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Abstract

This thesis is concerned with the use of the technique of Time Domain Capacitance
Spectroscopy (TDCS) to study the effects of tunneling between a two-dimensional
electronic system and a three-dimensional contact in the presence and absence of an
in-plane field. We use the TDCS technique to attempt to measure the tunneling
process in an equilibrium and an out of equilibrium configuration. We are able to
present data which is successfully described by equilibrium tunneling for the zero-field
and in-plane field situations. We were also successful in measuring out of equilibrium
behavior in the zero-field regime. However, more experimental work needs to be done
for the out of equilibrium tunneling in the in-plane field regime in order for the results
to be satisfactory.

We also present theoretical models to describe zero-field tunneling and in-plane
field equilibrium tunneling. Furthermore, we extend this model to include the effects
associated with out of equilibrium tunneling and in the case of in-plane field tunneling
present simulated results.

Thesis Supervisor: Raymond Ashoori
Title: Professor
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Chapter 1

Introductioni

The advent of semiconductor technology and the development of the MOS field effect

transistor has had a significant impact on the on the field of condensed matter physics.

In particular the MOS devices have made possible the study of previously unattainable

systems and enabled experimental verification of existing theories. The type of two-

dimensional systems associated with MOS technology have lead to the demonstration

of a wide range of notable effects and phenomena including the acclaimed integer and

fractional Hall Effect (QHE), the proposed existence of a Wigner Crystal, and the

recently discovered two-dimensional metal insulator transition (MIT).

Although there has been a great deal of success, studies of transport properties in

two-dimension electronic systems (2DES) have, until recently, suffered from a num-

ber of limitations. As will be discussed, the most significant of these is the need in

traditional transport measurements to form a direct ohmic contact to the underlining

two-dimensional electron gas (2DEG). This limits sets a limit on the overall experi-

mental sensitivity that is capped by the in-plane conductivity of the 2DEG and the

ohmic contact. In this thesis we discuss and apply a measurement technique devel-

oped in the works of Chan [2] that provides an alternate to the traditional scheme

and overcomes this limitation. The technique, coined Time Domain Capacitance

Spectroscopy (TDCS), circumvents the ohmic contacts, but employing remote capac-

'Much of the information in this chapter was taken from Chan's thesis [2] since the Double
Pulsing Experiment builds off of Chan's work.
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itive sensing of all tunneling phenomena. The merit of the technique was proven

by Chan's measurements on Skirmion tunneling events, and in this thesis we wish

to extend TDCS to measurement of the in-plane field dependence of the tunneling

conductance.

Although the main body of work on tunneling in 2DES has focused on the effect

of perpendicular field, the study of in-plane, parallel field is equally as fascinating and

important. From the point of view of energy and momentum conservation, the appli-

cation of an in-plane field effectively provides a means to control the final momentum

states of tunneling events and, in a sense, enables us to probe electronic states of

a particular energy and momentum. The additional degree of control on tunneling

events may prove useful in unraveling process as a function of momentum as well as

energy. In this work we are concerned with presenting the basic tunneling process of

in-plane tunneling form the point of view of conservation of energy and momentum

as well as presenting preliminary results.

This thesis is organized in the following manner. The rest of this chapter present

an overview of the basic physical concepts of the 2DEG system. The next chapter

provides an overview of the TDCS technique and discusses the technique in the con-

text on in-plane measurements. In the third chapter we present a theoretical picture

of in-plane tunneling and present preliminary results. And in the final chapter we

conclude with a discuss of the future prospects of the technique.

1.1 Introduction to Two-Dimensional Electronic

Systems

Two-dimensional electronic systems (2DES) are typically formed within GaAs/AlGaAs

quantum well heterostructures grown via molecular beam epitaxy (MBE). Band mis-

match between intrinsic GaAs and AlGaAs causes band bending at layer interfaces,

and thus draws ionized electrons from doped regions into accumulation into the de-

fined well structure. In this way a 2DEG can be achieved.

16



11 -2
For our structures, typical well parameters include densities of 1.0 x 10"cm ,

and thicknesses of 150A which results in a Fermi energy of 3.6meV and an interband

separation of 50meV. This places the Fermi level well below the second sub-band,

and since we operate at less than 1K, thermal excitations into the second sub-band

can be ignored. Thus our samples can be treated as truly two-dimensional without

worrying about complexities arising from second sub-band occupation.

In the absence of a magnetic field the density of states (DOS) of the 2DES is

constant, but when a magnetic field is applied perpendicular to the 2DES the density

of states becomes highly degenerate. The magnetic field confines the 2DES laterally

and, without disorder, causes the DOS to consist of a series of delta functions in

energy called Landau levels which correspond to classical orbiting states. Disorder

within the system causes the Landau spikes in the DOS to be broaden. Thus the

Landau spikes take on particular shapes. Electrons will fill all Landau levels for

energy less then the Fermi energy, and the number of filled Landau levels is referred

to as the filling factor v. The filling factor v can be modified in two ways: by changing

the Fermi level or changing the magnetic field. By increasing the Fermi level one can

increase the filling factor v, and by increasing the magnetic field one can decrease

the filling factor v since the separation between Landau levels is proportional to the

magnetic field.

Tunneling in the presence of a perpendicular magnetic field has been the main

focus research in 2DES. In this thesis, however, we are interested with the effect that

an in-plane or parallel field has on the tunneling conductance between a 2DEG and a

three-dimensional contact. We are thus concerned with the effect that parallel fields

have on electrons in the quantum well and contact.

When a magnetic field is applied parallel to the well, the electrons are classically

pressed to the left and right walls do to the Lorenz force. In quantum mechanics

we visualize this as a shifting a gauge potential, where a larger shift corresponds to

electrons with greater transverse momentum and which are more tightly pressed. In

a three dimensional contact, while bulk states occupy Landau levels, interfacial states

at the contact edge are confined by the effect of the edge and gauge potential and

17



correspond to classical skipping orbits.

Tunneling occurs from pressed two-dimensional states of the well and the skipping

orbitals of the contact and because of the Lorenz force depends on electron velocity,

tunneling processes from the 2DES to the 3D contact must conserve both momentum

and energy. In the scope of this thesis, it is our aim to discuss the details of the

tunneling mechanism based on the conservation rules and to present data representing

our attempt to measure the process.

1.2 Thermodynamic and Single-Particle Density

of States

As mentioned before the chosen experimental technique to study in-plane tunneling

is Time Domain Capacitance Spectroscopy (TDCS). The technique of TDCS involves

rapidly exciting a sample and recording the resulting transients to equilibrium. As

such, the transients involved in TDCS contain observations of out of equilibrium

phenomena on the short time scale and equilibrium phenomena on the long time scale.

Thus, TDCS provides a window into the full time evolution of tunneling processes

within the sample.

Tunneling measurements are naturally designed to probe the density of states

(DOS) of electronic systems. Thus, at this point it is useful to distinguish between

the thermodynamic DOS and the single-particle DOS. The thermodynamic DOS,

ONl~p, is the change in particle density N for a change in chemical potential /u after

sufficient time has elapsed so that the system can equilibrate and is associated with

long time scales in TDCS. The single-particle DOS, however, is relevant when the

DOS is measured on fast time scales. Thus, when injecting current electrons across

a tunneling barrier, for example, the single-particle DOS is the relevant DOS.

In the TDCS experiments we are primarily concerned with the single-particle

DOS as will be shown in the next section. As the discussion of TDCS proceeds, it is

important to keep in this in mind the distinction between the equilibrium and out of

18



System 1 System 2

Figure 1-1: Band structure of two systems of different chemical potentials separated
by a thin tunneling barrier. (Figure taken from Chan [2].)

equilibrium situations.

1.3 Single-Particle DOS and Double Pulsing Cur-

rent2

As mentioned above, the TDCS technique is concerned with measuring the overall

transient response of a tunneling sample to a rapid initial excitation. The sample

generally consists of two systems seperated by a thin tunneling barrier. Immediately

after such an excitation before any tunneling has occurred, the two systems are at

different chemical potentials as shown in Figure 1-1.

In order for there to be a tunneling current, an electron occupying a state in

system 1 must tunnel through the barrier into an unoccupied state of the same energy

in system 2. Integrating over all energies we see that the following expression can

2The equations and derivations in this section are taken from Chan's thesis [2].
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adequately describe the tunneling current right after the initial excitation:

Itunnel = 112 - 121 (1.1)

c - f n(E - eV)f(E - eV)n 2 (E)(1 - f(E))dE
T J-o
e 00

+T ni(E - eV)(1 - f(E - eV))n 2(E)f (E)dE (1.2)
T i -co

e 00
= - ni(E - eV)n 2(E)[f(E) - f(E - eV)]dE (1.3)

where 112 is the current from system 1 to 2, e is the magnitude of the electronic

charge, T is the average time interval between tunneling events (determined by the

barrier thickness and height), f(E) is the Fermi distribution, nii(E) and n2(E) are the

density of states of system 1 and 2 respectively.

For our experiment, system 2 corresponds to the quantum well, while system

1 corresponds to a highly doped 3D semiconductor that has a featureless DOS for

small voltages. Thus we consider ni(E) to be constant over our range of interest.

The differential conductance G then becomes:

dltunnei e2  00  df (E - eV)
G =0'"' C -ni f'n2(E) dE (1.4)

dV T 0. E

Considering the fact that the derivative of the Fermi function becomes an impulse

as T approaches zero, we can arrive at the following expression for the differential

conductance:
dltunnei ocn2 (eV) (1.5)

dV

Thus, we see that the initial differential conductance is proportional to the single

particle DOS for low temperatures. The utility of the TDCS technique is in its

ability to measure the initial current and allow a direct probe of the single particle

DOS of the quantum well as a function of energy.

This thesis builds off the notion of pulsing as a density probe in energy. In

our experiment the application of an in-plane field provides us with a control on

momentum as well. We can see this by considering that classically as a tunneling
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Tunneling in a Transverse Field at Low
Densities Allows Us to Probe the

Fermi Sphere with Respect to Energy
and Momentum

2D System 3D System

LJ

'4

kx

Low Density

Figure 1-2: Tunneling in the presence of an in-plane magnetic field. The upper
figure is a schematic representation in energy and the lower figure is a schematic
representation in momentum.
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electron traverses the barrier, it picks up from the field a transverse momentum of

6k = eB * T, where s is the tunneling barrier length and T is the tunneling time
S

constant. For a particular magnetic field we can select the momentum increase. Thus

if the initial states have the same momentum we can select the final momentum of the

electrons and thereby decompose the tunneling current as a function of momentum

and energy. Figure 1-2 depicts a schematic representation of this.
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Chapter 2

Overview of Time Domain

Capacitance Spectroscopyl

The experimental findings of this thesis build upon of the Time Domain Capacitance

Spectroscopy (TDCS) experiments performed by Chan [2]. Chan was able to use the

TDCS technique to avoid limitations associated with in-plane conductivity and probe

localized states which were previously difficult to measure. This opened the possibility

of exploring new physics through the technique. The aim of this chapter is to describe

how the TDCS and the parallel field pulsing experiment are carried out. We achieve

this by discussing issues related to sample construction and sample evolution under a

step excitations. This then enables us to describe the circuit scheme utilized to detect

the sample response. We then discuss complexities associated with the parallel field

and how alignment of the sample in the field was established. Finally we present data

representing typical perpendicular field measurements to establish the applicability

of the scheme.

2.1 Overview of TDCS

The main limitation of conventional tunneling experiments is that ohmic contacts

are required to be made to the 2DEG as indicated in Figure 2-1. A measurement of

the tunneling current across the barrier is achieved by detecting the current drawn
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2DEG

I 4
Contact

J
Figure 2-1: Tunneling experiment setup with contact made to the 2DEG. (Figure
taken from Chan [2].)

from the contact. To ensure the reliability of the tunneling current measurement,

the in plane conductivity of the 2DEG must be much greater than the tunneling

conductance. Otherwise measurements would be dominated by scattering within the

2DEG and the desired tunneling conductance would not be detectable. Furthermore,

the conventional scheme is limited to detection of tunneling into extended states of

the 2DEG as these are the only states from which electrons can be extracted via the

contact. Tunneling measurements into localized states cannot be observed.

The main feature of TDCS is that tunneling is measured without direct ohmic

contacts to the 2DEG and therefore tunneling into localized states can be observed

in real time. As shown in Figure 2-2, rather than having a direct ohmic contact,

the 2DEG is separated from the top electrode via a blocking barrier, a thick barrier

which inhibits tunneling. Tunneling events into 2DEG are sensed remotely across the

24
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I

2DEG

t I I

Figure 2-2: Tunneling experiment setup for TDCS. (Figure taken from Chan [2].)

blocking barrier via the electrode located on top of the sample. When electrons tunnel

into the 2DEG from the bottom electrode, they push electrons in the top electrode

causing a displacement current which can be sensed externally. In this manner, one

can detected tunneling into the entire 2DEG even when the in-plane conductance

is low. This represents a significant improvement over conventional measurement

schemes.
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2.2 Sample Construction

The thick blocking layer required in the TDCS technique constitutes a well defined

capacitance and there is also a capacitance associated with the tunneling barrier.

Thus while conventional tunneling measurements focus on resistive elements, TDCS

also incorporates capacitive elements into the measurement model. In this section we

introduce the sample construction and circuit model.

As shown in Figure 2-3, the sample consists of a 2DEG sandwiched between to ca-

pacitor plates. In Figure 2-3a we show the layered composition of the GaAs/AlGaAs

heterostructure which was used as the sample. All the layers were grown with molec-

ular beam epitaxy. The substrate is n+ doped. On top of this we grow an AlGaAs

tunneling barrier, followed by a GaAs which defines the quantum well. The next

layer is a doped AlGaAs blocking barrier which is topped off with an undoped GaAs

cap layer. The AlGaAs blocking barrier is grown thick enough to prevent tunneling

between the cap layer and the quantum well, and the dopants in the blocking barrier

provide electrons which reside in the quantum well.

In Figure 2-3b and 2-3 c we show the band diagram and circuit model for the

sample respectively. The circuit model for the sample consist of the capacitance Cblock

of the blocking barrier in series with the parallel resistance Rtunnei (V) and capacitance

Ctunnei of the tunneling barrier. The nonlinear tunneling resistance Rtunnel(V) was the

primary component of study in Chan's thesis [2]. In this experiment we investigate

the dependence of Rtunnel on parallel field.

2.3 Capacitance Bridge Circuit

This study is primarily concerned with measuring the step response of a small dissipa-

tive capacitor. Thus input and output waveforms generally take on the forms shown

in Figure 2-7. Furthermore, the voltage changes across the capacitor are small. Thus

the capacitance bridge show in Figure 2-6 can be optimally used for signal detection.

In this subsection we further discuss the sample response from the point of view of
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(a) (b) (C)

Cblock

Ctunel

Rtunnei(V)

Figure 2-3: a) Physical sample structure. A top electrode is made to the cap layer
and a bottom electrode is made to the substrate. b) Band diagram of sample. c)
Circuit Model of sample. (Figure taken from Chan [2].)
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TDCS, and we describe the sensing circuit employed in the parallel field experiment.

We begin this section by discussing how AC and DC voltages are set up across the

sample.

2.3.1 Setting up Voltage Sequence Across Sample

When applying a DC or step voltage of the form in Figure 2-7 the actual voltages

felt by the well are divided down by a lever arm factor, which is different for the DC

biases and step excitations. Figure 2-42 depicts what happens when a DC biases is

applied across the sample. Instead of the Fermi level in the well rising by the applied

voltage, eV, the Fermi level rises by a fraction of that voltage. This happens because

the electrons in the well have a finite density of states and are not able to perfectly

screen the bottom electron from the electric field from the top electron. The scaling

factor was determined by Ashoori [1] to be given by,

lever arm- = e2 /~r17\ v-I (2.1)
e 6 Vate e gX.(X 9 -- X) + LAW/

where Vgate is the voltage across the sample heterostructure, Uw is the actual rise of

the Fermi level in the well, E is the dielectric constant, and e is the electron charge.

Also Xg can be taken to be the combined thickness of the blocking barrier, well,

and tunneling barrier, while X, is the combined thickness of the well and tunneling

barrier. This factor was calculated to be 0.03 for our sample.

The evolution of the sample to a voltage step is shown in Figure 2-5. Immediately

after the excitation, the voltage is linearly dropped across the entire sample as charge

has not yet had time to tunnel into the well(See Figure 2-5a). Rather than the entire

excitation being felt across the well, only a fraction due to geometrical considerations

is felt. Thus a voltage drop of Vstep X-a is thus set up across the tunneling barrier
Xw+Xg

(see Figure 2-5b). The AC lever arm factor, X--, was determined to be .3 for our
Xw+Xg'

sample.

As time approaches infinity, however, electrons in the contact tunnel into the quan-

2Reference to Gary Steele for providing this physical picture.
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Figure 2-4: Effect of a voltage bias on the Fermi level of the well. Inset a) shows the
system in equilibrium and the well has a Fermi energy of E0 . Inset b) shows that
when a bias Vgate is applied, the Fermi level of the well increases by AU rather than
eVgate. As shown above, AU, = A-,,/g where o, is the charge increase and g is the

density of states. The effect of a finite density of states g is that the bottom electrode
is not perfectly screened from the top electrode.
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Figure 2-5: Detailed evolution of the sample band structure during a step excitation.

(Figure taken from Chan [2].)
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tum well until the chemical potentials are equal and the applied voltage is dropped

across the blocking barrier (see Figure 2-5c). The transient current would be detected

via the gate across the blocking barrier. From the transient current, parameters such

as Rtunneing(V) can be extracted and analyzed.

2.3.2 Sensing Circuit

The sensing circuit used in the experiment is a capacitance bridge show in Figure

2-6. The top electrode of the sample (cap layer) is attached to a reference capacitor

and the gate of a transistor. The common node is known as the balance point. Two

separately scaled versions of a voltage excitation with opposite polarities are applied

to the bottom electrode of the sample (substrate) and the free lead of the reference

capacitor. The voltage output at the balancing point VB is inputted into a HEMPT

transistor for amplification. The output data is taken from after the amplification

stage. The tunneling current can be determined by:

dV
Itunneling = -C dt (2.2)

The proportionality constant C, depends on the thickness of the layers in the sample.

For an explanation see Chan's thesis, appendix A [2].

The voltage to be applied to the reference capacitor V, and to the sample Vsample is

applied such that after the transient has decayed away the voltage from the excitation

at the balance point VB is zero. Some elementary circuit analysis of the bridge shows

that this occurs when:

V X CS = -Vsample X Csample (2.3)

Thus if Vample takes on the typical form show in Figure 2-7a, then V will have

the same form but scaled by -Csampie/C, as shown in Figure 2-7b. Thus by applying

the wave forms in Figure 2-7a and 2-7b to the sample and the standard capacitor

respectively, we eliminate any offset from the excitation as shown in 2-7c, and thereby

gain in measurement sensitivity.
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Figure 2-6: Sensing circuit used in the experiment. (Figure taken from Chan [2].)

The voltage amplitude that we apply to the standard capacitor has the opposite

polarity of the voltage applied to the sample and is scaled by Csampie/Cs. The process

of determining this scale factor is called balancing the bridge. Since C, is known and

we apply Vsampie, we balance the bridge by choosing V, such that VB decays to the

DC value. With the correctly determined V, we can measure the low frequency

capacitance of the sample using the relation:

(2.4)Clow = _VS x C
Vsample

Also the profile of typical input wave from shown in Figure 2-7 is not accidental, as

is it is chosen to have a zero mean to avoid DC biases across the sample, and allows

one to see positive and negative step responses of the sample.

Measurements of C10, relate to the DOS of the 2DEG. Ashoori[1] has calculated

the relation between C10. and the thermodynamic DOS of the 2DEG. The basic

picture is described as follows. If the DOS is zero, then the low frequency capacitor
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is formed between the top gate and the bottom contact. In this case Clo, = A
Xb±Xw

where K is the dielectric constant, A is the sample area, Xb is the blocking barrier

width, and Xw is the well width. If the DOS is infinite, then the electrons can easily

reside in the quantum well and the low frequency capacitor is formed between the top

gate and the quantum well. In this case Clow = '. Thus we see that by measuring

Clow we can determine the thermodynamic DOS of the 2DEG.

In typical experiments we apply a magnetic field perpendicular to the quantum,

and we control the chemical potential of the quantum well by applying a DC bias

to the sample via the contact. By measuring Clow verses sample bias we are able to

produce plots like Figure 2-8 which reflect the Landau levels in the DOS for a 2DEG

in a perpendicular magnetic field. Thus by setting the sample bias to -375mV we

can set the filling factor v = 2. In the experiment of this thesis, however, the field is

parallel to the sample.

2.3.3 Experimental Setup

The full experimental setup is shown in Figure 2-9. A computer is used to trigger

the sample and record the data. The pulse sequence fed by channel 1 and channel 2

are repeated occurrences of the wave forms shown in Figure 2-7. Extensive averaging

had to be performed to recover the signal from noise. Typically 262,144 averages

were made for a clean trace. A computerized signal averager was used rather than a

standard oscilloscope. This was done since oscilloscopes typically don't have the data

throughput to recover the signal. After digitizing one trace the oscilloscope needs

10ms to 100ms to reset to take another trace. But the transient times of the sample

are usually around 2 0 0 ps. Thus if a standard oscilloscope was used most of the time

would be spent in waiting for the oscilloscope to reset, and the required averaging

would not be possible.

To solve this problem the EG&G model 9826 signal average was used instead of

an oscilloscope. The 9826 averager plugs into two adjacent ISA slots on a personal

computer. It is capable of adding 8 bits of a newly digitized signal to a 16 bit sum

every 2ns and accepts a new trigger within 600ns of completion of the preceding
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Figure 2-8: Data for the low frequency capacitance of the sample revealing
levels in the DOS for a 2DEG in a perpendicular magnetic field.
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Figure 2-9: Complete experimental setup. (Figure taken from Chan [2].)
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sweep. With this averager we are able to take data 1000 times faster than with an

oscilloscope. In addition we use a dithering technique to increase the resolution of

the average from 8 bits to 16 bits. Without the speed and resolution of the averager,

this experiment would not be possible.

2.4 Sample Holder

The above mentioned circuit along with additional components are enclosed on a

rotating sample mount shown in Figure 2-10. The space was quite limited so great

care needed to be employed in properly mounting the elements. As shown in Figure

2-11 the elements included the sample, a hall sensor, a perpendicularly mounted

transistor, a reference capacitor, and a 100MQ biasing resistor.

The stage to which all the elements are mounted rotates in a fixed plane in order

to vary the angle of the applied field which is fixed to be oriented in the vertical

direction. The hall sensor and the sample are mounted flat against the stage. Thus,

for a given field we can measure the component of the field perpendicular to the stage

via the hall sensor and the hall effect. We can then rotate the stage to minimize this

component and thus position the field parallel to the stage.

In addition care needs to be employed in the mounting of the transistor. The gain

of the transistor is affected by the amount of field perpendicular to its gate. This

can lead to important undesirable effect as measurements are taken while the field

is swept continuously. We thus position the field as indicated in Figure 2-12 so that

the gate of the transistor is in the plane of the field at all points of rotation and the

effect of the field on the gain of the transistor is minimized.

2.5 Typical Results: Shubnakov De Haas Oscilla-

tions

We conclude this chapter by presenting the results for a typical result measurement of

Shubnakov De Haas Oscillations to indicate the validity of the Time Domain Capac-
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Figure 2-10: Photograph of the sample, sensing circuit, and hall sensor in the sample
space mount.
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Figure 2-11: Explanatory diagram of the elements in the sample mount.
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Figure 2-12: The gate of the transistor must be aligned in the plane of the field so
that gain of the transistor remains independent of the field.
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Figure 2-13: Typical output waveform.
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Figure 2-14: Low frequency capacitance as a function of perpendicular field.

42

Rel ative C ap acitan ce as a Fu In cti on of P erpend i cu I ar Fie Id

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Field (Tesla)

I

3 3.5 4 4.5 50 0.5 1 1.5 2 2.5
Field (Tesla)



5

0

rd
a
cd

-5

-10

Relative Capacitance as a Function of Inverse Perpendicular Field
II I I I I

................. .. . I.................

. . . .. . . .. . . .. . . .. . . . . . .. . . . . . .. . . . . . . . . . . . . . . . . . . . .

0.5 1 1.5 2
1/Field (1/Tesla)

2.5 3 3.5
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tivity is periodic in 1/B. This is a signature of Shubnakov De Hass oscillations.

43



itance Spectroscopy Technique. The waveforms applied to the sample and standard

capacitor have the forms indicated in Figure 2-7. A typical output waveform is shown

in Figure 2-13. As discussed above, we can use the balancing bridge to measure the

low frequency capacitance of the sample. As we sweep a perpendicular magnetic field

and measure the change in the low frequency capacitance we expect to see Shubnakov

De Haas Oscillations. The oscillation in the sample low frequency capacitance as a

function of magnetic field is shown in Figure 2-14. Figure 2-15 plots the same data

as a function of the inverse field. The periodic result is a signature of the Shubnakov

De Haas oscillation.
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Chapter 3

Results for Zero-Field Tunneing

The main focus of this experiment is to understand the physics of tunneling from a

two-dimensional electronic system into a three dimensional contact in the presence

of an in-plane magnetic field. This process and tunneling processes in general are

constrained by energy conservation and momentum selection rules. Thus, when con-

sidering how tunneling currents depend on various parameters, we must provide a

physical picture in terms of band diagrams and also in terms of momentum space.

In this chapter we present a theoretical framework which will give insight into

our experimental results. In particular, we first discuss the physics and results for

tunneling in zero field. This introduces the basic concepts employed in understanding

the tunneling events. The next chapter discusses tunneling in an in-plane field.

3.1 Zero Field Momentum Selection

Although ultimately we wish to consider the effects of an in-plane field, it is quite

pedantic to first investigate the degenerate case of tunneling with zero field. In this

case, electrons tunnel between a Fermi disc in the 2DEG and a Fermi sphere in

the 3D contact as is shown in Figure 3-1. Within the scope of this picture, zero field

tunneling can be viewed in an equilibrium and out of equilibrium context. Equilibrium

tunneling is associated with AC measurements of tunneling conductivity and involves

tunneling between the Fermi surface of the 2DEG and that of the contact. Tunneling
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Figure 3-1: Zero field tunneling process in energy and momentum spaces. The insets
show that as the bias is increased the tunneling circle in the contact is drawn toward
the origin.
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Figure 3-2: Beyond the critical bias momentum conservation no longer holds. Tun-
neling occurs via scattering off impurities and the tunneling conductance falls off as
bias is increased.

out of equilibrium, however, considers the effect of step excitations on the tunneling

conductivity and tunneling events are not necessarily confined to the Fermi surface.

With this in mind we will now proceed to discuss equilibrium tunneling.

3.2 Equilibrium Tunneling

Our aim in this section is to explain how the zero-field equilibrium tunneling current

depends on voltage bias. Figure 3-1 depicts zero-field tunneling in both the energy

and momentum spaces for the cases where the band offset for the 2DEG is higher than

the contact and vice versa. For the first case, electrons tunnel between a disc and a

sphere with the constraints of momentum and energy conservation. The constraint of

energy conservation can be introduced by only considering tunneling form the edge of

the Fermi disc and the shell of the Fermi sphere. Momentum conservation can be seen

by considering only those states in the sphere that intersect the cylindrical projection

of the edge of the disk. Thus we can see in Figure 3-1 that tunneling occurs from

the edge of the Fermi disk to the edge of an annular cross-section of the Fermi sphere

parallel to the 2DEG Fermi edge.
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The tunneling current is determined by the integral of the following product, over

states that conserve energy and the km, k. momentum vectors.

n1(k kr)n 2(k, ky, kz)dk' dk' (3.1)
T(kz) V

Here, k, is the perpendicular momentum component of the sphere, nr1 (kx, ky) is the

density of states as a function of transverse momentum in the 2DEG, and n2 (kx, ky)

is that for the contact. We can also assume that T(kz) is an increasing function of

kz [5]. The integral is not easily expressed, but we can see that there are two factors

affecting the tunneling current, the perpendicular momentum of the contact state and

the product of the tunneling areas in k-space.

Thus, when the density in the 2DEG is zero the tunneling current is zero since

there are no electrons. As show in Figure 3-1, increasing the density from zero causes

the position of the center of the circular cross section in the contact to retract toward

the origin and the radius dilates along the surface of the sphere. This represents the

two competing factors. The k, final is decreasing while the product of the tunneling

areas is increasing. Thus the tunneling conductance increases from zero and then

decreases [4].

Once the radius of the disk exceeds the radius of the sphere, then we are at a

point where the band edge of the contact is greater that that of the 2DEG. We are,

thus, in the second situation show in Figure 3-1. In this situation momentum cannot

be directly conserved and so tunneling occurs via impurity scattering sites. The

tunneling conductance falls sharply after that point is reached.

Since the density of electrons in the 2DEG is one to one with the voltage bias,

we can understand how the tunneling current is effected by voltage bias. That is,

when the well is biased in depletion, the tunneling current is zero since there are no

electrons in the well. However as we increase the bias, drawing more electrons in the

well, the tunneling current first increases and then decreases due to a decrease in kz

and an increase in the tunneling area products. As we increase the bias further, the

tunneling conductance fall off as we enter the impurity assisted scattering regime.
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Data reflecting this behavior is shown in Figure 3-6 below.

3.3 Out of Equilibrium Tunneling

The effect of step excitations on the tunneling conductance can more clearly be seen

by considering the constraints of momentum and energy conservation more quantita-

tively. Analytically, momentum conservation can be depicted as:

kx,Fermi kx,Fermi (3.2)

ky,Fermi k,Fermi (3.3)

where kx,Fermi and ky,Fermi are the momentum components for the 2DEG, and

k1,Fermi and k,Fermi are that for the contact. In addition m would indicate the

effective mass which, for simplicity, is assumed to be the same for all directions in the

2DEG and contact.

Energy conservation can then be depicted as:

h2 k2 h2 k2 h2k'12 h2k /2 i2 k'12
X,Fermi y,Fermi E2DEG _ x,Fermi y,Fermi z,Fermi contact
2m 2m * 2m 2m 2m ±E t (34)

In addition to the previously mentioned variables, k',Fermi is the momentum com-

ponent for the contact, E 2DEG is the band offset for the 2DEG, and Econtact is the

band offset for the contact.

Canceling equivalent terms in equation 3.4 we are left with:

2m(E2DEG - Eontact)k' h = --2m6 (3.5)

Thus, equilibrium tunneling occurs between states on the edge of the Fermi ring

of the 2DEG and states on the Fermi surface of the contact with k' = v2m3, i.e. a

ring in k-space centered at k'. This is the result that we geometrically discussed in
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the previous section.

3.3.1 Positive Excitations

We are now in a position to discuss positive excitations, that is excitations that

increase 6 the band offset of the well with respect to the contact. This corresponds

to positive excitations in voltage applied to the bottom electrode of the sample which

contacts the substrate as shown in Figure 2-3. Figure 3-3 indicates what is happening

in momentum and energy space during a positive excitation. We see that during a

positive excitation the center of the circular cross section of interest in the Fermi

sphere is pushed outward and the radius contracts. Electrons in the Fermi disk of the

well outside this radius then can tunnel into the plane of the circular cross section and

above the Fermi level of the sphere. Scattering processes then distribute the electrons

around the Fermi sphere.

We can look at this more carefully to gain further insight by considering certain

states as they tunnel. In particular consider the states that tunnel directly at the

Fermi level of the contact as indicated in Figure 3-3 in the band diagram figure. These

are the lowest energy states in the well that can tunnel into the contact as the states

lower in energy are occupied in both the well and contact. These states correspond

to the inner radius of the Fermi disk indicated in Figure 3-3. Because these states

tunnel directly at the Fermi level of the contact we know they tunnel onto the surface

of the Fermi sphere. Thus as we project the denoted circle onto the sphere indicating

momentum conservation, we see that these states tunnel into the edge of the circular

cross section at the outwardly shifted kz'. The more energetic states in the well are

those that in momentum space corresponding to larger radii in the Fermi disc. These

states tunnel beyond the circular cross section but in the same plane. We know they

tunnel into higher energy states as the distance from the origin is larger for these

states. Thus tunneling can be seen as the projection of the annulus in the sphere

onto the plane at k' and subsequent scattering occurs to bring the configuration into

an equilibrium sphere.

We can see that as the 6 increases with larger positive excitations, kz' shifts
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Figure 3-3: Inset a) shows how the cross section of interest in the 3D momentum
space of the contact shits out during a positive excitation. Tunneling then proceeds
from the well to the contact as indicated in the diagram. Inset b) shows the critical
point where momentum is still able to be conserved.
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further outward and the inner radius of the annular region contracts, thus allowing

more tunneling. This happens up until the critical point indicated in Figure 3-3.

This point happens when 6 equals the bandwidth of the contact, and at this point

the annular region becomes a circle tangential to the Fermi sphere, allowing the

greatest area for tunneling. We expect the tunneling conductance to be the largest

at this point.

Beyond this point the tunneling plane k' shifts off the sphere. Thus for large

excitations past the critical point, all the electrons in the 2DEG are able to tunnel

into a circular disk in the space beyond the sphere, where the radius is defined by

the radius of the 2DEG. Furthermore, the effect of the Fermi sphere defining the

inner radius of the annulus is not present in this regime. Thus the available tunneling

area constituted by the disk is constant as excitation height is increased. One would

expect the tunneling that conductance would then becomes more or less independent

of excitation height and levels off. However, since the tunneling matrix element

increases with k, the tunneling conductance increases.

3.3.2 Negative Excitations

We now discuss negative excitations. As indicated in Figure 3-4, a negative excitation

corresponds to an applied voltage step that decreases the relative band offset of the

well with respect to the contact. During a negative excitation the circular cross section

in the Fermi sphere is drawn closer to the origin. The relevant electrons at this point

are in an annulus in the plane of the circular cross section defined by an outer edge on

the Fermi sphere and an inner edge of the radius of the Fermi disk. These electrons

tunnel into the empty states in the well. The electrons then rearrange in the Fermi

sphere via scattering. Again we can draw insight by considering the electrons from the

sphere that tunnel at the Fermi level of the Fermi disk. These electrons correspond to

the inner edge of the annulus and greater radii correspond to higher energy electrons

and tunnel above Fermi level in the disk.

As the negative excitations increase the outer radius of the tunneling annulus

increases, thus the tunneling conductance increases. This happens until the critical
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the contact to the well as indicated in the diagram. Inset b) shows the critical point
where momentum is still able to be conserved.
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Figure 3-5: Beyond the critical point for negative excitation, tunneling process can-

not conserve momentum. As indicated in the figure, processes that conserve energy

require tunneling from a sphere of smaller radius in the contact to a circle of larger

radius in the well. Thus no projection of the k-vector on the sphere can overlap with

a k-vector on the disk and momentum cannot be conserved.

point shown in Figure 3-4 where the annular region is centered at the origin. Beyond

this point tunneling doesn't occur without scattering as indicated in Figure 3-5. We

can see this by considering the following. The bandwidth from the bottom edge of

the band corresponds to the radius in the Fermi disk or Fermi sphere. When we are

beyond the critical point the edge of the band in the well is lower than that of the

contact. Thus in order to tunnel at the same energy we have to be in a situation

where we are tunneling from a smaller radius in the sphere to a larger radius in the

well. Because the radius of the sphere is smaller than the wheel it is not possible

to conserve momentum. Thus any tunneling process happens via scattering and the

tunneling conductance drops off.

3.4 Data and Interpretation

The data in Figures 3-6 and 3-7 indicate the observations discussed above for both

equilibrium and out of equilibrium tunneling. For equilibrium tunneling in Figure 3-6
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Relative Conductance vs Sample Bias
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Figure 3-6: Equilibrium tunneling data.
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Initial Slope vs Excitation with Different Biases
12

10 F ...
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Excitation Height (VI

0.002 0.004 0.006 0.008 0.01

Figure 3-7: Tunneling out of equilibrium data. The excitation is applied to the sub-
strate of the sample and the excitation is applied across the entire sample structure.
The curve at the base of the two arrows pointing away from the horizontal axis cor-
respond to the sample biased in depletion. The arrows indicate curves corresponding
to increasing well densities.
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we see that the tunneling conductance rises and then falls off as the bias is increased.

In the figure an increasing bias corresponds to increasing the well density.

Figure 3-7 presents the data for out of equilibrium tunneling. The arrows indi-

cate curves corresponding to increasing well density. When the sample is biased in

accumulation we see that the tunneling conductance for negative excitations (pos-

itive voltages) increases and the drops off and for positive excitations it increases

negatively. As the bias is increased and more electrons accumulate under the well

the negative excitation bulge slowly creeps in toward lower excitations. This makes

sense since as the Fermi disc increases in radius, k, draws closer to the origin making

the drop off point reachable at lower excitations. Also notice that the conductance

for positive excitations (negative voltages) increases as density is increased as one

would expect. Also the conductance increases slightly for high negative excitation as

discussed above.
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Chapter 4

Results for In-Plane Field

Tunneling

While the effect of an in-plane field has little effect on the shape of the wave func-

tion in the well, the effect on the tunneling conductance can be quite dramatic as

shown in Figures 4-1, 4-2, and 4-3. Figure 4-1 show that the conductance peak as

a function of density shifts to higher densities and broadens as the applied magnetic

field is increased. Also Figures 4-2 taken from Snell [6] shows the interesting effects

of oscillations in the tunneling conductance as the field is swept. These oscillations

are periodic in 1/B and Figure 4-3 indicates that the frequency of these oscillations

increases monotonically with bias.

It is our aim in this section to present a theoretical picture biased on the works

of Lebens [3] and Snell [6] that accounts for these previous findings. We also extend

the model through the use of simulations to incorporate the effect of out of equilib-

rium tunneling. At the end of the section we present some preliminary experimental

findings.

4.1 Basic Theoretical Picture

We wish to provide a theoretical model for the 2D quantum well in the vicinity of a

2D contact with an applied in-plane magnetic field as shown for the coordinates in
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Figure 4-1: Effect of an in-plane field on tunneling conductance as a function of well

density. (Figure taken from Lebens [3].)
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Figure 4-2: Effect of an in-plane field on tunneling conductance. Oscillations are seen.
(Figure taken from Snell [6].)
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Figure 4-3: Dependence of the frequency of the two sets of oscillations on well density.
(Figure taken from Snell [6].)

Figure 4-4.In order to accomplish this we first consider the effect of the field in the

gauge,A = (0, Bx, 0).

The vector potential is incorporated into Schrbdinger's equation in the usual man-

ner, and solutions of the from (i) = exp(ikyy + ikzz)q(x) are sought out. So,

proceeding we write Shrbdinger's equation as:

1(-ihV + eA)(T) + U(j)(F) = EO(r) (4.1)
2m*

Solving this for O(x), we arrive at the following differential equation:

h2 *

- 1"(x) + [ (X- Xo)2 + U(x)]#(x) = (E - Ez)o(x) (4.2)
2m* 2

where w, = eB/m* is the cyclotron frequency, E = h2 k,,/2m* is the energy for

motion in the direction of the field, and x, = -1k, corresponds to orbit centers with

Ib = (h/eB)21 as the magnetic length. Also U(x) is the underlying potential profile

which would correspond to the well, tunneling barrier, and contact in our case.
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z

xWel

Figure 4-4: Coordinate system used. z is in the direction of the field, x is along the

growth direction of the sample, and y is in the sample plane but perpendicular to the
field.

We see from equation 4.2 that the effect of the field on the motion of the particle is

to introduce a parabolic gauge potential, m*w,(x-x 0 )2 , in addition to U(x). However,

,= -l1ky, so xo corresponds to kg as well as orbit center. Thus, if we take k, to be

zero and plot E vs. xO, we obtain a plot of energy and momentum. The procedure

for carrying out such a calculation is graphically shown in Figure 4-6. In the figure,

to compute the energy of the well at the orbit center position x' we consider the

total potential of the well plus the corresponding gauge potential and solve for the

eign-energy. The gauge potential can then be shifted along xO to compute the energy

of the well as a function of xO. A similar procedure can be applied to the contact.

Figure 4-5 from Lebens [3] shows the result when this operation is carried out in full

for the well and contact.

Thus, for the well we see that the energy increases as the orbit center departs

from the center of the well. We can see this as follows. At the origin we imagine

the parabolic gauge potential on the well, and we see that the effect on the well is

minimal. As we shift the gauge potential away from the well center, however, the

total potential of the well and gauge rises to a higher offset and the composite basin

is increasingly angled. This is shown in Figure 4-6. Thus we see that the effect of the

gauge potential on the electrons in the well is to squeeze the electrons to the walls

of the well. Since xO corresponds to ky, we intuitively imagine electrons in the well
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2hw
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Figure 4-6: Calculations for the energy of the well and contact at x'. Only the first
sub-band in the well is occupied so there is only one relevant energy for the well while
there may be multiple levels for the contact.

with higher momentum perpendicular to the field being pressed harder against the

well walls. Thus the energy rises as we depart from the well center as indicated in

Figure 4-5.

A similar effect occurs in the contact. Deep within the contact the electrons only

feel the effect of the gauge potential and they occupy landau levels. Thus the spacing

in energy is given by hwc. As we consider orbit centers closer to the contact boundary

with the tunneling barrier, the electrons begin to feel the effect of the boundary and

the energy increases as shown in 4-5. Exactly at the boundary the effect of the gauge

potential and the boundary edge is similar to half of a harmonic oscillator, where

only the odd states of the total harmonic oscillator are solutions. Thus the spacing

of the energy levels is 2hwc at the edge as shown in Figure 4-6. As we move further

past the edge, the energy increases as interfacial electrons are squeezed into the edge.

States which sufficiently effected by the edge correspond to classical skipping orbitals

while those in the bulk correspond to classically orbiting electrons.

With the above considerations we are able to generate the energy vs. orbit center
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plots shown in Figure 4-5 [3]. Points of intersection correspond to states in the well

and at the edge of the contact that have the same energy and momentum. If we

were to draw a gauge potential at the orbit centers of the intersection points as was

done in Figure 4-6,then the energy of the wave functions on the left and right would

be the same. Because energy and momentum is conserved at the intersection points,

tunneling can potentially occur at the Fermi level.

Figure 4-5 from Lebens [3] shows four different biases for the well. For the first

case (i) the curves for the well and contact do not intersect below the Fermi level so

tunneling does not occur. For the second case (ii) the curves intersect at the Fermi

level so tunneling can occur. For the (iii) and (iv) case correspond to states below

the Fermi level that are already occupied. Figure 4-5, however, only represents what

is happening at k, = 0. Thus, tunneling can occur for cases (iii) and (iv) with an

orbit center indicated in the figure and a k, that brings the energy up to the Fermi

level. For each case (iii) and (iv) there are two such tunneling states, one of positive

and one of negative k,.

We are know in a position to interpret the data in Figure 4-1. Low densities

correspond to situation (i) in Figure 4-5 where tunneling is not favorable. As we

increase the density we arrive at a peak corresponding to case (ii) which falls off as

we relay on states with greater k, corresponding to case (iii) and (iv). As the field

increases the curves in Figure 4-5 bend upward with greater concavity. We thus need

a greater density to arrive at case (ii) and so the conductance peak shifts toward

higher densities.

4.2 Analytical Presentation: Dispersion Relations

We now proceed to present the analytical equations or dispersion relations which

approximate the tunneling problem. We begin by considering the expression for the

total energy of electrons in the contact. This is given by the sum of the kinetic energy

in the z-direction, which is unaffected by the field, and the component corresponding

to the gauge potential and the contact edge.:
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h2 k2
E(ky, kz)3D z + En (ky) (4.3)

To establish analytical equations for this problem, we need approximate solutions

for the En(ky). For large x, or a large ky we know that then effect of the contact edge

is not felt and then energy is given by En(ky) = hwc(n + 1). As x0 is reduced the

effect of the contact edge is felt and the electrons occupy interfacial states. Interfacial

electrons are those that correspond to classical skipping orbitals. The condition for

an interfacial electron is that the orbit center is less than the orbit radius. If v is the

orbital speed, then the kinetic energy of the electron is given by En = Im*v 2 and the

orbital radius is given by r = v/w= (2En/m*w2) 2. The condition for a interfacial

state is then X < r, or:

2En 2X < ( 2) ,or - hky < (2m*En)i. (4.4)

The above equation represents the boundary between interfacial states and bulk

states. And is indicated in Figure 4-7 from Snell [6] by the dashed line.

An expression for the energy of an electron in the contact which conforms to the

expected of bulk energies and interfacial energies as a function of ky or orbit center

position was calculated by Snell [6] using WKB. This expression was reported to be

accurate to within 10% of the exact values. This expression is give by:

- 1 - ( k En(ky) = (n + -)hW, (4.5)
2 (2m* En (ky)) -2 4

n = 0, 1, 2, ...

Equation 4.3 and 4.5 are the main expression for calculating the energy and mo-

mentum dependence of electrons in the well. For simplicity we wish to express these
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Dispertion relation for interfacial Landau states
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Figure 4-7: Analytical solution presented in normalize coordinates. The vertical axis
is normalized energy e, and the horizontal axis is ty, which is proportional to orbit
center xO. (Figure taken from Snell [6].)
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equations in normalized coordinates as follows, respectively:

2

- En (y) = (n + - (4.7)
2 (2En1(y) ). 4

n = 0, 1, 2, ...

In the above equations, we have i = lbkz, KY = lbky, c(ny, rz)3D = E(ky, kz) 3D/hWc,

and c(ry)n =E(ky)..

Equation 4.7 is plotted in Figure 4-7. For K, far to the left, which is negative

in the chosen coordinates of the figure, the energy spacing in normalized units is

approximately unity. However, close to the contact edge at zero we see that the

spacing nearly doubles. We expect this doubling since, as stated earlier, then energies

near the contact edge correspond to odd states of the harmonic oscillator. Thus we

have reasonable expression for the contact electrons and we now turn to the electrons

in the well.

The effect of the field on the electron in the well can be treated in perturbation

theory to give the following result [6]:

E2D(kyIkz) =h 2k2 h2 (ky - k,) 2 + CV (4.8)
2m* 2m*

where k, = eB(b + a)/h, b is the barrier width, and a, is the mean distance of a

bound electron from the contact edge. Also V is the applied bias. One thing to note is

that hko is just the momentum shift due to the Lorentz force as an electron traverses

the barrier. The above equation can be expressed in normalized units as follows:

C2D("ly, iz) r + - r0)2 (4.9)
2 2

where ,'io = (b + ao)/lb, co = E/hw,, v = eV/hw, and the other quantities are as
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previously defined.

The above dispersion relation, equation 4.9, is plotted in Figure 4-7. The states of

transverse momentum are occupied up to the Fermi energy EFL -2 k2 /2m*. Thus

only a curve is shown extending byKKL in both directions from the base of the well.

The point of intersection with the curves for the contact are denoted as circles and

are of interest as they conserve both energy and momentum. Tunneling occurs at the

Fermi level with k, = 0 whenever the contact curves intersect the end points on the

segment. Each intersection below the segment correspond to two tunneling events

with a positive and negative momentum, k,.

As the field or the density of the well changes the curves shift past over one another

and the contact curves enter end exit the end points of the well curve. These two

processes of entering the well and exiting correspond to the sets of oscillations noted

in Figure 4-2 and 4-3.

4.3 Energy Contours in Momentum Space

Equations 4.6, 4.7, and 4.9 constitute the dispersion relations for the electrons in the

well and the electrons in the contact. These equations are functions of momentum

(io -,y) and energy (E3D and E2D)). Thus we are able to plot constant energy contours

of the two systems in a two-dimensional momentum space as indicated in Figure 4-

8. Intersection of constant energy contours in the momentum space correspond to

intersections in the plots of the dispersion relations as was done in the previous section,

however the momentum contour plot provide a clearer description of in-plane field

tunneling.

Figure 4-8 is an example of a constant energy momentum contour plot correspond-

ing to the dispersion plot 4-5. The constant energy contours for the electrons in the

well satisfy the equation:

A2D(dy, s) - re = the+ rm pa rd at (4.10)

And are thus circles in the momentum plane centered at r,, and with a radius of
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2(C2D - V)- Thus for various biases we expect concentric circles at K, as shown in

the Figure 4-8.

The contours for the contact are slightly more complicated to produce. For orbit

centers deep within the contact the electrons are not significantly effected by the

contact edge and thus occupy Landau levels with constant energy and level spacing.

A particular low level Landau level can, thus, be brought to the Fermi level by adding

energy from the +/ - , component. The lowest level would require the greatest i/2

contribution to be brought to the Fermi level and subsequent levels of higher energy

would require less. Landau levels of energy greater than the Fermi energy would

entirely be unoccupied as no amount of K could bring the energy to the Fermi level.

As shown in Figure 4-8, the above is reflected in the momentum contour plot

since Y, is proportional to orbit center position. Thus for large KY where electrons

occupy the Landau energies, (n+ )1, rz is independent of Ki. Furthermore the outer

horizontal curves corresponds to the lowest Landau levels, and unoccupied landau

levels of energy greater than the Fermi level are not shown.

As iy is shifted to the left, the effect of the edge on the energy of the Landau

levels comes into effect. In the dispersion relation of Figure 4-5 the effect of the edge

causes the Landau level energies to rise as the orbit center runs into the contact edge.

The overall effect is that as the effective offset energy of the Landau levels increases,

the required 'z momentum contribution required to be at the Fermi level decreases.

Thus in momentum space the constant energy at +/ - K2 bend toward the horizontal

axis until they meet. Thus, the formed U shaped curves in Figure 4-8 correspond to

different Landau levels of the contact.

1The Landau energies in normalize units are (n + 2).
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Figure 4-8: Constant energy contours for the electrons in the well for different biases,
and for the electrons in the contact for different Landau levels. The horizontal axis
KY is proportional to orbit center position, x0, and the vertical is r,,, where z is along

the field direction.
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4.4 Effect of varying field and density on tunneling

conductance

Intersection in the momentum contours correspond to intersections in the dispersion

contours and thereby reflect increases in the tunneling conductance. Figure 4-8 shows

the effect of varying the density on the tunneling conductance. The four cases shown

correspond to the four cases in Figure 4-5. In the first case no tunneling is allowed at

the Fermi energy. The second case corresponds to tunneling at kz=O. For the next two

cases we have tunneling event at positive and negative r2. We can see that for case

three and four that while the dispersion intersection in Figure 4-5 indicated tunneling

events of positive and negative momentum, the momentum contour plot shows all the

events. Thus the momentum contour plot is useful to identify all tunneling events.

The effect of sweeping the field is shown in Figure 4-9. The arrows indicate that

as the field is swept the circle shrinks and shifts to the left while the Landau levels are

drawn to the right and eventually vanish consecutively as the field is increased. This

motion can be understood from how the increasing field effect the dispersion curves

for the well and the contact. For the well the parabolic dispersion curve increases in

curvature and shifts to the right. The increase in curvature causes the extent of Kf,

the well Fermi vector, to reduced. Thus in momentum space, the ellipse contracts

and shifts as indicated in the figure.

For the contact, as the field is increased, the Landau level energy separation

is increased and the curvature for the interfacial energies increases. The increased

curvature causes less penetration of electrons into the contact edge and therefore

causes the vertical edge of the U-curves to fall at shallower kappay points. Also the

increased Landau level separation, causes the vertical portions to contract to the

horizontal axis as less i2 is required to bring the landau level to the Fermi level.

Higher Landau levels eventually vanish as the energy of the corresponding Landau

levels begin to exceed the Fermi level. The overall effect indicated by the arrows

is achieved. Furthermore entry of and departure of the U portions onto the ellipse

correspond to the oscillation in Figure 4-2 and 4-3 discussed previously.
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Motion of Fermi Energy Contours in Momentum Space as Field is Increased
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Figure 4-9: The arrows indicate the effect of sweeping the in-plane field in the momen-
tum contour space. The horizontal axis $4, is proportional to orbit center position,
x0 , and the vertical is Kz, where z is along the field direction.
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Figure 4-10: Inset a) indicates the band structure of the sample at equilibrium, inset

b) shows the sample after a positive excitation, and inset b) shows the sample after a

negative excitation. The upper bound and lower bound states of interest are shown.

4.5 Effects of Tunneling out of Equilibrium

One of the advantages of the tunneling experiment is that it allows us to study out

of equilibrium effect and therefore we wish to discuss such effect regarding in-plane

tunneling. The momentum contours provide the most accessible means of discussing

the out of equilibrium response of a sample to a step excitations. Figure 4-10 depicts

the sample response to positive and a negative excitation in terms of the energy

diagrams, and Figure 4-11 and 4.5 show the corresponding events in momentum

space. To identify tunneling points in momentum space we first draw constant energy

contours in momentum space, and then find their intersection. By sweeping constant

energy contours and tracing out the points of intersection, we can identify all the

tunneling events. We first discuss the response to a positive excitation.

Before the excitation we are at equilibrium as indicated in Figure 4-10 a. The solid
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curves alone in Figure 4-11 indicate the appropriate energy contour in momentum

space. After the excitation we are interested in how electrons in the well tunnel into

available states in the contact. As shown in Figure 4-10 b, the excitation causes a

band of occupied states to tunnel into the well. Thus the excitation makes available a

band of energies in the contact into which tunneling is possible. In particular we focus

on the upper bound states and the lower bound states indicated in Figure 4-10 b. The

electrons in the upper bound states in the well tunnel into unoccupied states above

the Fermi level in the unperturbed contact. Electrons in the lower bound states in the

well, however, tunnel at the Fermi level in the unperturbed contact. Electrons in the

well with intermediate energies tunnel into empty states with intermediate energies

in the well.

The contours for the lower bound and upper bound states in the well are drawn

in Figure 4-11. The solid circular contour represents the upper bound states which

are the highest occupied energy states in the well. These states were at the Fermi

level of the contact before the excitation and now have an energy that exceeds the

Fermi level of the contact. The dashed circular contour represents the lower bound

states which are the lowest occupied energy levels of interest in the well. Before

the excitations these states were below the Fermi level of the contact. The positive

excitations, however, elevated their energy to match the Fermi energy of the contact.

The contours for the corresponding contact states are also drawn in Figure 4-11.

The solid U-shaped contours corresponds to states in the contact at the Fermi level,

while the dashed U-shaped contours corresponds to empty states in the contact at

a higher energy level that matches the energy level of the upper bound in the well

indicated in Figure 4-10 b. Thus, tunneling can occur at the intersection of the dashed

circular contour and solid U-shaped ones, and at the intersections of the solid circular

contour and the dashed U-shaped ones.

To identify tunneling at energies between the lower and the upper bound states, we

need to draw the appropriate contours for the well and contact and identify the points

of intersection. In other words, tunneling at intermediate energies can be visualized

by tracing out the intersections as we increase the contour energy from that of the
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Figure 4-11: Response to a positive excitation in momentum space. The lines formed

by the + signs were generated by simulation and indicated the momentum of electrons

that tunnel from the well to the contact with the band of energies made available

by the excitation. In other words, electrons in states located on the vertical line

represent all the allowed tunneling transitions between the well and the contact. Each

point indicated by a + was computed by finding the intersection between a circular

contour (well) and a set of U-shaped contours (contact) for the energies between the

lower bound and upper bound states indicated in Figure 4-10 b. See text for further

explanation of the figure.
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dashed circle and the solid U-shaped curves to that of the solid circle and the dashed

U-shaped curves. In this view we can imagine the dashed circle dilating onto the solid

one and the solid U-shaped curves expanding onto the dashed ones. If we were to

keep track of the movement of the points of intersection during this process, we would

find that they trace vertical lines as indicated in Figure 4-112. These vertical stripes

correspond to the momentum of allowed tunneling states with energies in the band

opened up by the pulse. Electrons in states located on the vertical line represent all

allowed tunneling transitions between the well and the contact.

Thus to summarize, the process of a positive excitation can be viewed as starting

in equilibrium at the solid lines in Figure 4-11. After the excitation the energy of the

solid circular contour changes and the dashed lines represent new curves of interest.

The dashed circle is at the Fermi level of the contact while the dashed U-shaped curves

are above the Fermi level of the contact. The dashed circle pushes in from the solid

circle while the dashed U-shape curves push out from the solid ones. This motion

is indicated by the arrows in Figure 4-11. We then can draw vertical lines from the

intersection of the solid circle and the dashed U-shape curves to the intersection of

the dashed circle and the solid U-shape curves. These represent the allowed tunneling

transition states in the contact and well with the energies opened up by the positive

pulse.

For negative pulses a discussion similar to the above can proceed. The main dif-

ference is now electrons tunnel from the contact to the well. Thus we are concerned

with highest energy electron in the contact that can tunnel into the well, and the low-

est energy electrons that can tunnel, which are at the Fermi level of the unperturbed

well. These electrons are indicated in the band diagram in Figure 4-10 c. We can

then draw corresponding contours and locate intersection points as was done above.

The main difference, as shown in Figure 4.5, is that now we image the dashed circle

pushing out from the solid one, and the dashed U-shape pulsing in from the solid on.

This is indicated by the arrows in Figure 4.5. We can then determine the correspond-

2 The arrows in the figure refer to the application of the pulse as will be explained below and not
the calculation of the vertical lines as discussed in the referred paragraph
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ing intersections and draw the appropriate stripes. These vertical lines represent the

allowed tunneling transition states in the contact and well for the energies opened up

by the negative pulse.

4.6 Tunneling Conductance as a function of Exci-

tation Height

On possible signature of in-plane field tunneling effects is the increase in tunneling

conductivity as a function of excitation height. This is illustrated in Figures 4-13,

4-14, and 4-15. Here we see that for small excitation no tunneling occurs. Large

excitations, however, enable tunneling into the first Landau level. This happens for

both positive and negative excitations as indicated in the figures. If we were to

increase the excitation height further the contributions from the next Landau level

would then be seen. Thus, measuring the tunneling conductance as a function of

excitation height can reveal the underlying Landau structure of the contact and the

tunneling measurement can be used to probe the structure of the states in the contact.

4.7 Experimental Results

In this section we present some of our experimental findings. All of the data was taken

at around 270mK. Figure 4-16 and 4-17 show some preliminary results. Figure 4-

16 show the relative conductance vs. in-plane field for various biases. Our aim in

producing such a curve was to locate oscillation in 1/B. We were unable to observer

them, however, since the level of noise masked any time of fine structure in the data.

The plot of relative conductance vs. bias for different fields, however, in Figure 4-

17 produced the expected results. Here we see the conductance shifting to higher

densities and broadening as reported by Snell [3]

Figure 4-18 shows a highly resolved curves of conductance vs. bias for various

applied fields. We were able to achieve such resolution by improving the grounding

scheme of the setup and also the fitting algorithm. We are now doing a least squares
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Figure 4-12: Response to a negative excitation in momentum space. The lines formed
by the + signs where generated by simulation and indicated the momentum of elec-
trons that tunnel from the contact to the well with the band of energies made available
by the excitation. In other words, electrons in states located on the vertical line rep-
resent all the allowed tunneling transitions between the well and the contact. Each
point indicated by a + was computed by finding the intersection between a circular
contour (well) and a set of U-shaped contours (contact) for the energies between the
lower bound and upper bound states indicated in Figure 4-10 c. See text for further
explanation of the figure.
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Figure 4-13: There is no overlap between contours of the well and contact as no
tunneling occurs.
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Tunneling Occurs for Large Positive Excitations
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Figure 4-14: Large positive excitations open up overlap to allow tunneling to oc-
cur. Electrons in states located on the vertical line represent all allowed tunneling
transitions between the well and the contact.
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Tunneling Occurs for Large Negative Excitations
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Figure 4-15: Large negative excitations open up overlap to allow tunneling to oc-
cur. Electrons in states located on the vertical line represent all allowed tunneling
transitions between the well and the contact.
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fit using an exponential as a fitting function. The dimples on the curves corresponded

to a bit error in a bias box and was fixed on subsequent traces.

Figure 4-19 is again another curve of relative conductance vs. sample bias. How-

ever the range of sample biases has greatly increased in this data. For larger fields

(4Tesla) and higher biases (500mV) we observe what could amount to the appearance

of another landau level. It is not clear, however, if this second bulge is from in-field

Landau level formation, or if it is due to an undesired perpendicular field that arose

from a tilt in the rotation stage. One should not though that the stage was rotated

to within the accuracy of the rotation mechanism and the hall sensor.

Figure 4-20 show the relative conductance vs. sample bias for different excitation

heights. The excitation heights scale by factors 2 4 8 and 30, and the plots are

normalized. The relative conductance for positive and negative excitations are shown.

For small excitations no change in the curves are noticed. The curves corresponding to

the largest excitation heights which are the largest in the plot only seem to smooth out

the general shape for positive excitations and distorts the general shape for negative

excitation. More analysis is required to understand what is happening.
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x 104 Relative Conductance vs. Field for Various Biases
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Figure 4-16: Relative conductance vs. field (Tesla) for different biases. The biases
across the sample are shown in the legend. The excitation amplitude across the
sample is 120mV. The arrow shows how the curve changes as we go from depletion
(-6.52mV) to accumulation (6.52mV).
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X 10 4 Tunneling O ccurs for Large Positive Ex citations
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Figure 4-17: Relative conductance vs. bias (V) for different fields and from the data

taken from Figure 4-16. The fields are indicated in the figure and are reported in
Tesla. The excitation amplitude across the sample is 120mV. The arrow shows how
the curve changes as we vary the field from 0 Tesla to 5 Tesla.
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X 10 :5 Relative Conductance vs. Sample Bias for Different Fields
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Figure 4-18: Relative conductance vs. bias (V) for different fields. The excitation

height applied across the sample is 10mV. The steps in the above data are due to bit

errors in the voltage box applying the bias voltage. The error was fixed immediately

after this data was collected and so doesn't appear for subsequent data. In previous

data we fitted a line to the initial points of the data to extract the initial slope. In

this data we fitted least squared exponentials and thus greatly improved the fits as

can be seen by comparing the noise in the above data to that of Figure 4-16.
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X 104 Rel ative Conductance vs Bias for Different Fields
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Figure 4-19: Relative conductance vs. bias (V) for different fields. The excitation
height across the sample is 2mV. A second bulge is observed in the data.

87



X 10 4  Relative Corductance vs Bias for Different Excitation Heights
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Figure 4-20: Relative conductance vs. bias (V) for different excitation heights. The

excitation heights and pulse directions are indicated in the figure.
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Chapter 5

Conclusion and Future Work

In conclusion, we have presented theoretical models and experimental data in this

thesis to understand the tunneling process in the presence and absence of an in-

plane field. We were able to successfully demonstrate that equilibrium and out of

equilibrium data for the zero-field tunneling regime. However, more work needs to be

done for the in field case.

Judging by the smoothness of the data presented in this chapter, it seems rea-

sonable that the oscillator effects associated with in-plane tunneling would be within

the experimental precision of the apparatus. The fact that such oscillations were not

observed in a satisfactory manner suggests that the problem may lie with the sample

itself.

In the sample construction, there is an doping spike in the blocking layer that

provides electrons for the quantum well. This layer may create non-uniformities in

the potential of the well or contact that act to broaden the Landau peaks. The

net effect would be that the expected oscillatory behavior would be smoothed out

and unobservable. It would be desirable in future experiments to use sample with a

cleaner construction.
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Appendix A

Pulse Shaper

A main technical challenge in increasing the resolution of the experiment is to produce

sample and standard capacitor excitation signals of the forms indicated in Figures

2-7a and 2-7b of high fidelity over a broad dynamic range. The previous circuit imple-

mentations for generating these waveforms were limited by slow transient responses

in the excitation output. In this section we discuss an innovative pulse generation

scheme' which is able to circumvent the problems associated with the former circuit

implementation.

A.1 Pulse-Shaper as the New Generator of Exci-

tations

The original excitation waveforms were generated with an HP8131A amplifier and

an analog multiplier to allow for precision control of the amplitude. The multiplier

limited the precision of the measurement due to a slow 1Opts transient responses in

the output associated with step input excitations. In the new scheme a simple pull

up output stage consisting of a high speed FLUMX10 transistor replaces the analog

multiplier stage. This stage eliminates the slow step response and therefore increased

'Much thanks to Oliver Dial for coming up with the circuit concept discussed in section A.1 and
A.2.
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Figure A-1: Schematic for the pulse generation for the standard capacitor excitation.
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Figure A-2: Schematic for the pulse generation for the sample excitation.
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the resolution of the experiment.

A simplified schematic of the pulse shaper is show in Figure A-1 and A-2. The

circuit is used in conjunction with the HP8131 pulse generator which is dual channel

and has complementary outputs. In the figure, Ch, and Ch, denote the output

and complementary output of channel one. The waveforms are complementary in the

sense that if summed the resulting waveform will be constant. Similarly Ch2 and Ch 2

denote the output and complementary output for channel two. The generator itself

cannot be used for balancing as it doesn't have well resolved amplitude control of the

output pulses. The pulse shaper provides the more accurate control of amplitude.

The basic circuit element is a pull up transistor that is run from both rail voltages,

ground to the supply voltage. The HP8131 output is feed to the gate and the output

is taken from the drain. Precision control of the amplitude is achieved by changing

the upper supply voltage. In addition to the pull up transistor used to generate the

signal, another pull up transistor is used as a compensation element. Compensation

is achieved by feeding the complementary output to the gate. That way one of the

two transistor will be on and the other will be off at any given time and the supply

voltage will see a constant impedance.

Two transistors can produce a one pulse per period excitation in the sense that per

period the output can only have one fall and one rise. The overall output waveform

however has both a positive pulse and negative pulse which entail two falls and two

rises. The total output waveform is then generated by summing two time shifted and

reverse amplitude pulses generated by the above mentioned two transistor scheme.

Thus a total of four transistors are used. In the next section we explain in more detail

how the output waveforms are generated in Figures A-1 and A-2.

A.2 Explanation of the Circuit Implementation

As discussed above the total output waveform has one positive and one negative

pulse per period. The total waveform is produce by summing two time delayed and

opposite amplitude pulses. Each of these pulses is in turn generated from a circuit
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scheme which employs two pull up transistors. One functions as a compensation

element and the output is taken from the drain of the other.

As previously mentioned, Figure A-1 shows how the excitation to the standard

capacitor is generated. The two transistors on the left form half of the total output

signal. We see that the fixed amplitude inputs of Chi and Chi are feed to the gates.

If Chi and Chi were summed together then the total would be a constant voltage.

This ensures that one of the two drains is on while the other is off at all times and

we are able to achieve compensation. The half output, Out,, is taken from the drain

of the far left transistor whereas the other transistor serves as the compensation

element. The pulse shape of Chi is reflected in the drain output Out,, but the overall

amplitude is controlled by Vi. In a similar way the two transistors on the right,

which are controlled by Ch 2 and Ch 2, act together to as a compensated circuit to

produce the other half output Out 2. Vc, 2 controls the output for Out2

The total output, Vtd, which has positive and negative pulse halves, is show

in Figure A-1. Since Out, and Out 2 each have the correct pulse shape but with

opposite amplitudes, and are time delayed, the proper form of the output waveform

Vtd is achieved by just summing the two through the resistive network. We are thus

able to have a signal of the required shape excite the standard capacitor. The signal

amplitude of the pulses in the output waveform are robustly controlled by Vi and

Vc,2 which are usually tied together to ensure a symmetric output waveform.

The sample excitation is similar to the standard capacitor excitation, except that

its amplitude is inverted. This is reflect in the circuit implementation for the sample

excitation in Figure A-2. The inputs to the gates of the four transistors (Chi, Chi,

Ch 2 , Ch2) are the same as in the standard excitation circuit, but the drain voltages,

V,,3 and V 4 are different to ensure independent amplitude control for the sample

excitation. These voltages are also typically tied together.

The main difference of the sample excitation circuit is that the outputs, Out3

and Out 4, are taken from the transistors that are fed the complementary outputs

at their gates. One can see how the waveforms combine to give the correct output

shape for Vsam, by considering Chi to be negative of Chi but with a DC offset, and
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similarly for Ch 2. Out3 and Out 4 have the same profiles as Ch, and Ch 2 , so when

they are summed the DC offsets vanish and we are left with an inverted version of

the corresponding waveform at Vsam. Thus, with these two circuits we are able to

achieve the two desired sample and standard capacitor wave forms.

A.3 Incorporation of the HP11713A Variable At-

tenuators

The above pulse shaper gives high fidelity pulses for a limited dynamic range, however.

This is the case since if the drain voltage falls below 1V the transistor is unable to

stabilize at a good pinch off point. The output signal the becomes distorted. This

limit of dynamic range was overcome by incorporating two HP 1GHz variable step

attenuators. The attenuator had 11 attenuation level evenly spaced from OdB to

110dB. Thus, we used the computer controlled variable attenuators to broaden the

dynamic range.

Using the variable pulse generators gave us two parameters to determine the out-

put pulse height, attenuation factor and drain voltage. For the range of interest, the

waveform amplitude is a linear function of drain voltages, and increases with drain

voltage. A great deal of calibration data was collected to accurately describe this lin-

ear relation. Also the attenuation level accurately attenuate the amplitude without

changing the dependence on drain voltage.

The optimal combination employed the criterion of achieving the target voltage

height using largest possible drain voltage, with a maximum of 1OV. Thus to achieve a

given intermediate waveform amplitude, we could eliminate lower attenuation settings

which would require too low of a drain voltage, and also higher attenuation settings

which would require drain voltages in excess of 1OV. The ideal setting would be the

attenuation setting with the highest drain voltage not in excess of 10volts.
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Figure A-4: Schematic for the printed circuit board of the pulse shaper.
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Figure A-5: Schematic for the printed circuit board of the pulse shaper.
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A.4 Printed Circuit Board

In order to optimize the pulse shaper performance, the circuit was implemented on a

printed circuit board. The detailed schematic is shown in Figure A-3. There we can

see that 50Q resistors were placed on the gates of the transistors and at the output

point to ensure proper termination. Also stabilizing capacitors are were placed at all

DC voltage locations including the Vc, point, which indicates that after changing the

excitation high one show wait for transients to settle.

Figures A-4 and A-5 show the printed circuit board implementation of the pulse

shaper circuit. The board was laid out on two layers and was designed for compactness

in order to minimize stray capacitance which could delay rise times and degrade the

overall performance of the circuit. Also the board was designed to have nearly all the

elements on one side of the board, allowing the other side to serve as a grounding

plane. This ensures that the circuit has been designed to minimize stray capacitance

and is well grounded.
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