
Negative Information for Motif Discovery

by

Ken Takusagawa

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2003

@ Ken Takusagawa, MMIII. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document

in whole or in part.

Author .
Department of Flectrical Engineering and Computer Science

Jun , 2003

C ertified by
David Gifford

Professor
Thesis Supervisor

Accepted by

Chairman, Department Committee on
Arthur C. Smi

Graduate Students

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

OCT 5 2003

LIBRARIES

BARKER

2

Negative Information for Motif Discovery

by

Ken Takusagawa

Submitted to the Department of Electrical Engineering and Computer Science
on August 26, 2003, in partial fulfillment of the

requirements for the degree of
Master of Science in Electrical Engineering and Computer Science

Abstract

In the field of computational biology, many previous DNA motif-discovery algorithms
have suffered from discovering false motifs of sequences that are over-represented in
all the intergenic sequences of a genome. Such motif discovery algorithms have mainly
relied on only the "positive" intergenic regions to which a given transcription factor
is thought to bind. This thesis will address the false motif problem by carefully in-
corporating information from the "negative" intergenic regions, regions to which the
transcription factor does not bind. The algorithm presented in this thesis enumerates
a large class of potential motifs (with possible wildcards), counts their occurrences
in both positive and negative regions, and performs a statistical test to determine if
a potential motif is over-represented in the positive intergenic regions compared to
the negative intergenic regions. We present results of this algorithm on transcription
factor binding data from yeast, and compare its perfomance against other motif dis-
covery algorithms. Our results demonstrate that our method performs slightly better
than other motif discovery algorithms.

Thesis Supervisor: David Gifford
Title: Professor

3

4

Contents

1 Introduction 11

1.1 Related work . 12

1.2 Contributions of this thesis . 13

1.3 Structure of this thesis . 13

2 Word-counting Algorithm 15

2.1 Sequences and Words . 15

2.1.1 Canonical Form of a Word . 16

2.2 Basic problem . 18

2.3 Two simple algorithms . 19

2.3.1 Exhaustive Enumeration . 19

2.3.2 Window across positive regions 20

2.4 Hybrid approach . 20

2.5 Initial hashing . 21

2.6 Hashing function . 25

2.7 Copy to bit vector . 27

2.8 Create Index . 27

2.8.1 Occurrences of words . 28

2.9 Enumerate and Test all Motifs . 29

2.10 Implementation verification . 29

3 Statistical tests 31

3.1 Null hypothesis . 31

5

3.2 Sequences chosen by length .

3.3 Binomial approximation .

3.4 Sum of products approximation .

3.4.1 Psum-prod behaves like a probability

3.5 Which approximation was used? .

3.6 Sample computations .

3.7 Comparing the approximations .

4 Results and Discussion

4.1 Validation

4.1.1 Program parameters

4.1.2 Binding data

4.1.3 Scoring method

4.1.4 Validation results

4.2 Algorithm Running Time

4.2.1 Performance scaling experiments . .

4.3 New motifs

4.3.1 Results on shuffled data

4.4 Future work

4.4.1 Improving the running time

4.4.2

4.4.3

4.4.4

Further processing discovered motifs

Improvements to the statistical test

Toward larger challenges

A Gene Modules under YPD

B Source code

6

32

34

34

37

39

40

42

45

45

45

46

46

49

53

56

58

58

61

61

63

63

65

67

73

List of Figures

2-1 The word C [GT] eG matches the sequence on one strand. The reversed

complemented word Co [AC] G matches on the complement strand. . . 17

2-2 The words ATG. and CAT* are not quite reversed complements of each

other, but when one occurs so does the other. Both words are canonical. 18

2-3 Major routines of the algorithm . 22

2-4 Number of collisions caused by hashing all 634,976 canonical words of

width 7 with up to two wildcard elements, for tableSize in the neigh-

borhood of 10,000,000. The nearly horizontal dashed lines mark a

10-standard deviation interval around the expected number of colli-

sions for 634,976 random hits to a BUCKETS table of tableSize. The

data point (0, 19638) is marked with an arrow. 26

3-1 Distribution of integenic sequence lengths. 33

3-2 Comparing the hyper-geometric significance with binomial and sum-

of-products. 43

3-3 Comparing the sum-of-products significance with binomial significance. 44

4-1 Significance of most-correct motif (black) versus significance of the top-

scoring motif (white). The number after each transcription factor is

the rank of the most-correct motif. The "most-correct" motif is the

motif with the smallest distance from the consensus sequence among

all significant words discovered. Note that distance is floored at 0.83;

if two words have the same distance, the one with the higher (smaller)

rank is preferred. 50

7

4-2 Histogram of running times of the algorithm, in minutes. 54

4-3 The running time, in minutes, versus the number of positive sequences.

The asymptotic effect (most visible in the lower envelope) is due to

saturation; nearly all words of width seven with up to two wildcard

elements were evaluated. 54

4-4 A graph of the running time of the exhaustive enumeration stage versus

the number of words present in the positive sequences. The interpo-

lated line yields an estimate of 2.0 milliseconds per evaluated word. . 55

4-5 The running time of the initial hashing routine, in seconds, versus the

number of positive sequences. 55

4-6 Running time in hours for motif discovery on the STE12_YPD data set

for wider motifs and more allowed wildcards. 57

4-7 Illustration of how full (as a percentage of the 1.7 - 109 entries) the

BUCKETS table became for various motif sizes. 57

4-8 The lower envelope of the most significant word for given number of

occurrences in a positive set. The values of the x points are given in

T able 4.6. 62

8

List of Tables

2.1 Degenerate nucleotides used by the algorithm 16

2.2 Not used degenerate nucleotides . 16

2.3 Every word element has a number. 17

2.4 The result of Add Wildcards2(ACg), given in lexicographic order (read-

ing across columns). 23

3.1 Relative errors for the small sample computation. 43

4.1 Consensus sequences . 47

4.2 Some example 4-tuple probabilities 48

4.3 Verified consensus motifs. The first column gives the algorithm, which

positive sequences were used, and the number of top ranked motifs

which were tested for correctness. The second column is the number

of correct motifs, followed by the transcription factors whose correct

motifs were found. 52

4.4 Top scoring motifs discovered for transcription factors not on Table 4.1

with sum-of-products significance greater than 10-10. The significance

values are log1 o of the p-value. 59

4.5 Top scoring motifs (continued from Table 4.4) discovered for transcrip-

tion factors not on Table 4.1 with sum-of-products significance greater

than 10-10. The significance values are log1 o of the p-value. 60

4.6 The lower envelope points of Figure 4-8. 62

4.7 Top twenty significant motifs found for FHL1_YPD 64

9

10

Chapter 1

Introduction

Motif discovery is one tool for unraveling the transcriptional regulatory network of

an organism. The underlying model assumes that a transcription factor binds to a

specific short sequence ("a motif") in the upstream intergenic region of a gene and af-

fects the gene's expression in some way. By discovering a transcription factor's motif

and scanning a genome for it, we can hypothesize which genes the transcription factor

regulates. We can also make more elaborate hypotheses about combinatorial regu-

lation of a gene by multiple transcription factors if multiple different motifs appear

upstream of a gene.

Chromatin immunoprecipitation (ChIP) microarray experiments can determine to

which intergenic regions a particular transcription factor binds on an entire genome[10].

After choosing an appropriate cutoff p-value, the intergenic regions are partitioned

into two categories: those to which the transcription factor is thought to bind (which

will be referred to as the "positive intergenic sequences") and those to which it does

not bind (the "negative intergenic sequences"). This thesis will focus on discovering

motifs in the ChIP experiments performed on 108 different transcription factors in

Saccharomyces cerevisiae (baker's yeast)[10].

If an algorithm uses only the positive sequences for motif discovery, then it

will likely discover many false motifs. Such false motifs are caused by sequences

which appear frequently in all the intergenic sequences of a genome. In yeast, two

prominent simple examples of such sequences are poly-A (long strings of consecutive

11

adenine nucleotides) and poly-CA (long strings of alternating cytosine and adenine

nucleotides) [1].

This thesis will attempt to solve the false motif problem by incorporating the neg-

ative intergenic sequences. A potential motif must be significantly over-represented

in the positive intergenic sequences when compared with the negative intergenic se-

quences.

1.1 Related work

There have been many past efforts to use negative intergenic sequences to derive a

statistical test.

The very popular "Random Sequence Null Hypothesis" (so named in [3]) uses the

negative sequences to discover the parameters of an n-th order background Markov

model (n = 0 and n = 3 are popular). This approach greatly dilutes the information

content of the negative intergenic sequences, and especially loses information about

false motifs whose length is greater than the order of the Markov model.

Two papers describe a different approach to incorporate information from nega-

tive intergenic sequences. The approach pursued in this thesis will be similar to the

following two citations. Vilo, et al.[12] cluster genes by their expression profiles and

seek to discover motifs within each cluster. Their test for significance compares the

occurrences of a potential motif within a cluster to the occurrences in all intergenic

sequences. Their significance test compares the ratio of the two values against a bino-

mial distribution. Barash, et al.[3] describe an alternative to the "Random Sequence

Null Hypothesis", namely a "Random Selection Null Hypothesis". They perform a

similar calculation to [12], but compare against a hyper-geometric distribution. (The

difference appears to be the assumption of whether motif-containing sequences are

selected "with replacement" or "without replacement" from all the sequences.)

Two other papers are also related to the work proposed in this thesis. Sinha [11]

shows how to view motif discovery as a feature selection problem for classification.

The algorithm presented in the paper requires input of positive and negative intergenic

12

sequences. Sinha generates the negative examples (intergenic sequences) artificially

using a Markov model, but the framework presented the paper could easily use real

negative intergenic sequences from ChIP experiments.

On the implementation side, this thesis develops a method of reducing the memory

requirement of enumerative methods for motif discovery. Buhler and Tompa [6] also

discuss this problem and propose other techniques.

1.2 Contributions of this thesis

With respect to the related work mentioned above, this thesis makes the following

contributions to the field.

" Application of statistical tests similar to those described in [3, 12] on data from

ChIP experiments, which were not available at the time [3, 12] were written.

" Generalization of the statistical tests to allow for weights on intergenic se-

quences.

" Word counting with wildcards. While the idea is not new, wildcards greatly

increase the computation time and memory requirements and therefore require

careful attention to implementation.

" A careful and detailed description of the implementation of the algorithm, in-

cluding a filtering technique to reduce running time and a modified hash table

technique to reduce memory requirement.

1.3 Structure of this thesis

This thesis will proceed in the following manner. Chapter 2 will discuss the algorith-

mic and implementation issues involved in this thesis's approach to motif discovery.

Chapter 3 will discuss the statistical test and its mathematical aspects. Finally,

Chapter 4 will present results and directions for future work.

13

14

Chapter 2

Word-counting Algorithm

This chapter has the following structure. In §2.1 we will introduce some terminology

and conventions. §2.2 will define the word-counting problem, and describe how it

will be used for motif discovery. §2.3 will describe two simple but slow algorithms for

word counting. §2.4-2.10 then will discuss the design and implementation of principal

algorithm of this thesis, a hybrid algorithm which combines the strengths of the two

simple algorithms.

2.1 Sequences and Words

The term sequence denotes a concatenation of DNA nucleotides, chosen from the set

{A, C, 9, T}. Sequences will be typeset in CALLI9RAP'HIC font. We will typically

use the term length to describe the size of sequences and subsequences.

The term word denotes a concatenation of word elements. Word elements are

nucleotides or wildcard elements. Words represent potential motifs. We will typically

use the term width to describe the size of words and motifs.

Wildcard elements are specified by degenerate nucleotides which specify two or

more possible real nucleotides that can occupy the position of the wildcard. There are

a total of 24 - 1 = 15 real nucleotides and wildcard elements. The 11 total wildcard

elements (15 - 4) can be denoted by their IUPAC code, or by a regular expression

similar to the syntax used by the Unix command grep. This chapter will will use the

15

grep notation IUPAC notation
[AC] M
[AG] R
[AT] W
[CG] S
[CT] Y
[GT] K

_ N

Table 2.1: Degenerate nucleotides used by the algorithm

grep notation IUPAC notation
[ACGI V
[ACT] H
[AGT] D
[CGT] B

Table 2.2: Not used degenerate nucleotides

regular expression syntax. Words will be typeset using the typewriter font.

Of the 11 wildcard elements, the algorithm to be presented will only use 7 of them:

the 6 double-degenerate nucleotides and the quadruple-degenerate ("gap") nucleotide.

The elements used and unused are listed in Tables 2.1 and 2.2.

Borrowing from regular expression terminology, we say that a word matches a

sequence if it is present somewhere in the sequence or the sequence's reversed com-

plement. We will also say that a sequence is an instantiation of a word if the sequence

matches the word and is the same length as the word.

2.1.1 Canonical Form of a Word

We will effectively search both DNA strands of the upstream region of a gene. There-

fore, a word and its reversed complement are identical for the purposes of motif

discovery. When one occurs, the other occurs on the other strand, as illustrated in

Figure 2-1.

Furthermore, a word with a gap (a e wildcard) occurring at its end is identical

to a word with the gap at the beginning (ignoring the corner case when such a word

occurs at the end of an intergenic sequence). For example AAGC** is identical to

16

C [GT] e G
A T T A 9 C g A 9 T T A

D [DV] 0

Figure 2-1: The word C [GT] eG matches the sequence on one strand. The reversed
complemented word Ce [AC] G matches on the complement strand.

word element A C G T [AC] [AG] [AT] [CG] [CT] [GT] *

number 0 1 2 3 4 5 6 7 8 9 10

Table 2.3: Every word element has a number.

*.AAGC and oAAGCe.

In order to eliminate duplicate words caused by reversed complements and gaps,

we define a canonical form of a word. First we associate each word element with a

number, which establishes a lexicographic ordering of words (Table 2.3).

With this ordering, we can compare a word with its reversed complement. Note

that to complement a wildcard element, we simply complement the members of its

character class.

We describe a predicate is-canonical(m) for a word m.

1. If a m begins with e, it is not canonical.

2. Otherwise, if a m is lexicographically greater than its reversed complement, it

is not canonical.

3. Otherwise, m is canonical.

Rule 1 stipulates that gap elements can only occur at the end of a canonical word.

For example, of AAT.., eAAT., and e.AAT, only the first is canonical.

There is a subtle interaction between Rule 1 and Rule 2. Because the gap element

* is lexicographically the greatest word element, it is assured that a word containing

a gap element only at its end is canonical.

Under the rules specified above, there still do exist identical words that are canon-

ical. For example, ATG. and CAT* are both canonical, but when one occurs, the other

17

A T Ge

1 V I

Figure 2-2: The words ATG. and CATe are not quite reversed complements of each
other, but when one occurs so does the other. Both words are canonical.

occurs on the complementary strand shifted by one base (Figure 2-2).

The presence of multiple identical canonical words does not affect the correctness

of the algorithm, it merely creates extraneous output. A significant motif will be

reported multiple times in each of its canonical forms. (And it was not worth the

programmer effort to correct this bug.)

2.2 Basic problem

In order to do motif discovery with word counting, we need to first solve the following

algorithmic problem. First, we define the set of words M which interest us. The

experiments performed in this thesis searched for words of width 7 with up to 2

wildcard elements. Next, given two sets of sequences P ("positive") and A ("all")

with P C A, we wish to determine for each word m E M which sequences in P and

which in A match m.

The set P contains the intergenic sequences bound by the transcription factor

whose motif we wish to discover. The negative set of unbound sequences is implicitly

defined by A \ P. We choose to define the problem in terms of "positive" and "all"

instead of "positive" and "negative" for convenience of implementation. It is slightly

easier to use the same "all" set for all transcription factors, rather than explicitly

calculating the negative set for each different transcription factor.

Having determined which sequences in P and A which match m, the statistical

tests described in Chapter 3 can estimate the significance of m as a potential motif.

Note that we want to know the identities of the sequences which match m, not just

their count. Two of the statistical tests will make use of the lengths of the sequences

for a more accurate result than just using counts.

The problem has the feature that the number of sequences in P is much fewer than

18

the number in A. Furthermore, we only care about words present in P. If a word is

not present in P we do not care about its presence or lack thereof in A. Therefore, it

would be quite reasonable for an algorithm to first restrict its attention to P.

2.3 Two simple algorithms

In this section we describe two simple but slow algorithms to solve the basic problem

described above.

2.3.1 Exhaustive Enumeration

This technique simply enumerates the entire space of words in which we are interested

and determines the presence of each word in P and A. (If a word does not exist in P

we do not need to search for it in A.)

foreach m E M do

if m matches somewhere in P then

POSITIVES-WITH-M +- flnd(m,P)

ALL-WITH-M +- flnd(m,A)

test-for-significance(FILTERED-POSITIVES, FILTERED-ALL)

We will use the pseudocode notation "foreach x E S" loosely throughout this

chapter. It denotes a appropriate algorithm to iterate through the elements of S one

by one. It typically is not implemented by first storing all the elements of S, then

iterating through them. Frequently (for example in the enumeration of M) the most

appropriate algorithm is recursive, and the statements within the foreach loop are

evaluated at the base case of the recursion.

The problem with of exhaustive enumeration is there may be many words not in

P. The size of the space of words increases exponentially with the width w of the

word, while the number of words of width w in P is bounded by a constant times the

total length of all the sequences in P.

This performance flaw this method begs for a very quick way of determining if

19

"m matches somewhere in P".

2.3.2 Window across positive regions

The alternative to enumerating all words is to scan each sequence of P with a window

of width w, where w is the width of the motif we wish to discover.

foreach s E scan,(P) do

// Comment: s is a length-w subsequence

foreach m which matches s do

ALL-POSITIVE-WORDS{m}.add(sequence number of s)

foreachm E keys of ALL-POSITIVE-WORDS

FILTERED-ALL <- find(m,A)

test-for-significance (ALL-POSITIVE-WORDS {MI, FILTERED-ALL)

The problem of this method is the memory required to store ALL-POSITIVE-

WORDS, which is a mapping from words to sets of sequences identifiers. A straight-

forward implementation would need to store every word (not just every subsequence)

in P. This performance flaw begs for a way to reduce the memory requirement.

2.4 Hybrid approach

This thesis implemented a hybrid approach between the two simple algorithms above.

The approach developed in the following sections is a modification of exhaustive

enumeration using an imperfect but low-memory version of window scanning as a

filter to quickly determine if a word matches somewhere in P.

Although the hybrid approach is faster than naive exhaustive enumeration, and

uses less memory than naive implementation of window scanning, it should be noted

that the purported performance flaws of §2.3.1 and §2.3.2 would not have been sig-

nificant concerns for the experiments performed for this thesis. For the yeast genome

(with approximately 3 million bases of intergenic sequence) and searching for motifs

20

of width w = 7 with up to 2 wildcards, modern machines have sufficient memory

for even a naive implementation of window scanning. Furthermore, for many of the

experiments, almost all possible 7-mers were present in P so filtering to determine

what words are in P did not save very much computation. Therefore, the techniques

described in the following sections will probably yield signficant benefits only in future

studies on larger genomes or wider motifs.

The hybrid motif discovery algorithm consists of four major routines, which are

illustrated in Figure 2-3. Sections 2.5 through 2.9 will describe each routine in detail.

2.5 Initial hashing

This routine corresponds to the window-scanning algorithm of §2.3.2. Its purpose is

to create a data structure which can quickly determine if a word matches some se-

quence in the positive set P. However, unlike naive window-scanning, it will conserve

memory, at the cost that the data structure will occasionally make mistakes in the

determination.
foreach i E P do

foreach s E [Subseqj(i) U reverse-complement(Subseq,(i))] do

foreach m E AddWildcardsh(s) do

if is-canonical(m) then

BUCKETS [hash(m)].hit()

foreach entry of BUCKETS do

BUCKETS[entry]. advance()

P are the positive intergenic sequences, that is, those bound by the transcription

factor whose motif we wish to discover.

Subseq,(i) are the length-w subsequences of i computed by scanning i with a

width-w window. For example, Subseq3(ATTgA) = {ATT, TT9, TgA}. The same

subsequence might be evaluated multiple times if it occurs more than once.

The operation "reverse- complement (W)" reverses and DNA-base-pair comple-

ments every element of W. For example,

21

Positive
intergenic All intergenic

sequences sequences

Initial
Hashing

Hash

buckets

Create Copy to Create
Index bit vector Index

Targets
set

All
Positive intergenics
intergenics index
index

Enumerate

and test
all words

Motifs

Figure 2-3: Major routines of the algorithm

22

ACG
A[AC]G
A[CG]G
A [CT] G
AeG
[AC]CG
[AC] [AC] G
[AG] C [AG]
[AG] [CG] G
[AT] C [CG]
[AT] [CT] G
.C[GT]
eG

AC[AG]
A[AC] [AG]
A[CG] [AG]
A[CT] [AG]
A* [AG]
[AC] C [AG]
[AC] [CG]G
[AG] C [CG]
[AG] [CT] G
[AT] C [GT]
[AT]eG
eC.

AC [CG]
A[AC] [CG]
A[CG] [CG]
A[CT] [CG]
A. [CG]
[AC] C [CG]
[AC] [CT] G
[AG] C [GT]
[AG] 9G
[AT]Co

*CG
e [AC] G

AC[GT]
A[AC] [GT]
A[CG] [GT]
A[CT] [GT]
Ae [GT]
[AC] C [GT]
[AC] G
[AG] Ce
[AT] CG
[AT] [AC] G
eC[AG]
o[CG]G

AC*
A[AC]*
A [CG].
A[CT]o
A..
[AC] Co
[AG] CG
[AG] [AC] G
[AT] C [AG]
[AT] [CG]G
*C[CG]
o[CT]G

Table 2.4: The result
across columns).

of AddWildcards2 (ACg), given in lexicographic order (reading

reverse-complement{ ATT, TTg, T!9A} = {A AT, CAA, TCA}.

AddWildcardsh(s) takes a sequence s and creates a set of words from s with up

to h wildcard elements. The wildcards elements that can take the place of a given

nucleotide are the three double-degenerate nucleotides consistent with the nucleotide

it replaces, and the quadruple-degenerate nucleotide. The following table summarizes

the wildcard element possibilities.

Nucleotide ... can be replaced with

A * [AC] [AG] [AT]

C * [AC] [CG] [CT]

g * [AG] [CG] [GT]

T * [AT] [CT] [GT]

Thus, AddWildcardsh(s) replaces up to h positions of s with a wildcard listed

above. An example of AddWildcards2 (ACg) is given in Table 2.4.

The hash(m) function takes a word m and maps it to an integer in the range

[0 ... tableSize - 1] where tableSize is the size of the BUCKETS array. Most of the

experiments used a tableSize of 10,000,000. The hashing function and its performance

are discussed in detail in §2.6.

The BUCKETS array is an array of buckets. Each bucket is an object with the in-

ternal state variables count (an integer, initialized to zero) and alreadyHit (a boolean,

23

initialized to FALSE). Each bucket responds to the hitO and advance() messages in

the following way:

hit()

if (not alreadyHit) then

alreadyHit +- TRUE

count++

advance()

alreadyHit +- FALSE

hit() ensures that multiple hits from the same intergenic region of sequences are

only counted once.

This initial hashing phase is theoretically the memory bottleneck of the algorithm

and BUCKETS has a critical feature that saves memory. Unlike a normal hashtable,

BUCKETS only stores values, not key-value pairs. It is possible that multiple keys

(words) will collide and hash to the same bucket.

The implementation of BUCKETS used one byte per bucket. The alreadyHit

boolean was stored in the least significant bit of the byte, and the remaining up-

per seven bits stored count up to 127 hits. If a bucket is hit more than 127 times it

was thresholded at 127.

In contrast, a true hashtable (with the ability to prevent collisions) will probably

use far more than 1 byte per bucket. Storing the key requires space, perhaps 7 bytes

for the width-7 words examined in this thesis. Storing the value requires 1 byte as

described above. If "separate chaining" is used to resolve hashtable collisions (that is,

each table entry contains a linked list of the keys which have collided), then another

4 bytes (assuming 32-bit memory addressing) are needed for the "next" pointer of

the linked list. All together, a true hashtable might require 12 times more memory

than the BUCKETS implementation.

Because BUCKETS allows for collisions, the initial hashing phase is imperfect.

Later routines will examine the BUCKETS table to see if a word is present in the

positive intergenic regions. If the value of the BUCKETS entry is positive, then the

24

word might be present. If the value is zero, then we know that the word was definitely

not present.

2.6 Hashing function

Since words are composed of 11 possible word elements, the hashing function inter-

prets a word as a integer expressed in base 11 and returns that value modulo tableSize.

The value of each word element is given in Table 2.3 on page 17. If any number of

wildcard elements were permitted (up to the width of the word) and non-canonical

words were not eliminated, it is clear that this hash function evenly distributes all

possible words.

However, the limit on the number of wildcard elements and the requirement that

words be canonical causes the hash function to exhibit complicated behavior with

respect to the tableSize, as illustrated in Figure 2-4. The figure gives the number of

hash collisions (number of buckets containing more than one value) caused by hashing

all the words in M, the canonical words of width 7 with up to 2 wildcard elements.

The number of collisions varies very significantly for small changes in tableSize.

A Monte Carlo simulation computed that for tableSize = 10,000,000, the expected

number of collisions for randomly distributed bucket hits is 19738.5, with a standard

deviation of 134. When all words in M are hashed, the number of collisions was

19638, or just slightly better than the expected value. The best tableSize within a

neighborhood of 100 of 10,000,000 is 10,000,096, with only 86 collisions among the

634,976 canonical words, or 140 standard deviations better than the expected value.

Unfortunately this fact was discovered after all the experiments had been completed,

so we did not use this more efficient table size. Furthermore, this efficient table size is

specifically tailored for words of width 7 with up to 2 wildcard elements; other widths

or number of wildcard elements will have different good table sizes.

25

-100 -80 -60 -40 -20

100000

0 20 40 60 80 100
tableSize - 10,000,000

Figure 2-4: Number of collisions caused by hashing all 634,976 canonical words of width 7 with up to two wildcard elements, for
tableSize in the neighborhood of 10,000,000. The nearly horizontal dashed lines mark a 10-standard deviation interval around
the expected number of collisions for 634,976 random hits to a BUCKETS table of tableSize. The data point (0, 19638) is marked
with an arrow.

80000F

I~Q

C,

0

C.)

60000

40000

200001

n .. I I .

2.7 Copy to bit vector

This routine selects the buckets which were hit at least twice in §2.5. The threshold of

2 was chosen extremely conservatively, after early experimentation chose a threshold

too high that it lost significant motifs. Choosing this threshold wisely in the future

will be discussed in §4.4.1.

The buckets to keep, namely those above or equal to the threshold, are marked in a

bit vector TARGETS-SET of length tableSize. The implementation type of TARGETS-

SET was the vector<bool> class in C++. The sole purpose of copying to a bit

vector is to save memory (by a factor of 8). After copying, the buckets table can be

deallocated, making space from the indexes in created §2.8.

During the copy operation, memory for both the buckets table and the bit vector

is needed. However, the copy operation behaves well under virtual memory systems

that predict future memory reads and writes by proximity to locations of previous

reads and writes.

2.8 Create Index

This routine creates an associative mapping from length-w subsequences to identi-

fiers of the intergenic sequences that contain the subsequence. The type of this con-

tainer, expressed as C++, is map < Sequence, set<int> >, where int's are used

for the intergenic sequence identifier. We also experimented with hash-map's, namely

_-gnu.cxx: :hash-map< Sequence , set<int> >, an extension to the C++ Standard

Template Library. hash-map's were only slight faster than map's, using the gcc 3.3

compiler and STL implementation.

This index is created by sliding a width-w window across each intergenic sequence

and noting each subsequence seen. The canonical function used below returns the

lexicographically lesser sequence of the sequence and its reversed complement.

27

for 0 < inumber < JINPUT-SEQUENCESj do

Z +- INPUT-SEQUENCESinumber

for 0 < j < length(i) - w do

subseq <- ii...j+w-1

INDEX{ canonical(subseq) }. add (inumber)

return INDEX

This routine is used twice, once with INPUT-SEQUENCES = P, and once with

INPUT-SEQUENCES = A.

2.8.1 Occurrences of words

The INDEX described above only indexes subsequences, not words. However, in §2.9,

we will need to know the occurrences of words. We can find the occurrences of a word

by taking the union of all possible instantiations of a word.

For example, the occurrences of the word A [CT] [GT] is the following union:

INDEX{ canonical(ACg)}

U INDEX{ canonical(AT9) }

U INDEX{ canonical(ACT)}

U INDEXIcanonical(ATT)}

The running time of the implementation of finding the occurrences of a word is

exponential in the number of wildcards elements h (although with h = 2, the value

is not large.) Furthermore, this routine behaves poorly with respect to the memory

hierarchy of modern computers. Whether the index is implemented as a balanced tree

(the C++ map) or as a hash table (hash-map), the keys (sequences) which are the

instantiations of the word are likely to be scattered all over main memory. Therefore,

the processor will likely stall waiting for memory to be read for each of the exponential

number of instantiations of the word.

For these reasons, finding the occurrences of a word, especially the occurrences

28

of a word among all intergenic sequences A, for hundreds of thousands of words,

was the most computationally time-consuming portion of the entire algorithm (not

including the sum-of-products approximation of §3.4, which was so slow it was mostly

abandoned).

2.9 Enumerate and Test all Motifs

This routine corresponds to the exhaustive enumeration of §2.3.1. However, the

TARGETS-SET bit vector created in §2.7 is used as a quick filter to determine if a

word is in the positive set P. Recall that if a bit corresponding to the hashed value of

a word is true, then the word might be present. If false, then we know that the word

was definitely not present (at least twice). The routine find- occurrences- of-word is

described above in §2.8.1.

INDEXA <- create-index(A)

INDEXp <- create-index(P)

foreach m E M do

if TARGETS-SET[m] then

FILTERED-POSITIVES +- find- occurrences- of-word (m,INDEXp)

if FILTERED-POSITIVES h 0 then

FILTERED-ALL -- find- occurrences- of-word (m,INDEXA)

test-for-significance (FILTERED-POSITIVES, FILTERED-ALL)

2.10 Implementation verification

The word-counting algorithm was first rapid prototyped in the functional program-

ming language Haskell, then re-implemented in C++. On small "toy" test cases (the

Haskell implementation was too slow for use on real data), both algorithms gave the

same results.

In agreement with other anecdotal reports comparing Haskell to other program-

29

ming languages, the C++ implementation took approximately 5 times more program-

mer effort than the Haskell implementation.

30

Chapter 3

Statistical tests

Having determined which sequences contain a word m, we now wish to determine if

m occurs in the positive sequences P more often then would be expected by chance.

3.1 Null hypothesis

We must therefore first define a null hypothesis of what in fact is expected by chance.

Biologically, the null hypothesis corresponds to the situation that m is not the motif

for the transcription factor. To be able to statistically reject the null hypothesis, we

must quantify what we expect to see if the null hypothesis is true.

This chapter will explore the "Random Selection Null Hypothesis" of [3], which

states that when the null hypothesis is true, the positive sequences are "randomly

selected" from among all the intergenic sequences. For their model, "randomly se-

lected" means "all sequences are equally likely to be chosen without replacement".

For this definition of "randomly selected", they give a formula for the probability

that k sequences match the word m by chance alone.

(K) (N-K)

Phyper(k I n, K, N) = n-k31)

where n = IP1, N = JAI, and K is the total number of sequences matching the word

m. The above formula is the hyper-geometric probability distribution.

31

Using this formula we can calculate a p-value that the null hypothesis is true. The

p-value sums the tail of the probability distribution for k' k.

p-value(k) = E P(k' I n, K, N) (3.2)
k'=k

In the above formula is P = Pype, for the hyper-geometric case; however, we will use

this summation with other probability distributions P later in the chapter.

To minimize roundoff error, the sum is computed backwards starting from n going

down to k:

for (kprime=n; kprime>=k; --kprime) {

suM+=p(...)

}

As an aside, we note that to truly minimize roundoff error, the values to be summed

ought be placed in a priority queue data structure such that the smallest value is

always at the head of the queue. Each iteration, the smallest two values should be

popped off the queue and the sum re-inserted into the queue. However, this intricate

summing procedure was not implemented.

Because the probabilities being summed are frequently numbers of extremely small

magnitudes, they are best manipulated as log-probabilities. The equations below

express the logarithm of a sum in terms of the logarithms of the values being summed.

log(a + b) (3.3)

= log a + log(1 + exp(log b - log a)) (a > b) (3.4)

= log b + log(1 + exp(log a - log b)) (a < b) (3.5)

3.2 Sequences chosen by length

Instead of "all sequences equally likely" as the behavior under the null hypothesis,

this thesis proposes the following alternative:

32

400

350-

300-

m 250-

200 -

150

100-

50-

0
0 500 1000 1500 2000 2500 3000

length

Figure 3-1: Distribution of integenic sequence lengths.

Sequences are selected with probability proportional to the se-

quence's length.

The motivation for this alternative stems from the problem that the sequences from

the ChIP experiments were of different lengths. Barash, et al. did not concern them-

selves with sequences of varying length because they explicitly chose their sequences

to be all the same length (1000 nucleotides upstream of from the start of the ORF).

They also specifically developed their hyper-geometric statistic under the assumption

that all sequences are the same length. However, the data from ChIP experiments do

not afford us this luxury (Figure 3-1).

The modification is plausible: given no other knowledge about the transcription

factor, a longer sequence is more likely to contain the transcription factor's true mo-

tif. However, the modification assumes that the intergenic sequences from the ChIP

experiment (which occasionally cut a long intergenic sequence into several pieces)

were not constructed in special some way that violates this assumption of "selection

probability proportional to length." We use the following notation for the lengths of

all, positive, and negative sequences.

AL = {length(s) I s E A} (3.6)

PL = {length(s) I s E P} (3.7)

NL = {length(s) I s 0 P} (3.8)

33

Note that the quantities are bags (or multi-sets) because different sequences of iden-

tical lengths are allowed in each bag. We use use the symbol W to mean bag union,

for example PL W NL = AL.

Having defined the null hypothesis, we can now attempt to derive a formula

(analogous to the hyper-geometric distribution formula) for the probability that k

sequences which match the word are selected. Unfortunately, I was unable to derive

an efficiently (polynomial-time) computable formula for this probability. (But I was

frustratingly unable to prove any complexity bounds, such as NP-completeness, ei-

ther.) Therefore, below we discuss two efficiently computable approximations. (The

second, despite being polynomial-time, will be too slow for practical use.)

3.3 Binomial approximation

Instead of selecting sequences without replacement, one approximation is to select

sequences with replacement. The probability of selecting exactly k sequences is bino-

mial:

Pbinom(k I n, K, N) = (n)rk(1 - r)n-k. (3.9)

where r is the proportion of total sequence (total lengths) containing the word.

E PLr =
E AL

The binomial approximation, being quick to calculate, was the principal statistical

test used in this thesis.

3.4 Sum of products approximation

The second approximation has functional form similar to the hyper-geometric dis-

tribution. Its weakness is that apart from its "inspirations" described below, I was

unable to derive any formal justification as to why it is an approximation, or how

34

good an approximation it is. Although this approximation was calculated for the few

hundred very significant (by binomial approximation) motifs, it was too slow to use

as a general statistical measure of significance. Therefore, this section serves mostly

as a curious mathematical aside.

The inspirations for this approximation came from two different directions. The

first was to take the hyper-geometric formula (Equation 3.1) and modify it to allow

for sequences of different lengths. The simple modification chosen was to replace the

binomial function with something different. The second inspiration came while labori-

ously writing out the expressions for the exact choose-without-replacement probabil-

ity for small sets PL and NL. It was noted that the resulting expressions frequently

contained products (and sums of products) of lengths with each other.

We also define two straightforward constraints that we would like the approxima-

tion to obey. We require approximation take less than exponential time to calculate.

We require that the approximation behave like a probability. That is, the values must

be bounded between zero and unity, and they must sum appropriately to unity so

that a meaningful p-value can be calculated.

From the inspirations and constraints, we define the following function to replace

the binomial: Sum-prod(S, k) is the sum of the products of all size-k sub-bags of a

bag S. (We are using bags instead of sets to allow for multiple identical elements.)

This function was chosen for its simplicity and elegance; it probably is not the only

possible choice satisfying the constraints.

Sum-prod (S, k) = t i (3.10)
TCS \tET/
IT|=k

Sum-prod can be computed efficiently using dynamic programming, using the

following recurrence relation (for k > 0):

Sum-prod(S U {x}, k) = Sum-prod(S, k) + x - Sum-prod (S, k - 1) (3.11)

35

The recurrence follows from the fact that the set of sub-bags of S W {x} can be

partitioned in two: those not containing x and those that do. For the latter, x can be

factored out of each term, resulting in second term of Equation 3.11. The recurrence

uses the following base cases.

Sum-prod(S, 0) = 1 (3.12)

Sum-prod(0, k) = 0 (k > 0) (3.13)

Sum-prod(S, k) = 0 (k < 0) (3.14)

Note that Eq. 3.12 holds for S = 0.

It does not matter what order the elements are added. In the first set of equations

below, a is added first, then b. In the second set, b then a. Both orderings expand

via the recurrence to the same expression.

SP([S W a] W b, k) (3.15)

= SP(S z a,k)+b-SP(S & a,k-1) (3.16)

= [SP(S, k)+ a - SP(S, k - 1)] + b - [SP(M, k - 1)+ a - SP(M, k - 2)](3.17)

= SP(S, k) + a -SP(S, k - 1) +b - SP(M, k - 1) + ab - SP(M, k - 2) (3.18)

SP([S U+ b] U a, k) (3.19)

= SP(S W b, k) + a - SP(S W b, k - 1) (3.20)

= [SP(S, k) + b - SP(S, k - 1)] + a - [SP(M, k - 1) + b -SP(M, k - 2)](3.21)

= SP(S, k) + b - SP(S, k - 1) + a - SP(M, k - 1) + ab - SP(M, k - 2) (3.22)

(We occasionally write SP for Sum-prod for compactness.)

We observe that when all lengths are unity, the function reduces to the binomial

36

function:

n) = Sum-prod({1, 1, . . . , 1}, k) (3.23)
n

Inspired by this observation, first we note the occurrences of the binomial function

in the hyper-geometric distribution in Equation 3.1 on page 31. We define a function

with similar form, but with the binomial function replaced with Sum-prod:

Psum-prod(k I n, PL, NL, AL) - Sum-prod(PL, k) Sum-prod(NL, n - k) (3.24)
Sum-prod(AL, n)

Example computations of Sum-prod are given in §3.6.

3.4.1 PSum-prod behaves like a probability

Despite the ad hoc set of "inspirations" upon which this approximation was based, we

find (this was actually just stroke of good luck) that PSum-prOd behaves appropriately

as a probability, so a p-value can be computed by summing the tail of the distribution

with Equation 3.2 on page 32.

We will first show that Equation 3.24 sums to unity when summed over k, that

is:

" Sum-prod (A, k) - Sum-prod(B, n - k)
k=Z Sum-prod(A L B, n)

It will follow as a simple corollary that the value is bounded between zero and 1.

Multiplying Eq. 3.25 by the denominator yields:

n

Sum-prod (A W B, n) = >: Sum-prod (A, k) Sum-prod (B, n - k) (3.26)
k=O

We will prove this equation via induction on the elements of B. First, for the base

37

case B = 0, the left-hand side simplifies trivially:

Sum-prod(A W 0, n) = Sum-prod (A, n)

For the right-hand side

j
k=O

Sum-prod (A, k)Sum-prod(0, n - k)

= Sum-prod(A,n)Sum-prod(0, n - n)

= Sum-prod(A, n) -1

= Sum-prod (A, n).

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

Eq. 3.29 results from the base cases of Eq. 3.12 and Eq. 3.13. The only nonzero term

is occurs when k = n.

Next, we assume the inductive hypothesis and show that Eq. 3.26 is true for

B <- B W {b}. The left-hand side expands to

Sum-prod(A Lt) [B W {b}], n)

= Sum-prod([A W B] W {b}, n)

= Sum-prod(A U B, n) + b - Sum-prod(A W B, n - 1)

(3.32)

(3.33)

(3.34)

Eq. 3.34 results from the recurrence (Eq. 3.11) with S = A L B. The right hand side

38

expands to:

n

S SP(A, k)SP(B L {b}, n - k) (3.35)
k=O

n

= SP(A, k)[SP(B,rn - k) +b - SP(B,n - k - 1)] (3.36)
k=O

n n

= SP(A, k)SP(B,n - k) +b - SP(A, k)SP(B,n - k- 1) (3.37)
k=O k=O

= SP(A U B, n) (3.38)
-n-1

+b. - (SP(A, k)SP(B,n- k -1) +SP(A,n)SP(Bn- n- 1) (3.39)

= SP(A W B,n)+b -[SP(A W B,n - 1) + SP(A,n)SP(B, -1)] (3.40)

= SP(A W B,n) +b [SP(A W B,n- 1) +SP(A,n) -0] (3.41)

= SP(A L B, n) + b SP(A W B, n - 1) (3.42)

Eq. 3.36 results from applying the recurrence (Eq. 3.11). Eq. 3.37 distributes SP(A, k)

over the bracketed sum and separates the equation into two sums. Expression 3.38

uses the inductive hypothesis for SP(A Lj B, n). Expression 3.39 separates out the

special case k = n from the sum. Eq. 3.40 uses the inductive hypothesis for and

SP(A W B, n - 1) Eq. 3.41 uses the base case Eq. 3.14 for negative k.

Since Eq. 3.34 equals Eq. 3.42 we have proved the inductive case. Therefore,

Eq. 3.26 holds for any B (of finite size).

Assuming that all sequence lengths are positive, conclude that the value of Eq. 3.24

is always non-negative. Since the sum over k is unity, and no values are negative, we

conclude that PSum-prod is always bounded between 0 and 1.

3.5 Which approximation was used?

Of the approximations given in this chapter, the algorithm principally used the

choose-with-replacement binomial approximation. The sum-of-products approxima-

tion, despite the speedup from dynamic programming, was still to slow for use. Note

that the running time of sum-of-products approximation is O(N 2), where N = JALl,

39

because of the O(N 2) entries in the dynamic programming tableau. For the yeast

genome, N - 6700, so millions of arithmetic operations would have been needed for

each (of the hundreds of thousands) of words examined.

3.6 Sample computations

Consider a simple scenario with positive sequence with lengths PL = {Pi = 50, P2 =

51} and negative sequences with lengths NL = {n, = 2, n2 = 3}. The positive and

negative lengths are extremely different to highlight the differences in the different

approaches. To simplify notation, let W be the total length of all sequences, W =

Pi+P2 +ni+ n 2 =106.

The exact probability of selecting

given below:

exactly k positive sequences in n = 2 draws is

k = 0 a . n- + jl2 .wni = l3621 0.00109W W-nj W W-n2 567736

_l . P1+P2 + n . p1+p2

k = 1 W W-nj W W-n 2 = 27205 ~ 0.13193
kp. . n1 2 + p2. + 2 206206

W W-p1 W W-p 2

k-2 P2 + - -1 28305 ~ 0.86698k 2W W-p1 W W-p 2 32648

Sum = 1

The hyper-geometric probability (Equation 3.1) of choosing exactly k positive

sequences in n = 2 draws is given below. For this example, we have N = 4 and

K = 2. The percentage error with respect to the exact value calculated above is

given in the final column.

40

k =0 0 1 0.16667 15137%

k= I1 (1(= 0.66667 405%
2(4) 3

k~ = 0.16667 -81%
2(4) 6

Sum = 1

The binomial

P1+P2 - 101
W 106

approximation yields the following values and errors. We use r =

k Value %Error

k = 0 ()r0(1 - r =)2 ~ 0.00222 103%

k = 1 ()r(1 - r) = 0 ~ 0.08989 -32%

k = 2 ()r2(1 - r) = 10201 0.90789 4.7%

Sum = 1

The dynamic programming tableau for Sum-prod(AL, n) = Sum-prod({ 50, 51, 2, 3}, n)

is given below. Note that the rows for n = 3 and n = 4 are not needed for the com-

putation; they are given for completeness.

41

k Value %Error

Sum-prod(S,m) n

n =0

n=1

n= 2

n =3

n =4

The tableau was fi

{A, ...}I

S = {50,51,2,3}

1

106

50-56+261 = 3061

50 -261 + 306 = 13356

50 - 306 + 0 = 15300
lied from the upper right

{51,2,3}

1

56

51- 5 + 6 = 261

51 - 6 + 0 = 306

0
hand corner using

{2,3}

1

5

2-3+0= 6

0

0
the template

B

A-B+C C
The other tableaux for PL and NL individually are trivial and are not shown

here. The sum-of-products approximation yields the following values and errors.

k Value %Error

k = 0 Sum-prod(PL,O)-Sum-prod(NL,2) _ 6 d 0.00196 79%Sum-prod(PLWNL,2) 3061

k = 1 Sum-prod(PL,1)-Sum-prod(NL,1) _ 505 ~ 0.16498 25%Sum-prod(PLWNL,2) 3061

k = 2 Sum-prod(PL,2)-Sum-prod(NL,O) _ 2550 0.83306 -3.9%
Sum-prod(PLWNL,2) 3061

Sum =1

3.7 Comparing the approximations

Table 3.1 compares the relative errors of the three approximations for the simple

scenario above. It is believed that this small example is representative of the results

for larger sets. The sum-of-products approximation does the best, however, it is too

slow to use for large problems. The binomial approximation does better than the

42

0

1

0

0

0

0

{3}

1

3

0

0

0
below:

k I Hyper-geometric Binomial Sum-prod
k = 0 15137%
k = 1 405%
k = 2 -81%

Table 3.1: Relative errors for

- ++ +-

-60 -50 -40 -30 -20 -10 0
hypergeometric significance

103% 79%
-32% 25%
4.7% -3.9%

the small sample computation.

U

-10-

_ +

+ +

2 -40+

60

0 -60 -50 -40 -30 -20 -10 1
hypergeomnetric significance

Figure 3-2:
products.

Comparing the hyper-geometric significance with binomial and sum-of-

hyper-geometric, so the binomial will be used as the principal method of determining

statistical significance for most of the experiments.

For a few hundred highly significant (by the binomial approximation) motifs dis-

covered, the sum-of-products approximation and the hyper-geometric significance was

also calculated. Figures 3-2 and 3-3 plot their corresponding values. Admittedly, the

set of points might be biased because of the selection. However, the figures seem to

indicate that the binomial significance is a good substitution for the expensive-to-

calculate sum-of-products significance (with the binomial slightly understating signif-

icance) while the hyper-geometric significance tends to overstate significance.

43

-10

-20

-30

S-40

.- 50

-60

0

U

-10-

c -20-

~-30 4

++-40 +

-60

- 0 -60 -50 -40 -30 -20 -10 0
binomial significance

Figure 3-3: Comparing the sum-of-products significance with binomial significance.

44

Chapter 4

Results and Discussion

This chapter is organized into the following sections. §4.1 validates the algorithm by

attempting to replicate known motifs. §4.2 assesses the running-time performance

of the algorithm. §4.3 presents potential new motifs discovered by the algorithm.

Finally, §4.4 discusses ideas for future work.

4.1 Validation

This section measures and compares the algorithm's motif discovery performance.

For an absolute measure, the algorithm was run on binding data for transcription

factors whose motifs were previously discovered and confirmed biologically. For a

comparative measure, the same data were analyzed with the motif discovery programs

MEME[1] and MDscan [9]. The algorithm was also run on differently processed

binding data for each transcription factor to determine the effect of the type binding

data on motif discovery.

4.1.1 Program parameters

MDscan was run through the web interface with the following parameters:

e Motif width: 7

e Number of top sequences to look for candidate motifs: 10

45

* Number of candidate motifs for scanning the rest sequences: 20

" Report the top final 10 motifs found

" Precomputed genome background model: S. cerevisiae intergenic

MEME was run with the command-line parameters -dna -w 7 -nmotif s 10 -revcomp

-bfile $MEME/tests/yeast. nc.6. f req. The parameters direct MEME attempt to

discover 10 motifs of width 7 on either strand using the pre-computed order-6 Markov

background model of the yeast non-coding regions.

4.1.2 Binding data

Three different criteria for positive sequences were used. That is, three different

methods were used to determine which sequences are bound by a transcription factor.

The first two are a simple p-value threshold on the ChIP experiment[10] (not related

to the p-values calculated the statistical tests of Chapter 3). The last uses the GRAM

gene modules described in [2] which incorporates both binding data and clustered

expression level data.

1. Bound probes from Young Lab, cutoff p-value 0.001

2. Bound probes from Young Lab, cutoff p-value 0.0001

3. Gene modules under YPD [2] (see Appendix A).

4.1.3 Scoring method

To score the performance of both this thesis's algorithm, and MEME and MD-Scan,

the discovered motifs were compared against the consensus sequences for transcription

factors (Table 4.1) which were gathered from the literature.

To compare a discovered motif with the consensus, all possible alignments of the

motif (or its reverse complement) and the consensus are tried, and alignment yielding

the smallest distance is taken as the score of the discovered motif.

46

ABFl TCRNNNNNNACG
CBF1 RTCACRTG
GAL4 CGGNNNNNNNNNNNCCG
GCN4 TGACTCA
GCR1 CTTTCC
HAP2 CCAATNA
HAP3 CCAATNA
HAP4 CCAATNA
HSF1 GAANNTTTCNNGAA
IN02 ATGTGAAA
MATal TGATGTANNT
MCM1 CCNNNWWRGG
MIG1 WWWWSYGGGG
PHO4 CACGTG
RAP1 RMACCCANNCAYY
REBI CGGGTRR
STE12 TGAAACA
SWI4 CACGAAA
SWI6 CACGAAA
YAPI TTACTAA

Table 4.1: Consensus sequences

47

Consensus motif sequenceTranscription Factor

A (1,0,0,0)
[AG] (-1,0, , 0)
[GT] (0,0, 1 2, 7)

47 41 4 4/

Table 4.2: Some example 4-tuple probabilities

The distance between two elements, for example [AG] and [GT] is the squared

Euclidean distance of the probability distribution specified by the wildcard or base.

In other words, each base or wildcard represents a 4-tuple specifying the respective

probability of A, C, g, or T. The 4-tuples for a few example word elements are listed

in Table 4.2.

For example, the distance between [AG] and [GT] is

-0 + 0)2(+ - + 0 -

Note that no square root is taken in the distance. The distance between two

aligned words is the sum of the distances for each position. In order to allow align-

ments to hang off of the edge of each other (especially when the consensus is of a

different length than discovered motif), the consensus sequences is implicitly assumed

to be padded infinitely on either end by o. After computing the sum of the distances,

the value is floored from below at 0.833. This value was chosen "by eye" as a value

indicating a "nearly perfect" match.

We use the squared Euclidean distance instead of the more standard KL divergence

for the distance between two probability distributions. The KL divergence D(pllq)

becomes infinite if the approximating distribution q has zero probability for an event

that has positive probability under p. This unfortunate behavior occurs when the

consensus and the discovered motif disagree completely at a position, for example,

matching G against A.

Each motif discovery program outputs many candidate motifs. MEME and MD-

Scan were configured to produce 10, while this thesis's algorithm produced as many

were above a significance threshold of 10-4. Therefore, both the single best (high-

48

est significance) motif, and the best motif among the top 10 motifs reported by each

algorithm are scored. A discovered motif scored "correct" if its distance from the con-

sensus is less than 2.083. (This weird constant is 30, an artifact the implementation

multiplying probabilities by a factor of 12 so that arithmetic could be performed using

integers only.) This threshold was chosen "by eye" as a value for which discovered

motifs seemed close to consensus motifs.

It should be noted that choosing from only the top 10 (or top 1) ranked motifs

is a somewhat problematic way of comparing motif discovery algorithms, and might

appear to penalize this thesis's algorithm more than other algorithms. If the algo-

rithm is fooled by a significant false motif (perhaps the binding site of a different

transcription factor that always binds with the transcription factor in question) then

it might be fooled many times over by small variations of the word (for an example

of such variations, see Table 4.7), all of which may be more significant than the true

motif. The many variations of the false motif may push the ranking of the true motif

out of the top 10.

Nevertheless, we will charge along with the top-1 and top-10 comparison method,

but we also present Figure 4-1 for a different perspective. The figure examines the best

motif among all the significant (threshold 104) words discovered by the algorithm,

and then compares its significance with the significance of the most significant motif.

The figure illustrates that although the best motif may rank lower than tenth, its

significance often comparable to the most significant motif.

4.1.4 Validation results

Table 4.3 gives the correct motifs found by the algorithm and other motif-discovery

algorithms on different data sets. We can make the following observations:

o The best performance was this thesis's algorithm using binding data with thresh-

old p-value 0.001.

o Choosing a more rigorous threshold for the binding data, namely 0.0001, re-

sulted in poorer performance, most likely because of insufficient positive inter-

49

ICorrect O Highest score

CBF1_YPD 1

GAL4_Cu2 12

GAL4Galactose 10

GAL4_YPD 1183

GCN4-Rapamycin 18

GCN4_YPD 1

GCR1_YPD 17

HAP4-YPD 2

HSF1_YPD 5

INO2_YPD 20

MCM1_YPD 2

RAP1_YPD 3

REB1_YPD 4

STE12_14hrButanol 2

STE12_90minButanol 1

STE12_YPD I

SWI4_YPD 21

SWI6_YPD 210

YAP1_YPD 1

0 10 20 30 40 50 60
negative 10g1 signIfIcance

Figure 4-1: Significance of most-correct motif (black) versus significance of the top-
scoring motif (white). The number after each transcription factor is the rank of
the most-correct motif. The "most-correct" motif is the motif with the smallest
distance from the consensus sequence among all significant words discovered. Note
that distance is floored at 0.83; if two words have the same distance, the one with the
higher (smaller) rank is preferred.

50

EEL_

2
cc

CF0
R
I
8

LL

0

CL

genic sequences for a significant result.

" Using GRAM modules algorithm to define the set of positive intergenic se-

quences did slightly poorer than using the raw binding data. However, the

modules result did find two correct motifs, for HAP2 and HAP3, that the raw

binding data did not (at the cost of failing to find GAL4, MCM1, PHO4, and

SWI4.)

" The algorithm finds slightly more correct motifs than MEME or MDscan.

51

aig: thesis
data: p=0.001 14 CBF1 GAL4 GCN4 GCR1 HAP4 HSF1 IN02 MCM1 PHO4 RAP1 REBI STE12 SWI4 YAP1
choose: 10
aig: MDscan
data: p=0.001 12 CBF1 GCN4 HAP4 HSF1 IN02 MATal PHO4 RAP1 REB1 STE12 SWI4 YAPI
choose: 10
aig: MEME
data: p=0.001 10 CBF1 GAL4 GCN4 GCR1 HSF1 PHO4 RAP1 REB1 STE12 SWI4
choose: 10

aig: thesis
data: p=0.001 10 CBF1 GAL4 GCN4 HAP4 HSF1 PHO4 RAP1 REB1 STE12 YAP1
choose: 1
aig: MDscan
data: p=0.001 9 CBF1 GCN4 HSF1 PHO4 RAP1 REB1 STE12 SWI4 YAP1
choose: 1
aig: MEME
data: p=0.001 0
choose: 1

aig: thesis
data: GRAM 12 CBF1 GCN4 GCR1 HAP2 HAP3 HAP4 HSF1 IN02 RAP1 REB1 STE12 YAP1
choose: 10

a_ g: thesis
data: GRAM 9 CBF1 GCN4 HAP2 HAP3 HAP4 IN02 RAPI REB1 STE12
choose: 1

aig: thesis
data: p=0.0001 12 GAL4 GCN4 HAP2 HAP4 HSF1 MCM1 PHO4 RAP1 REB1 STE12 SWI4 YAP1
choose: 10
aig: MEME
data: p=0.0001 12 GCN4 HAP3 HAP4 HSF1 MATal MIG1 PHO4 RAP1 REBI STE12 SWI4 SWI6
choose: 10
aig: thesis
data: p=0.0001 9 GCN4 HAP2 HAP4 HSF1 MCM1 PHO4 REB1 STE12 YAP1
choose: 1

Table 4.3: Verified consensus motifs. The first column gives the algorithm, which positive sequences were used, and the number
of top ranked motifs which were tested for correctness. The second column is the number of correct motifs, followed by the
transcription factors whose correct motifs were found.

Cl

4.2 Algorithm Running Time

This section will present analysis running time of the algorithm over the many binding

data sets for many transcription factors. Because no effort was made to ensure a

random sampling of experiments, the results in this section are only intended to

be a rough indication of the performance of the algorithm. Furthermore, the times

reported are wall-clock times, so some of the measurements are skewed by other users

of the compute cluster where the calculations were performed.

Figure 4-2 gives a histogram of wall-clock running time for the various binding

data sets, on a 1.667 GHz Athlon system. Figure 4-3 plots the running time versus

the number of positive sequences. The running time flattens out after 50 bound

sequences because of saturation: all possible words are present.

On the average, 96.6% of the running time was spent on the exhaustive enumera-

tion of all words (§2.9). Figure 4-4 illustrates the running time of that routine versus

the number of words evaluated (words whose hashed value was marked in the bitvec-

tor created in §2.7). The running time is roughly linearly dependent of the number of

words. The interpolated line yields an estimate of 2.0 milliseconds per evaluated word.

The figure illustrates that, for non-saturated experiments, filtering by the bitvector

(and to a lesser extent, skipping words that find-occurrences-of-word reports are not

present in the positive sequences) is effective in reducing running time.

Of the time not spent on exhaustive enumeration, the next most time-consuming

task was creating the index INDEXA in §2.8 of all intergenic sequences. This typ-

ically took about 30 seconds. This operation is always exactly the same for all

experiments-the only reason the time varied was because of user load. Some time

could have been saved by pre-computing INDEXA. However, it was decided that 30

seconds was not too long to wait.

The initial hashing (§2.5) also took significant running time. Its running time

with respect to the number of positive sequences is shown in Figure 4-5. Note that

the tableSize was 10,000,000 for the experiments.

53

0 5 10 15 20
minutes

25 30 35 40

Figure 4-2: Histogram of running times of the algorithm, in minutes.

40

35 [
30

E

25

20

15

10

5

0
0 50 100

bound sequences
150 200

Figure 4-3: The running time, in minutes, versus the number of positive sequences.
The asymptotic effect (most visible in the lower envelope) is due to saturation; nearly
all words of width seven with up to two wildcard elements were evaluated.

54

160F '

140F

C

a,
E

CLx

120-

100-

80-

60-

40-

20-

.**

.3-. ..

* . *::-~..* ~.

-.4.
* 2.

a-

-

e a1 2 3 4
evaluated words

5 6 7
x 105

Figure 4-4: A graph of the running time of the exhaustive enumeration stage versus
the number of words present in the positive sequences. The interpolated line yields
an estimate of 2.0 milliseconds per evaluated word.

35

'I)
V
C
0
C)a)
Cl,

30-

25-

20-

15

10

5

U
0 50 100

positive sequences
150 200

Figure 4-5: The running time of the initial hashing
number of positive sequences.

routine, in seconds, versus the

55

30F

Ca)a)

25

20

15

10

5

- -- -7

I - -- -i

/Lfl.

-l

4.2.1 Performance scaling experiments

A motif width of 7 with up to 2 wildcard elements was chosen because of running

time constraints. Any wider or more wildcard elements would have taken too much

time to run on the approximately 340 data sets for different transcription factors,

conditions, and binding thresholds.

However, to measure the how the algorithm scales with problem size, the algorithm

was run with different motif widths and number of holes. The experiments were run

on a representative (somewhat large) example data set, STE12 under YPD conditions

with the binding data threshold at 0.001, which has 74 positive sequences. Figure 4-6

shows the run times on the 1.667GHz AMD Athlon system. For all the experiments,

the tableSize was 1.7 - 10', approximately the largest that could fit in main memory.

The larger tableSize allows us to estimate the time spent on the on the loop

around the call to the advance() method in the initial hashing routine (§2.5 on page

21), which becomes quite expensive for large value of tableSize. For words of width 7

and up to two wildcard elements, the running time of just the initial hashing routine

at tableSize 10,000,000 took 14 seconds, while the running time at tableSize 1.7 .109

took 550 seconds. From these data we can estimate that a single call to advance(

took approximately 4 - 10-9 seconds, and accounted for 540 of the 550 seconds (98%)

of the computation time of the initial hashing routine at tableSize 1.7 - 10 9.

Figure 4-7 shows how many buckets were hit during the initial hashing routine.

Conventional wisdom directs that a hash table should not allowed to become more

than 0.1 full, which was violated in some of the higher points of the figure. The

figure has one more data point for (11, 1) than Figure 4-6 because the initial hashing

routine completed for that point, but we ran out of patience to allow the exhaustive

enumeration of all words to complete.

It should be disclosed that Figure 4-6 were done on an early version of the code

which in fact gave incorrect results. Nevertheless, it is believed that the running

times and the BUCKETS table fullness results reported are approximately correct.

With many of the data points taking over 10 hours, it was undesirable to repeat the

56

...............
..I

..............I

.....

.. I

..........
...

..
... - .. - - : * , ** ** , - ... *1

II
...................

...............

.

: : : : : : : " : : : :

..
I

.........
..........

.

q

.
................ ...* , * , , : : : : : : :...............
.. . . I . II
........... x 2 w ild c a rd s....................... ...

3 wildcards
--B- 4 wildcards

8 9 10 11 12
motif width

11 12

10 0

10-1

10 -2

:E
CD
a)

0
C
0
V
0
D-

2a-
10-3

10-4

10 3

10
2

0 10
-C

10
0

10-1

..................
.2 w ildcards

........... ...3 wildcards :"'" :,
....................-E - 4 wildcards

...............:*
.................

...........: : : : : : : : :
........................I

...
..:...

................." , : :: : : ' ' - - * *I ...I
.........................

8 9 10
motif width

Figure 4-6: Running time in hours for motif discovery on the STE12-YPD data set
for wider motifs and more allowed wildcards.

Figure 4-7: Illustration of how full (as a percentage of the 1.7 - 109 entries) the
BUCKETS table became for various motif sizes.

57

experiment.

4.3 New motifs

Tables 4.4 and 4.5 give the top-scoring motifs for some transcription factors not listed

in Table 4.1. These are candidates for further investigation. The score used to decide

"top-scoring" was the sum-of-products p-value of §3.4. The positive sequences used

for the table were the bound sequences at p-value 0.001.

Because computing the sum-of-products p-value is so computationally expensive,

the motifs were first discovered with the binomial p-value. For each experiment, the

top 10 motifs with binomial significance greater than 10-9.5 were re-evaluated with

the sum-of-products p-value. The computation of a single sum-of-products p-value

took about 15 seconds.

From discussion with a colleague, we note that the motifs for CIN5, GAT3, GLN3,

IME4, YAP5, and YAP6 are probably not correct, while those for BASI, FKH1,

FKH2, IN04, and SUMI are consistent with what is known about the transcription

factors[7].

4.3.1 Results on shuffled data

To judge the background level of motifs, the algorithm was also run on random sets

of intergenic sequences. Ideally, these runs should produce no significant motifs.

Twenty-five random trials were run for each of 20, 40, 80, 120, and 160 randomly

chosen sequences (for a total of 125 trials). Five of the 125 experiments discovered a

total of 11 motifs with binomial significances greater than 10-4, with most significant

motif having significance 10--7 . These falsely significant were more likely to be found

when there were fewer positive sequences, as 8 of the 11 motifs were found in data

sets with 20 positive sequences.

58

TF + Condition Motif Sum-prod Binomial Hypergeometric
T GA CF C

BASI YPD -11.24 -10.99 -14.71
T ADGA A

CIN5 YPD TAcGcAA -11.36 -10.86 -19.67

DI~il~hrButaol CA T TC0DIG1 14hr Butano 1-13.65 -13.16 -22.30

GCAT ACA
FHL1 Rapamycin 9900A9A -28.84 -27.28 -39.88

CCAGT ACA
FHLI YPD -37.41 -35.12 -50.61

FKH1 YPD GTAAACA -11.06 -10.85 -14.72

G T A ACA
FKH2 YPD -12.54 -12.16 -18.49

CcGA CGC
GAT3 YPD CDGACGC -16.49 -15.90 -21.14

C.GCGGA
GLN3 Rapamycin 9-0900A -11.73 -11.46 -16.65

CA CACA C
IME4 YPD UAAA -12.42 -12.16 -15.22

CAT G TGA
IN04 YPD -12.28 -12.14 -14.36

Table 4.4: Top scoring motifs discovered for transcription factors not on Table 4.1
with sum-of-products significance greater than 10-10. The significance values are
logo of the p-value.

59

TF + Condition Motif Sum-prod Binomial Hypergeometric
CA CAA C

MACi Cu2 -11.20 -11.00 -14.75

MBP1 YPD GACGCGT -21.14 -20.14 -25.40

A T TCGGC
MET4 Rapamycin -OO 10.45 -10.25 -13.13

MET4 YPD CCGTGA -10.90 -10.78 -13.08

CTGC TG
NRG1 YPD CT GCTTG -12.04 -11.65 -19.00

CC. GCA-
PHD1 14hr Butanol -17.90 -17.00 -33.46

99-G01.

PHD1 90min Butanol CGTGCC -13.94 -13.33 -20.92
AG0A99.

PHD1 YPD ATGCAC -11.27 -10.86 -20.01
0093.GCCCAT19.

RGM1 YPD OHIO -13.11 -12.91 -15.94

SOK2 14hr Butanol CGGGCTT -13.93 -13.28 -19.06

CGCGA AA
STB1 YPD -11.00 -10.91 -12.36

G CAC A
SUMI YPD -11.60 -11.38 -17.18

YAP5 YPD ACGCGCc -12.49 -11.94 -16.98

A GCAcA

YAP6 YPD -11.92 -11.44 -18.78

Table 4.5: Top scoring motifs (continued from Table 4.4) discovered for transcription
factors not on Table 4.1 with sum-of-products significance greater than 10-10. The
significance values are loglo of the p-value.

60

4.4 Future work

We conclude this chapter with ideas for future work.

4.4.1 Improving the running time

The algorithm can be made faster. Because so much of the run time is in the

find-occurrences-of -word routine (§2.8.1), we will concentrate our attention on and

around that routine.

First, we can lower the number of times the routine is called by causing fewer

bits to be marked in TARGETS-SET. One simple way to do this is to use a threshold

higher than 2 for the number of times a bucket must be hit in order to be included

in TARGETS-SET. Figure 4-8 and Table 4.6 give the values of the most significant

word for given number of occurrences in a set of positive sequences. For example, if

we know a word occurs 40 times in the positive sequences, the greatest significance

it could have is -29.6. Because we typically demand a significance of at least 10',

a threshold of 8 or 9 instead of 2 would have caused fewer bits to be marked in

TARGETS-SET. Unfortunately Figure 4-8 can only be calculated after having set the

threshold too low. However, it may be possible to reuse the values for future studies

on the yeast genome.

Second, we can also be more intelligent about when a word "hits" during initial

hashing (§2.5). For example, not only must it be present in P, but we may require

that the word also be significant with respect to a Markov background model of

intergenic sequences.

Finally, we can try to improve the running time of find- occurrences- of-word itself.

This thesis's implementation exhaustively enumerated all instantiations of a word. A

different data structure (such as a trie or suffix-tree[5, 12]) for storing the length-w

subsequences may be able to compute find-occurrences-of-word faster.

61

U

-10

-20

-30

-40

-50

-601
0 10 20 30 40 50 60 70 80

occurrences of word

Figure 4-8: The lower envelope of the most significant word for given number of
occurrences in a positive set. The values of the x points are given in Table 4.6.

Occurrences Most significant word
3 -4.77
4 -5.94
5 -6.88
6 -7.14
7 -7.75
8 -8.73
9 -9.62
10 -10.83
11 -12.01
12 -12.15
13 -12.92
14 -14.68
17 -15.91
18 -21.17
24 -25.27
26 -25.93
36 -29.64
47 -33.68
54 -41.86
68 -48.30
75 -55.27

Table 4.6: The lower envelope points of Figure 4-8.

62

I I

I I I I I I I

- -- - -

-........... ---

-. ...- -.

............. -... -....

4.4.2 Further processing discovered motifs

The significant motifs discovered by this algorithm can be used as input to further

refinement and post-processing.

One can use the discovered motif as the seed (starting point) for expectation

maximization (as done by [3], [1], [8]). Expectation maximization returns a position-

specific scoring matrix (PSSM), a finer grained representation (than a word) of the

probabilities of nucleotides at each position of a motif. Expectation maximization

can also widen a motif, if motif discovered by word-counting is initially padded on

either side by the PSSM equivalent of the gap element.

The other type of post-processing eliminates the many near-identical discovered

motifs. The word-counting algorithm frequently reports many similar motifs which

are all similar through wildcard substitution or alignment. For example, the top 20

most significant motifs found for FHLLYPD (using binding data with significance

p=0.001) are shown in Table 4.7. Sinha[4], and Barash[3] discuss techniques of re-

ducing the number of similar motifs.

4.4.3 Improvements to the statistical test

The statistical test developed in Chapter 3 can make use of more information for a

better measure of significance.

In §3.2 we defined the null hypothesis behavior "random selection" to be selection

with probability proportional to length. A straightforward modification could instead

use the number of different subsequences of a sequences as its probability (appropri-

ately normalized). As an extreme example, consider a very long sequence consisting

of a repeat of a single nucleotide. While long, it offers few possibilities of where a

transcription factor might bind. Such a long repetitive sequence ought to be selected

with low probability.

Continuing in this manner, other biological prior knowledge can be incorporated

into the prior probability that a sequence is selected. Such knowledge might (hypo-

thetically) involve the location of the sequence on the chromosome, knowledge about

63

C C [AG] T A C A
[CT] C C [AG] T A C

C C [AG] [GT] A C A
C C [AG] T [AG] C A
C C [AG] T A C [AC]
C C G T A C A
C C [AG] T A C [AG]
C C [AG] [CT] A C A
C C [AG] [AT] A C A
C C G T [AG] C A
C C [AG] T A [CG] A
C [CG] [AG] T A C A
C C [AG] T [AC] C A
C C [AG] * A C A
C C 0 T A C A

C A [CT] C C [AG] T
C C G T A C [AG]
C [CG] G T A C A
C C [AG] T A C [AT]
C C G T [AC] C A

Table 4.7: Top twenty significant motifs found for FHL1_YPD

the gene which the sequence precedes, or other genetic markers.

Biologically, we must question the assumption of independence (modulo choosing

without replacement) between the n = JP random selections from A. For example,

it would be reasonable to hypothesize that if two sequences are very similar, they

would likely both be selected, or neither.

Not only can we incorporate biologically relevant information into the prior prob-

ability of the binding, but we can also try to incorporate more information about the

binding event itself. Currently, the algorithm only makes use of the binary presence

("yes" or "no") of words in sequences. It could, for example, incorporate the following

features:

* Number of occurrences of the word in the sequence

" Position of the occurrence(s) with respect to the start of transcription or other

genetic markers in the sequence

64

e Strand of the occurrence of the word

* p-value of the binding event.

Because we use the identity of sequences, rather than just counts, we could try

to calculate the probability of a specific set BM of bound-and-matching sequences.

However, it becomes less clear how to define the p-value, although a plausible defini-

tion might sum over all sets of size n containing BM as a subset.

4.4.4 Toward larger challenges

As noted in §2.4, the 7-mer (with two wildcard) motif discovery problem on yeast was

too small for the hybrid algorithm presented to be signficantly more effective than

other naive approaches. Fortunately, however, larger challenges await.

For yeast, we can attempt to discover wider motifs, gapped and other poly-syllabic

motif structures, and composite motifs of caused by the binding of multiple tran-

scription factors. The composite motif search might be done by introducing an ad-

ditional wildcard element which which can take the place of one or more consecutive

nucleotides in sequence (somewhat like the behavior of rubber lengths in the text-

formatting program ITEX).

Beyond yeast, of course, are the many organisms whose genomes have been re-

cently sequenced, including human. It will be only a matter of time before ChIP

experiments are performed on those organisms. We expect that to do worthwhile

motif discovery on larger and more complicated genomes, careful attention will have

to be paid to the statistical issues and improvements mentioned above.

65

66

Appendix A

Gene Modules under YPD

This appendix documents the intergenic sequences used for motif discovery of gene

modules from the GRAM algorithm[2]. Transcription factors are given in bold, genes

are given italics, and a gene's upstream intergenic sequence is given in sans serif in

parentheses following each gene. An intergenic sequence may occur more than once

for a transcription factor (in the case of head-to-head genes). For such cases, only

one copy of the sequence is given as input to motif discovery.

The list of genes for each transcription factor was provided by Ziv Bar-Joseph.

The mapping from a gene to upstream intergenic sequence was originally created by

Josh Barnett in the file gene-probe-mapping. txt. The intergenic sequences used in

the ChIP experiment[10] were provided by D. Benjamin Gordon.

The mapping from gene to upstream intergenic sequence is somewhat messy, prob-

ably due to disagreements of what genes are real. Some genes may have more than

one upstream intergenic sequence, because the ChIP experiment occasionally cut a

long intergenic sequence into several pieces.

ABF1: YBLO39C (iYBL039C); YDL051W (iYDLO52C); YDL081C (iYDLO81C); YDR172W (iYDR171W); YDR280W (iYDR279W); YDR361C

(iYDR361C); YDR365C (iYDR365C); YDR398W (iYDR397C); YER165W (iYER164W); YGL169W (itK(CUU)G2); YGR128C (iYGR128C); YGR187C

(iYGR187C); YHR020W (iYHRO19C); YHRO64C (iYHRO64C); YJL069C (iYJL069C); YJR063W (iYJR062C); YKLO14C (iYKLO14C); YKLO78W

(iYKL079W); YKL099C (iYKL099C); YKL143W (iYKL144C); YKL144C (iYKL144C); YKL172W (iYKL173W); YKL191W (iYKL192C); YKR056W

(iYKRO55W); YKR057W (iYKR056W); YKRO59W (iYKR058W); YKR081C (iYKRO81C); YLLO11 W (iYLL012W); YLL034C (iYLLO34C); YLL044 W

(iYLLO46C); YLRO03C (iYLR03C); YLR029C (iYLR029C); YLR180W (iYLR179C); YLR222C (iYLR222C); YLR264W (iYLR263W); YLR401C

(iYLR401C); YMR079W (iYMR078C); YMR093W (iYMR092C); YMR217W (iYMR216C); YMR260C (iYMR260C); YNL113W (iYNL115C); YNL119W

(iYNL121C); YNL186W (iYNL187W); YNL209W (iYNL21OW); YNL255C (iYNL255C); YNL313C (iYNL313C); YNRO38W (iYNR037C); YNRO46W

(iYNR045W); YNR053C (iYNR053C); YOL077C (iYOL077C); YOR056C (iYOR056C); YOR078W (iYOR077W); YOR145C (iYOR146W); YOR167C

67

(iYOR167C); YOR168W (iYOR167C); YOR206W (iYOR205C); YOR224C (iYOR224C); YOR310C (iYOR310C); YPLO12W (iYPLO13C); YPL146C

(iYPL146C); YPL160W (iYPL161C); YPR137W (iYPR135W); YPR187W (iYPR186C); YPR190C (iYPR190C); YGR183C (iYGR183C); YHR051W

(iYHRO50W); YKLO16C (iYKLO16C); YLR295C (iYLR295C); YPR191W (iYPR190C); YBR029C (iYBR029C); YBRO30W (iYBR029C); YDR312W

(iYDR311W); YDR385W (iYDR384C); YJR105W (iYJR104C); YKL182W (iYKL183W)

ACE2: YER126C (iYER126C); YER127W (iYER126C); YGR283C (iYGR283C); YHLO13C (iYHLO13C); YJR145C (iYJR145C); YFL022C

(iYFLO22C); YGLO08C (iYGLO08C); YHR193C (iYHR193C); YJL080C (iYJL080C); YKRO42W (iYKR041W); YNRO18W (iYNRO17W); YOR315W

(iYOR314W); YER079W (iYER078C); YFRO17C (iYFRO17C); YGL227W (iYGL228W); YHR194W (iYHR193C); YML100W (iYML101C); YBR158W

(iYBR157C-1, iYBR157C-0); YGL028C (iYGLO28C); YJL078C (iYJL078C); YLR286C (iYLR286C); YNL327W (iYNL328C); YMR262W (iYMR261C);

YNL241C (iYNL241C); YOR138C (iYOR138C); YJR044C (iYJR044C); YKL150W (iYKL151C); YKL151C (iYKL151C)

ARG80: YER069W (iYER068W); YJL088W (iYJL089W); YOL058W (iYOL059W); YOR302W (iYOR301W); YOR303W (iYOR301W)

ARG81: YER069W (iYER068W); YJL088W (iYJL089W); YOL058W (iYOL059W); YOR302W (iYOR301W); YOR303W (iYOR301W)

ARO80: YDL091C (iYDL091C); YGR053C (iYGR053C); YHR138C (iYHR138C); YHR139C (iYHR139C); YHR140W (iYHR139C-A);

YNL117W (iYNL118C); YNL125C (iYNL125C); YOR005C (iYOR005C)

AZF1: YDL037C (iYDL037C-1, iYDL037C-0); YDR144C (iYDR144C); YER007C-A (iYER007C-A); YJL148W (iSNR190); YKRO24C

(iYKR024C); YKR025W (iYKR024C); YLRI75W (iYLR174W); YLR367W (iYLR366W); YLR413W (iYLR412W-1, iYLR412W-0); YNR053C (iYNR053C);

YOL121C (iYOL121C); YOR21OW (iYOR209C)

BAS1: YCLO30C (iYCL030C); YGL234W (iYGL235W); YGR061C (iYGRO61C); YKRO80W (iYKR079C); YLR058C (iYLR058C); YLR359W

(iYLR358C); YMR1200 (iYMR120C); YMR300C (iYMR300C); YNL220W (iYNL221C); YOR128C (iYOR128C)

CADI: YKL103C (iYKL103C); YLL0600 (iYLL060C); YML116W (iYML117W-A); YNL134C (iYNL134C); YOL119C (iYOL119C)

CBF1: YHRO89C (iYHR089C); YIL127C (iYIL127C); YKL191W (iYKL192C); YLL008W (iYLL009C); YNL282W (iYNL283C); YPL093W

(iYPL094C); YFR030W (iYFR029W); YGR204W (iYGR203W); YIL074C (iYIL074C); YJR01OW (iYJR009C-1, iYJR009C-0); YLR092W (iYLR091W);

YNL277W (iYNL278W)

CIN5: YJR145C (iYJR145C); YLRO75W (iYLR074C); YLR413W (iYLR412W-1, iYLR412W-0); YNL087W (iYNLO88W); YNL178W (iYNL179C-

1, iYNL179C-0); YOR315W (iYOR314W)

CUP9: YDR064W (iYDR063W); YEL04OW (iYELO41W); YFRO05C (iYFRO05C); YGL077C (iYGL077C); YGR027C (iYGR027C, YGR-

Cdeltal2); YJL148W (iSNR190); YJL191W (iYJL192C); YJL192C (iYJL192C); YKL156W (iYKL158W, iYKL157W); YKR092C (iYKR092C-0,

iYKR092C-1); YLR367W (iYLR366W); YMR014W (iYMRO13C-1); YOR315W (iYOR314W); YPL198W (iYPL199C)

DAL81: YBR069C (iYBR069C); YDR046C (iYDR046C); YDR508C (iYDR509W); YEL046C (iYELO45C); YGR055W (iYGRO54W); YOL02OW

(iYOL021C)

DIGI: YAR009C (iYAR009C); YCLO19W (iYCL022C); YCL020W (iYCLO22C); YER138C (iYERCdelta20); YER160C (iYERCdelta24);

YCL027W (iYCL028W); YCL055W (iYCLO56C); YCRO89W (iYCRO88W); YIL037C (iYIL037C); YIL082W (iYL083C, YILWTy3-1A); YKL189W

(itL(UAA)K); YMR198W (iYMR197C); YNL279W (iYNL280C); YOR343C (iYORWdelta22, iYOR343C)

FHL1: YDR385W (iYDR384C); YGR027C (iYGR027C, YGRCdeltal2); YGR085C (iYGRO85C); YHL033C (iYHLO33C); YJR123W (iYJR122W);

YKR057W (iYKR056W); YLR029C (iYLR029C); YLRO75W (iYLR074C); YLR1 5OW (iYLR149C); YLR264 W (iYLR263W); YLR367W (iYLR366W);

YOR369C (iYOR369C); YBLO72C (iYBL072C); YBLO92W (iYBL093C); YBR1J8W (iYBR117C); YBR189W (iYBR188C); YDL061C (iYDLO61C);

YDL136W (iYDL137W); YDL184C (iYDL184C); YDR447C (iYDR447C); YER102W (iYER101C); YER131W (iYER130C); YGL123W (iYGL124C);

YGL147C (iYGL147C); YGR214 W (iYGR213C); YHLOO1W (iYHLO02W); YJR145C (iYJR145C); YKRO94C (iYKRO94C); YLL045C (iYLLO44W);

YLR325C (iYLR325C); YLR333C (iYLR333C); YLR34OW (iYLR338W); YLR344W (itR(CCG)L); YLR388W (iYLR387C); YMR116C (iYMR116C);

YMR229C (iYMR229C); YNL067W (iYNL068C); YNL178W (iYNL179C-1, iYNL179C-0); YNL302C (iYNL302C); YOR182C (iYOR182C); YPLO79W

(iYPLO80C); YPRO43W (iYPRO42C); YDR500C (iYDR500C); YML063W (iYML064C); YML064C (iYML064C); YOR095C (iYOR095C); YOR096W

(iYOR095C); YOR312C (iYOR312C); YBRO84C-A (iYBRO84C-A); YBR181C (iYBR181C); YBR191W (iYBR189W); YDLO75W (iYDL076C);

YDL082W (iYDLO83C); YDL083C (iYDL083C); YDL191 W (iYDL192W); YDR025W (iYDR023W); YDR418W (iYDR416W); YDR449C (iYDR449C);

YDR450W (iYDR449C); YDR471 W (iYDR470C); YEL054C (iYEL054C); YER074W (iYER073W); YER117W (iYER116C); YFR031C-A (iYFR031C-

A); YGL030W (iYGLO31C); YGL031C (iYGL031C); YGL189C (iYGL189C); YGRO34W (iYGR033C); YGR148C (iYGR148C); YHR021C (iYHR021C);

YHR141C (iYHR141C); YHR203C (iYHR203C); YIL018W (iYIL019W); YIL133C (iYIL133C); YIL148W (iYIL149C); YJL136C (iYJL136C);

YJL177W (iYJL178C); YJL189W (iYJL190C); YJL190C (iYJL190C); YKL006W (iYKLO06C-A); YKL180W (iYKL181W); YLR048W (iYLR047C);

YLR441C (iYLR441C); YLR448W (iYLR447C); YML026C (iYMLO26C); YML073C (iYML073C); YMR242C (iYMR242C); YNL069C (iYNLO69C);

YNL096C (iYNLO96C); YOL039W (iYOLO40C); YOL040C (iYOLO40C); YOL127W (iYOL128C); YOR234C (iYOR234C); YOR293W (iYOR292C);

YPL090C (iYPLO90C); YPL131W (iYPL132W); YPR102C (iYPR102C); YPR132W (iYPR131C); YDR064 W (iYDR063W); YJL191W (iYJL192C);

YJL192C (iYJL192C); YKL156W (iYKL158W, iYKL157W); YLR167W (iYLR166C); YOL121C (iYOL121C); YBL087C (iYBLO87C); YER056C-

A (iYER056C-A); YGL103W (iYGL104C); YLR061W (iYLRO60W); YPL143W (iYPL144W); YPR080W (iYPR079W); YGL135W (iYGL136C);

YGR118W (iYGR117C); YLR185W (iYLR184W); YNL162W (iYNL163C); YOL120C (iYOL120C); YPR131C (iYPR131C)

FKH1: YBL064C (iYBL064C); YBR139W (iYBR138C); YKL157W (iYKL159C); YLL006W (iYLL007C); YML100W (iYML101C); YMR261C

(iYMR261C); YMR262W (iYMR261C); YBL081W (iYBL082C); YDR324C (iYDR324C); YDR500C (iYDR500C); YFL022C (iYFL022C); YIL158W

(iYIL159W); YKR059W (iYKRO58W); YMR215W (iYMR214W); YPR119W (iYPRWsigma2-1, iYPRWsigma2-0)

FKH2: YBL081 W (iYBLO82C); YDR324C (iYDR324C); YDR500C (iYDR500C); YFL022C (iYFLO22C); YIL158W (YL159W); YKR059W

(iYKR058W); YMR215W (iYMR214W); YPR119W (iYPRWsigma2-1, iYPRWsigma2-0); YBR078W (iYBR077C); YLR300W (iYLR299W); YOR247W

(iYOR246C); YOR248W (iYOR246C); YBR139W (iYBR138C); YDR148C (iYDR148C); YER079W (iYER078C); YFR017C (iYFRO17C); YPR149W

(iYPR148C-1, iYPR148C-0); YDR261C (iYDR261C-0, iYDR261C-1); YIL123W (iYIL124W); YLR084C (iYLRO84C); YOR315W (iYOR314W); YML063W

(iYML064C); YML064C (iYML064C); YOR095C (iYOR095C); YOR096W (iYOR095C); YOR312C (iYOR312C); YDR146C (iYDR146C); YGL021 W

(iYGLO22W); YJL051W (iYJL052W); YJR092W (iYJR091C); YLR190W (iYLR189C); YGL0O8C (iYGLO08C); YJL158C (iYJL158C)

68

FZF1: YBR143C (iYBR143C); YBR154C (iYBR154C); YBR155W (iYBR154C); YBR189W (iYBR188C); YDL192W (iYDL193W); YDR012W

(iYDR011W); YDR064W (iYDR063W); YDR245W (iYDR244W); YER049W (iYER048W-A); YHR089C (iYHR089C); YJL148W (iSNR190); YKL172W

(iYKL173W); YLR083C (iYLR083C); YLR367W (iYLR366W); YMR131C (iYMR131C); YOR004 W (iYOR003W); YPL217C (iYPL217C); YPL235W

(iYPL236C)

GAL4: YBL027W (iYBLO28C); YBL028C (iYBLO28C); YJR123W (iYJR122W); YLR117C (iYLR117C); YML022W (iYMLO23C); YBL087C

(iYBL087C); YBR048W (iYBR047W); YBR252W (iYBR251W); YDL143W (iYDL144C); YHR193C (iYHR193C); YIL018W (iYIL019W); YIL133C

(iYIL133C); YJL191W (iYJL192C); YJL192C (iYJL192C); YLR061W (iYLR060W); YOR369C (iYOR369C); YPR132W (iYPR131C); YBRO84C-

A (iYBRO84C-A); YBR181C (iYBR181C); YDLO75W (iYDL076C); YDL082W (iYDLO83C); YDLO83C (iYDL083C); YDR418W (iYDR416W);

YDR471W (iYDR470C); YEL054C (iYEL054C); YER056C-A (iYER056C-A); YER074W (iYER073W); YHR141C (iYHR141C); YIL148W (iYIL149C);

YML026C (iYMLO26C); YOL039W (iYOL040C); YOL040C (iYOLO40C); YOL120C (iYOL120C); YOR312C (iYOR312C); YPR080W (iYPR079W);

YPR131C (iYPR131C); YBRO18C (iYBRO18C); YBRO19C (iYBRO19C); YBR020W (iYBRO19C); YDR009W (iYDR008C); YLRO81W (iYLRO8OW)

GAT3: YBR084C-A (iYBRO84C-A); YBR181C (iYBR181C); YBR191W (iYBR189W); YDLO75W (iYDL076C); YDL082W (iYDL083C);

YDL083C (iYDL083C); YDL191W (iYDL192W); YDR025W (iYDR023W); YDR418W (iYDR416W); YDR449C (iYDR449C); YDR450W (iYDR449C);

YDR471W (iYDR470C); YEL054C (iYEL054C); YER074W (iYER073W); YER117W (iYER116C); YFR031C-A (iYFR031C-A); YGLO30W (iYGLO31C);

YGL031C (iYGLO31C); YGL189C (iYGL189C); YGRO34 W (iYGR033C); YGR148C (iYGR148C); YHR021C (iYHR021C); YHR141C (iYHR141C);

YHR203C (iYHR203C); YIL018W (iYIL019W); YIL133C (iYIL133C); YIL148W (iY1L149C); YJL136C (iYJL136C); YJL177W (iYJL178C); YJL189W

(iYJL190C); YJL190C (iYJL190C); YKLO06W (iYKL06C-A); YKL180W (iYKL181W); YLRO48W (iYLR047C); YLR441C (iYLR441C); YLR448W

(iYLR447C); YML026C (iYMLO26C); YML063W (iYML064C); YML073C (iYML073C); YMR242C (iYMR242C); YNL069C (iYNL069C); YNL096C

(iYNLO96C); YOL039W (iYOLO40C); YOL040C (iYOLO40C); YOL127W (iYOL128C); YOR234C (iYOR234C); YOR293W (iYOR292C); YORS12C

(iYOR312C); YPLO90C (iYPLO90C); YPL131W (iYPL132W); YPRI02C (iYPR102C); YPR132W (iYPR131C); YHR091C (iYHR091C); YEL076C

(iYEL075C); YHR204 W (iYHR203C)

GCN4: YBLO76C (iYBL076C); YBR249C (iYBR249C); YDR341C (iYDR341C); YER052C (iYER052C); YER055C (iYER055C); YER090W

(iYER089C); YHRO19C (iYHRO19C); YHR020W (iYHRO19C); YJL200C (iYJL200C); YLR355C (iYLR355C); YMR260C (iYMR260C); YOR108W

(iYOR107W); YPR110C (iYPR110C); YPR145W (iSNR45); YER069W (iYER068W); YJL088W (iYJL089W); YOL058W (iYOL059W); YOR302W

(iYOR301W); YOR303W (iYOR301W)

GCR1: YAL038W (iYALO39C-1, iYAL039C-0); YBR196C (iYBR196C); YDR050C (iYDR050C); YER177W (iYER176W); YGR192C (iYGR192C);

YKL152C (iYKL152C); YLRO44C (iYLR044C)

GCR2: YDL192W (iYDL193W); YDR245W (iYDR244W); YER007C-A (iYER007C-A); YJL148W (iSNR190); YLR196W (iYLR195C);

YLR264W (iYLR263W); YMR259C (iYMR259C); YOL121C (iYOL121C); YOR021C (iYOR021C)

GRF1O: YDL124 W (iYDL125C); YDL215C (iYDL215C); YDR223W (iYDR222W); YGR205W (iYGR204W); YIL077C (iYIL077C); YIL166C

(iYIL166C); YJL161 W (itE(UUC)J); YLR152C (iYLR152C); YMR170C (iYMR170C); YPR149W (iYPR148C-1, iYPR148C-0)

HAP2: YBR025C (iYBRO25C); YDL063C (iYDL062W); YGR234 W (iYGR233C-0, iYGR233C-1); YIL096C (iYIL096C); YJL148W (iSNR190);

YJL191 W (iYJL192C); YJL192C (iYJL192C); YPL207W (iYPL208W); YBRO39W (iYBRO38W); YDR377W (iYDR376W); YDR529C (iYDR529C);

YEL024 W (iYELO25C); YGL187C (iYGL187C); YGR183C (iYGR183C); YHR001W-A (iYHRO01W); YHR051W (iYHR050W); YJR077C (iYJR077C);

YML120C (iYML120C); YLL027W (iYLLO28W); YLR220W (iYLR219W)

HAP: YBR039W (iYBR038W); YDR377W (iYDR376W); YGL187C (iYGL187C); YHROOJW-A (iYHRO01W); YHR051W (iYHR050W);

YJR077C (iYJR077C); YML120C (iYML120C); YLL027W (iYLLO28W); YLR220W (iYLR219W)

HAP4: YBL030C (iYBLO30C-0); YBLO45C (iYBLO45C); YBL099W (itF(GAA)B); YDLO04W (iYDLOO5C); YDL181W (iYDL182W);

YDR148C (iYDR148C); YDR298C (iYDR298C); YFR033C (iYFR033C); YGL191W (iYGL192W); YKL148C (iYKL148C); YLR038C (iYLRO38C);

YLR395C (iYLR395C); YMR256C (iYMR256C); YNL052W (iYNLO53W); YOR065W (iYOR064C); YGR183C (iYGR183C); YHR051 W (iYHRO50W);

YKLO16C (iYKLO16C); YLR295C (iYLR295C); YPR191W (iYPR190C); YBR039W (iYBR038W); YDR377W (iYDR376W); YDR529C (iYDR529C);

YEL024W (iYELO25C); YGL187C (iYGL187C); YHR001W-A (iYHRO01W); YJR077C (iYJR077C); YML120C (iYML120C)

HAP5: YBR039W (iYBR038W); YGL187C (iYGL187C); YHR051W (iYHR050W); YLL027W (iYLL028W); YLR220W (iYLR219W)

HIRI: YBRO09C (iYBRO09C); YBRO1OW (iYBRO09C); YDR224C (iYDR224C); YDR225W (iYDR224C); YNL030W (iYNLO31C); YNL031C

(iYNL031C); YDR064 W (iYDR063W); YFRO01 W (iCEN6); YGR187C (iYGR187C); YJR007W (iYJR006W); YKRO26C (iYKR026C, iYKRWdeltalO);

YLRO02C (iYLRO02C); YLR061W (iYLRO60W); YLR167W (iYLR166C); YOL144W (iYOL145C); YPLO19C (iYPLO19C); YPR137W (iYPR135W)

HIR2: YBRO09C (iYBRO09C); YBRO1OW (iYBRO09C); YDR224C (iYDR224C); YDR225W (iYDR224C); YNL030W (iYNL031C); YNLO31C
(iYNL031C)

HSF1: YBRO72W (iYBR071W); YDR171W (iYDR170W-A-1, iYDR170W-A-0); YDR214W (iYDR213W); YER037W (iYER036C); YER103W

(iYER102W); YFLO14W (iYFLO15C); YFLO16C (iYFLO16C); YGL037C (iYGLO37C); YGR142W (iYGR141W); YGR194C (iYGR194C); YLL023C

(iYLLO23C); YLL026W (iYLLO27W); YLL039C (iYLLO39C); YLR216C (iYLR217W); YLR327C (iYLR327C); YML100W (iYML101C); YNLO06W

(iYNLO07C); YNLO07C (iYNLO07C); YOR027W (iYOR026W); YOR317W (iYOR316C-0, iYOR316C-1); YPR154W (iYPR153W); YPR158W (iYPR157W)

IME4: YDL223C (iYDL223C); YFRO17C (iYFRO17C); YGL227W (iYGL228W); YHR138C (iYHR138C); YJR044C (iYJR044C)

IN02: YBRO29C (iYBR029C); YBR030W (iYBR029C); YCRO34W (iYCR033W, iYCR034W); YEL04OW (iYELO41W); YER043C (iYER043C);

YGR155W (iYGR154C); YJR105W (iYJR104C); YKL182W (iYKL183W); YLR249W (iYLR248W); YNL175C (iYNL174W); YNRO17W (iYNRO16C-

1, iYNRO16C-0); YPL231W (iYPL232W)

IN04: YBR029C (iYBRO29C); YBR030W (iYBR029C); YDR312W (iYDR311W); YDR385W (iYDR384C); YJR105W (iYJR104C); YKL182W

(iYKL183W); YCRO34W (iYCR033W, iYCRO34W); YEL040W (iYELO41W); YER043C (iYER043C); YGR155W (iYGR154C); YLR249W (iYLR248W);

YNL175C (iYNL174W); YNRO17W (iYNRO16C-1, iYNRO16C-0); YPL231W (iYPL232W)

IXR1: YBL087C (iYBL087C); YBR061C (iYBR061C); YDR086C (iYDR086C); YDR101C (iYDR101C); YDR361C (iYDR361C); YKR026C

(iYKR026C, iYKRWdeltalO); YLL034C (iYLLO34C); YLRO02C (iYLRO02C); YLR167W (iYLR166C); YMR260C (iYMR260C); YNR054C (iYNRO54C-

69

OL

(DSZo~dA!) Al9O~dA !(99ZM1A!) AjL991j7lA !(M~vT1)4!) Mjgkr7IMA LIA)

Al96vT7IA !(t)'o~UJA!) M9W'O1MA !(O8LOM3A!) AM6OH1&A !(OEEwM3!) D099IIA ()l'iA)01kZjg'A !(bSEouA),!) 09C070A :TOI-dc

-MTLO-13A!) MIOLO'IaA !(O)D69O13A!'T-:)690-13A!) 069079A !(v-msETujINA!) omuNJIA !(o-giqojvj,kj'T-D9Touv4NA!) mLtiouIpIA !(o-MLsPJar! 'T

'()SST'lrA!) 09917fA !(MVO-13,k!) MlOkO7,qA !(O6OlMiGA!) 060PIJUA !(-)I9ZMIa! 'O-:)19ZUI!) OT991IUA !(:)9uN1aA!) Dg9rlA !(M89EHIA!)

M469.02J7A !(MS&T~rk!) Ozrr1irFi !(MOZZ1rA!) A6197FA !(MS7,01HA!) A4 9O7HA !(DEONi3A! 08OZ9A -(MEOO-IVA!) Alg9007VA :EIUHd

(OI60iHA!)
016OUI-IA !(DOflidA!) 09OT1dA -(M6Lo~idk!) A1O9OIfdA !(MttT-ldA!) Alg0r7dA !(OTZT'1OA!) 0r1r'70A !()69o1INA!) 06907INA !(MO9OflI)

!(OTZoHAj) 01901[IIA !(D68TX)A!) 069170A ~O~n AI VOr'7A !(9ITTa1A!) AULTTIUA !(MELOUI3,!) AMLOZIgA !(V-D9SO3A!) v

-09OZJIA !(VSO-13A!) D09A !(boLvtiaA!) At Uk'~aA '(M9TtHciA!) Al97UGA !(ME908oaAl Mk9OZICA !(XO-1aA!) oDsg'naA !(X8solaA!)

A1987GA !b9LO1OA! AlVLO7UA !(M68THIMA) Mt16THJA !bL8O-18A!) 09A !(OSO-dA') O0gO'IdA !(69ENoA!) 069F.710A '(M6LO'1OA!)

009070A !()OVZULAA!) A4 Tk9HPVlA !(o6TUjNS!) Als'47rA !(M96THIHA!) MtL612IHA !(X6TMiHA!) 09611JHA (StVT'1aA!) 001'7GA :TUlIad

(o-MTLO-13,k 'T-MTLO-13A!) AIOLO'I9A !(O-:)69O-13A! 'T-:)690-13A!) 069079A -(0-MLSTmirk! 'T-MLSIzjrA') MtegrurA

'(MOZwIrA!) or997IrA !(T-)SVt-1aA! 'o-Dsvz-1aAI) aqtnaIA !(MTEw'd!) A1OC9?4dA !(OELZOA') 0CL9nioA !(V-MSETHVYA!) og9wnam !C

-D9O0WVIA! 'T-9O0iV4A!) AIltTOUNfA -(MOOT-1IA!) A166071A !(D86oIlA!) Alt60'IIA !(D8CTMHA!) 08CIZJHA !(M8ZZ19A,!) AlU99'JA -()LTOUaIA!)

OLTOIJdA (!-)Eioaa 'o-DEVoNJA! 'T-DEVONiOA 00IOMUA !(M8oo8dA!) Al600lldA !(MVTEN~OA!) MUTCHOA !(O-MZTtUIA! 'I-MZTVMIA!)

ACNtWIA !(Ot'Co11Ak) 0k.O77A !(MgtVTlrA!) A49krifA !(OZo-o1A!) 00907IA !(Y-M8VOMJA!) Ml6k'O11A !(MW,013A'!) AlOk'O7,A !TDHNb

(O)TVZ-NA!)

0 Tk.-7NA !(TT1>IA) 0 rgrviA O(:TST-lA!) Al09 r'IA !(Dvvoujrk!) okkoy1fA !(89TlirA!) oggrVITA !(O-ZEw21SM~idA! 'T-Ze-21SM~dA!)

Al6TTJdA !(O68TIk!) M06TU17A !(DT60Hrk!) mm6ozrrA '(mzso-1rA!) Al t90'IfA !(mZZo1DA') Al I9O70A !(D97TMGA!) 00TH(aA !(D6TIHA!)
AIt6lHA !(DTST~dAI) D!9t[JdA !(V-MSETUflA!) A4MIJA !(V-MSETINA!) 099ITINA !()OTTIV'jA!) /AOOUIPA !(DOlirA!) AMoo VTA

!:9V'UoA!) AlRWMOA !(O9Vt'0OA!) MlLftZOA !(M99EM1A!) Alt9877A !(M66&w1A!) MOO0EHIA !(bLLOi8A!) A4L9UGhIA !(-)8VTfdA! 'I

-)8t'T~dA') Ml6k~ldA !(DLToHzuA!) LTtO~1dA '(38LoN3,M) Al6LO~fqA !(b8#I~mA!) ogtnuaA !(OETHjA!) A16&CtZIA !(MVTEoA!) AM9WT7OA

!(MLTONiNA!) A49102INA !(MTlVOU)4A!) AMUNlJA !00801FA1) 00R071A !bD6TMHA!) 0h96[ZJHA !(:800-1!)A!) 0900O70A !(O-IdA!) 9990'7dA&

'(DZo0oA) A1990UOA !()TOOMAJA!) OTOOZINA !(:O-o1.k!) AlgGO'InVA !(O&ZZMDA!) 0699ZIDA !(MLTT'1!A!) M49TVIDA :T(JIGN

(DT/ZUoA!) 0rL9210A !:OOTUjoA!) AlTTO ror:jo90bUo#In!) 0902J7A !(OS9o1IA!) Al t9O7IA !(bOwO11A!) A4610IIA

!(V-9SO83A') V-099O0JqA -(Oe6ZmacA!) A16692faA !(Dsco-aA!) 0690O7UA !(SEo10A!) 0880O7aA !()Oo18A!) Alt.O79A :EHjAw

(D9NdA!) 069OZIdA !(o)EEo0idA!) DVEO~dA -(D66TVldk!) M986V~dA -(OSLZHoA') M19t~L9HA !(MLLOMJOA!) Al9LOZIOA !(OIZNlA!)

0T69UJ7A !(O)VZU1A!) Alh 997A !bDS90aIA!) 09901J7A -(OTtvourA!) orkourA !(MLTOlrA!) Alt107fA !(0-9TellPp)MIHk!) AM9TUZJHA !(MS9ZUD!)!

OkM9IDfA !(:OLO1IA!) DOL07DA,~ !(DSOOaAk) 09OZJJA !(eoo0rN3,k) M46O013A !(MTV0O13AI) AAotoiaA !smaA) 9mia1A !(MSTI~ia!)

A16TT21GA -(b)8T'1OA!) 0Dt7aA !(MLETI10A!) A4.9817aA !(gs8TMgA') Al69flJUA !(bITZTUEA!) OiTflIUA !(X80o1sA) OLRO79A :T.TSSW

(MESnidA!) Al $91TIdA '(Z6ZUO!) 0969ZIOA !(MSLO1lNA!) ML7NA

!(MLZO'1-1A!) Mt99077A !(M9so0lHk!) ML9O7JHA -(MTVINi9A!) MWUDA !(MZoT8A!) MhEOTWqA !(MTLOJ8A!) AM0219IA :VMJAJ

(M8LZ1NA!) MUL7NA !(MT60M-1A!) A196OZ[7A !(o-)6oomiFA! '1-)600urA!) AloorrA !(Dv/o1iA!) oftoyiA !(m~ozw9A) Alt'O&IDA

!(M6Zo8=AI) Al0OZ&±A !(DoT~ldk!) 09Ofl~dA !(:66TldA!) Al96T7JA !(MtVTIldA!) Al017dA !(OO1OA!) 000O7OA !()O'1oA!) A468070A

(ZN(nv)iz!) Al9 to'NA (j~Ai MOH77A !OgSSCM1A!) 09 9CZ17A !(6LnnA'k) MA09 TZVA !(DLTNIM LZ')6tIA !(T-)o60N)A' '-)6O0>IA!)

0960ZTJMA)(tSTU!A!) Al19rTIDA -(DT90o10a!) DT9O7aA !(OT90-Ia!) MO9O7UA !OLLoUGMA) AM9LOZ19A !(METIVk!) Mg[O7VA :TJ.Jaw

(DTZT-oA!) DrgVIOA !(O99THI1A!) Al9flI7A U(LSI)A! 'M8STVD4A!) Al9-917MA !(D61r!) 096'7,rA

!(DZ6TnrA!) AlT6 VIfA !(OOSMUaA) 00091IUA !(mEgouaA!) Alk9oz1UA !(0L/9T~dA!) 0t9fl~dA -(M8/ZflNA!) AILL97NA !(DV8T19A!) 01k9r'IDA

!(M6Z0o=jA!) Al0C071.±IA !(Z-:)Lo13A! 'E-)ELO'1A! '0-X)L013,A! 'T-)EL013A! 'V-)EL013A!) A19LO'I9A !(b6So-1GA!) 069O'IUA !CLUIA.I

(D68TM-nA!) AlO6TZ[hA !(OT6ourk!) AM96(flA !(mzsoirA!) Al t9071'A !(mzzo19!A!) AlM~70A !(o)gtniak!)
09 t'flUGA !(o-ZewS'sMwjdA! 'T-Ze-2'SM~jdA!) Al6 r U~dA (MVsIEoM' Al 9181UOA !()V80o-n!) 0 tMO27A (MZT1A!) Al9 VIJA !(MTVOl3A!)

AlO0'O'KA !(M9TT1NA!) Al9'INA !(b6O-14A!) 06097-VA -(O'19A!) 0-&'O7FJA !(:)/LOldA!) Al90O79A !(MO9VM~Gk!) Al t9l'&A :INDN

(OnTZ1NA'!) 0 0g7NA !(TOT1lV4A!) Al00T71PVA

!(DTTI>A!) OT9V17A !(OTST'k) AlO9[IMA !)tDt7O0JrA!) 0MUFffA !(DLToUJA!) OLTOZUJA !(OsLOUi3A!) A46LOZ19A !(:OZT~dA!) 0OgtzJdA

!(M89Z'1dA!) MtL99'IdA !(M86ITjV4A!) Al66TflIPVA (M8LTIVY) Al 6t L[2NA !(MEIT8wgA) Al ' MUNlA !(M8Zo'lVYA!) AlL9OTPVA !(ST1CA)

D0T9VIA !(M69o0M3A!) M0LOZ19A !(DtLOUiOA') 0~OftOA !(DVLZ-NA!) AlIL97NA !b9LONIYNA!) 09LOZIPVA !(DEOTHi1A) 090 U217A !(DETINA!)

0ETT7xA !bomorA) ooourA of~orA)0toifA !(zo-1iA!) o9go7iA '(DLosu~ak!) 0o9o~qIUA !(bL/60U(o!) J0YaJA !(MVwOO1aA'k)

AitOO'IUA !(OSotNV4A!) 090EJflA !(MTVEUIA!) AlIPA !(O6TUiNS!) Al8~'T7rA !()6TMHk!) 096 l1HA !(6T8!DA!) 069 flIOA !(O6OEOak!)

06OFOIUGA !(M99E~NA!) AltMMI7 !()O9OlrA') o09071A !(t9VZMoA!) A48kgZIOA '(o)9VZMo!) AlLk.-ZIOA !(MVTZ8VA!) Al99t&IPVA -(M66ZUi1A!)

AlOO9ZJ7A !(DLLoIA!) Al9L0219A !()LWT'dA!) A19M1dA !C)Z80OldA!) AlTg0'IdA '-(bOSO'ldA!) 0O9O'IdA !(DETE1Nki) DETf'INA !bmL6m1A)

DL69UJ7A !(b)To1IHk!) 0DJTO7HA !(bLIT1DA!) D0t17A !()OOSMic1A!) 0009IUGA !(DVENCA!) DftUU~A !(M68IM8sA!) A416f1IA :Td8P~q

(OTINdA!) 0O1TfldA !(DES8IldA!) 089 V7dA !(DUL8OA!) 0TL6zJOA !(M6LO'1OA!) 009070OA

!(bZo1oA!) 099070A !(DSSZ'Nk!) 09.937NA !(N(lv)i~i) Al910'iNA !(MT8O'1)4Ak!) AlORO7MA !(O6TUNS!) Al9017FA !(D6TMHA!) 06TZHA

!(s9ElA!) Al96VTIDA !(V-DLooN3,!) V-D00O1J9A !(OVZEMic1!) 01'66UA Ot81A)0t8T'7GA !(TEo0jA!) Ot670A :TyJVW

(DTLZHOA!) 0Tt&IIOA !(MLOTHIOA!) Al8OIZIOA

(MLOITUHM) Al6O0lIPVA !(MIZI14A!) AlO&VIMA !(D/OZUiHA!) A4909UHA '06001DM,) 060070A !(MLtrONaA) Al9OZ0HA :9fla'

(Mt'TE80o!) Alg[CUOA !(MZSZHoA!) Al6996UOA !(DTSZMOk!) AlA996IOA !(T-)t'SO0NA! '0

IL

Mlk1OU~A !(:)6T-rA!) 09617rA !(:)6IlrA!) Mt16TWA DOE1I!)Q Pt7A !(:)6lHA!) 096flHA !(X8ZM!A!) &'?AWDA !(b9ET,19)!

AM 17DA !(MELO83A!) Mt'LO~1gA !(V-LooM3A!) V-01OOU&A !(O'SO-13A'!) DkgO'IA !(Mlto013A!) MOWO79A !(boosUI!) 00O9ZGUA !(M9VMaA!)

MlgtIUGA '()T9oGak!) 019O'7aA !(DT9o-lak) MO09O'7aA !(M68Uj8A!) Al 16TZUUA !(88iHSA!) AM68THUA !bLSO-18A') OL8079A :TJdwS

b8ETHiOMI .999TJOA !(OnV'lNA!) Dfk '7NA
'(bI9HVY~k!) MA49,1NA !(OLLoNi8A!) OLL0119A !(MTEZ-1dk!) M10997dA !(DUZNOA!) DEL210A !(O-D9TO0WVIA! 'I-9TO8iINA!) MILIOUNPA !(MOOT-IA!)

O1TMfdA !(O-)8flTidA! 'T-:)gVT7dA!) M6WT~IdA -'(v-msuflJINA) M49mJ71A !(v-msETuILNA!) ogrulNA !'bTioNkj) M~OO V7A !()ioIrA!)
MIOOT'IfA !(:LToUAjA!) OLIOZ19A !()OH3oA!) AM6LO1JA !(M8OO~idA!) Al6OOZIdA !(Doso~dA!) rJ0gO7dA !(MVTEiOA!) A19TE210A !(OSLUJoA!)

M19L&IIOA !(bot'loA!) 00070'IA !()oIIoIoA!) Mt69O7OA !(:SOCMV4A!) 0909UNfA !(b)EVoUj~!) 00I'O1MA !(o6TUiNS!) AlR8't'IfA :Ajm

(DZoT~dA!) D00TMdA !(:SZnOA!) AiL9 170A
!(O96o1lNA!) 0960'INA !(:)9I!) AU9 flI7A !(DtIoUi1A! Al 102J7A !b6?TlA!) Mgk17IA !bEIIA!) 089T7IA !(:TVniHA!) ar tT2[HA

!(bTZoNHA!) OT9021HA !(OgwIDl!A!) Al9CY7A)to1AIClOT70A '()O'1!9!) 01-070A -(OIEO1IDA!) Al4gO'IDA !(V-)TON.Ak) Y-rOE0219A
!(b9TT83A!) MILI1flJA !(:11'13,!) Oto'iA !boLvimaA) M rAJ7JUA !(xaSOlaA') OC9O7UA !)O8o-1aAI) M?9807GA !(b9Lto-IA!) AMgLo'UA

'(DSOCnNA') 090O'7NA !(OTIt'nNA!) ODYg,7NA '(O)ocmy4A!) Al$ocuNA !(zyq(n)nhiu!IepP)IAJA!) MtOLO7fA !(b60O0MMA! '8elPP)MI)A!) 060021fMA
!(8golirA!) ogR9O7fA !(o-osu!A!' '-9OSZNEA!) 009?9JDA O rtov7DA !(bLToM:uA) OLIOIJA !(MZoTH3,k!) AICOT219A :IclS

(OTSZUoA!) A4999HOA !(MSEZUioA!) AM99CZOA !(M6LoloA!) 009'070A -(DToOUNk!) AM9TO21NA '-(M88O1iNA!)
MILRO7INA !()6CZ8Ak) 06M&IJfA !()ZU4! 06992IflA -()TETA!) OrcrTINA !(MTTtUriA!) AlWrIVMA !(D99TNnA!) MIL9TU7A !(9)9EO-1-1A!)

M9SCOT7IA !(M69o08MI!) A409OZJMA '(bt'>IA!) OkWrOMA !(9)oTo'1)A!) M46007MA !(ML9O1IHk!) Al902HA !(O-O.lA!) M19O7eA bsIa)
AMMW~IA !(D88TM8A!) AM69TZ1A !Ott'TN13,!) 00l'nGA !(OL8o-IEA!) OL8079A !(M69o-IEA!) MR89O79A !(MV0OO1VA!) Mh9OO7YA :TNd'd

(V-MSEITjVgA!) 09CIZIN'A !(o-9o08MY 'T-)9TONVY kA L TOZINA !(o-mLsTufA! 'T-MLSTmrA!) MH9 flifA !(mozzirA!)

omwg~A !(MOOT-iA,) AM6607IA !(T-)S*t-flGA! 'o-)Stk-aA!) D:9'7uA '(boTo~d!) OOTO~JdA !(Mt7TCMOA!) M191692OA !O:TZT-1OAI) DT9grOA

!(DZ6oM4A!) AM96O0ZINA !(MggNJ1A) MIL9917A !(OtLoU-A!) Mi.9LOOZJ7A !(o6T1NS!) M84'IIA !(bE6THA!) 096THIHA !(D9EIDA!) AMP7DA

!(V-DLoo83,!) v-:9LooZ1A ! (j)SSOl3A!) 0.970'IA -(MltvouA3!) MO I' RifA !(b8InlaA!) 00S17GA -(Mt,0OO1YA!) AM0071VA :1XOII

(O66T-ldA') Mi86I7dA !(M#IT-ldA!) Mh'A7'7dA !(O9MOA! 069EZIOA !CMSEZUOk!) M1999IOA !(M99E~1A!) M4L99UJ7A

!(btILoj-1A!) MIVLOUJ7A !tLOHflAI) OftLOWJA !(DS9O8flAI) 0.990217A -(MO90U-lA!) MT19OZ7A !(O6flJNS!) M91k'7FA !(DZSO1IA!) 09.9'IIA

CM~I9A') Ml.970A !(V-)LOOM3A!) Y-OLOOZJiA !(DtTNjGA!) D~flTcIA -(ME6T'1aA!) Mig6T7aA !(Ot,'nA!) t VI7UA :T~~p

basuirA!) oD99 VfA !(MVo-13A!) MOI'O'IA -(M~TKiA!)

M&gkgU7A !(M66&Uj1A!) MIOOEUWA !(O6TUiNS!) Mlgt1'rIA !b:E6THHA!) 096THJHA !(O68TM!DAI) :969THJ:A !(b6EMKJA!) 06OAWUaA :TywrpJ

(:)CT~idA!) D6.9TZdA '(DZTZ'dA!)
DgTg7dA !bDZTZ1dk!) MIIJ7dA !ODSECHOA!) 09h96ZJOA !(8giNS!) AMLOA !(9TIMIOA!) 091 I2!OA !(T~oUNA!) MUMMJA !(DSTT1NA!)

AgJTT'JNA !()O9ZUV4,!) 00992INPA !(M99EH1A!) ML9h9J7A !(O6#TUnn!) MO09TZ17A !()E8OMJ1A!) 0990217A !b~1A)Dk,977A !(DZ8O1l4A!)
098O7MA !()Z801>IA!) AlTROVIA !(o6IT1NS!) MAWTWIA !(6VT1IA Al9877IA !(M69THjHA!) MOLTZIHA !(bwLZsA,!) Og?1A !(O)LITu!A!)

MUL11JDA !(DOZT-19A!) D0 VI0A !(tVo1-AA) M169O79A '(O9STU3AI) D99T219A -(V-Met'oMA!) Ml61'OZ~fA !bDS9t,8GA!) D09hIA :TEaHJ

MLUTdA !(b6TO'ldA') 06TO'7dA !()StT1OA!) Al M7OA !(:)9TMI!) AlL91J7A !(MO90U'lk!) Al T9O02J'A !()ZOOMJ1A!) DPO00J7A !(OTellI9PM

-Hmm4A ')9Womi)A!) o9gollmA !(mgoojrA!) M4LOOI~fA '(OLSTU!f9A!) DLRTU[DA !(9N3:)) AM!OO219A !(ME9O0icJA!) MA9O~aA TS0J
1
J

(OTETdA!) OTST21dA

!bDEoZHHA!) AlkOMHA !O:S/LO13A!) 09LO'I&A !(OW1OA!) DOMTOA !(X9T1l-NA!) M199T7NA !(MV8I1A-,!) M19S8PJ'7A !(DTTI!)A!) AMRT21JA

!OD9ET1DAk!) MA97DA !(M6LO~Jdk!) MtORO~JdA !(MfT'ldA!) Mhgk[7cdA !(Mo90M'nA!) Al 19OUJ7A !(wOT-1DA!) MIROVI9A !(V-:)9SOU3A!) V~

-09902J,7A !(O-18Ak) aLo'IuA !bDTZwioA!) OTXT7OA !(D9T~nA!) AiL9flI'7A !(MtSlT4A! 'M8SI)A!) MI99TVA !(bZ6TlirA!) 096I7A
!(DZ6T'lrA!) Al 16 17fA !(ME90HaA!) Al k9OZJUA !(OTWiA!) A UdA !(bONdA!) 090[Zic[A !(MZETnd!) Al[CT 'idA !(o)6oldk!) 060'dA
!(b)6ZUOA!) AlR6921OA !(DKZMjoA!) DOWMflOA '-b&ZTi~ok) MlL9VIOA !(:t'01A0,!) 00O0'7OA !DO7O1OA!) A166CO70A !0960lNA) 0960INA

!(D69o1INA!) 06907NA !(jtZVZMwk) 09k9gUpvA !(DOsLsA!) 091O7INA !(b9ZO1lV4A!) 090'IkVA Oti Al 9t* 7A OOrnI Ttk9IA

!(X9±#o'nA!) MA'1OZ17A !(MTBT'1>)4!) M091T7)IA !(V-D9001)4!) M4900MA !(DO6rIrm) 0061'IfA !(D066irA!) Ml68171'A !(O8LTiFA!) MILLPM~A

!(D9EIfrA!) 0.91'7,fA !D6VTwIIA!) MRI-17A '(DEET'1A!) :9&'617A !CM6To'11A!) M910O71A !(OZUHk!) 0909ZIHA !()TtTH3HA!) OZl[HA

* bTZoNIHA!) 0 190UHA !O8VTM9A!) 00TUDA !(OMak!) Al .POZIEA !(68T-19A,!) 06817fJA !(OT)D!) 0 O7DJA !(DTo1DA!) Al O.O'IDA !(V
-DTEOMiAk!) Y-0 OOdA !(gTT83A!) ML r nMA !(MCLorN3A) Al tLOY9A -(wVSOl3A!) 0 19O'I9fA !:OIt'(aA!) AlITL hIA !(6tVUjaA!) Al 09h[UA

!6tNG~c!) 06kkIUA !(M9TtMaA!) AlW~UGA !(MEZOHOA!) M49O7A !(MZ6T-1Gk) AlIT6VIUA !b(soWaA!) 098O7aA !(jE8o10A!) M?9807UA

!(D9Lo1GA'k) AlgLO'7aA !(M68THSA!) Al T6TUUA !ODTsITaA!) DIr'ffA !(V-D80N8sA) Y-OWoZiaA !(DZTEMoA!) OggIOZ1A !(DS60oJA!)
A496O21OA !(DS6OJOA!) 096OZIOA !()V9O1lV4J!) 0O'MPA !bt,9OV4J!) Al4990T1A !(DOOSH~OA!) 00OO9IA !()ZtO~dA!) Mg1VZIJdA !(O8OldA!)

Al6L0'7JA !(:)ZSTUOA!) 03RfTJOA !(DZoE1Nk!) 090Ov'INA !(O-:)6LTlNA! 'T-)6LT1lNA!) Al9LVI7NA '0890NA!) iL,9O7INA !(D6ZiAJA!) 06&?9JflA

!(D9nJLNA') 091 INA !(DLOC1A!) A49YEZJ7A !((X))Al MU7A !(MBENIM) AM IA !bDECi1A!) 0C.MVIIA '(DSZ~d1A!) 0999UjI

!(MVO11'A!) 00l077A !(Dt,6oMA!) 0~OWUMA !O:SVTurA!) oqtuirA !(Mwo1'HA!) Al1007IHA !(DCTZM9A!) AlkTMIDA !(O)tT!9A1) OLkVIDA

!(tZTI1DA!) Al C&170A !(o)TM3A!) Al rE IWUA -(D)TT3A!) Al 90T1TWA !()LtvIa!) DL k91UA !(DVT-s1aAIk) DkR VIA '(MLET-aA) Al 961 'A
!'bI9ola(A!) 019O7aJA -(b88IT8A!) AM68TZ1A !()LTTUiSA!) Al61fl1&A !(b)6o'18A!) Al660'IUA !()ZLO1SIEk) 09LO79A !(OJdk!) Al0OOdJA

'(OodA!) Al 6O'7dA !(MELE'dOA!) Alf/L6ZIOA !(bI9THiOA!) O191IJOA !(DOOIIOA!) 000OUJ0A !(o-ME80o1oA! 'I-ME8O'1A!) AM&6070A !(bSOZllAA)

A4909UNMA !(DZTENA!) 0916'U7 !(c)ITEM1A!) 0119217A !(MELTNIM A 'lftTZ7A -(e)EO11A!) 069077A !(DTSTl4>A!) 01617MA !(DTS1>Ik!)

Alog17xA !(LomrA!) ogLozJI'A !(MSToNIA!) M9TO2UIA !(D96OUHA!) 09609JHA !(D8VTN!A!) Al6T1UDA !(VTo1!9A!) 0O170A !(DSTOI=dA!)

Al7O'7IA !(DoItlA!) D0101W6A !(MVCoM3nA!) Al660WA !()LTTMI8A!) DL11TJ1IA -(MOSO1SaA!) Al61O79A !(MOSOlS8A') MAtO7fA :1:d~i

(D90SHA)
09O6ZJ0A !(8UNS!) MUMM7JA !(ZN(flvv)i!) Al910'INA !(9V0O1-1AI) Alfr'TA !(DET-I1A) 966171A !()OT-oT1A!) Al601'7DA :SLfldl

(:)ZITidA!) 091 fldA !OTUdA') 001 lUcfA (MIFT1NA') AlfI ~t A !(O60VIA!) 06 W7A b(:9ToUiA!) M4LTOHU7A

'(bs8ITMi)A!) 0891210A !(OE80H!A!) 0980OA !(OELo8:)A') 09LOUDA !(b)STU8A!) Migg1UGA !(31STUSM) Dk.V1UGA :Orolx.
(0-MILO-13A! 'T-MTLO13A'!) A40L079A !(O-D69013A! 'I-)69013A!) 069079A !(V-MSEINjVYA!) 0.99'NnA -(0-:)9TOUjVYA

'T-)9TOUVYA!) AI TOUflA !(o-Aus~ur! 'T-MLSTuIrA!) M 8.9TuIA !(mozzlrA!) o rg7rA !(MooTlI1A!) A16607IA !(T-:)StPZ*na! 'o-:)SVtflaA!)

(J~OrA!) l Lou7A !bsturA) oq tnrrA !(69EUoA!) 0699U0A (IZtiox') OW70'xA !(T-DToJV'J) AltT'1UflA -(M99EIA!) AMIA

(wVLo~lA) 0 kLOU7A '(T-:)OTIIA! 'O-DOTT1)4A!) 00T'X r i'(T-I-6omlrA! 'Ocw6omJrA!) Y-Al ~60llA !()6T'rA!) M 16 VIIA !(o6THNs!) Al 91'I1A

'(V-L)/ooU3A!) v-OiOOY9A !(MTVOi'k) M10'OTA)ttfOA)Ok'*TUGA !OsgZ18A') 099079A !(b8olgEA!) AtLX079A :9dVA

(DEoUHA!) Mk'0?UJHA '()SLO-13,!) 09L0T9A !(I)6O0IHk) 0160ZII-A !(OZT-1oA!) 009170OA

(:)9INA!) At.-917NVA !(MISTHIAI) Al981M7'A bnuiDA'),k) A48TTUDA !(M6/Lo8dk!) AlOROUCIA !(v)oTl!)A!) MA1O7DA !(V-)9SON3,A!) V

-09.90ZU~A !(:flETdA!) Al981UdA !bo6o'ldA') 0060'7dA !(:)Z6ZUo) AMI69UdOA !(:)ZNoA!) 01'h.&UOA !O&gTloAIk) M4L8170A !(O69o1INA!)

0J6907INA !(x)LO1IVA!) 0RL0'7fA -(D)t9o-[V~!) Al6907flA !()9W1IAJA!) 09907,PVA !(XLtMIA' AlW''U'IA O~tnA) 17U'A !(LoUiA!)

AW'J7A !(oelTirA!) D061'IfA !(o)6TirA') Al68'7fA !(SLtiFA!) AlLLr'IPA !(9111FiA!) 09ggr1'A !(C6VT-1A!) Al8P77A !bEET1IA) o0wrii,

(M6To'1IA!) Al 9 1071A !(DEoZUHA) 090?9JHA !(TtTndHA) 01tlJHUA !(e1VT8!D!) 0 T7UDA !(:)EOM!JD!) Al t0UDA !(O68TI1DA!) 068T17DA

!(C9TTH3A!) AlL 11V'A !(MELoMnA!) Al ft0UgA !(OtSo-13,A) 0t.9079A !(bOLlVJ!) Al JUUGA !(D6riaA!) Al9O7UaA !(6VVM(3aAI) 0WHtiA

!(MZ6T-loA!) Al 1617EA !(DEoWA!) 0907aA !X8olGa!) AM907aA (M68IHSA Al 161UgA !()6ZMoA!) 096gi1oA '(:)vomrFA!) okkoJrA

(M9so0iHA!) MILRO2IHA blTiAWMTJUDA !(I7OT1DA),!) OM017DA (LMLo) Al9iUaA !(g&8ZHaA!) AlL~5HUA :Qgdyk
(O6ITlo1A!) 061 1'IA -(:VT'lNA!) 0 tV1VA !(V-MLTT'VA!)

At911'IFA '(3901llM) 009077A !(:)EO11)4A!) 09017MA !(T-MZTVYA! '0-ME1IVYA!) Al 117fA !(T-:)o9VZI1A! '0-D)OgtMIA!) 009%17A !(a

(bOZT~dA!) 009fl~dA !(M89Z1dA!) AlL99'IdA !(M86TUllAA!) A166TUNIA !(MSLTNilAJ!) A16LTUNlA

(MEVTUVYA!) AlT1UNA !(M8W-lVA!) AlL907IJA !(:LgBI1F) 0LR17fA !(M69ON3A!) Al0LOU9A b(D9T-ldA!) 09917d[A !()TOE1NA!) Al0017AA

!(bSO~tIAk) 909UNA -(M66eU1A!) AM009UWA !()TT0U>4A!) Al10llUMA !(b8S~iFA') oggr7rA !(MVZT1IIA) Algl17IA !(METoNiDA! Alt[O07JA

!(bLLoNS8A!) MP>LOUffA !(t7LO~IOA!) 0tL0ZIOA bI:)Ln'NA!) AlCL97NA !(O9LO8VIA!) 09LUNA !()OTZmA!) 09O1UIA !(:)TT1)4,!) 09117)fA

!(toEouirA!) o0g0urA !()I7Lo1F!) 0oL07fA !O9ZO'1IA!) 0990'7IA !(L)OSMlOA') 0O9IIA !(L60UaA!) OL60UUA (Ml700laA) Al9O007GA

(:)LZTIdA!) Al9917dA !(OIEOA!) 0019HOA !(9SOMoA!) 09990U0A !(T-w)So8NA! 'O-W)SOMiNA!) Ot.90UNVA !()ETE-NA!) 09TR'7NA !DOE'1NA!)
D008I1NA !(X8OIVNA!) Alg90LWA !(wVo-1'1A!) 0OWTVA !(ETOilHA!) 09T107HA !:Oos8(A!) 0009ZICA Dta!) r'uGA :9IMS~

(DTST-1>1A) 01g'LVA OtT1IA) AlTULA O(:8ETUioA) 08611JOA !(D)TtZ1NA') Dtke7NA

!(OT9ZNVYJA!) A49UNA !(bTOTlv'A!) Al0017'iA -(:8LO083A!) M46LOJgA !(2t'"ourm) 0o0tli'A !(8ETUHA!) 0891HHA !(M8&Z19A,!) AlL9970A

(j)LToM.AA) OLIOUdA !(b)Zncj(A!) D9997CTA !()8ZE1lNA!) M4L.?J17NA -()98Zi1A!) 0989U7A !(8LolrA!) 09LO7rA !ODgoDA!) 0gg07DA !(o

-)LSTINSA! 'T-:)LSITiSA') AlS21UUA !bosoldA!) 0090'7dA !(OSZT-lV'A!) Dgg17YNA !()9LZ8A!) 09LgU7A !(o6TINS!) Algt17fA !(OoeolrA!)

00R0'IFA (M6To-1IA) AlR10'71A !:O'lHA!) 069107HA !(V-n)EoMuA!) V-01E0UCIdA !(Zo1iA'k) 09907JA !(OL6E'dA!) A48690UGA :2jAS
(OINidA!) 00?HI~dA '(M89f-ldA!) AlL99'7dA !(M8618YYA!) A166TUNA !(MgLTIMVYA) A16LT1NIfA !(MEtrVHlA!)

Alt1UA !(MSW1LAJYA!) AlL907PA !(bLoTlirAI) 0LY97f'A !(M69083A!) AIOLOUVA !(1D-A!) 090070A O(D9TIdA!) 0997dA !(DOE1lNA!)

Al0Og'INA !(OITOM>4A!) Al10TU)IA (METOUDMA) Alt[0UfJA !(b9SZ1dA') 09gg'IdA !(gtVZOA') 091tgUOA !bOOSUiCI) 00099GA !(LUoNSA)

0LL099A !(MUIENT A M Z7A !(o-6LlNA! 'I-)6/.T1NA') Al9L17A(A !beSlirA') 0RgT17fA !(D)6oEaA!) 060cuCIA !(DZ9THSA!) 09917JA

!(-)V~ !'T-)8'ThdA!) MO6TUdA !(V-MSEITiVIA!) A499T1URA -(V-MSET8YYA!) 09M1IN1A !(MitIornA!) Al 0 0'IA !(D9VjoA') Al P4&UOA

!(DtZoA!) AlLftUOA !(j)SOENi~!) 09~0h91INA !(M66&UnA!) A4006117A !(68TN!I9A!) 0681110A !(LLoliaA!) AMRL0UGA !(O-iZew1sMadA 'T
-Ze-isiMNdA!) Al6 I UCIA !(MtTEUoA!) A119ZOA !(waVoU-n!) 0 tROZ17A !(M*TI1IA) Al 99 I'IA !(T-nT9ZHGA! 'O-DT9ZtJGA!) 0T9 G9fJA ()O'Y

MIOO '114A !(X6TMH-A!) Al 1HA !(MO&1D)A!) AU997DIA !(LT0o:uA') 0L 10U.±A !(s)Lo~NA!) Al6L0UgA !(TToMIA!) 01TIOUMA !(:)OT1>A!)

0901THA !(MS6ol1)4A!) Al M607IA !(:8001)1,k!) Al1007MXA bt7ojA)1tourA !(MTTSMciA!) Al61gUaA !(ESIM71QAI) 06gghUA VIA&S

AlL 1&UOA !(MtZT1IA!) Al 9g1'IIA b(68TUi9A!) .96R UDA !(METoUa)A!) AlkTI0U0A -(M~tTINA!) Algkf17NFA !(b6oZI>I!) 06097MA !(DZo19A!)
09907DA !(bLZouI=A!) Al907IA !(Mo9VUik!) Al W9~JCA !(E'ENiOA! 'Z lPMNOA!) 0CH7OA !(O&1lNA') AA6229INA !(L/6lIV4A!) AMR61UNA

(>i (vvnhm~) Al 69 17)A !(VT-EALM-1IA 'JE8OlIA!) Al 990'IIA !(DEOIA!) 0L9071A U880810) A4690U0A !(b9SOo1A!) Al .9070A !(M8ZoD1A!)

AIL.-070A !(bLt'o-VYA!) AlW017NA !(:)SVHj1A!) 0g'7A !(MESoNjHA!) Mt1ROLHA !(OSOONHA! 0900UHA !(bLZo1JIA!) D017CIA :ZIaLS

(D9SZ-dA!) 09.997dA !(D9VZMOA!) AI9t'gUOA !(9tZIOA!) Ala&'aOA !(gt9VIOA) 09$'gUOA !boosHaA!) 0009UUA IHULS

(o-MLSTirA! 'T-M/STlWA!) Al ~gIurA !(mozz-rA)
O0.-.'IfrA -(o-MT/o13Ak 'T-MILO-13A!) M0OLOTJA !(O-:)69013,A! 'T-D69013A!) 069079A !(I-DSV'flOA! '0-:)SV#-1OA'k) 09& A :Z)jQS

(D66TldA!) Al961IdA 0051O'dk!) 0090'7dA !(69EMoA!) 069ELTOA !(tITIOA!) O1Ul7OA (SITi'NA!) Al9TUINA !(T-)ETMAV4,!)

Appendix B

Source code

This appendix contains the source code to the programs used in this thesis. The

data below encodes (in hexadecimal) a tar file compressed by the bzip2 program.

It should be relatively easy to extract the text below from a PDF version of this

document (cut and paste with Acrobat reader) or directly out of the Postscript using

a text processing program like peri.

73

lil

HH
iI W

H
O

II
i

H IM
U

HH

,
I

I
iM

 I,_
i

M
 i

If
H

H
H

I i

iHfif

fiffli
aitiH

1051
1

aIIrH
HU

H
H

O
H

I
H

PI
 NW

I
I

12
51

1,
02

1159
 1-

 I
H

1 I~
 l

1q
jr~

j
i

I 11
1

1
It

~~
~~

1
IU

B
fu

iB
Il

l
'F

il
11

*
u1

2S
H

1
5

U

1

H
I

Ii

a
1

12

1
~

af

H
1f

t fi

11
11

10
1"

R

I

1
1
H

I
d
a

M
R

t;

ill
.

li
E

.[
i

t-

it
.

1

-
,
f
i
l
.
I
H

H
qi

au

ai
a

a
a
a
n
~

u
h
~

d
a
f~

a

b
a
~

ia
i

~
i~

si
i

~~
11
1H
.

11
01
11
1~

I
Na

~I
I~

 b

13
 1

1

i
ll

-
-

-
.4

11
f

I
.

I

1
 .
I
'
i

I
 I

%

Ii
N

I

H
1
 1
1
1
H
 N
 It

in
 U

.1
.

H
v

IH
Ir

H

111
HII

I[~
~

1fj
il~

1ji

l
j i

I 1

111
1

111
11

S
1fl

111

111
 '1 11

11
1 O

UII
Ift ~iB

I
11P

Ha
fj

I1
E

ff

11
11r

lf

111
 H

1
1
 1

I
F

11
H

I
f~~

 I
a

wE
 1

91
 "F

 3
i

-
t
 I

1

1
1
1

1

~
1
1
1

1
1
-
H
H
H

i

5
1
1
i
 a

I

~
11

JI

11
11

.
H1
11
16
HE
R
H

H
i

fiF
I

fE
I

I
I

-
1

m
 I

 at
I

I f
t

H
H

O
du

ir
NaH

EII
i

Ii
H

iI
M

iB
!i

@
iii

II
IH

I@
tH

H

H

~

M I
@

E

I

I
i

-

IIl
aw

s~
afm

qs
 i

IB
III

eI
 W

Ill
lll

l1
1

ll
flf

fjI
~l

E[
f
il

lf
lh

Il
ii

a
li

ll
s
il

il
lI

s
I

al
il

la
li

ii
li

sl
i

ai
ld

ia

-.

k

i
a
I.

F
L

 .
a-

e

i m
la

ia
m

is
ie

il
u

n
u

u
il

u
i~

~l

l
fa

lI
li.

I
I

D
P

aa
 r

fl
a

ia
a

11
1a

1a
01

-

H
I
;
H
I
u
1

.
1
 1
 ff

ll
 I

ai
f

I
IUa

h['
IM

1

HI
MI

f
t
1

14I
H
I
M
i
I

11
11

1.
1I

if
bh

PI
t f

ui
If

lI
ia

iJ
i~

i~

~
If

f
I

if
Jf

il
s
f
l
t
I
E
f
i
B
f
i
f
.

ili
ss

iii
nl

se
ill

lii
lia

is
la

is
iis

in
in

ni
lis

lll
ss

ili
lll

il
K

ila
lw

l
i
;

11

1

11

I

f
1
1
t
1

1V
j~

~h
tt

11

-
1
2

i~
f~

a

It

IF
~

I
If
 I
N

I~

11
11

aI
f

V
I
f
t

E
m

id
a
~

ll
a
~

~
a
a
.a

1
.

1
U
 13

1
 W
.

i
 I
 in

1
.
a

H 1
11

11
11

11
,I

11

0B
I

if i
ll if

 if 1
11

11
11

10
51

1I

H
U

H; H

lip

 l
ou
 I

5
1
1
L
1
d
1
f

151
1

Hi
1
I
1
0
i
I
I

11I
1-

iiP
P~

~B
IPB

"1
W~

WP
P"W

~1
W

'1 B
1

I~
~

fP
1

W
1

~
II

~
iI

P
1

IH
 a

ff
pE

Ij
E

l
t

iiu

II
I

I I1
I1lh

f1
1 .

I l
 I

1
 1
 ~ff

 1
1 1

~ B
 H

 H=I
 H
1 ~

I
W
I
 I

I
4
H
I
"
.

H

A
 I
I
I
H

IB
II

H
I
f
f

W
 I

I

H
IS

I
111

11
II

II
H

111

1
H

B
U
B

IL
I

~fh
HIR

 ij
B~

b;,
Iru

~u
 i

r
I
f iI

~III
PH

H
@

 H
 iiM

 H
 i@i

 M
fllu

~f~
fta

 !
ft

~j
fj

~i
 B

WII
II~i

III@
i@

uHI
 I

jjq
fl

fj
~i

i'm
m

oi
m

m
if

Im

al
um
If

I
f
i
f
t
3

it
3.

hI

lt

1
.

i
s
-

fi
g

-
1
2

.

-
I
f

-
1

1
5a

-

I
'll

"'

lil
ls

si
lis

si
ni

ni
ia

lis
in

is
ls

ia
ia

lil
lis

iij
nl

el
iii

al
iO

R
E

M
s
i

Bibliography

[1] Timothy L. Bailey and Charles Elkan. Fitting a mixture model by expectation

maximization to discover motifs in biopolymers. In Proceedings of the Second

International Conference on Intelligent Systems for Molecular Biology, pages

28-36, Menlo Park, California, 1994. AAAI Press.

[2] Ziv Bar-Joseph, Georg K. Gerber, Tong Ihn Lee, Nicola J. Rinaldi, Jane Y. Yoo,

Frangois Robert, D. Benjamin Gordon, Ernest Fraenkel, Tommi S. Jaakkola,

Richard A. Young, and David K. Gifford. Computational discovery of gene

modules and regulatory networks. (Submitted for publication), 2003.

[3] Y. Barash, G. Bejerano, and N. Friedman. A simple hyper-geometric approach

for discovering putative transcription factor binding sites. In 0. Gascuel and

B. M. E. Moret, editors, Algorithms in Bioinformatics: Proc. First International

Workshop, 2001, number 2149 in Lecture Notes in Computer Science, pages

278-293. Springer-Verlag Heidelberg, 2001.

[4] Mathieu Blanchette and Saurabh Sinha. Separating real motifs from their arti-

facts. In Proceedings of ISMB, 2001.

[5] A. Brazma, I. Jonassen, J. Vilo, and E. Ukkonen. Predicting gene regulatory ele-

ments in silico on a genomic scale. Genome Research, 8(11):1202-1215, November

1998.

[6] J. Buhler and M. Tompa. Finding motifs using random projections. In Proceed-

ings of The Fifth Annual International Conference on Research in Computational

Molecular Biology (RECOMB), 2001.

75

[7] D. B. Gordon, 2003. personal communication.

[8] D. Benjamin Gordon, Lena Nekludova, Nicola J. Rinaldi, Craig M. Thompson,

David K. Gifford, Tommi Jaakkola, Richard A. Young, and Ernest Fraenkel.

A knowledge-based analysis of high-throughput data reveals the mechanisms of

transcription factor specificity. (Submitted for publication), 2003.

[9] X. S. Liu, D. L. Brutlag, and J. S. Liu. An algorithm for finding protein-DNA

binding sites with applications to chromatin-immunoprecipitation microarray ex-

periments. Nature Biotechnology, 20:835-839, August 2002.

[10] Bing Ren, Frangois Robert, John J. Wyrick, Oscar Aparicio, Ezra G. Jennings,

Itamar Simon, Julia Zeitlinger, J6rg Schreiber, Nancy Hannett, Elenita Kanin,

Thomas L. Volkert, Christopher J. Wilson, Stephen P. Bell, and Richard A.

Young. Genome-wide location and function of DNA binding proteins. Science,

290:2306-2309, 2000.

[11] S. Sinha. Discriminative motifs. In Proceedings of the Sixth Annual International

Conference on Research in Computational Molecular Biology (RECOMB), 2002.

[12] J. Vilo, A. Brazma, I. Jonassen, A. Robinson, and E. Ukkonen. Mining for

putative regulatory elements in the yeast genome using gene expression data.

In Proceedings International Conference on Intelligent Systems for Molecular

Biology (ISMB), pages 384-394, August 2000.

76

