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Abstract

We address the problem of dynamic channel assignment and blocking probability for
connection-oriented traffic in a multihop wireless network. Specifically, we present an
exact blocking probability analysis for a single channel wireless line network and derive
blocking probability formulas for both bi-directional and uni-directional calls. In the
multiple channel case, we present a simplified analytical model and obtain approxi-
mate blocking probability formulas that predict the simulation results very accurately,
especially, for low to moderate number of channels. We apply the formulas derived to
consider the effect of transmission radius on blocking probability. We show that in a
line network with equal length calls, it is preferable to use larger transmission radius;
while for a more dense grid network we make simplified analytical arguments show-
ing that it is more desirable to use smaller transmission radius. Finally, we present
a novel channel assignment algorithm that aims at reducing blocking probability by
cleverly reusing the channels while also satisfying the wireless transmission/reception
constraints. We compare its performance with other channel assignment algorithms
such as the rearrangement, random and the first fit algorithm.
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Chapter 1

Introduction

Wireless communication witnessed a tremendous growth in the last decade and con-

tinues to expand rapidly with the development of new technologies. Cellular networks,

for wireless voice telephony, have been successfully deployed around the world. How-

ever with a rapidly expanding set of wireless users there is a growing need for local

wireless networks that can be quickly setup in any terrain. Unfortunately, cellular

networks do not provide this flexibility as they require a massive infrastructure in-

vestment. Multihop wireless networks are a promising alternative towards achieving

this goal.

A multi-hop wireless network (also called an ad-hoc network) is a cooperative net-

work where data streams may be transmitted over multiple wireless links (multiple

hops) to reach the destination. The nodes in such a network operate not only as hosts

but also as routers forwarding data streams for other nodes that are not within direct

transmission range of each other. Unlike its cellular counterpart, this network can be

easily deployed in any terrain without the need for any fixed infrastructure. Though

easily deployed, a wireless ad-hoc network introduces added complexity into problems

of routing [1], scheduling and network connectivity [2]. In addition, such a network

should also be able to provide quality of service guarantees to have widespread appli-

cation as its cellular counterpart.
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Recently, there has been increased focus on issues relating to Quality of Service

(QoS) guarantees for wireless ad-hoc networks [3], [4], [5], [6]. The work in QoS

guarantees has focussed mainly on finding source-destination routes that satisfy end

to end QoS requirements, often given in terms of the required channels (bandwidth).

The problem of which channels to allocate from amongst the available channels and

the effect of transmission radius on the blocking probability of calls is the focus of

this thesis. In this work, we study a line and a grid network as they are good repre-

sentatives of a sparse and a dense network respectively.

The problem of dynamic channel assignment has been considered in the context

of cellular networks [14], [16], [17], [18]. However, in a multi-hop wireless network the

problem differs significantly from its counterpart in the cellular network. In a cellular

network (potentially many) nodes communicate only with the nearest base-station.

In contrast, in a multi-hop wireless network, transmission of data takes place over

multiple wireless links to reach the destination. This imposes additional complexity

as non-conflicting channels must be allocated on the wireless links along the source-

destination path. Another difference between the two networks is that a cellular

network has a regular cell structure which makes the set of interfering cells fixed.

While, in a multi-hop wireless network, the set of interfering nodes can be varied by

varying the strength of the transmitted signal. This also has the effect of altering

the hop length of the calls. With a larger signal strength, a node can communicate

with a node further away and reach the destination node in fewer hops albeit at the

expense of interference with a larger set of nodes.

The performance metric considered in this thesis is the steady state blocking prob-

ability of a call. Blocking probability as a performance metric has been widely used

by researchers in studying various networks. Some of the work on blocking proba-

bility includes [21], [22] in all-optical networks, [9], [10], [11], [12], in circuit-switched

networks and [13], [16], [18], in cellular networks. In [13], Kelly considered a cellu-

lar network (where nodes communicate with the nearest base-station) with a linear
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topology and compared the fixed and the rearrangement channel assignment algo-

rithm. The result was derived in the limit of the length of the line network tending to

infinity. We consider a similar limiting argument for the blocking probability analysis

of the wireless line network.

The primary contribution of this thesis includes the development of an exact block-

ing probability analysis for a single channel wireless line network with single hop calls

and a good approximate model for the multiple channel case. We then apply the

blocking probability formulas derived to consider the effect of transmission power on

blocking probability in a line and a grid network. We show that in a line network it is

preferable to use larger transmission radius and communicate directly rather than go

multihop to reach the destination (assuming all calls are of the same length); while

in a more dense grid network it is more desirable to use smaller transmission radius.

Since the line and grid network represent a sparse and a dense network respectively,

these results have significant implications in the design of such networks. The result

also clearly brings forth the significance of the density of the network on blocking

probability in a multi-hop environment. Finally, we develop a channel assignment

algorithm for single and multi-hop calls in a wireless network. Our algorithm signifi-

cantly outperform the naive random algorithm. More importantly, our results show

that the effect of the channel assignment algorithm is more significant when a) the

network has a dense topology (e.g., grid) and b) the call length is large. This obser-

vation is somewhat intuitive as when the network is dense, efficient packing of the

channels becomes critical.

The rest of the thesis is organized as follows. In Chapter 2, we describe the

wireless interference and the traffic model. Chapter 3 presents blocking probability

analysis for a line network including an exact analysis for the single channel case

and an approximation in the multiple channel case. Chapter 4 considers the effect of

transmission radius on blocking probability in a line and a grid network. In Chapter 5,

we present channel assignment algorithms for multihop calls in a general topology

15



wireless network and simulation results that compare their performance. Finally,

Chapter 6 concludes the work and provides future research directions.
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Chapter 2

Network Model

2.1 Wireless Interference Model

A wireless network is modeled as a two-dimensional graph G = (N, A) where N is the

set of nodes and A is the set of wireless links which are assumed to be bi-directional.

We say that a wireless link exists between any two nodes if they are within direct

transmission range of each other. All nodes in the network have an omnidirectional

antenna and are assumed to transmit with the same constant power. We investigate

a static wireless network whose topology does not change with time. We refer to

the shared resource in the network to service a call as a channel. For example, in a

time division multiaccess (TDMA) network, a channel is a time slot within the time-

division multiaccess frame and for a frequency division multiaccess (FDMA) network

a channel is a distinct frequency band. Any transmission or reception is assumed to

completely utilize the channel.

To understand the call service mechanism, consider a time division multi-access

(TDMA) system. Time is divided into frames which are further sub-divided into

slots (called time slots). The total number of time slots in a frame is the total chan-

nel resources available in the network. The data transfer between any two adjacent

nodes (nodes that are within direct transmission range), takes place in the time slots

within a frame. Since we consider only connection-oriented traffic (explained in Sec-
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tion 2.2), a time slot must be reserved a priori to allow the data transfer without

any interference from the neighboring nodes. Once a time slot is reserved, the call

is serviced in that time slot over multiple frames for the entire duration of the call.

In case of multi-hop calls, such a mechanism is repeated over all the hops along the

entire length of the path. However, neighboring links cannot share the same time slot

as interference imposes certain constraints on the simultaneous use of a channel. A

frequency division multi-access (FDMA) system is identical to a TDMA system with

the time slots being replaced by distinct frequency bands.

We assume a disk model of interference and define the transmission radius of a

node (say T) as the radius of a circle (called the transmission circle) outside which

the interference due to node T is negligible. Within the transmission radius of node

T, we assume complete interference of the signal transmitted by node T with other

ongoing transmissions. For any two nodes T and R, we say that node R is a neighbor

of node T if R lies within the transmission radius of T. Since the links are assumed to

be bi-directional, T is also a neighbor of R. Let the set consisting of neighbors of node

T and node R be denoted as rT and KR respectively. To explain the interference

model, we consider the following example of a data transfer from node T to node R

(T -+ R) in channel 7. We refer to node T, as the transmitting node and R, as the

receiving node. For call T -+ R to be successful, the following criteria needs to be

satisfied.

1. Nodes T and R must not be involved in any other call transmission/reception

in channel -y. This criterion ensures that a node cannot simultaneously serve

two calls in the same channel.

2. Neighbors of the transmitting node (P E ArT) must not receive any other data

in channel -y. Otherwise the transmission from node T will result in interference

and data loss at node P. However, note that a node P E ArT can transmit in

channel -y if this does not violate Condition 3.

3. Neighbors of the receiving node (Q E KR) must not transmit any other data

18



in channel y. Otherwise the transmission from node Q will result in the loss

of data received at node R. However, note that a node Q E AR can receive in

channel y if this does not violate Condition 2 (This happens for nodes that are

neighbors of both T and R).

The above "idealized" model approximates realistic interference assumptions and

is commonly used in the study of wireless networks [3], [19], [20]. We consider two

types of calls in this work; one involving a uni-directional data transfer and the other

a bi-directional data transfer. The next two sections describe each type of call in

detail and present examples that illustrate the simultaneous channel use constraints

(referred to as the wireless constraints) in either case.

2.1.1 Uni-directional Calls

A uni-directional call from the source node S, to the destination node D, involves

data transfer in one direction from node S to node D (S -> D). Each call is assumed

to require a single channel for service on each hop. For a multihop call, a channel

must be reserved on every link along the entire length of the path. The wireless

constraints on a single link are explained in the example below (Figure 2-1). Let the

path of a multi-hop call be {S, N1 , .., Nk, D} where, S is the source node, D is the

destination node and N1, .., Nk are the intermediate nodes. The data transfer takes

place as S -+ N -- N 2.. -+ D. Let 71, 72, .. , 7k+1 be the channels selected on the

respective links along the path from S to D. The channel assignment is feasible, if for

every link i the single hop wireless constraints (Figure 2-1) are satisfied in the chosen

channel -yj for that link.

Figure 2-1 example : Consider a single hop data transmission from node Z -+ Y

in some channel y. Nodes Z and Y cannot participate in any other transmis-

sion/reception in channel y. Nodes A, B are neighbors of Z and they cannot

receive any transmission from their neighbors in channel -y. Note that, node A can

transmit to node P which is its neighbor but not a neighbor of Z. Neighbors of node

19



Y are C, D and they cannot transmit in channel -y. Note again that node C can

receive from node Q which is its neighbor but not a neighbor of Y. In Figure 2-1, the

set of interfering data transfers are marked 'X'.

C

z Y
BD

Figure 2-1: Interference model for uni-directional data transfer (Z -> Y in the figure).

2.1.2 Bi-directional Calls

A call between any two nodes S, D is defined as bi-directional if there is data transfer

in both directions (S -- D and D -+ S). We continue to make the assumption that

each call requires a single channel for service on every link along the entire length

of the path. The actual mechanism by which the data transfer takes place, in either

direction on each link, using a single channel is immaterial. One possible way would

be to further subdivide the channel reserved on each link. However, we ignore this

detail by assuming a bi-directional data transfer on a single "super" channel. The

wireless constraints for a single hop bi-directional call are explained in the example

below (Figure 2-2). For a multihop call, these constraints must be satisfied at every

link on the entire path. Let the path of the multi-hop call be {S, N1 , .., Nk, D} along

links S <-> Ni, N <-+ N2 ,..., Nk <-> D. Let 'Y1,72, .. ,7k+1 be the channels selected on

the respective links along the path from S to D. The channel assignment is feasible,

if for every link i the single hop wireless constraints (Figure 2-2), are satisfied in the

chosen channel -yj on that link.
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Figure 2-2 example : Consider a single hop bi-directional data transfer between

nodes A and B in channel -y. Since both nodes A and B transmit and receive data

(in channel -y) during the duration of the call, all the three conditions as stated ear-

lier apply to both the nodes. It follows from Conditions 2 and 3 that neighbors of

node A cannot service any other bi-directional call. A similar condition holds for

the neighbors of node B. Let a node be labelled inactive (in -y) if it is not involved

in transmission on channel y and active (in -y) otherwise. With this notation, we

get a more simplified single hop simultaneous channel use constraint as follows. For

the bi-directional call A +-+ B to be successful (in channel 'y), neighbors of node A

(excluding B) and neighbors of node B (excluding A) must be inactive. As shown in

Figure 2-2, nodes A1 , A 2 are neighbors of A and they cannot service any other call

in channel y (while call A <-+ B is active). Neighbors of node B are B 1, B2 and they

cannot service any other call in channel -y. In the figure, the set of interfering data

transfers are marked 'X'.

A A B 3B

A B

Figure 2-2: Interference model for bi-directional data transfer (A e B in the figure).

2.2 Traffic Model

All calls in the network are assumed to be connection-oriented. A connection-oriented

call requires dedicated resources for service during the entire duration of the call.

These resources are held up while the call is in progress and simultaneously released

at the end of the call. We assume that all calls require a single channel for service on

each link. The call arrival and departure process is described next. Let Ci, represent
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the call arriving at node i and destined for node j. Let Xij(t) denote the arrival

process of this call and Zij denote the time this call remains in service. The arrival

process Xij(t) is independent of all the other call arrival processes and is assumed to

be Poisson with rate A)j. The service time Zij is independent of the arrival times and

service periods of other calls and is distributed according to an Exponential distri-

bution with mean 1/pij. In this work, we assume a uniform traffic model and set all

the arrival rates A)j = A and the service rates pij = M.

We consider bi-directional and uni-directional calls which differ in the set of wire-

less constraints on the successful service of a call. To keep the analysis tractable, we

consider networks in which calls are either all bi-directional or all uni-directional.
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Chapter 3

Line Network

3.1 Introduction

In wireless networks, dynamic channel assignment algorithms can be compared using

various performance metrics. As noted earlier, the performance metric in this work

is the probability that in steady state an arriving call is blocked. To compute this

blocking probability, we construct a stochastic model of the system and analyze its

steady state behavior. However, analyzing a general network using the stochastic

model is very difficult. Therefore, we consider simpler networks (line network and

grid network) with symmetrical loads. These networks help us understand the be-

havior of blocking probability under different network parameters and the conclusions

drawn here can be applied to more general networks. In this chapter, we analyze a

line network where the nodes are located unit distance apart from each other, the

transmission radius of each node is unity and all the links have uniform load.

We first consider the simplest non-trivial case of single hop calls and a single chan-

nel available in the network. By considering the limiting behavior (length of the line

network -+ oc), we obtain an elegant formula that computes the exact blocking prob-

ability in the single channel case. We then present a simplified approximate model

for computing the blocking probability in the multiple channel case for the random

channel allocation policy. This policy is explained in detail in the later sections. The
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next chapter builds upon this work and extends it to a more general line network.

The insights gained and the formulas derived in this chapter are used in the subse-

quent chapter to study the effect of transmission radius on blocking probability in a

line and a grid network.

The rest of the chapter is organized as follows. In Section 3.2 we consider a

line network with a single channel. We first analyze the blocking probability in a line

network with all single hop bi-directional calls (Section 3.2.1) followed by the analysis

for single hop uni-directional calls (Section 3.2.2). Section 3.3 presents a simplified

model for analyzing blocking probability in the multiple channel case for the random

channel assignment policy. Using the simplified model, we derive blocking probability

formulas that predict very well the values obtained from simulation results.

3.2 Single Channel Wireless Line Network

Consider a Wireless Line Network with nodes located at positions x = -m, -m+1,.

M -1, im. We label these nodes as X-m, X-m+i,..., Xm-1, Xm with each node having

a transmission radius of unity as shown in Figure 3-1. Since the transmission range

of every node is unity, each node can communicate directly with a node on its left

and a node on its right.

X-m X-m+1 X-m+2 X0 Xm-2 Xm-1 Xm

Figure 3-1: A Line Network.

The reason behind considering a line network with even number of links (2m)

is to simplify the blocking probability analysis when we later consider the limiting

behavior (with the length of the line tending to infinity). This simplification does

not in any way affect the limiting results. The reason for considering an infinite line

network is that the edge effects can be eliminated and each node then has an identical
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environment. This simplifies the blocking probability analysis and gives elegant and

useful results that have applicability for finite length line networks. Before proceed-

ing with the analysis, we first present an observation that plays a central role in the

subsequent proofs.

Observation: If X and Y are disjoint discrete sets and f(x) and g(y) are any two

functions defined on X and Y, then

S f(x)g(y) = (f(x))( g(y)) (3.1)
(x,y)EXXy xEX yEY

Equation 3.1 can be trivially proved as follows. Let the set X be X1 , x 2 , ... , xk and the

set Y be Y1, Y2, ..., y1 then,

(1 f(x))(1 g(y)) = (f(xi) + ... + f(Xk))(g(y1) + ... + g(yl)) (3.2)
xEX yEY

Expanding the above expression, it can be shown to equal the left hand side of Equa-

tion 3.1.

We begin by considering single hop calls and a single channel available in the

network. Single hop calls are between nodes that are within direct transmission range

of each other. The line network either has all bi-directional calls or all uni-directional

calls. In the subsections that follow, we treat each case separately.

3.2.1 Bi-directional Calls

A wireless link (or simply link) is said to exist between any two nodes if they are

within direct transmission range of each other. For a node Xk in the line network,

there is a link between nodes (Xk_, Xk) and between nodes (Xk, Xk+1). We label

the links in an increasing order with link (X-m, X-m+i) labelled L-m, link (X-m+i,

X-m+2 ) labelled L-m+i, .., link (Xm-, Xm) labelled Lmi. Thus, there are total 2m

links (L-m, L-m+i, .., L,- 1 ) in the network. A link is said to be active if there is a
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call in service on that link.

Ck-2 Ck-1 Ck Ck+1 Ck+2

Lk-2 Lk-1 Lk Lk+1 Lk+2
Xk-2 Xk-1 Xk Xk+1 Xk+2 Xk+3

Figure 3-2: Constraints on the simultaneous service of adjacent bi-directional calls.

Let Ck denote a call between nodes Xk and Xk+1. Ck = 0, if the call is inactive and

Ck = 1, if the call is active. Following the constraints as noted in Section 2.1.2, call

Ck can be successfully serviced in the single available channel if node Xk-1 (neighbor

of Xk) and node Xk+2 (neighbor of Xk+1) are inactive. This implies that calls k-2,

C-i1, Ck+1, Ck+2 must be inactive (Figure 3-2). We refer to these constraints as the

wireless constraints.

" CQ-1 = 0, (Node Xk cannot service any other call).

" Ck+1 = 0, (Node Xk+1 cannot service any other call).

" Ck-2 = 0, (Node Xk_1 cannot service any other call as it is within the trans-

mission range of node Xk).

" Ck+2 = 0, (Node Xk+2 cannot service any other call as it is within the trans-

mission range of node Xk+1).

The traffic model follows from Section 2.2. Calls (OQ) arrive according to an inde-

pendent Poisson process of rate A. The call holding period of all calls is independent

of earlier arrival times and holding periods of other calls and identically distributed

according to an Exponential distribution with mean 1/p. There is no admission con-

trol and no buffering of calls in the network. If a call cannot be accepted then it is

dropped. Otherwise it holds the channel for the entire duration of the call. We refer

to this network as WLN-1.
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Theorem 1. The blocking probability of a call in a WLN-1 line network with the

length of the line network tending to infinity and finite v = A/p is,

x3

PB - 3 - (3.3)
1 + 2vx3

where x is the unique root in (0,1] of vx 3 + x = 1.

Proof : Let nk(t) be the number of calls Ck in progress at time t. Let v = A/P

and define the vector n(t) = {nk(t)}, k E -M, ... , m - 1. State n is admissible if

n > 0 and satisfies the wireless constraints as described earlier. Let g(m) denote the

set of all admissible states for a line network with m links (or m + 1 nodes). Since

we consider a line network with 2m links, the set of all admissible states is 9(2m).

We could express the set g(m) mathematically but the analysis that follows does not

require such an explicit description of the state space. The local constraints on the

simultaneous use of a channel at a node suffice for the analysis.

The stochastic process (n(t), t > 0) is an aperiodic, irreducible, finite state Markov

process and hence has a unique stationary distribution ir(n) = P(n = (nrn, .. , in-i))

given by the following product form solution [7]. The normalization constant in the

product form solution is denoted as S(2m), where 2m denotes a line network with

2m links.
1 rn-i~

wr(n) = S(, E g(2m) (3.4)
(2m) r-m nr! nE 2m

The normalization constant S(2m) makes ir(n) a probability distribution and it can

be computed by summing ir(n) over all n E 9(2m).

m-1 O

S(2m) = S j nr! (3.5)
nE9(2m) r=-m

Since we are dealing with a single channel network nr = 0 or 1 and nr! = 1. Hence

we can drop the term nr! from Expression 3.4 and re-write as,
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I m-1

7rS(n) = -() H Vlr
2m) r=-m

rn-i

S(2m) = f "i

nEg(2m) r=-m

E Vj vn-m+..+nfm-1

nEg(2m)

Let netta1 = n-m +.. + nm-1, then,

1
- -r(n) = V Vtotal,

Sm(2m)

S(2mn) = E Vntot(m

nEg(2m)

Consider the call

{n : n E 9(2m) and

A/BO and let PNB,2m

Then,

Co of the line network. The non-blocking states for call Co are

n-2, n-1, no, n1, n2= 0}, assuming m > 2. Denote this set as

be the probability that in steady state call Co is not blocked.

PNB, 2 m = ir(n)
nEArBo

P 
= Z n E . AB o V fn t o t a l

Z nE(2m) V/total

(3.11)

(3.12)

The set of non-blocking states for call Co must have calls C-2, C_1, Co, C1, C2 inac-

tive. Therefore, to evaluate the numerator in Equation 3.12 we must characterize the

feasible states of the remaining calls (Cm, .. , C-3 and C3, .., Cm-i). It turns out that

we do not have to explicitly describe this set. Rather, we can exploit the symmetry

in the line network to evaluate the numerator. Before proceeding forward we make

the following definitions.

Let gL be the state space of calls -m,., C-3 and G be the state space of calls

C3,.., Cm-1. Then,
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n E g(2m) (3.6)

(3.7)

(3.8)

a E g(2m) (3.9)

(3.10)



9L =_ state space of WLN-1 with m - 2 links

= g(m - 2);

9R astate space of WLN-1 with m - 3 links

= g(m - 3)

Calls C-n, .. , C-3 are not affected by the simultaneous service of calls C3, .. , Cm-1

which makes the state space 9L independent of gR. Therefore, the set KBo is the

cartesian product of the sets 9L and 9 R (by independence) and can be written as,

ABo = {gLXgR, n-2 n 1, no, n, n 2 = 0}. We can now evaluate Expression 3.12

using Equation 3.1. Let, nL = n-m +.. + n- 3 and nrR = n 3 + .. + nm-1. With this

notation and n- 2 , n- 1 , no, ni, n2 = 0 we get,

S v""M' = Y (Vf-m+.+n-3)(V n3+..+nlm1) (3.13)
A/Bo AfB 0

(E V L)( vnR) (3.14)

PNB,2m (L n)(gR nR) (3.15)
ZnEQ(2m) Vfltotal

PNOB,2m (Zg(m-2) V"L)(Eg(m- 3) "R (316)
ZnEg(2m) Oftotal

Using our notation for the normalization constant we get,

S VL S(m -2)
G(m-2)

I V" = S(m - 3)
9(m-3)

5 V"ntot = S(2m)
9(2m)

The expression for the probability of non-blocking of call Co can now be expressed in
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a more simplified way as,

S(m - 2)S(m - 3) (3.17)
NB,2m S(2m)

The size of the state space, g(m), increases very rapidly with the length of the

line. Hence, calculating S(m) by summing over all the feasible states is not practical.

However, the symmetry of the line network facilitates an iterative evaluation of S(m).

The set of feasible states can be partitioned into a set of states for which the leftmost

call is inactive and the set of states for which the leftmost call is active. For the former

state space S(m) equals S(m - 1). In the latter state space, the wireless constraint

forces the next two calls on the right (of the leftmost call) to be inactive and the state

of the remaining calls on the line is independent of the leftmost active call. Thus, for

the latter state space, S(m) equals vS(m - 3). Let SoI{constraint} represent the

evaluation of the function So under the specified constraint.

S(m) = S(m)j{leftmost call inactive} + S(m)I{leftmost call active} (3.18)

S(m) S(m - 1) + vS(m - 3), m > 3 (3.19)

S(k) = 1, k < 0 (defn), S(1) = 1 + v, and S(2) = 1 + 2v.

Using the above equations we can evaluate PNB,2m for a line network with 2m links

for any m. Following a similar methodology, we can easily generalize the approach

and evaluate the probability of non-blocking PBm of a call Ck, Vk and for any finite

m. It turns out that if we look at the limiting behavior (limm,), an elegant formula

for the blocking probability of any call in the network is obtained. Simulation results

(Table 3.1) have shown that this formula very closely approximates the blocking

probability for finite length line networks and is much easier to evaluate than the

iterative formula presented earlier. The iterative formula becomes cumbersome to

deal with as the length of the line increases. We now proceed to consider the limiting

behavior. Re-writing Equation 3.17 and taking limits we get,
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(S(m-2)S(m-3))

90 __S(m-1)S(m- 1)
PNB,2m S(2m)

S(m-1)S(m-1) )
(S(m-2)S(m-3))

lim PB -= m (m-}Sm-) (3.21)
M oNB,2m M-.= S(2m)

ks(m-1)S(m-1))

To evaluate the denominator in the above equation, we need to evaluate S(2m).

This is done by partitioning the state space of WLN-1 into a set of states conditioned

on all the possible states of calls (C- 1, Co). We then evaluate S(2m) over each of

the partitioned state space and sum them up. There are four cases that need to be

considered.

1. C-1, CO both inactive. In this case, calls C-m, .. , C-2 do not interfere with calls

Ci, .., Cm_1. Thus, the state of calls C-m, ., C-2 is independent of the state of

calls C1, .., Cm-1 and we get, (Note that using the earlier notation, feasible state

space of {C-m, .. , C-2} = g(m - 1) and the feasible state space of {C1, .., Cm-1

g(m - 1))

S(2m) = S -- +--+n-2 5 nl+-+nm_1

9(M-1) gm1

S(2m) = S(m - 1)S(m - 1)

2. C_1 active, Co inactive. Since C_1 is active, calls C-3, C-2, C1 must be inactive.

This leaves the state of calls C-m, .. , C_4 independent of the state of the calls

C 2 ,.., Cm-1. The feasible state space of {C-m,.., C 4} = g(m - 3) and the

feasible state space of {C 2, .., Cm-1} = g(m - 2).

S(2m) = ( E nf-m+..+n-4) . ( 5 V n2++nm-1)
g(m-3) g(m-2)

S(2m) = vS(m - 3)S(m - 2)
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3. C_1 inactive, Co active. By symmetry (with case 2),

S(2m) = vS(m - 2)S(m - 3).

4. C-1, Co both active. This state is infeasible.

Thus we have,

S(2m)

S(2m)

= S(2m){C-l1, Co = 0} + S(2m){C_1 = 1,CO = 0}

+S(2m){C- 1 = 0, CO = 1}

= S(m - 1)S(m - 1) + 2vS(m - 2)S(m - 3)

(3.22)

(3.23)

Plugging Equation 3.23 in Equation 3.21 we get,

S(m-2)S(m-3)

lim PO = urn S(m-1)S(m-1)
m-+oo NB,2m M-oo 1 + 2 ,S(m-2)S(m-3)

S(m-1)S(m-1)

(3.24)

When m -- oo the probability of non-blocking PNB of any call, by symmetry, is

equal to the probability of non-blocking of call Co. We can drop the super script 0

and re-write as (assuming the limit exists which we later show that it does exist),

S(m-2)S(m-3)

PNB = liM S(m-1)S(m-1)
m-*o+ 1 + 2 ,S(m-2)S(m-3)

S(m-1)S(m-1)

(3.25)

To prove the existence of the limit and evaluate its value, we go back and examine

Equation 3.19 that evaluates S(m) iteratively.

- S(m - 1) + vS(m - 3)

S(m - 1)
S(m)

S(m - 3)
S(m)

= lim S(m - 1)
M-+00 S(m)

v lim S(m - 3)
m-oo S(m)

Since the left hand side of the above equation is 1, the limits on the right hand side
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must exist. Let,

n S(m - 1)
M-00 S(m)

Then,

S(m - 3) S(m - 3) S(m - 2) S(m - 1)lim =lim .lim lim+CM-+0 S(m) m-o0 S(m - 2) m-oo S(m - 1) m-o S(m)

Making change of variables, (k = m - 2,1 = m - 1)

S(m - 3) S(k - 1) S(l-1) S(m - 1)lim =lim lim lim
m-+oo S(m) k--oo S(k) ILoo S(l) m-oo S(m)

= X3

In terms of x, Equation 3.28 can be written as,

1 = x + vX3  (3.29)

We go back and examine what x represents. The normalization constant S(m) is a

non-negative monotonically increasing function of m, V v > 0 and gives an indication

of the size of the state space. With this interpretation, x is the state space expansion

factor (in terms of the normalization constant S(m)) in the limit (m - oc). For all

finite v > 0, S(k) <; S(k + 1), k > 1 which implies that x E (0, 1]. The existence of a

root of the cubic Equation 3.29 in (0, 1] for any finite v > 0 can be proved as follows.

Re-write Equation 3.29 as,
2 1

The function 1/x is a positive decreasing function and takes values between [1, 00) in

the interval x E (0, 1]. Function, vX2 + 1 is a positive non-decreasing function taking

values between (1, 1 + v] in x E (0, 1]. Since we assumed that v > 0, the two curves

must intersect at a unique point in (0, 1]. This is illustrated in Figure 3-3.
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t
f(x)

0

1/ x

1+ v.

x -b-

Figure 3-3: Plot indicating the intersection point between 1/x and 1 + vx 2 .

PNB can now be evaluated in terms of x as,

PNB

S(m-2)S(m-3)

lim -S(m-1)S(m-1)
M-00o 1 + 9S(m-2)S(m-3)

s(m-1)S(m-1)

x3

1+ 2vx3

Finally, the probability of blocking PB = 1 - PNB, is,

PB = 1- ,1 + 2vx3 Vx3 + x = 1 (3.30)

This completes the proof of Theorem 1.
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Figure 3-4: Blocking probability plot for bi-directional calls (plot of PB = 1 - X+23-
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Figure 3-4 is a plot of PB (Equation 3.30) for various values of the load v. The

value of x is computed by finding a root in (0,1] of vX3 + X = 1. Being a cubic poly-

nomial, the root can be evaluated very easily either analytically or using numerical

methods.

Table 3.1 compares the blocking probability values computed theoretically using

Expression 3.30 with the values obtained from simulations of a line network with 10

nodes. In the simulations, blocking probability of the center call is computed as the

edge effects are minimal for this call. As seen from the table, the blocking probability

formula (Equation 3.30) accurately predicts the values even for small length line

networks.

Length = 10 nodes
v Theoretical Simulated

Blocking prob. Blocking prob.

0.00005 0.000249 0.000244
0.00040 0.001995 0.001987
0.00160 0.007929 0.007933
0.01280 0.059734 0.059813
0.10240 0.328020 0.331024
0.81920 0.775250 0.780030

Table 3.1: Comparison of theoretically computed and simulated blocking probability
values for finite length line network and bi-directional calls.

To understand Equation 3.30 in more detail, we compare it with the standard

M/M/1/1 blocking probability expression. The steady state blocking probability in

a M/M/1/1 system with load v' is given by,

PB = 1 (3.31)

We make the comparison by calculating an equivalent load v' in the M/M/1/1 block-

ing probability expression (Eqn 3.31) that has the same blocking as that obtained

from Equation 3.30 for load v. The significance of the effective load is that, if we

isolate a particular link of the line network then load v' on this isolated link would

35



have the same blocking probability as experienced by the link within the line network

(with symmetrical load v). To calculate v', we equate Equation 3.30 and 3.31.

1' 33
= 1- 1+33

1 + V' 1 + 2vx3
,1 + (2v - 1)X3

Define factor g as, g = v'/v, then g can be expressed as,

1 + (2v - 1)x3  (3.32)
vx 3

A plot of g for different values of load v is presented in Figure 3-5. Evaluating the

limits in Equation 3.32, we get lim_,O g = 5 and limv,o g = 3. The understanding

behind these values of g is that at light load (lim,,o) each arriving call contributes an

equivalent load of 5 calls; while at high loads (lim1 1 x) each arriving call contributes

an equivalent load of 3 calls. These values can be explained in detail as follows.

4.8-

4.6

4.4

42

4

3.8

3.6 
-

3.4

0. 10 20 30 50 0 0 80 90 100

Load (nu)

Figure 3-5: Plot of g = v'/v for bi-directional calls.

v -+ 0: Each single hop call, Ck, in WLN-1 has four other neighboring interfering

calls (Ck-2, Ck_1, Ck+1, Ck+2). To serve any of these 5 calls, a channel on link Lk

must be free. In the low load case almost all the calls get served and the chances of

more than one call being active from among the 5 calls, C-2, .. , Ck+2, is negligible.

Thus, the total rate seen by link Lk is five times the arrival rate and the value of g
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as v -+ 0 is 5.

V -+ 00: At very high loads, the highly probable states of the network are the

maximally packed states [15]. In WLN-1 network, the maximally packed states have

an active call every two hops apart. The largest set of mutually interfering calls is

three and at very high loads (due to maximal packing), these calls mutually block

the channels. Thus, the total rate seen by link Lk is three times the arrival rate and

the value of g as v -+ 00 is 3.

3.2.2 Uni-directional Calls

We extend the blocking probability analysis of Section 3.2.1 to the case of unidi-

rectional calls in a line network. A unidirectional call from node Xk to node Xk+1

involves data transfer only in one direction (Xk --+ Xk+1). Therefore, in this case,

calls Xk --+ Xk+1 and Xk+1 -+ Xk are distinct. This adds more complexity to the set

of interfering calls and manifests itself in a more tedious blocking probability analysis.

However, interestingly, an exact expression can be obtained even in this case in the

limit of the length of the line network tending to infinity.

The line network is identical to that considered in Section 3.2.1. The wireless in-

terference model follows from Section 2.1. The notation for the calls is as follows. We

label the call from node X, --+ X1+1 as C21 and the call from node X1+ 1 - X, as C21+1.

Thus, the set of distinct calls in the network are C-2m, C-2m+1, .. , 2m-2, C2m-1. Calls

arrive according to independent Poisson processes each of rate A. There is a single

channel available in the network. If the arriving call cannot be accommodated for

service then it is lost and does not reattempt service request. Otherwise the call is

connected and holds the channel for the holding period of the call. The call holding

period of all calls is independent of earlier arrival times and holding periods of other

calls and Exponentially distributed with mean 1/p.

Consider a particular call Ck (k, even). This call is from node Xk/2 --+ Xk/2+1-

The set of local constraints for servicing this call are as follows.

37



" Since node Xk/2 is only transmitting for the entire duration of call Ck, neighbors

(Xk/2-1 and Xk/2+1) of this node including itself cannot receive any other call.

This implies that calls Ck-4, Ck-2, Ck-1, Ck+1, Ck+3 must be inactive.

" Node Xk/2+1 is the receiver for call Ck. Therefore neighbors (Xk/2 and Xk/ 2 +2 )

of this node including itself cannot transmit any other call while call Ck is in

progress. This constrains the calls Ck-1, Ck+1, Ck+2, Ck+3, Ck+4 to be inactive.

Combining all the constraints, we find that for call Ck to be successfully serviced

in the available channel, calls Ck-4, CQ-2, Ck-1, Ck+1, Ck+2, Ck+3, Ck+4 must be inac-

tive. Figure 3-6 shows these constraints for call Ck, k being even. Calls marked 'X'

must be inactive for call Ck to be successfully serviced . A similar set of conditions

can be obtained for the case when k is odd. We refer to this network as WLN-1(uni).

C k- 4  C k-2 C k C k+2 C k+4

Ck-3 Ck-l Ck+l Ck+3  Ck+5

Figure 3-6: Constraints on the simultaneous service of adjacent uni-directional calls.

Theorem 2. The blocking probability of a call in a WLN-1(uni) line network with

the length of the line network tending to infinity and finite v = A/p is,

xy
PB = I - xy(3.33)v2 (1 - x) 2 + 4vxy

x and y satisfy the following relations,

x(1- x) 2 +4x 2 = v(1- x) 2

2
Y = Vx

and x is the unique root in /0, 1) Of X (1 _ X) 2 ±+4X2 = V(1 - X) 2 .

38



Proof: Let nik(t) be the number of calls, Ck, in progress at time t. Let V = A/p

and define the vector n(t) = (nk(t), k E -2m, ..., 2m - 1). State n is admissible if

n > 0 and satisfies the constraints as described earlier. Let H(m) denote the set of all

admissible states for a line network with m links (or m + 1 nodes). Since we consider

a line network with 2m links (nodes -m, .., m), the set of all admissible states is

N(2m). As in the bidirectional case, an explicit description of the admissible state

space is not required. The local constraints on the simultaneous use of a channel

suffice for the analysis. The stochastic process (n(t), t > 0) is an aperiodic, recurrent

Markov process and hence has a unique product form stationary distribution r(n) =

P(n = (n-2m, .. , n2m-1)). The normalization constant in the product form expression

is denoted as N(2m).

1 2m- 1
ir(n) N(2m) ---_ n E l(2m)

N(2m -2 r

The normalization constant N(2m) makes ir(n) a probability distribution and it can

be computed by summing 7r(n) over all n E h(2m). For a single channel network

nr = 0 or 1 and n.! = 1 and we get,

12m-1
7r(n) = NV2m J V"l , n E -H(2m) (3.34)

r=-2m

2m-1

N(2m) = S v ' (3.35)
nE(2m) r=-2m

= S n-2m+..+n2m-1 (3.36)
nE7R(2m)

Let ntotal = n-2m + .. + n2m-1, then,

_1

7r(n) )Votal , n E 1-(2m) (3.37)
V(2 m)

N(2m) = vn"'ot (3.38)
nE7H(2m)

Following Section 3.2.1 we focus on call CO of the line network. The non-blocking
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states for call CO are {n : n E K(2m), n- 4 , n-2, n-1, no, ni, n2, n3, 74 = 0}. Denote

this state space as KBo. The probability that call Co is not blocked is,

PNB = S r(n) (3.39)
nEgrBo

P B n B n ntotal (3.40)

NnE (2m) Vntotal

To evaluate the numerator in Equation 3.40, we must characterize the set of non-

blocking states. It turns out that we do not have to explicitly describe the set KB o .

Rather, as done in the bidirectional case, we can exploit the symmetry in the line

network to evaluate the numerator.

Let CL represent the set of calls, C-2m, C-2m+1,.., C-5, C-3 (call C_4 is excluded

as it is inactive in the set KBO) and CR represent the set of calls, C5, C6, .. , C2m-1.

The set KBo consists of all the feasible states of calls CL, CR with {C- 4 , C- 2 , C- 1 , CO,

C1 , C 2 , C 3 , C4 } = 0. Nodes for the calls CL are not within direct transmission range

of the nodes for CR. Therefore, the calls in CL are not affected by the simultaneous

service of calls in CR which makes the state nL = {0-2m, .. , n-5, n-3} independent of

the state nR n{75, -., n2m-1} and we can apply Equation 3.1. Let,

nL n-2m + -- + n-5 + n-3

HL feasible state space of calls CL

n = -- +..+ n2m-1

HR afeasible state space of calls CR

We can now evaluate Expression 3.40 using the above notation and Equation 3.1.

5 Vtotal = : (V n-2m+-+n-5+n-3)( n+-+n2m_1) (3.41)
A/BO HLXHR

1 (vnL)(EV4nR) (3.42)
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= (Z vnL)(E vnR)

Z nE(2m) Vntotal

To make the evaluation of the above expression easier, we take the limit, limm--o.

The limiting condition eliminates the edge effects of finite length line networks and

leads to an elegant formula for the blocking probability of a call. Simulation results

(Table 3.2) have shown that this formula very closely approximates the actual blocking

probability for finite length line networks. Thus, the result obtained here is not

restrictive. When m -- oo the probability of non-blocking, PNB, of any call is by

symmetry equal to the probability of non-blocking of call C0O and we can drop the

super script 0. Re-writing Equation 3.43 and taking the limit, limm-,oo, we get,

( h EnL ( R O"R

n10N N(m-1) N(m-1)lim NB " Vnttal(3.44)
m-+oo m--+oo nEW(2m)

N(m-1)N(m-1)

lim m -- ). ( ( - -1)Vn ) lim m +CO ( NW m -O )

PNB = li1) N(2M) (m-1) (3.45)
im-+0 N(m-1)N(m-1)

To evaluate the limits in the above expression, we use the conditioning argument

and the symmetry in the line network as used in the case of bidirectional calls.

V nR = V" {fn 5 inactive} + V"R {rn active}
HR ?IR,n5=0 HR,n5=1

when n5 = 0 (inactive), the feasible state space of calls {C 6 , .. , C2m-1} _ 'H(m - 3).

Thus we get,

E VfnR _ 5 nV+...+n2m-1 = N(m - 3)
HR,n5=0 -(m-3)

when n5 = 1, we have n6 , n7, n8 = 0 and conditioning on n9 we get,

5 n~vR = vN(m - 5) {ng inactive} + 5 VfR {ng active}
HR,n5=1,n9=0 Hf,n5=1,n9=1
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Proceeding this way,

V nR =N(m - 3) + vN(m - 5) + v 2 N(m - 7)+ .. + V +1
HR

v nR =N(m - 3) +vN(m - 5) +v2N(m - 7)+..+ / )+1

Taking the limit (limm-,o) we get,

lim VflR
M--0 N(m - 1)

N(m - 3)
= lim1

m-oo N(m - 1)
N(m - 5)m+-vlim +

m-oN(m - 1)
V iN(m - 7)v2 him+ ...

m-oo N(m - 3)
(3.46)

Define the following limits (the existence of these limits is shown later). We choose

this definition of the limit as it simplifies the evaluation of the blocking probability

expression.

lim vN(m)
m-oo N(m + 2)

lim vN(m)
m-+oo N(m + 1)

= X

y2 = va

In terms of x and y, we can rewrite expression 3.46 as,

Z11HR VUnR
lim

M-+0 N(m - 1)
- -(X +X2 +X 4...

v(1 - X)

Following a similar reasoning, we can evaluate limm--o (EHL vnL/N(m - 1)) and the

denominator limm--+o(N(2m)/N(m - 1)N(m - 1)) in Equation 3.45.

ZHL V fL
lim

m-oo N(m - 1)
N(m - 2) N(m - 4)= lim + lim v + ..

m-oo N(m - 1) m-+oo N(m - 1)
- ( + x + 2x3 + )

V

v ( - x
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To evaluate N(2m), we partition the state space 'H(2m) into a set for which {C-2,

C_1, CO, C1} = 0 (inactive) and a set for which atleast one of the call amongst {C-2,

C_,, Co, C} is active. For the former state space N(2m) = N(m - 1)N(m - 1) and

for the latter state space we make a conditioning argument identical to that made

earlier, to obtain the second term in the following equation.

N(2m) = N(m - 1) 2 + (3.52)

4v(N(m - 3) + vN(m - 5) + ..)(N(m - 2) +

vN(m - 4) + ..)

lim N(2m) = 1+4(X+X2+..)(y+yX+yX2 + (3.53)
m-oo N(m - 1)2 V

= + 4xy (3.54)
V(1 - )2

Using the above results, we can evaluate PB in terms of x and y. However to

complete the proof, we need to prove the existence of the limit x and evaluate its

value (Note that y can be calculated from x using y2 = VX). Using the conditioning

argument and symmetry of the line network, we evaluate the function N(m + 1) as,

N(m + 1) = N(m) + 2vN(m - 2) + (3.55)

2v2N(m - 4) +.. + 2v1 +1 , m even

N(m + 1) = N(m) + 2vN(m - 2) + (3.56)

2vN(m - 4) +.. + 2v , m odd

Dividing by N(m + 1) and taking limit(limm-,o) we get,

1 vN(m) 1 v 2 N(m - 2) ±(.71 = - lim + - lim + .... (3.57)V m-oO N(m + 1) v m-,o N(m + 1)

Since the left hand side (LHS) of the above equation is 1, the limits on the right hand

side (RHS) must exist. This proves the existence of the limits and also provides a

way to compute its value. Rewriting Equation 3.57 in terms of x and y we get,
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1 = + 2x + 2x2 ... (3.58)

Y (1 + 2x + 2x 2 +...) (3.59)
V

The normalization constant N(m) is a non-negative monotonically non-decreasing

function of m, V v > 0. This implies that y > x. Since Equation 3.59 is satisfied for

all values of v, the infinite series in x must converge and x E [0, 1) for all finite values

of v. Using y = V/i and excluding the cases x = 0 (v = 0) and x -> 1 (v -- oo), we

get the following cubic equation in x.

x 2x
-(1 + ) = 1 (3.60)

V 1 - X

x(1 - x) 2 + 4x2 = v(1 - x)2  (3.61)

To prove that there exists a unique solution in (0, 1) of the cubic equation, for any

finite value of v > 0, we re-write Equation 3.61 as, (Note that by neglecting v = 0

case, we have x > 0)
4x v

1 +
(1 - x) 2  x

The function L is a positive decreasing function and takes values between [IV, c) in

the interval x E (0, 1). Function, 1 + 4 is a positive increasing function taking

values between (1, oo) in x E (0, 1). Since v is assumed to be positive, the two curves

must intersect at a unique point in (0,1). Finally, the blocking probability of a call,

PB, is given by,

xy
v2 (1 - x) 2 + 4vxy (3.62)

where x and y satisfy the following relations

x(1- x) 2 +4x 2 = V(1_X) 2

y2

This completes the proof of Theorem 2.
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Table 3.2 compares the blocking probability values computed theoretically using

Expression 3.62 with the values obtained from simulations of a line network with

10 nodes. In the simulations, blocking probability of the center call is computed

as the edge effects are minimal for this call. As seen from the table, the blocking

probability formula (Equation 3.62) accurately predicts values even for small length

line networks.

Length = 10 nodes
v Theoretical Simulated

Blocking prob. Blocking prob.
0.00001 0.0000799 0.000082
0.00004 0.0003198 0.000313
0.00016 0.0012781 0.001285
0.00256 0.0200130 0.019928
0.04096 0.2396400 0.239738
0.65536 0.8061500 0.807249

Table 3.2: Comparison of theoretically computed and simulated blocking probability
values for finite length line network and uni-directional calls.

Following the arguments of the bidirectional case, we compare the blocking prob-

ability expression (Equation 3.62) with the standard M/M/1/1 formula. We compute

an effective load v' in the M/M/1/1 expression (Equation 3.31) that gives the same

blocking as that obtained from Equation 3.62 for load v. The significance of the

effective load is that if we isolate a particular link of the line network then load v'

on this isolated link would have the same blocking probability as experienced by the

link within the line network (with symmetrical load v). The effective load v' can be

computed by equating Equation 3.62 and 3.31.

1 +i' 1 v2(1 -X)2+ 4vXy

v2 (1 _ X)2 + (4v - 1)xy

xy

For unidirectional calls the factor g defined as, 9 v'/v, is given by,
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v2 (1 - X) 2 + (4v - 1)xy (3.63)
vxy

7.5

65

0
*D 6

5.5

5 --

4.5 -

Load (nu)

Figure 3-7: Plot of g = v'/v for uni-directional calls.

A plot of g for different values of the load v is presented in Figure 3-7. When v -+ 0,

the value of g equals 8 which is the number of interfering calls plus one (the particular

call). When v -+ oc, g equals 4, which is the size of the largest set of mutually

interfering calls. These values conform to the reasoning presented for bidirectional

calls and it is applicable here as well.

3.3 Multiple Channels

The earlier sections considered a line network with a single channel. In the single

channel case, if the channel is available (allocating the channel to the incoming call

satisfies the wireless constraints) then it is assigned otherwise the call is dropped.

However, in the multiple channel case, we may have situations when there are many

free channels available and a channel allocation decision must be made. In this

section, we analyze a line network with multiple channels and single hop calls. We

consider the random channel allocation policy and attempt to compute the blocking

probability of a call for this policy. Extending the analysis of the single channel

case to multiple channels is not straight forward. The difficulty arises in evaluating
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the normalization constant in the steady state probability distribution expression.

Therefore, we consider a simplified analytical model and derive approximate blocking

probability formulas that predict very well the values obtained from simulations.

3.3.1 Random Channel Allocation Policy

A random channel assignment policy, assigns a channel on a link randomly from

among the free channels on that link. Free channels refer to those channels that do

not have any calls in progress and the acceptance of a call in those channels does not

violate the wireless transmission/reception constraints. The random policy is very

easy to implement practically and its performance study helps us evaluate other dy-

namic resource allocation algorithms. We then look for policies which perform better

than the random policy in terms of steady state blocking probability. Our region of

comparison will always be the region of low blocking probability. It has been shown

that in the high blocking regime, the random policy outperforms the rearrangement

policy in a linear cellular network, [13]. However such a regime is not very interesting

as in practice, networks operate in the low blocking regime.

The analysis of the random policy cannot be carried out along the same lines

as the single channel analysis. This is because the state vector n defined earlier as,

(n = {nk} ,where nk = number of calls in progress on link Lk) does not completely

describe the system behavior. To make a channel allocation decision for a new ar-

riving call, we must have knowledge of the channels already occupied by the ongoing

calls. The vector n = {nk} does not provide this information and is not sufficient to

describe the system. We could expand the state space to include information about

the state of the channels on each link but this would make the state space very large.

Even if we could characterize such a state space, it would be hard to find a steady

state probability distribution over this expanded state space. Thus, we devise an

approximate model of the system from which we compute the steady state blocking

probability. We then present plots that compare the theoretically predicted blocking

probability values and the simulation results. What follows next is a description of
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this approximate model.

The traffic model is similar to that considered in Sections 3.2.1 and 3.2.2. Calls

arrive according to independent Poisson processes each of rate A and the holding pe-

riod of each call is Exponentially distributed with mean M. The load v is defined as

v = A/p. There is no buffering of calls in the network. If a call cannot be accepted

then it is dropped. Otherwise it holds the channel for the entire duration of the call.

Instead of looking at the entire network, we focus on the behavior of a single link.

We first construct a model of the behavior of a single link in the single channel case

and then extend it to the multiple channel case. Though we present the model for a

line network, it can also be applied to a general network with minor modifications.

Let us consider a link Lk of the line network. For the present, assume that there

is only a single channel 7 in the network and denote its state on link Lk as Sk. We

model Sk as a three state process as shown in Figure 3-8. The three states being the

free state (denoted F), the busy state (denoted Bu) and the blocked state (denoted

Bl). The link Lk is said to be in the blocked state if the channel is occupied by a

call on a neighboring interfering link thereby making the channel unavailable on link

Lk. The amount of time that the state is in the free state before making a transition

to the busy state is Exponentially distributed with rate A. Let YFBI be the random

variable that denotes the amount of time the state Sk is in the free state before going

to the blocked state.

Suppose that the present state Sk = F (free state). If we knew the state of channel

y on other links then Y_.5 1 is an Exponential random variable with rate equal to the

sum of the rates of the competing arrival processes on interfering links. The number

of such competing processes will vary depending on the present state of other links.

Thus, conditioned on the state of the network, Yq. 13 is Exponentially distributed.

However, unconditionally Y1 _.,6 has a general distribution. We approximate Y ,. 1

as an Exponential random variable with an average rate A'. The amount of time
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that the state Sk is in the blocked state before making a transition to the free state

is taken as a general distribution with mean 1/p'. With these assumptions, Sk is a

three state random process having a steady state distribution identical to a Markov

process [7] with transition rates as shown in Figure 3-8.

Blocked
state B1

Free F Bu Busy
state state

Figure 3-8: Three state Markov process model of the channel on a link.

Consider the following notation for the steady state probability distribution of the

process Sk.

7rFr probability of being in the free state.

7rsu, probability of being in the busy state.

lraul probability of being in the blocked state.

Let PB denote the steady state probability that an incoming call is blocked. Then as

a function of the transition rates, we can compute PB by solving the detailed balance

equation of the three state Markov process. Let, v' = A'/p', and v = A/p, then,

7rl = (1/v)7ri

Wrol = (1/v')lrF

7rP + BrU + 731=

PB 1rBu + 70s
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Solving these equations we get,

~ V
1 + PBV1 V - PB (3.64)1 - PB

In Section 3.2.1 and Section 3.2.2, we computed the exact blocking probability,

PB, of a call in a single channel line network for both bi-directional and uni-directional

calls. Combining the results of those sections with Equation 3.64, we can calculate

the equivalent load v' in the model (note that load v is a known parameter). Given

an arrival rate A and the departure rate p of the calls, we can interpret A' as an

independent rate of call arrivals that block the channel on a link. The offered load of

such calls is v'.

In the multiple channel case, define the state of a link as X(t) = (X, (t), Xbl(t))

where Xes is the number of busy channels and Xbl the number of blocked channels

on that link, at time t. Let p be the total number of channels in the network. At any

time t, the state X(t) = (Xau(t), Xbj(t)) must satisfy Xau(t) + Xb1(t) p. We assume

that the transition rates among the states of the process X(t) do not depend on the

state of the system and model these transitions as shown in Figure 3-9. The transition

time from (Xsu(t), Xbl(t)) -* (Xsu(t)+1, Xbj(t)) is Exponentially distributed with rate

A and the transition time from (Xsu(t), Xbl(t)) -- (Xeu(t), Xbz(t) + 1) is modeled as

Exponentially distributed with rate A'. The steady state distribution of X(t) is iden-

tical to that of a Markov process with state transition diagram as shown in Figure 3-9.

Let ir(i, j) denote the steady state probability that X takes value (i, j). Then

the steady state probability of blocking pLand is equal to Ei+3 =p ir(i, j). Solving the

detailed balance equations [7] we get,

pind - L r(i, j)
i+j=p

jP

+- p . /

50



O'p -. (k+1) '

0,-1 - m,k

('p-1 p
m 11

0,2 (X bu+ Xbl -
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Figure 3-9: State transition diagram for the random channel allocation policy.

Define E(v, p) as the Erlang B formula [8] for a load v and p servers.

(Vp)

E(v,p) = (3.65)
1+ V + (5 + ... +2! + +

Then in terms of the Erlang B formula we have,

pj,"d- E(F, p) (3.66)

We next consider bi-directional and uni-directional calls and present formulas for F/

and pgand in terms of the offered load v. Plots comparing the theoretically computed

pand values and the simulation results are also presented.

Bi-directional calls

In Section 3.2.1, we derived the exact single channel blocking probability, PB, ex-

pression for an infinite WLN-1 network. We use that result (Equation 3.30) and
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Equation 3.64, to evaluate F/.

PB
1 - PB

1 + (2v - 1)x 3

x
3

(3.67)

(3.68)

where x E (0, 1] satisfies vx 3 +X = 1.

Using Equation 3.66, we compute the steady state blocking probability of a call for p

channels and the random channel allocation policy.

PB"-rand = E(i,p)
1 + (2v - 1)x 3  3

V = ,3VX3 + X=

(3.69)

(3.70)

Plots comparing the predicted blocking probability values and the simulation re-

sults for 20 and 50 channels are shown in Figure 3-10. The length of the line network

is 30 nodes and blocking probability is computed for the center call (the edge effects

are minimal for this call). As seen in Figure 3-10, the predicted values are very accu-

rate for low to moderate values of p. In the next chapter, we build upon this work and

use the formulas derived here to study the effect of transmission radius on blocking

probability.

10,
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Figure 3-10: Comparison of theoretical
and random channel allocation policy.
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Uni-directional calls

The exact expression for the blocking probability of calls in an infinite WLN-1(uni)

network was derived in Section 3.2.2. Using Equation 3.62 and Equation 3.64 we

evaluate i,

PB

1 - PB
v2 (1 _ X) 2 + 4vxy - xy

Xy

(3.71)

(3.72)

where x E [0, 1) satisfies x(1 - x) 2 + 4X2 = v(1 - X) 2 and y2 = vX.

Using Equation 3.66, we compute the steady state blocking probability of a call for p

channels and the random channel allocation policy.

Pni-rand = E(/, p)

v2 (1 _X)2 +4vxy - xy
xy

(3.73)

(3.74)

Figure 3-11 presents plots comparing the predicted blocking probability values

and the simulation results for 20 and 50 channels. The length of the line network

is 30 nodes and blocking probability is computed for the center call. As seen in

Figure 3-11, the predicted values are very accurate for low to moderate values of p.

Number of channels=20

c
d ( 3

Locadl (nlu) of eBach call
4

10*

10-,

10-2

10'

10'

10-
5

-12

Number of channels=50

alculated
d 7 f 9 10 11

Loadl (nuj) of each call

Figure 3-11: Comparison of theoretical and simulated values for uni-directional calls
and random channel allocation policy.
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3.4 Summary

In this chapter, we derived exact blocking probability formulas for bi-directional

(Equation 3.3) and uni-directional calls (Equation 3.33) in the single channel line

network case. We obtained the result in the limit of the length of the line network

tending to infinity, however, the result is very accurate for finite length line networks

as well (Table 3.1 and 3.2) . We compared these formulas to the standard M/M/1/1

blocking probability expression and obtained useful insights on the effective load (v')

that helped us construct the model for the multiple channel case. Our methodol-

ogy of analysis is not restrictive to the cases considered in this chapter but can be

applied to other symmetrical systems as well. One extension of the methodology is

the blocking probability analysis for a generalized line network presented in the next

chapter. Finally in Section 3.3, we presented a simplified analytical model in the

multiple channel case for the random channel allocation policy. We derived approx-

imate blocking probability formulas for both bi-directional and uni-directional calls

that accurately predict the values obtained from simulation results, especially, for low

to moderate number of channels (Figures 3-10 and 3-11).
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Chapter 4

Effect of Transmission Radius on

Blocking Probability

4.1 Introduction

We have modeled an ad-hoc wireless network as a two-dimensional graph G = (N, A)

where N denotes the set of nodes and A is the set of wireless links. Assuming that

all nodes transmit with constant power, an edge exists between any two nodes if they

are both within direct transmission range of each other. Thus, given the transmission

radius of each node, the topology of the network as a graph is well defined. This

topology can be varied by changing the transmission radius of the nodes (which can

be achieved by changing the transmission power). For dynamic channel allocation

policies, the blocking probability of calls in the network is influenced by the topology

of the network. In a sparsely connected network, a node has fewer neighbors and less

constraints on the spatial re-use of a channel while in a densely connected network, a

node has more neighbors and hence more constraints on the spatial re-use of a channel.

Consider a multi-hop call in the network between nodes S and D, where the route

of the call involves multiple hops. In this case, a different channel must be assigned

over adjoining hops and the set of channels chosen must satisfy the wireless con-

straints as noted in Section 2.1. We could however increase the transmission radius
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of the two nodes S,D and have a direct transmission of the call. In this case the

multi-hop call becomes a single hop call and a single channel is required to service

the call. However, the nodes now have more neighbors and more constraints on the

use of a channel to service this call. Thus, we have the following tradeoff in the above

example. In the first case (smaller transmission radius), we require multiple channels

to service the call but fewer constraints on the use of a channel at each hop along the

length of the path. In the second case (larger transmission radius), a single channel

is required to service the call but there are more constraints on the use of a channel.

In this chapter, we explore this tradeoff in more detail and study the influence of

transmission radius of the nodes on blocking probability of calls. We first analyze the

tradeoff in a line network with nodes located in a straight line unit distance apart

and then consider a network with nodes located as a grid.

The chapter is organized as follows. In Section 4.2, we generalize the blocking

probability analysis to a line network with transmission radius r. The section is

further subdivided into an exact blocking probability analysis for the single channel

case and an approximation in the multiple channel case. Section 4.3 considers the

effect of transmission radius on blocking probability in a line network. The conclusion

drawn in this section is that it is preferable in terms of blocking probability to use

a larger transmission radius in a line network . Finally, Section 4.4 considers a grid

network and concludes that it is more preferable to use a smaller transmission radius.

Thus, we see that varying the transmission radius has different effects depending on

the density of the nodes in the wireless network.

4.2 Blocking Probability Analysis in a Generalized

Wireless Line Network

A line network, as define earlier, consists of nodes located in a straight line at unit

distance apart from each other. In order to have connectivity in the network, each
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node must have a minimum transmission radius of unity. In the analysis that follows,

we assume that all nodes transmit with the same constant power. Thus, the transmis-

sion radius of each node is r, r > 1 and r is an integer. We consider only bi-directional

calls as it is more amenable to a simple analysis. The work can be easily extended to

unidirectional calls albeit at a more complicated mathematical calculation.

We consider the following traffic model. All calls in the network are bi-directional

and of length r which means that the calls are between two nodes that are r units

apart. Since the transmission radius of the nodes is r, all calls in the network are

single hop. Calls arrive according to independent Poisson processes each of rate A.

The call holding period of all calls is independent of earlier arrival times and holding

periods of other calls and identically distributed according to an Exponential distri-

bution with mean 1/[t. There is no buffering in the network. If a call cannot be

accepted then it is dropped. Otherwise it holds the channel for the entire duration of

the call.

First, we analyze the single channel network, followed by an extension to the

multiple channel case and the random channel allocation policy.

4.2.1 Single Channel

Consider a line network with 2m + 1 nodes located at positions x = -m, -m + 1....

m (m is assumed much larger than r). The transmission radius of each node is r

and all calls are of length r. We label the nodes as X-m, X-+i,..., X. Let Ck

denote the call between nodes Xk and Xk+r. Ck = 0 if the call is inactive and Ck = 1

if the call is active. Note that there are 2m + 1 -r distinct calls, C-m, C-m+1, .. , Cm-r.

We say that a node X, is active if either call Cl-r or call C, is active and node X, is

inactive otherwise. For call Ck (Ck is between nodes Xk and Xk+r) to be successfully

serviced, neighbors of node Xk and neighbors of node Xk+r must be inactive. Since

the transmission radius of each node is r, neighbors of node Xk are nodes Xk ,..,
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Xk+r and neighbors of node Xk+r are nodes Xk,.., Xk+2r. This implies that nodes

Xk_,.., Xk+2, must be inactive or equivalently calls Ck-2r,.., Ck+2r must be inactive.

In summary, we have the following local constraint,

Call Ck is successfully serviced if, calls Ck-2r, .. , Ck+2, are inactive. (4.1)

We refer to this network as WLN-r. It is a generalization of the WLN-1 network

considered in Section 3.2.1. The key difference from WLN-1 is that, now, a node

interferes with many more nodes.

Theorem 3. The blocking probability of a call in a WLN-r (r E Z+) line network

with the length of the line network tending to infinity and finite v = A/p is,

PB =I - 1 2rv1 2r+1 (4.2)
1 + 2ruxr+

x is the unique root in (0, 1] of VX 2r+l ± i

Proof: Let nk(t) denote the number of calls Ck in progress. Let V = A/p and

define the vector n(t) = (nk(t), k E -m, ..., m - r). State n is admissible if n > 0

satisfies the wireless constraints as described in Section 2.1. Let gr(m) denote the set

of all admissible states for a network with m nodes. Since we consider a line network

with 2m + 1 nodes, the set of all admissible states is gr(2m + 1). The analysis that

follows does not require an explicit description of the complete state space. The local

constraints on the spatial re-use of a channel suffice for the analysis.

The stochastic process (n(t), t > 0) is an aperiodic, irreducible, finite state Markov

process and hence has a unique stationary distribution 7r(n) = P(n = (nm, .. , nm-r))

given by a product form solution. The normalization constant in the product form

solution is denoted as Sr(2m+1). The product form distribution is same as in the unit

transmission radius case but over a different admissible state space and is expressed
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1 M-r V i
Srm(n) =' , n E gr(2m + 1)
Sr(2m + I) i-M !

m--r V igr. 
+1Sr(2m + 1) = S fi , nE9T (2m+1)

nEgr(2m+1) i=-m

For a single channel network ni = 0 or 1 and ni! =

then we can re-write r(n) as,

ir(n)

S'r(2m + 1)

= V Vtotal

Sr(2m + 1)

= EYr Vtotal

nEgr(2m+1)

1. Let ntotal = n-m + .. + nm-r,

, n E gr(2m + 1) (4.5)

(4.6)

Consider the call Co of the line network. Let gr(2m + 1) represent the set of

non-blocking states, n, for the call Co. Let P denote the probability that in steady

state call Co is not blocked. Then P can be expressed as,

PNB 7r (n)
nEQg(2m+1)

Eo nEg(2m+1) 
ntotal

N B Sr(2m + 1)

(4.7)

(4.8)

Using condition 4.1, call Co can be successfully serviced, if calls C-2r,., C2r are in-

active. The state space g9y(2m + 1) can now be defined as the set of states n where

n-2r,.., n2r = 0.

To characterize grv(2m + 1), we need to determine the feasible state space of the

remaining calls (C-m,.., C-2r-1) and (C2r+1,.., Cm-r). Given (C-2r,.., C2r) = 0, the

state of calls (C-m,.., C-2r-1) is not constrained by the state of calls (C2r+1,.., Cm-r).

Therefore, the state of calls C-m,*. C-2r-1 is independent of the state of calls C2r+1,--,

Cm-r. Let,
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'N feasible state space of calls

state space of WLN-r with

=gr(m -r);

M feasible state space of calls

state space of WLN-r with

= g'(m - 2r)

C-m,.., C-2r-i

m - r nodes

C2r+1,.., Cm-r

m - 2r nodes

Since the set of calls (C-mr,.., C-2r-1) and (C2r+1,.., Cm-r) are independent given

C- 2 r,.., C2r = 0, the set 9(2m + 1) is the cartesian product of gr(m - r) and

gr(m - 2r).

g!(2m + 1) = gr(m - r)Xgr (m - 2r)

Using Equation 3.1, it follows that,

nEQg (2m+1)
E 1 (Vfl-m+..+fl-2r-1 )(V n2r±+.+lm-r)

nEgr(m-r)Xgr(m-2r)

_ 1 n--m+..+n-2r-1 > n2r+1+..+nm-r
gr(m-r) gr(m-2r)

SSr(m r)Sr(m - 2r)

(4.9)

(4.10)

(4.11)

We can re-write Equation 4.8 as,

0 Sr(m - r)Sr(m - 2r)
NB Sr(2m + 1)

(4.12)

Following a similar analysis as in the unit transmission radius case, we consider

the limiting behavior (m --+ oo) with the length of the line network tending to infinity.

In an infinite line network the edge effects vanish and each node then has an identical

environment. Since we consider a uniform traffic model, the blocking probability

of each call becomes identical and an elegant formula is obtained in this limiting

case. Before proceeding to take the limits, we first evaluate the denominator in
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Equation 4.12 in terms of the S'(.) function of lower arguments. This is done by

conditioning on the state of calls (C_,,.., Co,.., Cr-). For these conditioned calls,

other than the all zero state, there are 2r distinct cases corresponding to each call

being active and the rest inactive, i.e. C, = 1,C1, = 0 Vp,l E {-r,..,r - 1}.

Note that a state with more than one call being active among C-,,.., Co,.., C,_1 is

infeasible. Let S ()| {constraint} represent the evaluation of the function Sr () under

the specified constraint and p, 1 E {-r, .. , r - 1} in the equations that follow.

Sr(2m + 1) Sr(2m + 1)I{C_, .., Cr_1 = 01 + (4.13)

Sr (2m + 1)j{Cp = 1, Cp = 0}
p=-r

= S(m)S(m - r + 1) + (4.14)

Sr(2m + 1)I{Cp = 1, Cp = 0}
p=-r

To evaluate the above equation, we reverse the order of summation and let p =

r - j. As the reversed summation of p runs from r - 1 to -r, j runs from 1 to

2r. For a particular term in the summation, the condition C, = 1 can be written as

Cr-j = 1. Using condition 4.1, the set of calls that must be inactive (for Crj = 1)

are C_,-,., C3r-j. This leaves the state of calls (C-m, .. , C-r-j-1) independent of

the state of calls (C3r-j+1, .. , Cm-r). Thus for this particular term, the normalization

constant Sr(2m+1) (under the constraint C, = 1, Clop = 0, l E {-r, ..,r- 1}) equals

Sr(m -j)Sr(m - 3r + j).

Sr(2m + 1) = S(m)S(m - r + 1) + (4.15)

S Sr(2m + 1)1{C = , Ci , = 0}

= S(m)S(m - r + 1) + (4.16)
2r

v S(m -j)Sr(m - 3r +j)
j=1

Sr(2m + 1) 2, Sr(m -j)Sr(m - 3r + (4.17)
Sr(m)Sr(m - r + 1) j1 Sr(m)Sr(m - r + 1)j=1

61



Define the following limit (the existence of the limit is proved later).

Sr(M - 1)lim = X (4.18)
M-*W Sr(m)

When the length of the line network tends to infinity, we have limm-,C PANB - PNB,

the probability of non-blocking of any call. Taking the limit on both sides of Equa-

tion 4.12 and re-writing it we get,

Sr(m-r)Sr(m-2r)

PNB = lim Sr(m)Sr(m-r+1) (4.19)
M-_+OO Sr(2m+l)

Sr(m)Sr(m-r+1)

limm Sr(m-r)Sr(m-2r)im-+OO Sr(m)Sr(m--r+1)

2r Sr(m-j)Sr(m-3r+j) (4.20)
j=1 m-+OO Sr(m)Sr(m-r+1)

(4.21)

1 + 2rvx2r+l

To prove the existence of the limit and evaluate its value, we express Sr(m) in

terms of the function Sr(.) of lower arguments. This is achieved by conditioning on

the state of the call associated with the leftmost node of the line network. The two

cases include the call being inactive and the call being active.

Sr(m) = Sr(m - 1) + vSr(m 2r - 1) (4.22)

= Sr(m - 1) vSr(m - 2r - 1) (4.23)
Sr(m) Sr(m)

= li S(m - 1) mvS(m - 2r - 1) (4.24)
m-+oo Sr(m) m-.oo Sr(m)

Since the left hand side of the above equation is 1, the limits on the right hand side

exist. The value of the limit x can be computed by solving the following polynomial

obtained by re-writing Equation 4.24 in terms of x.

1 = X+ V r 2
r+1 (4.25)

Combining Equations 4.25 and 4.21, the blocking probability of a call is given by,
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PB = 1- , 2 + vX2r+1 = 1(4.26)
1 + 2rvx2 r+(

We next show the existence of a unique value of x E (0, 1]. We exclude the case

of v -+ 00. The normalization constant Sr(m) is a non-negative monotonically non-

decreasing function of m, Vv > 0. Therefore, Sr(m) Sr(M + 1) and x must lie in

(0, 1]. To show that Equation 4.25 has a unique root in (0, 1] for finite v, we re-write

it as,

v 2r + 1 (4.27)
x

The function 1/x is a positive decreasing function and takes values between [1, oc) in

the interval x E (0, 1]. Function, VX 2 r + 1, (Vr > 1) is a positive increasing function

taking values between (1, 1 + v] in x E (0, 1]. Since we assumed that v > 0, the

two curves must intersect at a unique point in (0, 1]. This completes the proof of

Theorem 3.

4.2.2 Multiple Channels.

This section extends the single channel analysis to the case of multiple channels. The

transmission radius of each node of the line network is r units, all calls are of length r

and the random channel allocation policy is followed to assign the channels. As argued

in the unit transmission radius case (Section 3.3), the exact blocking probability

analysis of the random assignment policy is not easy. The difficulty lies in computing

the steady state probability distribution over the admissible state space. However, we

can construct an approximate model identical to that of the unit transmission radius

case (Section 3.3.1). Following Section 3.3.1, we evaluate the equivalent load v' from

the single channel model as,

V +V PB (4.28)
1 - PB

1 + (2rv - 1)X 2r+l ( 2 r ± 1
2 r++1 = -) (4.29)

If the total number of channels is p then the blocking probability for the random
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policy is computed from the Erlang B formula with load i = v'+ v. Thus,

Prand = E(F, p), (i= v'+ v)
f,P

E(ip) =,
1+ iv +'F + .. + PP

(4.30)

(4.31)

where, E(v, p) is the Erlang B formula for a load v and p servers. We next present

plots comparing the blocking probability values calculated from Equation 4.31 and the

values obtained from simulations. Figure 4-1 shows comparison plots for r = 2 and

r = 10 with 20 channels. As seen from the figure, in the case of moderate number of

channels the theoretically calculated values are very accurate, even for longer length

calls (r = 10).

Transmission radiusr=2

1S 2 2.5
Loxad (nu) of e~ach call

100

10-

1 0

1 0-

Transmission radiusr=1O

0.3 0.'>4 0.5
Loadc (nu) CA esach icall

Figure 4-1: Comparison of theoretical and simulated values for r = 2 and r = 10 with
20 channels.

Figure 4-2 presents comparison plots for r = 2 and r = 10 with 50 channels. We

observe that as the number of channels becomes large (larger value of p), the theoret-

ically computed values are less accurate. However, even in this case the theoretical

curve follows closely the simulation results.
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10-3

2
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10
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Transmission radius. r.2

6 ( 7
Loadl (niu) of each call

8

Figure 4-2: Comparison of theoretical and
50 channels.

100

10

10~2

10-3

10-

Transmissioin radius, r=10

-

. 1 Loa (nu) of each call

simulated values for r = 2 and r = 10 with

4.3 Effect of Transmission Radius in a Line Net-

work

The topology of a wireless network, as a two dimensional graph, can be varied by

changing the transmission radius of the nodes. This in turn affects the blocking prob-

ability of the calls. In case of multi-hop calls, if we use a smaller transmission radius

then multiple channels are required to service the call but there are fewer constraints

on the use of a channel at each hop along the length of the path. If we use a larger

transmission radius (such that the destination is within the transmission range), a

single channel is required to service the call but there are more constraints on the use

of a channel. To understand this tradeoff and its effect on blocking probability, we

first consider the simplest non-trivial example in a line network and then generalize

the conclusions drawn from this example. In this section, we conclude that in a line

network it is preferable in terms of blocking probability to use a larger transmission

radius.

Consider first, the following simplest non-trivial example. Consider a line network

with two channels and all calls of length two (all calls are between nodes that are

two hops apart). The traffic model is identical to that considered earlier. Consider
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two scenarios, the first in which all nodes have a transmission radius of unity (r = 1)

and thus all calls are two hop long. Each call requires a distinct channel on each

hop as adjacent links are interfering. In this case, we use the rearrangement channel

assignment policy (Section 5.2) and compute the exact blocking probability of a call.

The second scenario is one in which all nodes have a transmission radius of two

units (r = 2) and hence all calls are single hop. Here, analyzing the exact blocking

probability of a call for the rearrangement policy is difficult. Therefore, we consider

a sub-optimal policy that selects a channel randomly from the two channels for each

new arriving call. If the channel is free (non-blocked and non-busy) then it is allocated

otherwise the incoming call is dropped. The policy clearly under utilizes the channels,

as it rejects a call (if the randomly selected channel is not free) without considering

the state of the other channel. It performs a simple random splitting of the incoming

arrival stream into two independent Poisson processes of rate A/2 with the split load

applied to each channel. We compute the blocking probability for this case and

compare it with the unit transmission radius case. The following result shows that,

even with this very inefficient random policy, it is better to transmit with a larger

radius.

Theorem 4. The blocking probability for case r = 2 is lower than the blocking

probability for case r = 1, for p = 2 (2 channels) and all finite load v > 0.

PB {r = 2} < PB {r = 1}, v E (0, oo). (4.32)

Proof: We analyze each case separately and then compare the blocking proba-

bility expression obtained for each case.

Case a : Transmission radius of all nodes is unity

The analysis of blocking probability follows the methodology used in Section 4.2.1
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with an identical line network model (but with each node having a transmission radius

of unity). Since all calls are of length two, Ck denotes the call between nodes Xk and

Xk+2. Let nk(t) be the number of calls Ck in progress and define the state vector

as, n(t) = (nk(t), k E -m, ..., m - 2). Since we use the rearrangement policy for

assigning channels, the vector n = (n-rn, ... , nm-2) completely describes the system

behavior. The stochastic process n(t) is an aperiodic, irreducible, finite state Markov

process with a product form steady state distribution. S(2m +1) is the normalization

constant and g(2m + 1) denotes the admissible state space (where 2m + 1 denotes a

line network with 2m + 1 nodes).

1 m-2
7r(n) = I ± - -,j n E 9(2m + 1) (4.33)

S(2m + 1) n1
j=-m j

Since adjacent hops cannot share the same channel, each call requires two channels

to get served. As there are only two channels in the network, we get the constraint

0 < nj < 1, Vj and nj! = 1. With this constraint, Equation 4.33 reduces to,

ir~n)= 1 r-2

7(n) = - I m-2 , n E g(2m + 1) (4.34)
S(2m+1) j=-m

m-2

S(2m + 1) = v7 ri V , n E 9(2m + 1) (4.35)
nE Q(2m+1) j=-m

Let ntotal = n-m + .. + nm-2, then,

_1

7r((n) 1) V"toal, n E 9(2m + 1) (4.36)
S(2m + 1)

S(2m + 1) = E Vnoa , n E g(2m + 1) (4.37)
nE 9(2m+1)

Following a similar reasoning as done in Section 4.2.1, the wireless constraints trans-

lated in terms of the constraints on the state of calls reduce to,

Call Ck is successfully serviced if, calls C-2, Ck-1, Ck+1, Ck+2 are inactive. (4.38)
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We consider the probability of non-blocking, PNB, of call Co and then take the

limit (limm-o). The set of non-blocking states of call Co are {n : n E 9(2m + 1)

and n- 2 , .. ,n 2 = 0}. Let this state be denoted as go (2m + 1). To characterize

go (2m + 1), we need to determine the feasible state space of the remaining calls

(C-rn,.., C-3) and (C 3 ,.., C.-2). Given (C-2,.., C 2) = 0, the state of calls (C-M,..,

C-3) is not constrained by the state of calls (C3,.., Cm-2). Therefore, the state of calls

(C-,.., C-3) is independent of the state of calls (C3,.., Cm-2). Since the state space

of calls (C-,.., C-3) is 9(m) and the state space of calls (C3,.., Cm-2) is 9(m - 2),

we can express 90v(2m +1) as 9(m)X9(m - 2). We can now apply Equation 3.1 and

n-2, ,n2 = 0 to evaluate PNB.

PNB =7(n) (4.39)
nE!g (2m+1)

Z nE9%(2rn+1) Vfltotal
= n(4.40)

S(2m+1)

ZnEg(m)X(m-2) l n-m+..+n-3 Vn3+..+nm-2

S(2m + 1)
(Zg(m) Vn-m+..+n_3)(Eg(m-2) Vn3+..+nm-2) (4.42)

S(2m + 1)
S(m)S(m - 2)

S(2m + 1)

To evaluate S(2m + 1), we partitioning the state space 9(2m + 1) into a set of states

conditioned on all the possible states of calls (C-1, Co). We then evaluate S(2m + 1)

over each of the partitioned state space and sum them up. The conditioning argument

uses the constraint 4.38 and is identical to the argument made in Section 4.2.1. The

possible states of calls (C_1, CO) are,

1. C-1, Co both inactive. In this case, calls C-m, .. , C-2 do not interfere with calls

C1,.., Cm-2. Thus, the state of calls C-m, .. , C-2 is independent of the state of

calls C1, .. , Cm-2 and we get, (Note that using the earlier notation, feasible state

space of (C-m, .. , C-2) = 9(m + 1) and the feasible state space of (C1, .. , Cm-2)

- 9(m))
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S(2m + 1) = Vn-m+..+n-2 S nl1+.+nm-2

g(m+1) g(m)

S(2m + 1) = S(m + 1)S(m)

2. C-1 active, Co inactive. Since C_1 is active, calls C-3, C-2, C1 must be inactive.

This leaves the state of calls C-m, .. , C-4 independent of the state of the calls

C2, .. , Cm-2. The feasible state space of (C-m,.., C-4) = g(m - 1) and the

feasible state space of (C2, .. , Cm-2) = g(m - 1).

S(2m + 1) = ( 5 Vn-m+--+n_4) , ( 5 jn2+..+nm-2)

G(r--1) g(M-1)
S(2m + 1) = vS(m - 1)S(m - 1)

3. C-1 inactive, Co active. Since Co is active, calls C-2, C_1, C1, C2 must be in-

active. This leaves the state of calls C-m, .. , C-3 independent of the state of

the calls C3, .. , Cm-2. The feasible state space of (C-m, .., C-3) = g(m) and the

feasible state space of (C3, .. , Cm-2) = g(m - 2).

S(2m + 1) = (5 V"--m+-+n-3) V ( 5 Vn3+.+nm-2)

g(m) 9(m-2)

S(2m + 1) = vS(m)S(m - 2)

4. C-1, Co both active. This state is infeasible.

Summing up all the above cases we get,

S(2m + 1) = S(m + 1)S(m) + vS(m)S(m - 2) + vS(m - 1)S(m - 1) (4.44)

Taking the limit (limm-.x), the probability of non-blocking of a call is given by,

limrnC S(m)S(m-2)

PNB mos(m+1)S(rn) (lim S(m)S(m-2) ± v limm. S(m-1)S(m-1) (1 + V +imm1)Sm S)S + V limm-+0 s+)sg
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Let,

rnS(m -1)lim = y (4.46)M-_+0C S('m)

Then PNB can be expressed in terms of y as,

PNB - y 3  (4.47)
1 + 2vy3

To evaluate the limit and prove its existence, we evaluate S(m) by conditioning

on the state of the leftmost call. This gives,

S(m) = S(m - 1) + vS(m - 3) (4.48)

S(m - 1) S(m - 3) (449)1 = lim +-v lim (.9m-oo S(m) m-+oo S(m)

Since the left hand side is 1, the limits on the right hand side must exist and we get

the following cubic equation.

1 = y + vy 3  (4.50)

From the definition (Equation 4.46) it is clear that y lies in (0,1] for all finite v > 0.

To show that Equation 4.50 has a unique root in (0,1] we re-write it as,

vy 2 + 1 =
y

The function l/y is a positive decreasing function and takes values between [1, oo) in

the interval y E (0, 1]. Function, vy 2 + 1 is a positive non-decreasing function taking

values between (1, 1 + v] in y E (0, 1]. Since we assumed that v > 0, the two curves

must intersect at a unique point in (0, 1]. Finally, the expression for the blocking

probability of a call is,

3

PB = 1 - ,a VYs + y = 1 (4.51)1 + 2vy3

Case b : Transmission radius of all nodes is two units
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In this case, as noted earlier, for each arriving call a channel is randomly selected

with equal probability from the two channels. If the chosen channel is free (non-

blocked and non-busy) then it is allocated otherwise the incoming call is dropped.

Clearly, this policy is sub-optimal. It amounts to simply splitting the incoming Pois-

son arrival stream and assigning the split streams to each channel respectively. Since

the splitting is done with equal probability, the split streams are Poisson with rate

A/2. Thus, the blocking probability of a call is equal to the blocking probability with

load (A/2p) in a single channel WLN-2 network (as each node has a transmission

radius of two units and all calls are of length two). This system has been solved

exactly in Section 4.2.1 and Equation 4.26 gives the exact blocking probability when

the length of the line network tends to infinity. Plugging v/2 (v = A/p) and r = 2 in

Equation 4.26 we get,

PB = I - X x + -x5 = 1 (4.52)
I + 4LX5 222

To compare Cases (a) and (b), we need to compare Equations 4.51 and 4.52 for

the same load v. For load v = 0, PB is zero for both cases (a) and (b). Exclud-

ing the v -+ oo case, we will show that for all finite v, there does not exist a load

f for which the two blocking probabilities are equal. Since PB > 0 is a bounded

continuous function of v, we conclude that the blocking probability in one case is

always higher than in the other case. To complete the proof, we finally show that

PB(Case b) < PB(Case a) for a specific v (here we take v = 1).

Let L > 0 be such that the blocking probability in Cases (a) and (b) are equal.

Let z and be the unique root in (0,1) of the polynomials 0x +x = I and i'y3 +y = 1

respectively (Note that since 1, is strictly greater than 0, J and are strictly less than

1). Equating 4.51 and 4.52, we get,

(4.53)
1 + 4Li5 1 + 2iQ3

2

3; (4.54)
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z and also satisfy the following equalities,

-2 + 1 (4.55)
2
vy3 + = 1 (4.56)

Substituting, Diz5 = f93 = 1 - 1 - i5/3, in Equation 4.55 we get,

2 -5/3 =1 (4.57)

However, no value of ;z lying in (0,1) satisfies the above equation. This can be proved

by noting that the function 2x - x5 / 3 is a monotonically increasing function in (0,1)

(its derivative, 2 - (5/3)x 2 /3 is positive in (0,1)). It takes value 0 at x = 0 and value

1 at x = 1. Thus, for x E (0,1), 2x - '5 3 4 1 and we arrive at a contradiction. The

conclusion drawn is that for finite v > 0, blocking probability for Cases (a) and (b)

cannot be equal. Since PB > 0 is a continuous function of v, the blocking probability

in one case is always higher than in the other case. By substituting v = 1, it can

be easily shown that PB(Case b) < PB(Case a) (Note that if there exists a v for

which PB(Case b) > PB(Case a), then the two PB curves must cross each other at

some i' but we have shown that no such L exists). Thus, we conclude that for all

finite load, v, the blocking probability for r = 2 case is smaller than r = 1 case and

it is preferable to use a larger transmission radius. Figure 4-3 is a plot of blocking

probability for Cases (a) and (b) (Equations 4.51 and 4.52).

Line network with p channels and all calls of length k units

To generalize the conclusion drawn above, we consider a line network with p channels

and all calls of length k > 1 (k = 1 is the single hop case for which the transmission

radius must be 1). Here again, we consider two scenarios one in which all nodes have

a transmission radius of unity and thus all calls are k hop long. The other in which

all nodes have a transmission radius of k units and hence all calls are single hop.
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Figure 4-3: Blocking probability for calls of length 2 with radius 1 (Eqn. 4.51) and
radius 2 (Eqn. 4.52).

The arrival process of each call is an independent Poisson process of rate A and the

call holding period is Exponentially distributed with mean 1/y (define v = A/[p). In

both cases, we assume a random channel assignment policy and use the approximate

formulas derived in Section 4.2.2 to make the comparison.

Case A : Transmission radius of all nodes is one unit

An exact analysis of blocking probability for all values of the traffic load is difficult.

Therefore, we consider a simplified model and focus on the low blocking probability

regime. In practice, networks operate in this regime and so the conclusions drawn

here have practical significance. In wireline circuit switched networks, blocking prob-

ability analysis of multihop calls is based on the reduced load approximation [12]. We

make a similar approximation but also consider a further low blocking simplification.

In the low blocking probability regime, almost all calls get serviced and the average

load on each link is ~ kv (sum of the loads of all calls hopping through a link).

Assuming this load to be Poisson, the probability that none of the channels on a link

are free (either busy or blocked) can be computed by considering this as an equivalent

system with load kv on each link and r = 1 (Equation 4.30). Let this probability be
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denoted as PL and EO be the Erlang B function.

1 + (2kv- )X3 , (kvX2 +1 = -) (4.58)

PL = E( , p) (4.59)

For a k hop call to be served, it must not be blocked on all the hops along the

entire length of the path. Therefore, the probability of blocking of the call is greater

than the probability of blocking on the first hop. But, the probability of blocking on

the first hop is equal to PL. Denoting the blocking probability of a call as pBseA we

have,

PB seA > PL = E(iip) (4.60)

This is a very weak lower bound on blocking probability, yet it suffices to show

that using a larger transmission radius yields an even lower blocking probability. To

see this consider Case B.

Case B : Transmission radius of all nodes is k units

For this system, the blocking probability of a call has been computed in Sec-

tion 4.2.2. Let p2Se2 denote this blocking probability. Substituting, r = k and load

= v, in Equation 4.30, we get,

I + (2kv - l)X2k+1 1
=2k+1 , (v2 '2 + 1 = -) (4.61)

P9 seB - E(,p) (4.62)

First, we show that pgaSeB < PL from which it follows (using inequality 4.60) that

PseB <pfaseA. To prove P seB < PL, we make an argument identical to that made

in the simpler example considered earlier. For load v = 0, pWaseB and PL are both

zero. Excluding the v -- oo case, we will show that for all finite loads and all k > 1,

there does not exist a load v for which the two blocking probabilities are equal. Since
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pBseB and PL are continuous functions of v, we conclude that one function is always

higher than the other. To complete the proof, we finally show that pBseB < PL for

a specific v and k (here we take v =1 and k = 2).

Let us assume that v > 0 is such that pgSeB and PL are equal. Let x1 be the

root in (0,1) of the function kvx 3 + x = 1 and x2 be the root in (0,1) of the function

vx2k+1 + x = 1. Since by assumption pseB -- PL, we can equate the effective load

F1 in the Erlang B formula for Pgse" and PL.

1 + (2kv - 2)x k+1 1 + (2kv - 1)x(.
2k+1X2 1

x2k+ 1 = 3 (4.64)

x1 and x2 also satisfy the following equalities,

kvxi + x = 1 (4.65)

2k+1 =1VX 2 + X2 = (4.66)

Substituting, vx3 = vx2k+1 = 1 = 1 -= 3/(2k+1), in Equation 4.65 we get,

k - (2k+1) +X= 1 (4.67)

However, no value of x1 lying in (0,1) satisfies the above equation. This can be proved

by noting that the function k - kx 3/( 2k+l) + x is a monotonically decreasing function

in (0,1) (its derivative, 1 - 3kx(2-2k)/(2k+1) is negative in (0,1), for k > 1). It takes

value k(> 1) at x =0 and value 1 at x = 1. Thus, for x E (0,1), k-kx3 /( 2 k+1) _ 1

and we arrive at a contradiction. The conclusion drawn is that for finite v > 0, PBseB

and PL cannot be equal. Similarly, we can show that for a fixed v, there does not

exist k > 1 (taking k real) such that PgaeB = PL (they are equal at k = 1). Since

PseB and PL are continuous functions of v and k (taking k real), we conclude that

one function is always higher than the other. For v = 1 and k = 2, it can be easily

shown that paseB < PL (Note that if there exists a (v, k) for which PLaseB > PL,
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then the two curves must cross each other at some ([/, k) but we have shown that

no such ([/, k) exists). This completes the proof that for all finite v and real k > 1,

pseB <FPase^. The result also holds true for k being integer (since it holds for real

k). Thus, we conclude that it is preferable, in terms of blocking probability, to use a

larger transmission radius.

Figure 4-4 presents simulation results verifying this claim. The blocking probabil-

ity of the center call is computed in each simulation (as the edge effects are minimal

for this call). The first plot has all calls of length 3 and two scenarios of radius 1

and 3. The second plot has all calls of length 6 with radius 1 and 6. Note that the

reduction in blocking probability by using a larger transmission radius is a few orders

of magnitude and this difference increases with the length of the calls.

20 channels 20 channels
100 -

10-1

101
110

2
C:1_1o --

S8. 10

1o-

100 0.5 1 1.5 2_0_02 0.4 0.6 0.8_ _
Load (nu) of each call Load (nu) of each call

Figure 4-4: Comparison of blocking probability in a line network for calls of length 3
and 6 and different transmission radius.

4.4 Effect of Transmission Radius in a Grid Net-

work

In the single channel line network with all calls single hop, we observed that as v -+ 0,

F= 5v (total load of interfering calls plus the load on the concerned link). This ob-
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servation can be shown to hold for a single channel general network as well by making

the low load approximation in the steady state probability distribution i.e. as v -> 0,

v = av where a = total number of interfering calls + 1 (this includes the concerned

call). This is proved as follows.

Consider a single channel network with a general topology. Since there is only a

single channel, such a network can have only single hop calls. Let calls arrive according

to independent Poisson processes of rate A and the service times be independent

identically distributed according to an Exponential distribution with mean 1/1. As

before, define the state of the network as n(t) = {nk(t)}, k E set of calls, where nk =

number of calls k in progress (0 < nk < 1). The stochastic process (n(t), t > 0) is an

aperiodic, irreducible, finite state Markov process and hence has a unique stationary

distribution 7r (n) given by the following product form solution (g is the feasible state

space, N is the normalization constant and v =A/p).

r(n) = k n E G (4.68)
N

N = ZF v nk (4.69)
g k

The blocking probability, PB, of a particular call can be computed by summing ir(n)

over all those states that are blocking for that call. Let this set be denoted as B.

PB = ZB Hk Vflk (4.70)

In the low load regime (v -- 0), we can re-write Equation 4.70 by partitioning

B into a set of states (denote as B1 ) for which there is only one active call and

the set of states (denote as B2 ) in which more than one call is active. The set of

blocking states for which only one call is active must consist of states in which either

the concerned call is active or one of the neighboring interfering calls is active. Let

a = number of interfering calls+1. Before proceeding forward we make the following

definition.
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Let f(x) be a function of x. We say that f(x) has order o(x) if,

lim f M = 0 (4.71)
x-+O X

With this definition we have,

1: f1 V k = E fiV nk + 17JlVnk (4.72)
B k B1 k B2 k

= av + o(v) (4.73)

N = 1 vk=1 + V + o(V) (4.74)
0 k

where 3 is some finite constant. We can now compute the effective load 1 for small

v by equating the M/M/1/1 expression and Equation 4.70.

__ ZB Hk Vfl
kVnk(4.75)

a' + Fo(v)
1+3v+o(v) (4.76)

F ~ av, small v (4.77)

To extend the approximation to the multiple channel case, we follow the model

of Section 3.3.1. Thus, at low loads, the blocking probability of a single hop call

is PB = E(P, p), where L = the total load of interfering calls plus the load of the

concerned call. However, to consider the effect of transmission radius, we need to

compute the blocking probability in the multihop case as well. In this case, we make

the reduced load approximation [12] with the low blocking simplification.

We consider the example of a grid network where nodes are located as a two

dimensional mesh. To be concise, we consider a grid network with all calls of length

3 and load v (calls are between nodes {x, y} -* {x + 3, y} and {x, y} - {x, y + 3}).

The approach can be easily generalized to calls of any arbitrary length. In the first

scenario, the transmission radius of each node is 1. Here, each link has 23 interfering

links (including itself). Figure 4-5 shows the set of interfering links for link A <-+ B.
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In the figure the interfering links are marked 'X' and the transmission radius of all the

nodes is unity. Note that there are 22 links marked 'X' such that a bi-directional data

transfer on these links interferes with the data transfer A e B (thus, a' = 22+1 = 23).

We first make the reduced load approximation to compute the average load on each

link. In the low blocking regime, almost all calls get served and the average load on

each link is ~ 3v. Treating the system as an equivalent network with load 3v on each

link, the probability that no channel is free at a link is E(23 * 3v, p). Making a further

approximation that the links block independently, the probability that a 3-hop call

is blocked is ~~ 1 - (1 - E(69v,p))3 ~ 3E(69v,p).

ransmission circle of A Transmission circle of

--- -- ~x 4- 4 --x- --- ~

4 4 4 4
+:A

.67.

B

Figure 4-5: Constraints on the service of a bi-directional call in a grid network with
nodes having unit transmission radius.

In the second scenario, transmission radius of each node is 3 and hence all calls

are single hop. As stated earlier, for small v, the effective load on a single hop link

is equal to the sum of the load on neighboring interfering links and its own load. For

a grid network with radius 3 and single hop calls, each link has 135 interfering links

(including the concerned link) all of which carry load v. Thus, the value of i = 135v
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and the blocking probability of a call is PB = E(135v, p). Clearly, for low v and

moderate number of channels, E(135v,p) > 3E(69v,p) (to see this take v = 1/135

then, E(1,p) > 3E(1--, p) for p > 3), which suggests that it is preferable in terms of

blocking probability to use a smaller transmission radius.

Figure 4-6 presents simulation results that justify this conclusion. The plot shows

the blocking probability of the center call in a 20X20 grid with 30 channels. All calls

are of length of 3 and two cases of radius 1 and 3 are considered.

20 X 20 Grid with 30 channels

10

o 10 -

10

crus=3hp
L~f!cfu=1,hp--3

0.2 0.25 0.3 0.35 0.4 0.45

Load (nu) of each call

Figure 4-6: Comparison of blocking probability in a grid network for calls of length
3 and different transmission radius.

4.5 Summary

In this chapter, we considered the effect of transmission radius on blocking probability

in a line and a grid network. We studied the following tradeoff. If we use a smaller

transmission radius then a call would require more hops and multiple channels would

be needed to service the call (as neighboring hops cannot share the same channel). If

we use a larger transmission radius (such that the destination is within the transmis-

sion range), the call can be serviced in a single hop and a single channel is required

to serve the call. However, the increased transmission power will cause interference
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with many more nodes.

We first presented the blocking probability analysis in a generalized wireless line

network with bi-directional calls (Section 4.2). The result obtained in the single

channel case is (Equation 4.2),

X
2
r+1

PB = 1 1 + 2rx 2r+1 2r+1 + 1

In the multiple channel case (Section 4.2.2), we considered a simplified model (that

uses the single channel result) and obtained approximate blocking probability formu-

las that very accurately predict the values obtained from simulations, especially for

low to moderate number of channels (Figure 4-1).

To study the effect of transmission radius, we first considered a simple non-trivial

example in a line network that clearly highlights this tradeoff (Theorem 4). Then

using the approximate blocking probability formulas derived for the multiple channel

case we draw the following conclusion. Assuming that all calls are of the same length,

in the sparse line topology it is preferable to use larger transmission radius and

communicate directly rather than go multihop to reach the destination; while in the

dense grid topology it is more desirable to use smaller transmission radius.
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Chapter 5

Dynamic Channel Assignment

Algorithms

5.1 Introduction

In the last chapter, we have seen that in a wireless network, the blocking probability

of calls is affected by the transmission radius of the nodes (which in turn depends

on the transmission power used by the nodes). However, once we fix the transmis-

sion radius of the nodes, blocking probability of calls also depends on how we assign

the channels to the incoming calls. The channel assignment algorithms have a pro-

found impact on the blocking of calls. In this chapter, we study the performance of

some dynamic channel allocation policies. We also propose an algorithm called the

Local Channel Re-use Algorithm and show that it performs better than other policies.

We will consider two network topologies for comparing the different policies. The

first one is the line network where the nodes are located in a line at unit distance

apart from each other. The second one is the grid network where the nodes are lo-

cated as a two dimensional mesh. The reason for choosing these two topologies is that

they are good representatives of a sparse network and a dense network respectively

and the conclusions drawn here have significant implications in the design of such

networks. To independently study the effect of channel assignment on blocking prob-
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ability (eliminate the effect of transmission radius), we fix the transmission radius of

each node at unity by appropriately choosing the transmission power.

We will consider only dynamic channel allocation policies where the available

channels are shared by all the nodes in the network and the channels are allocated

to the calls in real-time. We could also do a fixed spatial partitioning of the channels

such that the spatial channel reuse constraints are satisfied. In this case the set of

interfering links will be allocated different sets of channels. Each link then acts inde-

pendently and a channel is allocated to a requesting call whenever the set of available

channels for that link is non-empty. Such a channel partitioning scheme would be

highly network topology dependent. Since a wireless ad-hoc network does not have a

fixed topology, a general scheme of channel partitioning might be highly inefficient.

Corson and Zhu [3] considered the problem of calculating the maximum available

bandwidth (number of channels) on a multihop path. They showed the problem to be

NP-complete and proposed a heuristic algorithm to calculate the bandwidth. How-

ever, they did not consider the problem of channel assignment to minimize the call

blocking probability when the incoming call does not require the entire bandwidth.

Our goal in this chapter is to first present channel assignment algorithms for one-hop

calls where the source and the destination nodes are neighbors. We then extend it to

the case of multihop calls. We regard a multihop call as a sequence of single hop calls

and implement the channel assignment algorithm repeatedly along the entire length

of the multihop path.

The dynamic channel allocation algorithms that we consider in this work include

the rearrangement algorithm, the random algorithm, the first fit algorithm and the

local channel re-use algorithm. These algorithms will be explained in more detail in

the sections that follow. Whereas the rearrangement algorithm requires rearrange-

ment of the channels allocated to the calls in progress, the other policies do not

require any rearrangement of the channels. Hence we classify the other policies as
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non-rearranging policies. Non-rearranging policies are practically more appealing in

large wireless networks as they can be implemented much more easily than the rear-

rangement policy.

The rest of the chapter is organized as follows. Section 5.2 describes the rearrange-

ment algorithm and gives mathematical conditions for the feasibility of rearrangement

in a line network. Section 5.3 explains the non-rearranging channel assignment poli-

cies which include the random, first fit and the LCRA algorithms. Finally, Section 5.4

presents simulation results for the line and the grid network. In this section, we also

draw conclusions about the effect of other parameters such as the hop length of the

calls and the degree of the nodes (the number of neighbors a node has) on call block-

ing. We consider only bi-directional calls for the simulations. However, similar results

can be obtained for the uni-directional case as well. In the simulations, blocking prob-

ability of a call is computed as the ratio of the number of calls rejected to the number

of call arrivals over a very large simulation time.

5.2 Rearrangement Algorithm

The rearrangement algorithm was first presented in cellular networks by Everitt and

Macfadyen [14]. Since then it has been widely used as a benchmark to compare the

performance of other policies. The rearrangement policy has a unique feature that it

does not do any admission control. Under this policy, in any state of the network, if

there are resources available to admit the incoming call then the call will be accepted

even if this requires rearranging the channels allocated to the calls in progress. Thus

to describe this policy, we need to make some definitions about the admissibility of a

state. We will assume a fixed route system where the route of each call is fixed and

does not change dynamically with time. If a call cannot be accepted on a particular

route then it is dropped and does not attempt service through another route.

We first describe the algorithm for a network with a general topology and then
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show that in the case of a line network it has a very simple description. For a general

network, let Q be the set of all source-destination pairs and q E Q be a particular call.

Note that the set Q can consist of both single and multi-hop calls. Let aq denote the

number of calls of type q in progress. Let the state of the network be a = {a}, q E Q.

Definition: State a is admissible if there exists an allocation of channels to the

calls (aq, E a) such that the wireless transmission/reception constraints as described

in Section 2.1, are satisfied.

The rearrangement policy accepts a call whenever this leads to a state a which

is admissible. The policy thus accepts a call whenever possible, even if this involves

a rearrangement of the channels allocated to calls already in progress. Implementing

this algorithm in large general networks is practically impossible. Even simulating

this policy involves a search over a large set of feasible channel assignments which in

most networks is practically infeasible. However, in case of a line network there is a

simple characterization of the state space in terms of necessary and sufficient condi-

tions for a state to be admissible. The following is a description of these conditions

for a line network.

Let us consider a line network with m + 1 nodes located unit distance apart and

transmission radius of each node equal to unity. This implies that each node can

communicate directly with a node on its left and a node on its right. For a node

Xk, k E { 1, .., m + 1} in the line network (other than the edge nodes that have only

one neighbor), there is a link between nodes (Xkl, Xk), labeled Lk-1, and between

nodes (Xk, Xk+1), labeled Lk. Thus, there are in total m links L 1 , L 2 , ..., Lm, in the

line network. Let nk be the number of calls in progress on link Lk and define the

vector n = (n,, n2, .., fnm). Let p be the number of channels available in the network.

Since we consider a fixed route system, given a particular state a (state of the calls,

as described earlier) of the line network, we can determine the number of calls (nk)

on each link. Therefore, given a, we can determine the state (n) of the links. The
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necessary and sufficient conditions for a state n to be admissible are,

nk > 0 Vk E {1, ..., m} (5.1)

ni <p (5.2)

ni +n 2  p (5.3)

nk + nk-1 + nk-2 5 p , Vk E {3, ..., m} (5.4)

Necessity: The necessity of the above conditions is proved by noting that calls

on links Lk, Lk-1, Lk-2 form a set of mutually interfering calls and hence any channel

assignment must satisfy nk + nk-1 + nk-2 < p.

Sufficiency: The sufficiency of conditions 5.2-5.4 is proved by presenting a chan-

nel assignment scheme that assigns channels to the calls whenever the state n satisfies

those conditions. Thus, we begin by assuming that n satisfies the above conditions.

Consider an assignment scheme that assigns channels starting from the leftmost link,

L 1, of the line network. The first three links, L 1 , L 2 , L3 , are assigned a set of ni, n2,

n3 non-overlapping channels respectively. Condition ni + n2 + n3 5 p ensures that

such a set of non-overlapping channels exists. We next assign channels to calls on

link L 4 . There are two cases to be considered as follows.

" If n4 ! ni, then we assign n4 channels from among the set of ni channels that

were assigned to calls on link L 1. Since calls on link L1 do not interfere with

calls on link L 4 , the assignment of channels to calls on links L 1, L 2 , L 3, L 4 is

admissible.

" If n4 > ni, then we assign ni channels that were assigned to calls on link L 1

plus the additional channels n4 - nj. The additional channels are chosen such

that they are non-overlapping with the channels assigned to calls on links L 2 ,

L3 . Condition n2 + n3 + n4 < p ensures that such a set exists. Thus, we have

an admissible assignment of channels to calls on links L 1 , L 2 , L3 and L 4 .

Proceeding this way, let us assume that we have an admissible assignment on links L 1,
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.. , Lk_1. We next assign channels to calls on link Lk by comparing nk and nk-3 and

following the above two steps of assignment replacing ni with nk-3 and n 4 with nik.

Thus by induction, if the above set of conditions on nk, k E {1, 2, .. , m} are satisfied,

we have a feasible assignment of channels to the calls.

The above set of conditions and the channel assignment approach can be easily

generalized to a line network where the nodes have transmission radius r, r E Z+.

5.3 Non-rearranging Algorithms

This section considers algorithms that do not require rearrangement of the channels

allocated to the calls already in progress. The algorithms that we study are the ran-

dom algorithm, the first fit algorithm and the local channel re-use algorithm. These

algorithms base their decision on the set of free channels available at a node. Free

channels refer to those channels such that the acceptance of a call in those channels

does not violate the wireless transmission/reception constraints as explained earlier

in Section 2.1. If a call cannot be assigned a channel then it is dropped.

Let FN denote the set of free channels at node N. FN contains all those channels

in which node N and its neighbors are inactive (not transmitting/receiving). Simi-

larly we can define the set of free channels for a link N <-+ M (N, M are two nodes)

as the set of all those channels that are free at both nodes N and M. This set can

be obtained from the sets FN and FM as, FN<.M = FN A FM.

Single Hop Calls

Let there be a single hop call between nodes S and D. Fs and FD are the set of

free channels associated with nodes S and D respectively. Since the call is single hop,

nodes S and D are neighbors. The set of available channels for this call using link

S <-> D is the intersection between sets Fs and FD (Fs n.FD). Let () be the decision
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function which selects one channel from the set Fs f FD. The difference between the

random, first fit and the local channel re-use algorithms is in the decision function

§(). These differences are explained in the later sections. Let Y, be the chosen channel

then -y, is given by -c = §(Fs n.FD).

Multihop Calls

A multihop call is regarded as a sequence of single hop calls where the first call

arrives on the first link followed by an arrival on the second link and so on until the

last link of the multihop path. With this interpretation, we assign channels for the

multihop call by repeating the single hop assignment procedure in a sequence over

the multihop path. After choosing a channel on a particular hop, the information

about the chosen channel is communicated to the next hop node before the channel

decision is made on the next hop.

To be more precise, consider a multihop call between nodes S and D along the

path S, N 1 , N 2,.., D. To allocate channels to this call start at the source node S. Let

the channel chosen on link S <-> N1 be denoted as 7y1. Then, -Y, = j(Fs n FN1 ). The

information about the selected channel on link S <-+ N1 is communicated to node N2 .

Neighbors of nodes S and N1 along the path including themselves (nodes S, N1 , N 2 )

cannot choose channel -y1. Thus, nodes S, N and N 2 update their set of free chan-

nels. Let the updated sets of nodes N and N 2 be denoted as .N 1 , EN 2 . Channel y2

is then chosen from the set EN nJ N2 as -y2 = §(ENl EN 2). This information about

the selected channel (-y2) is communicated to node N 3 . Channel Y3 is chosen from

the updated sets of free channels of nodes N 2 and N 3 . The process repeats until a

channel is allocated on the last link Nk <-+ D. If the assignment is successful, all other

neighboring nodes (neighbors of S, N1 , .., D) other than those along the path update

their set of free channels. If at any step there are no free channels available on that

link then the call is dropped and the nodes along the path once again update their

set of free channels to the set present before the call request was made.
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Figure 5-1: Multihop channel assignment (S, N 1, N2 , N3 , D is the path of the multihop
call).

The procedure is illustrated in the example shown in Figure 5-1. The figure shows

only the source-destination path while all the other nodes of the network are not

shown. Since the call is 4-hop long, there are 4 steps involved and an arbitrary chan-

nel assignment policy is followed for the purpose of illustration. The last step shows

the final allocated set of channels. In the first step Fs fl FN1 ={1, 2} and channel 1

is chosen. Neighbors of nodes S and N along the path including themselves (nodes

S, N 1, N2 ) cannot choose channel 1. Thus, Nodes S, N1 and N2 update their set of

free channels as shown in the second step. In the second step, the set of free chan-

nels on link N +-+ N2 is .,N 1 flFN2 ={2, 4} and channel 2 is chosen. Neighbors of

nodes N and N2 along the path including themselves (nodes S, N 1 , N 2 , N 3 ) cannot

choose channel 2. They update their set of free channels shown in the third step.

FN 2 nFN 3 - {4} and channel 4 is chosen. Neighbors of nodes N 2 and N3 along
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the path including themselves (nodes N1 , N 2, N3 , D) cannot choose channel 4. They

update their sets of free channels and in the fourth step, FNn TD= {1, 3} of which

channel 1 is chosen. The final assignment is shown in the last step. All other neigh-

bors of S, N 1, N2 , N3 , D (not shown in the figure) update their sets of free channels

based on this assignment.

As noted earlier, the random, first fit and the local channel re-use algorithms differ

in the decision function j() given a particular set F of free channels. These differences

are explained next.

5.3.1 Random Algorithm

The random channel assignment algorithm allocates a channel randomly from the

set of free channels available on the link on which the call request was made. Thus,

the channel decision function j(F) chooses a channel 7, randomly from among the

channels in the set F.

5.3.2 First Fit Algorithm

The first fit algorithm orders the channels (71, --,7p) by assigning them an in-

dex number. Assuming that all the channels are equivalent, the index numbers are

assigned to the channels arbitrarily. The channel decision function j(F) chooses a

channel -y, that has the lowest index among the channels in the set F. This policy

has been studied earlier by researchers for wavelength assignment in WDM optical

networks [23].

Intuitively, the first fit algorithm uses the channel resources more efficiently than

the random algorithm. In the first fit algorithm, channels with lower index numbers

are used more often for servicing the calls than the higher index numbered channels.

This causes a packing of the calls onto the lower index numbered channels. Thus two

calls which are non-interfering are more likely to share a channel in the first fit policy
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than in the random assignment policy. This effectively entails re-use of the channels

already in use in the network leaving more resources free for the future calls.

5.3.3 Local Channel Re-use Algorithm (LCRA)

The local channel re-use algorithm assigns an index number to the channels (71,

2,..,yp) in a way identical to the first fit algorithm. The channel decision function,

j(), minimizes a certain criterion Q (explained later) over the set of available free chan-

nels. We first present a mathematical description of the decision function followed by

an intuitive explanation of why the algorithm uses the channels more efficiently than

the random policy.

To explain the channel decision function (), consider a link S +-4 D on which

the channel needs to be allocated. Fs and FD are the set of free channels in the

present state associated with nodes S and D respectively. Let F represent the set

of free channels available on the link S +-+ D. The set F is given by F = Fs n FD.

The elements of the set F (the free channels) are denoted as 7y1, '72, .. , 7Iq where, IFl =

number of elements in the set F. To make a channel decision, the algorithm also

takes into account the free channels available at the neighbors of nodes S and D

(the neighboring nodes are represented by the sets Ks and JVD respectively). Let the

nodes in Ks U KD be denoted as N 1, N 2, .., NIKsuKDI and let FN 1 , TN 2 , .. be their set

of free channels in the present state when the service request is made on link S <-+ D.

We want to choose a channel, -y, such that -y minimizes the number of nodes in

Ks U KD that have channel -y, as a free channel in the present state. Choosing such

a channel will make that channel blocked for the least number of neighboring nodes.

Define an indicator variable IN and a function Q() as follows,

IN, (7k) = 1, if -7k is free at node Ni in the present state

= 0, otherwise.
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Q(-yk) Number of neighbors of S and D that have 7k as a free channel

= IN(7k)
NENsUKD

Choose the channel -y, that minimizes the function Q() over the set, IF, of free channels.

Thus we get,

-y = j(F) = arg minYkEr Q(-7k) (5.5)

If there are more than one -yk that minimize Q() then the smallest indexed -7k is se-

lected.

To understand how this algorithm uses the channels in an efficient manner, con-

sider that we choose channel y, from the set IF. Then, the neighbors of node S (set

Ks) and node D (set APD) cannot use channel 7, as long as the allocated call is active.

Therefore, given that we choose -yc, all those nodes in Krs U MD that had 7, as a free

channel before the call request was made, remove 7c from their set of free channels. It

might be beneficial to have this set of nodes that get blocked in channel y,, to be as

small as possible. The fact that some nodes (in Ks U AD) do not have -y, in their set

of free channels also implies that there is presently an active call in the neighborhood

of those nodes but that call does not interfere with the new incoming call on S <-+ D.

Choosing such a channel will then lead to a local re-use of the channels. Thus we see

that by having an optimization criterion as discussed earlier, the algorithm indirectly

tries to locally re-use the channels as much as possible.

In the above formulation, we assumed that all the nodes in the network experi-

ence the same call arrival rates. However in a general network with multihop calls,

there might be more channel requests at some nodes than at other nodes. In such a

situation, we can generalize the LCRA algorithm by assigning weights to the nodes.

These weights represent a priority ordering of the nodes. The generalized form of the
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LCRA algorithm is as follows.

Let WN be the weight assigned to node N. A node with a higher priority is as-

signed a higher weight. These weights can be chosen based on the objective that

needs to be achieved. In the case of minimizing blocking probability, the weight of a

node can be chosen in proportion to the rate at which channel requests are made at

that node.

Let function Qw() be defined as,

Qw(7k)= IN(Yk)WN
NEAsUA/D

Choose channel 'y, that minimizes the function QO( over the set, F, of free channels.

Thus we get,

-y, = (F) = arg min-YkEr Qw(Yk) (5.6)

If there are more than one 7k that minimize Qw() then the smallest indexed '7k is

selected.

5.4 Simulation Results

In this section, we present simulation results that compare the performance of the

above stated algorithms in a line and a grid network. We compute the blocking prob-

ability of the center call as the edge effects for this call are minimal. The simulation

results also show trends about the effects of other network parameters such as den-

sity of the nodes and hop length of the calls. Since a line and a grid network are

good representatives of a sparse and a dense network respectively, these conclusions

have significant implications in the design of such networks. In both networks, the

transmission radius of each node is fixed at unity. The arrival process of all the calls

is Poisson and of the same rate while the departure time is Exponentially distributed

with mean 1. The load in the plots is in Erlangs and all calls are assumed to be bi-
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directional. All gains are calculated with respect to the random channel assignment

policy.

Figure 5-2 compares the blocking probability in a line network with 30 nodes,

unit length calls and 50 channels. In the low blocking regime (10-3-10-1), substantial

gain in blocking probability as compared to the random policy is achieved. LCRA

performs better than both the random and the first fit algorithms. The significance

of having lower blocking probability is that if we fix a particular value of blocking

probability, then, LCRA can support a higher load for each call as compared to ran-

dom and first fit algorithms. As expected the rearrangement algorithm has the lowest

blocking probability.

0 ,30 node line network, single hop calls

10

. 10'

10
0. 101

C

0

10--- random
-0- first fit

LCRA
10- '' rear.

7 8 9 10 11 12 13 14 15
Load (nu) of each call

Figure 5-2: Comparison of blocking probability in a line network for unit length calls
and different channel assignment algorithms.

Simulating the rearrangement policy in a grid network is practically difficult.

Therefore, in a grid network we compare the blocking probability for the random,

first fit and the LCRA algorithms. Figure 5-3 shows the comparison plot for a 20X20

grid with 50 channels and unit length calls. Blocking probability gains as compared to

the random policy are higher than in the line network. This observation is somewhat
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intuitive as in a grid network a node has more interfering neighbors as compared to

a line network. Therefore, spatially re-using the channels will pack the calls onto

significantly lesser number of channels, thereby having a greater impact on reducing

the blocking probability. This shows that an efficient channel assignment algorithm

becomes more critical in dense networks.

100 20X20 Grid, 50 channels and 1-hop calls

10~ -

10-

2 .1-3,L 10Q

10
-- random
--first fit

'LCRA

10-6

1.5 2 2.5 3 3.5 4 4.5

Load (nu) of each call

Figure 5-3: Comparison of blocking probability in a grid network for unit length calls
and different channel assignment algorithms.

We next consider the effect of hop length of the calls in a line network. We

consider a line network with 50 channels and all calls 6-hop long (between nodes

6 units apart). Figure 5-4 compares the blocking probability for random, first fit,

LCRA and the rearrangement algorithms. As in the case of unit length calls LCRA

outperforms random and first fit algorithms while the rearrangement algorithm has

the lowest blocking probability curve.

Next, we compare the performance of LCRA for the case of 1-hop and 6-hop calls

by computing the percentage gain in the load (compared to the random algorithm) for

a fixed blocking probability. As shown in Figure 5-5, the percentage gain in the load

is higher in the 6-hop call case than in the 1-hop case. This can be easily understood

by noting that as we maximize the channel reuse over each hop, the gains become
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Figure 5-4: Comparison of blocking probability in a line network for 6-hop calls

(length 6 units) and different channel assignment algorithms.

higher with increasing path length. The efficient use of the channels has a greater

impact for calls with longer length. Thus, we conclude that efficient channel reuse

becomes important as the hop length of the calls increase.
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Figure 5-5: Comparison of gain in the load for LCRA for 6-hop and 1-hop calls in a
line network.

98



Chapter 6

Conclusion

We considered the problem of dynamic channel assignment in multihop wireless net-

works. We followed an analytical approach and derived exact blocking probability

formulas for bi-directional and uni-directional calls in a single channel line network.

" Bi-directional Calls (Section 3.2.1)

x3

PB 1 1 - (6.1)
1 +2vxa

vx +3: = 1

" Uni-directional Calls (Section 3.2.2)

PB = I -Y (6.2)
V2(1 - x)2 + 4vxy

x(1 -x)2 +4x2 = v(1- x) 2 , y2 = vx

We compared these formulas to the standard M/M/1/1 blocking probability expres-

sion and obtained useful insights on equivalent load (v') that helped us construct the

model for the multiple channel case. Our methodology of analysis is not restrictive

to the cases considered in this work but can be applied to other symmetrical systems

as well. For example in Section 4.2.1, we used a similar analytical technique to con-

sider a generalization in the single channel line network. We obtained the following
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blocking probability result for bi-directional calls (The case of r = 1 reduces to the

earlier result Equation 6.1).

X
2 r+1

PB = 1 - 2rVX2r+l (6.3)

VX2r+1 + 1

Extending the work to the multiple channel case, we presented a simplified ana-

lytical model (Section 3.3) based on the single channel results for the random channel

allocation policy. We derived approximate blocking probability formulas that ac-

curately predict the values obtained from simulation results, especially, for low to

moderate number of channels (Figures 3-10, 3-11 and 4-1).

We, then, applied the formulas derived to consider the effect of transmission radius

on blocking probability. Specifically (assuming that all calls are of the same length),

we showed that in the sparse line topology it is preferable to use larger transmission

radius and communicate directly rather than go multihop to reach the destination

(Section 4.3); while in the dense grid topology it is more desirable to use smaller

transmission radius (Section 4.4). This result clearly highlights the significance of the

density of the network on blocking probability in a multihop environment.

Finally, we developed a novel channel assignment algorithm (Local Channel Reuse

Algorithm, LCRA) that aims at reducing blocking probability by cleverly reusing the

channels while also satisfying the wireless transmission/reception constraints (Sec-

tion 5.3). We compared our algorithm to other channel assignment algorithms such

as the rearrangement, random and the first fit algorithms. We showed through simu-

lations that an efficient channel assignment algorithm can significantly reduce block-

ing probability; especially for densely connected networks and multihop calls (Sec-

tion 5.4).

Important extensions to this work include a detailed study of the effects of network
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parameters such as the density of the nodes and the hop length of the calls. It would

also be interesting to investigate channel assignment schemes when the nodes are

mobile and the network topology changes with time.
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