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Abstract

Network coding generalizes network operation beyond traditional routing, or store-
and-forward, approaches, allowing for mathematical operations across data streams
within a network. This thesis considers a number of theoretical and practical net-
working issues from network coding perspectives.

We describe a new distributed randomized coding approach to multi-source mul-
ticast network scenarios, in which one or more, possibly correlated, sources transmit
common information to one or more receivers. This approach substantially widens
the scope of applicability of network coding to three new areas. Firstly, we show that
it achieves robust network operation in a decentralized fashion, approaching optimal
capacity with error probability decreasing exponentially in the length of the codes.
Secondly, in the area of network security, we show how to extend this approach to
obtain a low-overhead scheme for detecting the presence of faulty or malicious nodes
exhibiting Byzantine (arbitrary) behavior. Thirdly, we show that this approach com-
presses information where necessary in a network, giving error bounds in terms of
network parameters.

Another area of our work develops an information theoretic framework for network
management for recovery from non-ergodic link failures, based on the very general
network coding concept of network behavior as a code. This provides a way to
quantify essential management information as that needed to switch among different
codes (behaviors) for different failure scenarios. We compare two different recovery
approaches, and give bounds, many of which are tight, on management requirements
for various network connection problems in terms of network parameters.

Thesis Supervisor: Muriel M6dard
Title: Associate Professor
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Chapter 1

Introduction

1.1 Network coding

Network coding generalizes network operation beyond traditional routing, or store-

and-forward, approaches. Traditionally, coding is employed at source nodes for com-

pression of redundant information or to provide protection against losses in the net-

work; coding is also employed at the link level to protect against random errors or

erasures on individual links. The network's usual task is to transport, unmodified,

information supplied by source nodes.

Network coding, in contrast, treats information as mathematical entities that can

be operated upon, rather than as unmodifiable objects to be transported. It allows

interior network nodes to perform arbitrary operations on information from different

incoming links. Its interest is in network-wide effects arising from coding across

multiple links.

The first example highlighting the utility of network coding was given by Ahlswede

et al. [1]. Figure 1-1 shows their famous example of a network for which coding in

the interior of the network is necessary in order to achieve the maximum possible

multicast transmission rate.

This example opens up a rich field of study. This thesis examines the utility

of network coding beyond this type of application where coding is used to achieve

network capacity. We show that network coding opens up powerful new ways to

17
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Figure 1-1: An example of a network requiring coding to achieve capacity (the network
on the right, due to [1]) and a network which does not. Both networks consist of
directed unit capacity links, and a source node s multicasting the same information
to two receivers y and z. In the network on the left, no coding is required to multicast
at a rate of 2 bits per unit time. In the network on the right, however, the presence of
the bottleneck link from w to x necessitates coding on that link in order to achieve the
same multicast rate. The labels on each link represent the information transmitted
on that link in a scheme that achieves the maximum multicast rate of 2 bits per unit
time.

consider and approach a number of operational and theoretical networking issues.

1.2 Contributions

One area of contribution is a new distributed randomized coding approach to multi-

source multicasting, a rich family of networking scenarios which includes content

distribution to multiple receivers, as well as the reachback problem for sensor networks

in which multiple, possibly correlated, sources transmit to a receiver. This technique

offers a means of achieving, in decentralized settings, the optimal capacity (given

in [1]) achievable with centralized network coding.

In this approach, all nodes other than the receiver nodes perform random linear

mappings from inputs onto outputs over some field. The mappings at each node

are selected without coordination among nodes. To decode, the receivers need only

know the overall linear combination of source processes in each of their incoming

signals. Now it is relatively simple and inexpensive to communicate to the receivers

the aggregate effect of the various random code choices in the network, rather than

the individual random choices of every node. One possible method is to send this

18



information with each signal block or packet as a vector of coefficients corresponding

to each of the source processes, and have each coding node apply the same linear

mappings to the coefficient vectors as to the information signals. The required over-

head of transmitting these coefficients decreases with increasing length of blocks over

which the codes and network state remain constant.

This distributed randomized approach substantially widens the scope of applica-

bility of network coding to three new areas.

Firstly, it allows robust decentralized network operation, approaching optimal ca-

pacity with probability of unsuccessful transmission decreasing exponentially in the

length of the codes. This offers a number of advantages. The ability to achieve,

without coordination among nodes, the same transmission rates as with centralized

planning, can be useful in settings where maintaining coordination is expensive or

infeasible. Issues of stability, such as those arising from propagation of routing infor-

mation, are obviated by the fact that each node selects its code independently from

the others. The distributed nature of our approach also ties in well with consider-

ations of robustness to changing network conditions. We show that our approach

can take advantage of redundant network capacity for improved performance and

robustness.

Secondly, in the area of network security, we show how to extend this approach to

obtain a low-overhead scheme for detecting the presence of faulty or malicious nodes

exhibiting Byzantine (arbitrary) behavior.

Thirdly, we show that a randomized network coding approach compresses informa-

tion where necessary in a network, giving error bounds in terms of network parameters

that generalize known error exponents for linear Slepian-Wolf coding [9] in a natural

way.

Our results on distributed randomized network coding, more specifically, give a

lower bound on the probability of error-free transmission for independent or linearly

correlated sources, which, owing to the particular form of transfer matrix determinant

polynomials, is tighter than the Schwartz-Zippel bound [50] for general polynomials

of the same total degree. This bound, which is exponentially dependent on the code

19



length, holds for any feasible set of multicast connections over any network topology

(including networks with cycles and link delays). We further give, for acyclic net-

works, tighter bounds based on more specific network structure, and show the effects

of redundancy and link reliability on success probability. We illustrate some possible

applications with two examples of practical scenarios - distributed settings and online

algorithms for networks with dynamically varying connections - in which randomized

network coding shows promise of substantial benefits compared to routing-only ap-

proaches.

The addition of Byzantine modification detection capability is achieved by sending

a simple polynomial hash value with each packet or block. The scheme requires

only that a Byzantine attacker is unable to design and supply modified packets with

complete knowledge of other packets received by other nodes. Additional computation

is minimal as no cryptographic functions are involved. Detection probability can be

traded off against communication overhead, field size (complexity) of the network

code and the time taken to detect an attack.

For arbitrarily correlated sources, we consider the probability of decoding error

using minimum entropy and maximum a posteriori probability decoding. We give,

for two arbitrarily correlated sources in a general network, upper bounds on the

probability of decoding error at a receiver, in terms of network parameters. In the

special case of a Slepian-Wolf source network consisting of a link from each source to

the receiver, our error exponents reduce to the corresponding results in [9] for linear

Slepian-Wolf coding. The latter scenario may thus be considered a degenerate case

of network coding.

Our analysis of randomized network coding uses relations we establish between

multicast network coding and bipartite matching/network flows, leading to two al-

ternative formulations of the algebraic condition of [39] for checking the validity of a

linear network code. These new formulations draw precise relationships between net-

work coding and network flows, and illuminate the mathematical structure of linear

network codes. Besides their application in our analysis of randomized coding, these

results have also led to a substantially tighter upper bound than previously known

20



on the field size required for deterministic centralized network coding over general

networks.

Another area of contribution is in developing a theory of network management

that quantifies the management information needed fundamentally to direct recovery

from link failures. With a high degree of generality, we can think of network behavior

as being specified by a network code which gives the input-output relations of the

network nodes. We can then quantify essential management information as that

needed to switch among different codes (behaviors) for different failure scenarios. We

compare two different recovery approaches, and provide bounds, many of which are

tight, on management requirements for various network connection problems in terms

of basic parameters such as the number of source processes and the number of links

in a minimum source-receiver cut. Our results include a lower bound for arbitrary

network connections and an upper bound for multi-transmitter multicast connections,

for recovery using linear codes from all single link failures.

Parts of this work have appeared in [26], which introduced distributed randomized

network coding, [25], which presented connections with bipartite matching/network

flows and a new bound on required field size for centralized network coding, [31],

which generalized previous results to arbitrary networks and gave tighter bounds for

acyclic networks, [33] on the utility of network coding in dynamic environments, [32]

on Byzantine modification detection, [27] on network coding for arbitrarily correlated

sources, and [29, 28, 30] on network management.

1.3 Network coding background and related work

The field of network coding has its origins in the work of Ahlswede et al. [1] and Li

et al. [43]. Ahlswede et al. [1] show that coding within a network allows a source to

multicast information at a rate approaching the smallest minimum cut between the

source and any receiver, as the coding symbol size approaches infinity. Their example,

shown in Figure 1-1, demonstrates that this is not always possible without network

coding. Li et al. [43] show that linear coding with finite symbol size is sufficient for

21



multicast connections. Koetter and Medard [39] present an algebraic framework for

linear network coding extending previous results to arbitrary networks and robust

networking, and prove the achievability with time-invariant solutions of the min-cut

max-flow bound for networks with delay and cycles. Reference [39] also gives an

algebraic characterization of the feasibility of a multicast problem and the validity

of a network coding solution in terms of transfer matrices, which we show in [25]

has equivalent formulations related to bipartite matching and network flows. We

use this result in obtaining a tighter upper bound on the required field size than the

previous bound of [39], and in our analysis of distributed randomized network coding,

introduced in [26]. Concurrent independent work by Sanders et al. [59] and Jaggi

et al. [34] considers single-source multicast on acyclic delay-free graphs, showing a

similar bound on field size by different means, and giving centralized deterministic and

randomized polynomial-time algorithms for finding network coding solutions over a

subgraph consisting of flow solutions to each receiver. A tighter field size bound for the

case of two sources is given by Fragouli et al. [17], who consider network coding on two-

source multicast networks as a graph coloring problem. Various practical protocols

for and experimental demonstrations of randomized network coding [8] and non-

randomized network coding [66, 52] have also been presented. Deb and Medard [10]

present a gossip protocol using random linear coding.

A number of papers have considered the characteristics of network codes needed

for achieving capacity on different types of networks and connections. Lower bounds

on coding field size are presented by Rasala Lehman and Lehman [42] and Feder et

al. [16]. Reference [16] also gives graph-specific upper bounds based on the number of

"clashes" between flows from source to terminals. The need for vector coding solutions

in some non-multicast problems is considered by Rasala Lehman and Lehman [42],

Mddard et al. [49] and Riis [57]. Reference [49] also gives a coding theorem that

provides necessary and sufficient conditions, in terms of receiver entropies, for an

arbitrary set of connections to be achievable on any network. Dougherty et al. show

in [13] that linear coding is insufficient in general for non-multicast networks, and

in [12] that the existence of a solution in some alphabet does not imply the existence
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of a solution in all larger non-finite field alphabets. Li and Li [44] consider undirected

networks, showing that network coding does not increase throughput for a single

unicast or broadcast session, while in the case of a single multicast session, any such

increase in throughput is bounded by a factor of two.

Two other applications of network coding, error correction and protection against

wiretapping, have been considered by Cai and Yeung. In [4] they give bounds on the

sizes of information sources that can be transmitted with error-correcting network

codes. In [6] they present a sufficient condition and a construction for network codes

that prevent a wiretapper with access to a subset of links from obtaining information

about any transmitted messages.

Another line of investigation taken by [45, 65] looks at coding over networks with

link usage costs rather than link capacity constraints.

1.4 Thesis outline

In Chapter 2, we describe the basic algebraic model we use in our analyses. Chap-

ter 3 establishes connections between network coding and bipartite matching/network

flows. These connections are used in deriving a bound on required coding field size, as

well as in the analysis of Chapter 4, which presents a distributed randomized network

coding approach to multicasting in networks, focusing on the case of independent or

linearly correlated sources. In Chapter 5 we show how to extend this randomized

coding approach to detect Byzantine or faulty behavior in a network. The case of

arbitrarily correlated sources is analyzed in Chapter 6. Chapter 7 considers require-

ments on network management information for recovery from failures. We present

our conclusions and some directions for further work in Chapter 8.
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Chapter 2

Basic model

This chapter sets out our basic model and mathematical framework, which is essen-

tially based on that of [39]. The mathematical development of subsequent chapters

builds on the analysis of this chapter, though we will introduce in some cases special-

izations, extensions or modifications of the model described here.

2.1 Network model

A network is represented as a directed graph with v links (or edges) of unit capacity,

i.e. 1 bit per unit time, and r independent discrete random processes X 1, X 2,... , Xr,

each of unit entropy rate, observable at one or more source nodes. General networks

can be modeled to arbitrary accuracy by choosing a large enough time unit, and

by representing edges with larger capacities as parallel edges and sources of larger

entropy rate as multiple sources at the same node. We assume that all links have the

same delay, modeling links with longer delay as multiple links in series. In the case

that all links have zero delay, the network is considered delay-free; to ensure stability,

such networks are assumed to be acyclic.

There are d > 1 receiver nodes. The output processes at a receiver node 3 are

denoted Z(#3, i). A connection problem specifies, for each receiver, the subset of source

processes to be transmitted to that receiver. A multicast connection problem is to

transmit all the source processes to each of the receiver nodes.
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Link 1 is an incident outgoing link of node v if v = tail(l), and an incident incoming

link of v if v = head(l). We call an incident outgoing link of a source node a source

link and an incident incoming link of a receiver node a terminal link. Links 11 and 12

are incident if head(li) = tail(12 ) or head(12) = tail(li). Edge 1 carries the random

process Y(l). A path is a subgraph of the network consisting of a sequence of links

el, ... , ek such that ej is an incident incoming link of ei+1, and each node is visited

at most once.

The random processes Xj, Y(l), Z(#, i) generate binary sequences. We assume

that information is transmitted as vectors of bits. The length of the vectors is equal

in all transmissions, and the symbol timing on all links is synchronized.

2.2 Coding model

We consider here linear coding1 . In the basic scalar coding model, binary vectors of

length u are viewed as scalar elements of the finite field F 2 -. The random processes

Xj, Y(l), Z(O,3i) are thus represented as sequences Xi = {Xj,o,X, 1, .. .}, Y(l)

{Y(l), Y 1(l), .. .}, Z(0, i) = {ZO(0, i), Z1 (0, i), .. .} of symbols from F2 .-

Corresponding symbols from input and source sequences at a node are combined

linearly in the field F 2-, i.e. the signal Y(j) on a link j is a linear combination of

processes Xi generated at node v = tail(j) and signals Y(l) on incident incoming

links 1. For the delay-free case, this is represented by the equation

Y(j) = Ia ,Xj + fl, Y(l)
{i : Xi generated at v} head(i) = v}

and an output process Z(3, i) at receiver node 3 is a linear combination of signals on

its terminal links, represented as

Z(3, i) = b,3iY(l)
{l : head(l)=#3}

'which is shown in [43] to be sufficient for multicast.
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For multicast on a network with link delays, memory is needed at the receiver nodes,

but memoryless operation suffices at all other nodes [39]. The corresponding linear

coding equations are

Yt+ 1 () =

Zt+1(3, i) =

E
{i : Xi generated at v}

A1

a' 'j

Sb' 1 Ztu(01, i) +
u=0O

i't + E f1 ,jYt(l)
{1 : head(i) = v}

5 b 1 Y~(l )
{l : head(l)=3} u=O

where y represents the memory required. These equations, as with the random pro-

cesses in the network, can be represented algebraically in terms of a delay variable

D:

Y(j)(D)

Z(0, i)(D)

= S aijXi(D) +
{i Xi generated at v}

= >Z bQ,,Y(l)(D)
{l head(l)=O}

E
head(i) = v}

where

=Da',

A=o Du+lb'/

1 - E=0o Du+1b'

and

00

= Xi,tD'
t=O
00

= Yt(j)Dt,
t=o
00

E SZt (3,i) Dt,
t=o

Yo(j) = 0

Zo(3, i) = 0

The coefficients {ai,3 , f,, bp,3j E F 2u} can be collected into r x v matrices A = (aij)

and B) = (b ,j), and the v x v matrix F = (f1 ), whose structure is constrained by
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Y(1) Y(2)

Y(3) =a1 ,3X 1 + f 1 ,3Y(1)
+f 2,3 Y(2)

Figure 2-1: Illustration of linear coding at a node.

the network. Matrix A can be viewed as a transfer matrix from the source processes

to signals on source nodes' outgoing links, and B as a transfer matrix from signals

on terminal links to the output processes. F specifies how signals are transmitted

between incident links. For acyclic graphs, we number the links ancestrally, i.e. lower-

numbered links upstream of higher-numbered links, so matrix F is upper triangular

with zeros on the diagonal. A triple (A, F, B), where

B 1

[B

specifies the behavior of the network, and represents a linear network code.

The transfer matrix MO (A, F, B) describes the relationship between a vector of

source values [X 1 X 2 ... X,] and the corresponding output vector [Z,, 1 Z),2 ... ZO,,]

at a receiver node )3:

[X 1 X 2 .. Xr] MO(A, F, B) = [Z0,1 ZO,2 ... ZQ,r]

This transfer matrix MQ(A, F, B) is given by AGB/, where the matrix

G = (I -F)-1 = I + F + F 2 +... in the acyclic delay-free case 2

(I - DF)-1 = I + DF + D 2 F2 + ... in the case with delay3

sums the gains along all paths in the network [39].

2The sequence converges since F is nilpotent for an acyclic network.
3 The inverse exists since the determinant is a nonzero polynomial in D.
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Linearly correlated sources can be brought into the same mathematical framework

by considering unit source entropy and conditional entropy rates4 , and modeling such

sources as pre-specified linear combinations of underlying independent unit entropy

rate processes. Recovery of these underlying independent processes at the receivers

means recovery of the correlated source processes as well. We denote these underlying

independent processes by X 1 , X 2, .... X, to match our earlier notation.

4As with independent sources, a large class of such sources can be modeled by choosing a large
enough time unit and allowing for multiple sources at the same node.
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Chapter 3

Connections with Bipartite

Matching and Network Flows

In this chapter, we consider, from perspectives related to bipartite matching and

network flows, network coding for independent or linearly correlated sources over

arbitrary networks that may have cycles and link delays.

3.1 Main results and discussion

Reference [39] gives the following necessary and sufficient condition for a multicast

connection problem with independent or linearly correlated sources to be feasible (or

for a particular network code (A, F, B) to be a valid solution): that for each receiver

/3, the transfer matrix

MO(A, F, B) -fA(I - F)~1 Bo in the acyclic delay-free case

A(I - DF)~ B,' in the case with delays

mapping a vector of input values to the corresponding output vector at / has nonzero

determinant.

The following result, which we prove in Section 3.2, is an alternative formulation

of this condition that makes a connection with the Edmonds matrix [50] of bipartite

matching, and can be used to easily deduce various characteristics of the transfer
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matrix determinant. We use the notation of the previous section, where r is the

number of source processes, and v is the number of links in the network.

Theorem 1 (a) For an acyclic delay-free network, the determinant of the transfer

matrix M1 = A(I - F)-1 BT for receiver 3 in a network code (A, F, B) is equal to

AMiI = (--)r(v+1I) |M21

A 0
where M 2 = I- F B is the corresponding Edmonds matrix.

(b) For an arbitrary (possibly cyclic) network with unit delay links, the transfer matrix

A(I - DF)-B for receiver 3 in a network code (A, F, B) is nonsingular if and only

A 0
if the corresponding Edmonds matrix is nonsingular. 0

Theorem 1 shows the equivalence of the network coding transfer matrix formu-

lation and the Edmonds matrix formulation for checking if a bipartite graph has a

perfect matching, which is a classical reduction, illustrated in Figure 3-1, of the prob-

lem of checking the feasibility of an s - t flow [35]. This latter problem is a special

case of network coding, restricted to the binary field and to separate transmission of

different signals; it is interesting to find that the two formulations are equivalent for

the more general case of coding in higher order fields.

The combinatorial formulations of Theorem 1 and Theorem 3 below connect net-

work coding with network flows, providing more direct insights into how individual

code coefficients affect the overall network code, and making it easier to deduce various

characteristics of transfer matrix determinant polynomials without the complication

of dealing with matrix products and inversions. For instance, Theorem 1 sheds light

on the maximum exponent of a variable, the total degree of the polynomial, and its

form for networks with linearly correlated sources.

These new insights into the structure of the transfer matrix determinant allow

us to obtain two main results. One of them is Theorem 4 of Chapter 4, which uses

Theorem 1 to deduce the total degree of the transfer matrix determinant polynomial
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Figure 3-1: Example illustrating the reduction of a flow feasibility problem to a
bipartite matching problem. Each link in the flow feasibility problem on the left
is associated with one white bipartite node and one black bipartite node. Each
source process is associated with one white bipartite node (nodes 1 and 4 in this
example), and each output process with one black node (nodes 13 and 14 in this
example). Connections between bipartite nodes (shown by dashed lines) are made
between opposite-colored nodes of adjacent links and source/output processes.

for each receiver as well as the maximum exponent of each random coefficient, giving

a bound on randomized coding success rate that is tighter than the Schwartz-Zippel

bound for general polynomials of the same total degree. The other is a new upper

bound on required field size for a feasible network coding problem:

Theorem 2 For a feasible multi-source multicast connection problem with indepen-

dent or linearly correlated' sources on an arbitrary network (which may have cycles

and delay), there exists a solution in any finite field Fq where q is greater than the

number of receivers d. D

This substantially tightens the upper bound of q > rd given in [39], where r is the

number of processes being transmitted in the network. References [34, 59] indepen-

dently and concurrently showed the sufficiency of F, q > d for the acyclic delay-free

case.

'Section 2.2 describes our model of linearly correlated sources

33



For acyclic networks, Theorem 3 can be used in place of Theorem 1 to deduce many

of the same transfer matrix determinant properties. Theorem 3 further allows us to

tighten, for acyclic networks, the bound on randomized coding success probability in

Theorem 4. This is used in our analysis of randomized coding on grid networks in

Section 4.6.

Theorem 3 A multicast connection problem is feasible (or a particular (A, F) can

be part of a valid solution) if and only if each receiver 3 has a set H,3 of r incident

incoming links h1 , ... , h, for which

r
Afi. g(Ej) O 0

{ disjoint paths E,, Ej =1

Ei from outgoing link

li of source i to hi E 't}

where Af1,.,,1r} is the submatrix of A consisting of columns corresponding to links

{l,. .. ,l,}, and

g(s) feie 2 fe 2 ,e3 - - - fev_1 ,ek if k > 1

11 if k=1

is the product of gains on the path E consisting of links e1 < ... < ek. The sum is over

all flow solutions that transmit all source processes to links in H,3, each such solution

being a set of r disjoint paths each connecting a different source to a different link in

3.2 Proofs and ancillary results

The following proof is due to Jun Shi. Our original longer proof is given in Ap-

pendix A.

Proof of Theorem 1:

(a) Note that

I -A(I - F)-1 A 0 0 -A(I - F) B T

0 I I-F B3 I - F BT
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The first matrix, I A(I -F)- 1 , has determinant 1. So det A 0
0 I -F B T

0 -A(I - F)-'B T
equals det ( ] which can be expanded as follows:

I - F B13T

0 -A(I - F)-'B T
det

I - F B T

-A(I -F)BT 0
=(-1)'"detT

- (-1)"rdet(-AI - F)'B T)det(I - F)

- (-1)r(v+)det(A(I - F)-'BT)det(I - F)

The result follows from observing that det(I - F) = 1.

(b) By similar manipulations, we can show that

det A = (-1)r(v+l)det(A(I - DF)~1 BT)det(I - DF)
I -DF BTi

Since det(I - DF) is nonzero, the result follows.

Proof of Theorem 2: By Theorem 1, the form of the transfer matrix determinant

JAGB/T1 for any receiver 13 matches the form of the determinant of the Edmonds

matrix, in which no variable aj, fij or bi appears in more than one entry. Thus,

no product term in the determinant polynomial for any receiver contains a variable

axj, fij or bi raised to an exponent greater than 1, and the largest exponent of any

variable in the product P of d receivers' determinant polynomials is at most d.

We use an induction argument similar to that in [39] to show that there exists a

solution in Fq, q > d, such that P is nonzero. Consider one of the variables, denoting

it by 1, and consider P as a polynomial in the other variables (and D in the case

with delays), with coefficients from F 2 [61. Since these coefficients have maximum
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degree d, they are not divisible by q - 1. Thus, '1 can take some value in Fq such

that at least one of the coefficients is nonzero. Repeating this procedure for each of

the other variables gives the desired result. 0

Proof of Theorem 3: Recall that we assume an ancestral numbering for the links

of an acyclic graph, i.e. lower-numbered links upstream of higher-numbered links. For

1 < h' < h < v, let Sh',h be the set of all sets of integers {ei, e2, .. , ek} such that

h' = el < e 2 < ... < ek = h. Let H = {hi,..., h}, where 1 hi < ... < h, ! v.

Let a and c2 denote column j of A and AG respectively, and let GN denote the

submatrix consisting of columns of G corresponding to links in set H. It follows from

the definitions of transfer matrices A and G = I+ F + F 2 +... that ch, h = 1, ... , V,

can be computed recursively as follows:

ci = a, (3.1)
h-1

i=1

Intuitively, Ch represents the overall response on link h to the source signals, calculated

as the superposition of responses of upstream links i weighted by the corresponding

gains fi,h. Carrying out the recursive computation gives

h

ChZ Ei ES~)
i=1 EESi,h

Using this expression for each column of AG- and expanding the determinant linearly

in all columns, we obtain

AGI = l ... !hr

I I
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{(h' ,...,.h'r

1 :5 h' < hy
h' h' V i $ j}

{(h' ... ,h'r)

1 < h' 5 hj

' -i

!l... ahi JH S g (s)

r

!a/..ah S fg:)

Si-

E3 E Sh3,hj

The above expansion does not take into account dependencies among the columns

Ch. We can obtain an equivalent expression with fewer terms by using the following

alternative sequence of expansions which takes the dependencies into account. We

start by expanding the determinant of AGH linearly in the hth column using (3.2):

{i : 1 < i < hr,
i 4 hj, ... , hr-11

hi -.. Chr- !i fi,hr +hi ... -Chr-1hr

and proceed recursively, expanding each determinant linearly in its column ch whose

index h is highest, using (3.2) for h > 1 and (3.1) for h = 1. At each expansion stage,

the expression for AGu is a linear combination of matrix determinants. Each nonzero

determinant corresponds to a matrix composed of columns { ki . .. , , !,, .... 1k, }
such that ki f kj V i # j, and min(ki, ... , k,) > max(k,+,. .. , kr). Its coefficient in

the linear combination is a product of terms fi,h such that h > k+ 1,. . . , kr, and is

of the form ] j g(83 ) where Ej E Skj,,h3 and Si n 8y = 0 V i 4 j. By induction we

have that these properties hold for all nonzero determinant terms in the course of the

expansion. The expansion terminates when the expression is a linear combination of
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determinants of the form laa ... 91 , at which point we have

I I r

|AG-|= E !hI ... a, E rI .
{(h' ,...,.h'): I(e1,.- er)

1 <5 hj < hj, Ej E Sh'.,h ,
h' # h V i 5 j}

V i # j}

The result follows by noting that each set S = {ei, e2 , ... , ek} such that g(8) #
0 corresponds to a network path consisting of links ei, . . , ek; that the condition

E nlk= 0 for all j # k, 1 < j, k < r implies that the corresponding paths Si, ... ,. Er

are disjoint; and that ql .a.h. a,, is nonzero only when links hy are source links

carrying r independent signals.
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Chapter 4

Distributed randomized network

coding

Building on the mathematical groundwork of the previous chapter, we proceed to de-

scribe and analyze a distributed randomized network coding approach to transmitting

and compressing information in networks. In this chapter we consider multicasting

from one or more independent or linearly correlated sources over arbitrary directed

networks which may have cycles and link delays. We will consider the case of arbi-

trarily correlated sources in Chapter 6.

4.1 Model and approach

Our approach is based on the scalar finite field coding framework described in Chap-

ter 2. A sequence of bits generated at a source or transmitted on a link is grouped

into strings of equal length u, each representing a symbol in the finite field F2--

Nodes other than the receiver nodes independently and randomly select scalar linear

mappings from inputs to outputs in the field F2u, i.e. values for the code coefficients

{aij, fj } defined in Section 2.2 are selected uniformly at random from field F 2U.

The randomized network coding approach allows for some or all of the coefficients

{aij, ft,,} to be chosen randomly, as long as the fixed coefficient values preserve

feasibility. We denote by rq the number of links j with associated random coefficients
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{aij, fij}.

The aggregate effect of the random network coding must be communicated to

the receivers for each block of symbols that is coded differently. Such blocks could

correspond to different packets, or to longer sequences in relatively stable networks.

One simple approach is to send, with each block, a vector of finite field coefficients

each corresponding to a source process, and have each coding node apply the same

linear mappings to the coefficient vectors as to the data sequences. One could also

consider "sounding" the network by sending a canonical basis from the sources, an

approach akin to measuring an "impulse response".

A random network code is valid, or successful, if all receivers are able to reconstruct

the source processes. We use the conditions of Chapter 3 for checking the validity of

a network code.

4.2 Main results

Theorem 4 For a feasible multicast connection problem on an arbitrary network

with independent or linearly correlated1 sources, and a network code in which some

or all code coefficients are chosen independently and uniformly over all elements of a

finite field Eq (some coefficients can take fixed values as long as these values preserve

feasibility2), the probability that all the receivers can decode the source processes is at

least (1 - d/q)' for q > d, where d is the number of receivers and rq is the number of

links with associated randomized coefficients. L

The complexity of the code grows as the logarithm of the field size q = 2u, since

arithmetic operations are performed on codewords of length u. The error bound is on

the order of the inverse of the field size, so the error probability decreases exponentially

with the number of codeword bits u.

The bound of Theorem 4 is very general, applying across all networks with the

same number of receivers and the same number of links with independently chosen

'Section 2.2 describes our model of linearly correlated sources2 i.e. the result holds for networks where not all nodes perform random coding
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random linear mappings. Our next goal is to find tighter bounds by taking into

account more specific network characteristics. One such bound, for acyclic networks

with or without link delays, is based on a connection between randomized coding

success probability and network connection feasibility when links are independently

deleted with some probability.

Theorem 5 For a d-receiver multicast problem on an acyclic network with indepen-

dent or linearly correlated sources, the success probability of a random network code

in the field of size q is greater than or equal to the probability that the network con-

nections remain feasible after deleting each link of the original graph with probability

d/q.

The above bound is useful in cases where analysis of connection feasibility is easier

than direct analysis of randomized coding. We apply it to obtain the following result

showing how spare network capacity and/or more reliable links allow us to use a

smaller field size to surpass a particular success probability.

Theorem 6 For a multicast problem on an acyclic network with independent or lin-

early correlated sources of joint entropy rate r, and links which fail (are deleted from

the network) with probability p, let y be the minimum redundancy, i.e. deletion of

any y links in the network preserves feasibility. A random network code transmits all

source processes successfully to a particular receiver with probability at least

r+y XYP-iqP Lx P-iq)L )r+y-x

where L is the longest source-receiver path in the network.

We motivate our interest in randomized network coding with two examples of

practical advantages offered by this approach. The first is in distributed operation in

environments where coordination is infeasible or expensive. We consider communica-

tion on a grid network as a simple example, obtaining an analytical upper bound on

the performance of a distributed randomized flooding approach, which is exceeded by

our lower bound on the performance of randomized coding for modest code lengths.
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The second is in online operation in dynamic environments. As an illustration,

we compare, for dynamically varying connections on randomly generated graphs, dis-

tributed randomized coding with an approximate online Steiner tree routing approach

from [37] in which, for each transmitter, a tree is selected in a centralized fashion. The

high complexity of such a routing scheme requires a simulation-based approach. In

practice, an alternative to growing the field size (code length) for improving random-

ized coding success probability is to allow retrial of random codes in case of failure.

We find that for randomly generated graphs of 8 to 10 nodes, randomized coding with

4-5 bit code lengths and a limit of 3 re-tries per new connection generally performs as

well as, and in a non-negligible set of cases, better than the approximate Steiner-tree

routing scheme.

Details and proofs of these results are given in the following sections.

4.3 Delay-free Networks

We first analyze delay-free networks, which must be acyclic in order for all signals to

be well-defined. The analysis and results of this section apply also to acyclic networks

with delay that are operated in a burst-oriented [43], pipelined [59] or batch-like [8]

fashion, where information may be buffered or delayed so as to be combined with

other incoming information from the same batch. A cyclic graph with v nodes and

rate r may also be converted to an expanded acyclic graph with rv nodes and rate

at least (r, - v)r, communication on which can be emulated over K time steps on the

original cyclic graph [1].

Lemma 1 Consider a random network code (A, F, B) in which q links have associated

randomized coefficients. The determinant polynomial of the corresponding Edmonds

A 0
matrix I -F BT has maximum degree r7 in variable terms {ax,j, fi,3}, and is

linear in each of these variables.

Proof: Each term {axj, fij, bx,j } appears in only one entry of the Edmonds ma-

trix. Only the q; columns corresponding to links carrying random combinations of
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source processes and/or incoming signals contain variable terms {axj, fi }.

The determinant can be written as the sum of products of r + v entries, one from

each row and column. Each such product is linear in each variable term {axj, fi, },
and has degree at most 7 in these variables. 0

Lemma 2 Let P be a polynomial in F[ 1, 62...] of degree less than or equal to d77,

in which the largest exponent of any variable j is at most d. Values for 1, 2,... are

chosen independently and uniformly at random from Fq IF. The probability that P

equals zero is at most 1 - (1 - d/q) for d < q.

Proof: For any variable 1 in P, let d, be the largest exponent of '1 in P.

Express P in the form p = d P1 + R 1, where P is a polynomial of degree at most

d7 - d, that does not contain variable 1, and R1 is a polynomial in which the largest

exponent of 1 is less than di. By the Principle of Deferred Decisions, the probability

Pr[P = 0] is unaffected if we set the value of 1 last after all the other coefficients

have been set. If, for some choice of the other coefficients, P1 , 0, then P becomes a

polynomial in F[ 1] of degree dj. By the Schwartz-Zippel Theorem, this probability

Pr[P = 01Pi = 0] is upper bounded by dj/q. So

Pr[P =0] < Pr[P 1 # 0] + Pr[Pi = 0
q

= Pr[Pi = 0] 1 - i + d. (4.1)
q q

Next we consider Pr[P = 0], choosing any variable (2 in P and letting d2 be the

largest exponent of 2 in P1. We express P in the form P1 - d P2 + R 2 , where P2 is

a polynomial of degree at most dn - d, - d2 that does not contain variables 1 or 2,

and R 2 is a polynomial in which the largest exponent of 2 is less than d2. Proceeding

similarly, we assign variables i and define di and P for i = 3, 4,. .. until we reach

i = k where Pk is a constant and Pr[P = 0] = 0. Note that 1 < di d < q V i

and Et1 di < dq, so k < d77. Applying Schwartz-Zippel as before, we have for
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k' = 1, 2, ... , k

Pr[Pk' = 0] < Pr[Pk'+l = 0] (1 - dk'1 )+ dk'+1

q ) q

Combining all the inequalities recursively, we can show by induction that

Pr[P = 0] K
E5jdidj +

qd
_ d i
q qk

Now consider the integer optimization problem

Sd 
+ ldl 1 di

+ (- 1 qd

0 di < d < q V i E [1, d],
drj

di < dr, and di integer

whose maximum is an upper bound on Pr[P = 0].

We first consider the problem obtained by relaxing the integer condition on the

variables di. Let d* = {d*, . . . , d* } be an optimal solution.

For any set Sh of h distinct integers from [1, d?], let fsh = 1 -qi iESh, ij didj

.. + (-1)h h We can show by induction on h that 0 < fsh < 1 for any set Sh

of h distinct integers in [1, do].

If Ed d* < drj, then there is some d* < d, and there exists a feasible solution d

such that di = d* + c, 6 > 0, and dh = d* for h # i, which satisfies

=
Zh:A d* +

q
... + (-1h )

This is positive, contradicting the optimality of d*.

Next suppose 0 < d* < d for some d*. Then there exists some dj such that

0< dj < d, since if dj = 0 or d for all other j, then Ed d* f dr. Assume without

loss of generality that 0 < di < dj < d. Then there exists a feasible vector d such
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Maximize

subject to

Ed di
=1

(4.3)

f(d) - f(d*)



that dj=d*-E, dj=d +E, > 0, and d=d*, V h # i, j, which satisfies

((d! - d*)c - E 2 'ji~ d* 'j- d*i~
f(d) - f(T) = - ( - I - -hi . . + (-1)dq- 2 HhAi- h)q2 q qd?-

This is again positive, contradicting the optimality of d*.

Thus, Zq d* = d7 , and d* = 0 or d. So exactly r7 of the variables d* are equal to

d. Since the optimal solution is an integer solution, it is also optimal for the integer

program (4.3). The corresponding optimal f = - (R) d + ... + (-1)7-1 =

Proof of Theorem 4 for delay-free networks: To check if a network code (A, F, B)

transmits all source processes to receiver 3, it suffices to check that the determinant

of the corresponding Edmonds matrix is nonzero (Theorem 1). This determinant,

which we denote by P3, is a polynomial linear in each variable {a,, frj}, with total

degree at most 77 in these variables (Lemma 1). The product fl, PO for d receivers is,

accordingly, a polynomial in {ax,j, fi, } of total degree at most dT, and in which the

largest exponent of each of these variables is at most d.

Recall from the discussion of our model in Chapter 2 that linearly correlated

sources can be viewed as pre-specified linear combinations of underlying independent

unit entropy rate processes. Unlike the independent sources case where each nonzero

entry of the A matrix can be set independently, in this case there are linear depen-

dencies among the entries. The columns of the A matrix are linear functions Ek a, ,

of column vectors _z that represent the composition of the source processes at tail(j)

in terms of underlying independent processes. In distributed randomized coding, the

variables are chosen independently and uniformly at random over Fq.

It can seen from Lemma 1 that for any particular j, each product term in the

polynomial PO for any receiver 0 contains at most one variable aij = E 3,cJ . P

is thus linear in the variables aj, and also in variables fij, which are unaffected by

the source correlations. So any variable in the product of d such polynomials has

maximum exponent d.

Applying Lemma 2 gives us the required bound.
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For the single-receiver case, the bound is attained for a network consisting only

of links forming a single set of r disjoint source-receiver paths. U

These results for acyclic delay-free networks can be generalized to arbitrary net-

works, as we next show.

4.4 General Networks with Delays

In this section we consider general networks which may have cycles and link delays. As

noted earlier, acyclic networks with delay may be operated in a burst-oriented/batch-

like fashion which renders the analysis similar to that for acyclic delay-free networks.

Here we consider the general cyclic case without buffering, where information is con-

tinuously injected into the network. The coefficients of the linear combinations of

signals on each link then become polynomials in a delay variable, instead of scalars.

The number of terms of these polynomials that must be sent, and the memory re-

quired at the receivers, depend on the number of links involved in cycles (memory

registers) in the network. For less frequently changing networks, one efficient way

to communicate the code coefficients to the receivers following a change is to have a

phase in which the sources send a canonical basis through the network.

Lemma 3 The determinant polynomial of the Edmonds matrix [ I
I -DF B T

associated with a network code (A, F, B) in a network with delay is a polynomial in

delay variable D, whose coefficients have maximum degree 77 in variables {ax,, fij},
and are linear in each variable {ax,j, fi, }.

Proof: The proof is analogous to that of the corresponding result (Lemma 1) for

delay-free graphs. 0

Proof of Theorem 4 for general networks with delay: To check if a network code

(A, F, B) transmits all source processes to receiver #, it suffices to check that the

determinant of the corresponding Edmonds matrix is nonzero (Theorem 1). This

determinant is a polynomial in delay variable D, whose coefficients are linear in each
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variable {aj, fjj} and have degree at most r) in these variables (Lemma 3). The

rest of the proof is analogous to that of the corresponding result for acyclic delay-free

graphs given in the previous section. 0

While these results hold very generally, they perforce do not take advantage of

the particular network structure. However, it is intuitive that redundancy or spare

resources in the network should improve the performance of randomized network cod-

ing. The next section presents tighter, more specialized bounds for acyclic networks.

4.5 Connections with Link Reliability and Tighter

Bounds for Acyclic Graphs

In this section we prove Theorem 5 relating network coding performance and network

connection feasibility in the case of unreliable links, which is used in the proof of

Theorem 6 quantifying the benefit of spare capacity and effect of unreliable links.

While our results in previous sections have all extended to networks with cycles with

the introduction of link delays, our proof of Theorem 5 assumes an acyclic network,

with or without delays. We have not proven or disproven whether these results extend

to networks with cycles.

Lemma 4 Consider any link j. Let vi E (Fq[D])r be the vector of source coefficients

associated with the ith input to link j, and let Y(j) = Z2 Dfiv. be the vector associated

with link j. Consider a number of sets S1, S2,... ,Sn each consisting of d' arbitrary

rank-(r - 1) matrices in (Fq[D])rx(r1), such that for each matrix in Sk, 1 < k < n,

link j has among its inputs a signal whose associated vector is not in the column space

of the matrix.

Denote by Eskj the event that adding Y(j) as an additional column to each of the

matrices in Sk gives a full rank matrix. If coefficients fi are chosen uniformly and

independently from Fq, then Pr(Un 1 Es,j) > 1 - d'/q.

Proof: First consider any one of the sets Sk,, 1 < k' < n. Each entry of Y(j) is

a polynomial in Fq[D, fi, f2 ... .] that is linear in coefficients fi. The determinant of
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an r x r matrix which has Y(j) as one of its columns, and whose r - 1 other columns

are independent of coefficients fi, is thus linear in coefficients fi. The product of d'

such determinants has maximum degree d' in coefficients fi.

By the Schwartz-Zippel Theorem, this product is nonzero with probability at least

1 - d'/q. Thus, we have Pr(Es,,j) 1 - d'/q, which gives Pr(U' 1 Esj) > 1 - d'/q.

Proof of Theorem 5: Each receiver receives all processes successfully if the sub-

matrix of AG corresponding to r of its incident incoming links, or terminal links, has

full rank. The connection problem is feasible if and only if each receiver has a set of

r link-disjoint paths, one from each source.

Let j be the highest-indexed link in an ancestral ordering, where lower-indexed

links feed into higher-indexed links. Consider any given signals on all other links.

There are three cases:

Case 1: Regardless of the code coefficients for j, there cannot exist full rank sets

of r terminal links for each receiver.

Case 2: Regardless of the code coefficients for j, each receiver has a full rank set

of r terminal links.

Case 3: For some choice of code coefficients for link j, each receiver has a full

rank set of r terminal links, i.e. link j has among its inputs signals whose associated

vectors are not in the column space of the submatrices of AG corresponding to the

other terminal links of one or more receivers. Applying Lemma 4, we see that such a

choice is made with probability at least 1 - d'/q, where d' is the number of receivers

downstream of link j.

In all three cases, the probability that each receiver has a set of r terminal links

with a full rank set of inputs when code coefficients for link j are chosen randomly

is greater than or equal to that in the case where link j is deleted with probability

d/q > d'/q.

We next consider the problem where link j is deleted with probability d/q, and

random code coefficients are chosen for all other links. FRom our earlier arguments,

the probability that any set of r undeleted paths to each receiver has a full rank set

48



of inputs is less than or equal to the probability of success in the original network

coding problem.

We continue in this fashion, at each stage considering a new problem in which we

delete with probability d/q the next highest-indexed link as well as each previously

considered link. Random code coefficients are chosen for all other links. At each

stage, for any choice of surviving links among the set of randomly deleted links, the

problem is either infeasible, or there exist one or more sets of random coding links

incident to undeleted paths to each receiver which, if full rank, preserve feasibility of

the problem. The probability that any set of r undeleted paths to each receiver has a

full rank set of inputs is less than or equal to the probability of success in the original

network coding problem.

Note that these arguments hold for the case of independent or linearly correlated

sources. U

Proof of Theorem 6: For a given network of non-failed links, we find a lower

bound by considering the case of linearly correlated sources, which includes the case

of independent sources as a special case, and by analyzing the probability that the

connections remain feasible when links fail with probability 1/q, which by Theorem 5

gives us a lower bound on network coding success probability. The success probability

for a network whose links fail (i.e. are permanently deleted from the network) with

probability p is thus lower bounded by the probability that the connections remain

feasible when links fail with probability 1 - (1 - p)(1 - 1/q).

We show by induction on y that a network consisting of r + y disjoint source-

receiver paths of length L, any r of which can transmit all processes, has a success

probability that is less than or equal to that for any y-redundant network.

Consider a network g1 consisting of r + y disjoint source-receiver paths of length

L, any r of which can transmit all the processes. Let g2 be any other y-redundant

network with source-receiver paths of length at most L.

For i = 1, 2, we consider a set Pi of links in graph 9i forming r link-disjoint source-

receiver paths sufficient to transmit all processes to the receiver. We distinguish two

cases:
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Case 1: None of the links in Pi fail. In this case the connections are feasible.

Case 2: There exists some link ji E Pi that fails.

Then we have

Pr(success) = Pr(case 1) + Pr(case 2) Pr(successlcase 2)

= 1 - Pr(case 2) (1 - Pr(successjcase 2)).

Since P1 has at least as many links as P2 , Pr(case 2, i = 1) > Pr(case 2, i = 2).

Thus, if we can show that Pr(successlcase 2, i = 1) <_ Pr(successlcase 2, i = 2), the

induction hypothesis Pr(successli = 1) < Pr(successli = 2) follows.

For y = O,the hypothesis is true since Pr(successlcase 2) = 0 for i = 1, 2. For

y > 0, in case 2 we can remove link ji leaving a (y - 1)-redundant graph 9j. By the

induction hypothesis, the probability of success for g' is less than or equal to that for

912

Thus, g1 gives a lower bound on success probability, which is the probability that

all links on at least r of r + y length-L paths do not fail. The result follows from

observing that each path does not fail with probability ((1 - P)(1 - 1) ).

4.6 Benefits over not using network coding

Having obtained bounds on the performance of randomized network coding, we next

consider comparisons against approaches without network coding.

Network coding, as a superset of routing, has been shown to offer significant

capacity gains for specially constructed networks [59]. Apart from such examples,

however, the capacity gains of centralized network coding over centralized optimal

routing have not been as clear.

In this section, we illustrate two types of network scenarios in which distributed

randomized coding offers other useful advantages besides capacity gains. The first is in

distributed and varying environments where coordination and state maintenance may

be expensive or infeasible. An example for which theoretical analysis is tractable is a
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simple grid topology in the extreme case of no coordination or routing state. One way

to operate in this kind of environment is flooding. We give a theoretical comparison

of distributed flooding with and without coding for this topology. The second is in

networks with dynamically varying connections where online operation is desired. In

general, an exact theoretical analysis of optimal multicast routing is difficult, as it is

closely related to the NP-complete Steiner-tree problem. Thus, we use simulations

to compare network coding with an approximate Steiner-tree heuristic on randomly

generated networks.

4.6.1 Distributed Settings

In networks with large numbers of nodes and/or changing topologies, it may be ex-

pensive or infeasible to reliably maintain routing state at network nodes. Distributed

randomized routing schemes have been proposed [3, 60] which address this kind of

issue. However, not allowing different signals to be combined can impose intrinsic

penalties in efficiency compared to using network coding.

Consider for example the problem of sending two processes from a source node to

receiver nodes in random unknown locations on a rectangular grid network. Trans-

mission to a particular receiver is successful if the receiver gets two different processes

instead of duplicates of the same process. Suppose we wish to use a distributed trans-

mission scheme that does not involve any coordination among nodes. Then the best

each node can do is to locally try to preserve message diversity, for instance using the

following scheme RF (ref Figure 4-1):

" The source node sends one process in both directions on one axis and the other

process in both directions along the other axis.

" A node receiving information on one link sends the same information on its

three other links (these are nodes along the grid axes passing through the source

node).

" A node receiving signals on two links sends one of the incoming signals on one of
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its two other links with equal probability, and the other signal on the remaining

link.

For comparison, we consider the same rectangular grid problem with the following

simple random coding scheme RC (ref Figure 4-1):

" The source node sends one process in both directions on one axis and the other

process in both directions along the other axis.

" A node receiving information on one link sends the same information on its

three other links.

" A node receiving signals on two links sends a random linear combination of the

source signals on each of its two other links.3

X2

xl I xl

X2

Figure 4-1: Rectangular grid network with two processes X1 and X 2 originating at a
source node.

Theorem 7 For the random flooding scheme RF, the probability that a receiver lo-

cated at grid position (x, y) relative to the source receives both source processes is at

most
1 + 2xIHIYII+1(4min(IxIYD-1 - 1)/3

2jxj+Iyj-2

3 This simple scheme, unlike the randomized flooding scheme RF, leaves out the optimization that
each node receiving two linearly independent signals should always send out two linearly independent
signals.
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Receiver position (2,2) 1 (3,3) 1 (4,4) 1 (10,10) (2,3) (9,10) 1 (2,4) 1 (8,10)

RF actual 0.75 0.672 0.637 - 0.562 - 0.359 -
upper bound 0.75 0.688 0.672 0.667 0.625 0.667 0.563 0.667

F24 lower bound 0.772 0.597 0.461 0.098 0.679 0.111 0.597 0.126
RC F26 lower bound 0.939 0.881 0.827 0.567 0.910 0.585 0.882 0.604

F28 lower bound 0.984 0.969 0.954 0.868 0.977 0.875 0.969 0.882

Table 4.1: Success probabilities of randomized flooding scheme RF and randomized
coding scheme RC. The table gives bounds as well as some actual probability values
where exact calculations are tractable.

Proof: To simplify notation, we assume without loss of generality that the axes

are chosen such that the source is at (0, 0), and 0 < x < y. Let E,, be the event

that two different signals are received by a node at grid position (x, y) relative to the

source. The statement of the lemma is then

Pr[Ex,y] < (1 + 2 y-x+l( 4 x 1 - 1)/3) /2y+x-2 (4.4)

which we prove by induction.

Let y denote the signal carried on the link between (x -1, y) and (x, y) and let

Y, denote the signal carried on the link between (x, y -1) and (x, y) (ref Figure 4-2).

y- 1

y-2

Y x-I'y

x-2 x-1

YX'y-

x

Figure 4-2: Rectangular grid network. y denotes the signal carried on the link
between (x - 1, y) and (x, y), and Y Y denotes the signal carried on the link between

(x, y - 1) and (x, y).

Observe that Pr[Ex,yIEx_1,y] = 1/2, since with probability 1/2 node (x - 1, y)

transmits to node (x, y) the signal complementary to whatever signal is being trans-
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mitted from node (x, y-1). Similarly, Pr[Ex,yIEx,y_1] = 1/2, so Pr[E.,yjEx-i,y or Ex,]=

1/2.

Case 1: Ex_1,,_ 1

Case la: Yf_1,, # Yzy_. With probability i, Y_,y # Y'U_,,, resulting in

Ex,, U Ex-1,y. With probability I y_ = y_ resulting in E2' YxVy-l Y-,y rsutiginExy So

Pr[E,, Case la] = x 1 + I = .

Case 1b: YXl_ 1 ,y Y-1. Either Ex,y_1Ux-1,Y or Ex,y,1UEx1,,, so Pr[Ex,yj Case 1b] =

1/2.

Case 2: Ex_1,,_1

Case 2a: Yl_1, # 1. Either Ex,y-1U~x_1,y or Tx,_1 UEx_1,, so Pr[Ex,y Case 2a] =

1/2.

Case 2b: Y_ 1 ,y = Yy_ 1 = Y_ 1 ,_1. By the assumption of case 2, yv 1 is also

equal to this same signal, and Pr[Ex,yI Case 2b] = 0.

Case 2c: Y_1 = Y y-1 # Y_1,Y-1. Then Exy_1 and Ex-1,, so Pr[Ex,yI Case 2c] =

1/2.

So

Pr[Ex,ylEx_1,,_1]

Pr[Ex,ylEx-1,,_,]

< max (Pr[Ex,y I Case la], Pr[Ex,yI Case 1b])

- 3/4

K max (Pr[Ex,yI Case 2a], Pr[Ex,yI Case 2b], Pr[Ex,y Case 2c])

= 1/2
3 1-

Pr[Ex,y] < - Pr[Ex_1,,_1] + - Pr[Ex_1,,_14 2
1 1= - + - Pr[Ex_1,,_1
2 4

If (4.4) holds for some (x, y), then it also holds for (x + 1, y + 1):

1 1
Pr[Ex+,y+1] I + 1 Pr[Ex,y]

2 4
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I 1 (1 +2y-x+'(1+ 4 +... +4x--2)
2 4 2y+x-2

1 + 2y-x+1(4x - 1)/3
2Y+1+x+1-2

Now Pr[El,y,] = 1/2'-1, since there are y'-1 nodes, (1, 1), ... , (1, y'-1), at which one

of the signals being transmitted to (1, y') is eliminated with probability 1/2. Setting

y = y - x + 1 gives the base case which completes the induction. U

Theorem 8 For the random coding scheme RC, the probability that a receiver located

at grid position (x, y) relative to the source can decode both source processes is at least

(1 - 1/q)2 (x+y- 2 ).

Proof: We first establish the degree of the polynomial P for a receiver 3 at

(x, y), in the indeterminate variables fij. By Theorem 3, PO is a linear combination of

product terms of the form ailla 2 ,12 fi, 13 ... filk , where {l, ... , l} is a set of distinct

links forming two disjoint paths from the source to the receiver. In the random

coding scheme we consider, the only randomized variables are the fij variables at

nodes receiving information on two links. The maximum number of such nodes on a

source-receiver path is x + y - 2, so the total degree of PO is 2(x + y - 2). Applying

the random coding bound of Lemma 2 yields the result. U

Table 4.6.1 gives, for various values of x and y, the values of the success probability

bounds as well as some actual probabilities for randomized flooding when x and y

are small. Note that an increase in grid size from 3 x 3 to 10 x 10 requires only an

increase of two in codeword length to obtain success probability lower bounds close

to 0.9, which are substantially better than the upper bounds for routing.

4.6.2 Dynamically Varying Connections

Another scenario we consider is an online multi-source multicast problem in which

sources turn on and off dynamically, comparing distributed randomized coding to

an approximate online Steiner tree routing approach from [37] in which, for each

transmitter, a tree is selected in a centralized fashion.
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Multicast connection requests are presented and accommodated sequentially. Ex-

isting connections are not disrupted or rerouted in trying to accommodate new re-

quests. The algorithms are evaluated on the basis of the number of connections that

are rejected or blocked owing to capacity limitations, and the multicast throughput

supported.

For simplicity, we run our trials on directed acyclic networks, assuming that there

exist mechanisms, e.g. based on geographical position or connection information, to

avoid transmitting information in cycles. We also assume integer edge capacities and

integer source entropy rates.

The online routing algorithm we consider finds a multicast tree for each new

source using the Nearest Node First (NNF) heuristic for Steiner tree computation

from [37], which uses Dijkstra's shortest path algorithm to reach receiver nodes in

order of increasing distance from the source. Dijkstra's shortest path algorithm is

run until a receiver node is reached. The corresponding source-receiver path is added

to the Steiner tree and the costs of all the edges along this path are set to zero. The

algorithm is then applied recursively on the remaining receiver nodes.

4.6.3 Experimental setup

We run our trials on randomly generated geometric graphs. Test networks are gener-

ated with the following parameters: number of nodes n, number of sources r, number

of receivers d, transmission range p, maximum in-degree and out-degree i. The pa-

rameter values for the tests are chosen such that the resulting random graphs would

in general be connected and able to support some of the desired connections, while

being small enough for the simulations to run efficiently. For each trial, n nodes

are scattered uniformly over a unit square. To create an acyclic graph we order the

nodes by their x-coordinate and choose the direction of each link to be from the lower

numbered to the higher numbered node. Any pair of nodes within a distance p of

each other is connected by a unit capacity link, and any pair within distance p/v/2

of each other is connected by a link of capacity 2, provided this does not violate

the degree constraints. The receiver nodes are chosen to be the d highest numbered
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0

9

oo\

Figure 4-3: An example of a randomly generated network used in our trials. This
network was generated with parameters n = 10, s = 6, r = 2, i = 4, p = 0.6. Nodes
are labeled as circles, and the receivers are squares; thick lines denote links with
capacity two, and thin lines denote links with capacity one.

nodes, and r source nodes are chosen randomly (with replacement) from among the

lower-numbered half of the nodes. An example topology is given in Figure 4-3.

Each trial consists of a number of periods during which each source is either on

(i.e. is actively transmitting) or off (i.e. not transmitting). During each period, any

currently-on source turns off with probability po, and any currently-off source turns

on with probability po if it is able to reach all the receivers. A source that is unable

to reach all the receivers is blocked from turning on.

Initially all sources are off. For routing, in order for a source to turn on, it would

need to find a tree connecting it to all the receivers using spare network capacity

unreserved by other sources, and would then reserve capacity corresponding to the

tree. A source that turns off frees up its reserved links for new connections. For

coding, each network node that tries to turn on initiates up to three random choices

of code coefficients within the network. If the receivers are able to decode the new
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Table 4.2:
number of
maximum

A sample of results on graphs generated with the following parameters:
nodes n, number of sources r, number of receivers d, transmission range p,
in-degree and out-degree i. b, and b, are the rate of blocked connections

for routing and coding, respectively, and t, and t, are the corresponding throughputs.

Parameters Results
nodes n srcs s rcvrs d deg i range p prob po -- Network b J tr . tc

1 1.54 1.46 1.55 1.46
8 6 1 4 0.5 0.6 2 0.72 2.27 0.74 2.31

3 0.26 2.78 0.23 2.74
1 2.14 0.84 2.17 0.83

9 6 2 3 0.5 0.7 2 0.70 2.31 0.68 2.28
3 0.90 2.05 0.71 2.26
1 0.61 1.43 0.50 1.45

10 4 2 4 0.5 0.6 2 1.62 0.53 1.52 0.54
3 0.14 1.96 0.00 2.05
1 1.31 1.63 0.71 2.28

10 6 2 4 0.5 0.5 2 0.74 2.17 0.64 2.42
3 1.51 1.54 1.49 1.61
1 1.05 2.37 1.14 2.42

10 9 3 3 0.5 0.7 2 1.36 2.22 1.06 2.39
3 2.67 0.87 2.56 0.89
1 1.44 1.67 0.71 2.31

12 6 2 4 0.5 0.6 2 0.28 2.72 0.29 2.75
3 0.75 2.28 0.73 2.31
1 2.39 1.73 2.34 1.74

12 8 2 3 0.5 0.7 2 2.29 1.73 2.23 1.74
3 1.57 2.48 1.52 2.51
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source in addition to all the sources that are already on, the new source is allowed to

turn on. A source that is not allowed to turn on is considered a blocked request.

The frequency of blocked requests and the average throughput are calculated for

windows of 250 periods until these measurements reach steady-state, i.e. measure-

ments in three consecutive periods being within a factor of 0.1 from each other. This

avoids transient initial startup behavior.

4.6.4 Results and discussion

We ran simulations on 242 networks generated randomly using 45 different parameter

combinations. In 44 of these networks, coding outperformed routing in both blocking

rate and throughput, doing better by more than 10% in at least one of these param-

eters. In 15 of these, coding outperformed routing in both parameters by more than

10%. In the rest, routing and coding showed comparable performance. Some results

for various randomly generated networks are given in table 4.2.

These simulations do not attempt to quantify precisely the differences in perfor-

mance and overhead of randomized coding and online routing. However, they serve

as useful illustrations in two ways.

Firstly, they show that the performance of the Steiner tree heuristic is exceeded

by randomized coding over a non-negligible proportion of our randomly constructed

graphs, indicating that when connections vary dynamically, coding offers advantages

that are not circumscribed to carefully constructed examples. This is in contrast to

static settings with optimal centralized control.

Secondly, the simulations illustrate the kinds of field sizes needed in practice for

networks with a moderate number of nodes. Field size is important, since it affects

memory and complexity requirements. To this end, the simulations use a small field

size that still allows randomized coding to generally match the performance of the

Steiner heuristic, and to surpass it in networks whose topology makes coding desirable

over trees. The theoretical bounds of previous sections guarantee the optimality of

randomized coding for large enough field sizes, but they are tight for worst-case

network scenarios. In our trials, a field size of 17 with up to three retrials proved
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sufficient to achieve equal or better performance compared to the Steiner heuristic.

The simulations show the applicability of short network code lengths for moderately-

sized networks.

4.7 Discussion

Our work represents a first exploration on randomized network coding, giving rise

to many questions for further research. We do not consider aspects such as resource

and energy allocation, but focus on optimally exploiting a given set of resources.

There are also many issues we have not addressed surrounding the adaptation of

protocols, which generally assume routing, to randomized coding. Our aim here is to

demonstrate the potential benefits of randomized network coding, motivating future

consideration of protocol compatibility with or adaptation to network codes.

The basic randomized network coding approach requires no coordination among

nodes. If we allow for retrials to find successful codes, we in effect trade code length

for some rudimentary coordination. Implementations for various applications may

not be completely protocol-free, but the roles and requirements for protocols may be

substantially redefined in this new environment.

60



Chapter 5

Byzantine modification detection

with distributed randomized

network coding

Overlay multicast or ad hoc multicast represent natural areas of application for the

distributed randomized network coding approach of the previous chapter. In overlay

or ad hoc multicast settings, end hosts help to forward packets to other end hosts.

Such networks are thus more susceptible to Byzantine (i.e., arbitrary) attacks from

compromised end hosts, which have access to the same information as other end hosts,

and can forward to them arbitrarily modified information.

In this chapter, we show that Byzantine modification detection capability can be

added to a multicast scheme based on randomized network coding, with minimal

additional computational and communication overhead, by incorporating a simple

polynomial hash value in each packet. We consider multi-source multicast mesh net-

works with multiple paths between the sources and each receiver. The key insight

in our approach is that path diversity, coupled with the randomized and distributed

choice of codes, makes it hard for an attacker to observe or predict the exact com-

binations of source information in all other packets received at the receivers. With

our approach, a receiver can detect Byzantine modifications with high probability, as

long as these modifications have not been designed using knowledge of all the other
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packets obtained at the receiver.

The detection probability can be traded off against the overhead (i.e., the ratio of

hash bits to data bits) - the detection probability increases with the overhead, as well

as with the number of unmodified packets obtained at the receiver whose contents are

unknown to the attacker. Depending on the application, various responses may be

employed upon detection of a Byzantine fault, such as collecting more packets from

different nodes to obtain a consistent decoding set, or employing a more complex

Byzantine agreement algorithm to identify the Byzantine node(s).

We are able to use a simple polynomial function instead of a complex crypto-

graphic hash function (such as MD5) because our scheme's effectiveness depends

only on the fact that there are independent sources of randomness, not all of which

are known to the attacker because of path diversity. The use of a simple polyno-

mial function is desirable because it incurs less computational overhead than existing

cryptographic hashes.

5.1 Background and related work

The Byzantine problem was first formalized in [41], and has been studied extensively

in a variety of contexts such as reliable distributed networks of processors [19, 7]

and secure network communications [46, 36, 54, 53, 11]. These and other existing

works generally either use cryptographic functions, multiple rounds of message pass-

ing or some combination of the two to detect and recover from Byzantine faults.

References [7] and [36] optimize for normal performance by using less complex mes-

sage authentication codes and signed digests respectively during normal operation,

resorting to more complex recovery mechanisms only upon detection of a fault. Our

technique allows for detection without the use of any cryptographic functions (thereby

incurring little computation overhead), and can similarly be used in conjunction with

more complex recovery techniques which are activated upon detection of a Byzantine

fault.

The reliance on random values unknown to the attacker is reminiscent of one-time
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pads [47], but our scheme is different because the one-time pad provides secrecy and

not authenticity', while our scheme aims to provide the latter. Also, unlike one-time

pads, the burden of generating the random values is distributed over the network

rather than falling solely on the source. Cai and Yeung [6] have studied the problem

of providing secrecy in a network coding setting.

5.2 Model

Consider a set of r source packets which are coded together and multicast, using

distributed randomized network coding in the finite field Fq. Let the data content of

each packet be represented by b ,elements from Fq, and the hash value by c elements

from the same field, and let row vector mi E F ,~c) represent the concatenation of the

data and corresponding hash value for packet i. We denote by M the matrix whose

ith row is mi.

A genuine, or unmodified, packet contains a random linear combination of one or

more of these vectors, along with the coefficients of the combination. This informa-

tion, for a set U of unmodified packets, can be represented as the matrix product

C(U) [M|I], where the coefficient matrix C(U) for the set U is defined as the |UI x r

matrix whose ith row is the vector of code coefficients of the ith packet. Decoding for a

set U of r linearly independent packets corresponds to pre-multiplying the associated

matrix C(U) [M1I] with C(U)>.

Modified packets may contain arbitrary data and hash values. A set of modified

packets can be represented in general by [CmM + VICm], where V is an arbitrary

(r - s) x (b + c) matrix. Inconsistent data and hash values, i.e. V $ 0, will cause the

decoded packets to differ from the original packets.

Suppose the receiver tries to decode using s unmodified packets and r - s modified

packets, where 1 < s < r - 1. Let C, and Cm be the coefficient matrices of the set of

unmodified packets and the set of modified packets respectively, and let C = C
Cm.

'Secrecy and authenticity are known to be independent attributes of a cryptographic systerm [471.
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The receiver's decoding process is equivalent to pre-multiplying the matrix

cum CU 0
CM+ C

CM +V C] [L M V

with C'. This gives

M + C- I
V

i.e., the receiver decodes to M + AM, where

AM = C- 1  0 (5.1)

gives the disparity between the decoded packets and the original packets.

5.3 Main results

Consider a Byzantine attacker that supplies modified packets, without knowing the

contents of s > 1 genuine unmodified packets that will be part of a set of r packets

used for decoding at a receiver. This is a reasonable assumption given the distributed

randomness and path diversity of the network coding setup we consider. The only

essential condition is that the attacker does not create its packets knowing the contents

of all other packets used for decoding, which makes our results very general: they

apply regardless of whether the attacker knows which or how many of its own packets

will be used for decoding, and whether there are some unmodified packets whose

contents are known to the attacker.

Let w be the rank of the matrix V, defined in the previous section, that represents

the modifications.

The following result characterizes the family of potential outcomes of decoding

from the set of packets- the attacker cannot narrow down the set of possible outcomes

beyond this regardless of how it designs its modified packets.
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Theorem 9 The attacker cannot determine which of a set of q W potential decoding

outcomes the receiver will obtain. In particular, there will be at least s packets such

that, for each of these, the attacker knows only that the vector representation of its

decoded value will be one of q possibilities {_Mi + Z_1, ̂ yijj '}j E Fq}, where Mi is

the vector representation of the data and hash value of some original packet, and E_

is determined by the attacker's modifications. L

The next result provides, for a simple polynomial hash function, an upper bound

on the proportion of potential decoding outcomes that can have consistent data and

hash values, in terms of r = [f, the ceiling of the ratio of the number of data

symbols to hash symbols. Larger values for k correspond to lower overheads but

higher probability of a successful attack. This tradeoff is a design parameter for the

network.

Theorem 10 Suppose each packet contains b data symbols x 1 ,... , Xb and c < b hash

symbols y, ... , y. Consider the function h : Fk -+ Fq mapping (xc1,...,x), xj E

Fq, to h(x1,..,xk) = x + .. + x + for any positive integer k. If yi is set to

h(x(-1)+, --- ,Xi,) for i = 1,... ,c-1 and y, to h(x(c-1),+,... ,Xb), then the decoded

packets can have consistent data and hash values under at most a fraction of

potential values of the unmodified packets, or, from an alternate viewpoint, at most a

fraction of potential outcomes can have consistent data and hash values. 0

Corollary 1 If the receiver obtains more than r packets, it can use all the packets

by decoding from more than one set. If s' > 1 of the packets are unmodified and

have contents that are unknown to the attacker, then the decoded packets can have

consistent data and hash values under at most a fraction (') of potential values

of the unmodified packets (at most a fraction of potential outcomes can have

consistent data and hash values).
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5.4 Detailed development, proofs and ancillary re-

sults

5.4.1 Vulnerable scenario

Before proving the results stated in the previous section, we first point out that this

approach does not apply in the case where the attacker knows, or has information

allowing it to predict with reasonable probability, that it is the only node supplying

information to a receiver on a particular subset of the original packets. In such a case,

this kind of non-cryptographic scheme cannot prevent the attacker from supplying

spurious packets with consistent data and hash values. However, such a scenario is

unlikely to persist if sources are reasonably well connected, and nodes periodically

and randomly switch their connections among neighboring nodes.

Mathematically, this case corresponds to the attacker knowing that a particular

set of columns of any potential matrix C, for the receiver will be zero. Without loss

of generality, assume that the last t < r - s columns of C, are zero. The attacker can

then make C a block diagonal matrix by choosing Cm to be of the form rn

-0 
C "

where C" is a t x t matrix and the rows of [ C' 01 are independent of the rows of

Cu. Then C- 1 is also block diagonal, of the form

-_ -1 -~l
C'1

00

Since C" is determined by the attacker, it can choose AM by setting V =
V'

where V' is an appropriately chosen t x (b + c) matrix.
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5.4.2 Protected scenario

We next consider the case where the attacker does not know the contents of other

packets the receiver will use for decoding. In this case, it designs its packets, i.e. fixes

Cm and V, knowing only that CU is nonsingular.
CM

Proof of Theorem 9: Consider any fixed Cm and V. A receiver decodes only

when it has a set of packets such that corresponding coefficients of the matrix C is

non-singular. Therefore, we consider the set Z consisting of the values of C, that

satisfy the condition that C = C] is nonsingular.
CM

We show that we can partition the set Z into cosets

Zz={Ci +RCm|R Ez Fsx(r-8)} 1, 2,.,

where

X qS(r8S)

-=~ qrs+k)

qs(r-s)

- s(s-l)/
2 J1J(q k-1)

k=1

Then we show that each coset can be further partitioned into equal-sized sets that

each generate, via (5.1), the full set of possible modifications AM. Hence, it suffices

to focus on just one of these subsets of Z in proving Theorem 9.

To see that we can partition Z into cosets as asserted above, consider the following

procedure for constructing such cosets: Any element of Z can be chosen as C1, giving

coset Zi = {C1 + RCmIR E Esx(r-s)}. Next, C 2, C3 ,... , Cx are chosen sequentially

to be any element of Z not in the cosets Z, of previously chosen elements. Note that

this forms a partition of Z, since the presence of some element c in two sets Zi and

Zj implies that C is also in Zi, which is a contradiction. It is also clear that each

67



coset has size

{RJR E Fsx(r-s) = qs(r-)

since Cm has full row rank.

For each such coset Z;,

C;1
Cm

the corresponding values of AM satisfy, from (5.1),

+RCM 'AM
0

Ci A
CM

Cm])

AM

where each entry rij = R(i, j) of R E Fx(r-s) is, to the attacker, an unknown variable

that can take potentially any value in Fq.

We note that even within one of these cosets Z, multiple values of R will map to

the same value of AM if V has dependent rows. If so, we further partition each coset

into subsets such that the elements in each subset are in one-to-one correspondence

with the full set of possible values for AM, as we describe below.

Consider a set of w independent rows of V (where w is the rank of V, defined

previously). Denote by I the corresponding set of row indexes, and denote by V the

submatrix consisting of those rows. Each row v of V can be represented as a linear

combination j= ZE 1 lj,kk of rows of V. The coefficients lj,k can be collected into

an (r - s) x w matrix L whose (j, k)th entry is lj,k, which satisfies

V = LVT

We define R1 = RL, noting that

R 1 VT = RLV 1 = RV
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Note also that the submatrix of L consisting of its w rows corresponding to set I is an

identity matrix. Thus, each variable rij , j E I, appears in exactly one entry of R1 as

part of a linear combination with one or more variables ri,, j I. It follows that R,

can take potentially any value in Ph'S", and every row of R 1 V1 can take on any value

in the row space of V. Furthermore, the possible values of R can be partitioned into

equal-sized sets, each of which contains all values f E Fqx(r-') such that RL equals

some particular value ft1 . The q w possible values for R 1 give rise to q W distinct

values for RTV, which give in turn q W distinct values for AM.

We note that the set of values

C;[ V [h v R-EFR x(r-s)

- .. _if .

Ci ~V RT E FS
Cm Lq

corresponding to any single coset Z; is in one-to-one correspondence with that of any

other coset. To see this, observe that for any fixed Rft E F and fixed distinct

C, C', we obtain the same values for AM = C - V and AM'=
Cm L

V by setting
Cm L

I- -j - 1 --

R = C C -R,

Cm L

which gives:

- 1 C -
C' C'l V

AM' = m Cm L

- - LV
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C' C' A M

C/

C' C'

These observations allow us to focus on a single set

Ci -R, xvz R, Fxw}
CM LL q

corresponding to any coset Zi.

Let [' ['1 be denoted by S. Each row of S is an linear function
CM L

of one or more rows of R1 , either constant, or else dependent on R and takingw T - - -1

potentially any value in F'. Since [ is nonsingular, at least s rows of S
q CM

are dependent on R.I. The corresponding rows of SV are also dependent on R1 ; for

the Zth of these rows, the potential values form a set {ZE 7i,jo?|IY,j C Fq}, where

vector Ev corresponds to the Jth row of V. The potential values of the corresponding

decoded packets then form a set {_mi + Ej=1 'yjvj Y C Fq}, where mi is the vector

representation of the data and hash value of the ith packet. U

The following lemma is useful in the proof of Theorem 10.

Lemma 5 Consider the following hash function h : Fk -+ F, mapping (x1,....,xk),

xi E Fq, to h(x1,... , Xk) = X2 + ... + xk+1, and denote by S(u, E) the set of vectors

{l + 'YmY E Fq}, where u and v are fixed vectors. At most k + 1 out of the q

vectors in a set S(ji, _), where u = (u1, ... , Uk+1) is a fixed length-(k + 1) vector and

v= (v1,... , vk+1) a fixed nonzero length-(k + 1) vector, can satisfy the property that

the last element of the vector equals the hash of the first k elements.
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Proof: Suppose some vector u + -yv satisfies this property, i.e.

Uk+1 + "yVk+1 = (uj + 'yvi) 2 + .. . + (Uk + yVk)k+1 (5.2)

Note that for any fixed value of u and any fixed nonzero value of v, (5.2) is a poly-

nomial equation in -y of degree equal to 1 + k, where k E [1, k] is the highest index

for which the corresponding Vk' is nonzero, i.e. Vj # 0, Vk' = 0 V k' > k. By the

fundamental theorem of algebra, this equation can have at most 1 + < 1 + k roots.

Thus, the property can be satisfied for at most 1 + k values of 7. U

Proof of Theorem 10: Each hash symbol is used to protect k < ri data symbols.

We consider the set of possible outcomes when a modification is made to at least one

symbol of a set consisting of k data symbols and their corresponding hash symbol.

Continuing from the proof of the Theorem 9, we note that S contains s rows that

are independent linear combinations of rows of R1 . For any particular values of a

subset of these rows, each of the remaining rows can take potentially any value in

F'. We consider each of the corresponding rows of SV7 in turn, noting that the set

of potential values for the Zth of these rows, for any particular values of previously

considered rows, is of the form { i ', cy Fq}, and that the set of potential

values of the corresponding decoded packets is of the form {m+E> YjKjIYv j, E Fq}.

If W > 1, the qw-element set {_Mi + E'l cYjvi,,|Yij E Fq} can be partitioned into

qWl size-q sets {_Mi + Z e$ ^ijj + YEi'W 7,, E Fq}, where each set corresponds

to a different set of values for -y,1, . . . , y,,_1.

Applying Lemma 5 to each set S(_mi + E'- ,fL,,, v,,) gives the desired result.

Note that the case where v = 0 corresponds to the trivial case where no Byzantine

modifications are introduced. U

Proof of Corollary 1: Suppose more than one different sets of packets are used

for decoding. Consider the sets in turn, denoting by si the number of unmodified

packets in the ith set that are not in any set j < i. For any particular values of

packets in sets j < i, we have from Theorem 10 that at most a fraction (+q of)ii
decoding outcomes for set i have consistent data and hash values. Thus, the overall
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fraction of consistent decoding outcomes is at most .
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Chapter 6

Network coding for arbitrarily

correlated sources

Having considered distributed randomized network coding for independent or linearly

correlated sources in the preceding chapters, we now round out the picture by con-

sidering arbitrarily correlated sources. We find that, as in the case of independent or

linearly correlated sources, a randomized network coding technique can approach op-

timal capacity for correlated sources, with error probability decreasing exponentially

in the length of the codes and in excess multicast capacity.

This distributed randomized network coding approach effectively removes or adds

data redundancy in different parts of the network depending on the available capacity.

This is achieved without knowledge of the source entropy rates or network topology

at interior network nodes. Compression is done simultaneously for multiple receivers

in a multicast session.

6.1 Problem statement and approach

We consider linear network coding in the context of a distributed source coding prob-

lem, where compression may be required to transmit information from correlated

sources over a network to one or more receivers.

We use a distributed randomized coding approach similar to that in Chapter 4 for
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independent or linearly correlated sources, except that instead of scalar operations

over a finite field F2 -, we employ vector operations in the binary field. In this vector

coding approach, nodes other than the receiver nodes independently select random

linear mappings from vectors of input bits onto vectors of output bits. The length

of each vector is proportional to its corresponding link's capacity (for vectors corre-

sponding to links) or its corresponding source's bit rate (for vectors corresponding

to source processes), which are assumed to be integers1 . While scalar network codes

can be specified with fewer coefficients than corresponding vector network codes of

the same block length, thus requiring less overhead to specify to the receivers, the

scalar coding approach of previous chapters does not generalize as easily to the case

of compressible and arbitrarily correlated sources.

The vector coding model can, for given vector lengths, be brought into the scalar

algebraic framework of [39] by conceptually expanding each source into multiple

sources and each link into multiple links, such that each new source and link cor-

responds to one bit in the code vectors. We use this scalar framework to analyze the

operation of interior network nodes. Note however that the linear decoding strategies

of [39] do not apply when we consider compressible and arbitrarily correlated sources.

6.2 Main result and discussion

We consider transmission of arbitrarily correlated sources in a network by linear

network coding, and show error bounds on the probability of successful (non-linear)

decoding at a receiver. Analogously to Slepian and Wolf [61], we consider the problem

of distributed encoding and joint decoding of two sources whose output symbols

in each unit time period are drawn i.i.d. from the same joint distribution Q. The

difference is that in our problem, transmission occurs across a network of intermediate

nodes that perform linear transformations from their inputs to their outputs. In the

special case of a network consisting of one receiver connected directly by a capacitated

'As before, we can model a large class of networks and sources by choosing the time unit appro-
priately
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link to each source, this reduces to the original Slepian-Wolf problem.

An o-decoder (which may be a minimum entropy or maximum Q-probability

decoder) [9] at the receiver maps a block of received signals to the corresponding

minimum entropy or maximum Q-probability inputs. We derive the error probability

in terms of the block length when all non-receiver nodes independently and randomly

choose vector linear mappings from inputs to outputs.

The following theorem bounds the probability of successful minimum entropy or

maximum a posteriori probability decoding at a receiver, for two sources X, and X 2

whose output values in each unit time period are drawn i.i.d. from the same joint

distribution Q. We denote by ri the bit rate of source Xi, and suppose linear coding

is done in F 2 over vectors of nr1 and nr 2 bits from each source respectively. Let m,

and m 2 be the minimum cut capacities between the receiver and each of the sources

respectively, and let m 3 be the minimum cut capacity between the receiver and both

sources. We denote by L the maximum source-receiver path length. In this chapter,

all exponents and logs are taken to base 2.

Theorem 11 For distributed randomized network coding of arbitrarily correlated sources

X 1 and X 2 over an arbitrary network, the error probability is at most E_1 pe, where

p exp -n min (D(Pxx2 IQ)
oe X1,X2\

+ mi(1 - - log L) - H(X11X 2 )n

+22,1+r2 log(n + 1)
2 exp -n min D(Px x2|Q)

X1,X2 X1XIIQ

+ m 2 (1 - - logL) - H(X2 IX 1)n

+2r1+2r2 log(n + 1)

pe exp - n min (D(P1x 2 11Q)
X1,X2\

1+
+ m 3(1 - - log L) - H(XX 2)

n
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+22r+2r2 log(n + 1)

The proof is given in the following section.

The error exponents

el = min (D(Pxix 2 ||I)
X1,X2\

+ m1(1 !log L) - H(X|X2 )n

e2 = min (D(Pxx2IIQ)
X1,X2

+ m 2 (1 - log L) - H(X 2 |X 1 )
n

e3 = min (D(P1x2IQ)X1,X2\

1+
+ m 3(1 -- log L) - H(XX 2 )n

generalize the Slepian-Wolf error exponents for linear coding [9]:

el = min (D(PX1x 21IQ) +IR, - H(X1X 2 )+)
X1,X2

e2 = min (D(Px1x2||Q)+IR 2 - H(X2 |X1)|+)
x 1 ,x 2

eo = min (D(Px1x 2||Q) +|R, + R 2 -H(XX 2)I+)
X1,X 2

where Ri is the rate of the code for Xi.

In the special case of a Slepian-Wolf source network consisting of one receiver

connected directly by a capacitated link to each source, our error exponents reduce

to the corresponding results for linear Slepian-Wolf coding. The latter scenario may

thus be considered a degenerate case of network coding.

This randomized network coding approach carries over to any positive number of

sources, though we give here a detailed treatment only of the case of two sources. Our

error bounds are in terms of minimum cut capacities and maximum source-receiver

path length in a network. Bounds in terms of other network parameters, e.g. the

number of links upstream of a receiver, or for particular network topologies, can be
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obtained using similar means.

6.3 Proof

Proof of Theorem 11: Encoding in the network is represented by the transfer

matrix AGT specifying the mapping from the vector of source signals [ X 1 X 2 ] E

Fn(r1+r2) to the vector z of signals on the set T of terminal links incident to the

receiver. Our error analysis, using the method of types, is similar to that in [9]. As

there, the type Px, of a vector xi E Fnri is the distribution on F 2 defined by the

relative frequencies of the elements of F 2 in xi, and joint types Px1x2 are analogously

defined.

The a-decoder maps a vector z of received signals onto a vector in IF n(r+2)2

minimizing a(Px 1x 2 ) subject to [ x, x 2 ]AGr = z. For a minimum entropy de-

coder, a(Px1 x 2 ) - H(PlX 2 ), while for a maximum Q-probability decoder, a(Px 1x 2 )

- log Qn(x 1 x 2 ). We consider three types of errors: in the first type, the decoder

has the correct value for X 2 but outputs the wrong value for X 1 ; in the second, the

decoder has the correct value for X 1 but outputs the wrong value for X 2 ; in the

third, the decoder outputs wrong values for both X 1 and X 2 . The error probability

is bounded from above by the sum of the probabilities of the three types of errors,

3 p. Defining the sets of types

{Px1i 1 x 21 2 X1 # X 1 , X 2  X 2 } i = 1

2 = X 1 , 2 / X 2 } i 2

I{PxIIx 2 k 2 I X1 7 X 1 , 2 7 X 2 } i = 3

where i( E IF"", and the sets of sequences

'rx 1x2 = ([3 x2 ] E Fn(r+r)2 = )

'Ti1Q2 x 1x2(xix 2) = {[ E1 2 ]Ffl(r+)

P)Z1i3 2 xix 2 = P 1i 2 1X 2}
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1 <
Qn(xlx2)

PX 1 E1X 2x 2 E in : (x 1, x 2 ) E

Ck(PkI1X2 ) 5 Q(PX1X 2) 7X1X 2

Pr ( 2 E 'U1 21X 1X 2 (x1x2)

<S E Qn(XiX2)

E Pr ([I x1 -IZ

2 < I: Qn(XiX 2)

PX1X1 X 2Y2 En (x1, x2) E

-(PX1-e2): a(PX 1x 2 ) 7XIX 2

EPr ([ 0

E<SET3
PXj- lX2Y2 E n (x1, x2 ) E

-(P-iy2):! a(Pxi x 2) 7X1X2

E Pr ([ xi - 3i

X2 - 32 ]AGT =

Q (iX 2)

where the probabilities are taken over realizations of the network transfer matrix AGr

corresponding to the random network code. The probabilities

Pi = Pr ([x1 - 3i

P2 = Pr ([

P3 = Pr ([ xi - I1

0 ]AGr = 0)

X2 - X2 ]AGT

x 2 - k 2 ]AGT =

for nonzero x, - Ei, x 2 - 32 can be calculated for a given network, or bounded in

78

we have

s.t. [ x, - 3E, 0 ]AGr = 0)

min { 9 ]AGr

Similarly,

1}

min {
(C1, >2) E

T'ii ? 2 lX1x 2 (x1x2)

0) , 1

min {
(OCi, 2) E

Tii -2lXlX2 (x1x2)

x 2 - 3 2 ]AGTr
= 0), 1}

PX1122 E T'Y :2Y (X1, X2) E

Ct(PY1X2) !5 -(PXlX2) 7X1X2

= Q) ,I
(*1l, 'j-2) E

7->1 -2 I X 1X2 (XlX2)



terms of n and parameters of the network as we will show later.

As in [9], we can apply some simple cardinality bounds

1'Pnl
~IyIn
IT1n

v'Pil

< (n + 1)22r+r2

< (n + 1)2rl+2r2

< (n + 1)22rl+2r2

Ix1x2I exp{nH(X1X 2 )}

ITr g2 x1, X 2 (xix2) I < exp{nH(XI1 2jX 1X 2 )}

and the identity

Q (x1x 2) - exp{-n(D(Px1x 2 11Q) + H(X1 X 2))},

(x1, x 2 ) (E 'X1X2

to obtain

p1 < exp - n min
-xjxE1x 2x2 E ) n:

(P, X,) : '(Px X2)

(D (Px1x 2 1IQ)

1
+ -- log pi - H(X11X 1X 2 )n

+22r1+r2 log(n + 1)

+

- n mill

Ck(PX1-?2) ! -(pxlX2)

(D (Pxix2IIQ)

pe exp

+ -log p2 - H( 2 |X 1 X 2 )

+2r1+2r2 log(n + 1)

- n min (D(Px1x 2 1IQ)
Px 1 1 x 2 2 E n:

Q(ss2 (pXiX2)

+ -- logp 3 - H(X1 2 |X 1 X 2 )1 ) -
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+22rl+2r2 log(n + 1)

For the minimum entropy decoder, we have

a(P -3) : a(PXIX2)

H(Xl1X 1X 2) H(X1 |X2) H(X1 |X2)

for X 2 = $2

H(X21X 1X 2) < H(X2 |X 1) H(X 2 X1)

for X1 = $1

H(X1X 2|XX 2) < H(X 1X 2) < H(XX 2)

which gives

pe < exp - n min (D(Px1x 2IIQ)

1
+ -- logpi

n2

p2 - exp

p3 < exp

- H(X11X 2)

+22r1+r2 log(n + 1)}

- n in D(Pxx 2IIQ)

1±
+ -- log P2 - H(X 2|X1 )

+2r1+2r2 log(n + 1)}

- n in (D(Px2|IxIQ)

1
+ -- logp-

+ 2 2r+2r2 log(n

H(X1 X 2)

We next show that these bounds also hold for the maximum Q-probability decoder,

for which, from (6.1),

a(Psg 2) C(Px1x 2 )
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-> D(Ps,2| 1Q) + H(XlX 2 )

< D(P1x 2 1IQ) + H(X1 X 2).

For i = 1, 22 = X 2 , and (6.5) gives

D(P21x2 ||Q) + H(X1 |X 2 ) D(Pxx 2IIQ) + H(X1jX 2 )

We show that

min
Px1 >1x2 2 E T
a(Pyie2) a(PxIx 2 )

(D(PX1x 2 11Q)
1

+ -- logpi-
ni

H(X1 1X 1 X 2)

min

a(Pgg2) a(Px 1x 2 )

(D(PX1X 2I IQ) 1 logpi - H(Xi 1X2) )

> min (D(Px1x 2 Q) +
1
- logpi - H(X1 IX 2 )

by considering two possible cases for any X1, X 1, X 2 satisfying (6.6):

Case 1: - logp, - H(X1IX 2) < 0. Then

1
D(Pxix 2IQ) + -- logpi - H(Xi X 2)

1±
> D(PIx 2 |fQ) + -- logpi - H(X11X 2 )

ni

min (D(P1x 2IIQ) +
1

-1 log Pi
ni

Case 2: - log p, - H(X1 IX 2) > 0. Then

1

D(Pxix 2IQ) + -- logpi - H(Xi IX2)
ni

: D(PXIX2||Q) -

> D(Pxix
2 I Q)

= D(P91x2IQ) +

1
1 logpi - H(X1 X 2 )

ni

1
- logp 1 - H(X1j
ni

1
-- log i

X2) by (6.6)

- H(X1IX 2)
+
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)
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which gives

D(P 1x 2 IIQ)
1
- logPi
n

- H(I1IX2 )

i1 1+
> ID(PxlX2||Q) + --1log pi - H(i1| X2)+2 n~TVY

> Min (D(P1x 2 11Q) +

- H(X1IX 2)

- H(X1IX 2)

A similar proof holds for i = 2.

For i = 3, we show that

min
x1o1x2e2(n

Q(P - - ) < OL(PXx

+ 1
ni

(D(Px1 x 2 I IQ)

log p3 - H(X1 - 2 |X 1X 2 )

min
yx1 x 1x2x22 - T :

a(Pkks) a(Pxix 2)

(D(Px 1x 2 11Q)

1
+ -- log p3 -

> min (D(PIx 2IQ)

H(X1X 2 )

1
+ -- log

ni

)
p3 - H(X1 X 2 )

by considering two possible cases for any X 1 , X 1, X 2, X 2 satisfying (6.5):

Case 1: -- log p3 - H(X1 X 2) < 0. Then

D(Px1x 2IQ) + - logp 3 - H( 1 X 2 )
Ti

1+
> D(PxIx 2 |IQ) + -I1ogp 3 - H(X 1 X 2 )

n

/ 1
> min (D(Pxix 2IIQ) + -log p 3 - H(X1xIx 2 Ti
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+D(P X2 I IQ)
1
n log p1

+

]
1

-1 log Pi
ni

--

+

)

+

)

X 2) )



Case 2: - logp 3 - H(X1 X 2) > 0. Then

1 +
D(P1x 2I|Q) + -log p3 - H( 1 X 2 )

1
> D(PX1x 2IIQ) - - log P3 - H( 1 X 2 )

n
1

> D(P 1g 2||Q) - - logP 3 - H(X1 X 2 ) by (6.5)(P, n
1+

= D(P 1 g 2 |jQ) + logP 3 - H(X 1 X 2 )

which gives

1+
D(Px1x 2|1Q) + 9logp3 - H( 1 1X2 )

n

+ D(Px 1x2 1Q) + 9logP 3 - H(XIX 2 )

2 . n
+D(P X1 X2 I|Q) + log P3 - H(X 1 X 2 ) ]

X1X2 n_ min (D(Pxix2|IQ) + ~±log p3 - H(X1 X 2 ) ±

Next we bound the probabilities pi in terms of n and the network parameters

mi, i = 1, 2, the minimum cut capacity between the receiver and source Xj, M 3 , the

minimum cut capacity between the receiver and both sources, and L, the maximum

source-receiver path length. Let g1 , 92, be subgraphs of graph g consisting of all links

downstream of sources 1 and 2 respectively, and let !9 be equal to g. It follows from

our algebraic coding model that in a random linear network code over an arbitrary

network, any link which has at least one nonzero incoming signal carries the zero

signal with probability d-, where c is the capacity of the link. This is the same as

the probability that a pair of distinct values for the link's inputs are mapped to the

same output on the link.

For a given pair of distinct source values, let El be the event that the corresponding

inputs to link I are distinct, but the corresponding values on 1 are the same. Let E(9)

be the event that El occurs for some link 1 on every source-receiver path in graph 9.

pi is then equal to the probability of event E(gi).
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Let 91, i = 1, 2, 3 be the graph consisting of mi node-disjoint paths, each consisting

of L links each of unit capacity. We show by induction on mi that pi is upper bounded

by the probability of event E(g!).

We let g be the graphs gi, g, i = 1, 2, 3 in turn, and consider any particular

source-receiver path PO in 9. We distinguish two cases:

Case 1: E, does not occur for any of the links 1 on the path PO. In this case the

event E(g) occurs with probability 0.

Case 2: There exists some link i on the path PO for which El occurs.

Thus, we have Pr(E(9)) = Pr(case 2) Pr(E(9)jcase 2). Since Pg' has at least as

many links as Pg2 , Pr(case 2 for !9) > Pr(case 2 for 9i). Therefore, if we can show

that Pr(E(g!)jcase 2) > Pr(E(gi)lcase 2), the induction hypothesis Pr(E(g9)) >

Pr(E(gi)) follows.

For mi = 1, the hypothesis is true since Pr(E(g)Icase 2) = 1. For mi > 1, in case

2, removing the link 1 leaves, for 9j, the effective equivalent of a graph consisting of

mi - 1 node-disjoint length-L paths, and, for gi, a graph of minimum cut at least

mi - 1. The result follows from applying the induction hypothesis to the resulting

graphs.

Thus, Pr(E(g!)) gives an upper bound on probability pi:

pi -

< (Lfri'.
SL 2

Substituting this into the error bounds (6.2)-(6.4) gives the desired results. 0
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Chapter 7

A coding view of network

management

In this chapter, we move away from the randomized coding approach of previous chap-

ters and consider a theoretical application of network coding. We develop an infor-

mation theoretic framework, based on network coding, for quantifying and bounding

fundamental network management requirements for link failure recovery.

7.1 Background

Network management for protection and restoration in the case of failures has gen-

erally been considered in an ad hoc manner, within the context of specific schemes.

These schemes are predominantly routing schemes, and the use of network coding,

which in contrast to routing allows a network node to form outgoing data from incom-

ing data in an arbitrary fashion and possibly involving network management signals,

to describe them may at first appear superfluous. However, it will turn out that en-

larging the set of allowed operations at network nodes not only opens new and fruitful

ways to protect networks, but the framework also naturally integrates traditional, well

known solutions to the problem of robust networks.

To illustrate this point, we consider two of the most common means of providing

network recovery for non-ergodic failures, showing how a coding framework offers a
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simple and systematic approach to describing such recovery schemes. Within pre-

planned methods for network recovery, generally termed protection, we may distin-

guish between path and link or node protection. Path protection refers to recovery

applied to connections following a particular path across a network. Link or node

restoration refers to recovery of all the traffic across a failed link or node, respectively.

An overview of restoration and recovery can be found in [55, 56]. Path restoration

may be itself subdivided into two different types: live (dual-fed) back-up and event-

triggered back-up. In the first case, two live flows, a primary and a back-up, are

transmitted. The two flows are link-disjoint if we seek to protect against link failure,

or node-disjoint (except for the end nodes) if we seek to protect against node failure.

Recovery is extremely fast, requiring action only from the receiving node, but back-up

capacity is not shared among connections. In the second case, event-triggered path

protection, the back-up path is only activated when a failure occurs on a link or node

along the primary path. Backup capacity can be shared among different paths [64],

thus improving capacity utilization for back-up channels and allowing for judicious

planning [2, 24, 22, 23, 20, 58, 62, 18, 51]. However, recovery involves coordination

between the sender and receiver after a failure event and requires action from nodes

along the back-up path.

Figure 7-1 illustrates our discussion, which uses a simple four-node ring as its

basis. We have a single sender s transmitting data b to a single receiver w.

The simplest scheme to consider is live path protection, shown in Figure 7-1.a.

The primary path is s -* v -- > w. At the receiver, the only network supervisory

signal required is a signal indicating whether or not the primary path is live. The

supervisory signal is denoted by -, where o is 1 if the primary path has had no failures

and is 0 otherwise. Let di, denote the data being sent along directed link (i, 1). In

order to express the protection mechanism in the framework of network coding, we

need to exhibit the rules by which outgoing data streams are formed from incoming

data and potentially network management signals. For links (s, u), (u, w), (s, v) and

(V, w), the rules are trivial in that the outgoing data equals the incoming data, which

is b. The behavior, or code, at w is shown in Figure 7-1.a.
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Figure 7-1: Ring network illustrating path protection in (a) and link protection in
(b)

For failure-induced path protection, the sender knows a-. The code is similar to

the one in Figure 7-1.a. The links in the backup path carry the same signal as for

the live path, but multiplied byd, which means that nothing is carried except in the

case of failure. The links in the primary path see their data multiplied by c. The

receiver need not have knowledge of . It simply outputs du,. + d i.

Link recovery is illustrated in Figure 7-1.b. We have primary links, which are the

links in the clockwise direction and backup (secondary) links, which are the links in

the counterclockwise direction. The supervisory signal 0 -jj is 1 if the primary link

from i to node j has not failed and is 0 otherwise. Thus, the supervisory signal

is no longer associated with a full path, but rather with a link, regardless of what

routes, if any, traverse that link. Consider, in our ring, any three consecutive nodes

k, i, h. These nodes and their links are shown in Figure 7-2. The thick lines represent

primary links, which transmit information when no link failures occur, and the thin

lines represent secondary links, which transmit information when a failure occurs.

The code for the primary link (i, h) emanating from i is di,h = dk,i + dh,i (where (k, i)

is the primary link into i and (h, i) is the secondary link into i) except when i = s,
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Figure 7-2: Three nodes and their primary (thick) and backup (thin) links.

for which it is the incoming signal b. For the secondary link emanating from i, the

code is di,k = dhi + i,h- djh.Fi,h. The output at node w, as shown in Figure 7-1.b, is

the sum of the signals on its incoming primary and incoming secondary links. Thus,

by specifying the local behaviors of nodes, the concept of link recovery fits naturally

in the framework of network coding.

The example above illustrates how network coding can provide an efficient vehicle

for formalizing traditional recovery problems. Similar techniques can be applied to

describe the operation of a wide array of recovery techniques over complex topologies,

for instance by using ring covers [63, 21, 15, 14] or generalized loop-back [48]. Our

goal, however, is not to merely translate known recovery approaches and their related

network management mechanisms into a network coding setting. Instead, we seek

to use a coding approach over networks to obtain fundamental results concerning

network management.

7.2 Problem statement

We may formulate a basic general form of the network management problem as shown

in the block diagram in Figure 7-3. A network is modelled as a mapping from a set

of inputs A E A to a set of outputs 7y E T. This mapping p.,, : A -+ T depends on

the state s of the network: for instance, network outputs are affected by link or node

failures in the network. The mapping can also be affected by management signals

c E C that change the behavior of network nodes: for instance, causing a node to

switch between using different output links. Different management signals can be

applied appropriately based on observations o(s) E 0(s) of the network state. We

consider the network management problem of determining the minimum cardinality
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Figure 7-3: General network management problem.

of the set C of management signals needed, given a set of possible network states

and a set of required input-output connections that must be maintained across these

states.

The particular problem we focus on in this chapter is network management for

link failures, for which various existing recovery schemes have been described earlier.

What these schemes have in common is a need for detecting failures, and directing

network nodes to respond appropriately.

While failure detection is itself an important issue, it is the latter component

of management overhead, that of directing recovery behavior, that we seek here to

understand and quantify in a fundamental way. This work is an attempt to start

developing a theory of network management for non-ergodic failures. Our aim is to

examine network management in a way that is abstracted from specific implemen-

tations, while fully recognizing that implementation issues are interesting, numerous

and difficult. Network coding gives us a framework for considering this. The very

general concept of network behavior as a code provides a fundamental way to quan-

tify essential management information as that needed to switch among different codes

(behaviors) for different failure scenarios.

We consider two formulations for quantifying network management. In the first,

a centralized formulation, the management requirement is taken as the logarithm of

the number of codes that the network switches among. In an alternative node-based

formulation, the management requirement is defined as the sum over all nodes of the

logarithm of the number of behaviors for each node. For each of these formulations,

we analyze network management requirements for receiver-based recovery, which in-
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Figure 7-4: An example of a receiver-based recovery scheme. Each diagram corre-
sponds to a code valid for failure of any of the links represented by dashed lines.
The only nodes that alter their input-output relations across the three codes are the
receiver nodes 01 and 32.
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Figure 7-5: An example of a network-wide recovery scheme. Each diagram gives a
code which is valid for failure of any of the links represented by dashed lines.

volves only receiver nodes, and for network-wide recovery, which may involve any

combination of interior nodes and receiver nodes.

As an illustration of some key concepts, consider the simple example network in

Figures 7-4 and 7-5, in which a source node a simultaneously sends processes X1

and X 2 to two receiver nodes /1 and /2. These connections are recoverable under

failure of any one link in the network. One possible set of codes forming a receiver-

based recovery scheme is shown in Figure 7-4, and a possible set of codes forming a

network-wide scheme is given in Figure 7-5. For this example, routing and replication

are sufficient for network-wide recovery, while coding is needed for receiver-based

recovery. Here linear coding is used, i.e. outputs from a node are linear combinations

of the inputs to that node.

For this example it so happens that the minimum centralized management re-

quirement is log(3) for both receiver-based and network wide recovery, but we shall

see that in some cases the centralized management requirements for receiver-based
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and network wide recovery can differ.

Considering the node-based network management formulation, the receiver-based

scheme of Figure 7-4 has the receiver nodes switching among three codes each, so

the associated node-based management requirement is 2 log(3) = 3.17. The network-

wide scheme of Figure 7-5 has the source node switching among three codes, while

the receiver nodes switch between two codes each, for a node-based management

requirement of log(3) + 2 log(2) = 3.58.

In this chapter we focus primarily on management requirements for failure of

individual unit capacity components in delay-free acyclic networks. Our analysis is

based primarily on the linear coding model of Chapter 2. In addition, we consider

nonlinear receiver-based schemes, where the interior nodes' outputs are static linear

functions of their inputs as before, but the output processes Z(0, i) at a receiver node

,3 may be nonlinear functions of the signals on its terminal links.

We assume that when a link fails, it is effectively removed from the network, or

equivalently, that a zero signal is observed on that link. An alternative is to treat

signals on failed links as undetermined, which, as discussed in Section 7.4.2, restricts

the class of recovery codes that can be used. For the linear coding matrices described

above, failure of link h corresponds to setting to zero the hth column of matrices A,

B and F, and the hth row of F. A recovery code (A, F, B) is said to cover (failure

of) link h if all receiver nodes are able to reconstruct the same output processes in

the same order as before the failure.

7.3 Main results

Our main results provide, for centralized network management information bits nec-

essary to achieve recovery using linear codes from all single link failures, lower bounds

for arbitrary connections and upper bounds for multi-transmitter multicast connec-

tions. For the node-based formulation, we are able to show that the minimum node-

based requirement for failures of links adjacent to a single receiver is achieved with

receiver-based schemes. We have not determined if this holds in general for all single
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Figure 7-6: Example illustrating integral links and recoverable link failures. Sources
X 1 and X 2 are required to be concurrently transmitted to the receiver. Links 1, 2
and 3 are integral, and failure of any one of them is recoverable. Links 4, 6 and 7 are
integral, but their failures are not recoverable. Link 5 is not integral, but its failure
is recoverable.

link failures. The proofs of our results are given in the following sections.

Our first result shows the need for network management when linear codes are

used. We call a link h integral if it satisfies the property that there exists some

subgraph of the network containing h that supports the set of source-receiver connec-

tions if and only if h has not failed. An example illustrating this definition is given

in Figure 7-6.

Theorem 12 (Need for network management) Consider any network connec-

tion problem with at least one integral link whose failure is recoverable. Then there

is no single linear code (A, F, B) that can cover the no-failure scenario and all

recoverable failures for this problem. E

Although a solution with static A and F matrices always exists for any recoverable

set of failures in a multicast scenario [38], in such cases the receiver code B must

change. On the other hand, if we allow for non-linear processing at the receivers,

in some instances this allows for unchanged network behavior over all recoverable

failures.

Theorems 13-15 below give bounds on the number of codes needed for link failure
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recovery, in various network connection problems where all single link failures are

recoverable. These bounds translate directly into bounds on the centralized network

management requirement, by taking the logarithm of the number of codes. Some of

these bounds are tight, in that for any values of the parameters in terms of which the

bounds are given, there are examples for which these bounds are met with equality.

The bounds are given in terms of the following parameters:

" r, the number of source processes transmitted in the network;

* m, the number of links in a minimum cut between the source nodes and receiver

nodes;

" d = 'DI, the number of receiver nodes;

" t,, the number of terminal links of a receiver 3;

* tmin = min3ED to, the minimum number of terminal links among all receivers.

Note that our bounds do not depend on the total number of links in the network.

Theorem 13 (General lower bound for linear recovery) For the general case,

tight lower bounds on the number of linear codes for the no-failure scenario and all

single link failures are:

Theorem 14 (Upper bounds for linear recovery)

a. For the single-receiver case, tight upper bounds on the number of linear codes

needed for the no-failure case and all single link failures are:
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receiver- r + 1 forr = 1 or m -i

based r for2 < r < m - 2

r r+1 forr=1, r=2=m-1

network- r forr = 2 < m - 2,

wide r=3, r=m-1 >3

r - 1 for4 r<m-2

b. For the multicast case with d > 2 receivers, an upper bound on the number

of linear codes for the no-failure scenario and all single link failures is

(r 2 + 2)(r + 1 )d-2

c. For the non-multicast case, an upper bound on the number of linear codes for

the no-failure scenario and all single terminal link failures is given by

Y t3+ (r - 1)
3: tp<;r : tp;>r+1

where the sums are taken over receiver nodes / c D.

LI

Network-wide schemes are more general than receiver-based schemes. The ad-

ditional flexibility of network-wide schemes allows for smaller centralized network

management requirements than receiver-based schemes in some cases, though the

differences in bounds that we have found are not large. Figure 7-7 gives a plot of how

the bounds look for a single-receiver network with a minimum cut size m of 8.

Our lower bounds for the general case and our upper bounds for the single-receiver

case are tight. Establishing tight upper bounds for the general case is an area of

further research.

Up to this point we have been considering linear codes in which the outputs at

all nodes are linear functions of their inputs. If the restriction on linear processing at

the receivers is relaxed, there are network connection problems for which no network

management is needed. For this case, we have the following bounds:
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Figure 7-7: Plot of tight upper and lower bounds for centralized network management
in single-receiver networks with fixed minimum cut size m = 8 and arbitrary numbers
of links. The parameter r denotes the number of source processes transmitted in the
network.

Theorem 15 (Nonlinear receiver-based recovery) For a recovery scheme in which

linear coding occurs at interior nodes but nonlinear decoding may be employed at re-

ceiver nodes, tight bounds on the number of receiver-based codes for the no-failure

scenario and single terminal link failures are:

lower upper

bound bound

r for { < r = ti_ - 1
r

Sforr = 1 or r < tmin - 2

El

Related work by Cai and Yeung [5] gives bounds on the sizes of information sources

that can be transmitted through a given network with error-correcting network codes.

We have seen that the centralized management requirement may be less for

network-wide schemes than for receiver-based schemes in some cases. Unlike the cen-

tralized formulation, the node-based formulation imputes higher management over-

head to recovery schemes that involve more nodes, giving rise to the following result:

Theorem 16 (Node-based formulation) For linear coding in the single-receiver

case, the minimum node-based management requirement for terminal link failures and

the no-failure scenario is achieved with receiver-based schemes. l
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This does not however hold for the multi-receiver case. A counter-example is

shown in Figure 7-8. Here, the source multicasts one process to two receivers. Linear

receiver-based recovery for terminal link failures requires each of the two receivers to

switch between two codes, whereas network-wide recovery allows for recovery with

only the source node switching between two codes.

Src

Revi Rcv2

Figure 7-8: Counter-example showing that Theorem 16 does not hold for the multi-
receiver case.

7.4 Detailed development, ancillary results, and

proofs

7.4.1 Mathematical model

A linear network code is specified by a triple of matrices A, F and B, defined in

Chapter 2. A code (A, F, B) is equivalently specified by the triple (A, G, B), where

G = (I - F)-1 . A pair (A, F), or (A, G), is called an interior code.

We use the following notation in this chapter:

" M(i, j) denotes the (i, j)th entry of a matrix M

" c2 and bj denote column j of AG and B respectively. We call the column vector

c! corresponding to a link j the signal vector carried by j.
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" AK, GK and BO. denote the submatrix of A, G, and BO respectively consisting

of columns that correspond to links in set 1C.

* Gh, G h and c are the altered values of G, GK and c respectively resulting

from failure of link h.

* G, G" and c, are the altered values of G, GK and c respectively under the

combined failure of links in set 'H.

* T is the set of terminal links of receiver 3.

" Th is the set of terminal links of receiver 3 that are downstream of link h. If

there is a directed path from a link or node to another, the former is said to be

upstream of the latter, and the latter downstream of the former.

In the general case, each receiver # requires a subset X0 of the set of source

processes. A code (A, G, B) is valid if for all receivers 3, AGBJ = e ... , 1
where (i3, .particular permutation of (1,..., X1), and e is the unit

column vector whose only nonzero entry is in the ith position. In the single-receiver

and multicast cases, we choose the same ordering for input and output processes, so

this condition becomes AGB = I V 0. An interior code (A, G) is called valid for

the network connection problem if there exists some B for which (A, G, B) is a valid

code for the problem.

The overall transfer matrix after failure of link h is AIhGh(BIh)T - AGhBT,

where Ih - I - 6 hh is the identity matrix with a zero in the (h, h)th position, Fh -

IhFIh, and Gh - Ih + Fh + (Fh)2 + ... = Ih (I - FIh) = (I - IhF) 1 I. If

failure of link h is recoverable, there exists some (A', G', B') such that for all 3 E D,

A'G'h B'T = . .e] where X3 = {if, .. . , }.

In receiver-based recovery, only B changes, while in network-wide recovery, any

combination of A, F and B may change.

leach receiver is required to correctly identify the processes and output them in a consistent order
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7.4.2 Codes for different scenarios

As a first step in analyzing how many codes are needed for the various scenarios of

no failures and individual link failures, we characterize codes that can cover multiple

scenarios.

Lemma 6 (Codes covering multiple scenarios)

1. If code (A, G, B) covers the no-failure scenario and failure of link h, then

Gh G(hj)bT = 0 V 3 E D,

where 0 is the r x r zero matrix.

2. If code (A, G, B) covers failures of links h and k, then V 13 E D, either

(a) ghaj(q7_ G(h, )j b 0
and rk ZjeT G(k,j)bT = 0

or

(b) 'Yhk Lyg G(h, j)bT = r G(k, j)bi # 0

and Ch = Yhkk =, 0

where Yh,k E F 2U

Proof: A code (A, G, B) that covers the no-failure scenario and failure of a link

h satisfies, V 0 E D,

0 = AGB T - AGhB '

= AGTBQ - AGOBi

=(c, - c) bT
jETG

2 S: G(h,j)b T
jTh

since G(h, j) can be nonzero only for terminal links j that are downstream of link h.
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A code (A, G, B) which covers failures of links h and k satisfies, V 0 (E D,

AGy B)g = AGk B O

c E S G(h 7j) bf= Ck j G(k~jY21T

Either both sides are equal to 0, or else vectors ch and k which respectively span

the column spaces of the left and right hand side expressions are multiples of each

other, i.e. c = Yh, kk, and vectors Zjeh G(h, j)bT and EjEr G(ki )bT which re-

spectively span the row spaces of the left and right hand side expressions satisfy

Th,k jg G(h, j)bT = Ejk G(k, j)b .

An intuitive interpretation of this lemma is provided by considering a simple

characterization of codes relative to a given link as follows. A code (A, G, B) is

termed active for a receiver 13 in a link h if AGhB is affected by the value on link h,

i.e. Ch Z h G(h, j)b T = 0. A code is active in a link h if it is active in h for some

receiver 13. Otherwise, the code is non-active in h. For a code which is non-active in

a link h, the value on h could be set to zero (by upstream links ceasing to transmit

on the link), cancelled out, or disregarded by the receivers.

By Part 1 of Lemma 6, a code which covers the no-failure scenario as well as one

or more single link failures must be non-active in those links. By Part 2 of Lemma 6,

a code which covers failures of two or more single links is, for each receiver, either

non-active in all of them (case a) or active in all of them (case b). In the latter case,

those links carry signals that are multiples of each other. We term a code active if it

is active in those links whose failures it covers, and non-active otherwise. If signals

on failed links are undetermined, then consideration must be restricted to non-active

codes.

These expressions simplify considerably for terminal links as follows:

Corollary 2

1. If code (A, G, B) covers the no-failure scenario and failure of terminal link h, then

f b T 0.
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2. If (A, G, B) covers failures of two terminal links h and k, then either

(a) b = 0 and c b = 0

or

(b) h and k are terminal links of the same receiver 13,

Th,k~h = h 0 and Ch = ^,kfk 0

where /h,k E F2u

Proof of Theorem 12: Consider an integral link h whose failure is recoverable,

and a subgraph g' on which the set of source-receiver connections is feasible if and

only if h has not failed. g' does not include all links, otherwise failure of h would not

be recoverable. Then the set of links not in g', together with h, forms a set H of two

or more links whose individual failures are recoverable but whose combined failures

are not. By Lemma 6, a code which covers the no-failure scenario and failure of a

link k is non-active in k. However, a code which is non-active in all the links in H is

not valid. Thus, no single code can cover the no-failure scenario as well as failures of

all individual links in R. U

7.4.3 Bounds on linear network management requirement

Single receiver analysis

Let M be a set of links on a minimum capacity cut between the sources and the

receiver 2 , where IMI = m, and let J be the set of links comprising links in M as

well as links between nodes upstream of M.

We define the r x -I matrix Q = (qi,j) and the 191 x 1JI matrices D = (d1,,) and

J = (I - D)-', which are analogous to A, F and G respectively, but which specify

only signals on links in J. We refer to a pair (Q, J) as a partial interior code. qij
2 a partition of the network nodes into a set containing the sources, and another set containing

the receiver, such that the number of directed links from the first set to the second is minimized
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and d1,j (which correspond exactly with aij and ft,3 respectively for 1, j E J) are the

coefficients of the linear combination of source signals Xi and signals on incident links

1 that appear on link j:

Y(j) = Y qijXi + dijY(l)
{i : Xi generated at v} {i : head(i) = v}

The partial interior code corresponding to given A and G matrices is given by

Q = Aj and J = G 3 x 3 , the submatrix of G consisting of entries from rows and

columns that correspond to links in J. If We also define JK to be the submatrix of

J consisting of columns that correspond to links in 1C.

For a minimum capacity cut M, there exists a set of link-disjoint paths {Pk k

M}, where Pk connects link k in M to the receiver. A partial interior code (Q, J) can

be extended to an interior code (A, G), where A3 = Q and Gxg = J, by having each

link k E M transmit its signal only along the path Pk, i.e. fl,, 2 = 0 V 11 E Pk, 12 V Pk.

The corresponding (A, G) is called the extension of (Q, J).

Lemma 7 If failure of some link in 3 is recoverable, recovery can be achieved with

a code in which no link in M feeds into another.

Proof: If failure of some link I E J is recoverable, then there exists a partial

interior code (Q, J) in which QJM has full rank. Having one link in M feed into

another only adds a multiple of one column of QJM to another, which does not

increase its rank. Thus, the extension of (Q, J) is a valid code covering failure of 1,

with the property that no link in M feeds into another. M

Let us call the original network connection problem I, and define a related con-

nection problem I' on a network with

* sources and nodes corresponding exactly to those in the original network that

are upstream of M,

" links corresponding to those of the original network originating at nodes up-

stream of M,
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* a single receiver node 0' whose terminal links h' correspond to links h in M,

with tail(h') = tail(h).

An example illustrating this is given in Figure 7-9.

network X

in
cut

network Y

receiver $

Problem n

network X

receiver

Problem n'

Figure 7-9: Example illustrating the definition of a related connection problem H'
from an original problem H.

Corollary 3 If failure of some link in j is recoverable in problem H, then failure of

the corresponding link in H' is recoverable.

The following lemma relates codes for terminal link failures in problem H' to codes

for failures of links in M in problem H.

Lemma 8 Let (Q, J) be a partial interior code in which no link in M feeds into

another. If there exists an r x m matrix L such that Q J4 LT = I for all h E M1 C M,

then there exists a code (A, G, B) covering failure of links in M 1 , such that A3 = Q
and Gjxj = J. Conversely, if (A, G, B) is a code in which no link in M feeds into

another, and (A, G, B) covers links in M 1 C M, then there exists some r x m matrix

L such that Q = A 3 and J = G 3 x satisfy QJL LT = I for h E M 1 .
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Proof: Extend (Q, J) to a valid interior code (A, G), where A5 = Q and

Gj xj = J, by having each link k E M transmit its signal along the path Pk, such

that the terminal link on Pk carries the same signal as link k. Then the receiver matrix

B whose columns for terminal links on paths Pk are the same as the corresponding

columns k of L, and zero for other terminal links, satisfies AGhBT = QJ LT =

I V h E M 1.

For the converse, note that

AGhBT = ZchbT

jET

= T L gG(l,j)bT
jET IE M

l h

So we can construct a matrix L which satisfies the required property as follows:

G(1, b) bT

L T=

jT G(lm, j) bT

where 11, ... , l are the links of M in the order they appear in JM.

Lemma 9 For a single receiver with t terminal links, an upper bound on the number

of receiver-based codes required for the no failure scenario and single terminal link

failures is

r ~ ~ forr =1 or t-1

max t ,r ={ r for2 < r < t - 2

Proof: For r = 1, [tr] = 2. Just two codes are needed as only one of the links

needs to be active in each code. For t = r + 1, [tr] = r + 1. We can cover each of

the r + 1 terminal links by a separate code, so r + 1 codes suffice. For 2 < r < t - 2,

consider any valid static code (A, G). Let v 1 , . .. , jr be r columns of AGT that form a

basis, and wl, ... , _t-r the remaining columns. Assuming that all single link failures

are recoverable, and that there are at least r + 2 nonzero columns, we can find a set
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(Eg, _, i , I I _wy,) such that {w,} U {v_ x = i} and {wy} U {v, I x = j} have full rank.

Then the links corresponding to v, and wy can be covered by one code, the links

corresponding to vL, _w, and {W k = 1,... , t - r, k # i', j'} by another code, and

the links corresponding to {Vk I k = 1,..., r, k $ i, j} by a separate code each. N

Lemma 10 For any set of n > 2 codes with a common (A, G) covering failures from

a set T1 C T of terminal links, there exists a set of n or fewer non-active codes that

cover failures in set T1 .

Proof: A set of two or more terminal links covered by a single active code carry

signal vectors which are multiples of each other. One of the links can be arbitrarily

designated as the primary link for the code, and the others the secondary links for the

code. If all n codes are active codes which cover two or more terminal link failures,

then only two (; n) non-active codes are required, one non-active in the primary

links and the other non-active in the rest. Otherwise, there is some non-active code

in the set, or some active code covering only one terminal link failure which can be

replaced by a corresponding non-active code covering that link. The links covered

by this non-active code can be covered together with the primary links of the active

codes, with a single non-active code. The secondary links of the active codes can be

covered by a separate non-active code. This forms a set of at most n non-active codes

covering the same terminal link failures as the original set. U

Corollary 4 For receiver-based recovery, the minimum number of codes for terminal

link failures can be achieved with non-active codes.

Lemma 11 Bounds on the number of receiver-based codes needed to cover the no-

failure scenario and failures of links in M, assuming they are recoverable, are given

in the following table. These bounds are the same in the case where only non-active

codes are used.

lower bound upper bound

max m ,r)

[Mr r+1 for r=1 or m-1

Ir for 2<r<m-2
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Proof: It follows from Lemma 7 that if failure of some link in J is recoverable,

it is recoverable for the related problem H'. Any code (Q', J') covering failure of

terminal links h E Mi in problem H' can be extended to obtain a code (A, G, B)

covering links h E M 1 in the original problem (Lemma 8). We can thus apply the

upper bound from Lemma 9 with m in place of t.

For the lower bound, from Lemma 6, a single non-active code in a valid receiver-

based scheme can cover at most m - r of the links in M. By Corollary 4, restricting

consideration to non-active codes does not increase the receiver-based lower bound

for the related terminal link problem H', which is also [;m;-], and so does not increase

the receiver-based lower bound here. U

Lemma 12 A lower bound on the number of network-wide codes needed to cover the

no-failure scenario and failures of links in M, assuming they are recoverable, is given

by [m+1 ]~m-r+1 '

Proof: It follows from Lemma 6 that a single non-active code covers the no-

failure scenario and at most m - r single link failures among links in M, while a

single active code covers at most m - r + 1 links in M. Each code therefore covers

at most m - r + 1 out of m + 1 scenarios of no failures and failures of links in M. U

Lemma 13 For a single receiver, there exists a valid static interior code (A, G) such

that no link feeds into more than one link in M.

Proof: From Corollary 3, assuming single link failures are recoverable in the

original problem H, single link failures are recoverable in the related problem H'.

Thus, a static interior code (Q, J) covering these failures exists for H' [38]. This can

be extended to a static interior code (A, G) in which no link in M feeds into another.

For any such code (A, G), suppose there is some link h which feeds into more than

one link in M. Let MAh = {hi,... , hx} be the set of links in M that h feeds into,

and let MA = M -- Mh. We will show that we can obtain from (A, G) a valid static

code in which h feeds into only one link in M.
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Case 1: h feeds into some link hi in M via some path P (which includes h and

hi) such that the code for each link I E P other than h is Y(l) = fp,iY(l'), where 1' is

the incident upstream link in P of 1, and fi,, is a nonzero coefficient, i.e. the signal

vector of each link in P is a multiple of the signal vector of h.

Consider a code (Q, D) on the related problem 1' defined earlier, where Q = Aj

and

D(l112) = 0 for 11  P, 12 V P

fA1 , 2  otherwise,

i.e. each link in P feeds only into its incident downstream link in P. Let J = (I-D)-1 .

Consider any link h' E P. Note that Q Jh = AGh, which has full rank. For

failure of any link k P, Ch is available on hi via P, so rank(QJk) = rank(AGk)=r.

Thus, (Q, J) is a valid static code for failures in 17'.

The extension of code (Q, J) is then a valid static code for the original problem

H in which h feeds into only one link in M.

Case 2: Coding occurs between h and each hi E MA, i.e. the signal vector for each

hi is a combination of the signal vector for h and some other signal vector, which we

denote by si. The signal vector for hi, i 1,... , X, is then s, + G(h, hi)fh.

We first show that there exists a proper subset L C M such that AG h has full

rank and which does not include all links in MAh, i.e. MAh n Z is nonempty. Suppose

that such a subset does not exist. Since AGh has full rank and m > r, AGh must

have at least one proper subset of r independent columns. By supposition, any such

subset contains {hl, . . . , hx}, which requires {s 1 , . .. , s,} to be independent, and s, to

be out of the column space of AGj V i = 1,..., x (where 2, defined in the previous

paragraph, is the contribution to hi from other links besides h). Then AGj has

rank at most r - x, and failure of any hi, i = 1,... , x would leave AG h with less

than full rank, contradicting the fact that (A, G) is valid for any single link failure.

Thus, there exists a proper subset L C M such that AG' has full rank and MAh nZ

is nonempty. Let hj be some link in MAh n 1.

For a particular code, let a link that feeds into more than one link in M, and whose

signal vector is a linear combination of c2 and some other nonzero signal vector, be
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said to satisfy condition 1. We consider two cases:

Case 2a: There exists a set R of links forming a single path from h to hj, including

h and hj, such that none of the links h' E R satisfy condition 1.

Consider the family of codes (Q, D) on the related problem 11' defined earlier,

satisfying Q = Aj and

D(11, 12) { 0 for l 1 E R,1 2  R

d1 1 2  otherwise.

Let 'D be the set of possible values for D, corresponding to different choices of values

for variables d, 1, in this family of codes. We will show that any single link failure

in r' can be covered by (Q, D) for some D E 'D. It will then follow that there exists

a static choice of D E D such that (Q, D) is valid for all single link failures in 11',

since the product of the transfer matrix determinants for individual link failures is a

nonzero polynomial in the variables d1 , 1 , which has a nonzero solution in a sufficiently

large finite field [40].

Let D' be the element of 'D obtained by setting each variable d11,1 2 to f1,1, and

let J' = (I - D')-.

First consider failure of any link h' E R. We have QJ'"j = AGh by the assumption

of this case. Hence, failure of h' is covered by (Q, J').

Next, consider some link k R. If AGf'hk} has full rank, then so does QJ'5l'ak.

Then, the matrix D" E 'D obtained from D' by setting to zero each variable dh,12 V 12

(i.e. having h not feed into any link) is such that (Q, D") covers k.

If AG Ih'a has less than full rank, then its rank is r - 1 since AG , which has

rank r, has only one possibly independent additional column. ch is not in the column

space of AG. , since otherwise AGM would have rank no greater than AGM,'),

contradicting the fact that AG' has full rank. s, the value on hj after failure of h

and k, is in the column space of AG 'k}.

Now AGf'k'hj'I cannot have rank < r - 2 since this would mean that AG 'hII has

at most rank r - 1, and the full rank assumption on AGIC, whose column space is

contained in the column space of AG{lahl, would be contradicted. Thus AGhiklhj}
M -AA
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has rank r - 1, which is the same as the rank of AGl,'}. Since the column space

of AG.h'k'h,} is contained in the column space of AG.''k, the column spaces must

be equal. Hence s is in its column space while ch is not, and thus s + G(h, hj)!h

is not in the column space. The column space of QJ' equals the column space of

AGJ 'khj} U (sf + G(h, hJ)gh), which has rank r.

Therefore, there exists some choice of values for variables in 'D such that (Q, D)

is a valid static interior code for problem 11'. The extension of this static (Q, D) is a

valid static code for the original problem 1I in which link h feeds into only one link

hj in M.

Case 2b: Every path from h to hj contains some link that satisfies condition 1.

Consider a set R' of links forming a path from h to hj, and let h be the furthest

upstream link in R' that satisfies condition 1. We apply the same line of reasoning

starting from the beginning of this proof, but with h in place of h.

If case 1 or case 2a applies for (A, G) and h, then we can obtain a modified code

(A', G') in which h feeds into only one link in M. Having eliminated one link from

the set of those satisfying condition 1, we then re-apply the same reasoning from the

beginning, this time for (A', G') and h.

If on the other hand case 2b applies for (A, G) and h, we proceed recursively,

applying the same reasoning for (A, G) and a link downstream of h. If we come to a

link h that is incident to a link in M, then case 1 or case 2a will apply, allowing us

to eliminate h from the set of links satisfying condition 1.

Throughout this procedure the number of links in M that h feeds into is mono-

tonically decreasing, as is the number of its downstream links satisfying condition 1.

Thus, the procedure terminates with a valid static interior code in which h feeds into

only one link in M. 0

Proof of Theorem 14a: We can find a valid static interior code (A, G) such that

the subgraphs Sk of links which feed into each k E M are link disjoint with each

other, and the paths Pk along which k transmits to the receiver are also link disjoint

(Lemma 13). A non-active code (A, G, B) which covers failure of link k E M also

covers failure of all links in the subgraph Sk U Pk, which we refer to as the associated
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subgraph of k. Thus, the bounds for receiver-based, or static, recovery here are the

same as those in Lemma 11. An example of a valid static interior code achieving the

lower bound with equality is an interior code (A, G) where AGM is of the form shown

in Figure 7-10.

- 0 0 X 0 .... ... ... ... ... ... ... ... 0
S X 0 X 0 ... .. x

* ,, } [rnri
x ... 0 x

x x

x 0 ... 0 x

... 0 x I-m r 1 -1l

Figure 7-10: An example of an AGM matrix in a receiver-based code that achieves
the lower bound of ['] codes, with m - (m - r - 1) [m;- > 2.

For network-wide recovery, which includes receiver-based recovery as a special

case, the maximum number of terminal link codes needed is no greater than that

needed in receiver-based schemes.

For r = m - 1 > 3, we can obtain a bound tighter than the receiver-based bound.

By Lemma 13, there exists a valid static interior code (A, G) such that no link feeds

into more than one link in M. Consider such a code (A, G). Define e. E Fr to be the

unit vector which has a 1 in the ith position as its only nonzero entry. Since no link

feeds into more than one link in M, a column AGh, h E M can be set to e, where

process i is carried by link h, without affecting any of the other columns in AGM.

In order for single link failures to be recoverable, the r x (r + 1) submatrix AGM

of AG must have at least two nonzero entries in each row. It follows that we can find

distinct i, j, j' E [1, r] and distinct h, k E M such that AG(i, h), AG(i, k) are nonzero,

and either

(a) AG(j, h), AG(j', k) are nonzero, or

(b) AG(j, h), AG(j', h) are nonzero. In this case, we can switch labels among i, j, j'
such that there exist paths in Sh from sources j and j' to h whose only common links
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are on a path from source i to h. Then paths from source i to the receiver through h

and k can be covered by an active code, and the remaining links by r - 1 non-active

codes. This is because the remaining r -1 links in M, and their associated subgraphs,

can be covered by non-active codes corresponding to their receiver-based codes, and

two paths from source j to h and from source j' to k (in case a) or to h (in case

b), excluding the paths covered by the active code, can be covered with two of these

non-active codes.

An example in which r = m - 1, and r network-wide codes are needed is given in

Figure 7-11. This is not the case for r = 2 = m - 1, for which an example requiring

3 network-wide codes is given in Figure 7-12.

Src 2 Src r
Src 1,, -- ---

Rcv

Figure 7-11: An example network in which r m - 1, which achieves the linear
receiver-based upper bound of r + 1 codes and the linear network-wide and nonlinear
receiver-based upper bounds of r codes.

For 4 < r < m - 2, we can also obtain a bound tighter than the receiver-based

bound. We consider two cases.

Case 1: There is a set of r + 2 columns in AGM which contains a basis and does

not contain two pairwise dependent columns. We show that the set contains three

pairs of columns such that each pair can be covered by a single non-active code, and

that r + 2 - 3 = r - 1 non-active codes suffice to cover all columns.

Let the columns in this set be U1, . r . L _2, where _U1, . . . , , form a basis,

and let the remaining columns in AGM be w3 , - - Expressing each wi as a

linear combination w. = Aj, 1 +...+ Ai,ry, the pairwise independence of columns in
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X 1  X 2

Rev
Figure 7-12: An example network in which r = 2 = m - 1, which achieves the linear
network-wide upper bound of 3 codes.

the set implies that for i = 1 and i = 2, at least two of Ai, 1, .. . , Xir are nonzero, and

that there exist k < 1 such that Al,kA2,1 # Al,lA 2 ,k. The last condition implies that

A1,k, A2,1 / 0 or A,, A2,k # 0; we assume wlog that A1,k, A2,1 4 0. By the assumption

of recoverability, at least one of A1,j,. .. Am-r,j is nonzero.

Case la: Al,k', A2,11 # 0 for some k', 1' such that k', ', k, 1 are all distinct. Then

f21 il .. - , m'-1) Y-1+1, - -. - , r, W21,

{N1, .... ,7 k'-_1 k'+1, - -, 1r,Al1}, and

{_ i, . . . , Uk_1, !kk+1, - -. - , 1-1, 7 l+1, - - - ) ! r, 7 Ii21, 2

are three full rank sets. Thus, links corresponding to each pair of columns (_w, jk,),

(W21 2Lk') and (IEk, y4) can be covered by one non-active code, along with links corre-

sponding to any columns _W,... , wm---

Case lb: A1,k/, A2,k # 0 for some k' # k, l; and A2 ,3 = 0 V j , k, l. Then

Al,k'A2,l 1 A,lA 2,k', SO

{N1 .... , !k,_-1, ilk'+1,.. - -1-1 Y-1 E+1, - -.- I Lr, 71 I!21
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is a full rank set, as are

{ , . . . , lk_ 1, !k+ 1, - ,W2} and

YE, -P--,% -11 !k'+11 -. - - k , !r, m,

where ' is distinct from k', k, 1; and m' £ {1, 3,4, ... , - r}, Am, 1' # 0. Thus,

links corresponding to the pair of columns (Uk 1 ) can be covered by a single code,

along with links corresponding to any columnsW3, - -. -, - The pairs (W1, 1k) and

(W2 7,) can each be covered by a single code.

Case 1c: A1,1, A2,1  0 for some 1' # k, 1; and Aj = 0 V j # k, 1. This case is

similar to case 1b.

Case Id: A1,1, A2,k # 0, AJ = 0, A2, = 0 V j # k, 1. Links corresponding to

columns (Wk, '11) can be covered by a single code along with links corresponding to

any columns _L3, - - -, -Lm-r. Links corresponding to each pair of columns (w1 , u,) and

(_2, Uk') can be covered by a single code, for some k', 1' # k, 1.

Case 2: For any basis set of r columns in AGM, there are no two columns among

those remaining that are not multiples of each other or multiples of columns in the

basis set.

Consider a pair of dependent columns. If each is a combination of two or more

source processes, they can be set to different combinations of the same source pro-

cesses while preserving the linear independence of any linearly independent subset of

columns in AGM, in a sufficiently large finite field. This procedure can be repeatedly

applied to remove pairwise dependence among columns involving two or more source

processes, giving a new valid static code (A', G') in which any pair of dependent

columns involves only one source process.

If (A', G') satisfies the condition of Case 1, then we know that r - 1 codes suffice.

Otherwise, let us first consider the source processes and columns that are not part

of pairwise dependent sets. Let f be the total number of processes not involved in

such sets, and ij be the number of columns that are not part of such sets. Note that

f Kr - 1 andf <F K - 1.
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By reasoning similar to our earlier analysis of receiver-based recovery, we have

that the corresponding I/ links and their associated subgraphs can be covered by

2 < i + 1 < 3 non-active codes if i = 1, 2, and by i non-active codes if 2 < f < i - 2.

If f = E - 1 > 3, by reasoning similar to our analysis of network-wide recovery for

r = m - 1 > 3, one active code and i - 1 > 2 non-active codes suffice to cover

the F/ links and their associated subgraphs. Any two non-active codes covering these

links can also cover the remaining links corresponding to the dependent sets. Thus,

f+1 < 3 codes suffice for f < 2, and f codes suffice for 2 < < I-2 and f = I-1 > 3.

In all these cases, the number of codes required is at most r - 1, which is greater than

or equal to 3.

For the remaining cases, the receiver-based upper bounds are also tight for the

more general case of network-wide recovery.

The example network of Figure 7-13 achieves the receiver-based upper bound of

r, and the network-wide upper bounds of r codes for r = 3, and r - 1 codes for

4 < r K m - 2. U

Src 3 Src r
Src 2 ..,...... ..

Src 1

Rcv

Figure 7-13: An example network which achieves the receiver-based upper bound of r,
the network-wide upper bounds of r codes for r = 3, and r -1 codes for 4 < r < m-2.

General case lower bound

Proof of Theorem 13:
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Consider joining all receivers with max(m, 2r) links each to an additional node 0'.

If we consider 3' to be the sole receiver node in the augmented network, the number

of links in a minimum cut between the sources and this receiver is m, and there is

a minimum cut of m links among the original links. The number of codes needed

to cover links on this minimum cut is at least [; m- 1 for receiver-based recovery and

[m-r~] for network wide recovery (Lemmas 11 and 12). Thus this represents a lower

bound on the number of codes required to cover all links in the original problem.

An example which achieves the receiver-based lower bound with equality for any

values of m and r is given in Figure 7-14, where the number of terminal links to of

each receiver 3 is set to 2ro, twice the number r of processes needed by receiver /.

Here, all links in M can be covered with [;m] non-active codes, two of which can

cover at the same time all terminal links.

This example with to = 2 rQ for each receiver / also achieves the network-wide

lower bound with equality when [m-rn7j is not an integer. Let [mmirl (m-r+1) =
m + 1 + y. Links in M can be covered with a set of [rn±+1] codes that includes

min ([rnM1 ] , y + 1) > 2 non-active codes, which can at the same time cover all the

terminal links.

For the case where [2M+ ] is an integer, however, covering links on the minimum

cut with exactly [m-rn7 codes would allow for only one non-active code (Lemma 12),

so this bound is not attained with equality for two or more receiver nodes. U

Upper bounds for all link failures, multicast case

Let mf be the number of links in a minimum cut between the sources and a receiver

/3. From Lemmas 8 and 13, we know that for each receiver node / individually,

there is a static solution for all single link failures in which each of mo link-disjoint

subgraphs feed into a different terminal link of 3; each subgraph is a tree whose links

are directed towards the root node /, with an unbranched portion between the root

and the branches, which we term its trunk. We denote by g9, i = 1, 2,... , mo., the

trees rooted at a receiver 3,,. The trees corresponding to each receiver /3. can be

partitioned into a number of forests such that failure of all links in any one forest
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a

bi ' bu

b 2

Figure 7-14: An example network which achieves the general case lower bounds of
Theorem 2 with equality, where ri is the number of processes received by receiver 3i.

leaves a subgraph of the network that satisfies the max-flow min-cut condition for

receiver 13,. The number s, of these forests is given by Theorem 14a.

Proof of Theorem 14b: We first analyze the two receiver case, considering three

cases:

Case 1: 2 < r < mo, - 2 for both receivers Ox,x = 1, 2. Then the trees gI,

1, 2,. .. , m3, associated with each receiver 03, x = 1, 2, can be grouped into

sK3 < r link-disjoint forests (Theorem 14a), such that failure of all links in any one

forest leaves a subgraph of the network that satisfies the max-flow min-cut condition

for receiver node 0,. Thus, at most r 2 codes are needed.

Case 2: r = 1. Consider the related problem where all but two terminal links of

each receiver are deleted from the network such that the minimum cut between the

source and each receiver is exactly two. This problem is also recoverable for all single

link failures, and requires at least as many codes for failure recovery as the original

problem. To see this, note that a valid code needs to use at least two paths, one

from the source to each receiver. Thus, all links except for those on two paths, one

from the source to each receiver, can be covered by a single code. Each link on these
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two paths must be covered by a code that uses an alternative pair of paths from the

source to each receiver. Since the source-receiver paths in the related problem form a

subset of those in the original problem, the related problem requires at least as many

codes as the original problem.

Therefore, in finding an upper bound we can, without loss of generality, consider

the case where the minimum cut capacity between the source and each receiver is

exactly two. This puts us in case 3.

Case 3: one of the receivers, say 131, has a minimum cut of r + 1 links. We will

show that there exists a set of paths sufficient for transmission to 32, which does not

intersect the trunk of some tree gl. Then the trunk of tree 9i can be covered by a

single code. Its branches can be partitioned into sets Bk, k < r, each paired with a

distinct tree 97/, such that subtree of gi excluding branches in set 93 can replace

tree 97" in a full rank set. Intersections between branches in set B and some tree g

can then be covered together with intersections (9/ Ig? ) ,if any.

If /2 has a minimum cut of more than r +1 links, then so, < r, and at most r 2 + 1

codes are required altogether.

If 02 has a minimum cut of r + 1 links, then by similar reasoning as for 01, there

exists some tree 97 whose trunk can be covered by a single code. Its branches can be

partitioned into sets B', l r, each paired with a distinct tree 9"1, such that subtree

of 93 excluding branches in set 3 can replace tree g" in a full rank set. Then

intersections between branches in set 93 and some tree 9' can be covered together

with intersections (92 ,9), if any, and intersections between branches of 9 in set 3f

and branches of 9 in set 31 can be covered together with intersections (g9ct ,9l )if

any.

Consider the following procedure that takes as inputs a set 'T of trees !9 and

a set P of disjoint paths, and tries to shorten the paths to reduce the number of

intersections with trees in T. Let an intersection that is the furthest upstream on the

trunk of some tree g be called a leading intersection. At each step, any path with

a leading intersection that is not the furthest upstream intersection of the path is

shortened by removing the portion of the path upstream of that leading intersection.
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P2 P2
Pi

P2

Figure 7-15: An illustration of the path shortening procedure. In the first step, path
P is shortened to form Pj by removing the portion of P upstream of its intersection
with tree g'. In the second step, path P2 is shortened to form P2 by removing the
portion of P upstream of its intersection with tree g.

The procedure ends when the leading intersection, if any, of each tree !9 is with the

furthest upstream intersection of a path. An illustration of this procedure is given in

Figure 7-15. We denote by U C T the subset of trees with trunk intersections at the

end of the procedure, and by V c P the subset of paths with a leading intersection

at the end of the procedure.

The sets U and V obtained at the end of the procedure are uniquely defined by

the input sets, regardless of the choices made at steps where there is more than

one candidate intersection that can be chosen by the modification procedure. First

suppose to the contrary that two different sets U are obtained from the same inputs via

two different sequences 81 and 82 of modifications. Then some tree gi E T is in the set

U for sequence 81 but not 32. This means that tree 9j has a leading intersection with

some path P at the end of sequence 81, whereas tree g' has no trunk intersections at

the end of 82. Thus, 82 shortens path P such that its furthest upstream intersection

is a leading intersection with some other tree 9j'. The intersection (p', P) is not

however a leading intersection at the end of sequence 81; the leading intersection of

tree 9'f is with some other path Py. This in turn means that 82 shortens path Py

such that its furthest upstream intersection is with yet another tree; continuing the

argument in this fashion leads to a contradiction since the number of trees in T is
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finite.

Next suppose that two different sets V are obtained via two sequences 81 and 82

of modifications. Then some path P has a leading intersection at the end of one

sequence 81 but not the other 82. This means that 82 does not modify P. The

furthest upstream intersection of P at the end of 81 is with some tree g'; since this

is not a leading intersection following 82, the leading intersection of tree 9j following

82 is with some other path Pjg. Path Py is shortened by 81 such that its furthest

upstream intersection is with some other tree g9', whose leading intersection is with

yet another path. Continuing similarly we reach a contradiction since the number of

paths in P is finite.

This leads to the following property:

Property 1 Let P' be the set of paths obtained from running the procedure on a set

of paths P and a set of trees 7. Running the procedure on P' and a set of trees T

that is a superset of T gives the same output sets V and U as running the procedure

on P and T.

Thus, the output sets are unchanged if we carry out the procedure in two stages,

first considering all intersections involving trees in a subset T C T, then carrying out

the procedure to completion on the entire set W of trees.

We will describe an algorithm for obtaining a set of paths that suffices for trans-

mission to #2 and has no intersections with the trunk of some tree 9q. This algorithm

involves one or more runs of the procedure described above. We denote by T7 , Un, Vn

respectively the sets c, U, V corresponding to the n'h run.

We set T1 to be the full set of trees g, i = 1,..., r+ 1, and P to be any set of

r disjoint paths each joining a different source to /2. If one of the trees in T1 has

no intersections along its trunk, then we are done. Otherwise, consider the leading

intersection of each tree and the furthest upstream intersection of each path. There

exists a code in which the source vectors of the leading intersections of any r trees

form a basis set. There exists also a code in which the source vectors of the furthest

upstream intersection of each path form a basis set. Thus, there exists a code which
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satisfies both conditions simultaneously. We associate with each tree !9 the signal

vector of its leading intersection in this code, and with each path the signal vector of

its furthest upstream intersection in this code. We denote by 'R(Z) the set of source

vectors of the trees or paths in a set Z.

For the first run of the procedure, since there are r + 1 trees in T1 and r paths in

P, the procedure ends with at least one tree whose trunk has no intersections.

Each run n of the procedure ends in one of the following two cases.

Case 3a: The set of paths at the end of the procedure suffice for transmission to

/2. Then we have a set of paths with the desired property.

Case 3b: The set of paths at the end of the procedure do not suffice for transmis-

sion to 02. Then the set Vn = Pn - V, is non-empty, and some vector in the span of

'R(Vn) is also in the span of 'Z(Vn).

To see this, first note that that at the end of the procedure, every path in Vn

forms the leading intersection of a distinct tree gi, and acquires the signal vector

associated with that tree. Also, the signal vectors of any r trees form a basis set. If

the redefined paths cannot carry a basis set, then at most r - 1 trees g{ have leading

intersections at the end of the procedure, and jVj < r - 1. Next observe that since

the vectors in 'R(Vn) are linearly independent, as are the vectors in 9Z(Vn) = 'Z(Un),

any linearly dependent set of paths at the end of the procedure must include paths

in both V, and Vn.

Consider a basis set W, for vectors that are both in the span of 'Z(Un) as well

as in the span of 'R(Vn). Each vector tk E Wn,k = 1,..., Wn1 , can be expressed

as a linear combination of vectors forming a set tk C 9ZUn), and paired with a

vector !ik chosen from Jk as follows. ti is paired with an arbitrarily chosen vector

v E 1. For subsequent vectors tk, k > 2, considered, if ik contains any vectors

Vk', k' < k, Gaussian elimination is performed on vectors tk", k" ;> k, to obtain a

vector in the span of a set C JZ(Un) that does not contain any vectors Vk,, k' < k.

This is possible because of the linear independence of vectors in Wn. The vector tk

under consideration is then paired with an arbitrarily chosen vector Vk E . The

pairings produced in this way have the property that the expression of any vector
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w E span(Wa) as a linear combination of vectors in §(Un) includes at least one

vector '0k, 1 < k < I'WaI. The trees corresponding to vectors Vk are then removed

from 7,, to form set 7Y'+. The procedure is then run recursively on the new set of

trees Tn+1, which is a proper subset of the previous set Tn.

Note that the set V, formed by each run of the procedure is equal to or a subset

of the sets Vn, formed by previous runs n' < n, and the set Tn - Un of each run is

equal to or a subset of the sets T' - Un' from previous runs n' < n. This follows from

property 1 and the following observations: that the set T of a run is a subset of that

of previous runs, and that elements are added to but never removed from sets V and

7- U in the course of a procedure. This means that paths in the set Vn of some run

n will never have leading intersections in subsequent runs.

Next, we show that every run ends with a non-empty set T - U of trees with no

trunk intersections. As shown earlier, this is true for run n = 1. For n > 1, at most

jVn- 1 I trees have been eliminated from Tby the start of run n, so JTnJ > r+1- vn-1L.

Each run ends with each tree in T having either no trunk intersections, or having a

leading intersection with the furthest upstream intersection of a path. At the end of

run n, since at most r - IV_ 1 paths can have leading intersections, at least one tree

of Tn does not have a trunk intersection. Thus, Tn - Un is non-empty.

Finally, we show that any vector w in the span of Wn for some run n is independent

of R(Uj) for any subsequent run j > n. Consider the expression of w in terms of one

or more vectors in the set R(Un). At least one of these vectors is not in the set

Wj ; Uj, its corresponding tree having been eliminated from T following run n. Now

any vector can be expressed only as a linear combination of a subset of vectors in

JZ( 1 ) or as a linear combination of the complementary subset of vectors in J(T 1 ),

otherwise there would exist a dependent set of r vectors in Jz(T 1). Since the set

Tj - Uj is equal to or a subset of Tn - Un, the set T - Uj is disjoint with the set Un.

The vectors in set Wj C '(Uj) are thus linearly independent with w. As a result,

the vectors in the set W corresponding to a run are independent of those in previous

runs.

Since the total number of vectors in sets W is upper-bounded by IVI < r, and
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the set W for each run of the procedure ending in case 3b must be non-empty, the

procedure eventually ends in case 3a.

This proves the result for the two receiver case.

For d > 2, the trees 9x, i = 1,2,..., mo, associated with each receiver Ox,

3 < x < d, can be grouped into sox 5 r + 1 link-disjoint forests (Theorem 14a), such

that failure of all links in any one forest leaves a subgraph of the network that satisfies

the max-flow min-cut condition for receiver node 3x. Thus a set of links intersecting

0 or 1 of the forests associated with each receiver can be covered together.

Our analysis for the two receiver case partitions the links upstream of two receivers

#1 and /32 into at most r 2 + 2 sets such that failure of all links in any one set leaves

a subgraph of the network that satisfies the max-flow min-cut condition for receivers

,1 and 32. Each of these partitions may contain links that are part of up to r + 1

forests corresponding to receiver 33, which have to be covered separately. Each of

the resulting < (r 2 + 2)(r + 1) subsets may in turn contain links that are part of

< r + 1 such sets for receiver 34, and so on. Thus, at most (r 2 + 2)(r + 1)d2 codes

are required for d receivers. U

We are not yet certain as to how tight the bounds are for the multi-receiver all link

failures case. For the two-receiver case, an example in which (r + 1)(r + 2)/2 codes

are needed is given in Figure 7-16. In this figure, there are r +1 paths leading to each

receiver, which intersect each other in a stair-like pattern: the first path to Receiver 1

intersects one path to Receiver 2, the second path to Receiver 1 intersects two paths

to Receiver 2, the third intersects three and so on. Each of the (r + 1)(r + 2)/2

intersections must be covered by a separate code.

The non-multicast case differs from the multicast case in that processes which are

needed by one node but not another can interfere with the latter node's ability to

decode the processes it needs. As a result, a static interior solution does not always

exist, and the network management requirement for terminal link failures may exceed

the corresponding upper bound from the multicast case. Unlike the multicast case

where the number of codes for terminal link failures is bounded by r + 1, in the non-

multicast case, the number of codes for terminal link failures can grow linearly in the
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x1 X2 x x,

Rcv 2

Rcv 1

Figure 7-16: An example multicast problem in which (r + 1)(r+2)/2 codes are needed
for all link failures.

number of receivers.

Proof of Theorem 14c: We will use non-active codes in this proof. Let a set S

of terminal links of a receiver 3 be called a decoding set for )3 in a given interior code

if 3 can decode the processes it needs from links in S, but not from any subset of S.

S is called a decoding set for 3 in a given failure scenario if S is a decoding set for /
in some valid interior code under this scenario.

Note that r> 2 d > 2 for a non-multicast problem. From Theorem 12, at least 2

codes are required to cover failures of a receiver's terminal links. Consider a receiver

/ that has > r + 1 terminal links, and any recoverable set of failures of one or more

terminal links of other receivers. In any interior code (A, G) that is valid under failure

of these terminal links, and in which all terminal links of /3 have nonzero signal vectors,

either / has a decoding set of < r - 1 links, or it has at least two possible choices of

decoding sets of r links. All terminal links of 3 except those in a decoding set can

be covered by (A, G). If / has a decoding set of r links, at least one of these can

be covered by any interior code (A', G') valid under failure of another set of terminal

links, and in which all terminal links of 3 have nonzero signal vectors. So at most

r - 1 of its terminal links require an additional code. U

We have not yet determined whether this bound is tight. Figure 7-17 gives an

example which comes close to this bound, requiring Zto<r(to - 2) + Zto r+l(r - 1)

122



codes. Here, each adjacent pair of receivers i and i + 1 shares a common ancestral

link hi,i+l which can carry two processes, each of which is needed by only one of the

two receivers. Failure of any link to the left of ji, other than ji, i' < i requires h1 ,2

to carry one of the processes only, and failure of any link to the right of kin+, other

than k, i' > i + 1, requires h1 ,2 to carry the other process only, necessitating separate

codes.

X1,X2 Xt X4,..,Xt2,X2,X3 Xt X4,..,Xt3,X1,X3 Xt X4,..,Xt4,X1,X2 Xt X4,..,Xr,X2,X3

X1,X3 X1,X2 X2,X3 X1,X3 - XI

X2 X2
X2

Rcv 1 (tl=3) Rcv 2 (3<t2<=r) Rcv 3 (3<t3<=r) Rcv 4 (3<t4<=r) Rcv 5 (r<t5)

X1, X2 X2, X3, X4,..Xt X1, X3, X4,..Xt X1, X2, X4,..Xt X2, X3, X4,..Xt

Figure 7-17: An example network in which E, <,(t, - 2) + Zf (r - 1) codes are
needed.

7.4.4 Nonlinear receiver-based recovery

Proof of Theorem 15: We can view the signals on a receiver's terminal links

as a codeword from a linear (ta, r) code with generator matrix AGO. The minimum

number of nonlinear receiver codes required is the maximum number of codewords

that can be the source of any one received codeword under different scenarios.

Assuming that zero signals are observed on failed links, no network management

is needed for single link failures if each codeword differs from any other in at least 2

positions which are both nonzero in at least one of the codewords.

For a single receiver 0, recovery from single terminal link failures with no network

management requires the code with generator matrix AG3 to have minimum weight

2 and satisfy the property that for any pair of codewords which differ in only 2 places,

one of them must have nonzero values in both places. Now if there were a code of

weight 2, rank r and length t = r + 1, it would be a maximum distance separable

code, which has the property that the codewords run through all possible r-tuples in

every set of r coordinates. In a set of r coordinates, where each entry is an element

in Fq, consider the (q - 1)r codewords with exactly 1 nonzero entry in this set of
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coordinates. For a weight 2 code, these (q - 1)r codewords must all be nonzero in

the remaining coordinate. They must also all differ from each other in the remaining

coordinate if they are to satisfy the property that for any pair of codewords which

differ in only 2 places, one of them must have nonzero values in both places. This

is possible for r = 1, but not for r > 1, as there are only q - 1 possible values for

the remaining coordinate. There will be at least r different codewords which give the

same received codeword for different failures. For t > r+2, there exist codes of weight

3 in some large enough finite field Fq. A simple example is a network consisting of t

parallel links between a single source of r processes and a receiver.

The linear receiver-based upper bounds of Lemma 9 apply since linear coding is

a special case. For 2 < r < t - 2, the bound of r codes is tight, as shown in the

example of Figure 7-18. For r = 1, there are at least two terminal links that carry

the single process, and loss of either link leaves the receiver able to decode using an

OR operation, so one code suffices. For r = t - 1, suppose we need r + 1 codes for

each of the r + 1 terminal link failures. This means that there are r + 1 different

combinations of source processes that give the same received codeword, each under a

different terminal link failure, since no two combinations of source processes give the

same received codeword under the same scenario. The common codeword would then

have 0 in all r + 1 places, which implies that the weight of the code is 1. However,

this is not possible in a valid static code as loss of a single link could then render two

codewords indistinguishable. Thus at most r different codewords can be the same

under different single link failures. An example in which r = t - 1, and r nonlinear

receiver-based codes are needed is given in Figure 7-11.

Next we consider the multiple receiver case. We refer to the code generated by

AGO as a 3 code, and the codewords as 3 codewords. A / codeword under a single

link failure of a receiver / cannot coincide with a different 3 codeword under no

failures of terminal links of #, since this would imply that the / code has minimum

distance 1, which would not be the case in a valid static code. So a receiver which

receives a no-failure codeword can ignore management information regarding failures.

Thus the management information does not need to distinguish among terminal link
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failures of different receivers. As such, a static code in a multiple receiver problem

such that each receiver requires n3 nonlinear codes requires max n3 codes in total.

Src 2 Src n
Src I ... ...

Sink

Figure 7-18: An example network in which 2 < r < t - 2, which achieves the nonlinear
receiver-based upper bound of r codes.

7.4.5 Node-based management requirement

To prove Theorem 16, we first establish the following lemmas.

Lemma 14 In a given network, for any set of non-active codes

{(A1, G, IB1 ), (A2 , G2, B 2 ), . . , (An, Gn, Bn)}

there exists a set of receiver-based codes {(A, G, B'), (A, G, B ),... , (A, G, B')}}, such

that (A, G, B') covers the same terminal link failures as (Ai, G, Bj), for all i =

1,...,n.

Proof: Each non-active code covers a set of terminal links Hi whose complement

Hi corresponds to columns of AGr that contain a set of r independent columns. Let

the nonzero entries of A and F be parameterized by elements forming a vector .

There are submatrices AGj'( ) consisting of r of these columns that have nonzero

determinant gwP(i). For any set of such codes, there exist static coefficients ( in a

large enough finite field such that all gg'( ) are nonzero.
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Corollary 5 The terminal link failures covered by each code in a network-wide scheme

can be covered by one or two codes in a receiver-based scheme.

Proof: Terminal link failures covered by a single network-wide code active

in those links correspond to columns in AGT which are multiples of each other

(Lemma 6). Only one of these columns is needed to form a basis, so a single non-

active code can cover all but one of these links, and another non-active code can cover

the remaining link. The result follows from applying Lemma 14. U

Lemma 15 If the no failure scenario and all single terminal link failures are covered

by a set of n codes {(A 1 , G1, B), (A2, G2, B),... , (A1 , Gs, B)} having a common B

matrix, then they can be covered by a set of n codes { (A, G, B1 ), (A, G, B 2),. .. , (A, G, Bn)}

with a common AG matrix.

Proof: Since an active code cannot cover the no-failure scenario (Lemma 6),

there is at least one non-active code. If codes {(A 1 , G1 , B), (A2, G2, B), ... , (A 2, Gn, B)}

are all non-active, there is a set of n codes with common (A, G) that cover the same

terminal link failures (Lemma 14).

Otherwise, there is at least one active code among them. We denote the set of

terminal links covered by a code (Ai, G, B) by Ni, and the set of remaining terminal

links by Hi. Consider any active code (Aj, Gj, B) and any non-active code (Ak, Gk, B).

Columns b., i E 'Hj are multiples of each other, i.e. b = Aiv for constants Ai and a

vector v. Now

E k k + (AiCki)V
has full rank. If {CkiI' E hj f THk} does not contain a full basis, then one of the

columns ckh, h E Rj is not in the range of {fkil E N3 n Rk}. Then N' = Nk U {h}

contains a full basis, i.e. AkGkH, has full rank. If {gkili E N3 l Nk} contains a full

basis, h can be any link in N3 . Thus, (Ak, Gk) is part of a valid non-active code

(Ak, Gk, Bk) covering the rest of the links in N3 apart from h, together with links in

NHk.
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Proceeding similarly, the secondary links of each active code can be covered to-

gether with some non-active code, and its primary link can be covered by a new

non-active code. A set of n non-active codes covering the same failures as the original

set can thus be constructed. By Lemma 14, there exists a set of n receiver-based

codes covering the same failures. 0

Proof of Theorem 16: If interior nodes i = 1, ... , x each switch among mi codes

respectively and the receiver switches among n codes, the node-based management

requirement is Ei= 1 log2 mi + log 2  Z = log2 (L1-i=mi) m log 2 in, where i is the

number of different values for AG among all the codes. m > 11FUm because between

two distinct values of AG, there is at least one interior node which switches code.

Let a set of codes covering the no-failure scenario and all terminal link failures be

called complete. We show that for any complete set of network-wide codes with m

values for AG and n values for B, there exists a complete set of < mn receiver-based

codes. Then the receiver-based management requirement is log 2 mn, which is less

than or equal to the network-wide requirement.

Case 1: m = 1. There exists a complete set of n = mn codes with a static AG

matrix, which are receiver-based codes.

Case 2: n = 1. There exists a complete set of m codes with a static B matrix. By

Lemma 15, there exists a complete set of m = mn receiver-based codes with a static

B matrix.

Case 3: m 2, n > 2. If any set of n> 2 codes {(A, G, B1), (A, G, B 2 ), ... , (A, G, Bnj)

has a common AG matrix, there is a corresponding set of < ni non-active codes cover-

ing the same terminal links (Lemma 10). Each of the remaining codes can be covered

by one or two non-active codes (Corollary 5). Replacing active codes by non-active

codes in this way, the maximum resulting number of non-active codes is mn. This

is because each of the original codes is a pairing between one of m AG matrices

and one of n B matrices. If there are codes corresponding to all mn combinations,

then each code has a AG matrix that is the same as for n - 1 other codes, and

mn non-active codes suffice. If there are k > 1 AG matrices that are not common

across two or more codes, then the number of non-active codes needed is at most

127



(m - k)n + 2k = mn - k(n - 2) < mn for n > 2. Thus, there exists a complete set

of < mn receiver-based codes (Lemma 14). U
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Chapter 8

Summary and future work

8.1 Summary

This thesis is an exploration of theoretical and operational networking issues from

new perspectives that consider coding at network nodes.

We have presented a distributed randomized network coding approach which

asymptotically achieves optimal capacity in multi-source multicast networks. We have

given a general bound on the success probability of such codes for arbitrary networks,

showing that error probability decreases exponentially with code length. Our anal-

ysis uses connections we make between network coding and network flows/bipartite

matching, which also lead to a new bound on required field size for centralized network

coding. We have also given tighter bounds for more specific acyclic networks, which

show how redundant network capacity and link reliability affect the performance of

randomized network coding. Two examples of scenarios in which randomized network

coding shows benefits over routing approaches have been presented. These examples

suggest that the decentralized nature and robustness of randomized network coding

can offer significant advantages in settings that hinder optimal centralized network

control.

We have further shown how to exploit the distributed and randomized nature

of this approach to inexpensively add Byzantine fault detection capability without

the use of cryptographic functions. This is done by augmenting each packet with
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a number of hash bits, each a simple polynomial function of the data bits. The

overhead represented by the ratio of hash bits to data bits can be traded off against

the detection probability. The effectiveness of our approach depends only on the

inability of a Byzantine attacker to insert modified packets designed using knowledge

of all other packets received by other nodes.

Taking a source coding perspective, we have shown that distributed randomized

network coding effectively compresses correlated sources within a network, approach-

ing optimal capacity with the length of the codes. We provide error exponents that

generalize corresponding results for linear Slepian-Wolf coding.

Lastly, we have given a theoretical framework for quantifying essential network

management needed for failure recovery, in terms of the number of different network

behaviors, or codes, required under different failure scenarios. We have considered

two types of recovery schemes, receiver-based and network-wide, and two formulations

for quantifying network management, a centralized formulation and a node-based for-

mulation. For the centralized formulation, we have given bounds, many of which are

tight, on management requirements for various network connection problems in terms

of basic network parameters. Our results include a lower bound for arbitrary con-

nections and an upper bound for multi-transmitter multicast connections, for linear

receiver-based and network-wide recovery from all single link failures. For the node-

based formulation, we have shown that the minimum node-based requirement for

failures of links adjacent to a single receiver is achieved with receiver-based schemes.

As the complexity of networks and network applications increases, so does the

need for new techniques for operating and managing networks. We have shown how

network coding can serve in developing fundamental network characterizations, as

well as in enabling powerful new approaches to operational network issues.

8.2 Further work

Further work includes extensions of distributed randomized network coding to non-

uniform code distributions, possibly chosen adaptively or with some rudimentary
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coordination, to optimize different performance goals, such as decoding complexity.

Another question concerns selective placement of randomized coding nodes in net-

works where not all nodes have coding capability. There are interesting problems in

distributed resource optimization and scheduling algorithms for networks with con-

current multicast and unicast connections. We may also consider protocol issues for

different communication scenarios, and compare specific coding and routing protocols

over a range of performance metrics.

On the network management side, one area of further work is network manage-

ment needs for network connection problems in which certain links are known to fail

simultaneously. For instance, if we model a large link as several parallel links, the

failure of a single link may entail the failure of all associated links. Such dependence

may significantly lower our network management requirements. Other directions for

further work include extending our results to networks with cycles and delay, studying

the capacity required for transmission of network management signals, and consider-

ing network management for wireless networks with ergodically varying link states.

We expect that similar approaches to the ones presented in this thesis may be useful.
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Appendix A

Original proofs of Theorems 1

and 3

The original proofs of Theorems 1 and 3 are based on the following lemma, which is

essentially a slightly more general form of Theorem 3.

Lemma 16 Let A be an arbitrary r x v matrix and F an arbitrary upper triangular

v x v matrix with zeros on the main diagonal. For 1 < h' < h < v, let Sh',h be the

set of all sets of integers {e1 , e2, - - -, ek} such that h' = e1 < e2 < ... < ek = h. Let

'N{h1,..., h}, where 1 h1 < ... < h, < v. Then |AGnI =

E
{(h' .. . h'.)

1 < h' < hj,

h' $ hv i j}

a I r

{(Ei...,Er): :~

Ej E ShK hj'
Si E, = 0
V i 54 j)

Proof: It follows from the definitions of transfer matrices A and G = I + F +

F2 +... that ch can be computed recursively as follows:

cl = a, (A.1)
h-1

h Efifi,h +1h, h=2,3,...,v
i=1

(A.2)
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Using the expression

for each column of AG- and

obtain

h

i=1 EESi,h

expanding the determinant linearly in all columns, we

I I

IAGl= ... fhr

I I

(h . h') =1 -ESh' hh

1<h <h 3  I I
h'#h' V i $ j}

- S ah/ a-h/r ~ gS 3

{(h'..... h'): {(si. Er): j 1

1<h <_ hI -j E Sh, ,hj
h' #$h Vi j}

The above expansion does not take into account dependencies among the columns

Ch. We can obtain an equivalent expression with fewer terms by using the follow-

ing alternative sequence of expansions which takes the dependencies into account.

We start by expanding the determinant of AG- linearly in the hr.th column using

Equation A.2:

I I
IAGd = fh ... fhr

I I

i 1 i < hr,

i # hi, . ., hr-1}

I I I

..hi - -hr-1 fi fi,hr

I I I
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I I I

+ Chi ... !2hr-l ahr

I I I

and proceed recursively, expanding each determinant linearly in its column c h whose

index h is highest, using Equation A.2 for h > 1 and Equation A.1 for h = 1.

At each expansion stage, the expression for AG- is a linear combination of ma-

trix determinants. Each nonzero determinant corresponds to a matrix composed of

columns {k,i... , such that ki $ kj Vi # j, and min(ki,. . .,k,) >

max(ks,+, . . . , k,). Its coefficient in the linear combination is a product of terms fi,h

such that h > k+ 1,..., kr, and is of the form HJ>= g(Sj) where Ej E Shj,,hj and

E, n S. = 0 V i 4 j. We can show by induction that these properties hold for all

nonzero determinant terms in the course of the expansion. The expansion terminates

when the expression is a linear combination of determinants of the form ... ,

at which point we have the desired expression. U

Proof of Theorem 3: The result follows from Lemma 16 by noting that each set

S = {ei, e2 , ... , ek} such that g(E) f 0 corresponds to a network path consisting of

links el, .. . , ek; that the condition S3 n Sk = 0 for all j # k, 1 < j, k < r implies that

the corresponding paths E1, . . . , E, are disjoint; and that ah a .. . ah' is nonzero only

when links hy are source links of r different sources and carry r independent signals.

Proof of Theorem 1: We prove that this result holds for any set of matrices

(A, F, B) 1 where A and B are arbitrary r x v matrices, and F is an arbitrary upper

triangular v x v matrix with zeros on the main diagonal.

IM1 | = ..

'We drop the subscript 3 from BO for notational simplicity.
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j= 1 fibi,j

Expanding IMI linearly in each column and using the determinant expansion

det M = Ea(sign p)M(p(), 1) ... M(p(r), r)
all permutations p

we have

|Mi

- I
{(hi, . . ., hr)

1 <hl <h
2

... <hr <V}

{(h ,. hr)

1 < hl < h 2

Es
:all permutations p

bh( l) 1,hp( 1 )

5 (signp-')
all permutations p

- - fhr bp-1(r),hr

{(hi, . hr):

1 < hl < h
2

. .. < hr < V}

E (sign p-1)
all permutations p

5 (sign P)CP(1),hi bp- 1(1),h ... CP(r),hrbp-1(r),hr
all permutations f)

{(h, hr):

1 < hl < h
2

E (sign )cP(1),h, C-- (r),hr

all permutations P

(sign p-1 )b-1(1),hi - -p-*(r),h
all permutations p
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I I - h
Chi S !2i4 h, (A.3)

{(h , ... , hr): T
1 < hi < h 2

... < hr V}

By Lemma 16,

I I I I
Ch ... Chr ah--'

{h' h'r

I < h' h,

h' h' V i j}
r

S fg(8e3 ) (A.4)
Er:- j=1

Ej E Shi h'

Vj 0 k}

First we show that there is a bijective correspondence between terms of Mi and

terms of 1M21-

Each product term of IMuI is of the form

r

i=1

where p and Pb are permutations acting on {1, ... , r}, {ei,... , e.} E Shh,, and

{eI,..., e} n {e, . . . , e.} = 0 V i 4 j. Let C1 be the set of variables

{a (i), h', fe, , fei , , i = 1, . . . , r}

in a given product term. The conditions on h' . i = 1,..., r} imply

that no two variables in C1 appear in the same row or the same column in matrix M 2,

and that if a column z in M2 does not contain any of these variables, then z UrJ1 ei,

so row r + z also does not contain any of these variables. For such z, we append to C1

M 2(r + z, z) = 1. Then C1 comprises r + v variables each occupying a different row

and column of the (r + v) x (r + v) matrix M 2. The variables in C1 are thus variables
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of a product term in JM21-

Conversely, a product term of IM21 comprises m + r entries of M 2, each from a

different row and column of M2 . For any such nonzero product term, the variables

form a set C2 = A U B UF UI, where

A = {ap(j),hj :j=1,...,r; hi<...,hr}

B = {bPb(i),h :i=1,...,r; hi < ... < hr}

F = {ffx, , : l=1,..., II; Yi < < YFI}

I= {M 2(r+zZ,zi)=1:l=1,...,1I},

Pa andpb are permutations acting on {1, ... , r}, and {hi, . . , hr, xi, .. ,xI, z, .... , zj_1}
and {h 1 , .. . , hr, Y1,. , Yirl, z1, .. , z111} are permutations of {1, ... , v}.

For i = 1,..., r, hi is equal to some yi or some hj. Let ei = hi. If ei =

set eUi = xi; ei is in turn equal to some yi or some h. We proceed in this

way, defining e- 2, e 3 ,..., until we reach an index e'k that is equal to some hj.

We then set ki = k + 1, h' = hj, and e _1 = e 1 Vl = 0,...,ki - 1. With

these definitions, C2 becomes {a'(i),h', , , fe , i : = 1, ., r} U

{M 2 (r + z, z) = 1 : z UJ_ 1{e,... , e}}, where the set of indices {hi, h', e', ..

so defined satisfies hl = ez < ... < el= hi and { }l

{ej,..., e.} = 0 V i - j. From Equations A.3 and A.4, we can see that C2 com-

prises variables of some product term in JMil.

It remains to show equality of the sign of the product term in IMiJ and that in

IM2 whose variables constitute the same set C = A U B U F U I, where

A = {ap(i),h' I -- , l

= {ap:(j)hj j = 1,...,r; h1 < ... ,hr}

B = {bPb(i),h - -. , r; hi, < ... < hr}

= {feie, , fe'e :i =1, ... ,r}

= fX1,,, : 1 .. , ; y1 < ... < yi.|}
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I = {M2 (r + zj, zi) = I : 1 = 1, . ..,III}

Let the corresponding product terms in IMI and I M21 be oa1rc and c7rc respectively,

where Wc = fj7ec , and ac, ua are the respective signs, equal to 1 or -1.

From Equations A.3 and A.4, we see that o = (sign p)(sign Pb). Let p' be the

permutation that sorts {h',... , h'} in ascending order, i.e. h',) < ... < h',.). Then

p(p'(i)) = pa(i). So sign p = (sign p')(sign pa), and ac = (sign pa)(sign Pb) (sign p').

Consider the following procedure for determining sign p', consisting of a series of

steps in which the variables f-,1 E F are considered one by one in ascending order

of index 1. We maintain an ordered set S = {s 1 ,... , sr} of distinct elements from

[1, v], and an ordered set Q of the indices of elements of S sorted in ascending order,

i.e. Q = {qi, ... , qr} where sq < ... < sq,. Each si is initialized to h'. We carry out

the following procedure for 1 = 1,..., I in order. At each step 1, x, = s, for some

index 7y E [1, r]. We set s, = yi, and let ni be the number of indices i for which

x, < si < yi. If nri > 1, the change in Q is a cyclic permutation p, of n i + 1 elements.

If nr = 0, there is no change in Q, and p, is the identity permutation. We continue

in this manner, noting that at every step, for the index yi under consideration, all

indices less than yi are either equal to some si or some Xk where Yk < Y Since all

the Xk's are distinct, x, must equal some si.

At the end of the procedure, si = hi V i, so the elements of S are in ascending

order and Q = {1, . . . , r}. Permutation p' is equal to the composition of the cyclic

permutations p, 1 = 1, . . . , .F|. Since sign p, = (-1)n,, sign p' = ()'ni.

Next we determine o. Let Mc, Ac and Bc be the matrices obtained from M 2, A

and B respectively by setting to 0 all entries involving variables not in C, and let j

be the nonzero entry in column j of Mc. Let A be the number of inversions in Mc,

where an inversion is a pair of nonzero entries at positions (q', qj), (q', q2) such that

qI < q' and q < q,. Then o=( ()A+FI, since each entry involving a variable in

|F has a negative sign in M2 .

For each j, let u3 be the number of inversions involving j and entries Gk, k > j.

Then ac = (-1)Z sUj+I - (_l)U+Ub+Uf+Ui+IlF, where Ua = E j , Ub
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Ej:,E13 uj, U1 = Ej:j EL u3 and Ui = E:g E .

If j E A is involved in an inversion with k, k > j, then Gk must be a term in A

as it is in a smaller-numbered row. Thus, the number of inversions involving entries

in A is equal to the number of inversions in the r x r submatrix of Ac consisting of

columns j for which j E A. So (-I) U = sign pa. Similarly, if cj c B is involved in

an inversion with Gk, k > j, then (k must be a term in B as it is in a larger-numbered

column. So (-1)Ub = sign Pb.

For j such that j E 9F, carry out the procedure described earlier that considers

the terms j = f,,,, one by one in ascending order of index 1. At each step we

compute S, Q and ni as before, noting that x, = s, for some 'yj E [1, r], and that

the entries (k, k > yi, with which f.,,, is involved in inversions are {{k : k = si >

Y1} U {fx,,,y, = si < xl, y, = k > y} U{bk-v, : g = sj < xi}. These are in bijective

correspondence with the elements of the set {si : si < x1 = s, or si > yz}. Thus,

j = r - 1 - n7.

For j such that j E I, there are exactly j - 1 entries in columns 1, . . . , j - 1, and

exactly v - j entries in rows j + r + 1, . . . , v + r which are not involved in inversions

with j. Thus, uj =v+r- 1-(j- 1+v-j) =r.

Combining these expressions, and noting that I = v - r - IF1, we have

IF'
Uf+ Us= |F(r -1) -Z it +(v -r -FI)r

1=1

aFl
- (v -r)r -|.F-Zni

1=1

of = (-)U(i)U(_U+i+F

- (sign Pa) (sign Pb) (-1)(u--Z ni

If r is even, then (v - r)r is even, and

of = (sign pa)(sign p)(-1)- F' i

= (sign pa)(sign pb)( 1) - -i
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C

If r is odd, then (v - r)r is even if v is odd, and odd if v is even. So a = ac if V is

odd, and ac = -of if v is even.

By similar reasoning, we can also show that for M3 defined as

IMi = (-1)'(r+l) MA31

[ A 0

-I+F BT
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