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Abstract

Here we describe Protein Interaction Quantitation (PIQ), a computational method

that models the magnitude and shape of genome-wide DNase profiles to facilitate

the identification of transcription factor (TF) binding sites. Through the use of

machine learning techniques, PIQ identified binding sites for >700 TFs from one

DNase-seq experiment with accuracy comparable to ChIP-seq for motif-associated

TFs (median AUC=0.93 across 303 TFs). We applied PIQ to analyze DNase-seq data

from mouse embryonic stem cells differentiating into pre-pancreatic and intestinal

endoderm. We identified (n=120) and experimentally validated eight 'pioneer' TF

families that dynamically open chromatin, enabling other TFs to bind to adjacent

DNA. Four pioneer TF families only open chromatin in one direction from their

motifs. Furthermore, we identified a class of 'settler' TFs whose genomic binding is

principally governed by proximity to open chromatin. Our results support a model

of hierarchical TF binding in which directional and non-directional pioneer activity

shapes the chromatin landscape for population by settler TFs.

Substational parts of this thesis are taken from our publication on PIQ currently

in press at Nature biotechnology.
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Chapter 1

Introduction

1.1 Motivation

Highly accurate genome-wide methods have been developed to localize the condition-

specific binding of TFs to the genome, facilitating the elucidation of genome regula-

tory elements and gene regulatory networks [18, 3]. Chromatin immunoprecipitation

of selected protein-DNA complexes followed by high-throughput sequencing and map-

ping of the immunoprecipitated DNA (ChIP-seq)[8] has become a valued method for

TF location analysis and can reliably identify where TFs bind genome-wide within

10 bp [6, 5]. Each ChIP-seq experiment profiles a single TF and requires either an

antibody specific to the TF or the incorporation of a tag into the TF being profiled.

DNase-seq[1] is an assay that takes advantage of the preferential cutting of DNase I in

open chromatin[16] and the steric blockage of DNase I by tightly-bound TFs that pro-

tect associated genomic DNA sequences[17]. After deep sequencing of DNase-digested

genomic DNA from intact nuclei, genome-wide data on chromatin accessibility as well

as TF-specific DNase-protection profiles revealing the genomic binding locations of a

majority of TFs are obtained[2, 11, 10, 13]. These TF signature DNase profiles reflect

the TFs effect on DNA shape and local chromatin architecture, extending hundreds

of base pairs from a TF binding site, and they are centered on DNase footprints at

the binding motif itself that reflect the biophysics of protein-DNA binding[10, 14, 1].

As DNase-seq experiments are TF-independent and do not require antibodies, it is

13



Digest nuclei with DNase- Collect DNA (gel/beads), size
(concentration/exposure specific) separate, sequence

TF binding footprint - accessible DNA

DNase-seq reads:

Chromatin state:

+----- sequence motifs

Figure 1-1: Schematic depiction of DNase-seq protocol resulting in characteristic
patterns of accessiblity and transcription factor induced protection

possible to predict the binding of hundreds of different TFs to their genomic motifs

from a single DNase-seq experiment.

1.2 DNase-seq protocol

In this assay (Figure 1-1), DNA is cleaved by the enzyme DNase I, and the ends of

the resulting fragments are identified by high-throughput sequencing. Mapping the

sequencing reads to the genome produces a genome-wide DNase profile in which the

presence of mapped reads indicates that a genomic region is sensitive to DNase I cleav-

age and therefore accessible to proteins. Transcription factor binding protects DNA

from cleavage, resulting in distinctive changes, or footprints, in the DNase profile.

The identity of the proteins bound to the protected sequences can be determined de

novo3 or by reference to previous knowledge of the DNA sequence motifs recognizied

by transcription factors [15, 18].

The combination of DNase-I digestion followed by high-throughtput sequencing is

referred to as DNase-seq throughtout this thesis.
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mES Mesendoderm Endoderm Pre-pancreatic

(Day 0) (Day 3) - (Day 5) i Endoderm

(Day 6)

Figure 1-2: Cell identities explored within our pancreatic differentiation system

1.3 Stem cell differentiation system

We collected DNase-seq data from a developmental lineage paradigm that involves the

stepwise differentiation of mouse embryonic stem cells (mESC) to pre-pancreatic and

intestinal endoderm referred to hereafter as PancE and IntE27. We induced PancE

and IntE differentiation by treating mESC for six days with an in vitro growth factor

and small molecule treatment protocol (Figure 1-2). We collected DNase-seq data

at two intermediate stages along this stepwise differentiation pathway, mesendoderm

(day 3) and endoderm (day 5). This experimental structure yielded a total of five

cell states (Figure 1-2) all of which were generated with >90% efficiency, providing

relatively homogenous populations.

1.4 Computational identification of binding sites

with DNase-seq

The binding of a transcription factor causes a characteristic footprint pattern in the

observed DNase-seq read pattern. We can use this fact to determine whether or

not some base in the genome is occupied by a transcription factor by comparing the

local DNase-seq reads to the footprint. In aggregate, these DNase-seq footprints are

distinct and serves to distinguish transcription factors (Figure 1-3).

However, while we can generate transcription factor footprints from ChIP-seq

data, it is difficult to generate binding predictions from DNase-seq data alone, due to

the large number of possible footprint shapes and candidate binding sites.

15



Figure 1-3: Average protection patterns across several thousand ChIP-seq binding
sites for several transcription factors

1.5 Prior computational methods

Previous approaches to identification of transcription factor binding through DNase-

seq can be classified into two groups: motif-free and motif-based. Motif-free ap-

proaches such as DHS footprinting used in the ENCODE phase 2 project can identify

local protection patterns resembling TF binding and does not require prior knowledge

of transcription factor binding motifs. Motif-based approaches such as CENTIPEDE

method use transcription factor binding sites as a way to narrow the set of candidate

binding sites. PIQ uses motif information as a critical part of its binding calls. We

justify this decision by noting that while dependence on motif information is undesire-

able, it is almost unavoidable since even using motif-free methods most downstream

analysis of DNase based TF binding calls use motifs to disambiguate which factor is

binding at a binding site.

Our algorithm utilizes recent advances in time-series models and approximate

inference to automatically correct for the experiment-level biases of DNase-seq. First

we use expectation-propagation to fit a billion element Gaussian process model within

minutes by exploiting stationarity. Second, we use sparse inverse covariance matrix

based methods to share strenght across experiments. Lastly we use motif-association

arguments to construct robust decision rules for whether a candidate binding site is

bound by a trasncription factor or not.

16



Chapter 2

Methods

We developed a novel method for detecting transcription factor binding events from

DNAse hypersensitivity data. The statistical model and inference framework shown

in Figure 2-1 are the natural result of several design goals which we outline first.

1. Resistance to low-coverage Share strength across neighboring bases by mod-

eling reads as arising from a Gaussian Process.

2. Integrate multiple experiments Learn the cross-experiment structure as a Gaus-

sian graphical model using L 1 regularization.

3. High spatial accuracy Use motifs to inform base-pair level positions rather

than de-novo footprinting.

4. Robust worst case behavior Use priors that guarantee monotonicity with re-

spect to motif score and read coverage.

5. Scalability to thousands of factors genome wide Fast approximate inference

strategies and use of Amazon ec2.

The five design goals correspond to the major subcomponents of the algorithm

and will be covered below.

17



Observed DNase-seq read ends

1II I I III MMIm.U iU..IEI IEIMniEllhMiU ..Iis . 1
CTOCTACGTACCGOTAC)CTAATAGOTAAAOOGT TAAOGAATGCGAT AGT AOTAGTOAGTGOTAAACGOTTCCCAAGTCTAGA=GAATTACGGTTACOCA

Expected base-pair accessibility as Composite likelihood;
Gaussian process marginalization via Expectation Propagation

Time 1

~~AACQA

"' AIIIIII ja ,
1

-rime 1

_#MhM_ T116! -2
GOATAOT ~i - - -I

- AExperimental/basal

TF-specific chromatin profile Inter-experiment correlation TF binding rates

Figure 2-1: Overview of the PIQ generative model. The Gaussian process ties together
the TF and inter-experiment effects, generating a correlated latent state from which
reads are drawn

2.1 Covariance correction

2.1.1 Generative model for reads

We model the generative model of reads in the single-experiment, single-strand, no

factor binding case as a two step process. First we generate the underlying per-base

accessibility of the genome to DNase as a Gaussian Process, which is a distribu-

tion over functions of a particular level of smoothness. The Gaussian Process is

parametrized by [to, the average log-read rate per base, co the deviation in log-read

rates, and kjjj, the correlation between neighboring bases.

pvi ~ N(po, E)

Eijj = Covariance(pi, pij) = kpj_jj

18



Given the per-base rates, pi we define the read per base xi as being distributed Poisson

with log-rate equal to [i

xi ~ Poisson(exp(pi))

Intuitively, Mo, E model the overdispersion of read counts relative to a Poisson,

while kli-j 1 defines the degree and type of smoothness we have across the genome,

allowing us to share information across adjacent bases. In the multi-experiment case,

we estimate the parameters (io, E, kJi-il) for each experiment.

2.1.2 Cross-experiment and cross-strand model

Cross-experiment and cross-strand effects for DNase affinity are treated identically.

Let Pi,k be the read rate at base i in experiment or strand k E {1 ... K}, then we model

the distribution over different experiment as a multivariate Gaussian parametrized by

a cross-experiment correlation matrix $ subject to a L 1 penalty prior with parameter

A,

{ii ... pi,} ~i, Multivariate Normal(po, Z)

log(P(t)) oc -AJE-1

Parameterizing the cross-experiment correlation by a matrix E is natural, since

the single experiment rates pi are already Gaussian. The L1 penalty induces sparsity

over the precision matrix (E^-1) which has the effect of preventing loosely related

experiments from sharing information. In our experimental design, this penalty is

particularly important, since the differentiation protocol results in a highly structured

cross-experiment correlation structure.

2.2 Binding call classifier

We will first cover the single-experiment, single-factor case since the generalization

to multiexperiment and multifactor are straightforward.

PIQ represents a transcription factor as a motif (shared cross-experiment) and

19



a DNase footprint parameter 8, not shared across either experiments or factors. A

particular binding site is represented as a pair of variables, indicating the binding site

location and whether the site is bound, (yyIJ).

Given the covariance matrix E, binding calls can be determined by simply clus-

tering the set of binding sites after de-correlating the input counts. We propose two

such methods: a mixture model based approach which gives PIQ a probabilistic in-

terpretation, as well as a SVM based approach which more directly optimizes our

target objective function. All results were generated with the older mixture model

based classifier, but we have found that the SVM approach is faster and has slightly

better worst case performance.

2.2.1 Mixture model based classifier

Given a motif for some factor, we call a base a binding site candidate if its score

passes some threshold (in all analysis, we used any position occurring with less than

le-5 frequency with respect to background sequence). For the binding site candidate

indexed by j, let y3 be the base-pair representing the midpoint of such a motif match.

Then we define the binding-adjusted read rates for the two strands (AP, A-) in terms

of the binding indicator Ij which is one if a factor is bound, and a DNase-footprint

parameters for each strand, #+ = {,+ ... 00+...,63+} and an analogous 6-.

At P + 6;-j : Ji - j < M and Ij =

0 : otherwise

In the multi-experiment case, each experiment and factor receives its own footprint

(0+, f-)k, and in the multi-factor case we simply sum over all matching #.

2.2.2 SVM based classifier

In the SVM approach we consider the overall objective of DNase-seq binding call

to find a set of candidate sites whose footprint patterns are significantly enriched

in PWM match sites compared to background sites. This goal can be cast as a

20



straightforward classification problem, with the 'positive class' being drawn from

PWM matches, and 'negative class' drawn from sites uniformly at randomly offset at

least 1kb but less than 100kb away from each motif match.

An advantage of the SVM method is that even if our covariance correction fails to

completely remove basewise correlation, the SVM applied to variance stabilized data

will remove the residual covariance terms to find the optimal linear decision bound.

We have found that this property is provides substantial benefits over using a simpler

approach such as LDA (linear discriminant analysis) and does not suffer from local

minima as the mixture model does.

Any classifier more complicated than a simple linear decision bound has runtime

and interpretability problems, and the SVM approach is likely to be the best practical

classifier based technique for binding calls. Using a online-gradient optimizer such as

PEGASOS that exploits the sparsity underlying the problem, it takes only a couple

minutes to process millions of candidate binding sites.

2.3 Hypothesis testing for binding

Identifying the significance of binding sites through the use of background is a core

innovation in PIQ and guarantees that binding sites discovered by PIQ are biologically

relevant. We separate the model fitting and significance testing components such that

even if our fitted model is incorrect, the significances are not.

For every candidate motif match site, we generate a background binding site by

randomly selecting a coordinate at least 1kb away but within 100kb of the candidate

site. Assuming that the probability of randomly selecting a non sequence specific

transcription factor binding site is negligible, this gives us a confident set of examples

drawn from the set of non-bound region.

Running the classifier on this background site gives us the null distribution of

scores expected from unbound transcription factor sites. While this distribution can

be used directly to construct a set of positive binding sites with a given p-value, we

use this distribution in order to find the set of confidently bound sites.

21



Ignored region

NFYA Motif

Dnase-bias

Figure 2-2: Sequence bias avoidance method: we ignore any bases involved in the
motif match plus a 10-bp flanking sequence. We flag any motifs whose footprints are
not statistically significant outside this possibly sequence-biased region

Each background binding site is assigned a PWM score drawn from the permuted

null distribution of PWM scores. We then find a linear separator over the pair

(PIQ score, PWM score) which maximizes the enrichment ratio of candidate sites

to background sites. After this procedure, any binding site that passes cutoff is

guaranteed to have a PIQ score significantly exceeding the expected score at its

PWM score.

This nonparametric permutation based cutoff procedure ensures that when the

classifier performs badly, PIQ calls fewer sites instead of calling more false sites.

2.4 Correcting sources of bias

The permutation test based binding site calls only guarantee that the binding sites

called as positive axe significantly correlated with sequence, but does not guarantee

that this correlation is not bias due to the DNase enzyme.

In order to determine whether a particular motif's DNase footprint is due to

sequence bias, we look at the footprint region outside the motif match (Figure 2-2)

and compare this deviation against those of random K-mers of equal length, which

we expect to have no substantial TF binding.

22



Figure 2-3: Classification of transcription factors: Non-pioneers bind only at open
chromatin, Pioneers can bind regardless. We can detect pioneers that additionally
open surrounding chromain.

In order to avoid falsely detecting transcription factors we significance test the

classification vector. By selecting motifs whose non-motif associated footprint has

deviation at least 3 standard deviations we can ensure that we do not falsely detect

binding sites based upon PWM scores alone.

2.5 Detection of 'pioneer' factors

We asked whether PIQ could provide an initial understanding of the rules governing

TF binding site choice. We focused first on whether some TFs act as "pioneers24,"

shaping the chromatin landscape and the binding of other TFs (Figure 2-3). Several

reports of TFs possessing pioneer activity exist in the literature24, 26, 28-33, but these

reports are empirical experimental studies that do not use standard criteria to define

pioneer TF activity, are often unconfirmed functionally and to date no systematic

attempts have been taken to categorize pioneer TFs. Although pioneer TFs have

been defined in various ways, we chose to probe the existence of pioneer TFs capable

of binding to closed chromatin and opening nearby chromatin for future occupancy

by other TFs. Utilizing our time series, we designed a pioneer index to measure the

expected motif-specific local increase in DNase accessibility with respect to baseline at

sites whose binding changes between successive timepoints according to PIQ for each

of our 733 motifs. A higher pioneer index corresponds to higher chromatin opening

activity from one timepoint to the next in our developmental timecourse.

23

to*

Non-pioneer Pioneer

to
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(unobservable)
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Chapter 3

Implementation

3.1 Inference

We estimate hyperparameters via a modifed expectation propagation iteration over

the estimates fo,E,and a.

Recall that our factorization takes the form

p(AICj) ~ N(AiI y(ci), u-(ci))N(Ajpo, (E 1 - 1/a-)

We can rewrite this in a form resembling expectation propagation by writing

p (A, E, [toIC)= P(CiIAj)P(A, E, po) ~ tc, (Ai)P(AIE, yo)P(E, po) = q(A, E, po)

Note that unlike the standard Expectation Propagation factorization for Poisson

Gaussian Processes which uses N terms ti, all bases i having the same observed count

share the same approximation, tc.

Under the standard EP update rules we obtain straightforward estimates. At time

25
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t = Intermediate output (EBS)
Persistent New node request (EC2)

EBS Master Unreliable

EC2

SGE job NFS
manager server

NewTak
Compute nodes IT Isk Results

New slave Slave 3 Slave 2 Slave 1 Stateless

Figure 3-1: Overview of PIQ architecture on Amazon EC2. Red nodes carry almost
no state acting only as compute nodes, blue nodes carry short-term state necessary to
allocate compute nodes, and EBS storage is persistent and stores all fitted parameters
and results

t, given some estimate qt, Ut, and Ut(c) of the approximate distribution:

E = Covqt(AIC)

go = Eqt(AjC)

Ut+1 = (E((varqt(AiJC))1 - 1/ot(ct) + 1/t) 1 )/M

ot+1(k) = Z(o - Ai)2P(CilAi)N(Ailport+1)dAi
{i:Ci=k}

The expectation propagation updates allow us to find the minimum KL divergence

approximation using U weight and E,po hyperparameters.

3.2 Cloud computing

Even with fast approximate inference techniques scaling PIQ up to thousands of

transcription factors is not feasible on a single computer. We estimate that a large

26



attribute typical value scaling

Number CPUs 80 CPU M
Number Motifs 1500 Motifs L
Number Experiments 10 Experiments K

Window size 400 bases W
Genome size 2.8 billion N
Runtime 1 day O(NLK/M + W 3K/M + K 3 )
Memory 2Gb / CPU O(W 2K+K 2 )

Table 3.1: Typical problem size and asymptotic scaling for the PIQ algorithm

problem with ten experiments and 1337 motifs would take up to a cpu-year to com-

pute (Table 3.1). In order to overcome this computational limitation we use cloud

computing resources from Amazon EC2 to scale our computation capacity up.

We use a master-slave architecture, with a single central master node maintaining

job state (Figure 3-1). Due to the nature of EC2, nodes can be terminated at any time

and so we keep minimal state on transient hardware and frequently synchronize to

a non-transient block storage device. The cloud computing infrastructure is outlined

below in figure X.

Task priority and dependencies were accounted for using the sun grid engine (SGE)

and task to parent communications were performed through binary files serialized onto

a central NFS drive served from the master node and backed by a persistent EBS

(elastic block store) drive.
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Chapter 4

Results

4.1 Computation results

We tested sparse poisson approximation on a panel of simulated sparse data drawn

from a Poisson Gaussian process. As baseline, we compare against the full expectation-

propagation factorization, shown below , following analogous factorizations proposed

in the literature [9].

p(A, E, pofCI) = ] P(Ci Ai)P(A I, po) ~7J ti(CiI Ai)P(A I E, o)

Simulated data was generated by using a stationary Gaussian kernel whose band-

width is fixed at 100 with total window size varying from 50 to 2000. The mean of

the Gaussian process was taken via fitting a Poisson-lognormal to real world DNase

sequencing data.

In order to remove any possibility of implementation based differences, the sparse

solver is implemented in native R code using no specialized BLAS packages, and no

conjugate gradient type iterative solver is used. Full EP is implemented in hand

optimized C++ using the Eigen linear algebra library, using fast LLT based matrix

inverse subroutines.

All plots show results over 1000 replicates of simulated data.
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4.1.1 Runtimes

We measured the runtime of the sparse solver and full EP under optimal conditions

where all hyperparameters were set to ground truth values. In all dimensions the

sparse solver performs orders of magnitude faster. In dimensions 50-200 runtime is

unmeasurably quick giving the median runtime of 0 (Figure 4-1). In higher dimensions

we record 100-1000 fold improvements in runtime where full EP takes 100 seconds to

process a 2000 bp window, and we take less than half a second.

1e+f02 -

method
dense
sparse

1 _ 1'

Io e0

200 500
dimension

1000 2000

Figure 4-1: Runtimes as a function of window size.
than the naive approach.

Sparse EP is substantially faster

4.1.2 Parameter estimate accuracy

We also compare the accuracy of the sparse solver to full EP for estimating the

expected value of the log rate A. Once again, all algorithms are given true values for

hyperparameters.

We measure the squared deviation between each algorithms' estimated value for

A and its true value over 1000 replicates.
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Figure 4-2: Mean estimate error as a function of size of window

The approximation error is a relatively constant factor of 1-1.5 more for sparse EP

compared to its dense variant, showing that the uncertainty in the poisson Gaussian

Process model dominates the sparse approximation error. (Figure 4-2)

4.1.3 Covariance structure

A advantage of the sparse solver compared to the full EP method is that since the

hyperparameters can be estimated directly, rather than via an EM outer loop used

in standard EP [91, the estimates of covariance E are significantly more accurate.

Comparing the estimated hyperparameters po and E for full EP and - for our

sparse solver we find that the sparse solver dominates the full EP in estimating

variance when there is low correlation, and the reverse is true for correlation, where

sparse solver converges to the true correlation structure for large bandwidth, while

full EP systematically underestimates the overall correlation (Figure 4-3).
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Figure 4-3: Error in hyperparameter estimates as a function of bandwidth. Red
(sparse) has substantially lower error in both variance (left panel) and correlation
(right panel) error.

4.2 Biological results

4.2.1 Comparison to ChIP-seq

0
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Ctcf
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DNase HS alone
00 02 04 04 08 10

False Positive-)

Figure 4-4: Comparison of PIQ calls with ChIP-seq shows that PIQ based DNase-seq
binding calls are highly concordant with ChIP-seq, with both AUC and PPV near
0.9 across our mouse ES ChIP-seq experiments.

The high correspondence of PIQ output with ChIP-seq results suggests that PIQ

provides a valuable tool for predicting protein regulatory interactions for hundreds

of TFs genome wide. PIQ allows TF binding site prediction with similar accuracy

to ChIP-seq for motif-supported direct protein-DNA binding events, with a median

AUC of 0.93 (Figure 4-4). With a small number of replicate experiments PIQ is able
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to predict the binding of over 733 factors, and can do so in the absence of specific TF

antibodies or tagged TFs. However, PIQ cannot detect TF motif-free binding events

which are observed in ChIP-seq for certain TFs. Some motif-free ChIP-seq events

may be mediated by cofactor proteins with diverse sequence specificities, and PIQ

would miss these regulatory interactions, although some motif-free events may also

be artifacts.

4.2.2 Detection of pioneers

4.2.3 Biological validation of pioneeers
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non-pioneer

~ motif

2

Computational pioneers
LA Computational non-pioneers

- 1.5 -

99% Pi for pioneer activity
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Figure 4-5: Design of the biological reporter assay (top panel) and results compared
to computational prediction (bottom panel). All but one computationally predicted
pioneer activates the reporter.

We experimentally tested the ability of a variety of predicted pioneer and control

motifs to open up surrounding chromatin and allow other TFs to bind. To evaluate

these criteria in a high-throughput, functional assay, we designed 18 versions of a
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reporter vector driven by a strong RXR:RAR motif directly adjacent to a pioneer

or non-pioneer motif at a locus >1 kb from a minimal promoter and GFP reporter

gene (Figure 4-5). We chose the RXR:RAR motif for three reasons. First, RXR:RAR

binding shows no effect on surrounding chromatin in the computational analysis. Sec-

ond, nuclear hormone receptors, which bind the RXR:RAR motif, respond primarily

to surrounding chromatin state rather than specific cofactor interactions [7] (also see

later text). Third, the RXR:RAR motif allows strong inducible expression of GFP

upon addition of retinoic acid (RA), allowing a straightforward quantitative readout

of cellular fluorescence intensity. We inserted this vector into the genome of mESC

by means of Tol2 transposition35 followed by antibiotic selection, allowing for ran-

dom genomic integration in a highly polyclonal fashion (>1,000 distinct clones per

reporter line), thus controlling for site-specific effects. Consistent with this idea, bio-

logical replicates of several lines produced from distinct rounds of Tol2 transposition

yielded highly reproducible results. We then used flow cytometry to measure cellular

GFP levels in mESC after 24 hours in the presence or absence of RA, interpreting

the RA-induced increase in GFP as a correlate of the accessibility of the RXR:RAR

site.

4.2.4 Validation of asymmetric pioneeers

9 CrebI KIf7 NFYA Zfp161

E ~
Motif Motif Motif Motif

0
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pioneer activity
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Figure 4-6: Using directional reporters show that computationally predicted direc-
tional pioneers result in nearly exactly the predicted activation patterns.
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Evidence exists that TFs deposit histone marks asymmetrically36. We identi-

fied a subset of pioneer TF families that open chromatin more significantly on one

side of their motif than on the other (Figure 4-6). We call factors that possess this

novel asymmetrical chromatin opening ability directional pioneers. To quantify di-

rectional pioneer activity, we measured the expected difference in chromatin opening

on either side of each pioneer motif, identifying strong directional pioneer activity

in the Klf/Sp, NFYA, Creb/ATF and Zfp161 pioneer TF families. As we cannot

observe directional pioneer activity at palindromic motifs because PIQ cannot orient

them, we note that the directional pioneer TF Creb/ATF has multiple PWMs, one

of which is non-palindromic. Although directional motifs are known to be impor-

tant at promoters [4], our analyses exclude TSS-adjacent regions and we do not find

appreciable transcript production or promoter-characteristic histone marks at distal

pioneer sites. Thus, the unidirectional opening of chromatin relative to pioneer TF

motif appears to represent a property of certain TFs that to our knowledge has not

been described. To experimentally assess directional pioneer activity, we performed

reporter analysis on four motifs displaying strongly directional pioneer activity (Fig-

ure efdirpioneer), placing both motif orientations relative to the RXR:RAR site. In

all four cases, RA-induced GFP was significantly stronger in the direction predicted

to have higher pioneer activity (Figure efdirpioneer), and as predicted, NFYA, Creb

and Zfp161 only open chromatin in a single direction from their motif. Directional

pioneer activity does not occur during transient transfection, suggesting that this

activity occurs through interaction with the local chromatin state.

4.2.5 Pioneers enable binding of 'settler' factors

Next we reasoned that classifying TFs by their interactions with chromatin might

reveal distinctions in how TFs choose binding sites. As pioneers have been shown to

scan nucleosomal DNA for their motifs[12], we reasoned that they may be more likely

than other TFs to bind to their motif wherever it occurs. To assess this idea, we

devised a metric to indicate the likelihood of a TF to bind to an instance of its motif,

the correlation of PWM score and binding probability (referred to hereafter as motif
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Figure 4-7: Design of a dominant negative knockout experiment to assess whether
pioneers cause nearby transcription factor binding (top panel). Experimental evidence
matches computational prediction of both magnitude and direction of pioneer activity
in aiding nearby factor binding (bottom panel).

dependence). Plotting motif dependence against the chromatin opening index, we

find a statistically significant (P<0.01 in t-test) but imperfect positive correlation be-

tween motif dependence and chromatin opening (Figure 4-7), suggesting that pioneer

TFs generally do not bind to a high fraction of their genomic motif candidates. Sev-

eral non-pioneer TFs, including REST, also display strong motif dependence (Figure

efsettler). Motif dependence is uncorrelated with motif information content, suggest-

ing that it is not an artifact of database PWM quality. Thus, although pioneers TFs

are more likely to bind their motifs than are non-pioneers, they still rely on facets

other than their motif in a majority of their binding decisions. Among non-pioneer

TFs, we reasoned that some TFs might be disproportionately dependent on the pre-

existing chromatin state as established by pioneer TFs. We explored this possibility
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computationally by measuring the correlation between DNase accessibility surround-

ing high-confidence TF motifs and binding probability. Plotting this metric against

the chromatin opening index, which controls for TF-intrinsic chromatin opening, we

found that TFs vary substantially in their dependence on chromatin openness in order

to bind genomic DNA (Figure 4-7). A subset of TFs were highly likely to bind wher-

ever their motif occurs in an open chromatin landscape but do not open chromatin

themselves. We coin the term settler TFs to define the set of TFs whose binding is

predominantly dependent on the openness of chromatin at their motifs. Chromatin

dependence of TFs is graded, but a stringent cutoff gives an estimate that 131 of the

733 motifs (18%) act as settler TFs. The majority of non-pioneer TFs, which we term

migrant TFs, bind only sporadically even when chromatin at their motifs is open and

are presumably more heavily dependent on specific cofactor interactions. Accurate

a priori prediction (AUC>0.9) of ChIP-seq genomic binding of settler TFs, such as

members of the Myc/MAX, nuclear hormone receptor (i.e. RXR:RAR), Ap-2 and

NF-yB families, can be obtained simply by measuring DNase accessibility surround-

ing their motifs, so settler TF binding can be accurately determined solely based on

chromatin accessibility in the absence of ChIP or DNase profile information. Pioneer

TF binding can also be predicted a priori by local DNase accessibility (Figure 4-7),

presumably a result of pioneer-induced chromatin opening at binding sites either in

the profiled developmental stage or at a prior timepoint. Thus, we have identified

a class of settler TFs that to our knowledge has not been described that obey one

simple rule, binding DNA when chromatin is open, establishing settler TFs as a class

whose binding is directly dependent on the chromatin opening ability of pioneer TFs.
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Chapter 5

Conclusions

We have proposed a new framework for analyzing DNase-seq data for transcription

factor binding sites and determining their statistical significance. The methodology

extends existing approaches to DNase-seq analysis by using machine learning tech-

niques to control for noisy data while using the concept of background regions to

determine the binding classifier as well as asses statistical significance. This differs

substantially from the mostly un-supervised approaches in the literature which uses

only the PWM match regions to determine binding. We believe that the use of

background regions, as well as the covariance correction substantially increases the

reliability of our calls.

Biologically, this improvement has led to the ability to detect motifs that open

chromatin whenever they appear, which we classify as pioneer transcription factors, as

well as a complementary set of proteins which we term settlers which bind at regions

of chromatin that are already open. Various biological assays including reporter

screens for DNase and ChIP qPCR match computational predictions and show that

our transcription factor classes behave as expected.

5.1 Contributions

We have three primary contributions. The first of our contributions is pradigmatic;

we focus upon assessing the statistical significance of binding calls using background
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tracks. This turns what was originally an unsupervised clustering problem into a

semisupervised one: we can consider the motif-match set as a mixture of both posi-

tive and negative examples while the background set is purely composed of negative

examples.

This supervised framework allows us to determine the binding threshold, as well

as the possibility that a binding event occurs due to sequence bias rather than due

to a transcription factor binding event.

Our second contribution is methodological: we extend current research in the

fitting of Gaussian process time series to deal with a single extremely long station-

ary sequence. Exploiting both the block-toeplitz structure and the sparsity of the

observed Poisson process allows us to obtain runtimes that are thousands of times

faster than previously reported in the literature.

Finally, our two computational contributions result in a biological finding regard-

ing the binding of transcription factors. At least for a subset of factors we can model

the binding of transcription factors using two rules: pioneers bind to their motif re-

gardless of accessibility and open local chromatin while settlers recognize motif sites

that are accessible and bind.

5.2 Future directions

Future extension of PIQ is in two directions: first we can extend PIQ to deal with

more structured data such as differential or time-series DNase-seq data. This requires

more rigorous statistical analysis of change in binding.

Another direction is to consider PIQ as a first order attempt to understand phe-

notype (chromatin accessibility) using sequence (motif matches). This framework of

sequence to phenotype may allow us to model the semantic structure of the genome

in terms of measurable high-throughtput sequencing data.
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