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Abstract

To learn to behave in complex, uncertain domains, robots must represent and learn compact
models of the world dynamics. These models will have a significant bias towards the types
of regularities we see in the world around us. Probabilistic planning rules are a strong first
step towards an appropriately biased representation; as we will see in this thesis, they can
be learned efficiently from little training data.
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Chapter 1

Introduction

Imagine robots that live in the same world that we do; they must be able to predict the

consequences of their actions both efficiently and accurately.

Programming a robot for advanced problem solving in a complicated environment is

an hard, open problem. Engineering a direct solution has proven difficult. Even the most

sophisticated robot programming paradigms (Brooks, 1991), are difficult to scale to human-

like robot behaviors.

If robots could learn to act in the world, then much of the programing burden would be

removed from the robot engineer. There has been work in reinforcement learning on this

problem (Smart & Kaelbling, 2000), but in these cases the robot learns policies for achiev-

ing particular goals, without gathering any general knowledge of the world dynamics. As a

result, the robots can learn to do particular tasks but have trouble generalizing to new ones.

Instead, if robots could learn how their actions affect the world, then they would be

able to behave more robustly in a wide range of situations. This type of learning allows

the robot to develop a world model that represents the immediate effects of its action in

the world. Once this model is learned, the robot could use it to behave robustly in a wide

variety of situations.

Imagine, for example, that you are an engineer that must design a robot to deliver

mail in wide range of different office environments. You could try to directly program

all of the possible floor plans the robot would need to navigate. This would be almost

impossible. Or, you could use reinforcement learning to learn to achieve each goal in each
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office layout, such as finding a particular office. While this approach could work, it would

be very inefficient.

Model learning provides a reasonable alternative. You would first provide the robot

with a set of actions, such as following corridors and reading office numbers. The robot

could then, in any office environment, execute these action, explore the office, and learn a

model of where things are and how to navigate between them.

There are many different ways of representing world models, but one representation,

rules, stands out. Rules represent situations in which actions have specified effects. Be-

cause each situation can be considered independently, rules can be learned incrementally

without having to understand the whole world. Rules also encode assumptions about how

the world works and what is possible when actions are performed. These assumptions, as

we will see in detail later, correspond to the dynamics of our world and simplify learning

and reasoning.

Once rules have been learned, then acting with them is a well studied research problem.

Probabilistic planning approaches are directly applicable (Blum & Langford, 1999). And

work in this area has shown that compact representations, like rules, are essential for scaling

probabilistic planning to large worlds (Boutilier, Dearden, & Goldszmidt, 2002).

But, of course, learning world action models could be just as difficult as programming

the robot in the first place. This thesis explores the learning of a simple probabilistic plan-

ning rule language in worlds that are much less complex than our office example above. We

will see that this language has a strong bias that enables learning of accurate world models

from less training data than required by traditional representations of action.

This is an encouraging result, but it is just the first step. As we will see, these rules are

actually too restrictive; they make so many assumptions that they are not directly useful

in the real world. But, the learning results are still encouraging. They provide hope that

planning rules can be extended to model our world without losing their computational

advantages.
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1.1 Structured Worlds

Developing representations that are structured to efficiently encode the models they will

represent has many advantages. These representations provide a bias for learning algo-

rithms. Because the representations should be able to efficiently encode the desired models,

the learning algorithms can search for compact models: models that will generalize better

and can be learned from fewer training examples. And, in general, as the representation

becomes more biased towards modeling specific types of worlds, fewer examples will be

required to learn an accurate model. However, this increase comes at a cost. These biased

representations generally represent worlds that violate their assumptions very poorly.

So, our goal is to make as many assumptions as possible without losing the represen-

tational capacity that is required to model the real world. In the planning literature, the

following planning world structure (PWS) assumptions are common:

" Frame Assumption: When an agent takes an action in a world, anything not ex-

plicitly changed by that action stays the same.

" Object Abstraction: The world is made up of objects, and the effects of actions on

these objects generally depend on their attributes rather than their identity.

" Action Outcomes: When an action is performed there is a small set of possible

changes that can happen to the world. The action can succeed, fail, or have some

number of other outcomes.

The first two assumptions have been captured in almost all planning representations,

such as STRIPS rules (Fikes & Nilsson, 1971) and more recent variants (Penberthy &

Weld, 1992). Recently, the third assumption has been made for modeling probabilistic

planning domains with rules (Blum & Langford, 1999), in the situation calculus (Boutilier,

Reiter, & Price, 2001), and in the equivalence-class approach of Draper, Hanks, and Weld

(1994).

Since these assumptions are so commonly made and are essential for efficient action

selection, it is important to understand how they can improve learning. It is commonly

acknowledged that planning assumptions are almost certainly too restrictive; however,
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demonstrating algorithms that learn them from little data provides hope that less restricted

representations can be developed for use in robots that learn the dynamics of the real world.

1.2 Thesis Overview

The rest of this thesis is organized as follows. First, Chapter 2 formally defines probabilistic

relational planning rules. These rules are discussed in more detail in Chapter 3 which shows

that they encode PWS more efficiently than traditional action representations. Chapter 4

presents a rule learning algorithm that is biased by planning rule structure. The experiments

of Chapter 5 provide validation that this learning algorithm is biased appropriately. Finally,

Chapter 6 and Chapter 7 present related and future work.

All of the work in this thesis was done in close collaboration with Hanna Pasula. These

ideas were first presented in (Pasula, Zettlemoyer, & Kaelbling, 2003) and this thesis details

more of our continuing collaborative research.
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Chapter 2

Probabilistic Relational Planning Rules

This chapter presents a formal definition of relational planning rules and the world descrip-

tions that they manipulate. World descriptions represent what the agent knows about the

world in which it lives and rules represent what the agent believes will happen when it

performs actions in these worlds.

World descriptions and planning rules are built from a subset of the syntax of first-order

logic. They have predicates, constants, variables, universal quantification, and conjunctive

connectives. But, they lack functions, disjunctive connectives, and existential quantifica-

tion. Literals, ground literals, truth values, and substitutions are defined as usual. Finally,

in this thesis, sets of literals and conjunctions of literals are used interchangeably.

2.1 Representing Worlds

An agent's description of the world at time t, also called the state S', is represented syntac-

tically as a set of ground literals. Semantically, these literals represent all of the important

aspects of this world. The constants map to the objects in the world. The literals encode

the truth values of every possible property for all of the objects and all of the relations that

are possible between objects.

For example, imagine a simple blocks world. The objects in this world include blocks,

a table and a gripper. Blocks can be on other blocks or on the table. A block that has

nothing on it is clear. The gripper can hold one block or be empty. The following state
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B1

B2

Figure 2-1: A blocks world with two blocks in a single stack and an empty gripper.

ol(BI. B2), On(B2, TABLE). inhand(NIL), clear(BI), block(B 1).

block( B2). -,clear(B2). --On (B2. B ). -,On ( 1., TABLE), (inhand(B). (.1)

-linhand(B2), -,block(TABLE)

represents a blocks world where there are two blocks in a single stack on the table. Block

BI is on top of the stack, while B2 is belOW Bi and on the TABLE. This state is illustrated

in Figure 2-1.

Finally, consider when these world descriptions are useful. Because they must contain

all of the important details of the world, they can only be used when the world is fidll

observable, when no important aspects of the world are hidden for the agent's perception.

All of the worlds in this thesis are fully observable. Investigating the partially observable

case, where the truth values of some of the literals are not specified, is an important area

for future work.

2.2 Representing Rules

A rule set is a model of how a world will change as an agent performs actions in it. For

example, the rule set we will explore in this section models how the simple blocks world

changes state as it is manipulated by a robot arm. This arm can attempt to pick up blocks

and put them on other blocks or the table. However, the arm is faulty so its actions can

15



succeed, fail to change the world, or fail by knocking the block onto the table.

This section first presents the syntax of rule sets. Then, the semantics of rule sets

is described procedurally by showing how the rules are used by an agent. The running

example explores the dynamics of blocks world, as just described.

A rule set, R, is simply a set of rules. Each r C R is a four-tuple (C, 0, PO, A). The

rule's action r.A is a positive literal. The context r.C is a set of literals. The outcome set T.0

is a non-empty set of outcomes. Each outcome 0 C r.0 is a set of literals. Finally, r.PO is

a discrete distribution over the set of outcomes that must assign a non-zero probability to

each outcome. Rules may contain variables; however, every variable appearing in r.C or

r.0 must also appear in r.A. Figure 2-2 is a rule set with four rules for the blocks world

domain. Each rule's context is the set of literals to the left of the arrow, with the exception

of the last literal which is the action. Each rule's right side shows outcomes paired with

their probability from r.Po.

A rule set, R, is a full model of a world's dynamics. With this rule set, the agent can

predict the effects of an action, a, when it is performed in a state, S'. It can also look at a

transition from S' to St+1 that occurred when a was executed and determine how likely that

particular effect was. Both of these uses are described in this section. They have a common

subproblem of determining which rule, from a set, governs the change for a particular initial

state, St, and action, a. This problem is discussed first.

2.2.1 Rule Selection

Given an action, a, a state, S, and a rule set, R, an agent will often need to find the rule

r E R that covers S given a. This is a three-step process that ensures that r's action models

a, that the r is well formed given a, and that r's context is satisfied by S. As a running

example, imagine an agent wants to predict the effects of executing pickup(B 1, B2) in the

world described in Equation 2.1 given the model represented by the rule set in Figure 2-2.

The first step is to build the set of rules R' C R whose actions model a. For every

r C R, the agent attempts to unify r.A with a. Because of the rule's limited syntax,

unification will succeed if a and r.A have the same predicate, the same arity, and there is
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not an index i such that the ith argument to r.A and the ith argument to a are different

constants. If unification is successful, then the agent computes an action substitution 0(a)

that maps all of the variables in r.A to the corresponding constants in a. If unification fails,

r is removed from R'. The pickup(BI, B2) action in our running example unifies with the

action of the first rule in R' producing the substitution O(a,r) = {X/Bl, Y/B2}; fails to unify

with the second rule's action, because B2 doesn't equal TABLE; and fails to unify with the

remaining rules since they have different predicates.

Now, the agent has to check that every r E R' is well formed given a. r is well

formed if the conjunctions (ar)(r.C) and O(a)(O), for all 0 E r.0, do not contain any

contradictions. In our running example, the only r E R' is well formed given a. However,

if the action a had been pickup(BI, BI) then the first outcome of the first rule in Figure 2-2

would have a contradiction since it would contain clear(BI) and -,clear(B1). Any rules with

contradictions are removed from R'.

Then, for each remaining r E R', the agent checks whether r.C is satisfied by the state S

using the selector function 6(C 1 , C2 ) that takes two ground literal sets as input and returns

1 if C 1 C C 2 , and 0 otherwise. More specifically, S satifies r.C if 6 (O(a,)(r.C), St) 1.

Note that the application of the action substition to the context, (ar)(r.C), will always

be ground because we assumed that all variables in r.C are also in r.A. Any r whose

context isn't satisfied by S is removed from R'. To finish our running example, (ar)(r.C)

for the only rule r remaining in R' is {on(BI, B2), clear(BI), inhand(NIL), block(B2)}. Since

this set is a subset of the state in Equation 2.1, r is the rule that will model the effects of

pickup(BI, B2).

Notice that under an action a the state S could be covered by zero, one, or many rules.

A rule set is valid if every possible state S is covered by at most one rule. All of the rule

sets in this thesis are assumed to be valid. Dealing with multiple rules that make conflicting

predictions about future worlds is an important area for future work.
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.7 inhand(X), -clear(X), -,inhand(NIL),
on (X, Y), clear(X), inhand(NIL) , -on(X, Y), clear(Y)

block(Y),pickup(X, Y) .2 on(X, TABLE), -,on(X, Y), clear(Y)
.1 : no change

T inhand(X), -,clear(X), -inhand(NIL),
on(X, TABLE), clear(X), inhand(N1L) .66: -,on(X, TABLE)

pickup(X, TABLE) .34: no change

7 inhand(NIL), -clear(Y), -iinhand(X),

clear(Y), inhand(X), block(Y), .:on(X, Y), clear(X)

Puton(X, Y) .2: on (X, TABLE), clear(X), inhand(NIL),
-inhand(X)

.1 : no change

i X . on(X, TABLE), clear(X), inhand(NIL),inhand(X), .8: -inhand(X)
puton(X, TABLE) .2: no change

Figure 2-2: Four relational rules that model the world dynamics of a simple blocks world.

2.2.2 Rule Execution

Now, an agent can predict the effects of executing action a in state S' as follows. First, it

finds the rule r E R that covers S' given a. If there are no such rules, then the agent can

assume, given the frame assumption, that executing a would not change the world. If there

is an r and a is performed, then the rule's list of outcomes, r.0, and its distribution over

them, r.P0 , define what will happen. First, an outcome 0 is selected by sampling from

r.Po. This outcome is then used to construct the next state, S'+', as follows. The agent

initializes St+1 by copying the literals from St. Then, the agent grounds 0 by applying

0(ar) to it. For each literal in 0(a)(0), the agent next finds the literal in S'+1 that has

the same atomic formula and checks that their truth values match. It they do, nothing

happens. Otherwise, the agent flips the truth value of the literal in S'+1. Figure 2-3 shows

an example where the first outcome from the first rule in Figure 2-2 predicts that effects

of pickup(B1, B2) to the state of Equation 2.1. The states are represented pictorially and

annotated with only the true literals, all others are assumed to be false. As the outcome

predicts, inhand(BI) and clear(B2) become true while on(BI, B2), clear(BI), and inhand(NIL)

become false.

18



on(B1,B2) clear(B2)
on(B2,TABLE) on(B1 TABLE)
clear(B1) inhand(B1)
inhand(NIL)

B1
B1 pickup(B1,B2)

B2 B2

S A S 1

Figure 2-3: Two subsequent states of the blocks world with two blocks. The pictured states
are represented by the neighboring lists of true propositions. Everything that is not listed is
false. The action pickup(B], B2) was performed successfully

2.2.3 Likelihood Estimation

Given two states S' and S'+', an action a and a rule set R, another problem that an agent

often faces, especially when learning rules, is to determine the probability that (1 caused

S' to become S'+ 1 , p(S±1 5', a, R). Just like before, the agent first finds the unique rule

r E R that covers S' given a. If there is no rule, the agent assumes that there should be no

change to the initial state, S' = S +'. If this is true, then P(S'+' S'. a. R) is one, otherwise

the model has failed since an impossible transition has occurred. Assuming a unique r E R

is found, then the probability of the transition is

P(S'+' 5', 6) (0 S(a+r) () S tI)(S t-(.,)(O), S).PO(O) . (2.2)
Ocr.O

The two 6 functions select the outcomes that describe the transition from S' to S'+': the

first one checks whether the literals in the ground outcome are all in the new state, and the

second one enforces the frame assumption that the literals in S'+' but not in the outcome

must have the same truth values that they did in S'. If both of these delta functions return

one, then the outcome 0 covers the state transition from S' to St+' The probability of each

S'+ is the sum of all the outcomes that cover the transition from S' to it.

Notice that each O can only cover one transition to any particular SI+I, since S' and 0
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uniquely determine S'+ 1 , as described in Section 2.2.2. This fact guarantees that P(St+ IS', a, r)

is a well defined distribution.

2.2.4 Overlapping Outcomes

Consider the phenomenon of overlapping outcomes. Given an initial state S', more than

one outcome could cover the transition to an unique next state St+1. When this happens the

outcomes are called overlapping. For example,

inhand(X), block(X),paint(X) ' .8: painted(X), wet

.2 : no change

is a rule for painting blocks. When this rule is used for an action paint(BI) in an initial state

that contains wet and painted(B i) the outcomes overlap. Both outcomes describe changes

that lead to the same next state, in this case they expect no change to occur. Overlapping

outcomes are an integral part of planning rules. They also significantly complicate rule

learning, as we will see in Chapter 4.
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Chapter 3

Representing Structured Worlds

When representing worlds, it is important to leverage their inherent structure. Every repre-

sentation makes different assumptions about the model it encodes, and choosing the most

appropriate representation is a difficult problem. This chapter explores representations for

encoding planning world structure (PWS). It shows that planning rules have a built-in bias

that makes them particularly well suited for representing PWS and that enables the creation

of special-purpose learning algorithms, as described in later chapters.

3.1 PWS in the Simple Blocks World

Because this chapter focuses on efficiently representing PWS, this section first reviews this

structure by showing how it is displayed by our running example, the simple blocks world.

The blocks world of Chapter 2 exhibits the planning world structure assumptions that

were introduced in Section 1.1. The execution of the pickup(B1, B2) action from Figure 2-

3 demonstrates each assumption. First, the frame assumption guarantees that all of the

propositions that aren't changed by the action don't change state. For example, on(B2, B1)

is false and remains false. Also, notice that variable abstraction ensures that the names of

the blocks don't really matter. If B2 had been on B1 the gripper still could have picked it up.

Finally, remember that the action has a set of possible action outcomes. We only see one

outcome in the figure, but the gripper could have dropped the block or failed to move it at

all.
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3.2 Propositional Representations

First, for simplicity, this section considers representing world structure without the use of

variable abstraction. This is an important subproblem because it is the case where well

established representations with learning algorithms are available for comparison. In Sec-

tion 3.3, we will consider the full case.

The most common and well-studied representation for probabilistic relationships among

random variables is Bayesian networks (Pearl, 1988). Bayesian networks make conditional

independence assumptions that do not leverage all of the PWS. This fact is explored in this

section and contrasted with planning rules that leverage the structure more fully.

This representational discrepancy will be particularly important for learning as we will

see in Chapter 5, which shows that planning rule learning is able to leverage the represen-

tation bias.

3.2.1 Planning Rules

Propositional planning rules (PPRs) have exactly the same syntax and semantics as the

relational planning rules of Chapter 2, with a single exception: variables are not allowed to

appear in any part of propositional rules. As an example, consider the PPRs in Figure 3-1

that model a blocks world with two blocks. Notice, in particular, that although these rules

look very similar to relational rules, the fact that they lack variables makes each literal, for

all practical purposes, an atomic proposition.

Although they encode the same informational as their relational counterparts, proposi-

tional rules are much less compact. For example, all of the n(n - 1) propositional rules

for how to pick up one block from another in an blocks world with n blocks could be

represented as a single rule with variable abstraction.

PWS assumptions are tightly integrated into PPRs. The procedural semantics, as de-

scribed in Section 2.2, makes frequent use of the frame assumption to fill in all aspects

of the world's dynamics that were not directly represented in the rules. The structure of

the rules directly encodes the action outcomes assumption: each rule has a set of possible

outcomes.
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on(B 1, B2), clear(B 1), inhand(NIL),
pickup(B1, B2)

on(B2, BI), clear(B2), inhand(NIL),
pickup(B2, B 1)

on (B 1, TABLE), clear(B 1), inhand(NIL),
pickup(B1, TABLE)

on(B2, TABLE), clear(B2), inhand(NIL),
pickup(B2, TABLE)

clear(B2), inhand(B 1),
puton(B1, B2)

clear(B I), inhand(B2),
puton(B2, BI)

inhand(Bi),
puton(B1, TABLE)

inhand(B2),
puton(B2, TABLE)

I
I

inhand(B 1), -clear(B 1), -,inhand(NIL),
-on(B1, B2), clear(B2)

.2: on(B], TABLE), -on(BI, B2), clear(B2)

.1 : no change

inhand(B2), -clear(B2), ,inhand(NIL),.7: on(B2, BI), clear(BI)
.2: on(B2, TABLE), -on(B2, B1), clear(BI)
.1 : no change

.66 : inhand(B 1), -,clear(B 1), -inhand(NIL),
,on(B1, TABLE)

.34: no change

.66 inhand(B2), -clear(B2), -inhand(NIL),
,6-on(B2, TABLE)

.34: no change

.7 inhand(NIL), -clear(B2), -,inhand(B I),
on(B1, B2), clear(BI)

.2 on(B1, TABLE), clear(B ), inhand(NIL),
-inhand(B i)

.1 : no change

.7: inhand(NIL), -,clear(B 1), -,inhand(B2),
on(B2, BI), clear(B2)

.2 on(B2, TABLE), clear(B2), inhand(NIL),
-inhand(B2)

.1 : no change

.8 on(B1, TABLE), clear(B I), inhand(NIL),
-inhand(B i)

.2: no change

.8:

.2

on(B2, TABLE), clear(B2), inhand(NIL),
-inhand(B2)

no change

Figure 3-1: Eight propositional rules that define the transition dynamics of a simple two-
block blocksworld. Each rule has a context that selects the set of states that will be changed
by its action according to its distribution over possible outcomes. Notice that the literals
in these rules can also be considered atomic propositions since there is no way to abstract
their arguments.
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Because planning rules were designed to model PWS, they can model the dynamics of

our simple blocks world compactly and accurately.

3.2.2 Dynamic Bayesian Networks

A Bayesian network (BN) (Pearl, 1988) is a directed acyclic graph, G = (X, E), where

the nodes X correspond to discrete random variables, and the edges E encode a set of

conditional independence assumptions. Associated with each node X, is a conditional

probability model (CPM), Pr(X IPai), where the set Pai contains the parents of Xi. The

product of all these conditional probabilities defines a unique joint probability distribution

over all the variables.

A dynamic Bayesian network (DBN) (Dean & Kanazawa, 1988) is a BN that models

change over time by representing the state of the world at two subsequent times, t and t + 1.

Thus, each variable Xi is represented twice, as Xt and as Xt 1 . DBN graph structure is

restricted so that edges must not point backwards through time.

A set of DBNs encodes a world model when there is a unique DBN for every possible

action in the world. Figure 3-2 shows the DBN that models the pickup(BI, B2) action

from Figure 3-1. Notice that this DBN is more of a distributed representation than the

corresponding rule. Although it encodes the same information, there is no one part of the

network that encodes action outcomes or the frame assumption.

3.2.3 Comparison

Because propositional planning rules were designed to encode PWS it is not surprising

that they can encode the simple blocksworld more efficiently than DBNs. However, this

representational discrepancy is not as large as it might originally appear. In this chapter, we

will see that, with only a few modifications, traditional DBNs can changed to represent the

same world structure as propositional planning rules. This process of converting a DBN

to propositional rules can be done in four steps. Each step highlights one way in which

propositional rules are designed to encode structured world dynamics.
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on(B2,TABLE) on(B2TABLE)

inhan(NIL)inhand(NIL)

on(BB2)on(B1,B2)

on(BTALE)on(B1,TABLE)

c/ear(B2)

inhan(B2)inhand(B1)

clear(B1)> la B)

Figure 3-2: A DBN transition model encoding the effects of the pickup(B 1, B2) action.

Step 1: Hidden Outcome Node

The first major difference between DBNs and propositional rules is the way that they en-

code the effects of actions. DBNs represent dependencies amongst their variables directly

while propositional rules have a set of outcomes that mediate how the world changes.

Structure like the rules' outcomes can be added to a DBN by introducing a hidden node

and fixing the CPMs of the nodes at time t + 1. This hidden outcome node has discrete

values that correspond to the outcomes of a propositional rule (success, failure, etc.). The

CPMs for the nodes at time t + 1 have a fixed deterministic structure: they take a value

assigned by the outcome node, if there is one, or their values from time t. The result is an

outcome DBN like the one shown in Figure 3-3. The CPM of the hidden node now has all

of the uncertainty. The remaining links encode the frame assumption and the structure of

the outcomes.

Step 2: Context Specific Independence

At first glance, it appears that DBNs require significantly more parameters to represent the

world. For example, the outcome node in Figure 3-3 has a number of parameters that is

25



on(B2,ABLE)on(B2,TABLE)

nhand(NIL) inhand(NIL)

on(BlB2)n (B1, B2)

exponential in the number of parents it has, but the corresponding rules would only have

one parameter for each outcome.

However, there is no need to explicitly represent all of the exponentially many con-

texts in the outcome node's CPM. Just like planning rules, BNs have been modified to

encode context specific independence (CSI) (Boutilier, Friedman, Goldszmidt, & Koller,

1996). CS! allows the CPMs of a BN to be represented more compactly. Several alter-

native representations have been studied, including trees (Friedman & Goldszmidt, 1998),

graphs (Chickering, Heckerman, & Meek, 1997), and rules (Poole, 1997).

The second step in transforming DBNs to propositional planning rules is to allow the

DBNs to encode their CPMs with CS! rules. Figure 3-4 shows the set of CSL rules that

encode the outcome DBN of Figure 3-3. Starting in the left column, the first rule has all of

the probabilistic structure. The next three encode contexts where the action has no effect.

The following eight encode how the first two outcomes change the world. All of the other

rules encode the dynamics when the action doesn't change the world.
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on(B1, B2), clear(B I),
inhand(NIL)

-011 (B1, B2)

-clear(Bl)

-inhand(NIL)

01

01

01

01

02

09

02

03. on(B1, B2)

03, -,on(B1, B2)

.7: 01
S .2 :02

.1 :03s

-+ 03.
-+03

-- 03

inhand(BI)

-iinhand(NIL)

- -Iclear(B1)

- , (B1, B2)

clear(B2)

On (B 1, TABLE)

->,n(B1, B2)

clear(B2)

- on(B1,B2)

- , (B1, B2)

03, clear(B2)

0:3., -clear(B2)

,01, inhand(NIL)

,01.,inhand(NIL)

,01, clear(B1)

,01, -,clear(Bi)

, i, Inhand(B 1)

,01, -inhand(B I)

-02, on(B 1, TABLE)

-02, -on(B1, TABLE)

On(B2, TABLE)

-on(B2, TABLE)

on(B2, B I)

-on(B2, B 1)

inhand(B2)

-iinhand(B2)

-4

-

-+4

-4

->4

-4

-+4

-

-+4

-4

-4

clear(B2)

-clear(B2)

inhand(NIL)

-inhand(NIL)

clear(B 1)

-clear(BI)

inhand(B 1)
-,inhand(B i)

on(B1, TABLE)

-n(B1, TABLE)

on(B2, TABLE)

-n (B2, TABLE)

on(B2, BI)

-on(B2, B 1)

inhand(B2)
-inhand(B2)

Figure 3-4: The context-specific, outcome-node rules for pickup(B1, B2).

Step 3: The Frame Assumption

The DBN rule set after Step 2 has a significant amount of deterministic structure. These

deterministic rules fall into two categories. There are the rules that encode what happens

for each outcome and the rules that represent the frame assumption. Because the frame

assumption is built into the semantics of propositional planning rules, all of the DBN rules

of the second type can be removed from the rule set. Then, combining the remaining rules

yields:

on (BI , B2), clear(BI ), inhand(NIL),

pickup(BI, B2) -4'
inhand(B 1), -clear(B 1), -,inhand(NIL),

,on(B1 , B2), clear(B2)

.2: on(B1, TABLE), -,on(B1, B2), clear(B2)

.1 : no change

which, for the simple blocksworld, is exactly equivalent to the the corresponding proba-
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bilistic planning rule.

Step 4: The Arity of the Hidden Node

Although the first three steps were adequate for converting DBNs of the simple blocksworld

into rules, in general, there is one more step that must be done when an action has more

than one rule associated with it. Consider the more complicated pickup(B1, B2) below:

on(B1, B2), clear(B 1), inhand(NIL)

slippery(B I), pickup(B I , B2)

on(B1, B2), clear(B 1), inhand(NIL),

-islippery(B I), pickup(B 1, B2)

-* { 1: no changeI inhand(B 1), -,clear(B 1), -inhand(NIL),

-,on(B1, B2), clear(B2)

.2: on(B], TABLE), -on(BI, B2), clear(B2)

.1 : no change

Because these two rules describe the same action, their transition dynamics would be en-

coded in a single DBN. Converting this DBN to rules, using steps 1-3, yields

0 :
on(B1, B2), clear(B I), inhand(NIL),

slippery(B1), pickup(BI, B2)

on(B 1, B2), clear(B 1), inhand(NIL),

-islippery(B1), pickup(B1, B2)

0

1

I.7:

.2:

.1 :

inhand(B 1), -,clear(B 1), -,inhand(NIL),

-on(B 1, B2), clear(B2)

on(B1, TABLE), -on(B 1, B2), clear(B2)

no change

inhand(B 1), -,clear(B 1), -inhand(NIL),

-on(B1, B2), clear(B2)

On(B1, TABLE), -,on(B 1, B2), clear(B2)

no change

since the hidden outcomes node in the DBN has a fixed number of outcomes for all of the

contexts.

This is less than optimal but easy to fix. The final step in our conversion process is to
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remove all zero probability outcomes from the rules, thereby allowing each context specific

rule to have a different number of outcomes.

The final result is propositional planning rules. This process shows us that propositional

planing rules are DBNs with a hidden outcome node, CSI, and fixed deterministic structure

to encode the frame assumption.

3.2.4 Summary: Matching Models to Worlds

The process of converting DBNs to propositional planning rules shows the representational

differences between the two. Probabilistic planning rules are, in essence, specially struc-

tured BNs that are designed to encode PWS efficiently. In Chapter 5, we will see that this

structure allows rules to be learned from fewer examples in worlds with PWS, which is es-

pecially important since they are meant to eventually be used by robots learning in the real

world. But, we will also see that there are many other worlds, such as flipping n indepen-

dent coins, where the more general DBNs are far superior. In principle, there is no reason

why a future learning system couldn't attempt to diagnose which world it is in and choose

its representation appropriately. This will be an interesting challenge for future work.

3.3 Relational Representations

In the relational case, abstract schemata generalize over the identity of objects in the world.

The generalization allows models to more compactly represent worlds in which there are

many objects that behave similarly. In this section, we will see two types of relational

schemata: relational planning rules and probabilistic relational models (PRMs).

Relational planning rules (RPRs) are abstractions of propositional planning rules from Sec-

tion 3.2.1 and PRMs generalize the Bayesian networks of Section 3.2.2. This section ex-

plores how RPRs and PRMs encode world dynamics; we will see that they both incorpo-

rate variable abstraction but that RPRs leverage PWS more effectively, just as we saw in

the propositional case. We will also see that, as they are currently defined, PRMs are not

as general as RPRs. Section 3.3.3 describes the representational limitations of PRMs and
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ideas for how they might be extended so that a detailed comparison to RPRs would be

possible.

3.3.1 Planning Rules

Relational planning rules were the focus of Chapter 2. The are, essentially, propositional

planning rules that have variables that abstract over object identity. This allows single rules

with actions such as pickup(X, Y), where X and Y can be any block in the world, to replace

the large set of more specific rules (pickup(B1, B2), pickup(B2, BI), etc.), that must name

the individual objects involved in the action. Relational planning rules encode the frame

assumption and the action outcome assumption just like propositional rules, as described

in Section 3.2.1. They also incorporate the PWS assumption of object abstraction directly

in their use of variables. The final result is a representation that compactly models worlds

with PWS, as in the original set of rules for blocks world from Figure 2-2.

3.3.2 Probabilistic Relational Models

The PRM formalism is the only probabilistic relational knowledge representation that has

well established learning algorithms (Getoor, 2001). PRMs are, in essence, a way of writing

templates over sets of possible BNs (Pfeffer, 2000). PRMs have two parts, the relational

schema and the dependency model. This section describes these parts and then shows how

to use them to estimate the likelihood of specific worlds.

PRMs encode distributions over worlds that are composed of objects that have simple

attributes, discrete random variables like BNs; and reference attributes, random variables

that encode relational structure by ranging over a discrete set of values that correspond

to objects in the world. A PRM's relational schema lists all of the possible object types

and the attributes that objects of each type contain. For example, a blocks world could

be represented with a relational schema that has three types of objects: blocks, TABLES, and

NILS. Blocks would have two simple boolean attributes, clear and inhand, and one reference

attribute, on, that can refer to block objects or table objects. The NIL object would have a

simple boolean attribute inhand to denote when the gripper is empty.
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Uncertainty is included in a PRM through its dependency model. This model encodes

conditional independence assumptions just like the link structure for BNs does. For each

attribute O.A in the relational schema, the model specifies a CPM that is conditioned on a

set of parents PO.A. Attributes in PO.A are restricted to other attributes of 0 and attributes of

objects that can be reached by following a chain of reference attributes that starts in 0. For

example, in blocksworld, the dependence model for a block B would allow its attributes to

depend on B.clear, B.inhand, B.on, and the attributes of objects that can be referenced by

a chain of on attributes that begin with B (B.on, B.on.on, etc.).

A skeleton is a set of objects that are instances of the types defined in the PRM's re-

lational schema. These objects can have some of their attributes fixed and others can be

uncertain. PRMs have a well defined semantics because, given a skeleton, then can pro-

duce a ground Bayesian network, B, that defines the likelihood of all of the combinations

of attribute values. In the case where reference attributes are not uncertain, B is easily

constructed. It has a node for each simple attribute and the link structure that is specified

directly in the dependency model. When there are uncertain reference attributes, construct-

ing B is more complex and requires adding an extra node for each relational attribute and

filling in a complex arc and CPM structure that properly updates uncertain slot chains.

Understanding this complex case is not required for reading this thesis.

A Dynamic PRM (DPRM) (Sanghai, Domingos, & Weld, 2003) is built from a PRM

much like a DBN was from a BN in Section 3.2.2. The worlds at time t and t + 1 are

represented as sets of objects and a special action object is introduced. Each object at time

t +1 has a reference attribute previous that refers to the same object at time t and a reference

attribute action that refers to the action object. The action object has reference attributes

that specify the parameters of the action. Figure 3-5 shows the relational schema of a

DPRM for the blocks world. Each box represents an object type. The attributes are fields

in the boxes. Simple attributes have their range denoted in a set while reference attributes

show the type of objects they can refer to. When DPRMs are used as a world model, all

of the attributes of the actions, the objects at time t, and the previous and action attributes

at time t + 1 are given. The dependency model encodes a distribution over the uncertain

attributes at time t + 1.
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block t pickup blockt+1 NILt+1

clear : {t,f} X blockt action : pickup action : pickup
inhand :{t,f} Y: blockt previous : blockt previous : NIL

on: blockt clear : {t,f} inhand : {t,f}
TABLE NILt inhand : {t,f}

on : blockt+1 TABLE t+1

TABLE t inhand : {t,f} TABLE + action : pickup
previous : TABLEt

Figure 3-5: The DPRM relational schema for the blocks world.

3.3.3 Comparison

Ideally, the experiments in Chapter 5 would include a detailed comparison of PRM learning

and RPR learning. This section highlights two interesting representational issues for PRMs

that we discovered while trying to implement model learning with PRMs. The problems

can definitely be solved, but, due to time constraints, this work will have to be done in the

future.

Constant Object Dependencies

The first limitation of PRMs is that the parents of uncertain attributes in the dependency

model must be selected by reference chains. There is no way to encode a dependency on

an attribute that can not be reached by a reference chain. For example, the pickup action

in blocks world requires that the gripper be empty. In the DPRM of Figure 3-5 this would

be represented by the inhand attribute of the NIL object at time t having a true value. There

are many attributes at time t + 1, for example all attributes of blocks, that could depend on

this property but do not have a reference chain that leads to the NIL object. To encode this

dependency efficiently, the PRM would have to allow attributes to depend on the inhand

attribute of the NIL object without a reference chain.

These constant object dependencies could be added to PRMs by a simple extension to

the dependency model that allows parent attributes to be chosen by specifying the unique

name of the objects they are a part of. However, some sort of strategy would be required
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for handling worlds in which the model expects an object that isn't present. For example,

these worlds could be declared impossible or multiple CPMs could be included, one for

each possible missing constant object case.

Adding constant object dependency would also complicate learning. Since depen-

dency models could include any objects ever observed, PRM learning would have to search

through the much larger space of possible parent attributes.

The PIE Problem

The semantics of a PRM is defined by the Bayesian network that its dependency model

creates for each possible world. However, there is a set of circumstances where PRMs,

as currently defined in the literature, fail to produce a valid ground Bayesian network.

This parent identity equality (PIE) problem can occur when the dependency model for

an attribute allows it to have two different parents which, in some worlds, are the same

attribute.

Consider the following simple PRM with no reference uncertainty. Its relational schema

has two types of objects, people and books. People have one simple boolean attribute, fame.

Books have three attributes. They have a simple boolean attribute, fame, and two relational

attributes, author and editor. Both relational attributes refer to people. Part (a) of Figure 3-

6 shows the relational schema for this PRM. Assume that the dependency model is some

reasonable distribution over the book's fame given the fame of author and the fame of the

editor. The prototypical world for this PRM has one book and two people, the book's editor

and its author. The well-formed ground Bayesian network for this skeleton is illustrated

in Figure 3-6 part (b).

But, consider what happens when the skeleton has only two objects, one book and one

person, and the person serves as the book's author and editor. The PIE problem emerges.

The standard grounding process creates in ill-formed Bayesian network something like the

one in part (c) of Figure 3-6. Even if one of the arcs were omitted, there is no obvious way

to fill the CPM for the book's fame. The dependency in this case is in no way related to the

case where the author and editor are distinct.

The PIE problem doesn't appear in the PRM literature because objects rarely have two
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Person Book person1.fame person2.fame person1.fame

fame :{t,} author Person

editor Person

fame {t,f} book1.fame book1.fame

(a) (b) (c)

Figure 3-6: (a) The relational structure for the book fame domain. (b) A valid ground
Bayesian network. (c) An invalid ground Bayesian network that demonstrates the PIE
problem.

reference attributes that refer to the same type of object. However, in planning domains,

objects of this type are common. For example, many actions have parameters that are the

same type. Consider the following RPR rule for flipping two coupled coins

{ 0.5: heads(X),heads(Y)flip(X, Y) ->

0.5 : -,heads(X), -,heads(Y)

The DPRM for this action will have an action object that introduces the PIE problem.

For fun, the reader might verify this by constructing the ground Bayesian network for the

DPRM corresponding to this action in a world with a single coin that fills both arguments

to the action. You would see that it contains one node and one arc.

In RPRs, PIE-like problems are localized to the action parameters and avoided by step

two of the rule selection semantics of Section 2.2.1 that forbids rules that are ill-formed

when a single constant is bound to more than one parameter of the action.

There are several approaches that could be used to extend PRMs so that they are well

defined when facing the PIE problem. PRMs could be augmented to encode an assumption

that worlds with this reference structure are impossible. They could also encode a set of

CPMs for all of the different possible unique sets of parent attributes.

Summary

Because the challenges above slowed our implementation, PRMs are not discussed in the

experiments of Chapter 5. When the work is done to facilitate a comparison, the follow-
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ing results seem likely for worlds with PWS. Since PRMs have variable abstraction, they

should outperform Bayesian networks. Since RPRs leverage the other PWS assumptions,

they should outperform PRMs, much like PPRs outperform Bayesian networks. It is hard

to predict how PPRs would compare to PRMs, but variable abstraction would probably

prove more influential.

However, this is all speculation. For now all that will be shown is that RPRs outperform

PPRs, which outperform DBNs; PRMs are left out of the learning comparison entirely.
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Chapter 4

Learning

This chapter presents an algorithm for learning probabilistic planning rules, given a training

set D = D1 ... DIDI. Every example D E D represents a single transition in the world, and

consists of a previous state D.St, an action D.A', and a next state D.St'+. A rule applies

to an example D if it covers D.S' given D.A', using the definition of covers from Sec-

tion 2.2.1. D, is the set of examples that a rule r applies to. The algorithm learns a rule set

R that defines the distribution for how the world changes when an action a is executed in

it, P(St+1 St, a, R).

The sections below are organized as follows. Section 4.1 describes the outer learning

loop, LearnRules, which is a search through the space of rule sets. This outer loop assumes

the existence of a subroutine InduceOutcomes which, when given a context and an action,

learns the rest of the rule. InduceOutcomes is discussed in Section 4.2 and makes use of

the subroutine LearnParameters, which learns a distribution over a given set of outcomes

as presented in Section 4.3.

4.1 Rule Sets

LearnRules performs a greedy search in the space of proper rule sets, where a proper rule

set for data set D is a set of rules R that has exactly one rule that is applicable to every

example D E D in which some change occurs and that doesn't have any rules that are

applicable to no examples. The examples where no change occurs can be handled by the
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frame assumption, so they do not need to have an explicit rule. This section first describes

how LearnRules scores rule sets. It then describes how LearnRules uses InduceOutcomes

to create a new rule, given an action and a context. Finally, the overall search algorithm is

presented in which an initial rule set is created and search operators are used to search for

the highest scoring rule set.

During search, LearnRules must decide which rule sets are the most desirable. This

decision is made by scoring rule sets; those with a higher score are more desirable. Learn-

Rules scores rule sets with the following function

S(R) = ] log(P(D.S"|D.St , D.A, R)) - a E PEN(r)
DED rER

This scoring metric favors rule sets that assign high likelihood to the data and penalizes rule

sets that are overly complex. a is a scaling parameter that is set to 0.5 in the experiments

of Chapter 5. Cross validation on hold-out data or some other principled technique could

also be used to set a. The complexity of a rule is computed with the following penalty term

PEN(r) = |r.C +|r.O|.

The first part of this term penalizes long contexts; the second part penalizes for having too

many outcomes. LearnRules uses this penalty because it is simple and performed as well

as every other penalty term that was tested in informal experiments.

In the learning discussion that follows, we will often want to evaluate how good a single

rule is. Notice that the scoring function above can be rewritten as the sum over the scores

of individual rules given by

S(r) = 13 log(P(D.S' 1 ID.S', D.A, r)) - aPEN(r).
DED,

Sine R is a proper rule set, these formulations are equivalent. The sets of examples, Dr,

that the rules in R apply to do not overlap and together include the entire training set D.

Because LearnRules creates many new rules during search, it is important to understand

how this happens. Whenever a new rule is created, the only thing that LearnRules has to
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do is specify an action r.A and a context r.C. These two parts of the rule select the set of

training examples D, that the rule could possibly be applicable to. When these examples

are passed with the partially specified r to InduceOutcomes, this procedure searches for the

set of outcomes, r.0, and the distribution, r.P0 , that maximizes S(r). Because the rule

set score factors into a sum of individual rule scores, InduceOutcomes can maximize S(r)

directly and not worry about the score of the entire rule set.

Given a dataset D,, LearnRules must first create an initial rule set to start the search.

There are many different valid rule sets that could be used. The most general rule set which

has a single rule for each action with no context and as many variables as possible, is one

option. Another option is the most specific rule set that creates, for every unique St, At pair

in the data, a rule with r.C = S' and r.A = A'. However, in the experiments of Chapter 5,

LearnRules uses a third, intermediate, approach. This approaches creates the most specific

set of rules that include only positive literals in their contexts. This can be done by creating

the maximally specific rule set, dropping all negative literals from all rule contexts and

then removing redundant rules from the set. In informal experimentations in a variety of

worlds, starting the search at this intermediate rule set converged to a solution, on average,

more quickly than the other two. Since there was no clear difference in the quality of the

solution, the intermediate staring point appears to be the best one. Formally exploring how

to decide when different starting points are more appropriate is an important area for future

work.

At every step of the search, LearnRules greedily finds and applies the operator that

will increase the total rule set score the most. It uses four search operators which are

based on the four basic syntactic operations used for rule search in Inductive Logic Pro-

gramming (Lavrae & Dieroski, 1994). Each operator selects a rule r, removes it from the

rule set, and creates one or more new rules by changing r.C and r.A and calling Induce-

Outcomes. Any new rules created are introduced back into the rule set in a manner than

ensures the rule set remains proper. How this is done for each operator is described below.

There are two possible ways to generalize a rule: a literal can be removed from the

context, or a constant can be replaced with a variable. The first generalization operator

selects a rule from the rule set, creates a new rule by removing a literal from its context and
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calling InduceOutcomes, and then adds this new rule into the set. The second generalization

operator selects a rule and picks one of its constant arguments. Then, this operator invents

a new variable and substitutes that variable for every instance of the original constant in the

original rule. Finally, it calls Induce Outcomes to create a new rule that is added to the set.

When a generalized rule is introduced into a rule set, LearnRules must ensure that the

rule set remains proper. Generalization may increase the number of examples covered by

a rule, thereby making some of the other rules unnecessary. The new rule replaces these

other rules, removing them from the set. However, this removal can leave some training

examples with no rule, so new, maximally specific rules are created to cover them.

There are also two ways to specialize a rule. A literal can be added to the context or a

variable can be replaced with a constant. The first specialization operator selects a rule from

the rule set and picks a literal that is not in the rule's context. It then creates two new rules,

one with a positive instance of the new literal added to the original context, and one with a

negative instance added. These rules are created by, as usual, calling InduceOutcomes with

the new contexts and the original action. They are then added to the rule set. The second

specialization operator selects a rule and a variable that is present in this rule. A set of new

rules is created, where each rule corresponds to a possible constant and has every instance

of the original variable in the context and the action replaced with that constant. Induce

Outcomes is called on these new context action pairs to complete the rules. They are then

added to the rule set.

Whenever more specific rules are introduced into a rule set LearnRules must, again,

ensure that it remains proper. This time the concern is that one of the new rules might not

be applicable to any of the training examples. Rules that are applicable to no examples are

not added to the rule set.

This operators, just like the original ILP operators that motivated them (Lavra- &

Dieroski, 1994), are quite general. The specialization operators can be used to create

any valid rule set from the most general rule set. Similarly, the generalization operators can

build any valid rule set staring from the most specific rule set. Together, they allow the full

space of valid rule sets to be searched no matter where the search begins.

LearnRules's search strategy has one large drawback; the set of rules which is learned
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is only guaranteed to be proper on the training set and not on testing data. Solving this

problem, possibly with approaches based on relational decision trees (Blockeel & Raedt,

1998), is an important area for future work. Its effectiveness is also limited by the efficiency

of the InduceOutcomes subprocedure since it is called every time a new rule is constructed.

There are also other advanced rule set search operators, such as least general general-

ization (Plotkin, 1970), which might be modified to create operators that allow LearnRules

to search the planning rule set space more efficiently.

4.2 Inducing Outcomes

Inducing outcomes is the problem of finding a set of outcomes 0 and parameters P0 which

maximize the score of a rule r with context r.C and action r.A that applies to a set of exam-

ples D. InduceOutcomes solves this problem with greedy search and uses the subroutine

EstimateParams, presented in Section 4.3. Appendix A argues that inducing outcomes is

NP-hard which justifies InduceOutcomes's greedy search.

Consider the coins domain, which will be used to explain the learning algorithm. Each

coins world contains n coins which can be showing either heads or tails. The action flip-

coupled, which has no context and no parameters, flips all of the coins to heads half of the

time and otherwise flips them all to tails. A set of training data for learning outcomes with

two coins might look like part (a) of Figure 4-1 where h(C) stands for heads(C), t(C)

stands for -hcads(C), and D.St -> D.St'+ is an example with D.At = flip-coupled.

InduceOutcomes searches through a restricted subset of possible outcome sets: those

that are valid on the training examples, where an outcome set is valid if every training

example has at least one outcome that covers it and every outcome covers at least one

training example (using the definition of covers from Section 2.2.3). InduceOutcomes uses

two operators, described below, to move through this space. For each set of outcomes it

considers, InduceOutcomes calls LearnParameters to supply the best P0 it can. Search

stops when there are no more immediate moves that improve the rule score.

InduceOutcomes creates an initial set of valid outcomes by, for each example, writing

down the set of literals that changed values as a result of the action, and then creating an
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Di = t(c1), h(c2) h(cl), h(c2) 01 = {h(c1)}
D2 = h(c1), t(c2) - h(c1), h(c2) 02 = {h(c2)}

D 3 = h(cl), h(c2) - t(cl), t(c2) 03 {t(c1),t(c2)}

D4 = h(cl), h(c2) - h(cl), h(c2) 04 = {no change}

(a) (b)

Figure 4-1: (a) Possible training data for learning a set of outcomes. (b) The initial set of
outcomes what would be created from the data in (a).

outcome to describe every set of changes observed in this way. In our running example, the

initial set of outcomes has the four entries in part (b) of Figure 4-1.

InduceOutcomes then searches through the space of valid outcome sets using two op-

erators.1 The first is an add operator which picks a pair of outcomes in the set and adds

in a new outcome based on their conjunction. For example, it might pick 01 and 02 from

the running example and combine them, adding a new outcome 0 = {h(cl), h(c2)} to

the set. The second is a remove operator that drops an outcome from the set. Outcomes

can only be dropped if they were overlapping with other outcomes on every example they

cover, otherwise the outcome set would not remain valid. In the outcomes of Figure 4-1 04

can be immediately dropped since it only covers D4 , which is also covered by both 01 and

02. If we imagine that5 =0 {h(cl), h(c2)} has been added with the add operator, then 01

and 02 could also be dropped since 05 covers D 1, D 2, and D 3. This would, in fact, lead to

the optimal set of outcomes for the training examples in Figure 4-1.

It is worth recalling that the running example has no context and no action. Handling

contexts and actions with constant parameters is easy, since they simply restrict the set of

training examples the outcomes have to cover. However, when a rule has variables among

its action parameters, InduceOutcomes must be able to introduce those variables into the

appropriate places in the outcome set. This variable introduction is achieved by applying

the inverse of the action substitution to each example's set of changes while computing the

Whenever InduceOutcomes proposes a set of outcomes, the outcomes' parameters must be relearned by
LearnParameters. Often, many of the outcomes will have zero probability. These zero probability outcomes
are immediately removed from the outcome set since they don't contribute to the likelihood of the data and
they add complexity. This optimization greatly improves the efficiency of the search.
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initial set of outcomes. So, for example, if InduceOutcomes were learning outcomes for

the action flip(X) that flips a single coin, our initial outcome set would be {0 = {h(X)},

02 ={t(X)}, 03 = {no change}} and search would progress as usual from there. Induce-

Outcomes introduces variables aggressively wherever possible, based on the intuition that

if any of them should remain a constant, this should become apparent through the other

training examples.

Notice that any outcome that InduceOutcomes might want to learn can be created with

these search operators. Each literal in this outcome has to model a change that was present

in some training example, otherwise it could be removed since the frame assumption mod-

els everything that does not change. This outcome also has to include every literal that

changes in every example it covers, or it would not cover them. Together, these two facts

guarantee that any outcome that would be useful for modeling a set of training examples

can be created by combining the sets of literals that change state in the examples.

4.3 Learning Parameters

Given a rule r with a context r.C and a set of outcomes r.0, all that remains to be learned

is the distribution over the outcomes, r.P0 . LearnParameters learns the distribution that

maximizes the rule score: this will be the distribution that maximizes the log likelihood of

the examples D, as given by

E log(P(D.St+l D.S' C.A', r))
DcD,

=5 log ( r.Po(o) (4.1)
DED {oDcD0 } /

where Do is the set of examples covered by outcome o, using the definition of covers

from Section 2.2.3. When every example is covered by a unique outcome, the problem

of minimizing L is relatively simple. Using a Lagrange multiplier to enforce the con-

straint that r.P0 must sum to 1.0, the partial derivative of L with respect to r.Po(o) is then

jDoj/r.Po(o) - A, and A = |D1, so that r.Po(o) = |D0l/ DI. The parameters can be
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estimated by calculating the percentage of the examples that each outcome covers.

However, in general, the rule could have overlapping outcomes. In this case, the partials

would have sums over os in the denominators and there is no obvious closed-form solution:

estimating the maximum likelihood parameters is a nonlinear programming problem. For-

tunately, it is an instance of the well-studied problem of minimizing a convex function

over a probability simplex. Several gradient descent algorithms with guaranteed conver-

gence can be found in Bertsekas (1999). LearnParameters uses the conditional gradient

method, which works by, at each iteration, moving along the axis with the minimal partial

derivative. The step-sizes are chosen using the Armijo rule (with the parameters s = 1.0,

3 = 0.1, and a = 0.01.) The search converges when the improvement in L is very small,

less than 10-6. If problems are found where it converges too slowly, there are many other

well-known algorithms that could converge more quickly (Bertsekas, 1999).
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Chapter 5

Experiments

This chapter describes experiments that demonstrate that the learning algorithm in Chap-

ter 4 is robust and show that the bias described in Chapter 3 improves learning effectiveness.

Section 5.1 describes the experimental domains and how they were chosen. Section 5.2

presents results for inducing outcomes in isolation while Section 5.3 investigates learning

whole rule sets.

5.1 Domains

The experiments in this chapter involve learning rules for the domains in the following

sections. The unique characteristics of each domain showcase particular aspects of the

learning procedures.

5.1.1 Coin Flipping

In the coin flipping domain, n coins are flipped using three atomic actions: flip-coupled,

which, as described in Section 4.2, turns all of the coins to heads half of the time and to tails

the rest of the time; flip-a-coin, which picks a random coin uniformly and then flips that

coin; and flip-independent, which flips each of the coins independently of each other. Since

the contexts of all these actions are empty, every ruleset contains only a single rule and the

whole problem reduces to outcome induction. In Section 5.2 we will see how scaling the
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number of coins effects outcome learning for each of these actions.

5.1.2 Slippery Gripper

The slippery gripper domain, inspired by the work of Draper et al. (1994), is a blocks

world with a simulated robotic arm, which can be used to move the blocks around on a

table, and a nozzle, which can be used to paint the blocks. Painting a block might cause the

gripper to become wet, which makes it more likely that it will fail to manipulate the blocks

successfully; fortunately, a wet gripper can be dried. Figure 5-1 shows the set of RPRs that

model slippery grippers worlds.

Slippery gripper, like most blocks worlds, has a simple parameter that scales the world's

complexity, the number of blocks. In Section 5.3, we will explore how the learning algo-

rithms of Chapter 4 compare as the slippery gripper world is scaled in complexity given a

fixed number of training examples and how they compare is the number of training exam-

ples is scaled in a single complex world.

5.1.3 Trucks and Drivers

Trucks and drivers is a logistics domains, originally from the 2002 AIPS international plan-

ning competition (AIPS, 2002), with four types of constants. There are trucks, drivers,

locations, and objects. Trucks, drivers and objects can all be at any of the locations. The

locations are connected with paths and links. Drivers can board and exit trucks. They can

drive trucks between locations that are linked. Drivers can also walk, without a truck, be-

tween locations that are connected by paths. Finally, objects can be loaded and unloaded

from trucks.

A set of PPR-like rules is shown in Figure 5-2. Most of the actions are simple rules

which succeed or fail to change the world. However, the walk action has an interesting

twist, represented by its final outcome. When drivers try to walk from one location to

another, they succeed most of the time, but some of the time they arrive at a randomly

chosen location that has a path to it from their origin location.

The walk action can't be represented efficiently as a set of RPRs. The best encoding
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on(X, Y), clear(X), inhand(NIL),
block(X), block(Y), -wet, pickup(X, Y)

on(X, Y), clear(X), inhand(NIL),
block(X), block(Y), wet, pickup(X, Y)

on(X, Y), clear(X), inhand(NIL),
block(X), table(Y), wet, pickup(X, Y)

on(X, Y), clear(X), inhand(NIL),
block(X), table(Y), -wet, pickup(X, Y)

clear(Y), inhand(X), block(Y),
puton(X, Y)

inhand(X),
puton(X, TABLE)

block(X) , paint (X

dr

{ 

)

y I

8 inhand(X), -clear(X), ,inhand(NIL),
. -on(X, Y), clear(Y)
.2: on(X, TABLE), -,on(X, Y), -inhand(NIL)

.1 : no change

.33 : inhand(X), -clear(X), -,inhand(NIL),
-on(X, Y), clear(Y)

.33: on(X, TABLE), -on(X, Y), -inhand(NIL)

.34 : no change

.5: inhand(X), -clear(X), -inhand(NIL),

.5 : -on(X ),clear(Y)

.5: no change

.8: inhand(X), -clear(X), -inhand(NIL),

.8: -on(X, Y),clear(Y)

.2 : no change

7 inhand(NIL), -,clear(X), -,inhand(Y).,
7:on(X, Y), clear(X)

on(X, TABLE), clear(X), inhand(NIL),
.2 inhand(X)
.1 : no change

on(X, TABLE), clear(X), inhand(NIL),8 -inhand(X)

.2: no change

.6 : painted(X)

.1 : painted(X), wet

.3: no change

.9: -wet

.1 : no change

Figure 5-1: Eight relational planning rules that model the slippery gripper domain.

has a rule for each origin location and each rule has an outcome for every location that the

origin is linked to. This action is difficult to learn but, as we will see in Section 5.3, can be

learned with enough training data. Extending the RPR representation to allow actions like

walk to be represented as a single rule is an interesting area for future work.

Unlike slippery gripper, trucks and drivers does not have a single parameter that can be

used to scale the complexity of the world. Instead, in Section 5.3, we will only see the

effects of scaling the number of training examples on the learning algorithms of Chapter 4

in a single, complex trucks and drivers world.
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at(T, L), at(O, L), load(0, T, L) {
in(O, T), at(T, L), unload(0, T, L)

at(T, L), at(D, L), empty(T).,
board(D, T, L)

at(T, L), driving(D, T), disembark(D, T, L)

driving(D, T), at(T, FL), link(FL, TL ),
drive (T, FL., TL, D)

at(D, FL),path(FL, TL), walk(D., FL, TL) -- {

.9: -at(O, L), in(O, T)
.1 : no change

.9 : at(o , L),,in( , T)

.1 : no change

9 : ,at(D, L), driving(D, T), -,empty(T)
.I no change

.9: -driving(D, T), at(D, L), empty(T)

.1 : no change

.9 : at(T, TL), -,at(T, FL)
.1 : no change

.9 : at(D, TL), ,at(D, FL)
pick X s.t. path(FL , X)
at(D, X), -,at(D, FL)

Figure 5-2: Six rules that encode the world dynamics for the trucks and drivers domain.

5.2 Inducing Outcomes

Before we investigate learning full rule sets, consider how the InduceOutcomes subproce-

dure performs on some canonical problems in the coin flipping domain.

In order to evaluate InduceOutcomes in isolation, a rule was created with an empty

context and passed to InduceOutcomes. Table 5.1 contrasts the number of outcomes in

the initial outcome set with the number eventually learned by InduceOutcomes. In these

experiments 300 randomly created training examples were provided.

Notice that, given n coins, the optimal number of outcomes for each action is well

defined. flip-coupled requires 2 outcomes, flip-a-coin requires 2n, and flip-independent

requires 2'. In this sense, flip-independent is an action that violates our basic structural

assumptions about the world, flip-a-coin is a difficult problem, and flip-coupled behaves

like the sort of action we expect to see frequently. The table shows that InduceOutcomes

can learn the latter two cases, the ones it was designed for, but that actions where a large

number of independent changes results in an exponential number of outcomes are beyond

its reach. An ideal learning algorithm might notice such behavior and choose to represent

it with a factored model.
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Number of Coins
2 3 4 5 6

flip-coupled begin 7 15 29.5 50.75 69.75

flip-coupled end 2 2 2 2 2

flip-a-coin begin 5 7 9 11 13

flip-a-coin end 4 6.25 8 9.75 12

flip-independent begin 9 25 47.5 - -

flip-independent end 5.5 11.25 20 1 -

Table 5.1: The average changes in the number of outcomes found while inducing outcomes
in the n-coins world. Results are averaged over four runs of the algorithm. The blank
entries did not finish running in reasonable amounts of time.

5.3 Learning Rule Sets

Now that we have seen that InduceOutcomes can learn rules that don't require an exponen-

tial number of outcomes, this section investigates how LearnRules performs.

The experiments are divided between two types of comparisons. Section 5.3.1 shows

that propositional rules can be learned more effectively than DBNs while Section 5.3.2

shows that relational rules outperform propositional ones.

These comparisons are performed with four actions. The first two, paint and pickup, are

from the slippery gripper domain while the second two, drive and walk, are from the trucks

and drivers domain. Each action presents different challenges for learning. Paint is a simple

action that has overlapping outcomes. Pickup is a complex action that must be represented

by more than one planning rule. Drive is a simple action which has four parameters. And,

walk is the most complicated action since there is no single set of planning rules that model

it, as described in Section 5.1.3.

All of the experiments use examples, D c D, generated by randomly constructing an

initial state D.S' and then executing the action, D.At, in that state to generate D.St+l. The

distribution of D.St's in the training data is biased to guarantee that in approximately half of

the examples D.At could possibly change D.St. This method of data generation is designed

to ensure that the learning algorithms will always have data which is representative of

the entire model that they should learn. Thus, the experiments in this chapter ignore the

problems an agent would face if it had to generate data by exploring the world.
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After training on a set of training examples D, the models are tested on a set of test

examples E by calculating the average variational distance between the true model P and

an estimate P given by:

VD(P, P) P(E) - P(E).

Variational distance is a natural measure because it favors similar distributions and is

well-defined when a zero probability event is observed, as can happen when a rule is learned

from sparse data and doesn't have as many outcomes as it should.

5.3.1 Comparison to DBNs

Traditionally, Dynamic Bayesian Networks (DBNs) have been used to learn world dynam-

ics. To compare LearnRules to DBN learning, variable abstraction is forbidden, thereby

forcing the rule sets to remain propositional during learning. The BN learning algorithm

of Friedman and Goldszmidt (1998), which uses decision trees to represent its conditional

probability distributions, is compared to this restricted LearnRules algorithm in Figure 5-3.

Notice the propositional rules consistently outperform DBNs. Although it looks like

the DBNs were never able to learn reasonable models, this is not the case. During some

of the trials the DBNs performed well, even beating the rules on an occasional training set.

[[n out of 10]] But, in many of the trials, DBNs performed horribly. The failures were all

instances of the structure search getting stuck in local optima. It is not surprising that the

DBNs were more susceptible to local optima since they had to introduce a large number of

links to get the proper structure.

5.3.2 The Advantages of Abstraction

The second set of experiments demonstrates that when LearnRules is able to use variable

abstraction, it outperforms the propositional version. Figure 5-4 shows that the full version

consistently outperforms the restricted version as the number of examples is scaled. Also,

observe that the performance gap grows with the number of parameters that the action has.
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Figure 5-3: Variational distance as a function of the number of training examples for DBNs
and propositional rules. The slippery gripper actions were performed in a world with four
blocks. The trucks and driver actions were performed in a world with two trucks, two driver,
two objects and four locations. The results are averaged over ten trials of the experiment.
The test set size was 300 examples.
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Figure 5-4: Variational distance as a function of the number of training examples for propo-
sitional and relational rules. The slippery gripper actions were performed in a world with
four blocks. The trucks and driver actions were performed in a world with two trucks,
two driver, two objects and four locations. The results are averaged over ten trials of the
experiment. The test set size was 400 examples.

This result should not be particularly surprising. The abstracted representation is signifi-

cantly more compact. Since there are fewer rules, each rule has more training examples and

the abstracted representation is significantly more robust in the presence of data sparsity.

Another view of the same phenomena is seen in Figure 5-5, where the number of blocks is

scaled and the number of training examples is held constant.

5.3.3 Discussion

The experiments of this chapter should not be surprising. Planning rules were designed

to efficiently encode the dynamics of the worlds used in the experiments. If they couldn't

outperform more general representations and learning algorithms, there would be a serious

problem.
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Figure 5-5: An illustration of how the variational distance of the models learned scales
with the size of the world, for propositional and relational rules. The experiments were
conducted with 500 training examples and 500 test examples. The results are averaged
over ten runs of the experiment.

However, these experiments are still an important validation that LearnRules is a robust

algorithm that does leverage the bias that it was designed for. Because no other algorithms

have been designed with this bias, it would be difficult to demonstrate anything else.
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Chapter 6

Related Work

There has been essentially no work in learning probabilistic relational planning rules.

The closest work on probabilistic representations and learning is in the Bayesian net-

work and Probabilistic Relational Models community. All of Chapter 3 was devoted to

understanding how this work relates to this thesis.

Deterministic rule learning has been explored significantly in the literature. The most

relevant example is that of Shen and Simon (1989) and others in the ILP community who

have learned deterministic relational rules from data.

There are only two examples of probabilistic rule learning, both of which are signifi-

cantly different from the work of this thesis. Oates and Cohen (1996) learn propositional

probabilistic planning operators. Each rule has a single outcome and multiple rules can

apply in parallel, making the model more like a DBN than the planning rules of this thesis.

Benson (1996) learns relational action models in continuous worlds that can tolerate noise

and execution errors but do not directly model probabilistic action outcomes.
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Chapter 7

Conclusions and Future Work

The results of Chapter 5 shows that biasing representations towards the structure of the

world they will represent significantly improves learning. The natural next question is how

do we bias robots so they can learn in the real world? Extending the work done here to

more appropriately model the unique dynamics of our world is an important challenge that

can be approached in many ways.

Planning operators exploit an general principle in modeling agent-induced change in

world dynamics: each action can only have a few possible outcomes. In the simple exam-

ples from this thesis, this assertion was exactly true in the underlying world. In real worlds,

this assertion may not be exactly true, but it can be a powerful approximation. If we are

able to abstract sets of resulting states into a single generic "outcome," then we can say, for

example, that one outcome of trying to put a block on top of a stack is that the whole stack

falls over. Although the details of how it falls over can be very different from instance to

instance, the import of its having fallen over is essentially the same. We will investigate

the concurrent construction of abstract state characterizations that allow us to continue to

model actions as having few outcomes.

An additional goal in this work is that of operating in extremely complex domains.

In such cases, it is important to have a representation and a learning algorithm that can

operate incrementally, in the sense that it can represent, learn, and exploit some regularities

about the world without having to capture all of the dynamics at once. This goal originally

contributed to the use of rule-based representations. Developing an incremental learning
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algorithm that learns models of a world while living in it is am important are for future

work.

A crucial further step is the generalization of these methods to the partially observable

case. Again, we cannot hope to come up with a general efficient solution for the problem.

Instead, algorithms that leverage world structure should be able to obtain good approximate

models efficiently.

All of these improvements would lead towards to more general goal of building a rep-

resentation that will run in a robot and allow it to quickly learn how to survive in our world.
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Appendix A

Inducing Outcomes is NP-hard

Consider a set of training examples D, a scalar a > 0, and a set of outcomes OD that each

cover at least one D E D. Inducing outcomes is the problem of finding the set of outcomes

0 C OD and the distribution over these outcomes Po that maximize the scoring function

log L(DIr) - a1l, subject to the constraint that 10 1 D I.

This formulation of the inducing outcomes problem is different than the one in Chap-

ter 4, but they are essentially the same. In Chapter 4 OD was not discussed. It was implic-

itly assumed that OD is the entire set of possible outcomes that cover at least one D E D.

Notice that this is the hardest possible OD since all others are subsets of it. The constraint

that 101 DI was also not present in Chapter 4. It is required for the following proof

and could possibly be relaxed. However, assuming 101 < IDI is not a large compromise

since solutions with 101 > ID I are not reasonable for use in planning rules as they were

described in this thesis.

The minimal subset problem (Garey & Johnson, 1979) can be reduced to inducing

outcomes. This proof first presents a reduction that ignores the likelihood term and directly

minimizes the number of outcomes. Then, it shows that the likelihood is bounded and

presents an a that will always make the solution with the smallest number of outcomes

maximize the overall rule score.

Given a finite set S, and a set C of subsets of S, the minimal subset problem is to find

the smallest subset C' of C such that every element in S belongs to at least one member of

C'. Given a minimal subset problem, an induce outcomes problem is created as follows.
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The reduction creates a training example D, for each s E S. The states in each D, have

predicates p, for each s E S. In each D5, ps change state from false in DS.S' to true in

D,.St+l and other p -/ ps are set true in both states. Now, for each subset C' E C, a

possible outcome Oc, C OD is created with positive predicates that correspond to every

s E C'. Notice that the outcomes correspond directly to the subsets and the training ex-

amples correspond directly to the elements of S. If a set of outcomes covers the training

examples, the corresponding subsets will cover the original set elements. So, finding the

smallest set of outcomes is equivalent to finding the smallest subset. Since the conversion

can be done in time polynomial in the size of the original minimal subset problem, finding

the smallest set of outcomes is NP-hard.

Now, we need to find an a that guarantees that minimizing the number of outcomes will

maximize the overall score. First, notice that there is a unique maximum log likelihood

for each possible set of outcomes. This term could range from zero to negative infinity.

However, we will see that it is, in fact, never less than ID log ). This bound ensures that

setting a > - D log (j1) guarantees that whenever the number of outcomes is decreased

the overall score will always increase.

First, for any r.0, notice that the likelihood resulting from any setting of the param-

eters r.PO is a lower bound on the maximum likelihood. If we set r.PO to the uniform

distribution, then each training example's likelihood will be at least log (), since there

must be at least one 0 E r.0 that covers it. Now, because we assumed that 101 < DI, this

also implies that the likelihood of each example is at least log (j1), and that the maximum

likelihood solution is always greater than or equal to |D log (j').
In summary, we have just seen that we can set a to guarantee that minimizing the

number of outcomes will maximize the score. We also saw that minimizing the number of

outcomes is NP-hard. So, we can conclude the inducing outcomes is NP-hard.
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