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Abstract

One difficulty of programming multicore processors is achieving performance that scales
with the number of cores in the system. A common performance optimization is to increase
inter-core parallelism. If the application is sufficiently parallelized, developers might hope
that performance would scale as core count increases. Unfortunately for some applications,
such as operating system kernels, parallelization reveals inter-core communication as a
performance bottleneck. When data is updated on one core and read or written on other
cores, the cache coherence protocol serializes accesses to the data. The result is that each
access to the shared data can take hundreds to thousands of cycles, depending on how many
cores are contending for the data.

This dissertation focuses on optimizing communication bottlenecks caused by update-
heavy workloads, where a data structure is frequently updated but rarely read. Such data
structures are commonly used for operating system kernel bookkeeping, such as LRU lists,
reverse maps in virtual memory, and file system notification queues. This dissertation
identifies bottlenecks in the Linux kernel caused by update-heavy data structures, presents
a general approach for optimizing communication in update-heavy data structures, and
presents a library called OpLog that embodies this approach and helps developers achieve
good scalability for update-heavy data structures. OpLog achieves scalability by logging
update operations in per-core logs, and combining the logs only when required by a read
to the data structure. Measurements on a 48-core AMD server show that applying OpLog
to update-heavy data structures in the Linux kernel significantly improves application
performance under certain workloads.

Thesis Supervisor: Robert Morris
Title: Professor
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Chapter 1

Introduction

Cache-coherent shared-memory multiprocessor hardware has become the default in modern
PCs as chip manufacturers have adopted multicore architectures. Most PCs use multicore
processors and manufacturers build 16-core x86 processors and motherboards that support
up to eight multicore processors. Trends suggest that the the number of cores per chip will
increase in the foreseeable future.

The dissertation investigates the challenge of optimizing inter-core communication in
multiprocessor operating system kernels. One difficulty of programming multicore processors
is achieving performance that scales with the number of cores in the system. A common
performance optimization is to increase inter-core parallelism by, for example, refactoring
the application to use many threads synchronized with locks. If the application is sufficiently
parallelized, developers might hope that performance would scale as core count increases.
Unfortunately for some applications, such as operating system kernels, parallelization reveals
inter-core communication as a performance bottleneck.

An inter-core communication bottleneck is when cores spend time waiting for the hardware
interconnect to process communication (i.e., waiting for a cache line transfer), instead of
executing instructions. For example, if multiple cores modify the same data structure, cores
must wait for the cache coherence hardware to transfer the cache lines holding the data
structure. Transferring cache lines between cores can take thousands of cycles, which is
longer than many system calls take to complete.

The main topics of this dissertation are the discussion of the inter-core communication
bottleneck; an approach for optimizing a common class of communication bottlenecks;
the design and implementation of programming library, called OpLog, that embodies this
approach; and an evaluation of OpLog applied to a multiprocessor operating system kernel.

1.1 Context

Operating system performance is important. Many applications spend a significant amount

of time executing in the kernel. For example, when running on a single core, the Apache

web server and the Exim mail server each spend more than 60% of their execution time in

the kernel. Unfortunately, even if an application spends a small amount of execution time in

the kernel on a single core, an unoptimized kernel subsystem can bottleneck performance

when running on multiple cores. For example, the PostgreSQL database spends 1.5% of

its execution time in the kernel on one core, but this grows to 82% when running a recent

version of the Linux kernel on 48 cores. The performance of many applications is dependent
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on the operating system kernel. If kernel performance does not scale, neither will application
performance.

Early multiprocessor kernel implementations provided almost no parallelism. This was
partly because early multiprocessor PCs had very few cores, and thus there was little benefit
from implementing a highly parallel kernel; and partly because allowing concurrent access
to shared resources is difficult to implement correctly. Initial versions of multiprocessor
operating systems protected the entire kernel with a single lock. This required little developer
effort to understand data structure invariants, but provided poor performance as the number
of cores increased because only one core could execute in the kernel at a time.

Multiprocessor kernels have evolved to expose more and more parallelism: from a single
lock forcing serial execution of the whole kernel, to a lock for each subsystem, to a separate
lock for each kernel object such as a file or a network socket. This progression is driven by
increases in the number of cores: as more cores execute inside the kernel, locks must protect
smaller pieces of code or data so that cores execute without waiting for each others' locks.
Many critical sections are already as short as they can be (a few instructions) in kernels
such as Linux. The logical next step has started to appear: lock-free' data structures, as
well as replicated or partitioned per-core data that is locked but rarely contended.

1.2 Problem

Increases in core counts and the elimination of lock contention has revealed a different
problem: the cost of communicating shared data among cores. It is common for a critical
section, or its lock-free equivalent, to read and write shared data. When data is written on
one core and read or written on other cores, the cache coherence protocol serializes accesses
to the data. The result is that each access to the shared data can take hundreds to thousands
of cycles, depending on how many cores are contending for the data. That expense is of the
same order as an entire system call. Chapter 4 quantifies these costs on a modern multicore
cache-coherent computer.

Since contention for shared data is very expensive, the next step in improving performance,
after lock contention has been eliminated, must be reducing inter-core communication. This
means, for example, that lock-free data structure designs must pay as much attention to
optimizing communication patterns as they do to eliminating lock costs.

This dissertation focuses on reducing inter-core communication for data structures that
the operating system updates frequently, but reads less frequently. Operating systems often
maintain bookkeeping data structures that fit this access pattern. For example, LRU lists are
usually updated with every access, but read only when the system needs to evict an object.
As another example, when the virtual memory system maps a physical page, it updates a
reverse map that tracks the set of page tables mapping a given physical page. However,
the kernel consults the reverse map only when it swaps a page out to disk or truncates a
mapped file. These actions are usually infrequent. Chapters 3 identifies and analyzes parts
of the Linux kernel that are update intensive and bottlenecked by communication.

The observations in this dissertation apply only in certain situations. They are most
relevant for traditional kernel designs with many shared data structures. The shared data
must be written often enough to have an effect on performance. The sharing must be
necessary, since if it can conveniently be eliminated altogether, that is usually the best
approach.

'We mean "lock-free" in the informal sense of manipulating shared data without locks.

10



1.3 Challenges with current approaches

Techniques to reduce inter-core communication are often quite different from those aimed
at increasing parallelism. For example, replacing locked reference count updates with
atomic increment instructions improves parallelism, but that improvement is limited by the
movement of the counter between cores.

A common approach for reducing inter-core communication is to apply updates to a
per-core data structure, instead of a single shared one. Using a separate data structure for
each core, however, requires the programmer to design a strategy for reconciling updates
to different data structures and keeping them consistent. Consider replacing a contended
global LRU list with per-core LRU lists. Instead of evicting the first item from the LRU
list, the programmer would have to come up with a strategy to select one object from n
per-core lists, which is complex because the oldest object on one core may have been recently
accessed on another core. Several naYve approaches, such as keeping the most recent access
time in the object itself, or strictly partitioning objects between the n LRU lists, do not
solve the problem either, because they require cache line transfers when the same object is
accessed by many cores.

Using techniques such as batching, absorption, and other classic communication-optimizing
techniques can improve performance substantially, however, it is not always straightforward
to apply these techniques. For example, if the kernel adds a mapping to the shared reverse
map, then removes it before ever reading the reverse map, the kernel could have avoided
modifying the shared data structure. Delaying the add operation would make it possible for
the kernel to cancel the add operation when trying to remove the mapping. For this opti-
mization to work correctly, the kernel must ensure that it applies the delayed add operation
before reading the reverse map. Unfortunately we know of no general infrastructure or API
for writing these types of communication optimizations.

1.4 Approach

This dissertation presents an approach for scaling data structures under update-heavy
workloads, and an implementation of this approach in a library called OpLog. By "update-
heavy" we mean that the callers of most operations do not need to know the result, so that
the work can be deferred. At a high level, our approach is to log each update to the shared
data structure in a per-core log, rather than immediately updating the data structure, and
before the shared data structure is read, bring it up-to-date by applying all of the updates
from the per-core logs. The order of updates matters in some data structures; for example,
in an LRU list, the order of updates determines which object was used more recently, and in
a reverse map for a virtual memory system, inserting an entry must happen before removing
that entry (even if the removal happens on a different core due to process migration). To
ensure that updates are applied in the correct order, our idea is to record a timestamp in
each log entry, and merge logs by timestamp before applying them.

The OpLog approach has two main benefits: it ensures that updates scale, since each
update need only append to a per-core log, incurring no lock contention or cache line
transfers, and it ensures that the semantics of the data structure remain the same, because
logged updates are applied before the shared data structure is read. However, OpLog must
overcome three challenges in order to work well in practice:

o first, existing data structures must be adapted to a logging implementation;
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9 second, replaying a long log on read operations may be too expensive; and

* third, storing all the log entries, for every object in the system, would require a large
amount of memory.

OpLog addresses these challenges using the following ideas.
First, OpLog provides an API that is easily layered on top of a data structure imple-

mentation, to transform it into a logged implementation. Instead of updating an underlying
data structure, an update function uses the OpLog queue function to append a closure with
the update code to the current core's per-core log. Prior to reading the underlying data
structure, read functions must first call the OpLog synchronize function, which merges
the per-core logs by timestamp and executes each closure. The most basic usage of OpLog
essentially requires the programmer to specify which operations read the data structure and
which operations update the data structure. The data structure API and the code that
invokes the API do not require changes.

Second, OpLog absorbs logged updates, if allowed by the semantics of the data structure.
For example, instead of logging an update that removes a particular item from a list, OpLog
can instead drop a previously logged update that added the item to the list in the first place.
This keeps the logs short, reducing the cost of the next read operation.

Third, OpLog mitigates memory overhead by dynamically allocating log space. If a data
structure receives many updates, OpLog stores the updates in a per-core log; otherwise, it
maintains only the shared data structure, and immediately applies the updates to it.

1.5 Results

To demonstrate that OpLog can improve the performance of real systems, we implemented
two prototypes of OpLog: one in C++ for user-space applications, and one in C for the
Linux kernel. We applied OpLog to several data structures in the Linux kernel: the global
list of open files, the virtual memory reverse map, the inotify update notification queue, and
the reference counter in the directory name cache.

An evaluation on a 48-core AMD server shows that these uses of OpLog improve the
performance of two real applications. OpLog removes contention on reference counts in
the directory name cache, encountered by the Apache web server, allowing Apache to scale
perfectly to 48 cores when serving a small number of static files. OpLog also removes
contention on the virtual memory reverse map, encountered by the Exim mail server,
improving its performance by 35% at 48 cores over a lock-free version of the reverse map
under the workload from MOSBENCH [6].

A comparison of optimizations implemented with OpLog to optimizations implemented
by hand using per-core data structures shows that OpLog reduces the amount of code the
programmer must write without sacrificing performance.

1.6 Contributions

The main contributions of this dissertation are as follows:

" The identification of a common class of update-heavy communication bottlenecks in
modern multiprocessor operating system kernels.

" The OpLog approach for optimizing update-heavy data structures.
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" The design and implementation of the OpLog API and programming library.

" An evaluation demonstrating that communication bottlenecks affect application perfor-
mance and that applying OpLog removes the bottlenecks and improves performance.

1.7 Overview

This dissertation is organized as follows. Chapter 2 provides some context on the current
state of modern multiprocessor kernels by describing techniques kernel developers have
used to increase parallelism and ultimately uncover communication bottlenecks. Chapter 3
provides several examples of update-heavy data structures in the Linux kernel, along with
performance measurements to demonstrate that they are scalability bottlenecks. Chapter 4
presents results showing that the bottlenecks in Chapter 3 are communication bottlenecks.
Chapter 5 outlines OpLog's approach, Chapter 6 describes OpLog's library interface, and
Chapter 7 describes its implementation. Chapter 8 evaluates OpLog and Chapter 9 discusses
related work. Chapter 10 speculates on the future importance of OpLog, identifies areas of
future work, and concludes.

13



14



Chapter 2

Parallelism in Multiprocessor
Kernels

Communication tends to bottleneck performance once an operating system is well parallelized.
Many early versions of multiprocessor operating system kernels had limited parallelism and

developers devoted much effort to increasing parallelism before uncovering communication

bottlenecks. To help provide context for the current state of highly parallel multiprocessor
kernels, this chapter gives an overview of techniques Linux kernel developers have used

for optimizing parallelism. By applying the techniques described in this chapter, kernel

developers have started to uncovered communication bottlenecks, some of which are detailed

in the next chapter.
The multiprocessor Linux kernel evolved from using a single lock to serialize kernel

execution to a highly parallel kernel with many short serial sections. In some cases developers

removed coarse-grained locks by refactoring the implementation to use many finer grained

locks. In other cases developers applied alternatives to locks, like Read-Copy-Update, to

shorten serial sections. We give an overview of locking in Linux, describe three popular

parallelization techniques, (per-core locking, read-write locks, and Read-Copy-Update) that

provide alternatives to fine grained locking, and walk through an application case study

to illustrate the parallelization techniques. We focus on Linux as an example of a highly
parallel kernel, because Linux developers have spent much energy optimizing it for multicore

and large-scale SMP machines [6].

2.1 Fine grained locking

Early multiprocessor versions Linux used coarse-grained locking and supported limited

amounts of parallel execution in the kernel. Coarse-grained locking caused performance

bottlenecks because CPUs would spend most of their time waiting to acquire locks. One

approach Linux developers have taken to eliminate these bottlenecks is fine-grained locking.

Replacing a single coarse-grained lock protecting many data objects with many fine-grained

locks that each protect a single object increases parallelism because CPUs can access different

objects in parallel.
One interesting issue with spinlock usage in the Linux kernel is that contended spinlocks

protecting short serial sections can cause performance to collapse. The time it takes to

acquire a Linux spinlock is proportional to the square of the number of contending CPUs.

For short serial sections, the time to acquire the spinlock dominates the cost of actually
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executing the serial section. If more than a few CPUs are waiting to acquire a spinlock,
performance often collapses. There are situations where application throughput initially
scales with the number CPUs, but suddenly collapses with the addition of another CPU.
Appendix A provides a model that explains this behavior.

It may seem reasonable to replace the Linux spinlock implementation with a non-
collapsing spinlock implementation such as MCS [211. This would help to guarantee that
performance would not suddenly collapse with the addition of CPUs. One problem, however,
with non-collapsing spinlock implementations is that they perform poorly in the absence
of contention compared to the Linux spinlock implementation. Acquiring and releasing
an uncontended Linux spinlock takes 32 cycles, while an MCS lock, for example, takes 50
cycles [7].

Uncontended spinlock performance is important for data structures optimized to use
per-core locks, because per-core locks are rarely contended. Even if data structures are not
optimized to use per-core locks, it is often possible for applications to arrange for different
cores to access different kernel data structures. For example, in Linux each directory has a
list of directory entries that is protected by a spinlock. Concurrently creating or removing
files on different cores can lead to performance collapse; however, it is usually possible for
the application to arrange for different cores to access different directories.

2.2 Per-core locks

One way developers increase parallelism without shortening serial section length is by using
per-core locks. Converting a data structure protected by a single lock into per-core data
structures protected by per-core locks improves parallelism if cores frequently access their
per-core data structures.

For example, per-core free page lists perform well because a core can usually allocate a
page by using its free page list. Occasionally a core's free page list is empty and the core
will refill it by acquiring another core's per-core free page list lock and removing pages from
that core's free page list. OpLog also uses per-core locks to protect operation logs.

2.3 Read-write locks

Read-write locks can increase parallelism by allowing concurrent readers. Linux uses read-
write locks in a some cases where a data structure is updated infrequently, but read frequently.
For example, the mount table is protected by a read-write lock, because the kernel often
accesses the mount table during pathname lookup, but is rarely required to modify it. Since
the introduction of Read-Copy-Update, developers have frequently used Read-Copy-Update
instead of read-write locks.

2.4 Read-Copy-Update

Read-Copy-Update (RCU) [19] is a synchronization primitive in the Linux kernel that allows
readers to execute concurrently with writers. In addition to improved parallelism, RCU
typically has lower storage overhead and execution overhead than read-write locks. RCU
does not provide synchronization among writers, so developers use spinlocks or lock-free
algorithms to synchronize writers.
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2.5 Parallelism Case Study: Exim

The Exim [1] mail server provides an interesting case study for illustrating use of parallel
techniques in the Linux kernel. With many concurrent client connections, Exim has a good
deal of application parallelism. Exim is also system intensive, spending 69% of its time in
the kernel on a single core, stressing process creation, file mapping, and small file creation
and deletion. Exim exercises all the parallelization techniques discussed in this chapter.

We operate Exim in a mode where a single master process listens for incoming SMTP
connections via TCP and forks a new process for each connection, which in turn accepts
the incoming mail, queues it in a shared set of spool directories, appends it to the per-user
mail file, deletes the spooled mail, and records the delivery in a shared log file. Each
per-connection process also forks twice to deliver each message.

The rest of this section describes the subsystems Exim stresses and what techniques the
subsystems use to achieve high parallelism.

Scheduling run queues Exim stresses the scheduler because it creates and deletes many
processes that the kernel must balance among CPUs. The Linux scheduler uses per-core run
queues. Each run queue is protected by a per-core spinlock. A core acquires its per-core
runqueue lock before adding or removing processes from the local runqueue. If a core's
runqueue is empty it will acquire the runqueue lock of another core and try to remove
processes from that runqueue and add them to the local runqueue. If there are more runnable
processes than cores it a core will likely manipulate its runqueue without interference from
other cores.

Virtual file system Exim creates several files for each message it delivers. For each file
Exim creates, the kernel must resolve the file pathname string into a kernel directory entry
object. Linux resolves a pathname by walking the pathname and mapping each component
into a directory entry object. Linux implements pathname walking using a hash table called
the directory entry cache. The directory entry cache maps a tuple composed of the pathname
component and a parent directory entry object to another directory entry object representing
the pathname component. Lookup in the directory cache uses RCU and a combination of
lock-free techniques.

Reverse page mapping The kernel maintains a reverse page mapping to locate all the
virtual address spaces that map a physical page. Each time Exim forks a process the kernel
adds all the virtual address mappings from the new process to the reverse map. When the
process exits the kernel must remove the mappings from the reverse map. Linux implements
a parallel reverse map using fine grained locking. Every file inode has an associated interval
tree protected by a lock. Each interval tree maps physical pages caching file content to
page table entries mapping the physical pages. If Exim processes map many files, cores
simultaneously executing fork or exit will usually manipulate the reverse map in parallel. As
the number of cores increases relative to the number of mapped files, cores will eventually
contend on the locks protecting each interval tree.

Figure 2-1 shows the throughput of Exim on a 48-core machine running Linux version
3.9. Exim scales relatively well, delivering 10x as many messages on 48 cores than on one
core. As the number of cores increases, however, each additional core improves throughput
by a smaller amount and performance gradually flattens out. The locks in the Linux reverse
mapping implementation that protect each interval tree bottleneck Exim's performance.
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Figure 2-1: Performance of Exim.

2.6 Conclusion

This chapter provided context for the current state of highly parallel multiprocessor kernels.

The first Linux kernel to support multiprocessor hardware used a single kernel lock to

serialize all execution in the kernel. Kernel developers replaced the single kernel lock with

highly parallel subsystems implemented using fine grained locking, per-core locks, read-write

locks, and RCU. Increasing inter-core parallelism has uncovered performance bottlenecks

due to inter-core communication.

The next two chapters present examples of communication bottlenecks. Chapter 3

presents example of Linux subsystems that are well parallelized, but still scale poorly on a

multicore machine. Chapter 4 presents evidence suggesting that the bottlenecks in Chapter 3

are due to inter-core communication and shows how expensive communication costs are on

a modern multicore computer.
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Chapter 3

Problem

This chapter presents examples of Linux subsystems that are potential candidates for

optimizing with OpLog. The examples are data structures that are update-heavy, whose

multicore performance limited by contention, and where the full work of the update need not

be completed immediately. However, all the examples are bottlenecked by lock contention,
instead of contention on the underlying data structure. The Chapter 4 demonstrates that

removing the locks still results in poor scaling due to contention on the data.

3.1 Examples in Linux

We present performance results from experiments on a 48-core x86 machine, composed of

eight 6-core AMD Opteron Istanbul chips. Although the numbers are specific to the 48-core

AMD machine, experiments on an Intel machine generate similar results. We focus on the

Linux kernel because it has been extensively optimized for multicore and large-scale SMP

machines [6]. We use a recent version (3.9) of the Linux kernel. For all numbers reported

in this dissertation, we report the average of three runs of an experiment on our machine;
there was little variation for all experiments.

The examples are heavily used and heavily optimized data structures: the name cache,
containing name to inode mappings, the reverse map, containing physical page to virtual

page mappings, and the inotify queue, containing notifications of file system changes. All
of these data structures experience frequent updates: the kernel updates a reference count

in the name cache on each pathname lookup, the reverse map must insert or remove a

mapping each time a page is mapped or unmapped, and the kernel appends to the inotify

queue every time a file or directory is changed. In the case of inotify, the data structure is

also frequently read by an application that watches for file system updates. To isolate the

scalability bottlenecks due to concurrent updates we measure these data structures with

microbenchmarks; Chapter 8 shows that some of these bottlenecks can limit the scalability

of real applications.

The inotify and name cache implementations use spinlocks to protect heavily updated

data structures. The Linux spinlock implementation causes performance collapse when a

spinlock is contended. Appendix A explains this behavior with a performance model and

demonstrates that the collapse is due to the particular spinlock implementation. The rmap

uses Linux's mutexes that sleep, instead of spin, when contended. To ensure that scalability

bottlenecks are due to contention on the data structures, instead of poorly performing locks,
Chapter 4 explores the performance of lock-free rmap and name cache implementations.
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Figure 3-1: The fork benchmark performance.

3.2 Example: fork and exit

Creating and destroying processes efficiently is important. Applications fork and exit all

the time (e.g., Exim [6]), and processes often map the same files (e.g., libc). The kernel

must track which processes are mapping each file's pages, and it does so using a reverse map

(rmap).

The rmap records for each physical page all page table entries that map that page. When

a process truncates a file, the operating system must unmap the truncated pages from every

process that maps the file; Linux uses the rmap to find those processes efficiently. Similarly,

if the kernel evicts file pages from the disk buffer cache, it must be able to unmap the pages

if they are mapped by any processes.

The Linux designers have heavily optimized the implementation of the rmap using interval

trees [16-18]. Each file has an associated interval tree protected by a Linux mutex. A file's

interval tree maps intervals of the file to processes that map that portion of the file. The

Linux rmap implementation can become a bottleneck when many processes simultaneously

try to map the same file. For example, a workload that creates many processes is likely to

cause contention for the mutexes protecting the interval trees of commonly mapped files (e.g.,
libc), because each call to fork and exit will acquire the interval tree mutex of popular files

and update the interval trees. fork duplicates every file mapping in the parent process and

insert each duplicated mapping into an interval tree, and exit removes each file mapping in

the exiting process from an interval tree.

We wrote a benchmark to measure the performance of the rmap. The benchmark creates

one process on each core. Each process repeatedly calls fork to create a child process

that immediately calls exit. This stresses the rmap, because fork and exit update the

rmap. Figure 3.2 shows the result. The x-axis shows the numbers of cores and y-axis shows

the throughput in forks per second. The reason why the performance fails to scale is that

multiple cores simultaneously try to update the same interval tree and contend on the lock

protecting the tree.
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Figure 3-2: Performance of the inotify benchmark.

3.3 Example: inotify

Inotify is a kernel subsystem that reports changes to the file system to applications. An

application registers a set of directories and files with the kernel. Each time one of the files

or directories in this set is modified, the inotify subsystem appends a notification to a queue,

which the application reads. File indexers, such as Recoll [2], rely on inotify in order to

re-index new or modified files.

The inotify subsystem is interesting because the notification queue is both updated and

read from frequently. The kernel maintains a single queue of notifications, and serializes

updates to the queue with a spinlock, to ensure that notifications are delivered to the

application in the correct order. For instance, if the queue contains both a creation and a

deletion event for the same file name, the order determines whether the file still exists or

not.

We wrote a benchmark to measure the performance of an update-and-read-heavy inotify

workload. The benchmark creates a set of files, registers the files with inotify, and creates a

process that continuously dequeues notifications. The benchmark then creates one process

on each core. The benchmark assigns each process a different subset of files and each process

continuously opens, modifies, and closes every file in its subset. Each file modification causes

the kernel to append a notification to the queue.

Figure 3-2 presents the performance of the benchmark. Throughput increases up to three

cores, but then collapses due to spinlock contention caused by multiple cores simultaneously

trying to queue notifications.

3.4 Example: pathname lookup

In order to speed up pathname lookups, the Linux kernel maintains a mapping from directory

identifier and pathname component to cached file/directory metadata. The mapping is

called the dcache, and the entries are called dentrys. Each file and directory in active or

recent use has a dentry. A dentry contains a pointer to the parent directory, the file's

name within that directory, and metadata such as file length.
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Figure 3-3: stat benchmark performance.

The dcache is generally well parallelized: open, stat, and so on, perform a pathname

lookup lock-free using RCU [15], with one exception. For each dentry returned from a

pathname lookup, the kernel checks the per-dentry generation count and increments a

reference count in the dentry. When a kernel thread reads a dentry for the first time,

it records its generation count, and then reads other fields of the dentry. If the thread

decides it needs the dentry, it updates the dentry's reference count, but it must first ensure

that the generation count has not been changed by a remove operation. If it has been

changed, the kernel must restart the lookup. To ensure that the check of the generation

count and the increment of the reference count is atomic, the kernel uses a spinlock. The

kernel performs this check only for the final component in a pathname. For example, calling

stat("/tmp/foo") will cause the kernel to execute the generation count check only on the

dentry associated with "foo".
We wrote a microbenchmark to evaluate the performance of the dcache. The benchmark

creates one process per core; all of the processes repeatedly call stat on the same file

name. Figure 3-3 shows the performance of this stat microbenchmark. The x-axis shows the

number of cores and the y-axis shows throughput in terms of stat operations per millisecond.

The performance does not increase with the number of cores because of contention for the

spinlock used to atomically access the generation count and reference count associated with

the argument to stat.

3.5 Conclusion

The Linux implementations of our examples use locks (spinlocks or Linux mutexes). Linux's

spinlocks can suffer from performance collapse under contention, so their cost dominates

performance, and Linux mutexes can cause processes to sleep for long periods. However,

the fundamental problem is not lock contention: even without lock contention, the Linux

examples would still have poor scaling due to contention over the data itself, and thus would

still be promising targets for OpLog. To demonstrate this point, the next chapter presents

results from re-implementing several examples to use lock-free data structures.
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Chapter 4

Cost of communication

This chapter demonstrates that communication is a performance bottleneck in multiprocessor
operating system kernels, and presents the cost of contended inter-core communication on a
modern multicore.

We re-implement the rmap and dcache to use lock-free data structures. The results
show that even lock-free implementations do not scale well. Using results from kernel
instrumentation, we show that the reason for poor scalability is that the amount of time
spent waiting for cache line transfers increases with the number of cores. We show there
is room for improvement by presenting the performance of our OpLog implementations
(described in Chapters 5-7), which perform much better.

Using microbenchmarks, we measure the cost of contended inter-core communication as
the number of cores varies. To put the cost of inter-core communication in perspective, we
present the cost of several system calls, and show that the cost of a single inter-core cache
line transfer can exceed the cost of commonly execute system calls.

4.1 Example: rmap

We wrote a version of the rmap that replaces the interval trees with lock-free lists. Figure 4-
1(a) shows the performance. The performance of this lock-free rmap reaches a plateau
around 40 cores. The reason is not due to repeated failure and retry of the compare-exchange
instructions, as one might fear under high contention. Instead, the reason is the cost of
fetching a cache line that has been updated by another core. Figure 4-1(b) shows the percent
of total execution cycles the fork benchmark spends waiting for cache lines in the lock-free
rmap code. On 40 cores, roughly 35% of the execution time is spent waiting for cache line
transfers.

To show there is room for improvement, we also ran the benchmark on a modified version
of the Linux kernel that implements the rmap using OpLog. The "with OpLog" line shows
that eliminating communication can provide further benefit even after locks have been
removed. Chapter 8 explores the performance of the OpLog-based rmap further.

4.2 Example: pathname lookup

To avoid performance collapse due to the spinlock, we modified the kernel to remove the
spinlock in favor of a lock-free implementation. The lock-free version packs the generation
count and reference count into a single cache line, and uses an atomic compare-and-exchange
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Figure 4-1: The fork benchmark performance.
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instruction to conditionally increment the reference count. This lock-free implementation
also scales poorly (see the "lock-free" line). The reason is that many cores try to modify
the reference count at the same time, which causes contention on the corresponding cache
line (i.e., increasingly high latencies for the compare-and-exchange). Figure 4-2(b) shows

the percentage of total execution cycles the stat benchmark spends waiting for cache

line transfers in the reference counting code. On six cores the lock-free implementation
spends almost 80% of the time waiting for cache line transfers. On 48 cores the lock-free
implementation spends 99% of the time waiting for cache line transfers.

This result shows that the lock-free implementation does not scale well, but one might
wonder how much room for improvement is available. To answer this question we also plot
the performance of an implementation that uses OpLog to implement the reference counter.
This version uses a distributed reference counter [8] that is optimized using OpLog (which
we describe in Chapter 6). The OpLog version increments a local reference count, and then
checks if the generation count changed. If the generation count changed, the OpLog version
decrements the local reference count and retries. The "with OpLog" line in Figure 4-2(a)
scales nearly perfectly with the number of cores.

The large gap between the "with OpLog" line and the "lock-free" lines highlights the
opportunity for improving the scalability of update-heavy data structures by avoiding

contention on either locks or shared cache lines.

4.3 The cost of cache line contention

As we have shown, several workloads in Linux spend much of their time fetching cache lines,
and the proportion of time spent waiting for cache lines increases with the number of cores.
In this section we demonstrate that contended accesses to a single cache line result in a
significant increase in the latency to access that cache line, and this latency can easily exceed
the cost of a single system call.

To understand how updating a single cache line scales, we measure its performance
in isolation using a microbenchmark. This microbenchmark arranges for each core to
simultaneously store an integer to the same memory location. The benchmark reports the
average time it takes a core to execute the store, using a cpuid instruction to wait for
completion. The results in Figure 4-3 show that as the number of writers increases from 2

to 48, the latency to execute the store increases from 182 to 8182 cycles. We also measured
the average time to execute an atomic increment instead of a mov instruction. The atomic

increment latencies were at most 1.5% longer than the mov latencies.

When several cores write the same cache line, the coherence protocol moves the line

between cores. Conway et al. provide a detailed description of the caching subsystem of the

Istanbul chips [9], which we summarize. Each core uses a local multi-level cache to provide

fast access to recently used cache lines. A core can read from and write to its local Li cache

in a few cycles. Before a core modifies a cache line that other cores also cache, the cache

coherence protocol invalidates the other copies. When a core tries to access a cache line that

was recently updated by another core, cache coherence ensures the core accesses the most

up-to-date version of the cache line, by copying the cache line from the other core's cache.
Modern multicore computers implement directory-based coherence to track the location of

cache lines [9, 14].

The cost of an inter-core cache miss depends on distance in the interconnect and on

contention. Each chip has an internal interconnect for cache coherence within the chip, and
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Figure 4-4: Single core latency of several Linux system calls.

an external interconnect that carries inter-chip cache coherence messages. When there is
no other traffic, a core can read a cache line from Li cache of a core on the same chip in
124 cycles. A cache line transfer between cores on different chips takes between 250 and
550 cycles depending on the distance. This architecture imposes relatively high latencies
for cache line transfers between distant cores. We expect lower latencies when all cores are
located on the same chip, but it is likely that communicating with a distant core will always
take longer than communicating with a nearby one.

When multiple cores simultaneously try to write the same cache line, the cache line's
home chip serializes the requests for ownership of the cache line. If the line is clean but
cached by other cores, the home chip broadcasts an invalidate message; all chips must finish
invaliding before the write can proceed. If the line is dirty, the home chip forwards the
request to the cache line's previous owner. The previous owner sends the up-to-date value to
the requesting core and invalidates the cache line from its own cache. When the requesting
core receives the cache line, it sends a confirmation message to cache line's home chip.
Once the home chip receives the confirmation it will process subsequent requests for the
same cache line. The main variable factor in inter-core cache miss latency is serial request
processing. The caching subsystem serializes inter-core cache misses for the same cache line
(or even requests for different cache lines that happened to be issued at the same time).

To put the cost of contending for a single cache line in perspective, we compare the cost
of accessing a remote cache line with the cost of several systems calls (see Figure 4-4). We
measured these numbers by executing the system call many times on a single core running
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Linux 3.9. A call to dup, which performs little work, is only 3.1 times more expensive than
the 124 cycles for reading an uncontended cache line from another core's Li on the same
chip, and in the same ballpark as the 250-550 cycles for reading an uncontended cache line
from another core on a different chip. The open call system call, which performs a lookup
of /bin/sh, costs about 4.7-21 times as much as a single uncontended cache miss, depending
whether it is a local or remote cache miss. An open call costs considerably less than writing
a cache line when a dozen cores simultaneously update the same cache line.
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Chapter 5

OpLog Design

The OpLog design aims to reduce communication for update intensive data structures. The
main goal is to provide a general approach for reducing communication that is applicable to
any data structure, without specific knowledge of the data structure, or the requirements
for reconciling updates from different cores. This chapter describes the OpLog approach
to achieving this goal and how this approach facilitates several useful optimizations. To
help clarify the OpLog approach, the chapter concludes with an example of applying the
approach the Linux rmap.

5.1 The OpLog approach

The general approach behind OpLog's design is to timestamp each update operation, append
the operation to a per-core log, and to reconcile those logs when reading. Timestamps
provide a solution to ordering updates from different cores. Logging updates makes OpLog
agnostic to the data structure being optimized and allows developers to apply OpLog without
writing any data structure specific code.

In the general case, OpLog must maintain the causal order of updates to a data structure.
For example, consider a linked list data structure. If a process logs an insert operation on one
core, migrates to another core, and logs a remove operation on that other core, the remove
should execute after the insert. Instead of tracking precise causal dependencies through
shared memory, OpLog relies on a system-wide synchronized clock to order updates,1 by
recording a timestamp for each log entry, and applying log updates in timestamp order.
This allows OpLog to provide linearizability, thereby making it compatible with existing
data structure semantics.

OpLog provides a general approach for optimizing communication that only requires
developers to classify operations as read or update. The OpLog approach is based on a
single shared data structure and per-core operation logs. Instead of executing an update
operation immediately, OpLog appends the operation and a timestamp to a per-core log.
Before a core reads the shared data structure, OpLog merges the per-core operation logs
according to timestamps and then executes every operation in the merged list, producing
an up-to-date shared data structure. In order to use OpLog, a developer only needs to
specify which operations update the data structure, so OpLog knows to log them, and which
operations read the data structure, so OpLog knows to merge and execute the logs.

'Modern Intel and AMD processors provide synchronized clocks via the RDTSC and RDTSCP instructions.
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5.2 OpLog optimizations

The OpLog design facilitates several optimizations that reduce inter-core communication.

5.2.1 Batching updates

By deferring the execution of updates until a read operation, OpLog can apply multiple
updates in a single batch, which is often less expensive than applying updates one-by-one.
Moreover, batching can improve locality, since the data structure being updated remains in
the cache of the processor that applies the updates, and for most data structures, executing
an update accesses more cache lines than transferring the log entry for the update. This is
similar to the locality exploited by flat combining [13], but OpLog can batch more operations
by deferring updates for longer.

5.2.2 Absorbing updates

Explicitly logging each update is required for the general case in which the order of updates
is significant, and in which update operations on each core cannot be aggregated. However,
for many specific uses of OpLog, it is possible to take advantage of the semantics of the
target data structure to absorb log operations, as we describe next. These optimization
reduce the number of updates that have to be performed on the shared data structure, and
reduce the space required by OpLog for storing per-core logs.

First, if two operations in a log cancel each other out-that is, applying both of them is
equivalent to not applying any operations at all-OpLog removes both operations from the
log. For example, consider a linked list. If OpLog is about to log a remove operation, but
that core's log already contains an insert operation for that same item, OpLog can simply
drop the insert log entry and not log the remove at all. Note that if any read operation was
executed between the insert and the remove, that read would have applied all pending log
operations, and remove would not find a pending insert in the log for absorption.

Second, if multiple operations can be equivalently represented by a single operation,
OpLog combines the log entries into a single update. For example, consider a counter.
Two operations that increment the counter by 1 are equivalent to a single operation that
increments the counter by 2; thus, if OpLog is about to log an inc(1) operation, and the
per-core log already contains an inc(n) operation, OpLog replaces inc(n) by inc(n + 1), and
does not log the inc(1) at all.

5.2.3 Allocating logs

For many data structures, only a few instances of the data structure are contended and will
benefit from queuing operations; the memory overhead of OpLog's per-core log for other
instances of the data structure will be wasted. To avoid this memory overhead, OpLog
dynamically allocates per-core logs only for recently used objects. If an object has not been
accessed recently on a given core, OpLog revokes its log space on that core, and reuses
the log space for other objects. To revoke the log space of an object, OpLog must apply
all updates to that object, including updates from other cores, much like a read operation.
After an object's log has been applied, it is safe to reuse its log space.
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5.3 Example: a logging rmap

For concreteness we illustrate the OpLog approach using the rmap example from Chapter 3.
There are three rmap operations that are relevant: adding a mapping to the rmap when a
process maps a region into its address space, removing a mapping from the rmap when a
process unmaps a region from its address space, and truncating a file, which reads the rmap
to find all processes that map it. The most common rmap operations are processes adding
and deleting mappings. Using OpLog, a programmer can achieve good scalability for these
operations without modifying the rmap's interface for the rest of the system or the rmap's
shared data structure.

With OpLog, a logging rmap consists of a shared rmap plus a per-core log of recent
operations; there is one lock protecting the shared rmap, plus a lock for each per-core log.
When a process maps or unmaps a page, it appends a map or unmap timestamped record
to its local per-core log. As long as a process executes on the same core, map and unmap
operations use the local core's log and lock, and do not require any cache line transfers.

When a process truncates a file, it acquires all of the per-core locks and the rmap lock,
merges all per-core logs into a single log sorted by timestamps, applies all log records to the
shared rmap in chronological order, and then uses the shared rmap to look up all of the
processes that map the truncated file. Timestamped logs are a natural fit for this situation
because they preserve the order of operations on different cores. Suppose core ci maps
virtual address vi to physical address p1, and then core c2 unmaps vi from the same address
space. When the rmap is later read, it is important that the state seen by the reader reflects
the unmap occurring after the map.

By applying many operations in a single batch, OpLog amortizes the expense of acquiring
exclusive use of the shared rmap's cache lines over many logged operations; this is faster
than having each core separately write the shared rmap. Moreover, a programmer can take
advantage of absorption to reduce the size of the log and the cost of applying log entries. In
particular, if a core is about to log a removal of a region in its local log, it can check if there
is an earlier addition of the same region in its log. If there is, it can remove the addition
from its log and not log the removal. These two operations do not have to be applied to the
shared rmap at all.
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Chapter 6

The OpLog Library

Realizing the potential scaling benefits of the logging approach described in Chapter 5, along
with its potential optimizations, requires designing a convenient programmer interface to
address the following two challenges:

" How can developers apply OpLog without changing existing interfaces or data struc-
tures?

" How can developers expose the optimization opportunities like absorption to OpLog
without having to customize OpLog for each use case?

The OpLog library allows programmers to take an implementation of a data structure,
and automates most of the transformation to an update-scalable implementation with per-
core logs. The programmer implements type-specific optimizations to benefit, for example,
from absorption. The rest of this section describes the OpLog library in more detail.

6.1 OpLog API

To use OpLog, a developer starts with the uniprocessor implementation of a data structure
and determines which operations update the data structure and which operations read the
data structure. The programmer must specify how to execute an update operation by over-
loading the Op: :execC) method shown in Figure 6-1, and must modify the implementation
to queue the update operation. The programmer must also modify read operations to first
call synchronize before executing the read operation. Programmers can also overload other
methods shown in that Figure to implement type-specific optimizations.

For clarity, the examples in this dissertation are shown in C++, because it provides clear
syntax for overloading. In practice, OpLog supports both C and C++, and we use the C
version in the Linux kernel.

Figure 6-2 shows how OpLog can be used to implement the logging rmap design of
Chapter 3. The interface between the kernel and an rmap consists of three methods: add to
add a mapping to an rmap, rem to remove a mapping from an rmap, and truncate. The
kernel invokes the truncate method, for example, when truncating a file or evicting it from
the buffer cache. The methods operate on a shared data structure, which in this example
is the interval tree itree. The kernel developer implements the add and rem methods by
queuing them in OpLog.
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Method call Semantics

Object::queue(Qp* op) add op to a per-core log, implemented by a Queue object
Object:: synchronize() acquire a per-object lock, and call apply on each per-core Queue object
Object::unlock( release the per-object lock acquired by synchronize()
Queue: : append(Op* op) append op to the per-core Queue object
Queue: : apply() sort and execute the operations from Queues
Queue::tryabsorb(0p* op) try to absorb an op
Op::exec( execute the operation

Figure 6-1: OpLog interface overview.

When an application must perform a read operation on the shared object,' it uses the

synchronize method, which returns a locked version of the shared object. The truncate
method invokes synchronize to ask OpLog to produce a locked and up-to-date version of
the shared itree_ interval tree object. Once the interval tree is up-to-date, truncate can

perform truncate on the interval tree as usual.

The synchronize method is provided by OpLog, and hides from the developer the
per-core logs and the optimizations to apply per-core logs. By default, the synchronize
method acquires locks on all per-core queues, sorts queued operations by timestamp, calls

try-absorb on each operation, and calls exec for each operation. The implementation of

synchronize ensures that only one core applies the logs when several invoke synchronize.
To avoid consuming too much memory, OpLog invokes synchronize if the length of a core's

local log exceeds a specified threshold. In the base Queue class try-absorb does nothing.
§6.2 describes how it is used to implement absorption.

Figure 6-2 illustrates that OpLog hides most of the logging infrastructure from the

programmer: the programmer does not have to worry about per-core logs, per-core locks,
iterating over per-core logs to apply operations, etc. The developer implements an Op

sub-type for a mapping addition and a mapping removal operation, and creates these when

adding a mapping in add and when removing a mapping in rem.

6.2 Type-specific optimizations

Programmers can optimize the space and execution overhead of queues further, for example,
for operations that do not need to be executed in order. OpLog enables such optimizations

by supporting type-specific queues through overloading.

Consider a reference counter supporting 3 operations: increment (inc), decrement (dec),
and reading the count (read). If OpLog queues increment and decrement operations, the

order that OpLog executes the operations does not matter. Furthermore the synchronized

value of the reference counter would be the same if, instead of maintaining per-core queues,
OpLog executed operations on per-core counters. To exploit these properties a developer

can implement type-specific queues.

The programmer chooses what data structure to use to represent a per-core log by

specifying the Queue class that OpLog should use. By default OpLog uses an overloaded

version of the C++ queue class to represent a log. OpLog calls the queue method to insert

an Op. The queue method acquires a per-core lock, invokes append on the Queue class, and

releases the lock. The default Queue class used by OpLog timestamps each Op, to be able to

'We will use "object" to refer to an instance of a data structure type.
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struct Rmap : public QueuedObject<Queue> {
public:

void add(Mapping* m) { queue(Add0p(m)); }
void rem(Mapping* m) { queue(Rem0p(m)); }

void truncate(off-t offset) {
synchronize();

// For each mapping that overlaps offset..
interval-tree-foreach(Mapping* m, itree-, offset)

// ..unmap from offset to the end of the mapping.
unmap(m, offset, m->end);

unlock();

}

private:

struct AddOp : public Op {
Add0p(Mapping* m) : m_(m) {}
void exec(Rmap* r) { r->itree_.add(m_); }
Mapping* m_;

}

struct RemOp : public Op {
Rem0p(Mapping* m) : m_(m) {}
void exec(Rmap* r) { r->itree_.rem(m_); }
Mapping* m_;

}

IntervalTree<Mapping> itree_;

}

Figure 6-2: Using OpLog to implement a communication-efficient rmap.
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sort the operations in the per-core queues later to form a serial log of all operations. OpLog

timestamps an entry using the cycle counter on each core, which modern hardware keeps
synchronized.

To implement counters efficiently using OpLog, the programmer implements the CounterQueue
class as a subtype of Queue, as shown in Figure 6-3. When an application invokes inc

or dec to queue an operation, OpLog will invoke the append method of the Queue class.
The CounterQueue overloads this method to invoke exec directly on the operation, which
then updates a per-core value. When read invokes synchronize, OpLog invokes the apply
method for each per-core queue. The CounterQueue overloads apply to add the per-core

values to a shared counter. Executing operations directly on per-core counters reduces

storage overhead and in most cases performs better than queuing operations. Furthermore,
the dynamic allocation of queues ensure that if a counter is not heavily used, the space

overhead is reduced to just the shared counter.

The OpLog version of a distributed counter has the same performance benefits as previous

distributed counters, but is more space efficient when it is not contended. This OpLog

distributed counter is the one that Chapter 4 measured (see Figure 3-3).
The logging rmap design can benefit from type-specific queues to realize the benefit of

absorption. To add regions, the developer overloads append to append the operation to a
per-core queue. To remove a region, the overloaded append method checks if the region was

added to the current core's list and if so removes region directly from the list; otherwise, it

queues the operation. Thus, in the common case, if files are opened and closed on the same

core, those operations are absorbed.
For rmap, it is not uncommon that one core maps a file and another core unmaps the file;

for example, the parent maps a file and a child unmaps that file from its address space on

another core. To deal with this case, the rmap use of OpLog also performs absorption during

synchronize by overriding try-absorb. If the operation passed to try-absorb is a RemOp
and OpLog has not yet executed the AddOp that inserts the Mapping, try-absorb removes

both operations from the queue of operations. try-absorb can tell if OpLog executed a

particular AddOp by checking if the Mapping member variable has been inserted into an
interval tree.
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struct Counter : public QueuedObject<CounterQueue> {
struct Incop : public Op {
void exec(int* v) { *v *v + 1; }

}

struct DecOp : public Op {
void exec(int* v) { *v = *v- 1; }

}

void inco { queue(Inc0po); }
void deco { queue(Dec0po); }

int reado {

synchronize();

int r = val_;

unlock();

return r;

}

int val_;

}

struct CounterQueue public Queue {
void push(Op* op) { op->exec(&val); }

static void apply(CounterQueue* qs[], Counter* c) {

for.each-queue(CounterQueue* q, qs)

c->val_ += q->val_;

}

int val_;
}

Figure 6-3: Using OpLog to implement a distributed reference counter.
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Chapter 7

OpLog Implementation

We implemented two versions of OpLog. One is a user-level implementation in C++ and the
other is a kernel implementation in C. Both implementations are approximately 1000 lines
of code. The C version of OpLog takes advantage of GNU C nested functions to simplify the
process of defining update operations. A developer defines an update operation by delimiting
existing update code with two OpLog macros that define a closure using nested functions
and pass the closure to queue. We report on the changes to use OpLog in individual Linux
subsystems in Section 8.4.

Both implementations use a maximum length of 128 entries for a per-core queue. Perfor-
mance is not very sensitive to the maximum queue length, unless it is very large or very
small. Large maximum queue lengths can lead to memory exhaustion. Short maximum
queue lengths reduce the performance benefits of batching.

To implement dynamic log space allocation, OpLog maintains a cache for each type (e.g.,
one for objects of type rmap), implemented as a per-core hash table. The hash table acts
like a direct-mapped cache: only one object with a given hash value can be present in the
cache. Only an object present in a core's hash table can have a per-core queue. The net
effect is that heavily used objects are more likely to have per-core queues than infrequently
used objects.

To queue an operation, OpLog hashes the object (e.g., its pointer) to determine the
hash table bucket, and checks if the queue currently in the bucket is for that object. If it is,
OpLog queues the operation. If there is a hashing conflict, OpLog first synchronizes the
object currently associated with the bucket, which removes any queues associated with the
object. Once the object is synchronized, it can be removed from the hash table. This scheme
works well because recently accessed objects will be in the hash table, perhaps replacing
less-recently-accessed objects.

For every object, OpLog tracks which cores have a per-core queue for that object. It does
so using a bitmap stored in the object; if a core's bit is set, then that core has a per-core
queue. The bitmap is protected by a lock. To synchronize an object, OpLog acquires
the bitmap's lock, merges the queues for each core ID in the bitmap, applies the ordered
operations, and clears the bitmap.
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Chapter 8

Evaluation

This chapter evaluates the OpLog approach and the implementation of OpLog library by
answering the following questions:

" Does OpLog improve whole-application performance? Answering this question is
challenging because full applications stress many kernel subsystems; even if some
kernel data structures are optimized using OpLog, other parts may still contain
scalability bottlenecks. Nevertheless, we show for two applications that OpLog reduces
inter-core communication and improves performance. (Section 8.1)

" How does OpLog affect performance when a data structure is read frequently? We
answer this question by analyzing the results of a benchmark that stresses the rmap
with calls to fork and truncate. (Section 8.2)

" How important are the individual optimizations that OpLog uses? To answer this
question we turn on optimizations one by one, and observe their effect. (Section 8.3)

" How much effort is required of the programmer to use OpLog compared to using
per-core data structures? We answer this question by comparing the effort required
to apply OpLog and the per-core approach to three subsystems in the Linux kernel.
(Section 8.4)

8.1 Application performance

Since OpLog is focused on scaling updates to data structures that have relatively few
reads, we focus on workloads that generate such data structure access patterns; not every
application and workload suffers from this kind of scalability bottleneck. In particular, we
use two applications from MOSBENCH [6]: the Apache web server and the Exim mail server.
These benchmarks stress several different parts of the kernel, including the ones that the
microbenchmarks in Chapter 3 stress.

8.1.1 Apache web server

Apache provides an interesting workload because it exercises the networking stack and the
file system, both of which are well parallelized in Linux. When serving an HTTP request for
a static file, Apache stats and opens the file, which causes two pathname lookups in the
kernel. If clients request the same file frequently enough and Apache is not bottlenecked by
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Figure 8-1: Performance of Apache.

the networking stack, we expect performance to eventually bottleneck on reference counting
the file's dentry, in the same way as the pathname microbenchmark in Chapter 3 (see
Figure 3-3).

We configured the Apache benchmark to run a separate instance of Apache on each core
and benchmarked Apache with HTTP clients running on the same machine, instead of over
the network. This configuration eliminates uninteresting scalability bottlenecks and excludes
drivers. We run one client on each core. All clients request the same 512-byte file.

Figure 8-1 presents the throughput of Apache on three different kernels: the unmodified
3.9 kernel and the two kernels used in the pathname example in Chapter4. The x-axis shows
the number of cores and the y-axis shows the throughput measured in requests per second.
The line labeled "Unmodified" shows the throughput of Apache on Linux 3.9. The kernel
acquires a spinlock on the dentry of the file being requested in order to atomically check a
generation count and increment a reference counter (see Chapter 3). This line goes down
after 24 cores due to contention on the spinlock for a dentry.

The line labeled "Lock-free" shows the throughput after we refactored the code to replace
the lock with a conditional compare-and-exchange instruction (as described in Chapter 3).
This line levels off for the same reasons as the line in Figure 4-2, but at more cores because
Apache does other work in addition to checking the generation count and incrementing the
reference count of a dentry.

The line labeled "OpLog" shows the throughput when using reference counters imple-
mented with OpLog (as described in Chapter 5), which scales perfectly with increasing core
counts. The distributed counters built with OpLog apply increments and decrements to per-
core counters, avoiding any inter-core communication when incrementing and decrementing
a reference counter.

To verify that OpLog reduces inter-core communication for the Apache benchmark we
counted inter-core cache misses using hardware event counters. On 48 cores, unmodified Linux
has 360 inter-core cache misses per request. The lock-free implementation of pathname
lookup reduces inter-core cache misses to 30 per request. Using OpLog to implement
pathname lookup eliminates all inter-core cache misses for the Apache benchmark.
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Figure 8-2: Performance of Exim.

8.1.2 Exim mail server

We configure Exim [1] to operate in a mode where a single master process listens for incoming
SMTP connections via TCP and forks a new process for each connection. The new process
accepts the incoming mail, queues it in a shared set of spool directories, appends it to the
per-user mail file, deletes the spooled mail, and records the delivery in a shared log file.
Each per-connection process also forks twice to deliver each message.

The authors of MOSBENCH found that Exim was bottlenecked by per-directory locks in
the kernel when creating files in spool directories. They suggested avoiding these locks and
speculated that in the future Exim might be bottlenecked by cache misses on the rmap in
exit [6]. We run Exim with more spool directories to avoid the bottleneck on per-directory
locks.

Figure 8-2 shows the results for Exim on three different kernels: the unmodified 3.9
kernel and the two kernels that the fork and exit microbenchmark uses in Chapter 3 (see
Figure 4-1). The results in Figure 8-2 show that the performance of Exim plateaus on both
the unmodified kernel and the kernel with a lock-free rmap. Exim scales better on the
kernel with OpLog, but at 42 cores its performance also starts to level off. At 42 cores, the
performance of Exim is becoming bottlenecked by zeroing pages that are needed to create
new processes.

We used hardware event counters to measure how much OpLog reduces inter-core
communication. The unmodified kernel incurs 23358 inter-core cache misses per message on
48 cores. The lock-free rmap implementation reduces inter-core cache misses by about 15%,
or 19695 per message. The OpLog rmap reduces inter-core core cache misses to 12439, or
almost half the number of inter-core cache misses the unmodified kernel incurs.

8.2 Read intensive workloads

One downside of using OpLog for a data structure is that read operations can be slower,
because each read operation will have to execute synchronize to collect updates from all
cores, and OpLog will not be able to take advantage of batching or absorption.
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To help understand how reads affect the performance of OpLog, we wrote a version

of the fork benchmark that calls truncate to trigger reads of the shared rmap. This

fork-truncate benchmark creates 48 processes, one pinned to each core, and 48 files,

and each process mmaps all of the 48 files. Each process calls fork and the child process

immediately calls exit. After a process calls fork a certain number of times, it truncates

one of the nmaped files by increasing the file length by 4096 bytes, and then decreasing

the file length by 4096 bytes. A runtime parameter dictates the frequency of truncates,

thus controlling how often the kernel invokes synchronize to read a shared rmap. The

benchmark reports the number of forks executed per millisecond. We ran the benchmark

using truncate frequencies ranging from once per fork to once per ten forks.

Figure 8-3 shows the results of the fork-truncate benchmark. The unmodified version

of Linux outperforms OpLog by about 10% when the benchmark truncates files after one call

to fork and by about 25% when truncating after two calls to fork. However, we find that

even when truncate is called once every three forks, OpLog outperforms the unmodified

kernel. This suggests that OpLog improves performance even when the data structure is

read periodically.

8.3 Breakdown of techniques

We evaluate the individual OpLog optimizations from Chapter 5 with user-level microbench-

marks and with measurements from a running Linux kernel.

8.3.1 Absorbing updates

We evaluate the benefit of implementing absorbing optimizations with user-level microbench-

marks using the OpLog C++ implementation. We implement a singly-linked list using

OpLog and stress the list using a benchmark that adds and removes entries from concurrently.

Benchmarking a singly-linked list is interesting because it allows us to compare OpLog

versions of the linked list with a lock-free design [12].
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Figure 8-4: Performance of a lock-free list implementation and three OpLog list implementa-
tions. "OpLog local absorption" scales linearly and achieves 49963 operations per millisecond
on 48 cores.

We study how much each technique from Chapter 5 affects performance using three
different OpLog list implementations. The first is an OpLog list without any type-specific
optimizations ("OpLog basic"). Comparing throughput of OpLog basic to the throughput
of the lock-free list demonstrates how much batching list operations can improve perfor-
mance. The other two list implementations demonstrate how much absorption improves
performance. The second OpLog list uses type-specific information to perform absorption
during synchronize. synchronize executes an add operation only if there is not a remove
operation queued for the same element ("OpLog global absorption"). The third list takes
advantage of the fact that the operations do not have to be executed in order: it performs
absorption immediately when a thread queues an operation ("OpLog local absorption").

We wrote a microbenchmark to stress each list implementation. The benchmark instan-
tiates a global list and creates one thread on each core. Each thread executes a loop that
adds an element to the list, spins for 1000 cycles, removes the element from the list, and
spins for another 1000 cycles. We count each iteration of the loop as one operation. We
chose to delay 1000 cycles to simulate a list that is manipulated once every system call.

If operations on the lock-free list cause cache contention, we would expect OpLog basic
to provide some performance improvement. OpLog global absorption should perform better
than basic OpLog, because it ends up performing fewer operations on the shared list. OpLog
local absorption should scale linearly, because when a thread queues a remove operation,
OpLog should absorb the preceding add operation executed by the thread.

Figure 8-4 presents the results. The lock-free line shows that the throughput of the
lock-free list peaks at 3 cores with 1364 operations per millisecond. OpLog basic throughput
increases up to 4463 operations per millisecond on six cores, then begins to decrease until 1979
operations per millisecond on 48 cores. Throughput starts to decrease for more than 6 cores
because the benchmark starts using more than one CPU node and inter-core communication
becomes more expensive. OpLog global absorption throughput peaks at 5186 operations per
millisecond on eight cores. Similar to OpLog basic, OpLog global absorption throughput
decreases with more cores and is 2516 operations per millisecond on 48 cores. OpLog local
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dentry size 192 bytes 576 bytes 196 bytes
Total dentry storage 2.6 Gbytes 8.0 Gbytes 2.7 Gbytes

Figure 8-5: Storage overhead of dentrys using a single shared reference counter, per-core
reference counters, and OpLog log caching. Measurements are for a 48-core machine with 15
million cached dentrys.

absorption throughput scales linearly and achieves 49963 operations per millisecond on 48
cores.

8.3.2 Allocating logs

OpLog allocates per-core data structures dynamically to avoid allocating them when an
object is not heavily used. To gauge the importance of this technique we compared the
space overhead for dentrys with per-core reference counters to OpLog's reference counters
with log caching.

Figure 8.3.2 summarizes the measurements for a 48-core machine after it had been running
for several days and the kernel filled the dcache with 15 million entries. An unmodified
dentry with a single shared counter is 192 bytes. Per-core 8-byte counters require 384 bytes
of storage and increase the dentry size by 200% to 576 bytes. The OpLog reference counter
adds an extra 4 bytes of metadata per-dentry. The OpLog log cache size is limited to 4096
entries per-core.

Per-core counters use 5.4 more Gigabytes than the shared counter, while OpLog counters
used only 0.1 more Gigabytes. These results suggest OpLog's log caching is an important
optimization for conserving storage space.

8.4 Programmer effort

To compare the programmer effort OpLog requires to the effort per-core data structures
require we counted the number of lines of code added or modified when applying OpLog
and per-core data structures to three Linux kernel subsystems. We implemented per-core
versions of the rmap and inotify, and used the existing per-core version of the open files list.
The lines of code for the OpLog implementations do not include type-specific optimizations,
only calls to synchronize and queue.

Figure 8.4 presents the number of lines of code. The rmap required the most lines of
code for both the per-core and OpLog implementations, because the rmap is not very well
abstracted, so we had to modify much of the code that uses the rmap. The inotify and the
open-files implementations required fewer code changes because they are well abstracted, so
we did not need to modify any code that invoked them.

The OpLog implementations of all three subsystems required fewer changes than the per-
core versions. The OpLog implementations do not modify operations, except for adding calls
to synchronize or queue. After calling synchronize, the existing code for read operations
can safely access the shared data structure. The per-core implementations, on the other
hand, replace every update operation on the shared data structure with an operation on
a per-core operation and every read operation with code that implements a reconciliation
policy.
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Subsystem Per-core LOC OpLog LOC

rmap 473 45
inotify 242 11
open files list 133 8

Figure 8-6: The number of lines of code (LOC) required by per-core implementations and
OpLog implementations.

The number of lines of code required to use OpLog is few compared to using per-core
data structures. This suggests that OpLog is helpful for reducing the programmer effort
required to optimize communication in update-heavy data structures.
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Chapter 9

Related work

OpLog targets cases where shared data structures are necessary. One way to achieve
scalability is to avoid this problem in the first place, by implementing kernel subsystems
in a way that avoids sharing, or changing the kernel interface in a way that allows an
implementation not to share. For example, by default the threads in a Linux process share
file descriptors, which can cause contention when threads create or use file descriptors [5].
However, if a process creates a thread with the CLONEFILES flag, the new thread has its
own space of file descriptors; this can reduce sharing and the associated contention. This
paper focuses on the cases where the Linux kernel developers have decided that sharing is
required.

OpLog is in spirit similar to read-copy update (RCU) [19], which is heavily used in the
Linux kernel [20]. OpLog, however, targets update-intensive data structures, while RCU
targets read-intensive data structures. OpLog, like RCU, provides a convenient infrastructure
to optimize the performance of kernel data structures. Like RCU, OpLog does not solve
a problem directly, but provides programmers with a helpful library. Like RCU, OpLog is
focused on certain workloads; OpLog's target is write-dominated workloads, which RCU
does not address.

Flat combining is an approach to improve performance of data structures that are heavily
updated [13], but, unlike OpLog, it applies all operations, and applies them eagerly, which
causes cache line contention, and thus scales less well than OpLog. In flat combining, a
thread posts its operation in a per-core set of pending operations. The thread that succeeds
in acquiring the lock becomes the "combiner." The combiner applies all pending operations
to the locked data structure, posts the result of each operation, and releases the lock. By
having a single thread perform all operations, flat combining avoids lock contention and can
improve locality because one thread applies all operations to the data structure. OpLog
delays applying updates until needed by a read operation, which gives it a higher degree
of batching and locality than flat combining. The delaying also enables OpLog to perform
several optimizations, such as absorption (e.g., if a remove cancels out an earlier insert in the
same per-core log) and batching, and therefore scale better (e.g., near-ideal scaling if most
operations are absorbed). In flat combining, every operation forces all pending updates to
be applied (or waits for another core to apply them), making it a poor fit for update-heavy
workloads. OpLog can defer updates in part because it uses timestamps to establish the
global order in which operations must be applied.

Tornado's Clustered Objects [111, which were also used in K42 [3], provide a convenient
programming abstraction that allows programmers to think in terms of single virtual object,
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but which can be instantiated as a partitioned, distributed, or replicated object at runtime,
depending on the workload. In particular, a clustered object can instantiate a per-core
representative, which mirrors the approach of using per-core instances described in the
introduction, to improve scalability. Clustered objects require programmers to manually
implement a strategy for keeping the per-core representative data structures consistent,
such as an invalidation and update protocol [11]. OpLog, on the other hand, implements a
consistency strategy for any data structure, based on logging and applying updates, which
works well for update-heavy workloads. By focusing on a specific consistency strategy, OpLog
is able to implement several important optimizations, such as batching and absorption.
OpLog shares some implementation techniques with Clustered Objects; for example, OpLog's
per-core hash table to avoid using per-core logs for all object instances bears similarities to
the per-processor translation tables in Clustered Objects, which serve a similar purpose.

OpLog can be viewed as a generalization of distributed reference counter techniques.
In fact, applying OpLog to a reference counter creates a distributed counter similar to
Refcache [8]. OpLog makes it easy for programmers to apply the same techniques to data
structures other than counters.

OpLog borrows techniques from distributed systems, but applies them in the context
of shared-memory multiprocessor kernels. OpLog's approach of having a per-core log of
operations, which must be merged to provide a synchronized global view of a data structure,
has similarities with Bayou's per-device operation logs [22] for disconnected applications.
OpLog also borrows Bayou's observation that certain logged operations can be re-ordered.

Also taking a page from distributed systems, the designers of Barrelfish [4] and Fos [23]
argue that multicore processors should be viewed as distributed systems and all communica-
tion should be made explicit because it can be costly. They have proposed kernel designs
where by default each core runs an independent kernel that does not share data with other
cores. The Barrelfish multikernel optimizes communication between kernels using a fast
message-passing library that can batch, and using a multicast tree for TLB shoot down.
OpLog is a library for traditional shared-memory multiprocessor kernels, and optimizes
inter-core communication when sharing is required.
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Chapter 10

Discussion and Conclusion

This dissertation describes the communication bottleneck and presents a novel technique for

optimizing a class of update-heavy communication bottlenecks that occur in multiprocessor

operating system kernels. The OpLog library is an implementation of this technique and

demonstrates that optimizing update-heavy communication bottlenecks improves application

performance and requires minimal programmer effort. This chapter speculates on the future

importance of OpLog; how the OpLog implementation and API might be extended and

improved; and considerations for hardware architects trying to optimize communication.

10.1 Future importance of OpLog

To explore whether it is likely that there will be more opportunities to apply OpLog we

performed two studies on the Linux kernel source code. The first study measures the length

of serial sections in the Linux kernel and the second study looks at the usage of RCU in the

Linux kernel over time.

To measure serial section length, we compiled the 3.8 kernel with the default 64-bit x86

configuration, and searched the kernel object code for calls to spin lock acquisition functions.

When we located a call to acquire a lock, we stepped forward through the object code and

counted instructions until the next call to an unlock function.

Figure 10-1 is a histogram presenting the length of critical sections in Linux version 3.8.

The x-axis is the length of the serial section measured in instruction count and the y-axis

is the number of serial sections that have that length. The bar labeled "call" is a count of

serial sections that contain a call instruction and therefore are relatively expensive. About

70% of all serial sections contain call instructions, which indicates Linux still has many long

serial sections. With many long serial sections it is likely that as kernel developers parallelize

them they will uncover communication bottlenecks, some of which could be optimized with

OpLog. For example, Linux maintains a list of directory entries for each directory. The

kernel updates a directory's list when a file is created or deleted, and reads the list only when

an application reads the directory entries. The creation and deletion code paths modify the

list within relatively serial sections.

Figure 10-2 shows that the number of uses of the RCU API has increased from none

in kernel version 2.5.0, to 10268 in kernel version 3.8. The results show that developers

actively applying RCU which is an indication that they are implementing highly parallel

new subsystems or refactoring old subsystems to use RCU-style lock-free algorithms. This
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Figure 10-1: Serial section length in the Linux kernel.
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Figure 10-2: RCU API usage in the Linux kernel.

suggests that kernel developers will continue to parallelize the kernel and possibly uncover
more communication bottlenecks.

The number of long serial sections and active usage of RCU by kernel developers suggests
that Linux developers will continue to parallelize the kernel. This effort could uncover
communication bottlenecks and we expect OpLog to be a useful tool in optimizing the

bottlenecks caused by update-heavy data structures.

10.2 Extending OpLog

A future direction of research is to extend OpLog with other communication optimizing
techniques. For example, OpLog could exploit locality by absorbing state in near-by cores

first, and arranging the cores in a tree topology to aggregate the state hierarchically. This

design can reduce the latency of executing synchronize.
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Extending the OpLog API presented in Chapter 6 might improve performance of some
uses of OpLog. For example, a version of synchronize that allows concurrent updates to
per-core logs could be useful to inotify, because it would allow cores to append notifications
operations to per-core logs while a reading core was executing synchronize and popping the
first notification from the shared notification queue.

10.3 Optimizing communication with hardware

The machine used in the paper implements the widely used MOESI directory-based cache
coherence protocol. The exact details of the cache-coherence protocol don't matter that
much for the main point of the paper. For example, using an update protocol instead of an
invalidation protocol just shifts the inter-core communication cost from a load to a store.
Improvements in cache-coherence protocols, however, could change the exact point at which
the techniques are applicable. One interesting area of research to explore is to have the
cache-coherence protocol expose more state or new operations to allow software to optimize
inter-core communication. For example, it would be useful to have a load instruction that
only peeks at a cache-line and leaves it in exclusive mode in the remote core's cache, instead

of changing the cache line from exclusive to shared.

10.4 Conclusion

Data structures that experience many updates can pose a scalability bottleneck to multicore

systems, even if the data structure is implemented without locks. Prior approaches to solving
this problem require programmers to change their application code and data structure
semantics to achieve scalability for updates. This paper presented OpLog, a generic approach
for scaling an update-heavy workload using per-core logs along with timestamps for ordering
updates. Timestamps allow OpLog to preserve linearizability for data structures, and OpLog's
API allows programmers to preserve existing data structure semantics and implementations.
Results with a prototype of OpLog for Linux show that it improves throughput of real
applications such as Exim and Apache for certain workloads. As the number of cores in

systems continues to increase, we expect more scalability bottlenecks due to update-heavy
data structures, which programmers can address easily using OpLog.
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Appendix A

Spinlock Model

Some operating systems rely on spinlocks for serialization that can collapse when contended.
For example, the Linux kernel uses ticket spin locks that can cause dramatic collapse in the

performance of real workloads, especially for short critical sections. This appendix explains
the nature and sudden onset of collapse with a Markov-based performance model.

A.1 The Linux spinlock implementation

For concreteness we discuss the ticket lock used in the Linux kernel, but any type of

non-scalable lock will exhibit the problems shown in this section. Figure A-1 presents

simplified C code from Linux. The ticket lock is the default lock since kernel version 2.6.25

(released in April 2008).
An acquiring core obtains a ticket and spins until its turn is up. The lock has two fields:

the number of the ticket that is holding the lock (current-ticket) and the number of

the next unused ticket (next-ticket). To obtain a ticket number, a core uses an atomic

increment instruction on next-ticket. The core then spins until its ticket number is current.

To release the lock, a core increments current-ticket, which causes the lock to be handed

to the core that is waiting for the next ticket number.

If many cores are waiting for a lock, they will all have the lock variables cached. An

unlock will invalidate those cache entries. All of the cores will then read the cache line. In

most architectures, the reads are serialized (either by a shared bus or at the cache line's home

or directory node), and thus completing them all takes time proportional to the number

of cores. The core that is next in line for the lock can expect to receive its copy of the

cache line midway through this process. Thus the cost of each lock hand off increases in

proportion to the number of waiting cores. Each inter-core operation takes on the order of a

hundred cycles, so a single release can take many thousands of cycles if dozens of cores are

waiting. Simple test-and-set spin locks incur a similar O(N) cost per release.

A.2 Performance

We exercised the Linux spinlock implementation using two microbenchmarks. The first

microbenchmark uses a single lock, spends a fixed number of cycles inside a serial section

protected by the lock, and a fixed number of cycles outside of that serial section. The serial

section always takes 400 cycles to execute, but the non-serial section varies from 12.5 Kcycles

to 200 Kcycles. When a lock becomes contended we expect parallel speedup to collapse
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struct spinlock-t {
int current-ticket;
int next-ticket;

}

void spin-lock(spinlockt *lock)

{
int t =

atomic-fetch-and-inc(&lock->next-ticket);

while (t != lock->current-ticket)

; spin */
}

void spin-unlock(spinlock-t *lock)

{
lock->current-ticket++;

}

Figure A-1: Pseudocode for ticket locks in Linux.

because the cost of acquiring the lock will increase with the number of contending cores and
come to dominate the cost of executing the 400 cycle serial section.

Figure A-2 shows the speedup of the ticket spinlock microbenchmark. Speedup is
calculated by dividing the throughput on N cores by the throughput on one core. Speedup
of all three benchmark configurations eventually collapse. One surprising result is that
collapse occurs for fewer cores than expected. For example, with a 3.2% of execution in a
serial section, one might expect collapse to start around 31 cores (1.0/0.032) when there
is significant chance that many cores try to acquire the lock at the same time. Another
surprising result is that performance collapse happens so quickly.

The second benchmark we used to exercise the Linux spinlock implementation is similar
to the first. Instead of a 400 cycle serial section, the serial section is always 2% of the
total time to execute the serial section and the non-serial section on one core. We ran the
benchmark with serial section lengths of 400 cycles, 1600 cycles, and 25600 cycles. The
results from this benchmark should provide some insight into the affect of using collapsing
locks on serial sections of different lengths. We might expect that the speedup of longer
serial sections will suffer less than shorter serial sections because the cost of acquiring the
lock is a smaller fraction of the total execution cost.

Figure A-3 shows the speedup of the second spinlock microbenchmark. The speedup
of the 400 cycle and 1600 cycle serial section configurations collapse at 13 and 24 cores
respectively. The 25600 cycle serial section configuration does not collapse.

A.3 Questions

The performance results raise three questions that a model should explain.

e Why does collapse start as early as it does? One would expect collapse to start when
there is a significant chance that many cores need the same lock at the same time.
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ao ak-1 ak ak+1 an-1

SO Sk-1 Sk SkI sn-1

Figure A-4: Markov model for a ticket spin lock for n cores. State i represents i cores
holding or waiting for the lock. ai is the arrival rate of new cores when there are already i
cores contending for the lock. si is the service rate when i + 1 cores are contending.

Thus one might expect speedup of the configuration with a 400 cycle serial section
that is 3.2% of total execution to collapse around 31 cores.

" Why does performance ultimately fall so far?

" Why does performance collapse so rapidly? One might expect a gradual decrease with
added cores, since each new core should cause each release of the bottleneck lock to
take a little more time. Instead, adding just a single core can cause a sharp drop in
total throughput. This is worrisome; it suggests that a system that has been tested to
perform well with N cores might perform far worse with N + 1 cores.

A.4 Model

To understand the collapse observed in ticket-based spin locks, we construct a model. One of
the challenging aspects of constructing an accurate model of spin lock behavior is that there
are two regimes of operation: when not contended, the spin lock can be acquired quickly, but
when many cores try to acquire the lock at the same time, the time taken to transfer lock
ownership increases significantly. Moreover, the exact point at which the behavior of the
lock changes is dependent on the lock usage pattern, and the length of the critical section,
among other parameters. Recent work [10] attempts to model this behavior by combining
two models-one for contention and one for uncontended locks-into a single model, by
simply taking the max of the two models' predictions. However, this fails to precisely model
the point of collapse, and doesn't explain the phenomenon causing the collapse.

To build a precise model of ticket lock behavior, we build on queuing theory to model
the ticket lock as a Markov chain. Different states in the chain represent different numbers
of cores queued up waiting for a lock, as shown in Figure A-4. There are n + 1 states in our
model, representing the fact that our system has a fixed number of cores (n).

Arrival and service rates between different states represent lock acquisition and lock
release. These rates are different for each pair of states, modeling the non-scalable per-
formance of the ticket lock, as well as the fact that our system is closed (only a finite
number of cores exist). In particular, the arrival rate from k to k + 1 waiters, ak, should be
proportional to the number of remaining cores that are not already waiting for the lock (i.e.,
n - k). Conversely, the service rate from k + 1 to k, sk, should be inversely proportional
to k, reflecting the fact that transferring ownership of a ticket lock to the next core takes
linear time in the number of waiters.

To compute the arrival rate, we define a to be the average time between consecutive lock
acquisitions on a single core. The rate at which a single core will try to acquire the lock,
in the absence of contention, is 1/a. Thus, if k cores are already waiting for the lock, the
arrival rate of new contenders is ak = (n - k)/a, since we need not consider any cores that
are already waiting for the lock.
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To compute the service rate, we define two more parameters: s, the time spent in the
serial section, and c, the time taken by the home directory to respond to a cache line request.
In the cache coherence protocol, the home directory of a cache line responds to each cache
line request in turn. Thus, if there are k requests from different cores to fetch the lock's
cache line, the time until the winner (pre-determined by ticket numbers) receives the cache
line will be on average c - k/2. As a result, processing the serial section and transferring the
lock to the next holder when k cores are contending takes s + ck/2, and the service rate is

SK s+ck/2'
Unfortunately, while this Markov model accurately represents the behavior of a ticket

lock, it does not match any of the standard queuing theory that provides a simple formula
for the behavior of the queuing model. In particular, the system is closed (unlike most
open-system queuing models), and the service times vary with the size of the queue.

To compute a formula, we derive it from first principles. Let Po, . . . , P, be the steady-
state probabilities of the lock being in states 0 through n respectively. Steady state
means that the transition rates balance: Pk - ak -- Pk+1 Sk. From this, we derive that Pk =

.= ak (n - =(s+ic). Since E' o Pi 1, we get P0  1/ (En (al(i)! H-=(s +njc)),

and thus:

k

ak(n-k)! H (s + wC)
Pk - - (A. 1)

r-ai(n-i)! H s+ c
i=0 =1

Given the steady-state probability for each number of cores contending for the lock,
we can compute the average number of waiting (idle) cores as the expected value of that
distribution, w =Zo i . P. The speedup achieved in the presence of this lock and serial
section can be computed as n - w, since on average that many cores are doing useful work,
while w cores are spinning.

A.5 Validating the model

To validate our model, Figures A-5 and A-6 show the predicted and actual speedup of a
microbenchmark configuration from Section A.2. As we can see, the model closely matches
the real hardware speedup for all configurations.

One difference between the predicted and measured speedup is that the predicted collapse
is slightly more gradual than the collapse observed on real hardware. This is because the
ticket lock's performance is unstable near the collapse point, and the model predicts the
average steady-state behavior. Our measured speedup reports the throughput for a relatively
short-running microbenchmark, which has not had the time to "catch" the instability.

A.6 Implications of model results

The behavior predicted by our model has several important implications. First, the rapid
collapse of ticket locks is an inherent property of their design, rather than a performance
problem with our experimental hardware. Any cache-coherent system that matches our basic
hardware model will experience similarly sharp performance degradation. The reason behind
the rapid collapse can be understood by considering the transition rates in the Markov
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model from Figure A-4. If a lock ever accumulates a large number of waiters (e.g., reaches
state n in the Markov model), it will take a long time for the lock to go back down to a
small number of waiters, because the service rate sk rapidly decays as k grows, for short
serial sections. Thus, once the lock enters a contended state, it becomes much more likely
that more waiters arrive than that the current waiters will make progress in shrinking the
lock's wait queue.

A more direct way to understand the collapse is that the time taken to transfer the lock
from one core to another increases linearly with the number of contending cores. However,
this time effectively increases the length of the serial section. Thus, as more cores are
contending for the lock, the serial section grows, increasing the probability that yet another
core will start contending for this lock.

The second implication is that the collapse of the ticket lock only occurs for short serial
sections, as can be seen from Figure A-6. This can be understood by considering how the
service rate si decays for different lengths of the serial section. For a short serial section

Ss+ck/2is strongly influenced by k, but for large s, sk is largely unaffected by k.
Another way to understand this result is that, with fewer acquire and release operations,
the ticket lock's performance contributes less to the overall application throughput.

The third implication is that the collapse of the ticket lock prevents the application from
reaching the maximum performance predicted by Amdahl's law (for short serial sections).
In particular, Figure A-6 shows that a microbenchmark with a 2% serial section, which may
be able to scale to 50 cores under Amdahl's law, is able to attain less than 10x scalability
when the serial section is 400 cycles long.
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