
Exploiting the Sparse Derivative Prior for

Super-Resolution

by

Bryan Christopher Russell

A.B. Computer Science
Dartmouth College, 2001

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2003

@ Massachusetts Institute of Technology 2003. All rights reserved.

A uthor. .................
Derartment of Electrical Engineering and Computer Science

August 8, 2003

C ertified by . .......................
William T. Freeman

Associate Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by
Arthur C. Smith

Chairman, Department Committee on Graduate Students

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

BARKER
OCT 1 5 2003

__LIBRARIES



2



Exploiting the Sparse Derivative Prior for Super-Resolution

by I

Bryan Christopher Russell

Submitted to the Department of Electrical Engineering and Computer Science
on August 18, 2003, in partial fulfillment of the

requirements for the degree of
Master of Science in Electrical Engineering and Computer Science

Abstract

The distribution of bandpass filters with localized, oriented, and bandpass character-
istics applied to natural images are sharply peaked with high kurtosis. These sparse,
heavy-tailed distributions have been observed consistently across many classes of nat-
ural images, motivating its use as a prior on images. We describe a framework for
incorporating this prior into graphical models to infer latent information. Specifically,
we use factor graphs and exploit derivative filters to estimate a high resolution image
from a single low resolution image. The resulting high resolution images have good
image quality with sharp edges and lower reconstruction error than the state-of-the-
art techniques to which it was compared. In addition, we describe a novel technique
for finding candidate values efficiently in the estimated image, avoiding computational
intractability.
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Chapter 1

Introduction

Consider enhancing the resolution of natural images, such as the 64 x 64 low-resolution

image shown in Figure 1-1(a). It is desirable to have a solution that not only resembles

an image taken by a camera with higher resolution, but also has the perceived quality

of a high resolution image. For Figure 1-1(a), we wish to generate an image similar

to the 128 x 128 image in Figure 1-1(b), having sharp edges and minimal perceived

artifacts. In this thesis, we examine the task of increasing the resolution of images,

which is known as the super resolution problem. In particular, we consider the class

of images from natural scenes and try to exploit well-observed statistical regularities

of this class to increase edge sharpness and reduce perceived artifacts in the higher

resolution.

(a) (b)

Figure 1-1: For the super resolution problem, we are given a low resolution image (a)
and would like to generate an image with higher resolution (b). In this example, (a)
has a resolution of 64 x 64 and (b) has a resolution of 128 x 128.

17



A good solution would be beneficial to the computer vision and computer graphics

communities. Moreover, many commercial applications that use low-resolution im-

ages, due to low-quality cameras or data compression, could benefit. This includes,

but is not limited to, low-resolution video conversion for display on high definition

television, manipulation of images from low-end digital cameras, and displaying im-

ages or video streams from mobile phone cameras.

1.1 Problem Description

A system that performs super resolution takes as input a single low-resolution image

and produces as output an image with higher resolution, usually by a factor of two

or more1 . Here, we assume that a low resolution image L is generated from a high

resolution image H by first convolving H with a low-pass filter, to reduce aliasing,

and then downsampling to the desired size. This process is illustrated in the system

diagram shown in Figure 1-2. We wish to interpolate in a manner that provides a

visually plausible approximation to the inverse of the system. Of course, this is an

ill-posed problem since there are a large number of high resolution solutions [3, 6, 14,

36, 41].

Two simple approximate solutions are pixel replication 2 and bicubic interpola-

tion. Pixel replication constructs the high resolution image by duplicating each low

resolution pixel Z times in each spatial dimension, where Z is the zoom factor 3,

and maintaining the same spatial relation of the low resolution duplicates in the

high resolution image as in the low resolution image. Figure 1-3(a) shows a one-

dimensional signal and figure 1-3(b) shows graphically the super resolution problem

for this signal. Figure 1-3(c) shows the pixel replication super resolution solution to

the one-dimensional signal. Bicubic interpolation approximates the missing pixels in

high resolution image by fitting cubic functions to the observed low resolution pixels.

Some authors refer to extracting a single high resolution image from multiple low resolution
frames as super resolution [3]. Here, we deal with only single frames, which is sometimes called
"image interpolation".

2Pixel replication is also known as zero-order hold [18].
3For simplicity, we assume here integer zoom factors.

18



Lowpass Downsample
Filter

H L

Figure 1-2: A system diagram of a low resolution image L generated from a high
resolution image H. We assume that L is generated by first convolving a lowpass
filter with H, to reduce aliasing, and then downsampling by a factor of Z to the
desired resolution.

More information on cubic interpolation techniques will be discussed in Section 2.1.

In Figure 1-4, we show the output of pixel replication and bicubic interpolation

on the low resolution image from Figure 1-1(a). Pixel replication produces jagged

edges and "blocky" artifacts. On the other hand, bicubic interpolation produces a

blurry image with overly smooth edges. With these two extremes in mind, we wish

to produce a more natural looking image with sharp edges and minimal distracting

visual artifacts.

To achieve these goals, we will exploit the statistics of the derivatives of natural

images. These statistics have been repeatedly observed across large classes of natural

images. Moreover, we will show how to incorporate these statistics into a powerful

and modularized probabilistic framework to infer the high resolution image. The

combination of the derivative statistics and the probabilistic framework allow us to

infer a solution that shares a common trait with natural images.

1.2 Overview of System and Thesis Outline

Chapter 2 reviews the previous work relating to super resolution. In particular,

Section 2.3 reviews learning-based approaches for super resolution. Here, we introduce

a powerful probabilistic representation, which is amenable to inference, known as

graphical models. Graphical models form the basis of the work presented in this

thesis.

19
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Figure 1-3: Consider a small portion of a one dimensional signal (a). We wish to
increase the resolution of the signal by some factor Z. We graphically show this in
(b) where Z = 2. One simple solution is pixel replication (c), where we duplicate
each sample. Notice that the output of pixel replication produces jagged edges.

(a) (b) (c)

Figure 1-4: A comparison of two simple techniques for super resolution: (a) the
original high resolution image; (b) pixel replication; (c) bicubic interpolation. Notice
that pixel replication produces "blocky" artifacts while bicubic interpolation produces
an overly smooth result.
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Chapter 3 gives an overview of natural image statistics and related work in the

field that exploits these statistics.

In Chapter 4, we formulate the posterior distribution for super resolution. More-

over, natural image statistics are used as the prior in the distribution. We show how

to find the maximum a posteriori (MAP) solution by using approximate inference

methods in the graphical models. We present and explain in-depth the solution for

super resolution to a one-dimensional signal, with an extension to the two-dimensional

case given in the Appendix.

If we are not careful to control the state dimensionality, the above solution using

graphical models can be intractable. Chapter 5 introduces a novel technique for

obtaining a tractable number of candidate states for the unknown, latent variables in

the posterior distribution.

In Chapter 6, we show the super resolution images that our algorithm produces.

Moreover, we compare our algorithm to existing super resolution algorithms.

Chapter 7 reviews the contributions of this paper and outlines areas of possible

future research.
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Chapter 2

Prior Work

In this chapter, we survey previous work on super resolution. Specifically, we survey

functional interpolation, deconvolution, and learning-based methods.

2.1 Functional Interpolation Methods

Suppose we observe the discrete sampling of an unknown function f(x), illustrated

in Figure 2-1. We wish to find a smooth approximation g(x) to f(x) using local

piecewise-smooth functions:

g(x) = ZCknk(X) (2.1)
k

where Uk(.) are the local functions and Ck are parameters dependent on the sampled

data. Simple interpolation methods define these local functions under various con-

straints. This allows us to use Equation 2.1 to estimate the intermediate values of

the discrete samples.

Figure 2-2 shows four common one-dimensional kernels: nearest neighbor, linear,

cubic' [22], and cubic B-spline [15]. Each of these kernels are simple to compute and

require a small region of support. However, results using these kernels are blurry

or result in heavy aliasing. Other kernels have been proposed to overcome these

'In two dimensions, linear and cubic are called bilinear and bicubic respectively.
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f(x)

Xk-3 Xk-2 Xk-1 Xk Xk+1 Xk+2 Xk+3

Figure 2-1: A discrete sampling of an unknown function f (x). Functional interpola-
tion methods approximate f(x) by a set of local functions.

limitations, such as the sharpened Gaussian kernel [35].

Several methods attempt to sharpen the images produced by functional interpola-

tion methods. Greenspan et al. use a nonlinear enhancement algorithm to sharpen the

image [13]. This algorithm learns a scaling factor and clipping constant to scale, clip,

and then bandpass the original image. The result looks sharp, but suffers from ring-

ing artifacts. Another method uses a differential equation to smooth jagged isophotes

from functionally interpolated images [28]. The results are pleasing, resulting in

smooth contours. However the sharpness depends heavily on the initial interpolation.

Another approach classifies local pixel neighborhoods into constant, oriented, and

irregular categories and then enhances the oriented neighborhoods [43].

2.2 Deconvolution Methods

To improve upon the blurry results yielded by functional interpolation, researchers

have proposed methods to deconvolve the blurring filter. The problem is posed as a

linear observation with Gaussian noise:

y = Hx + n (2.2)

where y is the observed, blurry image, x is the desired unblurred image, H contains

the spatially-invariant blurring convolutions, and n is i.i.d. Gaussian noise. Note that

24
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x and y are lexicographically ordered vectors of the images.

Solutions using the wavelet transform have been developed. Here, we assume

that x = WTO where W is an orthogonal matrix representing the wavelet transform

and 0 are the wavelet coefficients. The goal is to infer 0, often using the sparse

prior on wavelet coefficients, to be discussed in Chapter 3. However, in general H

is not orthogonal, which raises complexities. Work has been done to overcome these

difficulties, but require significant numerical calculations [4, 26, 46]. More efficient

results have been obtained through the expectation maximization (EM) algorithm [6,

9]. Also, an algorithm combining Fourier and wavelet methods has been propsed [30].

While these methods produce nice results, in general it is difficult to directly represent

and solve the system assuming various constraints on the solution space.

2.3 Learning-based Methods

Learning-based methods attempt to incoporate a priori information to enhance the

solution space. These methods are posed using well-developed frameworks with effi-

cient inference algorithms.

An important subset of the learning-based methods for super resolution uses

graphical models, which is a powerful visual framework with efficient inference al-

gorithms. Graphical models have had an immense impact on the computer vision

community [12, 42]. Here, we consider graphical models and describe the algorithms

to perform inference.

2.3.1 Introduction to Graphical Models

Let xi denote a random variable on the sample space Qi. Here, we assume that the

sample space is discrete and finite, although the ideas presented in this section can

be generalized to continuous spaces. For a set of random variables x 1 . . XN, let the

joint probability be given by Pr(xi, .. , XN). Let us consider computing the marginal

probability of x 1:

26



Pr(xi) = 1 Pr(xi,.. . ,XN). (2-3)
X21..XN

Notice that if each random variable has S states, then the marginal probability com-

putation has time-complexity of 0 (SN). However, if the joint probability can be

factorized into many functions each using fewer arguments, then we can reduce this

time-complexity. For example, suppose the following factorization of the joint prob-

ability on the random variables X1,..., :

Pr(xi, x 2 , x 3, x 4, X5 ) = '1(x , x 3 )0 2 (x 2 , X3 , X 4 ) 3 (x 4 , X5) (2.4)

where C is a normalization constant. Notice that the factors b(-) may not correspond

to an actual probability distribution. We can compute the marginal probability for

x, as follows:

Pr(xi) = E Pr(x1 , x 2 , X3 , X4 , X5 ) (2.5)
X2,X3,X4,X5

1
= E 1 1 (x1 , x 3) 2 (x 2 , X3 , x 4) 3 (x4 , x 5 ) (2-6)C 2,X3,X4,X5

= E 01(x1, 3) Zi 2(x2 , , x4) T 4 3 (X4, Xs). (2.7)
X2,X3 X4 X5

Here, the time-complexity is O(S 2 ) instead of 0(S 5 ). Also, notice that these factor-

izations express conditional independence relations. For example, in Equation 2.4, if

we are given the value of x 3, then x1 is independent from all of the other random

variables.

A graphical model explicitly represents a class of joint probability distributions,

with each distribution sharing the same conditional independence relations. Graphical

models mainly come in three varieties-Bayesian networks [19, 32], Markov random

fields [12, 32], and factor graphs [23]-each having different representational capa-

bilities. Here, we will consider the factor graph representation, examples of which

appear in Figure 2-3.
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A factor graph is a bipartite graph with variable and constraint nodes, indicated

by the transparent circle and the solid square nodes respectively. Each variable node

has a one-to-one correspondence to a single random variable. The constraint nodes

correspond to the set of functions, known herein as constraint functions, in the factor-

ization. Variable nodes connected by edges to a given constraint node comprise the

arguments to the corresponding constraint function. Figure 2-3(a) shows the factor

graph for the factorized joint distribution in Equation 2.4. In general, for a given

factor graph the joint probability distribution is proportional to the product of the

constraint functions:

Pr( , 2, .. . , ) =(-).(2.8)

where M are the number of constraint nodes and (-) indicates the appropriate argu-

ments to the function.

To see how the conditional independence relations are expressed in factor graphs,

let us consider the example above where we observe the value of X3 , illustrated in

Figure 2-4 where the observed node is shaded. Two sets of random variables are

independent if the only existing paths connecting two nodes in the different sets

crosses the observed nodes. For example, in Figure 2-4 there are no paths connecting

x1 and the other nodes without having the path contain x3 -

Suppose we wish to compute the maximum a posteriori (MAP) estimate of a given

distribution. Let X0 and XH be respectively the set of observed and hidden random

variables. Using the rules for conditional independence in factor graphs above, observe

that the conditional probability depends only on constraint nodes with at least one

neighboring hidden variable node. In other words,

Pr({XH} I {Xo}) = I f 'i(-) (2.9)
ciEN(XH)

where N(XH) is the set of all neighboring constraint nodes of XH. With this, we

compute the MAP estimate XH as follows:
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XH = argmax Pr({XH} I{Xo}). (2.10)
{XH}

To compute the MAP estimate, an efficient message-passing protocol, known

as max-product belief propagation (BP), has been developed to compute the ex-

act maximum posterior probability at each variable node in factor graphs without

loops [23, 32]. Messages are passed along every edge in the factor graph, and after

a finite number of message-passing iterations the algorithm converges to the correct

maximum posterior probability.

For factor graphs, there are two types of messages-those propagating from vari-

able to constraint nodes and vice versa. Both of these message types are illustrated

in Figure 2-5. If there are S states for each random variable, then each message will

be a vector of length S.

For messages propagating from variable to constraint nodes at iteration t, the

update rule is:

pg(Xi) <- Q (Xi) (2.11)
CkEN(xi)\cj

where N(xi) \cj are all of the neighbors of xi except cj, and pij (xi) is the message that

node xi sends to cj for a particular setting of xi. For messages sent from constraint

to variable nodes at iteration t:

p (x ) max Oi4(({N(cy)}) f p (x,). (2.12)
{N(ci)\x,} XkEN(ci)\Xj

For each iteration, we first compute all of the variable to constraint node messages

and then use the results to compute the constraint to variable node messages. The

messages are normally initialized to one, but the algorithm converges for any nonzero

initialization.

After convergence, we compute the belief for each node as follows:

bi (xi) <- Ak pa(Xi). (2.13)
CkEN(xi)
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Figure 2-3: Two simple examples of factor graphs without loops (a) and with loops
(b). The transparent circle and solid square nodes correspond to variable and con-
straint nodes respectively. Each variable node xi represents a random variable while
each constraint node ci represents the constraint function Oi(-). In this case, the
factor graph in (a) represents the factorization in Equation 2.4.

It can be shown that the belief evaluated at a setting of xi is proportional to the

maximum of the posterior probability:

bi(xj) oc max Pr({XH} {Xo}).
{XH\Xi}

(2.14)

From Equation 2.10, we get the MAP estimate for xi:

ii = argmax bi(xi).
Xi

(2.15)

While BP has been shown to converge to an exact solution after a finite number

of iterations for graphs without loops, this convergence property does not hold true

in general if BP is applied to loopy graphs, an example of which appears in Figure 2-

3(b). In fact, exact inference for graphs with loops has been shown to be NP-hard [37].

However, for many loopy graphs we can converge to an approximate solution after a

finite number of iterations by applying BP to it anyways. Much work has been done

to study the convergence properties of loopy-BP [29, 47, 45].
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C1 C2

Figure 2-4: The same factor graph as in Figure 2-3(a), except that we observe the
random variable X3, illustrated by the shaded node. Two sets of nodes A and B are
conditionally independent given a third set C if there exist only paths connecting a E
A and b E B passing through some node in C. Here, x, is conditionally independent
of X2 , x 4 , and X5 given X3-

(t)

(t) Cj

CQ

X1 (t)
CAli+1)

XR

(a) (b)

Figure 2-5: When belief propagation (BP) is applied to factor graphs, there are two
types messages: variable to constraint node (a) and vice versa (b). Here, we have
indicated incoming and outgoing messages by arrows and have labelled the messages.
See Equations 2.11 and 2.12 for the message update equations.
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2.3.2 Algorithms Using Graphical Models

Schultz et al. formulated the super resolution problem using graphical models, assum-

ing the Huber function [17] as a prior on the derivatives [36]. Similar approaches, but

specialized only to images with faces, learn a prior on faces and achieve high quality

results [2, 25]. An unsupervised approach using a dynamic-tree graphical model has

been proposed [40].

An example-based method learns a priori the relationship between low and high

frequencies by storing in a database corresponding patch pairs from a set of training

images [10, 11]. Instead of representing each pixel as a random variable, patches

are represented for more efficient computation. The algorithm then searches the

database for appropriate patches at each spatial position based on the observed low

resolution image and constraint to enforce spatial consistency among the patches.

Work producing nice results along similar lines uses primal sketch priors [41].
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Chapter 3

Natural Image Statistics

In the previous chapters, we introduced the super resolution problem and surveyed

prior work. In this chapter, we introduce statistics that are repeatedly observed across

many different classes of natural images. In addition, we survey how these statistics

have been applied to various tasks in computer vision, computer graphics, and image

processing. In subsequent chapters we will show how to exploit these statistics as a

prior on latent variables, which will lead us to a method for super resolution.

3.1 Overview

To understand how the human vision system has evolved, many researchers have

looked at the properties of natural scenes, whose images are projected onto the retina.

Drawing from the receptive fields of the striate cortex [16], characterized as being

localized, oriented, and bandpass, the statistics of filters' with these properties applied

to natural images have been studied. It is well-documented that the histogram of these

filters applied to large classes of natural images, similar to the one in Figure 3-1(a),

are exponential with high fourth-order statistics (kurtosis) [8, 21, 27, 31, 34, 38].

These sparse, "heavy-tailed" distributions resemble the histogram shown in Figure 3-

1(b) which, compared with Gaussian distributions of the same variance, have lower

entropy.

'Localized, oriented, bandpass filters are also known as wavelets.
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Figure 3-1: (a) An example of a natural image. Filters with localized, oriented, and
bandpass characteristics have high fourth-order statistics (kurtosis). We see these
characteristics in the histogram of the horizontal derivatives (b) applied to the natural
image in (a).

The distribution in Figure 3-1(b) can be described by the generalized Laplacian

distribution:

p(x) oc exp - (3.1)
2 o

where o- is the standard deviation and a is the exponent parameter. For natural

images, empirically 0 < a < 1. Notice that if a = 2, then Equation 3.1 becomes a

Gaussian distribution. In Section 4.1.1, we consider the importance of the a param-

eter and its effect on the solution space.

Often, Equation 3.1 when 0 < a < 1 is known as the natural image prior because

of its omnipotence across large classes of natural images. To gain an intuition of the

natural image prior, let us consider the case of the derivative filter. The distribution

says that large derivatives are sparse in a given natural image. Loosely speaking, this

means an image consists largely of zero gradient regions interspersed with occasional

strong gradient transitions. It seems plausible that in a given image a sharp edge is

preferred over a blurry edge.
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3.2 Applications Using Natural Image Statistics

The strength and repeatability of the statistics of natural images make it invaluable

as a statistical prior. Simoncelli successfully used this prior as the basis of a Bayesian

noise-removal algorithm [39]. Simoncelli and Buccigrossi used the regular statistical

structure of images for compression [5]. Levin et al. showed how this prior can enable

an image to be decomposed into transparent layers [24]. Portilla and Simoncelli

used joint natural image statistics to synthesize new textures [33]. As mentioned in

Chapter 2, several authors developed deconvolution methods exploiting the sparse

statistics of wavelet coefficients [6, 9]. Farid and Lyu used this prior to help detect

hidden messages in high resolution images [7].
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Chapter 4

Applying the Natural Image Prior

In Chapter 3, we introduced the statistics of derivatives for natural images and con-

cluded that they should be a useful prior. In this chapter, we incorporate this prior

into the graphical model framework, introduced in Section 2.3, to perform super res-

olution. We will first look at a generic incorporation of this prior, which is applicable

to a wide range of image processing applications. Then, we will apply the framework

to the super resolution problem.

4.1 Combining Graphical Models with the Natu-

ral Image Prior

In Section 2.3, we introduced graphical models and, in particular, the factor graph

representation. Recall that a factor graph is a bipartite graph consisting of random

variable and system constraint nodes. The joint probability is given in Equation 2.8,

which is a product of the constraints, represented as functions 0(-) of the random

variables.

Let the set of constraint functions be given as:

IF = {gi#(-)j1 < i < M} (4.1)

where M is the number of constraints in the system. To incorporate the derivative
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statistics of natural images, we need to ensure that a subset of T constrains deriva-

tives of neighboring pixels to have the Laplacian distribution, given in Equation 3.1.

Specifically,

qJN {'iGi) i(ii) = exp (_I (D*i) C xF (4.2)
2 U-N

where Ji is a patch of spatially adjacent pixels, D is a derivative kernel, a is the

exponent parameter, set between 0 and 1, and UN is the standard deviation parameter.

This set of constraint functions needs to cover all of the random variables representing

pixels in the latent image.

To illustrate the usefulness of the prior on image derivatives for the task of super

resolution, let us look at a common strategy used in computer vision for inferring

missing information, shown in Figure 4-1(a). Two layers are used, one representing

observed "image" data and the other representing the hidden "scene" data [12, 42].

To infer the scene data, we place constraints between the image and scene data, as well

as within the scene data itself. This is illustrated in a simple instantiation in Figure 4-

1(b) where the top circle nodes represent pixels in the scene, the bottom circle nodes

represent pixels in the observed image, the solid circles represent constraints between

image and scene data, and the solid squares are the constraints within the scene data,

given by the natural image prior.

4.1.1 Example Interpolation Problem

To illustrate the power of combining graphical models with the statistics of derivatives,

let us consider the simple one-dimensional interpolation problem in Figure 4-2. Our

goal is to interpolate yi from all of the other observed values in the step signal, where

yi = 2 for i < 0 and yi = 1 for i > 2.

We wish to use the techniques from Section 4.1 to derive a factor graph with

derivative statistics constraints. Let us assume a simple derivative kernel of [-1, +1].

We derive the factor graph in Figure 4-3 to find solutions to the interpolation problem,

where the circles represent the samples of the signal and the solid squares represent
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(a) (b)

Figure 4-1: (a) A common strategy used in computer vision to infer missing informa-
tion is to represent the observed and hidden data as two different layers. The hidden
data is known as the "scene" layer and the observed data is known as the "image"
layer. (b) To infer the scene layer, we place constraints between the image and scene
layers, as well as within the scene layer itself. Here, we demonstrate a simple factor
graph instantiation.

the derivative statistics constraint:

(yi, yi+1) = exp ( INiYiI (4.3)

for -2 < i < 3. Therefore, the joint probability distribution is:

3

Pr(y-2, y- 1, yo, Y 1, Y 2, Y3,y4) Oc 1 O(yi, yi+1)- (4.4)
i=-2

If we observe all of the random variables except yi, then:

Pr(y1jy-2,y-1,yo,Y2,Y3,y4) = Pr(y1 |yoy 2) (4.5)

Oc 4(yo, yl)V(y1, y2) (4.6)

oc exp - (Y2Y )( 4 .7 )
whr2 UNc I N

where we have taken into account from the factor graph that y, is independent of all
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Y-2 = 2  y-1 = 2  yo = 2

Y2 = Y=3 = 1

y1 = ?

Figure 4-2: A simple interpolation problem where yi must be interpolated from yo
and Y2. Realistically, y, will lie somewhere between 1 and 2. Using Equation 3.1, we
will show how the setting of a influences the value of yi.

Figure 4-3: Factor graph for the interpolation problem in Figure 4-2. The circle
nodes represent the random variables and the solid squares represent the derivative
statistics constraint. Here, the shaded nodes indicate observed values.

the other nodes given yo and y21 .

Examining Equation 4.7, shown in Figure 4-4 for different settings of a, reveals

that an extremum of Pr(y 1|yo, Y2) will occur at yi = 1.5, regardless of the value of

a. For a < 1, the extremum will be a local minima, causing the most probable

value of yi to be either 1 or 2. For a > 1, Pr(y, = 1. 5 yo, y2) will be the global

maximum, making it the best estimate for yi. The fact that a < 1 for natural images

is important because it imposes a "sharpness prior". If the distribution is sparse, it

is preferable to have a single strong derivative, which would appear as a strong edge

in an image, rather than a pair of smaller derivatives, which would appear as a fuzzy

edge.

'Note that in general spatially adjacent bandpass filters are actually not independent [5]. Here,
we make a variational approximation [20] to the true probability distribution.
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a = 1.4
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a = 1.0

a = 0.8

a = 0.6

0

Y1

Figure 4-4: Each curve represents the probability of yi for the corresponding setting
of a. For a > 1, the most likely values of yi is 1.5, leading to a softer image edge.
For a < 1, y, is most likely 1 or 2, either of which gives a sharper edge transition.

4.2 Formulating the Super Resolution Probability

Distribution Function

To do super resolution, we again consider the techniques from Section 4.1 to incorpo-

rate the natural image prior and local constraints in the graphical model framework.

Here, we define the local constraint based on the system diagram in Figure 1-2. We

want the error between the low resolution image and the decimated high resolution

image, which we call the reconstruction error, to be minimized. For this, we as-

sume a Gaussian distribution on the error. So, the set of local constraints on the

reconstruction error is given by:

1FR = ikii, yi) Oi(Ji, yi) = exp I ( Y*i Yi (4.8)

where yi is a low resolution pixel, -i is a patch of spatially adjacent high resolution

pixels that correspondingly subsamples to yi, W is a lowpass filter, and UR is the
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standard deviation parameter.

With the set of local and natural image prior constraints in hand, we get the

overall posterior distribution:

Pr ({x} | {y}) = O f (4'i) fi V4i i, yi) (4.9)
C Vi(-)E'FN Vi(-)ETR

where {x} are the latent high resolution pixels, {y} are the observed low resolution

pixels, and C is a normalization constant. "'N and XPR spans over the entire low and

high resolution images.

Let us consider the simple case of zooming by a factor of two. We start by

converting Equation 4.9 into a factor graph (we describe the factor graph for the

one-dimensional case in Section 4.3 and the two-dimensional case in the Appendix)

and specifying the message propagation equations. To solve the factor graph, we use

the max-product belief propagation (BP) algorithm [32] to compute the maximum

a posteriori (MAP) estimate of the random variables. Considering all possible pixel

intensities is intractable. To overcome this, we assume for each low resolution pixel

a small set of candidate 2 x 2 high resolution patches. The sets of patches for each

spatial loacation are the possible states of the latent variables, thereby making the

problem tractable. We discuss the tractability issue and how to obtain candidate

patches in Chapter 5.

4.3 One-Dimensional Super Resolution Example

To illustrate how to represent Equation 4.9 as a factor graph, let us consider the

one-dimensional case. Figure 4-5(a) shows the factor graph, where the transparent

circles represent random variables (xi are the latent variables and yj are the observed

variables), the solid squares represent the natural image prior constraint, and the

solid circles represent the reconstruction constraint. We will assume a derivative

kernel of [-1, 0, 1] and a three-tap Gaussian kernel. For tractability, we assume that

each latent variable represents a patch of two pixels, as illustrated in Figure 4-5(e).
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We notate the two pixels a and b of patch candidate j of latent node xi in our model

as x and x respectively, shown in Figure 4-5(f).

To derive the message-passing equations for the factor graph, we need to con-

sider three cases: messages passed from latent node to constraint node, derivative

constraint node to latent node, and reconstruction constraint node to latent node,

illustrated in Figure 4-5(b)-(d). Let yu be an S-tuple representing messages passed

between latent node i and a constraint node, where S is the total number of states for

latent node i. Each component of pi corresponds to one of the S states of node i. To

compute the message sent from latent node xi at a particular setting to a neighboring

constraint node, we take the product of all incoming messages at that setting of xi

except from the target constraint node. Using Figure 4-5(b), we write this explicitly

as follows:

p)(xi ) <- /t)(xi jp t(xi jP~( xi ). (4.10)

To compute the message sent from a derivative constraint node to a latent node

xj+1 at a particular setting, we incorporate the natural image prior, as discussed in

Section 4.1. Using Figure 4-5(c), the message is computed as follows:

1P1 (xi+,) <- ma p~ (Xj) fjexp - 1 .P (4.11)
pEja,b} -,(I ~+ )C

To compute the message sent from a reconstruction constraint node to a latent node

xj+ 1 at a particular setting, we enforce the high to low resolution constraint, as

discussed in Section 4.2. Using Figure 4-5(d), the message is computed as follows:

(t+1) t)1 WTX' - yi) 2
-i+1 <-max t) (xi) exp - (4.12)

Xi 2 UR

where w is a three-tap Gaussian kernel and x' = (x?, xa, i+1T. For the two-

dimensional message propagation equations, see the Appendix.
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Figure 4-5: (a) Factor graph for ID super resolution example. The random variables
are represented by the transparent nodes where the xi are the latent variables and the
yj are the observed variables, the solid squares represent the derivative constraint, and
the solid circles represent the reconstruction constraint. In (b)-(d) we show message
propagation for the three possible cases: (b) latent node to constraint node; (c)
derivative constraint node to latent node; (d) reconstruction constraint node to latent
node. The messages are computed via Equations 4.10, 4.11, and 4.12 respectively. In
all of these graphs, it is important to note that the latent nodes xi represent patches,
not individual pixels. In (e), we pictorally show that for a given latent node, there
are S candidate patches. In (f), we show in detail the two pixels a and b of a patch
candidate for random variable xi.
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Chapter 5

Obtaining Candidates

In Chapter 4, we showed how to combine the natural image prior with the graphical

model framework to do super resolution. While representing the posterior distribu-

tion in a graphical model and deriving the message propagation equations, we were

extremely careful in the description of the latent variables. For the case of zooming

by a factor of two, we said that each latent variable has S states and that each state

corresponds to a 2 x 2 patch of pixels. In this chapter, we motivate the use of patches

for the latent variables and show how to obtain a small set of S candidate patches

for each latent variable.

5.1 Motivation

The graphical models that we use require a discrete representation of the latent

variables. For the posterior distribution given in Equation 4.9, we could have easily

defined each latent variable to correspond to a single pixel in the high resolution

image. If we use the common discretization of pixel intensities, then each latent

variable would have 256 states. With this, a problem in complexity arises.

Consider directly representing the reconstruction constraint in Equation 4.9 as

a factor graph, where each latent variable corresponds to a single pixel in the high

resolution image. For the two-dimensional case using a 3 x 3 Gaussian kernel W, this

is illustrated in Figure 5-1(a) with message update equation:
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p19(xg) +-- max ... max pi1(xi) .. -q - g) exp - '_) (5.1)
X1 X8 2 UR

where:

X1 X4 x7

x 2 x 5 x 8  (5.2)

X3 X6 X9

The time-complexity of this update equation is O(S9), where S = 256 in this case.

The complexity gets much worse if we consider lowpass kernels requiring larger spatial

support.

If we use 2 x 2 paches of pixels, then we get the factor graph shown in Figure 5-1(b)

with message update equation:

P4(X4) +-max max max p 1 (x1)P2 (x 2 )p 3 (x 3 ) exp (1 W*X - (5.3)
X1 X2 X3 2 UR

where:

=j X~ b~ X b (5.4)

The time-complexity of this update equation is O(S4). However, by grouping pixels

into 2 x 2 patches we get 2564 possible patches for each latent variable. It is desirable

to somehow significantly reduce the number of states per latent variable while still

obtaining a good solution.

5.2 Learning Interpolators

Freeman et al. reduce the number of states by choosing a small number of plausible

patches for each latent variable [11]. Local image information is used to select a set of
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Figure 5-1: (a) Factor graph for the reconstruction constraint of Equation 4.9, assum-
ing that each latent variable corresponds to a single pixel. If the common discretiza-
tion of pixel intensities is used, then there are S = 256 states for each latent variable.
The time-complexity for message passing in this graph is O(S9 ) (see Equation 5.1).
(b) Factor graph for the reconstruction constraint of Equation 4.9, assuming that
each latent variable corresponds to a 2 x 2 patch of pixels. The time-complexity for
message passing in this graph is O(S4) (see Equation 5.3). However, there are now
S = 2564 states. This motivates us to find a small set of candidate patches for each
latent variable.
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candidate patches for each location in the image. A database storing the local image

information and the corresponding hidden image data is built a priori from a set of

training images. To obtain the set of candidate patches, the database is searched and

the top S candidates matching the local image information is used.

Two issues arise in obtaining candidates using a database. First, we must store the

database of local and hidden image information pairs. To have enough variability in

the solution, the database must be large and somewhat representative of the solution

space. Second, we must search this database in an efficient manner to draw the top

S candidates.

Instead of drawing high resolution patch candidates from a large database, we

propose generating them directly from local information in the low resolution image.

A set of learned functions generate high resolution patch candidates from a small

patch of low resolution pixels1 . Thus, given the low resolution image information y

around some point, the high resolution candidate f(y) at that point is modeled as a

linear function of y:

f(y) = Ty (5.5)

where T is a matrix relating the low-resolution image information to a candidate

high-resolution patch2 . To generate multiple candidates, we find a set of matrices,

T, ... Ts, each of which interpolates the same observed information to a different

candidate for the latent variable. This is illustrated in Figure 5-2(b).

Given a training set of low resolution patches Y = {Y1, . .. , YN} and the corre-

sponding high resolution patches X = {x1,... , XN}, the interpolators are found via

a simple EM algorithm:

1. Use k-means clustering to initially assign each training example pair (Xi, yi) to

one of S clusters.

'These local functions can be seen as mapping the low resolution image data to the high resolution
"scene data" [44].

2 Although not used to produce the results in this thesis, non-linear functions can be computed
similarly by expanding y to include non-linear functions of the image data, such as polynomials.
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Figure 5-2: (a) An example of a simple factor graph. (b) The xi nodes in the graph
represent latent variables having groups of pixels, not single pixels, as states. In
this graph, each candidate state of a node represents a patch of four pixels. These
candidate patches are computed from local image data by a set of different linear
regressions, fi() ... fs(-

2. For each cluster j = 1... S, set Tj to be the least-squares solution to X3 =

TjYj, where Xj and Yj are each matrices stacked with all of the training

examples assigned to cluster j. Note that if there are k examples in cluster j,

then Xj and Yj will each have k columns.

3. Assign each training example pair (xi, yi) to the cluster where the corresponding

Tjy best predicts xi.

4. Repeat steps 2 and 3 until the reconstruction error ES I l ij - TjY | reaches

the desired threshold.

By training S interpolators, we no longer need to store a large database of patches

or search the database to obtain S candidates. We greatly reduce the storage require-

ments and the time to obtain candidates.

For super resolution, we empirically found that learning 16 interpolators using

3 x 3 low resolution patches will suffice. Figure 5-3 shows the outputs of the trained

interpolators on a small low resolution patch. We see that the set of interpolators

can generate a variety of high resolution patches.
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Figure 5-3: Two 3 x 3 low resolution patches and their corresponding 2 x 2 high
resolution patch candidates. Notice that for each low resolution patch (the local
information), a range of possible high resolution candidates are generated.
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Chapter 6

Performing Super Resolution

In this chapter, we outline the algorithm by using the techniques developed in Chap-

ters 4 and 5. We then demonstrate the algorithm and compare the results against

other algorithms.

6.1 Outline of Algorithm

With the message-passing equations in hand, we can now describe the algorithm for

super resolution. We follow the procedure as outlined in Section 5.2 to produce can-

didate patches, run BP to find the candidates with highest belief, and then construct

the output image. The overall algorithm proceeds as follows:

1. For each pixel p in the low resolution image:

(a) Extract the 3 x 3 window of pixels centered at p. This is the local evidence.

(b) Vectorize the pixels in the 3 x 3 window to form 1.

(c) Using the set of trained linear interpolators T1 ... Ts and 1, linearly inter-

polate to obtain a set of high resolution candidate patches h1 ... hs.

2. With the candidate high resolution patches and observed low resolution image

in hand, run BP using the two-dimensional message-passing equations in the

Appendix.
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03-

6 7 8 9

Figure 6-1: Gallery of test images used in this paper. All images are of size 256 x 256,
with the exception of image 5, which is of size 128 x 128.

3. For each node, insert into the corresponding position the high resolution patch

with the highest belief.

We train the set of linear interpolators by considering a set of natural images. We

use a 3 x 3 Gaussian kernel and subsample to get a low/high resolution pair. We

then extract for each low resolution pixel the corresponding 3 x 3 low resolution local

evidence patch and 2 x 2 high resolution patch. With these low and high resolution

patches, we train the set of linear interpolators as outlined in Section 5.2.

For the experiments in this paper, we set a = 0.7, UN = 1, and UR = 0.01 and

ran BP for 5 iterations. For training, nine 432 x 576 pixel grayscale natural images

were used, generating roughly 500,000 low/high resolution patch pairs, and 16 linear

interpolators were trained.

6.2 Results

To evaluate our super resolution algorithm, we (1) decimated a test image by filtering

with a 3 x 3 Gaussian kernel and subsampled as described above and (2) super resolved

back to the original dimensions. We compared the natural image prior algorithm

against the original image, bicubic interpolation, Freeman et al. fast example-based

super resolution algorithm [10], Photoshop Altamira plug-in [1], and Greenspan et al.

nonlinear enhancement algorithm (using band-pass filtering, c = 0.4, and s = 5) [13].
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(a) Original (b) Bicubic

(d) Nonlinear
hancement

en- (e) Example-based (f) Natural
prior

Figure 6-2: 128 x 128 textured region cropped from image 2, decimated to 64 x 64 and
then super resolved. (a) True high resolution; (b) Bicubic interpolation; (c) Altamira;
(d) Greenspan et al. nonlinear enhancement; (e) Freeman et al. example-based;
(f) our natural image prior based algorithm. Notice that our natural image prior
algorithm clearly gives a sharper image than the bicubic interpolation and Altamira
algorithms. Also, the example-based algorithm produces noisy artifacts, which our
algorithm overcomes. The nonlinear enhancement algorithm produces a sharp image
as well, but at the expense of "haloing" artifacts.
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(a) Original (b) Bicubic

(d) Nonlinear (e) Example-based (f) Natural image
enhancement prior

Figure 6-3: 128 x 128 bar region cropped from image 1, decimated to 64 x 64 and
then super resolved. (a) True high resolution; (b) Bicubic interpolation; (c) Altamira;
(d) Greenspan et al. nonlinear enhancement; (e) Freeman et al. example-based; (f)
our natural image prior based algorithm. As in Figure 6-2, our algorithm produces a
sharp image with minimal noise and "haloing" artifacts.
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(a) Original (b) Bicubic

(d) Nonlinear (e) Example-based
enhancement

(f) Natural
prior

Figure 6-4: 128 x 128 region cropped from image 3, decimated to 64 x 64 and then
super resolved. (a) True high resolution; (b) Bicubic interpolation; (c) Altamira; (d)
Greenspan et al. nonlinear enhancement; (e) Freeman et al. example-based; (f) our
natural image prior based algorithm.
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(a) Original (b) Bicubic

(d) Nonlinear
enhancement

(e) Example-based (f) Natural
prior

Figure 6-5: 128 x 128 region cropped from image 4, decimated to 64 x 64 and then
super resolved. (a) True high resolution; (b) Bicubic interpolation; (c) Altamira; (d)
Greenspan et al. nonlinear enhancement; (e) Freeman et al. example-based; (f) our
natural image prior based algorithm.
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(c) Altamira

(d) Nonlinear (e) Example-based
enhancement

(f) Natural
prior

Figure 6-6: Image 5, decimated to 64 x 64 and then super resolved. (a) True high
resolution; (b) Bicubic interpolation; (c) Altamira; (d) Greenspan et al. nonlinear
enhancement; (e) Freeman et al. example-based; (f) our natural image prior based
algorithm.
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(c) Altamira

(d) Nonlinear
enhancement

(e) Example-based (f) Natural
prior

Figure 6-7: 128 x 128 region cropped from image 6, decimated to 64 x 64 and then
super resolved. (a) True high resolution; (b) Bicubic interpolation; (c) Altamira; (d)
Greenspan et al. nonlinear enhancement; (e) Freeman et al. example-based; (f) our
natural image prior based algorithm.
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(a) Original (b) Bicubic

(d) Nonlinear
enhancement

(e) Example-based (f) Natural
prior

Figure 6-8: 128 x 128 region cropped from image 7, decimated to 64 x 64 and then
super resolved. (a) True high resolution; (b) Bicubic interpolation; (c) Altamira; (d)
Greenspan et al. nonlinear enhancement; (e) Freeman et al. example-based; (f) our
natural image prior based algorithm.
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(a) Original (b) Bicubic

(d) Nonlinear
enhancement

(e) Example-based (f) Natural
prior

Figure 6-9: 128 x 128 region cropped from image 8, decimated to 64 x 64 and then
super resolved. (a) True high resolution; (b) Bicubic interpolation; (c) Altamira; (d)
Greenspan et al. nonlinear enhancement; (e) Freeman et al. example-based; (f) our
natural image prior based algorithm.
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(a) Original (b) Bicubic

(d) Nonlinear (e) Example-based (f) Natural image
enhancement prior

Figure 6-10: 128 x 128 region cropped from image 9, decimated to 64 x 64 and then
super resolved. (a) True high resolution; (b) Bicubic interpolation; (c) Altamira; (d)
Greenspan et al. nonlinear enhancement; (e) Freeman et al. example-based; (f) our
natural image prior based algorithm.
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(c) Altamira

(d) Nonlinear
enhancement

(e) Example-based (f) Natural image
prior

Figure 6-11: 128 x 128 region cropped from image 10, decimated to 64 x 64 and then
super resolved. (a) Tue high resolution; (b) Bicubic interpolation; (c) Altamira; (d)
Greenspan et al. nonlinear enhancement; (e) Freeman et al. example-based; (f) our
natural image prior based algorithm.
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(f) Natural image
prior

Figure 6-12: 128 x 128 synthetic font image (not included in the test gallery), deci-
mated to 64 x 64 and then super resolved [MSE in brackets]. (a) True high resolution;
(b) Bicubic interpolation [0.0345]; (c) Altamira [0.0294]; (d) Greenspan et al. nonlin-
ear enhancement [0.0740]; (e) Freeman et al. example-based [0.0599]; (f) our natural
image prior based algorithm [0.0133]. As in Figures 6-2 and 6-3, we see that our
algorithm produces a sharp result. Moreover, notice that the nonlinear enhancement
algorithm has significant "haloing" artifacts around the fonts. These artifacts do not
appear in our outputs.

We tested our algorithm on the set of images shown in Figure 6-1, none of which were

used for training.

A comparison of the outputs for the different super resolution algorithms are

shown in Figures 6-2 through 6-12. Here, we show cropped sections of two natural

images from the test gallery, in addition to a synthetic image of fonts. In Figure 6-

13, we show the mean-squared error (MSE) of the images in the test gallery for the

different super resolution algorithms. Notice that the presented algorithm results in

the lowest MSE for all of the test images, followed by the Altamira algorithm.
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Figure 6-13: Plot of mean-squared error (MSE) for super resolution. Notice that our
natural image prior based algorithm has the lowest MSE in comparison to the other
methods shown here. While MSE is not always a good measure of image quality, for
this problem we feel the MSE correlates reasonably well with the image quality for
the different methods, as shown in Figures 6-2, 6-3, and 6-12.

In all of the images, the bicubic-interpolated method results in overly smooth out-

puts. Our method clearly outperforms this, producing sharper results. The example-

based algorithm produces a sharp image as well, but at the expense of perceptually

distracting artifacts. This is due to the database of patches that the example-based

method uses to obtain candidates for each latent node. Since the database comprises

patches that directly come from a set of training images, the patches tend to be

noisy and dependent on the content of the training images, which our algorithm over-

comes through the linear interpolators. The interpolators reduce the noise, but still

provide enough variability in the higher frequencies. Moreover, our method is more

efficient in time and memory usage since we do not have to search or store a database

of patches-we simply interpolate. The Altamira algorithm produces sharp images,

but appears to over-compensate in certain areas, resulting in a higher error. The

Greenspan et al. nonlinear enhancement sharpens the edges, but produces ringing

artifacts as can be seen in the outline of the fonts in Figure 6-12(d).
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Chapter 7

Conclusion

In this chapter, we review the contributions of this thesis and suggest several avenues

for future work.

7.1 Contributions

In this thesis, we outlined a general framework for incorporating the statistics of

derivatives into graphical models that is used in the field [24], and then applied this

framework to the problem of super resolution. For tractability, we formulated a novel

approach for generating latent candidate values.

7.1.1 Application of Graphical Models Using Derivative Statis-

tics to the Super Resolution problem

We showed that localized, oriented, bandpass filters applied to natural images have

well-observed and robust statistics. We then showed how to incorporate the statistics

of the derivative filter into factor graphs to constrain latent pixel values. The power of

this incorporation was demonstrated on a simple interpolation problem, which showed

how the framework biased the solutions. We then applied this framework to the super

resolution problem by introducing, in addition to the derivative statistic constraints,

constraints that cause the inferred high resolution image to decimate to the observed
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low resolution image. For tractability reasons, we grouped pixels into patches and

formulated the factor graph to infer the best patch out of a small set of candidate

patches for each latent variable. We demonstrated the resulting super resolved images,

which have sharp edges and few visual artifacts, againsts several existing algorithms.

We find that our algorithm competes well overall in visual quality and with respect

to reconstruction error.

7.1.2 Learned Interpolators to Generate Candidates

To generate a small, well-representative set of candidate patches, we formulated a

novel technique that uses a set of interpolators to interpolate locally-observed infor-

mation to get latent information. We train these interpolators via an EM algorithm

on a set of locally-observed, latent information pairs. The interpolation technique is

much more efficient than existing search-based methods, while still providing quality

candidate sets.

7.2 Perceptual Quantification

While the images produced by the algorithm presented in this thesis have the lowest

overall error compared to the other competing algorithms presented, this measure-

ment may not translate to perceptual superiority. Psychophysical experiments, which

compare various competing algorithms, need to be done. The results of these exper-

iments may provide insights into improving the overall algorithm.
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Appendix A

Two-Dimensional Message-Passing

Equations

Here, we give the two-dimensional message-passing equations for the super resolu-

tion problem. The natural image prior and reconstruction constraints are shown

graphically in Figure A-1. For the natural image constraint, we use the derivative

kernel [-1, 0, 1] and apply it in four directions (horizontal, vertical, and two diagonal

directions) as shown in Figure A-1(a)-(d). The propagation equation is given by:

A2 (X2) <- max pid (xi) fj exp 1'p c) -zi (A. 1)
pE{a,b,c,d} 2 UN

The reconstruction constraint is shown graphically in Figure A-1(e) and is given by

the propagation equation:

p~+1 (X4) +- max max max pit) (xi)pf (W)p (W 1x W * X' - y1 A2

X X2 X3 W 2 a 3 x 2 GR aAd:

where W is a 3 x 3 Gaussian kernel and:
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Figure A-1: (a)-(d) Factor graph segment for the directional derivative constraint
(horizontal, vertical, and two diagonal directions respectively). (e) The graph segment
for the reconstruction constraint. In each of the segments, it is important to remember
that the latent nodes xi represent patches, not individual pixels. In (f), we pictorally
show that for a given latent node, there are S candidate patches. In (g), we show in
detail a given patch candidate for xi.
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