATIONS .. 22

3.1 ARCHITECTURAL OVERVIEW ... 22

4

3.2 SIM ULATION D ESIGN .. 25

3.2.1 Structure and Sessions O verview .. 25

3.2.2 Sim ulation States and Transitions ... 26

3.2.3 Process and D ata Flow ... 29

3.3 A M PS COM PONENTS... 31

3.3.1 Sim ulation UI... 31

3.3.2 Em otion Engine... 34

3.3.3 Bid/Ask Engine... 36

3.3.4 M essage Engine .. 39

3.3.5 AMPS Trader and AMPS Trader Thread .. 41

3.3.6 D B Connector ... 41

3.3.7 RS Connector ... 42

3.3.8 W M S Connector.. 43

3.4 EXTERNAL COM PONENTS .. 44

3.4.1 M IT W eb M arket .. 44

3.4.2 RStudio.. 45

4 GENERAL USAGE AND CONFIGURATIONS... 47

4.1 G ENERAL U SAGE M ODEL .. 47

4.2 SYSTEM STARTUP AND EXIT ... 48

4.3 SYSTEM CONFIGURATIONS .. 49

4.3.1 Sessions Configurations... 49

4.3.2 File and D irectory Path Configurations.. 50

4.3.3 RS Connector and DB Connector Configurations.................................... 51

4.4 U SING EMOTION AND BID/A SK RULE SETS... 52

4.4.1 Rule Set Structure and Syntax.. 52

4.4.2 Variables ... 54

4.4.3 Operators and Functions ... 56

4.4.4 Vectors .. 57

4.5 U SING M ESSAGE FILES .. 57

4.6 U SING D ATABASE A CCESS SCRIPTS .. 58

4.7 R S CONNECTOR LOCAL LOG FILE .. 60

4.8 W EB M ARKET STARTUP AND EXIT ... 61

5 A M PS U SER IN TER FA CES ... 62

5

5.1 SIM ULATION U SER INTERFACES ... 62

5.1.1 Sim ulation P anel.. 62

5.1.2 D ata L ogging P anel.. 65

5.1.3 AM PS Configuration Editor .. 67

5.2 WEB MARKET SERVER AND CLIENT USER INTERFACE 74

5.2.1 C lient User Interface.. 74

5.2.2 Server User Interface... 74

6 SOFTWARE TEST PLAN... 75

6.1 O V ERV IEW ... 75

6.2 U N IT T ESTIN G .. 75

6.3 FUNCTIONAL TESTING .. 76

6.4 SY STEM T ESTING .. 78

6.5 TEST ENVIRONM ENT .. 79

7 FUTURE WORK ... 80

7.1 SUPPORT FOR PHYSIOLOGICAL DATA INPUTS .. 80

7.2 LOGGING SYSTEM ENHANCEMENTS.. 81

7.3 IMPROVED EXCEPTION AND ERROR HANDLING .. 81

7.4 ADDITIONAL LOGIC CONSTRUCTS AND RULE SET SYNTAX 82

7.5 SUPPORT FOR MULTIPLE CONCURRENT TRADING SUBJECTS 82

8 DISCUSSION ... 83

APPENDIX A: AMPS CUSTOM FUNCTIONS... 85

APPENDIX B: JEP OPERATORS, FUNCTIONS, AND CONSTANTS........ 87

O PERA TO R S .. 87

F U N C T IO N S ... 88

C O N STA N T S .. 88

APPENDIX C: LIST OF AMPS CONFIGURATION AND LOG FILES.......89

APPENDIX D: SYSTEM CONFIGURATION FILE AND PARAMETERS..... 90

APPENDIX E: SAMPLE EMOTION AND BID/ASK RULE SETS 95

APPENDIX F: AMPS SYSTEM REQUIREMENTS ... 101

APPENDIX G: CONFIGURATION EDITOR SCREENSHOTS............. 103

APPENDIX H: WEB MARKET CLIENT AND SERVER SCREENSHOTS.......107

6

List of Figures

Figure 1-1: Emotion Generation Feedback Cycle ... 13

Figure 3-1: AMPS Component Architecture ... 23

Figure 3-2: Simulation State Transitions ... 27

Figure 3-3: Simulation Process and Data Flow .. 30

Figure 3-4: Simulation UI State Transitions... 32

Figure 3-5: Sample Emotion Rule Set: sample emotion.emo 36

Figure 3-6: Sample Section of a Bid/Ask Rule Set: sample bidask.baa....................... 38

Figure 4-1: Sample Section of amps. ini: Sessions Configurations............................... 49

Figure 4-2: Sample Section of amps.ini: Path Configurations 51

Figure 4-3: Sample Section of amps. ini: Connectors Configurations 51

Figure 4-4: Sample Message File: samplemessage.msg... 57

Figure 4-5: Sample Local Log File: sample_rstudio.log... 60

Figure 5-1: Simulation UI: Simulation Panel .. 63

Figure 5-2: Simulation UI: Data Logging Panel.. 66

Figure 5-3: Configuration Editor: Main Graphical Components.................................. 68

Figure 5-4: Configuration Editor: File Menu Items.. 69

Figure 5-5: Configuration Editor: View Menu Items ... 70

Figure 5-6: Configuration Editor: Internal Frame and Edit Menu Items...................... 72

Figure D-1: Sample AMPS System Configuration File: amps.ini............................... 91

7

Figure E-1: Sample Emotion Rule Set: sample emotion.emo 95

Figure E-2: Sample Emotion Rule Set Initialization File: sample emotion.ini............. 96

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

E-3: Sample Bid/Ask Rule

E-4: Sample Bid/Ask Rule

G-1: Configuration Editor:

G-2: Configuration Editor:

G-3: Configuration Editor:

G-4: Configuration Editor:

G-5: Configuration Editor:

G-6: Configuration Editor:

Figure G-7:

Figure H-1:

Figure H-2:

Set: sample bidask.baa .. 97

Set Initialization File: sample_bidask.ini 100

File M enu - O pen... 103

File M enu - Save A s ... 104

View Menu - Minimize All..................................... 104

View Menu - Show All.................... 105

View Menu - Line Up All....................................... 105

Internal Frame - Minimize Icon.............................. 106

Configuration Editor: Internal Frame - Maximize Icon

Web Market Client User Interface ..

Web Market Server User Interface ...

106

107

108

8

Table 3-1:

Table 3-2:

Table 4-1:

Table 4-2:

Table 4-3:

Table 4-4:

Table 4-5:

Table 4-6:

Table 5-1:

Table 5-2:

Table 5-3:

Table 5-4:

Table 5-5:

Table 5-6:

Table 5-7:

Table 6-1:

Table 6-2:

Table 6-3:

Table 6-4:

9

List of Tables

Architectural Components and Functions ... 25

Simulation States, Entry Conditions, and Consequences............................ 29

AMPS High-Level Administrator Tasks.. 48

Rule Set Operator Order of Precedence .. 54

Market Variables and Descriptions .. 55

Order Variables and Descriptions ... 56

Sample Message Delivery Schedule .. 58

Database Access Scripts and Functions ... 60

Simulation Panel Components and Functions... 65

Data Logging Panel Components and Functions .. 67

File Menu Items and Functions... 70

View Menu Items and Functions.. 71

Edit Menu Items and Functions.. 73

Internal Frame Icons and Functions .. 73

Internal Frame Key Bindings and Functions... 74

Unit Test Scripts and Descriptions... 76

Functional Test Cases and Descriptions.. 78

System Test Cases and Descriptions ... 79

Test Environment Specifications.. 79

Table A-1: List of AM PS Custom Functions ... 86

Table B-1: List of JEP Operators... 87

Table B-2: List of JEP Functions... 88

Table B-3: List of JEP Constants... 88

Table C-1: List of AM PS Configuration and Log Files ... 89

Table D-1: List of System Configuration Parameters... 93

Table F-1: AM PS System Requirements.. 102

10

Chapter 1

Introduction

1.1 Background and Challenges

The impact of psychology on the behavior of professional securities traders and its

implications on the fundamental driving forces behind financial market movements has

been a longstanding issue of controversy in the financial industry. Historically, the

majority of economic and financial theories are based on the assumption that individuals

act rationally and consider all available information in their risk-taking and decision-

making processes. The supporters of the Efficient Market Hypothesis (EMH)1 , for

instance, advocate that in a market of rational investors and efficient information flow,

the price of a security directly corresponds to the security's perceivable economic value,

and that there should be no ambiguity to the price, or the market full of rational,

competing investors will almost instantaneously adjust the price to its appropriate level.

The school of technical analysts, on the other hand, believes in the existence and

predictability of market patterns and anomalies from EMH's price implications. This

belief is primarily based on the assumption that investors are irrational and that their risk-

taking activities are based on factors beyond their perception of fundamental economic

value, such as transient emotions and cognitive states. Modem research exploring the

relationship between psychology and rationality in decision-making processes has

evolved into what is now known as the field of behavioral finance.

Past research in behavioral finance has provided ample evidence of the influence of

emotional states on the rationality of risk-takers. The research of Raghunathan and Pham

1 Efficient Market Hypothesis (EMH) is a theory on market efficiency founded by Eugene Fama. It
suggests that, in an efficient market, the competition among rational investors ensures that the actual price
of a security is a good estimate of its intrinsic value at any point in time. See [8].

11

suggests that anxious individuals tend to be more risk-averse - biased towards low risk

and low reward investment options. Sad individuals, meanwhile, exhibit a greater liking

for high risk and high reward options [9]. Mano's studies have also suggested that higher

emotional arousal causes the decision maker to develop a greater affinity for risk [5].

Despite the strong professional and academic interest, research in behavioral finance

has largely remained at the theoretical level because of several challenges. First of all,

the correlation analysis between emotions and risk tolerance is difficult to perform due to

the intricacies in systematically inducing emotions. Further, the inherent complexities in

collecting and quantifying data on human emotions present another obstacle. Thirdly,

emotions are transient cognitive states that must be tracked and interpreted over extended

periods of time in a controlled and stable environment.

An organized research effort headed by Andrew Lo and Dmitry Repin at the MIT

Lab for Financial Engineering (LFE) is in progress to explore the influence of human

emotions on financial decision-making processes through systematic and controlled

experiments. Their preliminary research employed professional securities traders as

experiment subjects and utilized biofeedback equipment to measure real-time

physiological responses while the subjects were trading. The studies so far have

demonstrated statistically significant correlations between certain market events and

traders' physiological characteristics that are indicative of emotional fluctuations [8].

The approach represents an important milestone in that real-time physiological data puts

emotions in a more empirical and quantifiable context.

The aim of this thesis project is to contribute to the effort at MIT Lab for Financial

Engineering by developing a simulation system facilitating the control and monitoring of

trader emotions through systematically controlled market movements. By dynamically

generating emotion-impacting price patterns catered to real-time trading behavior and

asset allocations of the experiment subject, the system enables researchers to not only

observe the influence of emotions on the subject's risk-taking behavior, but also induce

these emotions in a systematic manner.

12

1.2 Project Overview

The Artificial Market Psychology Simulator (AMPS) is a simulation system designed to

aid in the research on the psychology of risk-taking, undertaken at the MIT Lab for

Financial Engineering. The system facilitates the exploration of the relationship between

market movements, the traders' emotional characteristics, and risk-taking behavior by

allowing researchers to elicit emotional states on the human subject through a systematic,

controlled, and dynamic process.

Real-Time Trader Trading Behavior under
Behavior Data Emotional Influence

AMPSArtificial
01' Market Research

Administrator Emotion-Inducing Market Movements Subject
Price Patterns

Systematically Controls (Based on Trader Behavior) Submits Trades
Ernoior-ncluingand Takes Risks

Emotion-Inducing
Price Patterns

Figure 1-1: Emotion Generation Feedback Cycle

The system provides the research subject, or professional securities trader, with a

simulated securities market in which to perform risky trades for profit. It enables the

researcher to influence the emotion of the trading subject through a series of controlled

price patterns and other market events such as security news. The subject's order

submissions, influenced by his or her emotions, are then monitored and collected as a

form of behavior data. The real-time behavior data, along with the trader's current

portfolio and other real-time market information, are continuously fed back to the system

in order to dynamically adjust subsequent price movements based on the trader's

observed behavior in the context of his current asset allocation and market conditions.

1.3 Project Requirements

The prototype should meet the high-level requirements discussed in the following

sections.

13

1.3.1 Real-Time Data Requirements

The system should be able to retrieve real-time data on trader behavior and market

movements, and allow the research administrators to utilize this data in price pattern

generation. The challenge requires AMPS to interface with the market database directly

and retrieve the data at every time step during the simulation. The design should

therefore ensure that the rate of data retrieval and the overall performance of the database

connection can meet the timing requirement of the simulation clock tick.

1.3.2 Price Pattern Computation Requirements

AMPS should enable the administrator to systematically and dynamically generate

emotion-inducing price patterns based on real-time trader and market data at every time

step during the simulation. This requirement leads to a number of finer challenges. First,

the system should provide tools to facilitate the programming of dynamic price patterns

based on real-time trader behavior and market data. The tools should be designed to

accelerate pattern development as well as provide the extensibility to incorporate a large

variety of real-time data input formats. In addition, the computation of price patterns

must be fast enough to cope with the rapid pace of the simulation clock tick. Given the

aforementioned requirements, the data structure and syntax of price patterns must be

designed to offer an adequate balance of computation speed and usability.

1.3.3 User Interface and Usability Requirements

Intuitive graphical user interfaces must be provided for the research administrator to

control and monitor the simulation process. Similarly, interfaces should be provided for

the research subject to participate in trading. The user interfaces should be robust and

functional for the current set of requirements and also extensible enough to incorporate

potential or additional feature requirements for the future.

1.3.4 Data Storage and Retrieval Requirements

14

All market and trader behavior data should be collected and stored for postmortem

analysis of trader behavior, emotional state, and price pattern correlations. Scripts and

other tools to access the database should be provided to facilitate the data retrieval and

examination after the experiment.

1.3.5 Interoperability Requirements

AMPS should work in conjunction with Web Market, MIT's existing artificial market

system (see Section 3.4.1: MIT Web Market) to reduce duplicate development effort as

well as to maintain compatibility among software systems regularly used by the staff of

MIT Lab for Financial Engineering. The system should leverage Web Market's market-

making functionality in the simulation - the trades should be submitted to and matched

by the Web Market server. The transactions and trader portfolios should be maintained

in the Web Market database. The trading subjects should be allowed to utilize Web

Market's web-based user interface for market monitoring, portfolio tracking, and trade

submissions. These requirements introduce additional complexities in the generation of

price patterns because they require AMPS to submit trades using Web Market's machine

trader API, thereby limiting AMPS's ability to control price movements directly.

In addition to Web Market, AMPS should also work with external data collection

systems including RStudio (see Section 3.4.2: RStudio), and be able to delivery or log

timestamp signals during the simulation.

1.4 Project Scope and Development Methodology

The scope of the project covers the complete development lifecycle of an initial prototype

of AMPS, from the initial requirements gathering and specifications to design,

development, testing, deployment, knowledge transfer, and postmortem project review.

The software development methodology underlying the project lifecycle consists of

a number of phases that are briefly described below. While the methodology provides a

valuable guideline for driving the development process forward and navigating it a

satisfactory closure, the reader should understand that the methodology is proposed more

15

as a conceptual guideline than a procedure to be followed. Like any sequence of

software development workflow in practice, many of the outlined phases may take place

concurrently and span across multiple sessions. As end user feedback is collected and

technical issues arise on an ongoing basis, the overlaps and oscillations between the

phases are also expected to become more complex.

1.4.1 Requirements Collection and Planning

In this initial phase of development, high-level feature requirements, general use cases,

deployment environment, and timeframe requirements should be gathered from the end

users or researchers that will be using the AMPS system. The requirements should be

prioritized based on criticality, estimated level of effort, availability of resources, and

target release schedule. The users and the developers should jointly commit to a set of

high-level features that is clearly defined and understood by both parties, as well as

realistic, given the resources and timeframe.

1.4.2 Functional Specifications

AMPS features and functions from the users' perspective should be specified in detail

during this phase of development. The specifications should include screenshots,

detailed simulation use cases, configuration file formats, development and scripting

language for the user, data input and output format, and other parts of the software

relating to the overall user experience. The descriptions should be detailed and precise,

in order to synchronize the end product expectations between the developers and the end

users.

1.4.3 Design Specifications

AMPS baseline system and subsystem architecture should be conceptualized and defined

during this phase, based on the outcome of requirements collection and functional

specifications. The design should include descriptions of the component relationship,

data flow, process flow, communications model, and other relevant technical details. The

16

architectural and technical specifications should also be refined on an ongoing basis up

to the end of the iterative development cycle.

1.4.4 Iterative Development

AMPS application should be implemented in this phase, based on the architecture defined

during design specifications and the features outlined during functional specifications.

This process involves continuous iterations of new code development and testing to

ensure that the new code does not adversely impact the existing code base. Source code

should be fully documented, and issues and bugs should be tracked on an ongoing basis.

1.4.5 Quality Engineering

A comprehensive test plan should be developed and executed to ensure the correct

functioning as well as the fulfillment of the project requirements. The test plan should

cover component-level, functional-level, and system-level testing, and should be

executed concurrently with development. Following the completion of code

development and testing, trial experiments involving actual subjects should be performed

to obtain additional field test results and feedback.

1.4.6 Deployment and Knowledge Transfer

Installation logistics and knowledge transfer should be handled in this phase. AMPS

software should be packaged, documented, and delivered to the end users. The system

should be fully installed, configured, and tested in the production environment. Training

for end users and any supporting user documentation should also be prepared to ensure a

smooth learning curve.

1.4.7 Project Closure

The developers and end users should jointly perform a post-implementation review, and

identify any outstanding issues and the plans for their resolution. Proposals for future

17

development may be formulated at this stage. Any required maintenance and support

arrangement should also be made as part of a satisfactory project closure.

1.5 Writing Conventions

This thesis includes fragments of program code and sections of configuration files used

as examples. The following typesetting conventions are used to help the reader:

" Constant width type is used for Java code and class names, with language

keywords slanted.

- Constant width type is also used for grammars and configuration file contents.

" Constant width italicized type is used for filenames and descriptive

expressions in variable names or values. When used in descriptive expressions,

the expression is enclosed between '<' and '>'. For example, potential values

represented by 'SESSION<number>' include 'SESSION1', 'SESSION2', and so on.

- Constant width bold type is used for command line input, variable names,

variable values, and other symbols not mentioned above. When these types

appear inline within the main body text, they are enclosed within single quotes

(") for clarity.

In addition, several potentially ambiguous terms are defined as follows:

" Administrator, User, and End User - refer to a research administrator who uses

AMPS to host an experiment.

" Subject, Trader, and Trading Subject - refer to a simulation subject or

professional trader who is participating or a candidate for participating as a

subject in the simulation.

- Developer - refers to the person or group developing AMPS.

" Time Step and Clock Tick - refer to one increment or pulse of the simulation's

internal time counter. Each pulse generally invokes a series of simulation-related

activities.

" Runtime - refers to time when the AMPS application or the Java code is running,

or when the simulation is in progress.

18

Chapter 2

Design Considerations

2.1 Usability

AMPS users are researchers who may not have a technical background, therefore, it is

important for the system to provide tools to facilitate the tasks an administrator must

perform before, during, and after the experiment. The user interfaces should be simple

and intuitive, while providing the comprehensive set of required functions. The tools for

programming emotion-inducing price patterns - a critical aspect of AMPS - should be

designed to be simple, familiar, and extensible, ensuring a short learning curve without

compromising on capabilities. The system should provide an adequate amount of

warning, error, and information messages to keep the user aware of the ongoing status of

the simulation. These system notifications should be designed to be informative,

relevant, and concise. Additional convenience features, including command line scripts

and help files should also be considered based on available timeframe.

2.2 Scalability and Performance

AMPS experiments often involve significant volumes of data and computation within

fractions of a second. Therefore, the system should be designed to be scalable in terms of

both the number of emotion rules and bid/ask rules that govern the price movements, as

well as the frequency of order submission (number of simulation time steps within a

second). Measures should be taken to place reasonable limits on performance

degradation as the number of rules and order submission frequency increase.

19

2.3 Robustness and Maintainability

AMPS users are researchers who may not have a technical background, and care in

design should be taken to ensure that a running AMPS system is robust enough to

withstand potential system failures and user mistakes. The system should also be able to

handle simulation sessions with length in the magnitude of hours. While the system

operates under normal use cases, any ongoing effort required to maintain the system,

including data cleanup, configurations, or debugging, should be minimized by design.

2.4 Integration with External Data Sources

Depending on the needs of the experiment, the trader's real-time psychological and

behavioral data may come from a variety of sources, ranging from Web Market's

database to biofeedback measuring equipment that collect real-time physiological data

from the human subject. Although external data sources will be limited to the Web

Market database for the scope of this initial prototype of AMPS, the architecture should

be designed with extensibility and ease of integration in mind, to handle different types of

data sources in future development. For example, the task of incorporating new data

parameters into the order generation processes should be simple and straightforward.

The storage format of permanent and transient data should also be able to support

potential data parameter types without loss of timeliness or precision of data.

2.5 Separation of Emotion, Bid/Ask, and Message
Processes

Emotion process refers to the task of computing emotion-inducing target prices based on

real-time trader and market state information. Bid/Ask process refers to the set of

activities to generate actual bid and ask prices based on the target security prices

computed by the emotion process. Message process involves the delivery of pre-

programmed system messages to the trader regarding simulation status or market events

that may influence trader emotions and behavior. The three processes should be

20

modularized and made independent of each other, such that the researcher can mix and

match processes easily, and examine their influence on the research subject with more

flexibility and control.

21

Chapter 3

System Design Specifications

3.1 Architectural Overview

The architecture of AMPS is built from three types of components: user interface,

business logic, and data components. User interface components are graphical input and

display components that allow research administrators and subjects to interact with the

system. Data components are structures that maintain specific types of data or metadata,

and provide the mechanisms to access and modify the data. Business logic components

perform the data processing and computation underlying the simulation system. For

purposes of our discussion, we will categorize threads, or concurrently executable

processes, under business logic. Because AMPS works in close conjunction with a

number of external systems, our discussion will also cover the relevant components of

these systems.

The major architectural components of AMPS and the closely related external

systems are described in the following figure.

22

RSRS -TCP//P:- RStudio Server
Connector

D B..
- erRStudio Components

................ Connector
Inernal Timer

Thread :Emotion- ~..........-........ - E gn -JDBC

Simulation Ul Bid/Ask Web Market
Engine Database

........... AMPS Trader Web Market Server
SAMPS Trader :achine

Thread T rder A /.
....... ss gResearch

Administrator

-R MI-
Connector

AMPS Components Web Market Client
(Web-Based Interface)

Symbols

User Interface Component
Research Subject

Data I Business Logic Component

Thread Component Web Market Components

Figure 3-1: AMPS Component Architecture

The user interface components consist of Simulation UI and the Web Market client.

Simulation UI enables research administrators to control the experiment, and the Web

Market client allows the experiment subjects to trade within the market simulation. The

main data component in our setup is the Web Market database, where all market and

trader information is stored. A number of lower level data components, not shown in the

figure above, also play a key role in the simulation process. These data structures include

Sessions, which maintain configuration data for simulation sessions; Rule Sets, which

maintain the emotion and bid/ask rules used in price computation; Timed Messages,

which store the text and delivery times of broadcast messages; among others. The lower

level data components are mainly designed for system modularization and data

encapsulation purposes, and will be discussed in later sections.

23

The table below summarizes the functions of the major architectural components:

Component Functional Description

Simulation UI Main management user interface that enables the research
administrator to control, monitor, and configure the
simulation system.

Emotion Engine Data processor that generates emotion-inducing target price
patterns based on real-time trader and market data.

Bid/Ask Engine Data processor that generates market-moving orders based
on target prices computed by Emotion Engine.

Message Engine Data processor that manages pre-programmed, time-driven
system messages or market news messages, and delivers
them to the trading subject through WMS Connector and
the Web Market server.

DB Connector Data connector that manages the connection to the Web
Market database and provides mechanisms to retrieve real-
time market and trader data.

RS Connector Data connector that manages the connection to RStudio and
local log file, and provides mechanisms to deliver
timestamps of simulation events to RStudio and/or the local
log file.

WMS Connector Data connector that manages the connection to the Web
Market server to access backend services otherwise not
available through the Web Market client or machine trader
API. This connector is mainly used for message broadcast
in AMPS.

AMPS Trader Data connector that manages the connection to the Web
Market server, registers as a machine trader, and submits
orders on behalf of AMPS to generate desired market
movements.

AMPS Trader Thread Helper thread that drives the simulation process by
invoking trading-related methods in Emotion Engine,
Bid/Ask Engine, and DB Connector.

24

Internal Timer Thread Timer thread that helps to drive the simulation process by
keeping internal simulation time and invoking methods in
Simulation UI and Message Engine.

Web Market Client Web-based user interface that allows the AMPS subject to
monitor the market and submit trades to the Web Market
server. This is part of the MIT Web Market system.

Web Market Server Artificial double-auction securities market that performs
basic market-making functions (order matching, price and
order reporting, and transaction archiving), and keeps track
of user portfolios. It allows both human traders using the
Web Market client and machine traders using a specialized
protocol to participate in the same market. This is part of
the MIT Web Market system.

Web Market Database Database used to store all market and trader information,
including orders, sales, and portfolios. This is part of the
MIT Web Market system.

RStudio Physiological data collection system that collects and logs
real-time signals from a variety of data sources. This
component is external to AMPS.

Table 3-1: Architectural Components and Functions

3.2 Simulation Design

The component architecture is designed based on the structure and requirements of the

simulation process discussed below.

3.2.1 Structure and Sessions Overview

An AMPS simulation composes of a series of building block sessions arranged in a linear

sequence. A session is a data structure that consists of a finite time period and a set of

simulation activities to perform during the period, including price pattern generation and

message delivery. A run of the AMPS simulation involves carrying out one or more

sessions in a sequential order, and executing the set of activities associated with each

25

specific session. The sequence of sessions as well as individual session parameters are

specified in the master configuration file (for more details, see Section 4.3: System

Configurations).

In the current prototype, two types of sessions are available - trading sessions and

break sessions. In a trading session, emotion-inducing orders are generated on a

continuous basis, and the trading subjects are asked to actively participate in trading. In a

break session, order generation process is halted, and the traders are asked to refrain from

trading.

The data structure and inheritance of a session are designed for the extensibility to

incorporate additional types of sessions in future development. Trading sessions and

break sessions are subclasses of a generic Session data structure, which encapsulates

general session data and accesors (get methods) that are applicable across all session

types. Specific session types like trading session and break sessions inherit the generic

data and methods, and provide additional configuration parameters and accessors specific

to the individual session type. To illustrate, the generic Session class provides the

following get methods for session time length and the message file name, both of which

are inherited across all session types:

public int getLengthInSeconds ()

public String getMessageFilename()

The TradingSession class, which extends the Session class, provides the

following additional methods that are specific to a trading session's activities:

public String getEmotionFilename ()

public String getBidAskFilename ()

public String getEmotionTargetUser ()

Through this inheritance hierarchy and data encapsulation scheme, new session

types can be developed in the future with minimal changes to the existing data structures

or session loading mechanisms.

3.2.2 Simulation States and Transitions

26

An AMPS simulation starts up in the Stopped state, in which no processes are running,

and Simulation UI is awaiting user input to begin the simulation. During the course of an

AMPS simulation, the system progresses through a number of transitional states, and

eventually finishes back in the Stopped state. The state transition diagram below outlines

the states and their entry conditions from the end user's perspective - in terms of user

actions or events observable by the user through the graphical interface.

+ More sessions
in line to be run.

+ SE
ha

End of Session

*No
in lin

ssion time limit
s been reached.

nore sessions
e to be run.

Simulation *
Running _

I1*

+User starts
simulation.

Simulation
Stopped

User exits
AMPS

System User starts
Syst AMPSExit

+User continues
simulation.

*User pauses
simulation.

Simulation
Paused

+User ends
simulation.

Figure 3-2: Simulation State Transitions

Underneath the hood, a number of threads are used to manage the transitions and

their consequences. AMPS utilizes a lightweight timer thread component named Internal

Timer Thread to drive state transitions and the overall simulation process flow. The

timer thread is normally started, paused, and stopped by Simulation UI based on user

input, and it keeps track of the simulation's internal time. Based on the internal clock

ticks, it drives the simulation process by starting or stopping AMPS Trader Thread,

27

+ User ends simulation
or exits the system.

j | Simulation State

-- Transition Path

+ Entry Condition(s)

invoking session changes, and triggering user interface events in Simulation UI. AMPS

Trader Thread is another thread that manages the process flow behind the scenes.

Controlled by the timer thread and Simulation UI, it invokes methods in Emotion Engine,

Bid/Ask Engine, and DB Connector to drive the order generation process.

A comprehensive description of the simulation states, their entry conditions, and

their consequences are provided below.

Simulation State Entry Condition(s) Transition Consequence(s)

The user clicks the "Start"
button and one or more sessions
are lined up to be run while the
simulation is in Stopped state.

OR

The user clicks the "Continue"
button while the simulation is in
Paused state.

OR

Emotion Engine and Bid/Ask
Engine have finished loading
the rule sets for the new session,
and Simulation UI has finished
updating time and session
display while the simulation is
in End of Session state.

Internal Timer Thread is
started *.

AMPS Trader Thread is started
if current session is a trading
session.

At every clock tick, Internal
Timer Thread checks for
messages due for delivery to the
trading subject. If a message is
due, Message Engine is invoked
to deliver the message.

The current session finishes
running while the simulation is
in Running state.

Internal Timer Thread is
paused.

AMPS Trader Thread is
stopped.

If there are one or more
sessions lined up to be run:

Emotion Engine and Bid/Ask
Engine are invoked to load rule
sets for next session in line.

Time and session display on

28

Running

End of Session

Simulation UI are updated to
show details for the next session
in line.

Simulation proceeds to Running
state.

If there are no more sessions
to be run:

Simulation proceeds to Stopped
state.

Paused The user clicks the "Pause" Internal Timer Thread is
button while the simulation is in paused.
Running state.

AMPS Trader Thread is
stopped.

Stopped The last session in the lineup Internal Timer Thread and
has finished running while the AMPS Trader Thread are
simulation is in End of Session stopped.
state.

Emotion Engine and Bid/Ask
OR Engine are invoked to load rule

sets for the first session in line.
The user clicks the "End"
button or exists the system Time and session display on
while in Running or Paused Simulation UI are reset to show
state. the first session in line.

* Time and session display on Simulation UI are running (updating) based on the
clock tick incremented by Internal Timer Thread. Thus, starting, pausing, or
stopping Internal Timer Thread has the same effect on the self-updating display
components. Note that when paused, the displays can be asked to resume running
at a later time, but when stopped, the displays are reset to default values and
cannot be resumed.

Table 3-2: Simulation States, Entry Conditions, and Consequences

3.2.3 Process and Data Flow

29

While the simulation is running, Internal Timer Thread and AMPS Trader Thread

collectively drive the following process flow at every time step.

RS *EventTimestamps RStudio
Connector Server

Inernal Timer
Thread

+Ul Events *Startl Stop
*Simulation Signals

Events

Simulation Ul

*Start/ Stop
Signals

AMPS Trader
Thread

..... -... . --.

DB
Connector

*Real-Time Market
I Trader Data

Emotion
Engine

+Target Prices

BidlAsk
Engine

*Real-Time Market
/ Trader Data

+Bid/Ask Orders

er Bid/Ask Orders
AMPS Trader b

*Broadcast
Message Messages
Engine

WMS
Connector

Web Market
Database

Web Market
Server

*BidlAsk
Orders

+ Real-T me Market Data
+ Broadcast Messages

Web Market
Client

Figure 3-3: Simulation Process and Data Flow

At each time step, Internal Timer Thread and AMPS Trader Thread invoke the

business logic components to perform their respective functions in the correct order. DB

Connector retrieves real-time market and trader information from the Web Market

database. Emotion Engine takes this real-time data as input, performs computation based

on the emotion rule set, and dynamically generates a new target price designed to elicit

30

Symbols

| | Component

+ Data I Event I Signal

--- * Data Flow

------- w Control I Method Invocation

I

the desired emotional state in the trader. Based on this target price, Bid/Ask Engine

generates new bid and ask orders to move the actual market price toward the target price.

AMPS Trader then submits the final orders to the Web Market server. Message Engine

provides Internal Timer Thread with the message delivery times, and if a message needs

to be delivered in the current time step, Internal Timer Thread invokes Message Engine

to deliver the messages to the Web Market server. As the simulation progresses, selected

simulation events including session start and session stop are also logged to RStudio and

the local log file through RS Connector.

The workflow presented above describes activities that are performed during a

trading session, one of the two types of sessions in which the trader is asked to participate

in active trading and price patterns are continuously generated by AMPS (for more

details on sessions, see Section 3.2.1: Structure and Sessions Overview). If the current

session is a break session, in which the trader is asked to refrain from trading and price

patterns are not generated, only Internal Timer Thread will run while AMPS Trader

Thread remains stopped. This thread configuration during the break session ensures that

all the user interface displays, message deliveries, and state changes are invoked properly

while all price generation processes are stopped.

3.3 AMPS Components

3.3.1 Simulation UI

Simulation UI is the main management console that enables the research administrator to

control the simulation system. It abstracts away the difficulties of managing threads and

simulation state changes, and enables the user to perform administrative tasks through a

simple and intuitive interface. The administrative functions enabled by Simulation UI

include controlling, configuring, and monitoring the simulation process; managing

connectivity to data logging components including RStudio and the local log file; and

modifying configuration files.

Simulation UI is opened as soon as the user starts the AMPS system, and is

accessible to the user as long as the system is running. While running, Simulation UI can

be in a number of states, shown as follows:

31

I Exit" button clicked.
* Window closed.
(Propagated from
Running state).

Closed

Simulation UI closed

t "Exit" button clicked.
* Window closed.

Figure 3-4: Simulation UI State Transitions

Once the configurations have been loaded and system initialization is complete,

Simulation UI starts up in the Stopped state, in which it displays the sequence of sessions,

including the following information for each session: session type, session length,

emotion rule set, bid/ask rule set, message file, and target username (for parameter

descriptions, see Section 3.2.1: Structure and Sessions Overview). The session display

and time display are initialized to reflect the newly loaded sessions. The first session in

the linear display sequence is highlighted as the default starting session. For more details

on functions, usage, and screenshots of Simulation UI, see Section 5.1: Simulation User

Interfaces.

The user interface allows the administrator to control the simulation process by

using the "Start", "Pause", and "End" buttons. The administrator can also select the

starting session in the sequence by highlighting the session in the sequence displayed.

32

Simulation
Ended

Display remains statict. All sessions finished.
+ "End" button clicked.
* "Exit" button clicked.
* Window closed.

Runninu * All session
*"End" butt

Display is changing as (Propagate
sessions progress Running st

+"Start" button clicked.

Stowped
Display is initialized

and static

Opened
Simulation UI is

opened

Symbols

User Interface State

-- Transition Path

* Entry Condition(s)

s finished.
on clicked.
d from
ate)

Once the simulation run is started, the interface goes into Running state, in which the

sessions are run one after another in the linear sequence displayed. The displays will

update themselves to highlight the session in progress as well as show the time left in the

current session and the total time remaining. Based on the session currently in progress,

Simulation UI starts and stops Internal Timer Thread and AMPS Trader Thread, which in

turn invoke processes in the other components to perform the simulation activities. When

the end of the sessions or the end of the simulation run has been reached, the interface

goes into Stopped state and reinitializes its displays to the default state before the run.

At any point in time while the sessions are running (user interface is in Running

state), the user can stop the run by ending the simulation using the "End" button. Exiting

the system, either by using the "Exit" button or by simply closing the window, also

terminates the current run. If the run is stopped without exiting the system, the user

interface reinitializes the sessions and display (goes into Stopped state). If the run is

stopped because of system exit, the user interface is closed (goes into Closed state) after

terminating the current simulation.

Another functionality provided by the user interface includes the ability to reload

configuration files and reinitialize the system. This feature, accessible using a "Reload

Configurations" button, is useful for dynamically updating the system configurations

after AMPS is started, while the simulation is not running. The user interface also

provides a "Configurations" button, which launches the AMPS Configuration Editor, a

simple configuration file editor with basic text editing and windowing functionality. The

Editor is provided as a convenience feature to allow quick modifications to system

configurations during runtime. For screenshots or details on the usage of Configuration

Editor, see Section 5.1.3: AMPS Configuration Editor.

Simulation UI has a second viewable page that allows the user to monitor,

configure, and test the status of data logging connections to RStudio and the local log

file. The page displays current connection settings used as well as the real-time

connection status for RStudio connection and for the log file. Simulation UI is registered

as a listener for connection state changes in the RStudio connection (for details on event

listener model, see Section 3.3.7: RS Connector), and it updates the display of RStudio

connection status dynamically. In addition, a "Connect" button, a "Reconnect" button,

33

and a "Test" button are provided to allow the user to connect, reconnect, and test the

connection to RStudio, respectively.

3.3.2 Emotion Engine

Emotion Engine generates target prices designed to move the current security price in a

way that elicits emotional states in the research subject. Target price computation is

based on mathematical expressions referred to as emotion rules, which are programmed

by the user prior to running the simulation. Emotion Engine manages the set of emotion

rules for each session, and provides methods to run them and perform the target price

computation.

At the start of each trading session, Simulation UI, driven by Internal Timer Thread,

initializes Emotion Engine by invoking the following methods:

public boolean loadEmotionFileByName (String filename) 2

public void setEmotionTargetUser(String username)

The method loadEmotionFileByName () initializes the session's emotion rule set

for target price computation. The second method, setEmotionTargetUser (),

initializes the target of emotional influence by configuring the Web Market login name of

the trading subject.

During each time step of the session, Emotion Engine invokes DB Connector to

query the Web Market database for updated values for Market Variables, the set of data

variables representing the current status of the market and user (for more details on

Market Variables, see Section 4.4.2: Variables). Market Variables include time, price,

volume, and type of the latest order submitted by the trading subject. Using these real-

time values, Emotion Engine runs the emotion rule set for the current session and

computes the target price dynamically. The target price is stored in a system variable

(Target Price Variable, denoted by 'P'), to be picked up later by Bid/Ask Engine for

further processing. The series of activities to update the target price is started by the

following method:

2 The Boolean return value indicates whether the rule set loading process has completed without errors.

34

public boolean updateNextOrder ()3

Emotion rule sets are ASCII text files identified by their filename extension -

.emo. The name of the emotion rule set associated with each session is specified in the

system configuration file (for more details, see Section 4.3: System Configurations).

These rule sets are composed using a simple scripting language designed for AMPS. The

scripting language allows the user to develop emotion rules using basic logic constructs

(for example, if-then statements), a series of AMPS-specific mathematical functions, and

a variety of basic mathematical functions and operators. The set of functions and

operators as well as the tools to parse and evaluate them are provided by an open source

mathematical expression parser package named JEP (Java Mathematical Expression

Parser) 4. While the JEP functions and the custom AMPS functions are available to the

user for composing emotion rule sets, Emotion Engine also uses these libraries to process

the emotion rule sets. The syntax, variables, and functions available for scripting

emotion rule sets are explained in more detail in Section 4.4: Using Emotion and Bid/Ask

Rule Sets.

A sample emotion rule set is provided below.

if (LTYPE==1) {
PP temp = PP*0.98;

}
if (LTYPE==2)
PPtemp = PP*1.02;

}
if ((LTYPE=-3) && (LPRICE < PP))
PPtemp = PP*1.01;
}
if ((LTYPE==4) && (LPRICE > PP))
PPtemp = PP*0.99;

}
if (1==1) {
PP = P;
p_hat = max (p_min, PP temp * (e^ ((mu-0. 5*sigmap*sigmap) *dt) +
sigmap*sqrt (dt) *randn ());
P = max(p min, Ap*p hat + Bp*p hat*p hat + Cp*e^(p hat));

3 The Boolean return value indicates whether the target price computation has completed without errors.
4 JEP (Java Mathematical Expression Parser), developed and maintained by Nathan Funk at Singular
Systems, is an open source Java API for parsing and evaluating math expressions. See [3].

35

}

Figure 3-5: Sample Emotion Rule Set: sampleemotion.emo

As demonstrated in the example above, Market Variables 'LTYPE' and 'LPRI3',

denoting last order type and last order price respectively, are key inputs used in the

computation of Target Price Variable, 'P'. In this simplified rule set, the target price 'P'

is adjusted downward if the subject's last order is a market buy (denoted by

'LTYPE==1'), or if the last order is an ask where the asking price is greater than the

previous target price (denoted by '(LTYPE==4) && (LPRIC > PP)', where 'PP'

represents the previous target price)5 . The target price is adjusted upward if the subject's

last order is a market sell ('denoted by 'LTYPE==2'), or if the last order is a bid where

the bid price is less than the previous target price (denoted by ' (LTYPE=3) &&

(LPRICE < PP)', where 'PP' represents the previous target price). The overall effect of

this rule set is to elicit, without loss of generality, a negative emotion in the subject by

adjusting the market price in a way that decreases the subject's portfolio value in the

short-term and makes it difficult for the subject to complete limit orders (bids and asks) at

the desired prices.

The variables in an emotion rule set are initialized in a separate file under the same

name as the rule set but with a different filename extension of .ini. For a sample of the

emotion rule set configuration file, see Appendix E: Sample Emotion and Bid/Ask Rule

Sets. Both emotion rule sets and their corresponding configuration files are located in the

emotion file folder specified in the system configuration file, allowing AMPS to locate

them during runtime.

3.3.3 Bid/Ask Engine

Bid/Ask Engine generates actual buy and sell orders as well as bid and ask prices to move

the market price based on the target price computed by Emotion Engine. Similar to

Emotion Engine, Bid/Ask Engine uses mathematical expressions referred to as bid/ask

5 In Figure 3-5, the final target price 'P' is computed based on the value of 'PP tenp', a temporary variable
based on the value of the previous target price 'PP'. By adjusting the value of 'PP_tarp' upward or
downward, we effectively adjust the value of 'P' upward or downward from its previous value.

36

rule sets for its order price computation. Bid/Ask Engine manages the set of bid/ask

rules for each session, and provides methods to run them and perform the computation.

Bid/Ask Engine is necessary on top of Emotion Engine in order to create a realistic

trading experience for the subject that is close to or indistinguishable from actual trading

with other competing traders in the Web Market system. Instead of adjusting the current

security price directly to the new target price computed by Emotion Engine, Bid/Ask

Engine allows AMPS to adjust the security price in a way that more closely resembles

how prices are normally moved in a securities market - through the matching and

fulfillment of bids and asks around the current market price.

At the beginning of each trading session, Bid/Ask Engine is initialized by invoking

the following method:

public boolean loadBidAskFileByName (String filename) 6

The call updates Bid/Ask Engine with the bid/ask rule set associated with the new

session.

At each time step after Emotion Engine generates the new target price, Bid/Ask

Engine runs the session-specific rule set to compute and assign new values to Order

Variables, the set of system variables whose values collectively specify an actual order

(for more details on Order Variables, see Section 4.4.2: Variables). These variables

include bid price, ask price, volume, and order type. At the end of each time step, the

updated Order Variables are picked up by AMPS Trader to create and place the new

order in the Web Market system. If Order Variables are not modified during the time

step, they default to their values from the previous time step. Similar to Emotion Engine,

the series of activities performed by Bid/Ask Engine is started by the following method:

public boolean updateNextOrder ()7

Bid/Ask rule sets are stored in ASCII text files identified by their filename extension

-. baa. The name of the bid/ask rule set associated with each session is specified in the

system configuration file (see Section 4.3: System Configurations). Similar to the

emotion rule sets, bid/ask rule sets are composed using the same scripting language, and

6 The Boolean return value indicates whether the rule set loading process has completed without errors.
7 The Boolean return value indicates whether the Order Variable computation has completed without errors.

37

the same set of mathematical functions is also available from the library of custom

AMPS functions and the JEP package (see Section 3.3.2: Emotion Engine). Like

Emotion Engine, Bid/Ask Engine also uses the two libraries in processing bid/ask rule

sets. The syntax, variables, and functions available for scripting bid/ask rule sets are the

same as those for emotion rule sets, and they are explained in Section 4.4: Using Emotion

and Bid/Ask Rule Sets.

To illustrate, the main sections of a sample bid/ask rule set are provided below with

some lines removed for better clarify (for the complete file, see Appendix E: Sample

Emotion and Bid/Ask Rule Sets).

if (1==1) {
SP = S;
BIDP = BID;
ASKP = ASK;
V_vec = vecAddToSize (Vvec, num_vlags, V);

}
if (vecAvg(Vvec) > 0)
inv_volume = 1/vecAvg (V_ vec);
S = max(dp, SP*(As*dp + Bs*inv volume + sigma-s*sqrt(dt))*randn());

}
if (vecAvg(Vvec) <= 0)

S = max(dp, SP * (As*dp + sigmas*sqrt(dt))*randnO);

}
if (1==1) {
V = round lot(Av*abs(randn()),dv);
p_cur = P;
BID = roundtotick(pcur-0.5*S,p_cur,dp,1);
ASK = roundtotick(pcur-0.5*S,p_cur,dp,0);

}
if (BID >= ASK) {
rand var = randn (;

}
if ((BID >= ASK) && (randvar >= 0)) {
BID = ASK - S;

}
if ((BID >= ASK) && (! (rand var >= 0))) {
ASK = BID + S;

}

Figure 3-6: Sample Section of a Bid/Ask Rule Set: samplebidask.baa

38

In the example above, Order Variables 'BID' and 'ASK', denoting bid price and ask

price respectively, are computed during the run based on the new target price 'P', which

has been computed by Emotion Engine before Bid/Ask Engine started processing. Order

Variable 'V', denoting order volume, is also assigned a value here, although not directly

based on the value of 'P' in this particular example. The general rule for the reader to

note is that all Order Variables should be updated in the bid/ask rule set, using Target

Price Variable 'P' and other user-defined variables as input.

Similar to variables in emotion rule sets, those in a bid/ask rule set are initialized in

a separate file under the same name as the rule set but with a different filename extension

of .ini. For an example of a bid/ask rule set initialization file, see Appendix E: Sample

Emotion and Bid/Ask Rule Sets.

Both bid/ask rule sets and their corresponding configuration files are located in the

bid/ask file folder specified in the system configuration file, enabling AMPS to locate

them during runtime.

3.3.4 Message Engine

Message Engine manages system messages and market event messages that are delivered

to the trader at specific times during the session. This messaging mechanism is designed

to aid the procession of the simulation (for example, by notifying the trader of session

start and stop) as well as to contribute to the desired emotional impact on the human

trader (for example, by delivering news on the traded security).

Each session has an associated message file specifying the set of messages for the

session. The name of the message file corresponding to each session is specified in the

system configuration file. The message file is an ASCII text file identified by its

filename extension - .msg. The file contains one or more messages, including the

delivery time during the session and the message text to be displayed. The delivery time

specified in a message file can be relative to the start or the end of the session, depending

on the sign of the number. A positive number is interpreted as a time relative to the start

of the session, and a negative number is interpreted as a time relative to the end of the

session. This syntax using relative time enables the user to combine message files with

39

sessions of different length without having to change the delivery time specifications in

the files. For more details on the usage of message files, see Section 4.5: Using Message

Files.

Each message is maintained in a separate instance of a lower level data structure,

TimedMessage. TimedMessage class provides the methods to initialize and access the

message text and delivery time of the underlying message. The data structure is designed

to enhance modularization and data encapsulation of the message process, such that the

message storage format can change in the future without affecting the rest of Message

Engine.

At the start of a session, Message Engine is initialized by the following method call:

public boolean loadMessageFileByName (String fileName,
int sessionLength) 8

The method above loads the messages in the file referenced by the given filename,

and computes the message delivery times based on the relative time specifications in the

file and the input session length provided. It then queues up the messages ordered by

delivery time from the start to the end of the session.

Internal Timer Thread helps Simulation UI keep track of when to deliver messages

by maintaining the next delivery time and checking whether the delivery is due at each

time step. At the start of the session after Message Engine has been initialized, Internal

Timer Thread retrieves the delivery time of the first message by invoking the following

method provided by Message Engine:

public int getNextMessageTime()

At every time step, the timer thread checks whether the current session time matches

the incoming delivery time. If it is time for delivery, the following method is invoked to

send the message:

public boolean sendNextMessage(9

Immediately after calling sendNextMes sage (, the timer thread calls

getNextMessageTime () to update the next delivery time to the delivery time of the

8 The Boolean return value indicates whether the message loading process has completed without errors.
9 The Boolean return value indicates whether the message delivery has completed without errors.

40

following message. The reader should note that sendNextMessage () not only delivers

the next message in the queue but also increments the index of the message queue such

that the next time getNextMessageTime () or sendNextMessage () is called, the

actions invoked will refer to the next undelivered message in the queue.

Web Market server has an existing feature that allows administrators to send

broadcast messages to one or all traders currently logged on, and Message Engine utilizes

this function for its message delivery. However, because the administrative function is

not accessible through the Web Market client or the API for machine traders, Message

Engine leverages WMS Connector to access this feature through a Java RMI (Remote

Method Invocation) connection to the server. For more details on WMS Connector and

RMI, see Section 3.3.8: WMS Connector.

3.3.5 AMPS Trader and AMPS Trader Thread

AMPS Trader maintains the connection with Web Market server and submits the orders

generated by Bid/Ask Engine. At the start of the simulation, it registers with the Web

Market server as a machine trader with the same trading privileges as a normal human

trader. During a trading session, AMPS Trader submits orders on behalf of AMPS using

the machine trader API. This design allows AMPS Trader to move prices by submitting

orders in the same way as the subject or any other market participant, creating a more

realistic trading experience for the AMPS subject because security prices are moved in

the same manner as in a normal run of Web Market without AMPS.

AMPS Trader works in conjunction with AMPS Trader Thread, a timer process that

governs the trading frequency. Controlled by the administrator through Simulation UI,

AMPS Trader Thread continuously invokes AMPS Trader methods to initiate trades at

each simulation time step.

3.3.6 DB Connector

DB Connector is AMPS's interface to the Web Market database. It maintains a JDBC

(Java Database Connectivity) connection to the database, and enables AMPS to query for

real-time trader and market information at each time step. The supported queries include

41

latest bid price, ask price, sale price, and orders placed by the subject trader, as well as

the current portfolio of the trader. The Connector embodies the SQL (Structured Query

Language) statements pertaining to the specific query based on the table structures of the

Web Market database, and it provides methods to submit these queries and retrieve the

target data.

In addition, DB Connector provides methods and corresponding structured queries

for the AMPS database access scripts to retrieve Web Market data. These data scripts are

developed as a supplement to the simulation system to help the research administrators

study the market and trader data after the experiment (for more details on database access

scripts, see Section 4.6: Using Database Access Scripts).

3.3.7 RS Connector

RS Connector manages and monitors the connection to RStudio, a real-time physiological

data collection system (for more details, see Section 3.4.2 RStudio). It allows AMPS to

send timestamps of selected simulation events to RStudio, which logs the timestamps

along with other physiological data for postmortem analysis. Upon connecting, RS

Connector opens a byte stream over a TCP/IP socket connection to the listening RStudio

server. Once the connection is established, AMPS components can invoke methods in

RS Connector to send time signals to RStudio. If the initial connection attempt is

unsuccessful or the connection is interrupted for any reason during the simulation, RS

Connector provides the ability to retry the connection, once every given timeout period.

The timeout period can be configured in the system configuration file.

A time signal is essentially a byte of data delivered to RStudio over the byte stream.

Upon receiving the byte of data, RStudio logs the time of its arrival. In the current

prototype, the data logged by RStudio is limited to the event timestamps and contains no

event descriptions.

RS Connector keeps the other AMPS components (and thus the administrator)

informed of the status of the connection to RStudio using an event notification model

42

based on the Observer Pattern'0 The model enables relevant AMPS components to

dynamically register as observers, or listeners, to be notified of changes in the state of the

connection. The observable component, RS Connector, maintains a dynamic list of

listeners for its state changes, and delivers real-time event notifications to these listeners.

The state change events include connection establishment, connection drop, and

connection attempt or retry in progress. The design allows AMPS components, such as

Simulation UI, to keep informed of connection state changes and respond accordingly,

for example, by changing the display and notifying the administrator, redirecting event

notifications to other relevant components, and starting or stopping the delivery of time

signals to RStudio.

RS Connector also manages the connection to a local log file and provides methods

to log simulation events in the file. Designed as a supplement and backup to RStudio

logging, the local file logging mechanism provides additional redundancy in timestamp

logging. For more details or a sample of the local log file, see Section 4.7: RS Connector

Local Log File).

3.3.8 WMS Connector

WMS Connector manages a Java RMI (Remote Method Invocation) connection to the

Web Market server components, and provides methods to access the server's backend

functions that are available only through the Web market server user interface".

Specifically, RMI allows WMS Connector to dynamically obtain references to Web

Market server components, and to invoke methods on the remote components to perform

the desired administrator functions. For more details on RMI and its usage, see [12].

WMS Connector allows Message Engine to send broadcast messages either to an

individual trader or to all traders in the market. Depending on the delivery target, WMS

10 Observer Pattern is a software design pattern that models a one-to-many dependency between objects so
that when an object changes state, all its dependents are notified and updated automatically [4].
" AMPS is designed to minimize dependencies on and changes to the Web Market source code, in order to
keep AMPS development effort independent from that of Web Market and to limit the scope of the
prototype. As a result, AMPS is not fully integrated with Web Market and cannot directly invoke Web
Market's backend functionality available only to its server administrator.

43

Connector calls upon one the following two methods in Web Market's ServerMain

class:

public static void sendAsyncNotification(int clientId,
Serializable obj)

public static void sendAsyncNotification (Serializable obj)

To deliver a broadcast message, WMS Connector simply invokes one of the

methods above and passes to it the message in String format.

As of the writing of this thesis, the development of WMS Connector has not been

completed because the Web Market source code is undergoing a major revision and

stable code for some crucial components is not available. For the time being, WMS

Connector displays all broadcast messages on screen for testing and debugging purposes.

Armed with the ability to make remote method calls, WMS Connector opens up a

large variety of Web Market backend functions that are normally unavailable through the

Web Market client or the machine trader API. In this initial prototype of AMPS, the use

of WMS Connector is limited to the delivery of broadcast messages. In future

development, however, WMS Connector can be a promising interface for accessing Web

Market's server-side functionality including market price adjustments and database

queries.

3.4 External Components

3.4.1 MIT Web Market

Web Market is a web-based securities market simulation system developed at MIT

for research in financial engineering and autonomous agents. It is a Java-based, client-

server system that enables human and machine traders to log in and trade with each other

in a simulated double-auction market. The system provides the human traders with a

web-based client, or user interface, to monitor the market, track trader portfolios, and

submit orders. The system also provides API's to allow machine traders, or artificially

programmed trading agents, to participate in the market simulation. All transactions,

portfolios, and other market information are logged to the Web Market database.

44

AMPS is integrated with Web Market at three different levels: server, client, and

database. The system uses Web Market's API's for machine traders to interact with the

market server - it registers with the server as an autonomous trading agent and submits

orders using the machine trader API. At this level, AMPS acts as a market maker with

unlimited purchasing power, and moves the market price through the submission of a

large number of orders around the market price. At the client level, the human subject in

an AMPS simulation is asked to use the Web Market client interface to participate in the

market. All trades placed by the human subject are thus directly submitted to the market

server and indirectly logged to the Web Market database. Programmed text messages

delivered by Message Engine are also displayed through the client interface. Lastly,

AMPS connects to the market database to retrieve real-time market and trader

information for order generation as well as for port mortem analysis by the researcher

administrator.

The design decision to leverage Web Market in the above manner is based on a

number of considerations. First, to maximize the precision and extent of the emotional

impact on the trading subject, AMPS must have direct and timely control over the price

movements. On the other hand, in order to allow the user to experience realistic market

movements, prices should be changed only through the normal order submission and

matching process, as opposed to absolute and brute-forced adjustments. Both objectives

are achieved by allowing AMPS to leverage the machine trader API and submit orders

utilizing the same functions a normal trader would. AMPS can generate the desired price

movements quickly and quite precisely by submitting a series of orders around the target

price, and the price movements would appear natural and realistic to the subject because

they are the result of the market's normal order matching and fulfillment processes.

Further, AMPS subjects are asked to use the existing web-based interface in order to

maximize platform independence in hardware and experiment location. The approach

also reduces duplicate development effort. Lastly, data is retrieved directly from the Web

Market database, independent of the market server, in order to allow faster retrieval and

greater flexibility in query structures.

3.4.2 RStudio

45

RStudio is a data collection system developed to aid in the research of risk-taking

physiology by providing tools to monitor and analyze the physiological states of

securities traders. It collects and displays real-time physiological data feed and market

events data from a variety of data sources, ranging from portable biofeedback data

collection equipment to software simulation systems. The data collected enables

researchers to analyze the correlations between market events and physiological

characteristics that may be indicative of emotional state changes.

One of the design goals of AMPS is to integrate with RStudio and deliver timestamp

signals of selected simulation events, including simulation start and stop, subject trade

submissions, and subject key presses. RS Connector manages the connection to RStudio,

keep related AMPS components informed of the connection status, and handle the

delivery of event signals.

46

Chapter 4

General Usage and Configurations

This chapter discusses the functional specifications of AMPS and the relevant

components of Web Market from an end user's perspective. It covers the usage model

and configurations of AMPS and Web Market features, and provides specific instructions

on performing the tasks required for a complete simulation, serving as a user manual and

a guideline. The usage of AMPS user interfaces is explained in detail in Chapter 5:

AMPS User Interfaces.

4.1 General Usage Model

For the administrator, running an AMPS experiment generally comprises of a number of

high-level tasks, outlined as follows:

Task /Description Interface / Tool

Set up session sequence and configure
other system variables in amps. ini.

Set up and configure emotion processes
in <emotion file>.emo and <emotion
file>. ini.

Set up and configure bid/ask processes in
<bid/ask file>. baa and <bid/ask file>. ini.

Set up and configure message processes
in <message file>.msg.

AMPS Configuration
Editor

or

A general-purpose text
editor

47

Phase

Configurations
(Prior to Run)

Simulation Control and monitor simulation and Simulation UI
Control session processions.
(During Run)

Load / Reload configuration files (if
changed after system startup).

Connect / Reconnect to RStudio or local
log file.

Analysis Retrieve market and trader data from AMPS Database
(After Run) Web Market database for analysis. Access Scripts

Table 4-1: AMPS High-Level Administrator Tasks

The following sections discuss the tasks before and after the run. The administrative

tasks during the experiment run are primarily performed through Simulation UI, and are

thus covered in Chapter 5: AMPS User Interfaces.

4.2 System Startup and Exit

AMPS works in conjunction with Web Market, and starting the Web Market server is a

prerequisite to starting AMPS (for details on starting Web Market server, see Section 4.8:

Web Market Startup and Exit). Once the Web Market server is up and running, AMPS

and Simulation UI can be started simultaneously from the command line with the

following "Java" command:

java rst. amps.AMPSMain <server name> <port number>

For Unix and Linux platforms, a run script named runamps.sh located in the AMPS

application directory is provided to for the user's convenience. It runs the command

above using default parameters. For details on system requirements for running or

installing AMPS, see Appendix F: AMPS System Requirements.

To exit AMPS, the user can either close the Simulation UI window or click the

"Exit" button (for details on Simulation UI, see Chapter 5: AMPS User Interfaces).

Exiting AMPS while a simulation is in progress will terminate the current simulation.

48

4.3 System Configurations

At startup, AMPS initializes itself using a system configuration file named amps.ini,

which contains configuration parameters for sessions, RS Connector, DB Connector, as

well as paths to other configuration files. For a sample amps. ini file or a comprehensive

list of system configuration parameters, see Appendix D: System Configuration File and

Parameters.

4.3.1 Sessions Configurations

A crucial section of the system configuration file is the configuration of simulation

sessions. Sessions are the building blocks of an AMPS simulation - a run of the

simulation involves executing the sessions in a linear order (for more details on sessions,

see Section 3.2.1: Structure and Sessions Overview). Each session is a finite time period

associated with a set of parameters specifying the activities that should be carried out

during the session. The sequence of sessions as well as individual session parameters are

specified in the sessions configuration section of the master configuration file, as shown

below:

NUM SESSIONS=7

SESSION1=trading 10 tradingdefault.msg CAPM.emo default.baa iwang

SESSION2=trading 30 tradingdefault.msg pos affect_20s.emo

default.baa iwang

SESSION3=break 10 breakl0sec.msg

SESSION4=trading 300 trading300sec.msg distress_20s.emo highvol.baa

iwang
OCECTTS-=beak 10 b crlyc. mcgr

SESSION6=trading 60 trading60sec.msg arousal_20s.emo highfreq.baa

iwang
SESSION7=break 10 break final.msg

Figure 4-1: Sample Section of amps. ini: Sessions Configurations

In the sample section above, there are seven sessions lined up in the run sequence,

specified by the NUMSESSIONS parameter. Each line starting with SESSION<number>

49

specifies a single session, and the <number> field indicates the session's order in the run

sequence. Each session declaration should be a separate line by itself, and should

specify, at a minimum, three required parameters. With respect to the order they appear

in the system configuration file, from left to right, the three required parameters are:

Session Type -

Time Length -

Message File -

Specifies whether the session is a "Trading" session, in which the

human subject is asked to participate in active trading, or a

"Break" session, in which the subject is asked to refrain from

trading.

Specifies the amount of time in seconds that the session should be

run.

Specifies the name of the file containing the set of broadcast

messages and the times to deliver them during the session (for

details, see Section 3.3.4: Message Engine).

Additionally, trading sessions must also have the following parameters:

Emotion File -

Bid/Ask File -

Target User -

Specifies the name of the file containing the emotion rule set for

this trading session.

Specifies the name of the file containing the bid/ask rule set for

this trading session.

Specifies the username of the experiment subject in Web Market.

This is used to retrieve real-time trader information from the Web

Market database.

4.3.2 File and Directory Path Configurations

Another section of amps.ini specifies the directories or paths under which the emotion

rule sets, bid/ask rule sets, message files, and RStudio log file can be found. These

parameters allow the administrator to change the default location of these configuration

50

files and log files, and enable the system to dynamically locate the files during runtime.

The figure below shows the section of a sample file that specifies the file paths:

EMOTIONFOLDERPATH = /config/emotions
BIDASKFOLDERPATH = /config/bidask
MESSAGEFOLDERPATH = /config/messages
RS LOGFILE PATH = /tmp/rstudio.log

Figure 4-2: Sample Section of amps.ini: Path Configurations

Note that, by design, these paths should be specified relative to the user's current

working directory, or the directory from which the administrator started AMPS.

4.3.3 RS Connector and DB Connector Configurations

One section of the system configuration file

for RS Connector and DB Connector. Some

required to establish the connections, and

options, including automatic connect, retr)

Connection.

The figure below shows the sectio:

configurations:

allows the user to configure the parameters

of these parameters specify the information

others provide the user with configurable

y delay, and log file backup for RStudio

n of a sample file that specifies these

Figure 4-3: Sample Section of amps. ini: Connectors Configurations

51

RS_HOSTNAME=18.193.0. 69

RS_PORT=7777

RS_RETRYDEIAY=5

RS_AUTOCONNECT=0

RSLOGTOFILE=1

RS_LOGTORS=O

DB_URL = jdbc:oracle:thin:@wang:1521:OMKT
DBUSERNAME = dummy user
DB PASSWORD = dummy

4.4 Using Emotion and Bid/Ask Rule Sets

Emotion rule sets and bid/ask rule sets are critical components of the simulation used to

generate emotion-inducing price patterns. Emotion rule sets are used to compute target

prices designed to influence trader emotions, and bid/ask rule sets are used to generate

actual orders based on the target prices.

4.4.1 Rule Set Structure and Syntax

The structure of emotion and bid/ask rule sets composes of a series of if-then constructs,

and the statements are executed in the sequential order they appear in the rule set file,

downward from the top. The syntax allows a one-to-many relationship between the if-

clause (the predicate) and the then-clause, and the then-clauses within the same if-then

statement are executed in the sequential order they appear in the statement, downward

from the top. To illustrate, consider the following example:

if (<if-clause A>)
<then-clause Al>;
<then-clause A2>;

}
if (<if-clause B>)
<then-clause Bi>;
<then-clause B2>;

}

In the example above, <then-clause Al>, <then-clause A2>, and all subsequent

then-clauses within the enclosing curly brackets will be executed in the order they appear,

if <if-clause A> is evaluated to be true. Afterwards, <if-clause B> is evaluated, and

depending on the evaluation result, <then-clause Bi>, <then-clause B2>, and all

subsequent then-clauses within the enclosing statement will be executed.

The complete set of semantic rules for the statements and expressions in rule sets are

summarized as follows:

52

- Each if-then statement must begin with 'if', followed by the predicate enclosed

within a pair of parenthesis, ' (' and ')', and end with a set of zero or more then-

clauses enclosed within a pair of curly brackets, '(' and '}'.

- The predicate of each if-then statement must be a Boolean expression that is

evaluated to be either True or False. Exactly one conditional operator should be

used within each expression, but multiple expressions can be grouped together into

compound expressions using Logical AND ('&&') and Logical OR ('I I').

Conditional operators allowed include the relational operators ('<', '>', '<=', '>')

and the equality operators ('=', '!='). The use of the assignment operator ('=') is

not allowed within the predicate.

- Each then-clause of an if-then statement must contain exactly one assignment

operator ('='), and end with a semi-colon, ';'.

- In compound expressions involving more than one operator or function, the order of

evaluation is dictated by the parentheses, with expressions in the inner most pair of

parentheses evaluated before outer pairs. For example, in the expression ' (a* (b-

c))', ' (b-c)' is evaluated before everything else. Explicit use of parentheses is the

recommended practice for readability and maintainability of the scripts.

- Compound expressions without parentheses are evaluated based on the operator

precedence order below. The operators are listed in order or precedence from top to

bottom, where the higher in the table an operator appears, the higher its precedence.

Operators with higher precedence are evaluated before operators with a relatively

lower precedence. Operators with same precedence are evaluated from left to right,

except the assignment operator, which is evaluated right to left.

Operator Type Symbols

Unary -X

Multiplicative *, /, %

Additive +-

Relational <, >, <=, >=

Equality =,

53

+X,

Logical AND &&

Logical OR I I

Assignment =

Table 4-2: Rule Set Operator Order of Precedence

For samples of correct rule set syntax, see Appendix E: Sample Emotion and

Bid/Ask Rule Sets.

4.4.2 Variables

The emotion rule set and the bid/ask rule set share a common set of variables, whose

values persist throughout the session. Each variable is a real number whose value can

range between ±1.7976931348623157E+308, with a decimal precision of ±4.9E-32412

Each emotion rule set and bid/ask rule set has a corresponding initialization file

under the same name as the rule set file, but with a different extension of .ini. The

initialization file specifies the default values of the rule set variables. Any variable not

initialized in the .ini files will have a default value of zero at the start of the session.

Although the system does not explicitly require that all variables be declared in their

corresponding initialization files, the recommended practice is to declare the variables in

the .ini file corresponding to the rule set file that uses the variables - variables used in the

emotion rule set should be declared in the .ini file for the emotion rule set, and variables

used in the bid/ask rule set should be declared in the .ini file for the bid/ask rule set.

The variables available in the rule sets fall into several categories, as described

below.

Market Variables are system-defined variables that provide real-time data on market

status and trader actions. These variables are updated by AMPS with real-time values

from the market database at every time step. Market Variables are utilized in emotion

rule sets to generate emotion-inducing price patterns. The set of Market Variables is pre-

12 Each variable is a 64-bit, double-precision floating-point value that ranges from ±4.9E-324 (decimal
precision) to ±1.7976931348623157E+308 (absolute maximum/minimum). The variable adheres to the
IEEE 754-1985 standard, which specifies both the format and arithmetic behavior of the real number.

54

determined, static, and persistent, and their names are reserved names that cannot be

used for User Variables.

The names and descriptions of Market Variables are outlined as follows:

Market Variable Description

LTIME Time of last order placed by the target user, in number of
milliseconds.

LTYPE Type of last order placed by the target user, where 1 =Market Buy,
2=Market Sell, 3=Bid, and 4=Ask.

LFRICE Price of last order placed by the target user, in number of ticks. *

LVOL Volume of last order placed by the target user, in number of shares.

* The minimum tick used in Web Market is 1/16, or 0.0625 of a currency unit. For
example, 160 ticks are equivalent to 10 currency units (i.e. dollars).

Table 4-3: Market Variables and Descriptions

Order Variables are system-defined variables whose values collectively describe the

order to be placed by AMPS at the end of each time step. Order Variables are primarily

modified in bid/ask rule sets based on the Target Price Variable updated by Emotion

Engine. At the end of each time step, their values are utilized by AMPS Trader to create

the new order for submission. As system variables, the set of Order Variables is pre-

determined, static, and persistent, and their names are reserved names that cannot be used

for User Variables.

The names and descriptions of Order Variables are outlined as follows:

Order Variable Description

BID Bid price of the new order for the current time step, in number of
ticks. See * in Table 4-3 for details on ticks.

ASK Ask price of the new order for the current time step, in number of
ticks. See * in Table 4-3 for details on ticks.

V Volume of the new order for the current time step, in number of

55

shares.

R Flag indicating whether or not to place an order this time step
(1=yes, 0=no). If R=1, AMPS randomly selects between bid and ask
order.

Table 4-4: Order Variables and Descriptions

Target Price Variable is a system-defined variable denoted by 'P', which

represents the emotion-inducing price target for the current time step. Its value is

updated by Emotion Engine based on Market Variables, and is used by Bid/Ask Engine

to update Order Variables. The value of 'P' should be in terms of the number of

minimum ticks used in Web Market, which is 1/16 of a currency unit 3 . As a system

variable, its name 'P' is a reserved name that cannot be used for User Variables.

User Variables are variables defined by the user for general purposes and for

convenience in rule set scripting. These variables can be dynamically declared by the

user any place within a rule set, and their values can only be modified by the user within

the rule set. For these reasons, User Variables are commonly used as time counters,

indices, and temporary data variables for the user's convenience.

JEP Constants are a pre-determined, static, and persistent set of common

mathematical constants provided by the JEP package, including 'e'

(2.718281828459045) and 'pi' (3.141592653589793). They are provided for the

convenience of the user. The values of JEP Constants are preset by the JEP package at

startup time, and the names of JEP Constants are reserved names that cannot be used for

User Variables. For a list of JEP constants, see Appendix B: JEP Operators, Functions,

and Constants.

4.4.3 Operators and Functions

1 The minimum tick used in Web Market is 1/16, or 0.0625 of a currency unit. For example, 160 ticks are
the equivalent of 10 currency units (i.e. dollars).

56

A library of common mathematical operators and functions provided by the JEP package

can be used within the rules sets. For a comprehensive list of these functions, see

Appendix B: JEP Operators, Functions, and Constants. In addition, a custom library has

been developed to provide a number of specific functions required by AMPS users for

rule set scripting and price computations. For a list of these custom functions and their

descriptions, see Appendix A: AMPS Custom Functions.

4.4.4 Vectors

Vectors are a special category of variables in that many primitive operators are not

applicable to them. This means that vector declarations and operations require vector-

specific functions. A variety of vector functions have been developed for the

convenience of AMPS users, and descriptions and usage of these functions are provided

in Appendix A: AMPS Custom Functions.

4.5 Using Message Files

Message files contain messages that are broadcasted to the trading subject during the

simulation, and each file contains the set of messages for a single session. Each session

can be configured to use a different message file, based on session settings in the system

configuration file, amps. ini. Message files should be placed in the message file directory

also specified in the system configuration file.

A sample message file is as follows:

o Session starting. Please begin trading.
60 1 minute into session. 10 addition traders will start trading.
-30 Session ending in 30 seconds.
-10 Session ending in 10 seconds.
-1 Session has ended.

Figure 4-4: Sample Message File: sample message.msg

Each line of a message file specifies a single message to be delivered. It contains

the delivery time in number of seconds followed by the message in plain text. The

57

delivery time is relative to the beginning of the session if it is a positive number; it is

relative to the end of the session if it is a negative number. For example, a time

specification of '60' indicates a delivery time of 60 seconds after the session begins, and

a time specification of '-10' indicates a delivery time of 10 seconds before the end of the

session. A time specification of '0' indicates a delivery time at the beginning of the

session. Using the sample file above in a 2-minute long session, the resulting message

delivery sequence is as follows:

Time in Session Message Delivered to Subject

0 "Session starting. Please begin trading."

60 "1 minute into session. 10 addition traders will

start trading."

90 "Trading session ending in 30 seconds."

110 "Trading session ending in 10 seconds."

119 "Trading session has ended. Please stop trading."

Table 4-5: Sample Message Delivery Schedule

The time syntax in relative terms provides the research administrator the flexibility

to combine message files with sessions of different time length, without having to adjust

the time specifications in the file.

4.6 Using Database Access Scripts

AMPS provides a number of database scripts that enable the research administrator to

retrieve market and trader data from the Web Market database. The data retrieved is

either displayed on screen or stored locally for analysis or debugging. The list of

database access scripts and their functions are as follows:

Database Access Script

saveRegUser.sh

Description

Retrieves the login information for all registered users of
Web Market, and saves it in the given directory under a
file named regusers.dat.

58

Usage: saveRegUser.sh <save dir>

saveUserData.sh

saveStockData.sh

Retrieves user and portfolio information for all registered
Web Market users that have traded since registration, and
saves it in the given directory under the following files:

" users.dat - ID and username of all users who have
traded since registration.

" portfolios.dat - Portfolio value and asset positions of
all users who have traded since registration.

Usage: saveUserData.sh <save dir>

Retrieves information for all Web Market securities and
saves it in the given directory under the following files:

" securities. dat - Security ID, symbol, minimum tick,
and last traded price of all securities.

" orders.dat - Time, transaction ID, type, trader, security
ID, price, volume, and fulfillment status of all orders
submitted.

- trades.dat - Time, transaction ID, security ID, buyer,
seller, volume, and price of all security sales (orders
fulfilled).

- p <security ID>. dat - Time, price, and volume of all
sales of the security identified by <security ID>.

- q_<security ID>.dat - Time, volume, and order type of
all orders submitted for the security identified by
<security ID>.

Usage: saveStockData.sh <save dir>

showLastOrderForUser.sh Retrieves the last order submitted by the given Web
Market user and displays the information on screen.
Information displayed includes time, type, volume, and
price of the order.

Usage: showLastOrderForUser. sh <username>

showLastPrices.sh Displays the last bid price, last bid price, and last sale
price for the given security on screen.

59

Usage: showLastPrices.sh <security ID>

Table 4-6: Database Access Scripts and Functions

The scripts are developed as convenience mechanisms to invoke DB Connector

methods to retrieve the data from the Web Market database. As C-shell scripts, they

must be ported before use on non-Unix or non-Linux platforms.

4.7 RS Connector Local Log File

RS Connector uses a local log file as an alternative and backup to RStudio logging

over the network. When local file logging is enabled, the timestamp and description of

selected simulation events are appended to the end of the file as the events take place.

A sample local log file is provided below.

2003/04/07
2003/04/07
2003/04/07
2003/04/07
2003/04/07
2003/04/07
2003/04/07
2003/04/07
2003/04/07
2003/04/07
2003/04/07

21:04:35.710
21:05:24.765
21:05:24.765
21:05:34.895
21:05:46.804
21:05:48.733
21:05:48.733
21:06:38.236
21:06:49.804
21:06:52.413
21:13:52.516

Log File Opened.

Simulation Started.
Current session: 1
Current session: 2
Simulation Paused.

Simulation Continuing.

Current session: 2

Current session: 3

Simulation Paused.

Simulation Ended.

Log File Closing.

Figure 4-5: Sample Local Log File: sample rstudio.log

Each line in the local log file is a separate event entry, containing the date and time

formatted for better viewing, and a short text description of the event. The sample above

shows a variety of simulation events, including simulation state changes ("Started",

"Ended", "Paused", and "Continuing"), session changes ("Current session:

<session number>"), and log file connection status changes ("Opened" and

"Closing"). The timestamp and event descriptions in the log file are useful for both

60

postmortem analysis as well as debugging. The timestamps are almost identical to those

logged by RStudio, if RStudio logging is also enabled.

The administrator can enable or disable logging to the local file, or change the

location and name of the log file within the system configuration file (see Section 4.3:

System Configurations).

4.8 Web Market Startup and Exit

Web Market server must be up and running in order to start AMPS1 5 . Assuming the

environment variables and paths are set up correctly16 , the server can be started with the

following "Java" command at the command line:

java rst.market. ServerMain jdbc:<subprotocol>:<subnanme> <jdbc driver>
<db username> <db user pw& <market name> <market port>

For Unix and Linux platforms, AMPS provides a simplified run script named

runserver.sh located in the AMPS application directory for the user's convenience. It

invokes a Web Market startup script using default parameters, and the Web Market script

in turn runs the "Java" command above.

1 For the same event, the timestamp recorded by RStudio slightly delayed due to network latency. The
delay is typically a small fraction of a second between 50ms to 200ms if the RStudio server is on the same
local area network as the AMPS server. This seems tolerable for our current purposes because the length of
the delay is relatively consistent and small compared to the periods between critical events, which is our
primary interest.
15 For AMPS to start up, the Web Market server must be up and running, but the market itself may be open
or closed.
16 For instructions on installing and configuring Web Market, see the Web Market documentation.

61

Chapter 5

AMPS User Interfaces

Simulation UI is the main user interface for AMPS administrators. This chapter

discusses the functions and usage of Simulation UI and its supplementary component,

AMPS Configuration Editor. In addition, Web Market user interfaces and their functions

are also summarized, as they work in close conjunction with AMPS user interfaces to

provide a complete simulation experience for the administrator and the subject.

5.1 Simulation User Interfaces

Simulation UI is the main graphical interface allowing the user to control the different

aspects of an AMPS experiment. The interface is opened upon starting AMPS, and

closed when the user exits AMPS. In this prototype of AMPS, Simulation UI has two

main pages, or tab panels: Simulation Panel and Data Logging Panel. Simulation UI also

allows the user to launch AMPS Configuration Editor, an editing tool for AMPS

configuration files. The functions of these interfaces are described in detail below.

5.1.1 Simulation Panel

Simulation Panel is the main AMPS control panel that enables the user to configure,

control, and monitor the simulation sessions as well as launching AMPS Configuration

Editor.

62

Figure 5-1: Simulation UI: Simulation Panel

The "Start Simulation" and "End Simulation" buttons enable the administrator to

start, pause, and stop the simulation process. Clicking on the "Start Simulation" button

begins running the sessions in the sequence shown, starting with the session current

highlighted in Session Sequence Table (for details on Session Sequence Table, see Table

5-1 below).

While the simulation is running, the display on the "Start Simulation" button is

changed to "Pause Simulation", and clicking on the button during such period allows the

user to pause the simulation. While the simulation is paused, the display on the "Pause

Simulation" button changes to "Continue Simulation", and clicking on the button during

such period allows the user to continue the simulation, or recover from pause.

At any point during the simulation, clicking the "End" button will terminate the

current session and end the simulation. Exiting the system by clicking the "Exit" button

or simply closing the window also ends the current simulation run.

Explanations of all the graphical components and their functions are as follows:

63

Component Function IDescription
Session Sequence
Table

Session Sequence Table is the two-dimensional table occupying
the top half of Simulation Panel. It displays the list of sessions
loaded from the system configuration file in their specified
sequence, as well as the session parameters. Each row is a separate
session, and the session's parameter values are displayed in the
columns.

The session parameters displayed in the columns are as follows,
ordered from left to right:

Session Type - Type of session, denoted by "Trading" or "Break".

Session Length - Length of session in number of seconds.

Message Process - Name of message file to be used.

Emotion Process - Name of emotion rule set file to be used
(Trading session only).

Bid/Ask Process - Name of bid/ask rule set file to be used
(Trading session only).

Target User - Username of the trading subject in the Web Market
system (Trading session only).

When the simulation is stopped, the user can select the session to
start the run from by clicking on the session and highlighting the
corresponding row. When the simulation is running, the display
continuously updates itself, highlighting the row corresponding to
the session currently in progress.

Reload Reloads the system configuration file and rule sets, and
Configurations reinitializes sessions and all other AMPS configurations. Session
Button Sequence Table, time displays, DB Connector, RS Connector, and

log file connection are also reinitialized.

Settings / Launches the AMPS Configuration Editor, a file editor with basic
Configurations text editing functionality allowing the user to modify configuration
Button files quickly and easily while AMPS is running.

Simulation Status Indicates the status of the simulation by displaying one of the
Display following:

"Stopped" - Simulation has been initialized but has not started

64

Component Function / Description

running.

"Running" - Simulation is currently running.

"Paused" - Simulation is paused.

Session Time Displays the time left in the current session in the following
Display format: <minutes> : <seconds>.

Total Time Displays the time left in the entire simulation run or sequence of
Display sessions (sum of time left in current session and in all subsequent

sessions) in the following format: <minutes> : <seconds>.

Start / Pause / If the simulation is not running, this button displays "Start
Continue Button Simulation" and allows the user to start the run, beginning with

("Start the session currently highlighted.
Simulation")

If the simulation is currently running, this button displays "Pause
Simulation" and allows the user to pause the simulation.

If the simulation is paused, the button displays "Continue
Simulation" and allows the user to continue the simulation or
recover from pause.

End Button Stops the simulation, terminating the current session.
("End
Simulation")

Exit Button Exits AMPS and Simulation UI, terminating any session in
progress.

Table 5-1: Simulation Panel Components and Functions

5.1.2 Data Logging Panel

The Data Logging Panel allows the user to monitor the current configurations and status

of the connection to RStudio and to the local log file. It also allows the user to manually

start or restart a connection attempt to RStudio, send test signals, and reload

configurations during runtime.

65

Figure 5-2: Simulation UI: Data Logging Panel

Explanations of the graphical components and their functions are as follows:

Component Function IDescription

RStudio Hostname Displays the RStudio hostname or IP address used by RS

Display Connector.

RStudio Port Displays the RStudio port number used by RS Connector

Display

Connection Status Indicates the current status of the RStudio connection by

Display displaying one of the following:

"Not Connected" - RStudio connection is not established and

not available for logging.

"Connected" - RStudio connection is established and available

for logging.

"Connecting... (Trying every <number> sec.)" - RS Connector
is trying to connect every <number> seconds. The <number>
shown is the retry delay specified in the system configuration
file.

Log to RStudio Indicates whether RS Connector is currently configured to send

66

log signals to RStudio by displaying either "Yes" or "No".

Log File Status Indicates the current status of the connection to the local log file
Display by displaying one of the following:

"Opened" - Local log file is opened and available for writing.

"Closed" - Local log file is closed and not available for writing.

Log to File Display Indicates whether RS Connector is currently configured to write
log events to the local log file, by displaying either "Yes" or
"No"

Connect Button Starts or restarts an attempt to connect to the RStudio server,
terminating any attempt currently in progress.

Reload Button Reloads RS Connector configurations from the system
("Reload configuration file.
Configurations")

Send Test Event Sends a test log event to RStudio and/or the local log file,
Button depending on which one(s) RS Connector is currently configured

to write to. The test event contains a description of "Test Event",
for the local log file.

Table 5-2: Data Logging Panel Components and Functions

5.1.3 AMPS Configuration Editor

AMPS Configuration Editor is a simple configuration file editor with basic text editing

and windowing functionality. It is provided as a convenience mechanism to facilitate

quick and simple changes to the configuration files while AMPS is running.

67

Display

File Menu
View MenuFr r- Edit Menu

Internal Frames
Minimize Icon

F rF Maximize Icon

A r- Close Icon

Figure 5-3: Configuration Editor: Main Graphical Components

Configuration Editor is a master window that allows the user to open configuration

files in internal frames, or sub-windows inside itself, as shown in the figure above.

Clicking on the "Settings/Configurations" button in Simulation Panel launches

Configuration Editor. When the Editor is launched, all configuration files specific to the

current session are opened by default. This includes the emotion rule set file, the bid/ask

rule set file, and the message file for the session in progress, as well as the system

configuration file amps.ini. The title bar at the top of each internal frame displays the

name of the file whose contents are shown in the frame.

68

To exit the Editor, the user can either select "Exit" under File Menu, or simply

close the master window. If there are files or internal frames open when exiting, the file,

location, and size of the internal frames will be remembered, such that the next time

Configuration Editor is started, it will recover to the same appearance it had before the

exit.

File Menu in the master window provides a number of common file-related

functions, allowing the user to create, open, save, and close individual files. The items

found under File Menu are shown below.

MMZ iiax(p-jin, PP * (eA((mu-O.5*s
P = max(pjuin, Ap*p-hat + Bp*phat*p_

Figure 5-4: Configuration Editor: File Menu Items

The functions of the File Menu items are summarized in the table below.

File Menu Item Function /Description

New Creates a new file in a new internal frame and brings the frame to the
top.

Open Opens an existing file in a new internal frame and brings the frame
to the top. Clicking on this item launches an "Open" window that
asks the user for the name and path of the file to open. The default
open location is the directory in which the system configuration file
amps.ini resides.

For a screenshot of this function, see Appendix G: Configuration

69

Editor Screenshots.

Saves the file that is currently on top (if one or more files are open)
under the same name. If the file is a new document without a name,
the "Save As" window is launched (see section below on "Save As"
menu item).

Save As Saves the file that is currently on top (if one or more files are open)
under a different name. Clicking on this item launches a "Save As"
window that asks the user for a new filename and path. The default
"Save As" location is the directory in which the original file resides.

For a screenshot of this function, see Appendix G: Configuration
Editor Screenshots.

Close Closes the file and internal frame that is currently on top (if one or
more files are open).

Exit Closes Configuration Editor.

Table 5-3: File Menu Items and Functions

View Menu in the master window provides a number of frame management

functions, allowing the user to organize the internal frames for better viewing. The items

found under View Menu are shown as follows:

if = P;
P...temTp = PIp...hat = mTax(pjin, PP *" (eA((niu-O.E5-s
P = max(pjsin, Ap*p-hat + Bp*p-hat*p-

PP = Ptemp;
}

Figure 5-5: Configuration Editor: View Menu Items

70

Save

View Menu items and their functions are summarized below:

View Menu Item Function IDescription

Minimize All Minimizes all internal frames into icons at the bottom of the master
window. This has the same effect as clicking the "Minimize" icon
on each of the internal frames.

For a screenshot of this function, see Appendix G: Configuration
Editor Screenshots.

Show All Restores all internal frames from minimized state back to their
original size and location.

For a screenshot of this function, see Appendix G: Configuration
Editor Screenshots.

Line Up All Restores all internal frames from minimized or maximized state and
lines them up in a cascaded manner with all the title bars visible.

For a screenshot of this function, see Appendix G: Configuration
Editor Screenshots.

Table 5-4: View Menu Items and Functions

An internal frame is a sub-window within Configuration Editor that displays the

contents of a file and allows the user to perform editing. It provides an Edit Menu with

basic text editing functionality, and icons on the title bar for common frame management

functions. In the figure below, an internal frame is shown with its Edit Menu opened.

71

0 (eA((mu-O.5*sigmap*sigma.p)*dt) +
n o));
at + Bp*p.hat*phat + Cp*eA(phat));

= Ptemp;
}

Figure 5-6: Configuration Editor: Internal Frame and Edit Menu Items

Edit Menu items and their functions are summarized below.

Edit Menu Item Function I Description

Undo Undoes the last edit. A short description of the last edit is displayed
behind the word "Undo". For example, in the figure above, the
Undo menu item displays "deletion", indicating that clicking on the
menu item at this time will undo the last deletion.

Redo Redoes the last action undone by the Undo menu item. A short
description of the last action undone is displayed behind the word
"Redo".

Cut-to- Cuts any selected text and pastes to the clipboard in memory.
Clipboard

Copy-to- Copies any selected text and pastes to the clipboard in memory.
Clipboard

Paste-from- Pastes any text from the clipboard in memory to the current cursor
Clipboard location in the document. If there is text currently selected, the new

text is pasted over the selected text.

Select-All Selects the entire text in the document.

72

Table 5-5: Edit Menu Items and Functions

The frame management icons are shown and labeled in Figure 5-3, and their

functions are as follows:

Frame Icon Function /Description

Minimize Icon Minimizes the internal frame into an icon at the bottom of the master
window.

For a screenshot of this function, see Appendix G: Configuration
Editor Screenshots.

Maximize Icon Maximizes the internal frame to fill the entire master window.

For a screenshot of this function, see Appendix G: Configuration
Editor Screenshots.

Close Icon Closes the internal frame and file.

Table 5-6: Internal Frame Icons and Functions

In addition, the internal frame supports a few key bindings for the convenience of

the user, some of which are provided by default through the Java components used.

Key Binding Function /Description

Ctrl-a Selects the entire text in the document.

Ctrl-x Cuts any selected text and pastes to the clipboard in memory.

Ctrl-c Copies any selected text and pastes to the clipboard in memory.

Ctrl-v Pastes any text from the clipboard in memory to the current cursor
location in the document. If there is text currently selected, the new
text is pasted over the selected text.

Ctrl-b Moves the cursor backward by 1 character.

Ctrl-f Moves the cursor forward by 1 character.

Ctrl-p Moves the cursor up one line.

73

Moves the cursor down one line.

Table 5-7: Internal Frame Key Bindings and Functions

5.2 Web Market Server and Client User Interface

Web Market server and client are not part of the AMPS prototype, however, because

AMPS works in close conjunction with Web Market, brief descriptions of their user

interfaces are provided for the convenience of the reader.

5.2.1 Client User Interface

The user interface for the Web Market client is a Java applet that allows the trading

subject to participate in the Web Market simulation and the AMPS experiment using a

web browser. The main features provided include monitoring real-time price

movements, placing orders, tracking portfolio, and receiving market news and system

messages. For a screenshot of the client user interface, see Appendix H: Web Market

Client and Server Screenshots.

5.2.2 Server User Interface

The Web Market server user interface is a Java application launched from the server-side,

allowing the server administrator to monitor and control the market. The main features

provided include opening and closing the market, monitoring the status of connected

clients, and sending broadcast messages to connected clients. For a screenshot of the

server user interface, see Appendix H: Web Market Client and Server Screenshots.

74

Ctrl-n

Chapter 6

Software Test Plan

6.1 Overview

In the AMPS project, testing is performed through a bottom-up approach - components

and functions are always tested individually before they are tested in larger groups or as a

whole. The strategy involves three primary levels of testing throughout the development

process: unit testing, functional testing, and system testing, described in the sections

below. As new code is produced, pertinent test cases at each level are performed, starting

at the unit level, moving to the functional level, and eventually to the system level. The

practice of ongoing regression testing17 ensures that the existing code is not adversely

impacted by the new code.

The following sections explain the different levels of testing during AMPS

development. They also summarize the test cases involved to provide an overview of the

scope of efforts undertaken at each level.

6.2 Unit Testing

Unit testing involves the lowest-level building blocks of the application or methods

within these building blocks. It covers the functionality of all the individual components

of the application in their entirety. In AMPS context, unit testing covers all the methods

of the Java class files, including the correctness and timeliness of their input and output.

For instance, this effort consists of validating the functionality of the rule set parser,

17 Regression testing is designed to confirm that unchanged portions of the system still work correctly in
light of new changes made during development or maintenance [7].

75

networking components, database queries, price computations, and basic user interface

features.

Methods and functions of most AMPS components are unit-tested as they are

developed. The remaining functions are tested in groups at the functional level, for

simplicity and timeframe reasons.

For the main components of AMPS, test applications have been developed to

automatically run the unit test scripts and test cases. The Java source files for these

component-specific test applications are listed below, along with their descriptions.

Test Script / Code Description

CETest.java Launches Configuration Editor by itself to test all
functionality provided by the user interface.

DBConnectorTest.java Tests all embedded queries and methods of DB
Connector.

MessageTest.java Tests the parsing of message files and the delivery of
broadcast messages, and the data structure used for
messages.

ParserTest.java Tests the library of custom functions and the JEP
expression parser.

RuleSetTest.java Tests the EmotionRuleSet and BidAskRuleSet
classes, as well as the rule set parsers used by
Emotion Engine and Bid/Ask Engine.

RSConnectorTest.java Tests the functions and error handling of
RSConnector, including RStudio network connection

RSConnectorTestServer.java and local log file connection.

Table 6-1: Unit Test Scripts and Descriptions

6.3 Functional Testing

Functional testing, or black-box testing, involves the testing of business functions - the

user activities defining the basic functions of the system. In AMPS context, functional

76

testing includes the exhaustive list of tasks the research administrator can perform

through Simulation UI or by modifying any of the configuration files. This type of

testing is also carried out on an ongoing basis as new functionality is added.

While functional testing involves application-level features available to the user, its

test cases are mostly executed manually. The test cases are outlined as follows, grouped

by functions from the user perspective.

User Function Test Cases /Descriptions

System Management - Startup and shutdown.

- State transitions and invocation of processes.

w Simulation UI startup and shutdown.

- Interruption, failure, and exception handling.

Simulation and Sessions - Simulation UI display and updating of session
Management details and run sequence.

m Simulation UI display and updating of session time
left, total time left, and simulation status.

- Simulation process control - start, stop, pause, and
continue.

m Selection of starting session.

- Loading and reloading of configuration files
(including rule sets and message files).

- Errors, warning, and information messages.

Price Pattern Generation - Emotion Engine and Bid/Ask Engine initialization.

- Emotion and bid/ask rule set expression parsing and
evaluation.

- Real-time updating of Market Variables, Target
Price Variable, and Order Variables.

- Parsing error and exception handling.

Message Delivery - Message Engine initialization.

* Correctness and timeliness of message delivery *.

- Delivery error and exception handling.

Database Connection m DB Connector initialization and database
Management connectivity.

- Correctness of queries and data retrieval.

77

Data Logging Management

Web Market Integration

Database Access Scripts

" Error and exception handling, including query and
connection errors.

" RS Connector initialization.

- Connectivity to RStudio (manual and auto) and
connection retries.

- Connectivity to local log file.

- Correctness and timeliness of data logging.

- Connection status display, including updates upon
receiving RS Connector state change notifications.

- Data logging errors and exception handling.

- AMPS login and logout.

- Correctness and timeliness of order submissions.

- Correctness and timeliness of broadcast message
(Web Market Client) *.

- Correctness and timeliness of order display (Web
Market Client).

" Command line input and data retrieval.

- Data storage and display.

- Error and exception handling, including command
line and parameter errors.

* Broadcast message delivery through Web Market server has not been completed
as of the writing of this thesis, and thus has only been tested to a limited extent.

Table 6-2: Functional Test Cases and Descriptions

6.4 System Testing

System testing is the highest level of testing which evaluates the functionality of the

system as a whole for overall usability and performance. It is summarized as follows:

System Test Descriptions

Ensures that order computation and submission time
are adequate for the intended purposes of AMPS.

78

Performance Testing

Compatibility Testing Verifies that integration with Web Market and
RStudio is fully functional and robust.

Usability Testing Verifies that overall user experience, including user
interfaces, system configurations, and rule set
scripting, is satisfactory for the research administrator
and the research subject.

Recovery Testing Ensures that software and hardware failures are
handled gracefully without affecting the data store or
the stability of the underlying platform.

Table 6-3: System Test Cases and Descriptions

6.5 Test Environment

The environment under which AMPS has been tested, including both hardware and

software specifications, are as follows.

AMPS Server
(Administrator Machine)

AMPS Client
(Subject Machine)

Operating Red Hat Linux Release 7.2 Windows 2000 Service Pack 3
System

Processor 4-Processor, 900 MHZ Intel 600 MHZ Intel Pentium III
Pentium III

Memory 3.8 GB 384 MB

Java J2SE (JavaTM 2 Standard Edition) J2SE (Java TM 2 Standard Edition)
Version SDK Version 1.4.0_01 for Linux SDK Version 1.4.0_01 for Windows

JEP JEP Version 2.24 N/A
Version

Browser N/A Internet Explorer Version 6.0

Database Oracle Version 8.1.7 N/A

Table 6-4: Test Environment Specifications

79

Chapter 7

Future Work

The prototype as it stands addresses some of the key initial objectives of the research on

trading psychology at the MIT Lab for Financial Engineering. In future phases of the

research effort, however, the use of AMPS may expand and require support for additional

data inputs, usability, robustness, scalability, performance, and simulation-related

features. A number of proposals for future development are discussed in the following

sections.

7.1 Support for Physiological Data Inputs

Modules should be developed to support real-time physiological data feed and allow the

research administrator to incorporate these new inputs into the generation of price

patterns. In combination with the subject's trading behavior, real-time physiological data

provide valuable alternative insights into the cognitive state of the trading subject, and

can prove useful in generating effective emotion-inducing price patterns. Some of these

physiological data, for example, include electrocardiogram (EKG), brain wave (EEG),

skin conductance (SCR), blood volume pulse (BVP), electromyographical signals

(EMG), heart rate, respiration rate, and body temperature [8].

RStudio, developed by Eric Ho at the MIT Lab for Financial Engineering, is a

system for collecting and monitoring a variety of the aforementioned physiological data

types, using portable biofeedback equipment [6]. One potential direction for AMPS is to

incorporate the data feed collected by RStudio into the emotion generation process by

representing the data using real-time rule set variables, enabling the administrator to

utilize the data in target price computation.

80

7.2 Logging System Enhancements

In the logging scheme of the current implementation, system information concerning

runtime status, events, and errors are manually piped to a local log file or displayed on

screen. Future enhancements to server-side logging system are recommended to improve

the efficiency and timeliness of the reporting and debugging processes. Administrators

and developers should also be provided with finer control over the level of detail and

relevancy of reported data.

One proposed upgrade is the migration to a channel and subscription-based logging

system. In this model, log data is categorized by the level of detail and topic, and

published through different channels corresponding to the different levels of detail or

topics. AMPS components act as publishers that output real-time log data through the

different channels depending on their data type. Components and processes, both internal

and external to AMPS, can register as data subscribers for one or more channels to

receive the data specific to their individual needs. Data subscribers may include, for

example, a process that outputs to a database, a process that writes directly to the file

system, or one that simply displays the information on screen. The main advantage of

this subscription-based scheme is to allow the administrator or developer to subscribe

only to the log data that is most relevant for his or her specific purposes.

7.3 Improved Exception and Error Handling

Java exceptions and other runtime errors should be handled in a more discrete and

structured manner, and incorporated into the logging scheme to facilitate system

monitoring and improve overall robustness. Currently, only the most critical errors are

handled at the application level or reported to the administrator through user interface

events and messages. The majority of Java exceptions are reported individually as they

occur, and the error messages are delivered to standard output (screen display by default).

The loose reporting scheme may lead to difficulties in debugging, as system architecture

81

expands and becomes more complex. Building more structure in the error handling

process will improve fault tolerance and facilitate error tracking.

7.4 Additional Logic Constructs and Rule Set Syntax

The rule set scripting language in the current prototype only supports if-then statements.

As the usage of AMPS grows, additional logic constructs can simplify the development

of rule sets and make the scripting process more intuitive. Some additional constructs

that are good candidates to append to the existing semantics include if-then-else

statements, for-loops, and while-loops.

7.5 Support for Multiple Concurrent Trading Subjects

Enhancements should be made to enable multiple trading subjects to participate in an

AMPS experiment simultaneously, in order to add extra dimensions to the control and

observations of the experiment. The functionality should allow different emotion rule

sets for multiple emotion targets during each trading session. It should also allow the

administrator to set up some form of prioritization of emotion targets, in case of price

pattern conflicts. The data feedback mechanism, which retrieves the trading subject's

real-time behavior data, must also be upgraded to obtain the behavior data for multiple

traders.

82

Chapter 8

Discussion

AMPS is a prototype simulation system designed to facilitate research on trading

psychology by providing tools to systematically and consistently exert emotional

influence on the trading subjects through controlled price movements. While the subject

trades under the elicited emotional states, real-time trader behavior data is fed back to the

system to generate subsequent price patterns. The design enables emotions and emotion-

inducing price patterns to be generated relative to the trader's behavior patterns, and thus

in theory, relative to the current cognitive state underlying these behavior patterns. This

allows the researchers to define and study emotions in terms of observable behavior

patterns in the context of securities trading, making them more easily quantifiable and

approachable.

Although the development and testing process fell short of the initial timeframe

estimate, the project reached a satisfactory closure towards the end and the main design

objectives have been met. The disciplined, continuous testing and debugging throughout

the development phase have made a deciding difference in uncovering deeply rooted

problems that might have been costly to fix at later stages during the project. The source

code, configuration files, and scripts have been adequately documented within the files,

and usage instructions have been prepared to ensure smooth knowledge transfer and

usage training.

The major complexities during the development process include the simulation

process control and integration with Web Market server. Because the simulation process

flow is driven by a number of underlying thread components and concurrent processes,

the design must be performed carefully to manage the state transitions correctly. Web

Market integration was more troublesome than expected because part of the server source

83

code was not available' 8 during the integration process, leading to unanticipated delays

in testing and debugging.

As of the writing of this thesis, AMPS has been fully installed and tested on-site at

the MIT Lab for Financial Engineering. However, live simulation trials have been

carried out only to a limited extent. As additional trials are performed, user feedback

should be utilized to fine-tune emotion rule sets and bid/ask rule sets as well as to identify

significant system limitations for future improvement. User interfaces should also be

maintained on an ongoing basis and upgraded as experiment needs evolve.

18 Web Market has been undergoing major source code revisions during the timeframe of AMPS
development, and a compilable version of the code base has not been available.

84

Appendix A: AMPS Custom Functions

The list of AMPS custom functions is provided in this section, along with descriptions

and explanations of their parameters and usage. These functions have been developed

specifically for price computations in AMPS, and they can be used in emotion rule sets

and bid/ask rule sets the same way JEP functions are used.

Evaluation
Symbol Description Sample Usage Result

expRand () Returns an exponentially expRand () <Random
distributed random Number>
number.

max(valuel, Returns the max of all max (1, 2, 3) 3
value2 ...) input values.
roundto-tick (x, p, Rounds the given bid/ask roundtotick (9.9 9.75
dp, type) price to the nearest tick , 10, 0.25, 1)

such that ask is always
where: greater than bid, and
x = bid/ask price returns the rounded
p = actual traded bid/ask price.

price
dp = minimum tick
type = bid/ask type

(1=bid, 0=ask)
roundlot (x, dv) Rounds the given volume round _lot (8.5, 2) 10

to the nearest larger
where: round lot, and returns the
x = volume rounded volume.
dv = minimum volume

increment
randn () Returns a normally randn () <Random

distributed random Number>
number.

vecNew () Returns a new and empty vecNew () [] *

vector.
vecSize (vector) Returns the current size vecSize([1 1 2]) 3

of the given vector.
vecAdd (vector, Adds the given value to vecAdd ([1 2 3], [1 2 3

85

value) the given vector, 4) 4]
increasing its size by 1,
and returns the resulting
vector.

vecAddToSize(vector, Adds the given value to a vecAddToSize([1 2 [2 3 4]
size limit, value) vector and remove the 3], 3, 4)

oldest value(s) until the
new size is less than or
equal to the given size
limit, and returns the
resulting vector.

vecSum (vector) Returns the sum of all vecSum ([1 2 31) 6
values in the given
vector.

vecAvg (vector) Returns the average of all vecAvg ([1 2 3) 2
values in the given
vector.

* The notation '[valuel value2 value3]' denotes a vector with values shown
between the square brackets. Values are listed from left to right based on the
order they have been added to the vector.

Table A- 1: List of AMPS Custom Functions

86

Appendix B: JEP Operators, Functions,
and Constants

The JEP operators, functions, and constants available for use in AMPS rule sets are

described in this section. The information presented below is based on JEP (Java

Mathematical Expression Parser) Version 2.24 documentation [3]. The list of functions

has been truncated to include only those that are relevant and applicable for AMPS's

purposes.

Operators

Symbol Description Sample Usage * Evaluation Result *
A Power 2^3 8

Boolean Not (3>2) False
+X, -X Unary Plus, Unary Minus - (1+1) -2
% Modulus 3 % 2 1
/ Division 3 / 2 1.5
* Multiplication 3 * 2 6
+, - Addition, Subtraction 3 + 2 5
<=, >= Less or Equal, More or Equal 3 >= 2 True
<, > Less Than, Greater Than 3 > 2 True

= Not Equal, Equal 3 == 2 False
&& Boolean And (3=-3) && (3==2) False
I Boolean Or (3==3) I 1 (3==2) True

* Sample usage and evaluation result are not part of the JEP documentation. The
two columns are added here as a supplement to describe their exact usage in
AMPS rule sets, and the evaluation results are based on the author's test cases.

Table B-1: List of JEP Operators

87

Symbol Description
sin() Sine
cos () Cosine
tan () Tangent
asin() Arc Sine
acos () Arc Cosine
atan () Arc Tangent
sinh () Hyperbolic Sine
cosh () Hyperbolic Cosine
tanh () Hyperbolic Tangent
asinh () Inverse Hyperbolic Sine
acosh () Inverse Hyperbolic Cosine
atanh () Inverse Hyperbolic Tangent
in () Natural Logarithm
logo Logarithm Base 10
angle() Angle
abs () Absolute Value / Magnitude
rand () Random Number (Between 0 and 1)
mod () Modulus
sqrt() Square Root
sum() Sum

Table B-2: List of JEP Functions

Constants

Symbol Description Value
pi Pi 3.141592653589793
e Natural Logarithmic Base 2.718281828459045

* Constants are not covered in the JEP documentation. The values and decimal
precision provided are based on the author's test cases.

Table B-3: List of JEP Constants

88

Functions

Appendix C: List of AMPS
Configuration and Log Files

The comprehensive list of configuration files and log files used by AMPS are provided

below.

Filename Location Description

amps.ini <CWD>/config/amps.ini * System configuration file.

<emotion name>.emo <CWD><relative emotion Emotion rule set file and

<emotion name>.ini directory path specified in corresponding variable
amps.ini> initialization file.

<bid/ask name>.baa <CWD><relative bid/ask directory Bid/Ask rule set file and

<bid/ask name>.ini path specified in amps. ini> corresponding variable
initialization file.

<message name>.msg <CWD><relative message Message file.
directory specified in amps. ini>

<RS log file name> <CWD><relative RS log file path RS Connector local log
specified in amps. ini> file.

* '<CWD>' denotes the "current working directory" of the user, or the directory
from which the administrator started AMPS. This is dynamically obtained during
runtime through Java Runtime's system property 'user. dir'.

Table C-l: List of AMPS Configuration and Log Files

89

Appendix D: System Configuration File
and Parameters

This section discusses the usage of the AMPS system configuration file, amps. ini, and its

parameters in detail. amps.ini contains configuration parameters for sessions, RStudio

Connector, and Database Connector, as well as paths to other configuration files. This

master configuration file is loaded at startup from its default path to initialize the system.

By design, AMPS looks for the configuration file under a path relative to the current

working directory, or the directory from which the administrator started AMPS.

Specifically, it loads the configuration file under the following path:

<current working directozy>/config/anps.i

A sample amps. ini is provided below:

##
Main configuration file for AMPS
##

##
Filenames and path of config files
Note: These are relative to user's current working directory
(ie. directory where "java" command is run)
##
EMOTIONFOLDERPATH = /config/emotions
BIDASKFOLDER PATH = /config/bidask
MESSAGEFOLDERPATH = /config/messages
RSLOGFILEPATH = /tmp/rstudio.log

##
Sessions Config
- NUMSESSIONS: total number of sessions (number of session lines
below)
- SESSION1, SESSION2 ... : List of sessions indicating type
(trading/break),

90

length in seconds, emotion file, bid/ask generation file, and
target user name.

##
NUMSESSIONS=7

SESSION1=trading 10 trading_default.msg CAPM.emo default.baa lwang

SESSION2=trading 30 tradingdefault.msg pos affect_20s.emo

default.baa lwang

SESSION3=break 10 breakl0sec.msg

SESSION4=trading 300 trading300sec.msg distress_20s.emo highvol.baa

lwang

SESSION5=break 10 breakl0sec.msg

SESSION6=trading 60 trading60sec.msg arousal_20s.emo highfreq.baa

lwang

SESSION7=break 10 breakfinal.msg

####################################f############################
RStudio Config

- For connection to RStudio and local log file

##
RSHOSTNAME=18.193.0.69

RSPORT=7777

RSRETRYDELAY=5

RS_AUTOCONNECT=0

RS_LOG_TO_FILE=1

RS_LOGTORS=0

##
DB Config
- For connection to RST Market database (Oracle)

##
DB URL = jdbc:oracle:thin:@wang:1521:OMKT
DBUSERNAME = dummy user
DB PASSWORD = dummy

Figure D- 1: Sample AMPS System Configuration File: amps. ini

Each non-empty line is interpreted as a comment if it starts with the pound sign

('#'). Otherwise, it is loaded as a parameter with name and value separated by an equal

('=') sign. All spaces and tabs are ignored.

The configuration parameters found in amps.ini are outlined as follows:

91

Description

EMOTIONFOLDERPATH

BIDASKFOLDERPATH

MESSAGE FOLDER PATH

Path of folder containing emotion rule set files,
relative to the current working directory.
Example: /config/emotions

Path of folder containing bid/ask rule set files,
relative to the current working directory.
Example: /config/bidask

Path of folder containing message files, relative to
the current working directory.
Example: /config/messages

Simulation UI NUMSESSIONS * Total number of sessions in the simulation (number
of session declaration lines in amps. ini).

SESSION<number> ** Session declaration parameters for session
<number>. The <number> indicates the session's
order in the run sequence, and parameter values are
separated by space.

RS Connector RS_HOSTNAME IP or hostname of RStudio server.

RS_PORT Port number of Rstudio server.

RS RETRY DELAY Number of seconds to wait before retrying to
connect to RStudio after a failed attempt.

RS_AUTOCONNECT Setting for whether to automatically connect to
RStudio at startup. 1=Yes and O=No.

RSLOG TO-FILE Setting for whether to log the signal to the local file
when RS Connector is asked to deliver a signal.
1=Yes and O=No.

RSLOG TO RS Setting for whether to deliver the signal to RStudio
when RS Connector is asked to deliver a signal.
1=Yes and O=No.

RSLOGFILEPATH Path of the local log file, relative to the current
working directory.
Example: /tmp/rstudio. log

DB_URL

DB USERNAME

Database URL of the form:
jdbc:<subprotocol>:<subname>

Database usemame to be used.

92

General

DB Connector

Component Parameter

Database password to be used.

Table D-1: List of System Configuration Parameters

* NUMSESSIONS specifies the number of SESSION declarations there are. For

example, if NUMSESSION=3, there should be exactly 3 SESSION declarations: SESSION1,

SESSION2, and SESSION3.

** SESSION<number> specifies a simulation session. The declaration should be in the

following form:

SESSICN<number> = <session parami> <session param2> . . .

The parameters are separated by one or more spaces.

Each session declaration requires a minimum of 3 parameters. In the required order

of appearance in the configuration file, from left to right, they are:

1. Session Type

2. Time Length (in number of seconds)

3. Message File (file containing the broadcast messages)

For break sessions, only the minimal set of 3 parameters is required, and the value of

the first parameter, or session type, should be "break".

For example:

SESSICN1 = break 10 breakiOsec.msg

For trading sessions, a total of 6 parameters are required - 3 additional parameters

on top of the 3 required for all sessions. The value of the first parameter, or session type,

should be "trading". In the required order of appearance in the configuration file, from

left to right, the three additional parameters are:

1. Emotion File (file containing the emotion rule set)

2. Bid/Ask File (file containing the bid/ask rule set)

93

DBPASSWORD

3. Target User (Web Market username of the emotion rule target)

For example:

SESSICN2 = trading 300 tradingdefault.msg CAIM.emo default.baa
iwang

94

Appendix E: Sample Emotion and
Bid/Ask Rule Sets

Complete samples of emotion and bid/ask rule sets and their initialization files are

provided below. The examples shown in the main body of this document are taken from

these files.

Sample Emotion Rule Set

if (LTYPE==l)
PPtemp = PP*0.98;

I
if (LTYPE==2) {
PPtemp = PP*1.02;

I
if ((LTYPE==3) &&
PP temp = PP*1.01;

}
if ((LTYPE==4) &&
PP temp = PP*0 .99;

}

(LPRICE < PP))

(LPRICE > PP))

{

{

if (1==1) {
PP = P;
p_hat = max(p_min, PP temp * (e A((mu-0.5*sigmap*sigma_p)*dt) +
sigmap*sqrt (dt) *randn ());
P = max(p min, Ap*phat + Bp*phat*phat + Cp*e^(phat));

}

Figure E-1: Sample Emotion Rule Set: sampleemotion.emo

Sample Emotion Rule Set Initialization File

##
Variable init file for sample emotion.emo

Recommended:
- Variables used in the emotion file above should be declared

here with an initial value.

95

- If a variable's initial value involves other variables,

make sure the variables used are defined above the line.

- The following system variables should be initialized here:

P
##

Price
P=95

Price of previous order
PP=P

Figure E-2: Sample Emotion Rule Set Initialization File: sampleemotion.ini

Sample Bid/Ask Rule Set

if (1==1) {
SP = S;
BIDP = BID;
ASKP = ASK;
V_vec = vecAddToSize (Vvec, num vlags, V);

i = i+1;
t = i*dt;

R = 0;

}
if (vecAvg (V vec) > 0) {
inv volume = 1/vecAvg (Vvec);
S = max(dp, SP * (As*dp + Bs*inv volume + sigmas*sqrt(dt))*randnO);

}
if (vecAvg (Vvec) <= 0)
S = max (dp, SP * (As*dp + sigmas*sqrt (dt))*randn ());

}
if (t >= rt)

R = 1;

V = roundlot (Av*abs (randn (),dv);

rt-increment = 1;

}
if (!(t >= rt))
R = 0;
V = 0;
}
if ((t >= at) && (t >= bt))
p_cur = P;
BID = roundtotick (pcur-0. 5*S, p_cur, dp, 1);
bt increment = 1;

96

}
if ((! ((t >= at) && (t >= bt))) && (R > 0)) {
BID = roundtotick(pcur-0.5*S,p_cur,dp,l);

}
if ((! ((t >= at) && (t >= bt))) && (! (R > 0))) {
BID = BIDP;

}
if ((t >= at) && (t >= bt))
p_cur = P;

ASK = round to tick (pcur-0.5*S, p_cur, dp, O);
atincrement = 1;
}
if ((! ((t >= at) && (t >= bt))) && (R > 0)) {
ASK = roundtotick(pcur-0.5*S,p_cur,dp,0);

}
if ((! ((t >= at) && (t >= bt))) && (! (R > 0)))

ASK = ASKP;

}
if (BID >= ASK) {
rand var = randn (;

I
if ((BID >= ASK) && (rand var >= 0)) {
BID = ASK - S;

I
if ((BID >= ASK) && (!(rand var >= 0))) {
ASK = BID + S;

I
if (rtincrement==1)

rt = rt + expRand(1/lambdar);
rtincrement=0;

}
if (at increment=1) {
at = at + expRand(1/lambdap);
atincrement=0;

}
if (btincrement==1)

bt = bt + expRand(1/lambdap);
btincrement=0;

}

Figure E-3: Sample Bid/Ask Rule Set: samplebidask.baa

Sample Bid/Ask Rule Set Initialization File

#################################A###############################

97

Variable initialization file for samplebidask.baa

Recommended:

- Variables used in the bid/ask file above should be declared

here with an initial value.

- If a variable's initial value involves other variables,

make sure the variables used are defined above the line.

- The following system variables should be initialized here:
BID, ASK, V, R

4##

#######################
Simulation parameters

#######################
Time period to simulate

Tmax = 600

min time step (tick)

dt = 1

min price tick

dp = 0.25

#######################
price parameters

#######################
current price in simulation

p_cur = 0

price volatility
sigma p = 0.005

linear trend coeff

Ap = 1.0

quadratic trend coeff

Bp = 0

exponential trend coeff
Cp = 0

minimum price ever
p_min = 2

expected return
mu = 0.0005

98

#######################
spread parameters
#######################

spread

S = dp

SP = dp

maximum possible value of spread

max s = 15

price tick coeff

As = 8

inverse volume coeff

Bs = 0

spread volatility

sigma-s = 0.5

#######################
bid and ask parameters

#######################
bid
BID = 0
BIDP = BID

ask
ASK = 0
ASKP = 0

temporal for bid

bt = 0

temporal for ask

at = 0

rate in the poisson process

lambda p = 0.7

#######################
trade and volume parameters

#######################
volume

V=20
V vec = vecNew()

99

flag - trade or not

R = 0

temporal for trades

rt = 0

rate for trades

lambda r = 0.8

number of lags when the volume is used in calculations

num vlags = 10

scaling factor for volume

Av = 50

round lot
dv = 10

simulate bid and ask initial "arrival"

#######################
bid temporal structure

bt = bt + expRand(l/lambdap)

ask temporal structure

at = at + expRand(l/lambdap)

trade temporal structure

rt = rt + expRand(l/lambdar)

Others

current time
t = 0

iteration counter
i = 1

Figure E-4: Sample Bid/Ask Rule Set Initialization File: samplebidask.ini

100

Appendix F: AMPS System
Requirements

AMPS Server
(Administrator Machine)

AMPS Client
(Subject Machine)

Operating Unix / Linux Windows 2000 / XP
System (Tested platform includes: Red Hat OR

Linux Release 7.2) Unix / Linux (Major Distributions)

Processor 500 MHZ Intel Pentium or above 500 MHZ Intel Pentium or above

Memory 256 MB (Required) 128 MB (Required)

512 MB (Recommended) 256 MB (Recommended)

Disk Space 20 MB (Not including software 5 MB (Not including software
requirements) requirements)

Installed J2SE (JavaTM 2 Standard Edition) Internet Explorer Version 6.0 or
Software SDK Version 1.4 or above for Unix / above * (or equivalent browser

Linux * including Netscape 6.0 or above)

JEP (Java Mathematical Expression J2SE (JavaTM 2 Standard Edition)
Parser) Version 2.24 or above * SDK Version 1.3 or above for

Web Market system and database Windows *

Others CLASSPATH environment variable
must include path to:

1. JDBC Driver for Web
Market database

2. JEP jar file

3. Web Market directory
("afm" directory)

See ** for example.

101

* Download website for some of the aforementioned software requirements are
provided below:

J2SE SDK: http://java.sun.com/i2se/1.4.1 /download.html
Internet Explorer: http://www.microsoft.com/downloads/
JEP: http://www.singularsys.com/iep/index.html

** A sample CLASSPATH is provided below:

CLASSPATH=/home/lwang/afm: /u2/ora8i/mOl/app/oracle/product/8 .1.
7/jdbc/lib/classeslll. zip: /home/lwang/afm/rst/amps/lib/jep-
2.24.jar

Table F-1: AMPS System Requirements

102

Appendix G: Configuration Editor
Screenshots

File Menu - Open

Figure G-1: Configuration Editor: File Menu - Open

103

File Menu - Save As

Figure G-2: Configuration Editor: File Menu - Save As

View Menu - Minimize All

Figure G-3: Configuration Editor: View Menu - Minimize All

104

View Menu - Show All

S = .az(dp, SP' *As'vdp + Bsbiumnvaye +
iip*,s*sqrt(dt))radnO);

Figure G-4: Configuration Editor: View Menu - Show All

View Menu - Line Up All

Figure G-5: Configuration Editor: View Menu - Line Up All

105

t

Internal Frame - Minimize Icon

Figure G-6: Configuration Editor: Internal Frame - Minimize Icon

Internal Frame - Maximize Icon

Main configuration file for AMPS

File Names and Path of Other Config Files
- Note that these are relative to user's current working directory

(ie. relative to directory where "java" command is run)

ONTIO0FOIERSATh = /confi/enitins
BDASKJOLDERSAN n /config/bidask

ESSMEJODERYAH = /config/sessages
RSJOGIFEJA7H = /tAmp/rstudlo.log

#S#Oun#h###n*####l#mf#####f###*fl#####f#U####UM
* Sessions Config
- NUSESSIONS: total number of sessions (number of session lines below)

* - SESSIONI, SESSION2... : List of sessios indicating type (trading/hreak),
length in seconds, emotion file, bid/ask generation file, and
target user name.

SESSIOt1trading 10 trading.default.msg CAP.emo default.baa lang

SES100=break 10 break1Osec .asg
SESSIN2tradimg 30 tradingdefault.usg pos.affect-29s.eeo default.baa wang

Figure G-7: Configuration Editor: Internal Frame - Maximize Icon

106

Appendix H: Web Market Client and
Server Screenshots

Screenshots of the Web Market client and server user interfaces are provided below.

Web Market Client User Interface

Figure H-1: Web Market Client User Interface

107

Web Market Server User Interface

MIT Web Market RK0

CC

Figure H-2: Web Market Server User Interface

108

References

[1] Bosman, R. and van Winden, F., "Global Risk, Effort, and Emotions in an

Investment Experiment," working paper, University of Amsterdam, 2001.

[2] Elster, J., "Emotions and Economic Theory," Journal of Economic Literature, 36, pp

47-74, 1998.

[3] Funk, N., "JEP - Java Math Expression Parser," [Online document], 2000, [cited

2003 Apr 10], Available HTTP:

http://www.singularsys.com/jep/doc/index.html

[4] Gamma, E., Helm, R., Johnson, R., and Vlissides, J., Design Patterns: Elements of

Reusable Object-Oriented Software. Boston, MA: Addison-Wesley, 1995.

[5] Haim, M., "Risk-Taking, Frame Effects, and Affect," Organizational Behavior and

Human Decision Processes, 57, pp 38-58, 1994.

[6] Ho, E., "A Real-time System for Processing, Sharing, and Display of Physiology

Data," diss., Cambridge: Massachusetts Institute of Technology, 2003.

[7] Lewis, W.E., Software Testing and Continuous Quality Improvement. Boca Raton,

FL: CRC Press, 2000.

[8] Lo, A.W. and Repin, D.V., "The Psychophysiology of Real-Time Financial Risk

Processing," Journal of Cognitive Neuroscience, 14, pp 323-339, 2002.

109

[9] Raghunathan, R. and Pham, M.T., "All Negative Moods are Not Equal:

Motivational Influences of Anxiety and Sadness on Decision Making,"

Organizational Behavior and Human Decision Processes, 79, pp 56-77, 1999.

[10] Royce, W., Software Project Management: A Unified Framework. Boston, MA:

Addison-Wesley, 1998.

[11] Steenbarger, B.N., The Psychology of Trading: Tools and Techniques for Minding

the Markets. New York: John Wiley & Sons, 2002.

[12] Sun Microsystems, Inc., "Java Remote Method Invocation," [Online document],

2003, [cited 2003 Apr 10], Available HTTP:

http://iava.sun.com/products/idk/rmi/

110

