
Scalable Multi-Access Flash Store for Big Data

Analytics

by

Sang-Woo Jun

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2014

© Massachusetts Institute of Technology 2014. All rights reserved.

A u th o r ........................................
Department of Electrical Engineering

C ertified by ...............................

ARCHs
MASSACHUSET-T- iNSTft

OF TECHNOLOGY

APR 10 2014

LIBRARIES

)d Computer Science
January 6, 2014

Arvind
Professor

Thesis Supervisor

Accepted by............
Lesl e A4Jklodziejski

Chairman, Department Committee on Graduate Theses



2



Scalable Multi-Access Flash Store for Big Data Analytics

by

Sang-Woo Jun

Submitted to the Department of Electrical Engineering and Computer Science
on January 6, 2014, in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract

For many "Big Data" applications, the limiting factor in performance is often the
transportation of large amount of data from hard disks to where it can be processed,
i.e. DRAM. In this work we examine an architecture for a scalable distributed flash
store which aims to overcome this limitation in two ways. First, the architecture pro-
vides a high-performance, high-capacity, scalable random-access storage. It achieves
high-throughput by sharing large numbers of flash chips across a low-latency, chip-
to-chip backplane network managed by the flash controllers. The additional latency

for remote data access via this network is negligible as compared to flash access time.
Second, it permits some computation near the data via a FPGA-based programmable
flash controller. The controller is located in the datapath between the storage and the

host, and provides hardware acceleration for applications without any additional la-
tency. We have constructed a small-scale prototype whose network bandwidth scales

directly with the number of nodes, and where average latency for user software to
access flash store is less than 70ps, including 3.5ps of network overhead.

Thesis Supervisor: Arvind
Title: Professor
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Chapter 1

Introduction

1.1 Background

We have entered the "Big Data" age. The evolution of computer networks and the

increasing scale of electronic integration into our daily lives has lead to an explosion

of data to be analyzed. Thanks to the steady pace of Moore's Law, our computing

abilities on these data have been growing as well. However, effective computation

requires a very low-latency random access into the data. As a result, it is highly

desirable for the entire working set of the problem to fit in main memory to achieve

good performance.

However, modern Big Data application datasets are often too large to be cached

in the main memory of any host at a reasonable cost. Instead, they are spread among

multiple machines in a cluster interconnected with some network fabric, and often also

stored in a cheaper, higher density secondary storage such as hard disks. This means

data often has to be accessed from a secondary storage device over a network, each of

which has significantly higher access latency than local main memory. The primary

performance bottleneck is the seek time of magnetic disks, which has to be amortized

by large sequential data access. As a result, the storage device characteristics in large

part dictated the design of the rest of the system.

With the recent advancement of low latency and high bandwidth flash devices as

alternatives to disks, the performance bottleneck has shifted from the storage device

13



to the network latency and software overhead. As a result, modern high performance

storage systems need to optimize all aspects of the system, including the storage,

network and software stack. Current attempts to increase the performance of storage

systems include use of hardware implementation of the network stack and better I/O

fabric. However, even state-of-the-art networked storage systems still suffer hundreds

of microseconds of latency. This large gap between the performance of main memory

and storage often limits our capacity to process large amounts of data.

Another facet of high performance storage systems under active investigation is

providing a computation fabric on the storage itself, effectively transporting compu-

tation capabilities to where the storage is, instead of moving large amounts of data

to be processed. However, the processing power that can be put on a storage device

within the power budget is often limited, and its benefits are sometimes limited when

heavy computation is required. For applications that require heavy computation, it

is effective to use hardware acceleration to assist data processing. Due to the high

development and production cost of dedicated ASIC accelerator chips, reconfigurable

hardware fabrics such as FPGAs are popular choices for implementing power-efficient

application-specific accelerators.

1.2 Contributions of this work

In this work, we propose a novel high-performance storage architecture, which we

call BlueDBM (Blue Database Machine). The high-level goal of BlueDBM is to

provide a high-performance storage system that accelerates the processing of very

large datasets. The BlueDBM design aims to achieve the following goals:

" Low Latency, High Bandwidth: To increase the performance of response-

time sensitive applications, the network should add negligible latency to the

overall system while maintaining high bandwidth.

" Scalability: Because Big Data problems are constantly increasing in size, the

architecture should be scalable to higher capacity and node count.

14



" Low-Latency Hardware Acceleration: In order to reduce data transport

and alleviate computationally bound problems, the platform should provide

very low-latency hardware acceleration.

" Application Compatibility: As a general storage solution for Big Data, ex-

isting applications should run on top of our new storage hardware without any

modification.

" Multi-accessibility: In order to accommodate distributed data processing

applications, the system should be capable of handling multiple simultaneous

requests from many different users.

The BlueDBM architecture distributes high performance flash storage among com-

putational nodes to provide a scalable, high-performance and cost-effective distributed

storage. In order to achieve this, BlueDBM introduces a low-latency and high-speed

network directly between the flash controllers. The direct connection between con-

trollers not only reduces access latency by removing the network software stack, but

also allows the flash controllers to mask the network latency within flash access la-

tency. As we will demonstrate, controller-to-controller latencies in such a network can

be insignificant compared to flash access latencies, giving us the potential to expose

enormous storage capacity and bandwidth with performance characteristics similar

to a locally attached PCIe flash drive.

To further improve the effectiveness of the storage system, BlueDBM includes a

FPGA-based reconfigurable fabric for implementing hardware accelerators near stor-

age. Because the reconfigurable fabric is located in the datapath of the storage con-

troller through which data has to travel anyways, no latency overhead is introduced

from using the accelerators.

The key contribution of this work is a novel storage architecture for Big Data

applications, which include a low-latency communication link directly between flash

controllers and a platform for accelerator implementation on the flash controller itself.

We demonstrate the characteristics of such an architecture on a 4-node prototype sys-

tem. We are also engaged in building a much larger system based on the architecture.
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To test these ideas, we have constructed a small 4-node prototype of our system

using commercially available FPGAs [10] coupled to a custom flash array, networked

using high speed inter-FPGA serial links. The prototype has an average latency to

client applications of about 70pts, which is an order of magnitude lower than existing

distributed flash systems such as CORFU [13], and rivals the latency of a local SSD.

Our shared 4-node prototype provides 4x the bandwidth of a single flash card with

marginal impact on access latency. We also implemented a word counting application

with hardware accelerator support from our storage platform, showing 4x performance

increase over a pure software implementation. We are currently building a newer

system employing the same ideas but with more modern hardware, which will deliver

an order of magnitude performance increase over the prototype system.

1.3 Thesis outline

The rest of the thesis is organized as follows. Chapter 2 provides background on stor-

age deployment and FPGA based acceleration in Big Data. Sections 3 to 5 describes

the system in detail, and Section 6 discusses the prototype we have built to demon-

strate the performance of the system. Chapter 7 provides the experimental results

obtained from the prototype and its evaluation. Chapter 8 concludes the thesis.

16



Chapter 2

Related Work

Storage systems that require high capacity are usually constructed in two ways: (i)

building a Storage Area Network (SAN) or (ii) using a distribute file system. In a

SAN, large amounts of storage are placed in a storage node such as a RAID server, and

these storage devices are connected together using a dedicated network (i.e. SAN),

providing the abstraction of locally attached disk to the application servers. However,

the physical storage network is usually ethernet based running on protocols such as

iSCSI or FCoE, which adds milliseconds of software and network latency. An alterna-

tive organization is to distribute the storage among the application hosts and use the

general purpose network along with a distributed file system (e.g., NFS [7], Lustre [6],

GFS [18]) to provide a file-level sharing abstraction. This is popular with distributed

data processing platforms such as MapReduce [3]. While a distributed file system is

cheap and scalable, the software overhead of concurrency control and the high-latency

congestion-prone general purpose network degrades performance. Nevertheless, tra-

ditionally, these network, software and protocol latencies are tolerable because they

are insignificant compared to the seek latency of magnetic disks.

This is changing with recent developments in high-performance flash devices.

Large flash storage offer two benefits over magnetic disks, namely superior random

read performance and low power consumption, while still providing very high density.

Such advantages make them alternatives to magnetic disks. Flash chips offer access

latency in the order of tens of microseconds, which is several orders of magnitude

17



shorter than the 10 to 20 millisecond disk seek time. By organizing multiple chips

in parallel, very high throughput can be obtained. As a result, the storage device is

no longer a bottleneck in high capacity storage systems. Instead, other parts of the

system such as network latency and software stack overhead now have a prominent

impact on performance. It has been shown that in a disk-based distributed storage

system, non-storage components are responsible for less than 5% of the total latency,

while in a flash-based system, this number rises to almost 60% [14].

Flash has its own drawbacks as well. Its characteristics include limited program

erase cycles, coarse-grain block level erases, and low write throughput. As a result

of these characteristics, hardware (e.g., controllers, interfaces) and software (e.g., file

systems, firmware) traditionally designed for hard disks are often suboptimal for flash.

Much research has gone into developing techniques such as intelligent address trans-

lation in the Flash Translation Layer (FTL) to control area under use [12] [24] [26].

Our storage architecture is similarly motivated by and designed for these flash char-

acteristics.

Recent efforts such as CORFU [13] attempts to build distributed file systems

tailored for flash storage characteristics, but still suffers millisecond-level latency.

Other attempts such as QuickSAN [14] have studied directly connecting flash storage

to the network in order to bypass some of the software latency. This brings down

the latency of the system to hundreds of microseconds. We hope to further improve

performance by removing protocol and software overhead.

In data centers, several research efforts have suggested providing side-channels

for communication between nodes within the data center to alleviate and bypass

network congestion. [19] attempts to resolve congestion using software architectural

approaches. Halperin et al. [20] examine adding wireless links to data-centers as an

auxiliary communication mechanism.

Moving computation to data in order to circumvent the I/O limitations has been

proposed in the past. Computation in main memory (e.g. Computational RAM [16])

has been studied, but it failed to see nuch light due to the fast advancement of

I/O interfaces. However, in light of power consumption walls and Big Data, moving
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computation to high capacity secondary storage is becoming an attractive option.

Samsung has already demonstrated the advantages of having a small ARM processor

on the storage device itself [221 for in store computation. They have shown power and

performance benefits of offloading I/O tasks from host CPU to the storage device.

However, benefits are only seen if the offloaded task have low computing complexity

and high data selectivity because of the weak ARM processor.

FPGAs have been gaining popularity as application specific accelerators for Big

Data due to its low power consumption, flexibility and low cost. FPGA accelera-

tors are currently being used in database management systems [4], in providing web

services [15], as well as in other domains such as machine learning [23] and bioinfor-

matics [27].
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Chapter 3

System Architecture

The distributed flash store system that we propose is composed of a set of identical

storage nodes. Each node is a flash storage device coupled with a host PC via a high-

speed PCIe link. The storage device consists of flash chips organized into busses,

controlled by a flash controller implemented on reconfigurable FPGA fabric. The

storage devices are networked via a dedicated storage network implemented on multi-

gigabit low latency serial links using SERialize/DESerializer (SERDES) functionality

provided within the FPGA fabric. The host servers are networked using generic

Ethernet communications. The construction of the system is shown in Figure 3-1.

To use BlueDBM, the host PCs run high level applications (e.g. databases) which

generate read/write commands to the file system. The file system forwards the re-

quests to the locally attached FPGA, which fulfills the requests by accessing either

the local or remote flash boards. Data is globally visible and accessible from all host

PCs, and the address space is shared and unified among all nodes. Alternatively, the

application may issue commands to instruct a hardware accelerator on the FPGA to

process the data directly from the flash controllers.

This organization fulfills our goal of (i) low latency/high bandwidth by using

parallel flash chips, PCIe and high-speed transceivers coupled with a thin networking

protocol; (ii) scalability through homogeneous nodes and a network protocol that

maintains low latency over multiple hops and is topologically flexible; (iii) low-latency

hardware acceleration by providing a hook to software to invoke accelerator operations

21
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Figure 3-1: BlueDBM top level system diagram consisting of multiple storage nodes
connected using high speed serial links forming an inter-controller network

on data without passing through host; (iv) application compatibility by providing a

generic file system and exposing the abstraction of a single unified address space to

the applications; and (v) multi-accessibility by providing multiple entry points to

storage via many host PCs.

The hardware and software stacks of the system are presented in Figure 3-2.

Hardware running on the FPGA has 5 key components: (i) client interface, (ii) address

mapper, (iii) flash controller, (iv) inter-FPGA router and (v) accelerator. The client

interface handles the communication of data and commands with the host over PCIe.

Together with the driver and file system software on the host, they provide a shared

unified address space abstraction to the user application. The address mapper maps

areas in the logical address space to each node in the network. The flash controller

includes a simple flash translation layer to access the raw NAND chips on the flash

board. The router component implements a thin protocol for communication over the

high speed inter-FPGA SERDES links. Finally, accelerators may be placed before

and after the router for local or unified access to data. The flash controller and related

components are explain in detail below. The inter-FPGA network and accelerators

are explained separately in the next sections.
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Figure 3-2: Hardware and software stack of a single node

3.1 File system, client interface and address map-

per

The client interface module on the FPGA works in concert with the driver and file

system software on the host server to handle I/O requests and responses over PCIe.

We implemented a generic file system using FUSE [1]. FUSE intercepts file system

command made to its mount point and allows us to convert file system commands

into load/store operations to our flash device. Currently the entire combined storage

of all nodes in the system is translated to a single flat address space.

For each I/O request, the address mapper module determines which storage node

the data resides in. All storage nodes in the system need to agree on the same mapping

scheme, which is currently defined programmatically. Due to the low latency serial

communication fabric, there is little difference in performance between fetching from

a local node or fetching from a remote node. Therefore, the current mapping scheme

focuses on utilizing as much device parallelism as possible, by striping the address

space such that adjacent page addresses are mapped to different storage nodes.
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3.2 Flash controller

We use a flash array for fast random access storage. These arrays are populated with

NAND chips organized into several buses with chips on each bus sharing control and

data paths. The flash board exposes raw chip interfaces to the FPGA via GPIOs

and the flash controller accesses the chips. The architecture of the flash controller is

shown in Figure 3-3. We use an independent chip controller and scheduler per bus

to communicate with the raw flash chips. Not only can buses be accessed in parallel,

data operations on different flash chips on the same bus may be overlapped to hide

latency. We designed the flash controller to take advantage of these properties. In

addition, we use a tag renaming table and a data switch to manage sharing among

multiple hosts in a distributed setting.

The system includes a simple implementation of the Flash Translation Layer

(FTL). The current FTL focuses only on providing maximum read performance

through parallel access to as many flash chips as possible. We achieve this by simply

permutating a portion of the logical address bits such that spatially local requests

have a high probability of being mapped to different bus controllers, buses and chips

thereby improving overall system throughput.

3.3 Controller virtualization and communication

Because multiple clients can access all storage in the system through a very thin layer

of controllers, there needs to be an efficient way to match the commands against the

data flowing in and out of the flash chips. For example, data being read from the flash

device needs to be routed back to where the read command originated. A possible

solution is to implement a distributed agreement protocol between each node, but

this is complex and requires additional data transfer across the network. Instead, we

use a two-layer tagging scheme to keep track of this information.

In the first layer, each command that is issued from a client interface is given a

8-bit tag value. A list of unoccupied tags are kept in a free tag queue. We dequeue
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Figure 3-3: Flash controller featuring a scheduler and chip controller per bus, virtu-
alized using a tagging mechanism

when a new request is issued, and enqueue back when a request retires. On the

command issuer side, this tag is correlated with information such as the request page

address in a tag mapping table structure. When the request needs to be processed

at a remote node, the tag is sent to the target node with the rest of the request

information. However, because each node keeps a separate list of free tags, there can

be tag collisions at the remote node. This is solved using a second layer of tagging

scheme, which translates the original tag to the target node's unique local tag. The

first layer tag is stored in another tag map table with information such as the request

source and the original tag value. After the request has been handled, the data is sent

back to the request origin node tagged with the original tag value it was requested

with, so it can be reused for future operations.
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Chapter 4

Inter-controller Network

Conventional computer networking infrastructures, like Ethernet and TCP, are de-

signed to provide general purpose functionality and operate at large scales over long

distances. As a result, they come at a cost of significant time and processing overhead.

But this cost was often overlooked in the past when constructing SANs, because the

latency of magnetic disks dominated over the network infrastructure . However, in

the case of flash-based deployment, such networking overhead becomes a serious issue.

Furthermore, conventional method of networking storage devices requires the storage

traffic to share the host-side network infrastructure. This results in reduced effective

bandwidth, because the link between the host and its storage has to be shared for

local and remote data. Finally, because the network and storage management are

composed separately, the combined latency adds up to hundreds of microseconds of

latency.

BlueDBM solves these issues by having a dedicated storage data network directly

connecting the flash controllers to each other. For this purpose, we constructed a sim-

ple packet-switched storage network protocol over a high-speed serial link provided

by the FPGA package. The protocol was implemented completely inside the FPGA,

and provides sub-microsecond latency communication between controllers. Because

the flash controller manages the storage device as well as the network, all data trans-

port of words within a page could be pipelined, effectively hiding the network latency

of accessing a page. The protocol includes a flooding peer discovery functionality,
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allowing hot-plugging of nodes into any topology required by the application.

4.1 Routing layer

Figure 4-1 depicts the architecture of the router. The routing mechanism for our

storage network is a packet-switched protocol that resembles a simplified version

of the Internet Protocol. Each node maintains a routing table of all nodes in the

network, where each row contains information including which physical link a packet

should take to get to that node and how many network hops away it is. This table

is populated on-line via a flooding discovery protocol. This allows hotplugging nodes

into the network while the system is live, and also to automatically maintain the

shortest path between all pairs of nodes.

The networking infrastructure is constructed such that the flash controller or

accelerators can declare in code their own virtual conmunmications links of various

widths, and the router will organize and schedule packets in order to multiplex all of

the virtual lanes onto a single physical link. This not only allows the writing of simple,

easy to understand code for the network infrastructure, but also provides a clean and

efficient abstraction of the network for the accelerator platform. An accelerator can

declare, at compile time, multiple virtual links according to its requirements, reducing

the burden of network management in accelerator development.

4.2 Physical layer

In our current implementation we make use of the high-speed serial transceivers pro-

vided in the FPGA silicon as the physical link. The transceivers provide not only

high bandwidth and low latency, they also provide relatively reliable data transport

over up to two meters, which is sufficient in data center racks.

Please note that the choice of physical communication fabric in our system is

flexible. While in this particular system, we do not choose general-purpose media

such as ethernet or Infiniband [5] as a physical transport for performance reasons, we
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Figure 4-1: Inter-node network router.

could have easily chosen other such high-speed communications fabrics given that it

is supported by the FPGA or hardware. Heterogeneous controller networks can also

be constructed. For example, ethernet could be used across racks in a data center,

while high speed inter-FPGA serial links can be used within a rack.
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Chapter 5

Controller as a Programmable

Accelerator

In order to enable extremely low latency acceleration, our system provides a platform

for implementing accelerators along the datapath of the storage device (Figure 5-1,

right). One advantage is that operations on the data can be completed faster with

dedicated hardware. In addition, because the combined throughput of the BlueDBM

cluster can easily surpass the bandwidth of any single hostside link (i.e. PCe), accel-

erators that filter or compress data can be used to process more data than the hostside

link fabric allows. This setup is more advantageous compared to using the accelera-

tor as a separate appliance (Figure 5-1, left), where data must be transported from

storage to the accelerator via the host, and then transported back after computation.

5.1 Two-part implementation of accelerators

In BlueDBM, accelerators can be implemented both before and after the inter-FPGA

router (Figure 3-2). The local accelerator, which is located between the flash storage

and the router, is used to implement functions that only require parts of the data.

For example, compressing pages before writing them to flash. The global accelerator

located between the router and the client interface implements higher-level function-

alities that require a global view of data. Examples includes table join operations in

31



Flash Storage

Flash Storage Accelerator Accelerator

Host Server HotS r

Figure 5-1: Flow of data when using an accelerator as a separate appliance (left)
versus an accelerator in the data path of the storage device (right)

a database accelerator, or the word counting example that will be described shortly.

Both accelerators can work in concert, for example to implement compression and

decompression algorithms, to reduce the amount of data transported over the inter-

FPGA link.

5.2 Example accelerators

To demonstrate the accelerator architecture, we have implemented a simple word

counting accelerator on the BlueDBM platform. The accelerator exposes an interface

to specify the word being counted, in the form a FUSE virtual file. Once the word is

registered, the accelerator accesses its virtual access points to storage and network to

count the number of the registered word in all storage devices in the network. The

resulting output can also be accessed via a FUSE virtual file. An example invocation

of the accelerator looks like the following:

echo "would" > fuse/input ; cat fuse/output

We have already implemented other effective application specific FPGA-based

hardware accelerators serving as separate appliances to a host machine. These include

application specific compression [21], database query accelerators and network link

compression algorithms. Most of these can be ported to the BlueDBM platform

with minor modifications, and we are in the process of doing this. We expect both
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compute and data bound applications to see notable performance improvements with

these accelerators.
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Chapter 6

Prototype Implementation

(a) Four-node prototype system (b) ML605 and attached flash card

Figure 6-1: Prototype system

Our prototype flash system, a photo of which is shown in Figure 6-1(a), is based

around the Xilinx ML605 board and our custom built flash board. The ML605 board

and the flash board is coupled using the FPGA Mezzanine Card (FMC) connector,

as seen in Figure 6-1(b), and plugged into a PCIe slot on the host server. The

implementation overhead was greatly reduced by building on top of an abstraction

layer [25], which mapped physical physical device details into logical services. We

have also used similar abstractions of the serial network [17] for early functionality,

but eventually implemented a routing protocol in favor of dynamic reconfiguration of

the network.

Each flash board hosts 16GB of flash storage arranged in four parallel buses com-

prised of 8 512MB Micron SLC flash chips. An on-board Xilinx CPLD is used to
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decode command signals for all buses. Our custom flash board uses slightly older,

less dense flash chips with asynchronous interfaces. These older chips with asyn-

chronous signalling lowers the throughput of each flash bus to a maximum of around

25MB/s, even though our controllers can handle chips with much larger bandwidths.

Inter-controller Network

SMA

SMA
------------------------------------------------------------ I

Host PC Host PC Host PC Host PC _

Node 0 Node 1 Node 2 Node 3

Figure 6-2: Prototype physical implementation with 4 storage nodes and 2 hubs

We network the processing nodes of our system by way of the Virtex-6 GTX

high speed transceivers. Each transceiver is capable of transporting up to 5Gbps.

Unfortunately, our flash cards utilize the same mezzanine connector as most of the

ML605's serial transceivers. As a result, each node can only connect to one other

node via the only remaining SMA port on the m1605 board. Therefore, the prototype

uses a tree topology shown in Figure 6-2, and connects the processing nodes using

extra ML605s which act as hubs. These ML605s do not have attached flash cards,

enabling us to use most of its transceivers for inter-FPGA communication using the

Xilinx XM104 connectivity card.

Hosts in our system run the Ubuntu distribution of Linux. We use the file system

FUSE[1] to interface with our storage system though eventually we plan to implement

a true file system.
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Chapter 7

Results

Using our prototype system, we first characterize the inter-controller network. Then

we examine the raw latency and throughput of the entire storage system. Finally,

we measure the performance of simple applications running on the system, taking

advantage of multi-accessibility and accelerators.

7.1 Implementation Area

The approximate area breakdown of each node in our flash system is shown in Ta-

ble 7.1. Our design, which is largely unoptimized for either timing or area, is domi-

nated by its use of large buffers. This area corresponds to approximately 35% of the

resources of the medium sized Virtex-6 chip. The rest of the area is free to be used

for accelerator implementation.

Most structures in our system are constant in size regardless of the number of

processing nodes in the system. Notable exceptions to this scaling include the routing

table and packet header size. However, even with a thousand-node system, we can

easily fit the routing table within a few BRAMs on the FPGA given that each entry is

merely 128 bits. Packet headers will require 10 bits to identify the source/destination

node in a thousand-node system, which means a corresponding increase in FIFO sizes.

However, this area increase remains insignificant compared to the rest of the design

on the FPGA. Thus we are able to scale to thousands of nodes without significant
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_ LUTS Registers] BRAM
Client Interface 17387 17312 51
Flash Controller 10972 8542 151
Networking 24725 27530 16
Total 53084 53384 218

Table 7.1: Synthesis metrics for controller components at 100MHz.

impact on area.

7.2 Network Performance

Figure 7-1 summarizes the typical throughput and latency characteristics of our inter-

FPGA network architecture. We achieve approximately 450MB/s or 70% of the theo-

retical link bandwidth with average packet latency of around 0.5ps per hop. Latency

scales linearly with the number of hops traversed because we maintain flow-control

on a per-hop basis, as opposed maintaining flow-control on the end-to-end traversal.

Considering that the typical latency of a flash read is several tens of microseconds,

requests in our network can, in theory, traverse dozens of nodes before the network

latency becomes a significant portion of the storage read latency, potentially enabling

the addressing of multiple terabytes worth of data across many nodes.

In our current system, each compute node only supports a single lane connection

due to physical constraints discussed previously. However, the maximum bandwidth

per chip in the latest generation of FPGAs tops 10GB/s per chip for moderately sized

FPGAs [11]. Based on this, we believe that BlueDBM can scale to hundreds of pro-

cessing nodes while delivering average-case performance similar to a good commodity

SSD array and best-case performance rivalling or surpassing local PCIe SSDs such

as FusionlO [2]. Indeed, we are currently building a much bigger machine that will

demonstrate the BlueDBM architecture at a much larger scale.
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Figure 7-1: Throughput and latency of our inter-FPGA network using a 5Gbps
SERlDES connection on the Virtex-6 ML605.

7.3 Raw Latency

Figure 7-2(a) shows the average read latency of our storage system from the perspec-

tive of the host user application. It is the average time from when a request is made

for a single 2048-byte page to when the entire page is received by the application.

Latency is measured by making repeated blocking requests one at a time, to random

pages, which may reside on different nodes, buses and blocks.

The total read latency can be broken down into flash chip latency, controller

latency and software latency. Chip latency is the access time of a single flash chip

and is a characteristic of the NAND flash device. Our SLC chips average around

27ps. The controller latency is incurred in moving the data from a flash chip to

the appropriate client interface, and includes the inter-FPGA network latency. The

software latency accounts for the time to transfer the page across the PCIe bus and

through the driver and FUSE file system.

From Figure 7-2(a), we observe that flash chip latency remains constant with

more nodes as expected. Because by construction, the underlying storage network is

abstracted away, the driver and file system layers are thin and simple. Their latencies
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Figure 7-2: Raw latency and throughput measurements of our 4-node prototype

total 4ps and also remains constant with increasing number of nodes. The network

latency is minimal compared to flash latency as shown previously. Moreover, the tight

coupling between the inter-FPGA network and the flash controller means that the

network does not have to wait for the entire page to be read from the controller before

sending it. Network latency can be hid by pipelining individual words streamed out

of the controller across the network. As a result, the end-to end latency of fetching a

page from remote storage is much less than the sum of storage and network latencies

accounted for separately. In our prototype, end-to-end page read latency increase is

a marginal 2pus per additional network hop. We expect this trend to continue for

larger networks. The total latency of our system is an order of magnitude lower than

existing networking solutions such as Ethernet or fibre channel.

7.4 Raw Throughput

Figure 7-2(b) shows the sequential read throughput of the system with increasing

number of distributed nodes. Throughput was measured by running a benchmark on

a single host that requests a continuous stream of pages from the total address space

in order. Each request is serviced by either a local or a remote node depending on

the mapping of the requested address.
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The throughput of our system achieves linear scaling with the addition of more

storage nodes. A single node provides 80 MB/s of bandwidth. A 2-node system

doubles the bandwidth to 160 MB/s, while a 4-node system further scales up to

310 MB/s, or 3.8x the speed of a single node. The reason the performance is not

a full 4x is because our prototype implementation of the PCIe driver is hitting its

maximum throughput. Future iterations of the system will remove this limitation.

It is conceivable that by adding more storage nodes, we can achieve throughput and

capacity comparable to conmnercial SAN or PCIe flash products such FusionIO or

PureStorage Flash Array [8], but at a much lower dollars per gigabyte.

It should be rioted that the throughput of a single node of the prototype system is

limited by the low throughput of the custom flash boards. With modern flash chips

(200 MB/s per chip) organized into more buses, we would be able to achieve the same

linear scaling at much higher bandwidth, until we saturate the bandwidth of PCIe or

the inter-FPGA links. We are currently designing a new flash board to build a faster

and larger systerr for real-world big data applications.

7.5 Multi-Access Performance Scaling

Effective niulti-access capability of a storage system is crucial in a distributed pro-

cessing environment such as MapReduce. We demonstrate this ability by running

computationally heavy workloads on multiple consumer nodes and measuring the

achieved performance of the system.

Figure 7-3 shows the performance scaling of the system in a multi-access setting.

Throughput is shown normalized against a single-access scenario in a four-node sys-

temn. It can be seen that the total bandwidth delivered by the system linearly increases

with the number of consumers. This is because the total available bandwidth of the

system exceeds the amount a single server node could process. This shows that our

system is an effective way to share device storage and bandwidth among multiple

hosts, where each host may not always require the maximum bandwidth from the

storage device, because for example, it is doing computation on the data or waiting
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for external input.

However, if all nodes are constantly requesting maximum throughput, we will not

see linear scaling. In such a case, the total throughput of the system will saturate at

the maximum internal bandwidth, after which node throughput will decrease. It is

worthy to note that this is a baseline experiment to demonstrate the raw performance

of the system, without advanced hot block management features such as DRAM

caching or deduplication. After such advanced features are implemented, we expect

to show better performance even on bandwidth intensive workloads.

Multi-Access Performance Scaling
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Figure 7-3: Performance scaling in multi-access scenario

7.6 Application-Specific Acceleration

Figure 7-4 shows the performance results of the word counting application, imple-

mented with (i) an in-datapath hardware accelerator, (ii) an off-datapath hardware

accelerator treated as a separate appliance, and (iii) software only. All experiments

were run on the two-node configuration, where the maximum bandwidth is 140MB/s.

It can be seen that while the accelerator on the datapath makes almost maximumI use

of the device bandwidth at 128MB/s, the software implementation of the application
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is not nearly as fast (31MB/s), because it is bound by the CPU. Even the hardware

accelerator, implemented as a separate appliance suffers significant throughput loss

because of the overhead involved in streaming the fetched data into the accelerator.
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Figure 7-4: WVord counting accelerator performance scaling

Because out host server provides only one PCIe slot, we could not implement the

off-datapath accelerator as a physically separate appliance. Instead, the accelerator

shares the FPGA fabric and PCIe link of the flash controller. In order to utilize

the accelerator, data read from flash storage is transferred back to the FPGA, this

time to the accelerator implementation instead of the flash controller. However, even

though the flash controller and accelerator share some of the same resources, because

they share no control structure inside the FPGA and the direction of heavy data

transfer on PCIe is different, we do not think the performance characteristics of this

configuration is very different from a physically separate implementation.
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Chapter 8

Conclusion and Future Work

"Big Data" processing requires high-performance storage architectures. In this work,

we have examined an architecture for a scalable distributed flash store, wherein each

node possesses a moderate amount of storage resources and reconfigurable fabric for

accelerator implementation, and is connected to other nodes by way of a low-latency

and high-bandwidth controller-to-controller network. We have demonstrated that by

having the inter-FPGA network connecting the controllers directly, each node is able

to access remote storage with negligible performance degradation. Not only does the

controller-to-controller network provide pooling of storage capacity, but it also allows

combining the throughput of all nodes on the network, resulting in linear through-

put scaling with more nodes. We also demonstrated that offloading computation

into the storage controller as an accelerator provides performance benefits against

implementing acceleration as a separate appliance.

We are in the process of building a 20-node BlueDBM rack-level system using

more modern, faster and higher capacity flash boards with newer Xilinx VC707 FPGA

boards [11]. The new flash board is planned to deliver more than 1GB/s of throughput

per storage node, and the server-side PCIe bandwidth will perform at more than

3GB/s. The new system will be used to explore real Big Data problems at the

storage hardware level. Some planned improvements and experimentations include:

Improved FTL: Our current system is designed for read-intensive applications.

We have thus far assumed that writes occur infrequently. Our next step is to op-

45



timize writes to flash memory by designing wear leveling, garbage collection, write

amplification reduction algorithms specifically for a controller networked flash storage

system.

DRAM Caching: We can cache reads and writes to the SSD in DRAM on the

FPGA board. This can reduce writes to the flash and improve performance. We

may use a cache coherence protocol to synchronize the cache of individual nodes.

Additionally, because of our low latency inter-FPGA network, we could create a

shared global DRAM cache from DRAM of all the nodes and dynamically partition

them according to the workload characteristics.

Database Acceleration: Existing applications can already take advantage of

BlueDBM's distributed flash store, but we aim to further accelerate database man-

agement systems such as Postgres or SciDB [9] by offloading database operations to

the FPGA. Specifically, filtering, aggregation and compression tasks could be done

directly at the storage level.

We believe our system holds great promise both for high-speed rack-level storage

networking and for large-scale application acceleration in Big Data.
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