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Abstract

I present the design and implementation of a peer-to-peer application framework. The
framework improves user experience and helps developers write better applications.
Developers get an open, decentralized, and extensible platform upon which they can
build a wide variety of new applications with few technical or political limitations.
Users get a platform on which secure, network-aware applications are the norm and
run smoothly.

These benefits derive from one simple idea: provide application developers with peer-
to-peer primitives that abstract away the underlying networking and security details.
The superiority of the resulting applications is evidenced in my implementation of
the framework and a few example applications. Application source code is shorter
and simpler; applications are developed more easily and more quickly with fewer
possibilities for bugs and insecurities.
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Title: Ford Professor of Engineering
Associate Department Head, Computer Science and Engineering
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Chapter 1

Problem Introduction

Computers are amazing. They have the ability to manage an enormous amount of

mundane detail, perform billions of computations each second, and communicate over

thousands of miles instantly and securely. Despite this power, ordinary people have

just begun to use their computers to improve their communications with friends,

family, and colleagues. Online interaction up to the mid-1990s mainly consisted of

email sent and received via server networks. This interaction was well-suited to users'

intermittent network access. Network access has become increasingly ubiquitous since

then, and online interaction has consisted more and more of direct communication

known as instant messaging.

These trends of increasing network availability and increasing online interactions im-

ply that network-aware devices will constantly be at users' fingertips, and virtual

interactions will become more and more the norm. Applications running on these de-

vices have the potential for far greater functionality than email or instant messaging.

These applications could facilitate new modes of interpersonal communication and

could help manage one's personal information and data.

My ultimate ambition is to create a suite of applications that implements these new

interactions and functionalities. In this thesis, I present the first steps in the process:
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the design and implementation of a framework upon which these applications can

easily be built. The framework exploits the inherent similarities in these applications

by providing much of the infrastructure needed for networked applications, so that

application developers need only focus on functionality and user interface. As a result,

application source code can be shorter and less complicated, so that it is developed

more easily and more quickly and has fewer possibilities for bugs and insecurities.

1.1 Framework Design Goals

The purpose of the framework is to support the creation of distributed applications,

which take the form of plug-ins that extend the functionality of the framework.

Clearly, the framework must be extensible and support the ability to add these new

applications at any time. Similarly, it should be configurable and support the ability

to remove previously added applications at any time.

Also, the framework must make it easier to write better distributed applications.

The distributed application development experience can be a long and arduous pro-

cess involving many hard subproblems. The framework should simplify application

development by solving as many of these subproblems as possible. However, the

framework must remain flexible; these solutions must not place any limitations on the

amount or type of application that can be built.

The framework should address the following difficult subproblems while maintaining

complete flexibility:

1. Security. Distributed applications manage and exchange significant amounts of

private information, so it is desirable to be able to send sensitive data confi-

dentially and reliably as well as trust the legitimacy of the sender and content

of received transmissions. Strong guarantees on authenticity, confidentiality,

and integrity require strong cryptography, which is a complex and challenging

14



discipline. The framework provides security primitives in its infrastructure so

that applications need not implement their own security scheme.

2. Decentralization. On the framework level, no individual node is more impor-

tant than another. This peer-to-peer nature promotes robust applications that

mimic humans' natural method of direct communication while ensuring that

the framework itself does not have any central points of control. Applications

built upon the framework are self-configuring and self-administering by default,

so they are inherently self-sufficient.

From the application perspective, decentralization is generally desirable, but

the client/server model is a well-established, powerful paradigm that may be

superior to the peer-to-peer paradigm for certain applications. Despite the de-

centralized nature of the framework, applications can easily use a centralized

service model. Such an application merely treats some nodes differently than

others. However, it is important to note that this centralization creates addi-

tional possibilities for security and scalability problems as well as introducing

the potential for other undesirables into the application, such as censorship,

congestion, and dependencies on other people and technologies.

This last point is especially important from the framework perspective. Exter-

nal developers will be much more likely to build upon the framework if they

know they will retain complete control over their applications. If their applica-

tion's success depends on the benevolence of potential competitors, independent

development will be unnecessarily stifled. Complete control over one's appli-

cation can only be retained if the framework is free from external influences,

whether these influences are political or technological. This is only possible

with a decentralized, peer-to-peer paradigm.

In sum, the framework is completely decentralized, yet it supports both peer-

to-peer and client/server application paradigms.

3. Scalability. Distributed applications should not have unnecessary growth limi-

tations. The framework must be able to incorporate as many users as possible,
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and the underlying algorithms must deliver adequate performance, even with

millions or billions of users. Communication bandwidth and data storage re-

quirements grow at least linearly with the number of users, so a tremendous

amount of data might need to be managed and transmitted. The framework

supports massive user scalability via efficient lookup protocols and achieves

bandwidth and data scalability through decentralization.

4. Technology Modularity and Independence. The framework must not create un-

necessary technology dependencies. Wherever possible, applications and users

should not be dependent upon any one technology or piece of data, such as a

peer-to-peer lookup protocol or an IP address, unless absolutely necessary.

This philosophy allows the framework to accommodate foreseeable technolog-

ical developments wherever possible. Applications automatically improve per-

formance as the framework's components are upgraded with advances in the

underlying technologies.

5. Technology Transparency. The framework must not involve any hidden com-

ponents or protocols. Hidden components reduce developers' trust and make

peer review impossible, and peer review is a crucial component in the process

of making secure, robust computer systems.

6. Popularity. The popularity of the framework and its applications is of prime

importance from both the user and developer perspectives.

It is clear that the framework's applications must be easy to use and provide de-

sired functionality in order to achieve widespread use. Popularity is important

from the user perspective, because a distributed application generally increases

its value as its user population increases. For instance, an instant messaging

system is better if one can reach more of one's friends. Popularity is also im-

portant from the developer perspective, because application development is a

time-consuming technical and creative process. It is impossible for any one

person to create these applications by oneself; each person is limited in time,

16



know-how, creativity, and vision. As the developer population increases, appli-

cation quantity and quality will also increase.

Finally, entrenched applications exist that have much but not all of the func-

tionality I envision. The framework's applications must be clearly superior to

have a chance at being competitive and gaining market share. Therefore, the

framework encourages independent development; both development teams and

individual developers should prefer to develop applications for the framework

instead of without it.

1.2 Thesis Overview

In Chapter 2, I detail the design of the framework, including the definition of the

framework's application primitives in Section 2.1, an explanation of the primitives'

representation in Section 2.2, and a defense of the framework's security in Section

2.3. In Chapter 3, I present my implementation of the framework with a discussion

of the application development process, including a detailed listing of implemented

proof-of-concept applications in Section 3.1 and descriptions of the user and developer

perspectives on the framework in Sections 3.2 and 3.3. I discuss related research

in Chapter 4, and I conclude in Chapter 5 with an analysis of my arguments and

contributions in Section 5.1, proposals for future work in Section 5.2, and a summary

in Section 5.3.
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Chapter 2

Framework Design

This chapter describes the design of the framework, namely, how the design goals

presented in Section 1.1 are implemented without limiting the number and variety of

applications the framework can support. In order to embody these properties, the

framework exploits the inherent similarities of distributed applications by providing

developers with peer-to-peer primitives. These primitives create an abstraction layer

that decouples application development from networking and security complexities.

Wherever possible, the framework's design stresses simplicity and intuition. However,

some complexity is unavoidable; components of the framework are designed to be as

simple as possible, but no simpler.

2.1 Framework Primitives

The framework's abstraction layer provides developers with three peer-to-peer appli-

cation primitives. These primitives correspond to notions of peer identity, establishing

peer presence, and interpeer communication:

1. An identity is an unspoofable representation of an entity within the framework.

19



An identity is synonymous with the terms principal, user, node, and peer and

simultaneously refers to an instance of the framework on the network and its

human user.

2. An identity's presence determines whether that identity is contactable within

the framework. An instance of the framework can simultaneously employ many

lookup protocols to establish presence; lookup protocols translate identities into

routable locations such as IP addresses.

3. An identity sends messages to another identity through a peer channel descrip-

tor, which is a high-level representation of a channel of communication between

identities. The channel has parameters specifying how messages are sent but

defaults to strong security.

These primitives supply application developers with an infrastructure that answers

the following basic communications questions:

1. With whom we are exchanging data (user abstraction);

2. Where we are sending the data and from where we are receiving responses

(location abstraction); and

3. How we are sending and receiving the data (communication abstraction).

Identities represent the concept of whom. Lookup protocols map identities to locations

within the framework, embodying the concept of where. Peer channel descriptors

capture the information components which together describe the method (the how)

of actual communications.

Applications developers use these primitives to represent, locate, and communicate

with other peers. The most common way for an application to begin an interpeer

connection is to instantiate a peer channel descriptor and tie it to a peer's identity:

20



pcd = new PeerChannelDescriptor(id);

When a peer channel descriptor is created, the framework creates a local object

representing the channel's properties. By default, data sent via a channel is encrypted,

authenticated, reliable, and integrity-checked. In addition, options such as encryption

and compression can be independently toggled as desired:

pcd. setAuthenticated(false);

pcd.setCompressed(true);

Once the desired options have been set, an arbitrary block of data can be sent directly

to the target identity:

response = pcd.send(data);

At this point, the framework uses its default lookup protocols to locate the identity.

After successful location, the descriptor sends data to id in the manner specified

by the channel's options. If desired, the channel can be further altered to send

anonymously before more data is sent:

pcd.setAnonymized(true);

response2 = pcd.send(data2);

It may seem peculiar that a channel's options can be changed after the channel is

established. This is possible because the sender maintains the channel's state and the

receiver does not. Each data item sent re-establishes a connection and re-specifies the

transmission options. The overhead of this connection re-establishment is drastically

reduced via a low-level Kerberos-like ticketing optimization [6] explained in Appendix

A.

If the developer wishes to specify a preference for the set of lookup protocols, an

ordered list of lookup protocols can be specified:

21



pcd2 = new PeerChannelDescriptor(id2);

pcd2. addLookup("Ring");

pcd2. addLookup ("Blob");

This code specifies that the developer wishes to use the "Ring" lookup to locate id2

first, and if that fails, to use the "Blob" lookup next. Finally, if neither succeeds,

possibly because these lookups are not installed, the framework will use any other of

its default lookups to try to locate id2. Ring and Blob are two implementations of

lookup protocols discussed in more detail in Section 2.2.2.

Applications with strict communication requirements, such as a strong anonymity

guarantee, may wish to maintain stringent control over the lookup process. Such an

application may choose to use only specific lookup protocols and not fall back on the

framework's default lookups. This can also be specified:

pcd3 = new PeerChannelDescriptor(id3);

pcd3. addLookup("Blob");

pcd3. setLookupDefaultsMode (false);

This channel will attempt to locate id3 by using only the Blob lookup. If Blob is

unable to find id3 or Blob is not installed, the lookup will fail. This option is not

recommended for general use because such an application has a brittle dependency on

a lookup technology. This application will fail if the Blob lookup is not installed, and

applications that use such a peer channel descriptor will not migrate to new (default)

lookups that might be developed. It is important to note that, even though such an

application breaks forward compatibility, it does so in an intentional, opt-out fashion.

There are further options for many parts of this process. The full peer channel

descriptor API can be found in Appendix B.
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2.2 Primitive Representation

The framework represents the three fundamental primitives of identity, lookup proto-

cols, and peer channel descriptors in a manner that stresses flexibility and simplicity.

2.2.1 Identity

Identity is the term for an entity within the framework. Each identity is represented

by a unique 128-bit number, which is tied to cryptographically strong authentication

in the form of a private key. Upon joining the framework, a new entity creates a

public/private key pair. The entity's identity is the first 128 bits of the SHA-1 hash

of the public key.

Since only the new entity knows the corresponding private key, only messages that are

signed with its private key appear to come from its identity. Thus, identities within

the framework are unspoofable under standard hardness assumptions. This public

key-based identity system is self-verifying and decentralized, yet is not a traditional

public key infrastructure. Since identities are also self-creating, Sybil attacks [5] are

feasible. This concern is addressed in Section 2.3.

It is worth noting that asymmetric keys are the only acceptable method of strong au-

thentication. MAC addresses, IP addresses, and GPS locations are all spoofable [13].

Passwords or other secrets that must be shared to be verified require centralization

or unacceptable levels of trust in the other party.

2.2.2 Lookup Protocols

The framework can use multiple, simultaneous lookup protocols to establish an iden-

tity's location and availability within the framework. Normally, each lookup proto-

col shares the same identity space; that is, a user's identity does not change from
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one lookup protocol to another. If absolutely necessary, however, a lookup protocol

may use its own internal identifier scheme. The process of creating an independent

identifier scheme is problematic and not recommended for security reasons that are

discussed in Section 2.3.

The framework has two standard lookup protocols:

1. Ring. For its primary lookup protocol, the framework uses a Chord-like, struc-

tured network topology that provides logarithmic scalability and robustness in

the face of frequent node presence fluctuation [11]. The underlying protocol re-

mains intact, save for a minor augmentation necessary for flexibility and security

purposes; instead of Chord's (spoofable) IP-based identifier system, framework

identities are used. This change is critical to the goal of strong authentication;

IP-based authentication is insufficient [13]. Also, location-based identification

schemes are inflexible, whereas an identity scheme based on a public key is

portable. Requiring identities to have unchanging locations is an unnecessary

limitation.

2. Blob. In addition to running a Chord-like ring, the framework independently

runs a Freenet-like unstructured network topology [3]. The routing algorithm

is modified to allow routing by identity, and the routing table is partitioned

into two equal halves called generations. Entries in the young generation of the

routing table are updated using LRU replacement, just as in Freenet. Entries in

the old generation are only replaced when periodic contact attempts have been

unsuccessful for several hours. The matching function employs a "generation

gap" heuristic, ranking the best matches in the older generation above all en-

tries in the younger generation. The number of hours for contact timeout and

the number of matches in the older generation before "bridging the gap" are

configurable parameters set to three and five, respectively.

The primary motivation for allowing simultaneous dissimilar lookup protocols in the
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framework design is based upon applications' inherently different needs. Applica-

tions are likely to have a preference for the strengths inherent to a particular lookup

protocol, such as performance, robustness, or security. The Ring lookup is more ef-

ficient and reliable under normal operation, but it is not well-suited to all possible

applications. For instance, it does not attempt to provide anonymity like the Blob

lookup. Similarly, there are tradeoffs in overlay vulnerabilities; the Ring topology is

more vulnerable to attacks by colluding malicious nodes, but these weaknesses are

well-complemented by the Blob topology, which is more resistant to these types of

attack. Multiple protocols also make the framework less brittle; several simultaneous

failures must occur for abject lookup failure. Similarly, multiple protocols also ease

application migration to new protocols, allowing users and developers to experiment

without sacrificing the reliability of more proven protocols.

2.2.3 Peer Channel Descriptors

Peer channel descriptors handle the process and details of sending data from one

identity to another. The data transfer process involves several steps: serializing

application data into a metagram, securely transferring the metagram according to

the channel's parameters via the point-to-point protocol, and dispatching received

metagrams to the appropriate application.

Metagrams Metagrams are the framework-level representation of data and meta-

data and are designed to accommodate almost any type of data. Such flexibility

can only be accomplished through simplicity; as such, a metagram consists of two

fundamental parts: its label and its data. The label field is a tag for the type of

the data, and the data is an arbitrarily long sequence of bits. One example of a

metagram is a simple representation of an instant message, where the label would be

"IM" and the data would be the message "Hey, are you there?". When displayed in

a human-readable format, such a metagram looks like:
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[Schedule]

[Invitation]
[EventName] PMG group meeting

[Invitees]

[id:Guest] 0214A43F54FD5AFC490AB15287CE1466

[id:Guest] 1E1EOD08B642753777A499AB4F6C7CEA

[s64i :StartTime] 267F309EAB28100E

[s64i:EndTime] 267F309EAB5EFE8E

Figure 2-1: A metagram example of multi-dimensional data representation.

[IM] Hey, are you there?

However, this two-part metagram representation is not yet sufficiently general. The

ability to nest metagrams is crucial, because not all data is one-dimensional. For

example, an invitation to an event could be structured as in Figure 2-1.

The ability to create arbitrary-dimension metagrams allows arbitrarily complex data

to be modeled. This requires but one change to the metagram representation: adding

a container bit that is flipped as needed to indicate a container metagram, which is

a metagram whose data represents one or more internal metagrams. [Invitation]

and [Invitees] are examples of container metagrams, while [s64i:EndTime] and

[id:Guest] are examples of non-container metagrams, i.e. metagrams whose data

is not an encoding of internal metagrams. Note the optional type specification in

the label of non-container metagrams; id suggests that the data of each Guest meta-

gram be interpreted as a framework identity, and s64i suggests that the data of the

StartTime and EndTime metagrams be interpreted as signed 64-bit integers. Labels

without a suggested type are interpreted as UTF-8 encoded strings.

Container? Label Length Data Length Label Data

1 bit 15 bits 32 bits x bytes y bytes

Table 2.1: Metagram bitwise representation.
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metagra I IN
metagramt IN r~with context

Identity I Point-to-Point > Identity

metagram OUT metagram OUT

Figure 2-2: An illustration of the point-to-point protocol.

The definition of a metagram is now complete. A metagram is serialized as in Table

2.1, where x, the length of the UTF-8 encoding of the label, is limited to at most

215 - 1 bytes, and y, the length of the data, is limited to at most 232 - 1 bytes.

Point-to-Point Protocol Metagrams are sent securely between identities via the

point-to-point protocol. This protocol is based on the public key "infrastructure"

established in Section 2.2.1, whereby identities can trust each others' public keys

because one's public key must hash to one's identity, and, with high probability, it

is impossible to find another public key that also hashes to the same identity. This

communication abstraction is illustrated in Figure 2-2. It is important to note that

once a metagram is received, the context of that metagram is immediately attached

to it, and a context metagram is formed. The context includes the identity of the

sender and information about how to return a response metagram.

The cryptographic details of the protocol are similar to existing point-to-point pro-

tocols [4]; description and brief analysis of the protocol is included in Appendix A.

Metagram Dispatch After the content metagram is repackaged with the identity

of the sender into a context metagram, the context metagram is given to the local

metagram dispatcher. The dispatcher looks up the label of the internal content meta-

gram in its application hashtable and hands the entire context metagram off to the

appropriate application handler for application-specific processing. This process is

graphically represented in Figure 2-3.

metagram IN metagram IN AppiHandler
with context with context

Identity METAGRAM App2Handler

BT DISPATCHER App3Handler |
otetagran OUT ______ otarn U

I Application Hashtable] metg U

Figure 2-3: An illustration of the process of context metagram dispatch.
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2.3 Framework Security

In order to discuss the security of the framework, it is necessary to address two

orthogonal concerns: point-to-point security and overlay security.

2.3.1 Point-to-Point Security

Much like any other distributed system, the framework involves point-to-point com-

munication. Fortunately, the point-to-point communication paradigm is well under-

stood [4]. Unfortunately, many of the peer-to-peer applications familiar to the public

are lacking in fundamental security measures. The framework provides the appli-

cation developer with simple attribute customization for encryption, authentication,

reliability, integrity-checking, anonymity, and compression. Applications default to

maximum levels of point-to-point security unless otherwise specified.

However, the user has ultimate control of how data is sent; one can globally override

application settings for channel parameters. For instance, the user could force all

data sent via a given application to be compressed and encrypted. If the World Wide

Web were designed in this manner, this power would be analogous to the ability to

turn on SSL/TLS [21] encrypted web browsing for any website, regardless of what the

webmaster or browser architect had in mind.

2.3.2 Overlay Security

While point-to-point security is well understood, peer-to-peer overlay security is rel-

atively new and quite challenging, which is a dangerous combination for applications

that require strong security guarantees. Solutions to many overlay-level security prob-

lems, such as denial-of-service via a Sybil attack [5], remain elusive. While overlay

security is somewhat beyond the scope of this discussion, the framework nonetheless
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is designed to mitigate known attacks as much as possible.

There are several important issues to consider:

1. Unspoofable identities are critical for overlay security. If identities are not

based upon strong authentication in one way or another, point-to-point security

cannot be achieved, and overlay security becomes moot.

2. Entities must not be able to control a large number of identities. If they are able

to do so, then devastating denial-of-service attacks can be engineered against

an overlay. The only defense against such a Sybil attack requires identity cer-

tification [5]. When an identity wishes to join the framework, it presents a real

world identifier such as a credit card number or an IP address and requests a

certificate from a certificate authority (CA). The CA must decide whether the

join request is acceptable based on the previous requests associated with the

real world identifier. Only identities with certificates are trusted to be routing

table entries, which means identities without certificates will not be locatable.

The choice of certifying a request is a delicate one and could probably be a

separate thesis topic in and of itself. Nonetheless, the framework's approach to

this problem is to have a joining node present a real world identifier. Subsequent

joins on the same resource beyond a given threshold would incur exponentially

increasing costs, such as non-parallelizable computation [8] for an IP address

or currency for a credit card number, or even would be rejected in extreme

cases. If an overlay already has a reasonably large number of non-malicious

nodes, a dedicated attacker would need to accumulate a large number of credit

cards and/or an enormous amount of currency, or, in the case of IP addresses,

have access to a large, sparse IP address space and/or an extremely large non-

parallelizable amount of computation.

It is important to note that denial-of-service attacks are not limited to peer-to-

peer networks. If an attacker had access to the resources listed above, similarly

effective attacks can be generated by more "traditional" means [31]. Even if
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the peer-to-peer denial-of-service issue were to be resolved, the denial-of-service

vulnerability remains through other avenues for attack.

3. Entities must not be able to choose their own identities [3,5,10]. For many

lookup protocols, including the Ring structured lookup, if entities could choose

their own identities, attackers would be able to cluster around specific victims

and partition them from the rest of the network [1]. Essentially, this means

that identities must be provably random. This is easily accomplished as part of

the certificate granting process. The entity sends its public key to the CA. and

the CA twiddles the public key and signs the resulting public key. The signed

public key and information about how to generate the corresponding private

key are sent back to the entity with its certificate.' Since the identity is the

hash of the new public key, the identity is randomized. Also, it is important to

note that no one (not even the CA) learns any information about the entity's

private key.

It is important to note that, given a CA, many other authentication systems are

reasonable. For instance, the CA could assign an entity a random number whose

hash would be its identity. The identity would be correlated to the public key in the

certificate instead of correlated by hashing the public key. This would even allow

existing public keys to be incorporated within the framework.

However, I believe that incorporation of a CA into a peer-to-peer system somewhat

violates the ideal of pure decentralization. I have demonstrated the need for a CA, but

I assert that CAs should be given as little responsibility as possible. The framework

relies on the CA only to mitigate known overlay denial-of-service threats. If a new

lookup protocol were developed that did not have these vulnerabilities, the framework

would have no need for the CA and would be completely decentralized. Any overlay

'This type of key modification is straightforward with RSA, DSA, and ElGamal keys. The
implementation uses DSA and works as follows: x is one's secret key parameter, and the public key
is (p, q, g, gx mod p). The CA generates a k E {0, 1164 and signs and returns the new public key,
(p, q, g, gx+k mod p), and the twiddle parameter, k. One's new private key is x' = x + k. Note that
1 < x <= q - 264 must originally be true.
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security system that gives the CA more responsibility than this will never be able to

achieve true decentralization.
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Chapter 3

Framework Implementation

In an effort to substantiate my claims of the framework's flexibility and extensibility,

I implemented the framework design using about 10,000 lines of Java code. Through-

out the following discussion, I use the terms application and service in two different

senses. I use the term application in the sense of a substantial, cohesive software

package. Applications would be independently insertable into the framework. Some

applications may export services that can be used by other applications. For instance,

the [Contacti application exports functionality that translates identities into human-

readable aliases, and this functionality can be incorporated into other applications.

It is important to note that some minor details of the design are not yet implemented;

I list these omissions in Section 3.4.

3.1 Implemented Applications

I have built several example applications based upon the framework's implementation.

Although there is too much detail for thorough explanation here, I demonstrate proof-

of-concept for the framework's capabilities by highlighting the noteworthy details
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Figure 3-1: An [IM] window with a conversation.

about the applications' implementation.

1. Instant Messaging - [LIM1

Instant messaging (IM) is an application in which two users converse by sending

each other short text messages. [LIM1 is an implementation of a simple instant

messaging application that is completely secure and decentralized, yet it consti-

tutes only 25 lines of handler code and 200 lines of GUI code. The IMHandler

code is attached in Appendix B; see Figure 3-1 for a screenshot of an [LIM

conversation window.

2. File Transfer - [File]

I implemented a simple, secure FTP-like application that can send and receive

individual files. This application uses about 225 lines of code, and the process of

creating this application is thoroughly described in the developer's walkthrough

in Section 3.3.

3. Lookup Protocols - [Ring], [Blob]

As a testament to the flexibility of the framework's application model, the

lookup protocols as described in 2.2.2 are written and interface with the frame-

work just like any other application. [Ring] is the implementation of the struc-

tured, Chord-like topology, while [Blob] is the implementation of the unstruc-

tured, Freenet-like topology. Each is completely secure and involves about 1,000

lines of code.
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[WAnonymity]
[Payload]

[Content]

[id:Destination] ...
[ba:Nonce] ...

Figure 3-2: An example [WAnonymity] metagram.

The only fundamental difference between lookup applications and non-lookups

is that each lookup application also registers itself as a lookup protocol for the

framework. This is not fundamentally different from other applications, which

also plug-in (even at runtime) merely by registering with the framework to re-

ceive their types of metagrams. [Ring] and LBIobl just register as a lookup

protocol at the same time. Also, the lookup protocols use different peer chan-

nel descriptor constructors than those described in Section 2.1; namely, they

use constructors that use an IP address or DNS name and TCP port. These

constructors are described in Table B.1 in the peer channel descriptor API in

Appendix B.

4. Weak Anonymity - [WAnonymityl

[WAnonymityl provides an anonymization service for other applications. Any

metagram from any application can be sent in a weakly anonymous fashion.

The content metagram is wrapped into a [WAnonymity] metagram with the

metagram's ultimate destination and a random nonce as represented in Figure

3-2.

The originator of the anonymous metagram starts by sending the [WAnonymity]

metagram off to a random identity. That identity receives the metagram via

the WAnonymityHandler, which looks to see if its own identity is the intended

destination and, if so, processes the payload metagram and deposits its em-

bedded content into the metagram dispatcher. On the other hand, if its own

identity is not the intended destination, the handler modifies the nonce of the
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[WAnonymity] metagram. With a probability p, the handler delivers the meta-

gram to the intended recipient; with probability 1 - p, the handler chooses

yet another random node and passes the metagram along, keeping track of the

forward and backward nonces and the sender for a short while so that a re-

sponse can be returned back along the same path. In the implementation, p is

a configurable parameter set to 0.1.

5. User Notification - [Notification]

The user notification application maintains a list of events and/or occurrences

that warrant requesting the human's attention. Each event/occurrence is em-

bodied in a [Notif ication] metagram, which provides supporting details, such

as its description, its source, its urgency, and a timestamp.

[Notificationi is a simple example of an application that provides a service for

other applications. That is, other applications need not implement their own

user notification scheme; instead, they can just place [Notification] meta-

grams into the metagram dispatcher. Note that [Notificationl does not have

a networked component; NotificationHandler ignores notifications not from

one's own identity.

6. Contact List - [Contacti

Much like a traditional address book application, the [Contact] application

manages information about users, such as their name, email address, phone

numbers, and the like. Only two fields deserve special mention: identity and

alias. The first corresponds to the contact's 128-bit identity within the frame-

work, and the second is a unique handle by which the contact can be referred

to (locally) by other applications. The second is a more user-friendly format

than a 128-bit number.

[Contact] is far superior to a standard address book application for two main

reasons. First, it provides valuable services that other applications can use,

most notably the ability to translate between an alias and an identity. Note in
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the [IMi window in Figure 3-1 that I appear to be having an conversation with

"Seth", not a 128-bit number. Another valuable service is group management,

whereby collections of contacts can be treated as a single entity throughout the

framework.

Second, the framework's networked nature creates potential for additional func-

tionality. [Contacti detects who is online and acts as a focal point for interac-

tions with any identity. Perhaps more mundanely, users can acquire each other's

contact information easily. Users can request another's contact information, or

one can send one's own information directly to someone else, much like a virtual

business card.

7. To-Do List - [Task]

[Task] is a simple application that helps one manage a to-do list. To-do items

are stored as [Task] metagrams that contain standard fields for the task's

category, description, status, priority, and due date. [Task] metagrams also

contain three fields that require some explanation: [Task-ID], [Partners],

and [Updates]. [Task-ID] represents an identifier for a task. This is re-

quired because to-do items in [Task] can have dependencies on other to-do

items and also can be shared with other identities, namely the identities listed

in the [Partners] metagram. Any changes to a shared task send [Update]

metagrams to each of the identities in [Partners]. Each received [Update]

metagram is cataloged in the [Updates] metagram, providing an audit trail

for the changes. Much of the [Task] application is exemplified in the dialog for

creating and editing to-do items; Figure 3-3 is a screenshot of this dialog.

8. Calendar and Appointments - [Schedule]

[Schedule] is an integrated calendar in which users can plan their daily schedule

and manage their time commitments. Unlike more traditional scheduling and

productivity software, users can make details about their calendar readable

(or even modifiable) by select individuals and can send each other invitations
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Figure 3-3: A [Task] window for editing a to-do item.

to meetings or parties. These invitations integrate with one's schedule and

automatically update as invitees respond.

9. Email Client - [Emaill

[Emaill is an excellent example of how a traditional application can be greatly

augmented by running within the framework. Each user in [Contacti has an

email address field. [Emaill can be configured to send emails that are destined

for addresses that are contained in [Contacti through the framework instead of

through the normal outgoing email server. This provides two notable benefits

over the traditional route: secure email and elimination of email size limitations.

[Emaill also addresses one major drawback of the framework's serverless design:

the unavailability of users when offline. What is one to do if one wants to send

a metagram to an offline user and then go offline oneself? A simple solution to

this problem is to bootstrap the framework on top of users' traditional email.1

That is, if one is offline, one can still be sent metagrams as attachments in a

standard email.

Upon checking one's traditional email with an ordinary email client, these meta-

'A more complicated solution to this problem is to store the metagram within the framework
itself. I discuss my concerns about framework-level data storage in Section 5.2.
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grams will be downloaded from the email server and then must be manually

inserted into the framework for processing. Using LEmaill as one's email client

makes this process much nicer. Any metagrams received while offline are auto-

matically processed upon download of such emails.

It is also interesting to note that LEmaill is an application that communicates

with established services over traditional protocols such as IMAP4 and POP3

as well as interacting over the framework.

10. Virtual File System - [VFS]

LVFS1 is an application that allows users to map files on their machines to

virtual directories in a virtual file system. Users can share the data in these

virtual directories by setting directory-specific access rights via access control

lists (ACLs) much like AFS [28]. LVFS1 can be thought of as web serving with

ACLs and strong authentication, and it is an example of a server-like application

that provides functionality that will primarily be used by identities other than

oneself.

Perhaps most importantly, LVFS1 provides powerful services upon which other

applications can build: a distributed file system for the framework.

11. Automatic Backups and Mirroring - [Synci

Frequently, some of the non-optimal aspects of the framework can be drastically

improved by adding an application. For example, lookups solve the connectivity

problem, [Contact] solves the problem of user-unfriendly 128-bit identities, and

I Email] addresses the unavailability of users while offline. Now, we solve the

ordinarily non-trivial problem (for servers) of keeping reliable backups of user

data by building upon LVFS].

Essentially, backups only require the ability to write to a directory in another

identity's LVFS1 share. For example, if I have karim aliased to an identity in

[Contacti, scripts such as "Encrypt and save all of ~/. is/ to karlm: /jbackup/

on an hourly basis", which backs up all framework data to karim's /jbackup/
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directory, are easy to create and automate.

Mirroring is similar to backup and is useful for synchronizing a PDA or main-

taining a local copy of a friend's network share. The "master" copy of [VFS]

data can be monitored by any number of clients, which always update their

state to reflect the current state of the master copy. This can be thought of as

a "pull" backup rather than a "push" backup, and content to be mirrored must

already be accessible on LVFS].

The simplicity of these example applications highlights the framework's ease of exten-

sibility and adaptability to a variety of applications. However, these applications by

no means represent the gamut of applications that are possible. Essentially, the only

current limitation on the types of applications that can be built using the framework

is one's imagination.

3.2 User Perspective

Applications fulfill a variety of users' needs: quick communication, sharing of sched-

ules, sharing of files, and online collaboration with friends, family, and colleagues. The

framework's single authentication mechanism eliminates the need for a username and

password for each application, and the integration of implemented application func-

tionality gives the software a smooth feel, despite the fact that its implementation

has progressed only to the extent of beta-level code (at best).

Figure 3-4 shows a screenshot of a main view of the framework. GUI components

of the [Contacti, [Notificationi, and [Schedule] applications are displayed from top

to bottom, followed by the installed applications tray. The [Contacti component

displays which of my contacts are online and integrates easy access to user-level and

group-level actions of other installed applications. Note [Contacti's embodiment of

a group representation for collections of identities, such as the group "IS-Dev". The
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Figure 3-4: A screenshot of the framework displaying my contacts (top), my notifica-

tions (middle), and the application tray and current month's calendar (bottom).

[Notification] component deals with user attention management; in this screenshot,

nothing requires the user's attention. The [Schedule] component displays the calendar

for the current month, and, upon clicking on a date, the application will jump to one's

schedule for that day.

3.3 Developer Perspective

One of the original design goals of the framework was to allow developers to create

new applications easily. In this section, I explain the process of writing a simple

application, namely the [File] application previously mentioned in Section 3.1, and I

show that the development process is greatly simplified by the framework's application
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building blocks.

3.3.1 [Filel Application Design

I wrote the LFilel application to enable users to send any number of files directly to one

another in a secure manner. This desired functionality requires two main behaviors

from a IFilel application instance: sending and receiving files. The framework makes

the transmission of files across the network quite simple, as files are encapsulated

within metagrams and sent via the metagram exchange methods previously discussed

in Section 2.2.3. The [Filel application uses peer channel descriptors to transmit all

of the application's data, and the rest of the application's code allows the sender to

choose files to send and allows the receiver to choose which files to receive.

The sender initiates file transfer by choosing files to be sent and the desired receiver

and transmitting to the receiver a transfer request, which provides key information

about the files that the sender wishes to transmit, namely the file names and sizes.

The receiver processes the transfer request before returning a request response that

indicates which files from the original request that the receiver accepts and rejects.

The sender processes the request response, and accepted files are then transferred

sequentially.

These steps are encoded in the [File] protocol, whose standard network communica-

tion is illustrated in Figure 3-5 and detailed in Sections 3.3.2 through 3.3.5. Complete

pseudocode for the application design is presented in Section 3.3.6. A short discussion

of how the application interfaces with the framework's implementation is presented

in Section 3.3.7, and I summarize the developer's benefits in Section 3.3.8.
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Handshake

Data
Transfer

Sender Receiver
transfer request

request response

filel transmit

filel response

file2 transmit

file2 response

. ...................

Figure 3-5: Anatomy of the [File] application's network communication.

3.3.2 Constructing a Transfer Request

The sender initiates file transfer by transmitting a transfer request to the desired

target. A transfer request conveys that the sender wishes to send files to the receiver

and includes a summary of the files to be transferred. This request is embodied in

a [TransferRequest] container metagram, and the sender places [SendRequest]

metagrams inside the [TransferRequest] metagram for each file to be sent. Each

[SendRequest] metagram contains the information for one file, including the file's

name and size. The overall request is wrapped inside a [File] metagram so that

the framework instance running on the receiver's end knows to give the metagram to

the [Filel application. The anatomy of a transfer request is embodied in the example

[Transf erRequest] metagram in Figure 3-6.

3.3.3 Responding to a Transfer Request

Upon receipt of a transfer request by the receiver's FileHandler, the handler pro-

cesses it and presents the metagram's request to the user. The user chooses which files
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[File]
[TransferRequest]

[SendRequest]

[ba:FileID] 4F6A8E103583AB07

[FileName] 6.829.ppt

[s64i:FileSize] 113664

[SendRequest]

Figure 3-6: A [File] metagram describing a [Filel transfer request.

to accept and which to reject, and the application keeps track of accepted FileIDs

in an accepted files hashtable and sends back a [RequestResponse] metagram con-

taining internal [ba:AcceptID] metagrams, where the data for each [ba:AcceptID]

metagram corresponds to the data from the [ba:FileID] metagram in the original

request. In the instance where a file is rejected instead of accepted, a [ba:Reject ID]

metagram is returned instead, and the FileID is not added to the hashtable. An

example [RequestResponse] metagram is provided in Figure 3-7.

3.3.4 Transmitting File Data

The sender reads in the [RequestResponse] from the receiver and, for each FileID

that was accepted, constructs a [FileData] metagram that includes the FileID field

and the data of the file. The [FileData] metagrams such as the one listed in Figure

3-8 are inserted into new [File] metagrams and sent to the receiver.

[File]
[RequestResponse]

[ba:AcceptID] 4F6A8E103583AB07
[ba:AcceptID] ...
[ba:RejectID] ...

Figure 3-7: A [File] metagram describing a [File] request response.
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[File]
[FileData]

[ba:FileID] 4F6A8E103583AB07

[ba:Data] ...
[FileData]

Figure 3-8: A [File] metagram representing file data.

3.3.5 Receiving and Responding to File Data

The [FileData] metagrams arrive through the FileHandler just like the transfer

requests. The handler checks to see if the FileID of the [FileData] metagram is

in the accepted files hashtable, and if so, saves the file with the previously specified

filename in the appropriate location and responds with a [ba: ACK] metagram. If the

FileID does not match anything in the accepted files hashtable or some other error

occurs, a [ba: ERR] metagram is returned instead, signifying rejection of the file. The

two possible responses are illustrated in Figure 3-9.

3.3.6 LFile] Pseudocode

In order to make the conciseness of the [Filel application's as clear as possible, I

have included pseudocode for the functionality presented in this section. This pseu-

docode comes in two major components: a SendFileAction class and a FileHandler

class. The SendFileAction class embodies the functionality involved in sending a

file, including constructing [TransferRequest] and [FileData] metagrams, and is

listed in Figure 3-10. The FileHandler class manages [File]'s network traffic from

[File] [File]
[ba:ACK] 4F6A8E103583AB07 [ba:ERR] 4F6A8E103583AB07

Figure 3-9: Metagrams for positive and negative responses to incoming file data.
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the receiver perspective, including processing of [TransferRequest] metagrams and

construction of [RequestResponse] metagrams, and is listed in Figure 3-11.

The SendFileAction class embodies a service that LFile] exports: sending files. This

action can be instantiated and executed anywhere, so it can be incorporated into any

other application.

3.3.7 Framework GUI Interface

It is worth noting that the application's user interface extends naturally from the

protocol's network communication. The code for the class that represents the [File]

application is listed in Figure 3-12. It shows how simply the application interfaces with

the rest of the framework. This interface mainly consists of applications exporting

their actions, namely instances of ApplicationAction subclasses. [Filel exports the

SendFileAction as a "buddy action", which means the SendFileAction will be

available whenever the framework gives the local user a choice of single-user actions.

One example of this is right-clicking on another identity in the contact list as shown

in Figure 3-4. One can see that the SendileAction is incorporated in the list of

available actions displayed in the framework's GUI. If desired, the [Filel application

could also export multiple-user actions via a getGroupActions method, or menu

actions via a getMenuActions method.

3.3.8 Developer Perspective Summary

The [File] application has been described using only about 80 lines of pseudocode.

The code's simple and succinct nature is a direct result of the power of the framework's

communication abstraction; each instance of data transfer takes one line of code. In

the context of the entire pseudocode, the identity and peer channel descriptor primi-

tives are overshadowed by code that is predominantly related to user interfacing and
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class SendFileAction extends ApplicationAction {
private Identity idReceiver = null;
// create a new action that will send a file to the given identity
public constructor SendFileAction(Identity id) {

super("Send File to"); idReceiver = id; }
// execute the send file process to identity "idReceiver"
public void executeO {

file-list = pop up GUI for user to choose files to send;
// create a hashtable to keep track of send requests
Hashtable htFiles = new HashtableO;
// create empty container metagram named "File"
Metagram mg = new Metagram("File", true);
Metagram mgTR = new Metagram("TransferRequest", true);
// add send request metagrams for each file
for each file in file-list {
Metagram mgSR = new Metagram("SendRequest", true);
// get eight random bytes as the file identifier
byte[ file-ID = FrameworkUtils.getRandomBytes(8);
htFiles.put(file-ID, file);
// fill in the fields of the send request
mgSR.add(new Metagram("ba:FileID", file-ID));

mgSR.add(new Metagram("FileName", file.getName()));
mgSR.add(new Metagram("s64i:FileSize", file.getSize());
mgTR.add(mgSR); // add SendRequest to the TransferRequest

}
mg.add(mgTR); // add TransferRequest to File metagram
// create channel to the receiver
PeerChannelDescriptor pcd = new PeerChannelDescriptor(idReceiver);
// send transfer request and wait for response
Metagram mgResp = pcd.send(mg);
// process response for accepted files

accepted = mgResp.get("RequestResponse") .getAll("ba:AcceptID");
for each file-ID in accepted { // construct FileData metagrams
mg = new Metagram("File", true);

Metagram mgFD = new Metagram("FileData", true);
mgFD.add(new Metagram("ba:FileID", file-ID));
mgFD.add(new Metagram("ba:Data", htFiles.get(file-ID)));
mg.add(mgFD); // add FileData to File metagram
if(pcd.send(mg).get("ba:ACK") is file-ID) notify success;
else notify the user that file was rejected by receiver;

Figure 3-10: Pseudocode for sending a file with the [File] application.
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class FileHandler extends ApplicationHandler {
public constructor FileHandler() { super("File"); }

// processes "File" context metagrams from the metagram dispatcher

public Metagram handle(ContextMetagram cm) {
check cm for proper format;
Identity idSender = cm.getSendero;
Metagram mg = cm.getContentMetagramo;
// process transfer requests
if(mg.get("File") .get("TransferRequest") is not null) {
requests = get send requests from transfer request;
accepted-requests = pop up GUI of requests;
create RequestResponse metagram mgRR;

for each accepted request in accepted-requests {
add file-ID to hashtable for accepted files;

create "ba:AcceptID" metagram and add to mgRR;

}
add "ba:RejectID" metagrams for each rejected file;
add mgRR to "File" metagram and return "File" metagram;

}
// process file data
if(mg.get("File").get("FileData") is not null) {

get file-ID from "FileData" metagram;
if(accepted files hashtable has file-ID) save it and return ACK;
otherwise, reject it and return an ERR metagram;

}
}

}

Figure 3-11: Pseudocode for the [File] application's FileHandler.

class FileApplication extends FrameworkApplication {
// constructs a new instance of the File application,
// automatically finding and plugging in the handler
public constructor FileApplicationO { super("File"); }
// returns the single-user action for this application

public ApplicationAction] getBuddyActions(Identity id) {
return new ApplicationAction] { new SendFileAction(id) };

}

}

Figure 3-12: Pseudocode for the [Fiuel application's framework interface.
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data representation. Although the framework's primitives are of prime importance,

it is important to recognize the primitives eliminate a tremendous amount of code

and complexity, and, in the process, greatly simplify application development.

3.4 Unimplemented Details

Some minor aspects of the framework design have not yet been implemented. Specif-

ically, the following ideas are not currently reflected in the implementation:

1. The implementation does not use a CA at all. New nodes can join freely by

contacting any node within the framework.

2. There is no automatic translation between application-level data and network-

level (metagram) data representations. Application developers currently create

and work with metagrams.

3. The peer channel descriptor mutators for encryption, authentication, reliability,

and integrity-checking are not implemented. That is, one cannot currently

change these channel options; all communications are encrypted, authenticated,

reliable, and integrity-checked but not compressed or anonymized.
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Chapter 4

Related Research

This framework builds upon a sizeable body of related work in several fields. The

framework shares many goals with other peer-to-peer service offerings, and I com-

pare and contrast their designs with the framework's design in Section 4.1. The

framework's abstraction builds and improves upon many previous communication

abstractions. I compare the framework's application primitives to other communica-

tion abstraction methods in Section 4.2.

4.1 Peer-to-Peer Services

Castro et al. have similar ideas about peer-to-peer application/service agglomeration

[2] and suggest that all nodes participate in a universal overlay to tackle the difficult

questions of "Who is running what and where?" and "How can I join?" However,

each application runs in a separate overlay, which creates significant overhead for

nodes running many applications. I have shown that there are many instances in

which multiple applications can share a single overlay. I believe that a single overlay

is the wrong abstraction for a peer-to-peer application, and the application-overlay

interface should be as modular as possible. This independence is especially important
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in times of rapid progress; applications should be written with flexibility in mind. New

lookup technologies are likely to be developed, and inflexible applications will be

pushed toward irrelevance. Also, applications built upon the universal ring will need

their own security and communication schemes, whereas applications built upon the

framework can reuse the framework's primitives. Finally, it is unclear what motivation

nodes have to participate in this universal overlay for the vast majority of the time

when they are not using its information. Nonetheless, their ideas for service discovery

and code distribution seem valuable, and my work could be extended to incorporate

solutions to these problems.

Stoica et al. propose i3 [18], a system that uses indirection to decouple the sender

from the receiver. Much like the framework, i3 is an overlay network designed to

enable distributed application development. Whereas the framework aims to simplify

application development by eliminating security and networking complexity, i3 aims

to provide support for non-point-to-point communication paradigms such as mobility,

multicast, and anycast. A future version of the framework could incorporate i3's

indirection technique to support these communication paradigms.

Castro et al. propose Scribe [29], a peer-to-peer, application-level multicast infras-

tructure. Scribe is built upon the Pastry peer-to-peer lookup protocol and focuses

on enabling large numbers of multicast groups, large membership within a group,

and many-to-many communication. Again, whereas the framework aims to simplify

and improve point-to-point application development, Scribe support primitives only

to make multicast scalable and reliable.

Freedman and Morris propose Tarzan [30], a peer-to-peer anonymizer that operates

at the IP level. Tarzan and the framework's LWAnonymity] application share the

fundamental idea of using Chaum's mix-nets within a peer-to-peer overlay to provide

anonymity via multi-hop routing. Whereas LWAnonymity] is a proof-of-concept ap-

plication and only attempts to provide weak anonymity, Tarzan has a security model

with probabilistic anonymity guarantees and attempts to provide strong anonymity,
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including cover traffic for known traffic analysis attacks. A future version of the

framework could incorporate Tarzan's strong anonymity mechanisms to further sup-

port anonymity in its point-to-point communications.

4.2 Communication Abstraction

Metagrams are similar to the S-expressions of LISP, which were recently expanded by

Rivest [14]. However, metagrams differ from S-expressions in that all metagram data

is explicitly labeled. Metagrams are also similar to XML documents, and metagram

exchange is similar to XML-RPC [19] and SUN RPC [20]. Metagrams are designed

to represent any type of data, whereas XML was designed to mark up text-based

documents. As such, XML inefficiently stores binary data encoded in base-64, result-

ing in binary XML documents that are one-third larger than necessary. Metagrams

are inherently binary, require attributes to be nested subelements, and do not have

any of the extra baggage that XML entails. Metagrams are also notably similar to

AOL Instant Messenger's Type-Length-Value (TLV) data type [15]. AOL TLVs do

not allow nesting and are thus quite limited as a representational format.

Peer channel descriptors are similar in essence to SSL [21] and Java's RMI [22]. SSL

has design incompatibilities that make it an awkward choice for the framework's

communication abstraction. In order for two parties to communicate securely, despite

knowing nothing about one another, SSL requires a hierarchical certificate model for

authentication. The framework has no possibility of out-of-band key exchange; joins

would need to involve an authentication certificate in addition to the uniqueness

certificate. Using these authentication certificates, identities could verify each other

in a secure manner. However, this design gives the CA significantly more power,

whereas in the framework's design, the CA merely limits the number of identities a

single user can obtain.

Both RMI and Java's native streams for manipulating encryption, integrity, compres-
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sion, and the like [23, 24, 25] are alternate solutions to the framework's communication

abstraction. However, when I described the framework's properties in Section 1.1, I

required technology independence. A solution involving RMI or Java's native stream

manipulation would create the dependency that the implementation must be in Java.

Many operating systems, including FreeBSD [26] and OpenBSD [27], still do not have

native support for Java 2, and as such, a native implementation could not be cre-

ated. Currently, the communication abstraction is free from such dependencies and

is platform- and programming language-independent. This ensures that developers

on any platform can implement the framework in any language.
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Chapter 5

Conclusion

I explained my motivation in the first chapter: to create a peer-to-peer framework that

enables superior applications to be developed more easily and more quickly. I analyze

these claims in Section 5.1, and I discuss avenues for future work in Section 5.2,

including extensions to the framework's fundamental capabilities. Finally, I conclude

with a summary in Section 5.3.

5.1 Analysis of Framework Design

In Section 1.1, I delineated several design goals for the framework and claimed that a

framework with these properties would result in superior applications. I now justify

that the design presented in Chapter 2 satisfies the framework's properties, remains

flexible and extensible to a variety of applications, and greatly simplifies application

development.

1. Security. Abstraction of user-to-user communication allows the incorporation

of already established point-to-point communication research. The point-to-

point communication paradigm is well-understood, and as such, the framework's
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point-to-point communication primitives support authentication, confidential-

ity, reliability, integrity checking, weak anonymity, and compression, each of

which can be toggled on or off as desired for each block of data. Each applica-

tion can use or not use these primitives, but the point-to-point communication

of the framework's applications is secure by default.

2. Decentralization. The framework is completely decentralized, except for the

process of certifying the uniqueness of a new node. An instance of the framework

can skip this certification if it does need to locatable within the framework.

3. Scalability. The two lookup protocol applications, [Ring] and [Blob], used by

the framework are both massively scalable. Bandwidth and storage constraints

are almost non-existent due to the framework's decentralized, distributed na-

ture.

4. Technology Modularity and Independence. Applications are not bound to lookup

protocols, and lookups are not bound to applications. Abstracting away the

underlying network allows for a diversity of lookup technologies. Preserving

application independence from network technologies is especially critical for

peer-to-peer applications, as applications will be able to migrate with rapidly

developed new technologies and remain competitive. Similarly, no single lookup

technology is perfect for all possible applications. Multiple technologies must be

available to support the diversity of present and future peer-to-peer applications.

By relying only on an abstraction of the underlying network, framework applica-

tions remain adaptable to even the most fundamental changes to the framework.

This abstraction also improves efficiency, as applications do not need their own

overlay. Despite the "chattiness" of peer-to-peer applications, the number of

framework applications that can run simultaneously on the same machine is

not bounded by their peer-to-peer nature.

The framework has other key flexibilities. Identities are not bound to locations

like in other systems, such as Chord [11], allowing users to be mobile within
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their underlying network connections. Also, the design of the framework is not

bound to programming languages or operating systems or even the IP layer, and

this technology independence theoretically allows instances of the framework to

run on any type of networked device, including suitably powerful cell phones

and PDAs.

5. Technology Transparency. All aspects of the framework are open, and hence,

understandable and criticizeable. The benefits of openness extend to the ap-

plication domain as well. Applications can reuse one another's functionality,

as was evidenced repeatedly in the implemented applications in Section 3.1.

One example of this potential is application composition, which is possible be-

cause metagram exchange is a powerful and general substrate for constructing

distributed applications.

For instance, application A can process a metagram, modify it, and then en-

ter it back into the metagram dispatcher formatted such that it will then be

handled by application B. In this manner, an application can be composed

with other applications, much like the command line utilities of UNIX.1 Such

application composition is quite practical, given that all the framework's appli-

cations are manipulating data streams. Simple applications whose sole purpose

is performing data translations, such as data compression or real-time video

reformatting, would be quite useful both as independent applications or within

larger composite applications.

Applications need not be composite in order to be useful to one another. If

application A exports some of its basic functionality as services, then application

B can incorporate this functionality and need not re-implement it elsewhere. In

this sense, the openness applications that export services create new framework

primitives upon which future applications can build.

6. Popularity. The framework's primitives greatly simplify peer-to-peer applica-

1An astute observer might quip that the "everything is a metagram" philosophy is quite similar
to the "everything is a file" philosophy in UNIX.
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tion development. This simplification allows a significantly larger range of devel-

opers to create peer-to-peer applications, while simultaneously allowing them to

create the applications faster and acclimate themselves to the framework more

quickly. These developers will create new applications, which will in turn draw

more developers to the framework.

In a fashion somewhat reminiscent of the IP layer's clean separation of network and

application, the framework's abstraction decouples applications from the underlying

network. This allows the framework to accommodate a wide variety of applications

and provide core peer-to-peer functionality that applications can reuse, while placing

little constraint on the types of applications that can be built. The result is a frame-

work that produces superior applications (with more features, fewer bugs, and fewer

insecurities) faster and easier (using shorter and simpler code) than building directly

upon the IP layer. These results are corroborated by the simple and concise code of

the implemented applications.

5.2 Future Work

While the framework offers substantial benefits for peer-to-peer application devel-

opment, its design can be expanded to allow a wider range of applications to be

constructed more easily. A future version of the framework could encompass the

following capabilities:

1. Framework-level data storage. A workable solution to this problem would im-

prove the framework by significantly simplifying the construction of applications

that require distributed data storage. Unfortunately, framework-level data stor-

age is a complex problem that is compounded further by the multiple ways in

which the framework can reasonably store data. Each lookup protocol could
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easily be extended to store and look up data items as well as identities; however,

overlays would store data in drastically different ways.

For instance, in a comparison of [Ringl and [Blob], the Chord-like and Freenet-

like lookup protocols respectively, one major difference would be data persis-

tence. Data stored in LBlobl would not be guaranteed to persist, but data

stored in [Ring] would be. Similarly, there would be availability differences. If

the desired data existed in [Ring], it would always be found, whereas in [Blob],

the data may not be found even if it did exist. Similarly, there would also be

latency differences. [Ring] is structured, and as such, the latency on a data

lookup would be tightly bounded. [Blobi is unstructured, and the latency on

its data lookups would frequently be as long as several minutes. Also, there

would be anonymity differences. A node that held a data item in [Ring] could

log each access to that data item, while [Blobi's algorithms are set up such that

logging requests would be nearly impossible. Finally, there would be robustness

differences, although both would attempt to provide robustness through redun-

dancy. [Ring] would replicate each data item across k nodes to ensure that all

data remains available with high probability. [Blob], on the other hand, would

replicate data only when that data item is successfully requested.

Unfortunately, it is unclear if either of these potential solutions is workable. I

have two main concerns with [Ring] data storage: (1) under highly volatile pres-

ence fluctuation, a tremendous amount of data might need to be transferred;

and (2) since the data persists, storage needs are monotonically non-decreasing

over time. It is also unclear if [Blobi is actually viable for many types of appli-

cation data, because data is not guaranteed to be found and lookup latencies

could be intolerably long.

2. Support for multiple communication paradigms. The framework only provides

an abstraction for the point-to-point communication paradigm, where one user

wants to communicate with exactly one other user. Other paradigms, known

as multicast and anycast, involve one-to-many or many-to-many communication
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paradigms.

In a similar manner to how the framework simplifies point-to-point applica-

tion construction, framework-level abstractions of these other communication

paradigms would make entire classes of distributed applications significantly

easier to develop.

3. Stronger anonymity. Despite a wealth of research literature on anonymity, the

anonymization methods implemented in the framework are not perfect. The

strength of the framework's anonymity could be improved by incorporation of

ideas from Tarzan [30] and Chaum's mix-nets [17], for instance.

4. Code release. I would eventually like to release my implementation to the world.

Before I will do this, I need to be more certain that the implementation works

as well as it should in theory. The networking code works well in experiments

involving a handful of nodes, but my testing to date has not involved larger

networks. Further stress testing and performance analysis are necessary.

5.3 Summary

This thesis has presented an application framework that greatly improves the peer-to-

peer application development process. The framework abstracts networking and secu-

rity complexity away from developers, who only need application-specific knowledge

to build robust, scalable peer-to-peer applications. The superiority of the develop-

ment process is evidenced by the example applications' implementations. Application

source code is shorter and simpler, resulting in easier and faster application develop-

ment with fewer possibilities for bugs and insecurities.

The framework also provides many qualitative contributions. Its ease of extensibility

and abstraction of complexity opens the peer-to-peer community to a wider range

of developers (and thus ideas) while ensuring that these applications will be secure,
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robust, and follow many "best practices" of software engineering. The framework's

openness encourages sharing of ideas, which in turn promotes learning, progress, and

better applications for the end user.

This is, of course, the whole point of the framework: to create better applications

that have more value for the end user. Framework applications create new and better

methods of online interaction, which will be critical to human communication in the

future. Well-connected users will be able to harness the power and connectivity of

their computers to manage mundane detail, improve interpersonal communications,

and, as a result, make their lives easier and better.
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Appendix A

Point-to-Point Protocol

Suppose an identity named Alice wants to send a metagram to an identity named Bob.

Alice and Bob know each other's identity, and Alice has a method of getting bits to

Bob, but she has never communicated with Bob. Can they still communicate securely?

The answer is yes, since messages from that appear to come from one's identity must

have been created by that identity, as shown in Section 2.2.1. Alice and Bob use this

property to accomplish secure communication through the framework's point-to-point

protocol, which is similar to the protocol in RFC 2617 [4]. This appendix provides

the detail about the three-part protocol that allows secure communication from this

setup.

A.1 Stage 1 - Initialization

Alice and Bob begin a secure connection by exchanging 64 bits of random data and

forming a 128-bit initialization vector for the first part of the protocol. This step

is illustrated in Table A-1. This initialization vector will later serve to seed the

encryption process with random data.
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Stage 1 - Initialization

(Connection Establishment)

Initialization Vector B = {0, 1}64

Initialization Vector A = {0, 1}64

[Both calculate IV = Initialization Vector A | Initialization Vector B]

Figure A-1: Stage 1 of the point-to-point protocol: Initialization.

A.2 Stage 2 - Ticket Exchange

Next, Alice and Bob generate and exchange cryptographic tickets in a somewhat com-

plicated process, which is shown in Figure A-2. Alice and Bob start by performing

Diffie-Hellman key exchange and use the exchanged data to calculate two unidirec-

tional session keys: K, from Alice to Bob and K, from Bob to Alice. These session

keys will serve to encrypt future data sent to one another.

Next, Alice and Bob authenticate themselves by creating DSA signatures on the

previously exchanged Diffie-Hellman data. Since only Alice and Bob can create their

respective signatures, each is cryptographically assured of the other's identity. At this

point, Alice and Bob could secure communicate metagrams to one another, but first,

Alice and Bob create tickets that represent all the necessary data to re-establish this

secure connection. The ticket Alice creates for Bob is encrypted with Alice's master

AES key and then sent to Bob. Bob also encrypts his ticket and sends his ticket to

Alice. The ticket format is described in Table A.1.

Instead of going through this entire ticket generation and exchange process, the next

time Alice wants to communicate something to Bob, she can simply present to Bob
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Alice Bob

Stage 2 - Option 1 - Ticket Exchange

"IS-cleartext", [DH] gY mod p

[DH] gx mod p

[Both calculate K, = SHA-1(gy mod p I| OxOOQO),
K, = SHA-1(gxy mod p I| 0x0001)]

AESK, ( [DSA-PK]..., DSA-Signature(gx mod p i gy mod p))

AESKe ([DSA-PK]..., DSA-Signature(gx mod p , gY mod p))

[Both hash public keys to figure out the identity of the other party.]

AESK, ([Ticket]..., HMAC)

AESK,([Ticket] ... , HMAC)

Figure A-2: Stage 2, Option 1 of the point-to-point protocol: Ticket Exchange.

65

BobAlice



Alice Bob

Stage 2 - Option 2 - Ticket Transmission

Ticket

Figure A-3: Stage 2, Option 2 of the point-to-point protocol: Ticket Transmission.

the ticket he previously gave her. This is another option for the second stage of the

protocol and is illustrated in Figure A-3; they can immediately resume the previously

established secure connection instead of going through the computationally-intense

cryptographic handshake listed in Figure A-2. This is possible because Alice has

remembered the session keys, and Bob is able to decrypt the ticket and extract the

session keys that will decrypt any content that immediately follows. Note that since

the ticket is encrypted with the Bob's master AES key, only Bob can read it, and it

is fine to transmit it to Bob in the clear.

A.3 Stage 3 - Metagram Exchange

At this point, there is an open socket between parties who share secret session keys.

Both parties are free to send metagrams via this "encrypted socket" as shown in Figure

A-4. Metagrams are sent as (CallTag, Metagram, HMAC) tuples, and many such

tuples can be transmitted in both directions. Tuples whose HMACs' fail are silently

'The HMAC is a symmetric key message authentication code (MAC) that is computed by hash-
ing the shared secret key, initialization vector, and the message (in our case CallTag followed by
Metagram). The resultant hash and the secret key are hashed again to yield the HMAC, which
guarantees the integrity of the message.

Field Identity K, Session Key K_ Stop Time Start Time HMAC
# of Bits 128 256 256 64 64 160

Table A.1: Point-to-point protocol ticket format.
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Stage 3 - Metagram exchange and termination
AESK, ((CallTagi, Metagrami, HMAC(K,, IV, CallTagi, Metagrami)), (...), ...)

[For each HMAC that checks out, the corresponding metagram
is handed off to the dispatcher for processing. Otherwise, the
corresponding metagram is silently dropped.]

AESK, ([END] optional padding data, HMAC)

AESK, ([END] optional padding data, HMAC)

Connection terminated.

Figure A-4: Stage 3 of the point-to-point protocol: Metagram Exchange.

dropped. Otherwise, the metagram is bundled with its context, namely the sender's

identity, and handed off to the metagram dispatcher and eventually to an application-

level module for content processing. The application-level module eventually returns

with a response metagram. The response metagram is forwarded back along the

encrypted socket with its CallTag set as the request's CallTag but with the most

significant bit flipped to indicate a return instead of an initial call.

A.4 Optimization Discussion

It is important to note that the ticketing optimization is just to make subsequent

metagram exchanges as light as possible. Alice and Bob must do at least one com-

putationally intensive cryptographic handshake to set up a secure connection. The

ticketing optimization allows the parties to reuse the secure connection, greatly re-

ducing the computational overhead involved in subsequent connections.
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Appendix B

Peer Channel Descriptor API

A peer channel descriptor is the abstraction of how applications communicate with

one another within the framework. It represents everything about a communication

channel to another peer, including the peer on the other side as an identity, the

location of the identity,1 and parameters that affect how the data is transmitted

across the network and how the peer is located within the framework.

One creates an instance of a peer channel descriptor with one of several constructors.

Upon creation, data can immediately be sent to the other peer in the default manner

via the send method. The send method call executes the lookup process if the peer's

location is not already known. Alternatively, one can specify a non-standard lookup

process before establishing a peer's location via a send method call.

Peer channel descriptors also maintain communication options such as toggling en-

cryption, authentication, or compression that specify how future data should be sent.

These options are orthogonal and can be independently turned on or off as desired.

'For all intents and purposes, locations within the framework are IP addresses. However, it
is important to note that the location of a framework identity is not limited to just IP. If the
framework's underlying platform had a way to represent and communicate with locations in other
networks besides the Internet, identities could easily communicate across these networks within the
original design of the framework.
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B.1 API Specification

The Peer Channel Descriptor API consists of constructors to create peer channel

descriptor objects, a method to see if a peer is currently online, methods to manage

the process of peer location, a method to send data to the peer, and methods to

manage how data is sent to the peer.

B.1.1 Constructors

All peer channel descriptor objects are created through the constructors listed in Ta-

ble B.1 or through constructors defined in application-specific peer channel descriptor

subclasses. Constructors' parameters uniquely identify peers within the framework,

and different constructors use different procedures to create full peer channel descrip-

tor objects from these parameters.

Most peer channel descriptors will be instantiated via the first constructor, which

creates an instance using only a framework identity. Once an instance created with

this constructor needs to send data, the peer channel descriptor will automatically use

the framework's lookup protocols to locate the identity before sending. The details

of how the lookup is performed and can be configured are explained in Section B.1.3.

The parameters of the second and third constructors are in the form of a peer's loca-

tion as an IP address and a TCP port or a DNS name and a TCP port. These con-

structors are used when peers are specified directly by their network addresses, such

as in lookup protocol applications, as well as when a node does its initial framework

discovery. Note that the peer's identity is not discovered until the first communica-

tion.

The fourth constructor is similar to the first, as a public key uniquely specifies an

identity. The public key is hashed to get the peer's identity, and then the peer channel
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PeerChannelDescriptor(identity)
Defines a peer channel descriptor (with the default settings) for the given

identity.
PeerChannelDescriptor(ip-address, port)

Defines a peer channel descriptor (with the default settings) for the given
IP address and TCP port.
PeerChannelDescriptor(dns-name, port)

Defines a peer channel descriptor (with the default settings) for the given
DNS name and TCP port.
PeerChannelDescriptor(public-key)

Defines a peer channel descriptor (with the default settings) for the given
public key.

Table B.1: Peer channel descriptor constructors.

boolean isAlive()

Returns true iff the identity corresponding to this peer channel de-

scriptor is currently locatable.

Table B.2: Peer channel descriptor presence establishment.

descriptor is created using the identity.

B.1.2 Presence

Applications frequently need to establish the presence of a peer, i.e., whether the

peer is currently reachable for communication. Peer channel descriptors have such a

method, listed in Table B.2.

B.1.3 Lookups

Frequently, the location of an identity within the framework needs to be ascertained.

Peer channel descriptors discover the location using a process that is straightforward

but customizable, and as such many parameters are involved.

Under normal circumstances, a peer channel descriptor uses the framework's default

lookup protocols in order to find identities. However, this behavior is just the de-
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Lookups getLookups()
Returns the lookup list

void clearLookups()
Clears the lookup list.

void addLookup(lookup)
Adds lookup to the lookup list.

void removeLookup(lookup)
Removes lookup from the lookup list.

Table B.3: Peer channel descriptor lookup list operations.

boolean isLookupAllMode ()
Returns true if the peer channel descriptor will try to lookup the given
node ID by all possible means. The default value is false.

void setLookupAllMode(boolean)
Changes the flag for trying all possible lookups.

boolean isLookupDefaultMode ()
Returns false if the PCD will only use the lookups specified in its
lookup list and will not fall back on default lookups. The default
value is true.

void setLookupDefaultMode (boolean)
Changes the flag for trying the default lookups (after the specified
lookups fail).

Table B.4: Peer channel descriptor lookup modes.

fault. Applications may change this behavior by customizing the lookup process of a

peer channel descriptor instance. Peer channel descriptors have a lookup list, which

manages an ordered list of lookup protocols that will be used in order to locate an

identity. Next, depending on the peer channel descriptor's lookup-defaults mode, the

framework's default lookups may be tried. Finally, depending on the lookup-all mode,

the framework's remaining lookups may be tried. Methods for specifying the lookup

list are specified in Table B.3, methods for altering the lookup modes are specified

in Table B.4, and pseudocode for this identity lookup process is delineated in Figure

B-i.
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B.1.4 Communication parameters

Peer channel descriptors also specify the manner in which data is sent. Data can

be sent with any combination of the following orthogonal parameters set: encryp-

tion, authentication, integrity-checking, compression, reliability, and anonymity. The

methods for accessing and toggling these parameters as well as their default values

are listed in Table B.5.

B.1.5 Data Transfer

The final duty of a peer channel descriptor is the actual transmission of application

data to the peer. The send method, listed in Table B.6, executes the transfer of

data to the peer according to its communication parameters using the point-to-point

protocol and returns the peer's reply: response.

B.2 Pseudocode

The pseudocode for this entire API is rather trivial except for the method that finds

the location for an identity. This pseudocode for this method is listed in Figure B-1.
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boolean isEncrypted()

Returns true if this PCD encrypts all data sent through it. The default
value is true.

void setEncrypted(boolean)
Toggles the encryption flag on this channel.

boolean isAuthenticated()
Returns true if this PCD authenticates all data sent through it. The
default value is true.

void setAuthenticated(boolean)
Toggles the authentication flag on this channel.

boolean isIntegrityChecked()
Returns true if this PCD integrity-checks all data sent through it. The
default value is true.

void setIntegrityChecked(boolean)
Toggles the integrity-checking flag on this channel.

boolean isCompressed()
Returns true if this PCD compresses all data sent through it. The
default value is false.

void setCompressed(boolean)
Toggles the compression flag on this channel.

boolean isReliableO
Returns true if this PCD reliably (TCP) sends data through it, false
if unreliably (UDP). The default value is true.

void setReliable (boolean)
Toggles the reliability flag on this channel.

boolean isAnonymized()
Returns true if this PCD anonymizes all data sent through it. The

default value is false.
void setAnonymized(boolean)

Toggles the anonymity flag on this channel.

Table B.5: Peer channel descriptor communication parameters.

response send(data)
Sends data to the other peer using the point-to-point protocol (speci-
fied in Appendix A) in the manner specified by the options of the peer
channel descriptor.

Table B.6: Peer channel descriptor data transfer.
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private Location getLocationO {
if location is already known, return location;

triedLookups = { };
// first try lookups in specified lookup list

lookupList = this.getLookupList();
for(int i=O; i<lookupList.length; i++) {

lookup = lookupList[i];

if triedLookups contains lookup, continue;

location = Framework.executeLookup(identity, lookup);
if location is now known, return location;
add lookup to triedLookups;

}
// next see if the default lookups should be tried
if isLookupDefaultModeO {
defaultLookups = Framework.getDefaultLookupso;
for(int i=0; i<defaultLookups.length; i++) {

lookup = defaultLookups[i];

if triedLookups contains lookup, continue;

location = Framework.executeLookup(identity, lookup);
if location is now known, return location;
add lookup to triedLookups;

}
}
// next see if all lookups should be tried

if isLookupAllModeO {
allLookups = Framework.getAllLookupso;
for(int i=O; i<allLookups.length; i++) {

lookup = allLookups[i];
if triedLookups contains lookup, continue;
location = Framework.executeLookup(identity, lookup);

if location is now known, return location;

add lookup to triedLookups;

}
}
// we have exhausted all lookups without success

return null;

}

Figure B-i: Pseudocode for peer channel descriptor identity location.
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Appendix C

IMHandler Code

I have included the IMHandler code so that one can see actual code (and not pseu-

docode) that represents the entire functionality of the LIM] application.

Note the brevity and simplicity of the code.

package is.apps.im;

import is.*;

import is.apps.*;

/** IMHandler is the implementation of the ApplicationHandler interface

* for processing [IM] metagrams for the (very simple) IM

* application. */

public class IMHandler implements ApplicationHandler {

/** This HashMap is the list of currently active conversations. The

* keys are the node IDs. The values are the GUI panels holding the 10

* conversations. */

private java.util.HashMap hmConversations;

/** Defines a new IMHandler with no current conversations. */

public IMHandlero { hmConversations = new java.util.HashMap(; }

/** Signifies that this handler handles [IM] metagrams. */
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public String getName( { return "IM"; }

/** This method handles a context metagram whose content metagram is

* an [IM]. If the IM is received successfully, this method returns

* an [ACK]. If there is a problem, this method returns an

* [ERR]. */ 20

public Metagram handle(ContextMetagram cm) {
if(cm == null) return is.net.Network.mgERR;

NodeID nodeID = cm.getNodeIDO; // get sender

Metagram mgIM = cm.getMetagramo; // get message

// See if we already have a conversation going with this node.

IMPanel imp = (IMPanel)hmConversations.get(nodeID);

if(imp == null) imp = (IMPanel)initiate(nodeID); // new conversation

imp.receive(mgIM);

return is.net.Network.mgACK;

} 30

/** Initiate an IM conversation to the given node. */

public is.gui.ISPanel initiate(NodeID nodeID) {
IMPanel imp = new IMPanel(nodeID);

hmConversations.put(nodeID, imp);

imp.showDialogo;

return imp;

}
/** Close an IM conversation to the given node. */

public void close(NodeID nodelD) {
hmConversations.remove(ISUtils.toString(nodeID.getBytes()); 40

}
}
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