Polony Sequencing: a DNA Sequencing Technology
and
A Computational Analysis Reveals Chromosomal Domains of
Gene Expression

Robi David Mitra

B.S., M.S., Electrical Engineering
Massachusetts Institute of Technology, 1993

Submitted to the Department of Electrical Engineering and Computer Science
In Partial Fulfillment of the Requirements for the Degree of
Doctor of Philosophy in Electrical Engineering

at the

Massachusetts Institute of Technology
August 2000

© 2000 by Robi David Mitra
All rights reserved

Signature of Author

Department of Electrical Engineering and Computer Science
August 30, 2000

Certified by

George M. Church
Department of Genetics, Harvard University
Thesis Supervisor

Certified by

Tomas Lozand-Perez
Department of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by

Arthur C. Smith
Chairman, Committee on Graduate Students
Department of Electrical Engineering and Computer Science
Polony Sequencing: a DNA Sequencing Technology
and
A Computational Analysis Reveals Chromosomal Domains of
Gene Expression

Robi David Mitra

Submitted to the Department of Electrical Engineering and Computer Science
In Partial Fulfillment of the Requirements for the Degree of
Doctor of Philosophy in Electrical Engineering

Abstract

The first part of this thesis describes the development of polony sequencing, a sequencing technology in which DNA is cloned, amplified and sequenced in a polymer matrix. A complex library of one to ten million linear DNA molecules is amplified by performing polymerase chain reaction (PCR) in a thin polyacrylamide film poured on a glass microscope slide. The polyacrylamide matrix retards the diffusion of the DNA molecules so that each amplification product remains localized near its parent molecule. At the end of the reaction, a number of polymerase colonies, or “polonies”, have formed, each one grown from a single template molecule. As many as 5 million clones can be amplified in parallel on a single slide. By including an acrydite modification at the 5’ end of one of the PCR primers, the amplified DNA will be covalently attached to the polyacrylamide matrix, allowing further enzymatic manipulations to be performed on all clones simultaneously. Also described in this thesis is my progress in development of a protocol to sequence the polonies by repeated cycles of extension with fluorescent deoxynucleotide. Because polony sequencing is inherently parallel, and sub-picoliter volumes are used for each reaction, the technology should be substantially faster and cheaper than existing methods. Applications for polony sequencing such as gene expression analysis, SNP discovery, and SNP screening will also be discussed.

The second part of this thesis describes a computational analysis that tests the hypothesis that chromosomal position affects gene expression. It is shown that, throughout the genome, genes lying close together on the same chromosome often show significant coexpression. This coexpression is independent of the orientation of genes to each other, but is dependent on the distance between genes. In several cases where adjacent genes show highly correlated expression, the promoter of only one of the genes contains an upstream activating sequence (UAS) known to be associated with the expression pattern. These results suggest that in certain regions of the genome a single transcription factor binding site may regulate several genes. It is also shown that evolution may take advantage of this phenomenon by keeping genes with similar functions in adjacent positions along the chromosomes. The techniques that are presented provide a computational method to delineate the locations of chromosomal domains and identify the boundary elements that flank them.
Acknowledgements

My experiences as a graduate student have been, at various times, exciting, frustrating, confusing, humbling, and rewarding. I have lived in 2 states, performed research at five institutions, and become indebted to a large number of people who have helped me along the way.

I was introduced to the wonders of biology rather late in life when, as a second year graduate student in electrical engineering, I took an introductory biology course taught by Eric Lander and Nancy Hopkins. I was captivated, believing the field was (and is) undergoing a revolution, and I wanted to contribute whatever I could to the cause. Soon after, I joined the lab of Doug Youvan, a biochemist at MIT, who then moved his lab to California. It was Simon Delagrave, a graduate student under Doug, who taught me the basics of molecular biology. Anthony Davies and Rachael Hawtin continued my education in biology. I'd also like to thank them for their advice, support, and friendship during my time in California. I would like to thank Bob Balint and Jim Larrick for allowing me to work in their lab when Doug left academia.

The decision to leave California and return to Boston was a difficult one to make, as it meant starting another thesis project. In retrospect, this was the right decision, and it was Tomas Lozano-Perez and Martha Gray who first recommended this course of action. Both Tomas and Martha are also on my thesis advisory committee and have provided me with invaluable advice and support. I'd also like to thank Nancy Hopkins, who served on my committee until last year, and Paul Matsudaira who replaced her on short notice.

Upon returning to Boston, I joined the laboratory of George Church. George has been an incredible mentor and advisor. Not only did he have the idea for polonies, which
is the basis for much of my thesis, but my interactions with him have greatly shaped the way I approach science. In addition to being a visionary scientist, he is one of those rare people who are just genuinely nice, and I consider myself lucky to have crossed paths with him. George has also assembled a wonderful group of people to work in his lab. I would like to thank Dereth Phillips, whom I shared a bay with when I first arrived in the Church lab. She made me feel welcome and was always available to share a joke, give advice or grab a cup of coffee. Barak Cohen and I collaborated on a research project that is described in chapter 4 of my thesis. It was a pleasure working with him, as he is an excellent biologist and scientist. Jason Hughes was also a collaborator on the research described in chapter 4, providing the idea for the chromosome correlation maps and adding statistical rigor to our work. I thank Nikos Reppas and Avi Kogan who made DNA libraries for the polony sequencing project.

John Aach has been very helpful throughout my stay in the Church lab. He created one of the early model of polony growth that was very informative. In addition he has been the first person I went to for advice on mathematical and statistical problems that arose. Martin Steffen has been a source of enthusiasm, motivation, and ideas. I really enjoyed working with him when we were trying to create acrylamide islands using a piezoelectric spotter. It’s been great working with Saeed Tavazoie these past three years, and he has given me good advice. Other lab members such as Martha Bulyk, Jeremy Edwards, Paula Ragan, Pam Ralston, Allegra Petti, Abby Mcguire, Chris Harbison, Priya Sudarsanam, Jason Johnson, Fritz Roth, Vasu Badarinarayana, Tzachi Pipel, Felix Lam, Xiaohua Huang, Pete Estep, Adnan Derti, and Doug Selinger have provided useful advice on my projects, read my manuscripts, and become my friends.
Wayne Rindone has provided valuable bioinformatics support. I am also grateful to Aimee Dudley, who taught me about transcription, and helped make two of the figures in this thesis. Phil Juels has been fantastic at keeping my computer running and the network up.

I'd like to thank Britta Singer who shared with me her protocols and three of the SELEX libraries that she made with me. I'd also like to thank David Duffy, who I collaborated with to make acrylamide islands using discontinuous dewetting, a procedure that he and Rebecca Jackman pioneered. Phil Busby, a chemist at NEN, deserves thanks for synthesizing a fluorescently labeled nucleotide with a disulfide linker that is described in chapter 4 of my thesis. Bo Gu at Resonetics coordinated my experiments with laser micromachining. I thank Nevin Summers for creating the cost analysis figure presented in Appendix B. I'd like to thank Bill Coleman for being such a good buddy for all these years.

Finally, I'd like to thank my family. My wife Tali, has been incredibly patient, understanding and loving throughout this whole graduate school process. There were times when working on my thesis meant I couldn't spend time with her, but I hope she knows that she is much more important to me than any of the work presented here. My sister Debi and my brothers Roni and Rajat have provide me with support, advice and comic relief during my graduate school career. I would like to thank my mother Lynn and my father Sumanta, without whom none of this would be possible. Anytime I have found myself struggling, my mother has always been there, giving her support and love. I cannot thank her enough for all she has done for me. My father has been an inspiration
to me. I have tried to follow his example of hard work and persistence as best I could. I love both my parents very much.
Chapter 1

Introduction
This thesis is divided into two parts describing two independent research projects. The first part describes the development of polony sequencing, a new DNA sequencing technology that has the potential to be faster and cheaper than current methods. Background information and an overview of this technology are presented in the first half of this introduction, and the research itself is described in chapters two and three. The second part of this thesis describes a computational analysis of whole-genome expression data that was focused on identifying chromosome domains that influence transcription. Background information for this project can be found in the second half of this introduction, and the results of this work are presented in chapter four of this thesis.

Polony sequencing

Polony sequencing is a new sequencing technology in which DNA is cloned, amplified, and sequenced in a thin polyacrylamide film attached to a glass microscope slide. We estimate that five million individual reactions will be performed in parallel on a single slide, so that sequencing can be performed rapidly and inexpensively. This section provides background information on polony sequencing, gives a general overview of how the technology works, and summarizes my progress in its development.

Rationale and Motivation

The complete sequence of the human genome will be determined by the year 2000; however, this accomplishment will not cause a decrease in the demand for DNA sequencing. In fact, the use of DNA sequencing techniques is expected to grow dramatically over the next decades, particularly if the cost for sequence data can be
significantly reduced. A fast, inexpensive DNA sequencing technology such as polony sequencing could find applications in at least five important areas:

1. **De novo sequencing.** The number of completely sequenced genomes now exceeds 100, but it will be important to continue to sequence the genomes of other organisms, both to further our biological knowledge of the organism in question and to enable sequence comparison between multiple genomes. This type of comparative genomic approach has already been successfully used to annotate exons (1-3), discover sequences that regulate gene expression(4), and assign function to genes(5-9). This approach will become considerably more powerful as more genomes are sequenced.

2. **Resequencing genomes.** Resequencing human genomes will allow researchers to discover common single nucleotide polymorphisms (SNPs) as well as other types of genetic variations, such as deletions or rearrangements, which can then be correlated with disease phenotypes(10). Also, resequencing the genomes of microbial pathogens to assess genetic variation will lead to a better understanding of the mechanisms of antibiotic resistance and pathogenesis.

3. **Single Nucleotide Polymorphism (SNP) screening.** Once a large number of SNPs have been discovered, either by resequencing genomes using polony sequencing or by other methods, polony sequencing could be used to rapidly and inexpensively screen for these SNPs. Rather than resequence a patient's entire genome, it will be more cost effective to first reduce the complexity of the sample by enriching for only the DNA near the identified SNPs. This could be done by hybridizing genomic DNA to immobilized oligonucleotides, and then sequencing this enriched population of DNA.
4. Whole-genome mRNA abundance measurements. Velculescu reported the sequencing of short cDNA tags to determine the expression level of different genes present in a cell(11-13). This serial analysis of gene expression (SAGE) technique has several advantages over the "DNA chip" approach(14,15) for quantifying mRNA expression: the technique is free from cross-hybridization artifacts, the dynamic range is limited only by the rate at which one can sequence DNA, one determines the exact number of mRNA molecules present per cell (rather than a ratio of mRNA levels in two conditions), and one can discover previously unsequenced genes with this approach.

5. Readout for genetic selections or screens. Significant improvements in DNA sequencing technology could change the way researchers design genetic screens. For example, the two-hybrid system(16) commonly looks for protein-protein interactions by screening a bait protein against a cDNA library to find all proteins in the library that interact with the bait. However, if the cost of sequencing was to be reduced, one could envision rapidly screening a cDNA library versus another library to find all possible protein-protein interactions. (This is actually being done for yeast (17), but it is quite a large, labor intensive project). Other common genetic screens such as mutagenesis and suppressor screens would also benefit from faster sequencing technology.

Technology Overview

Polony sequencing consists of amplifying large numbers of individual DNA molecules which are covalently attached to a polyacrylamide gel, and then sequencing this amplified DNA directly in the polyacrylamide by serial extension with a single deoxynucleotide. A detailed description of polony sequencing is provided below.
Step 1: Make library of linear DNA molecules with universal priming sites (Fig. 1). Each molecule in the library will contain a variable region flanked by two constant regions. Each molecule in the library will contain different sequences in the variable region. The constant regions contain primer binding sites to allow amplification by PCR. This type of library was first created to perform SELEX experiments(18).

Step 2: Amplify polymerase colonies (polonies) in an acrylamide gel (Fig 1). A thin polyacrylamide gel is poured on a glass microscope slide and allowed to polymerize. Included in this gel mix are oligonucleotide primers, DNA polymerase, nucleotide triphosphates, and very dilute amounts (100 to 5 million molecules) of the linear DNA library described above. The DNA is amplified by performing the polymerase chain reaction (PCR) using a thermal-cycler designed for microscope slides. The polyacrylamide matrix retards the diffusion of the linear DNA molecules during the reaction so that the amplification products remain localized near their respective templates. At the end of the reaction, each template gives rise to a colony or 'polony' (for polymerase colony). As many as 5 million polonies can be amplified on a single slide. An acrydite modification(19) is included at the 5' end of one of the primers, so that the amplified DNA is covalently attached to the polyacrylamide matrix, allowing further enzymatic manipulations to be performed.

Step 3: Sequence polonies by sequential, fluorescent single-base extensions (figure 2). First, the immobilized DNA is denatured, one strand is washed away, and a universal primer is hybridized to the template. DNA polymerase and a single, fluorescently labeled nucleotide are then added to the gel. The reaction proceeds for a few minutes, and then unincorporated nucleotide is washed away. The gel is then scanned using a scanning
Figure 1. Polony amplification. A library of linear DNA molecules with universal priming sites is PCR amplified in a polyacrylamide gel. A single template molecule gives rise to a polymerase colony or polony.
FISSEQ
(flourescent in situ sequencing)

1. Denature DNA
2. Anneal universal sequencing primer
3. Add DNA polymerase and fluorescently labeled dATP
4. Wash
5. Scan gel
6. Remove fluorescent label from incorporated base
7. Add fluorescently labeled dCTP
8. Wash
9. Scan gel

Figure 2. Fluorescent in situ sequencing. Polonies are denatured, and a sequencing primer is annealed. Polonies are sequenced by serial additions of a single fluorescent nucleotide.
fluorescence microscope. If a polony has incorporated the added base, it will fluoresce, revealing the identity of the template base immediately 3' of the annealed primer. The fluorescence is then removed by chemically cleaving the linker between the fluorophore and the nucleotide, and washing away the fluorophore. The cycle is then repeated by adding a different fluorescently labeled base, washing away unincorporated nucleotide and scanning the gel. In this fashion, the sequence of every polony on the gel can be determined in a parallel fashion.

Other Sequencing Technologies

Polony sequencing is best viewed in light of two other sequencing methods, Sanger sequencing(19) and pyrosequencing (20-23). These two technologies are relevant to this work because Sanger sequencing is the most commonly used sequencing technology today, and pyrosequencing is conceptually similar to polony sequencing. Other technologies under development such as single molecule sequencing methods, sequencing by hybridization(24-26), sequencing by high-resolution microscopy, sequencing using mass spectrometry, and MPSS(27,28)will not be discussed here; the reader is referred to Genomics, chapters 10-12 for an excellent review of the subject.

Sanger sequencing is a chain termination technique. Primer is annealed to single stranded template, and is extended by including DNA polymerase and deoxynucleotides in the reaction. Also included in the reaction are dideoxynucleotides, which when incorporated into the growing strand, terminate the extension. By using appropriate ratios of dNTPs and ddNTPs, a nested set of DNA fragments of different lengths is generated, each terminated with a dideoxynucleotide. In practice, the template is divided
into four separate reactions, each one containing a single type of ddNTP, and all four dNTPs. This results in four populations of terminated polynucleotides, the lengths of which are determined by the base composition of the original DNA fragment. The complete sequence of the template can then be determined by size-separating these mixtures of molecules; this is usually done by gel electrophoresis. In manual sequencing, the primer is radiolabeled, which allows the DNA ladder to be audioradiographed after the electrophoresis.

Pyrosequencing is a "sequencing by synthesis" technique(20,29). A primer is annealed to the DNA template to be sequenced, and this complex is incubated with AMP, DNA polymerase, ATP sulfurylase, luciferase, and apyrase. A single nucleotide is added to the reaction. If the template base immediately 3’ of the primer is complementary to the added base, the DNA polymerase will extend the primer by one base. This reaction releases free pyrophosphate, which is converted to ATP by the ATP sulfurylase. The presence of ATP causes the production of light by luciferase, which signals that the base has been incorporated. After thirty to sixty seconds, the apyrase degrades the added dNTP and the newly formed ATP. The next nucleotide is added, and the light output is monitored to see if the base is incorporated into the growing primer strand. This technology has been used to sequence as many as forty bases from the primer(20).

Perhaps the best way to compare polony sequencing to Sanger sequencing or pyrosequencing is to compute the cost per base pair at a given read accuracy for each technology. Since polony sequencing is still in the development stages, we have not yet gathered the sequencing data required to do a direct comparison. However, we can estimate the cost of polony sequencing if we make certain assumptions about read length,
accuracy, and number of polonies per slide. This analysis is presented in appendix C, where we estimate the cost of polony sequencing to be 1.25×10^{-4} cents per base. The cost of Sanger sequencing is approximately 10 to 50 cents per base and the cost of pyrosequencing is estimated to be 10 cents per base. We expect such significant savings for three reasons: sample preparation is greatly simplified, the amount of reagent required for each reaction is extremely small, and all of the templates to be sequenced are processed in parallel.

Sample preparation is a significant fraction of total cost in large scale sequencing projects. One reason for this is the read length, or number of bases that can be sequenced in a single reaction, of existing sequencing technologies is small when compared to the size of a genome. For example, Sanger sequencing has a read length of 500 to 700 bases, and pyrosequencing has a typical read length of 40 to 50 base pairs, but even a microbial genome typically contains four to eight million base pairs. Therefore, researchers must divide the template into a number of smaller pieces, sequence them and assemble the smaller fragments. There are a number of strategies for doing this; most require that the genomic DNA be sheared and cloned into *E. coli*. The cloned library then is plated so that individual colonies form. Before a sequencing reaction can be performed, these colonies must be individually picked, PCR amplified, and the DNA must be purified away from the PCR reagents. This process is labor intensive, and the reagent cost is significant, often as high as one to two dollars per clone in reagent costs alone. In polony sequencing, the DNA fragments are cloned and immobilized *in vitro*, thus avoiding much of the labor and cost associated with cloning into *E. coli*. In the polony format, all sample preparation and sequencing steps are performed in parallel, without the need to
manipulate the individual samples, and since only femtoliter volumes are used for each clone, the cost of reagent per sample is on the order of 0.001 cents. This reduction of cost and labor means it would be possible for a single researcher using polony sequencing to sequence a microbial genome in just a few hours.

Summary of Results Presented

The cloning and amplification of DNA templates using polony technology is presented in chapter 2, which was published as a paper in *Nucleic Acids Research*(30). Polony amplification is demonstrated, and the relationship between the length of the DNA template, the acrylamide concentration, and polony size is investigated. It was found that increasing template length or increasing acrylamide concentration significantly decreased polony size. Using 1 kilobase templates and 15% acrylamide, as many as 5 million distinct polonies can be amplified on a single 25mm x 75mm glass microscope slide. In addition, a technique to make replicas of a polony slide is presented.

Progress in developing FISSEQ, the protocol for *in situ* sequencing of polonies is demonstrated in chapter 3. Increasing the efficiency of the single base extension reaction was identified as an important goal, and this was achieved by developing a new "polymerase trapping" technique. It was shown that a sequencing primer annealed to amplified polonies could be correctly extended out to 34 bases without dephasing of the polony molecules. A procedure for cleaving the fluorophore from the incorporated nucleotide is also described. Finally, the concept of amplifying the polonies in acrylamide islands is introduced.
A computational analysis of whole-genome expression data reveals chromosomal domains of gene expression.

This portion of the introduction is devoted to a computational project in which whole-genome expression data was analyzed to examine the relationship between a gene's position on a chromosome and its expression. I will briefly describe some of the literature on position effects on transcription, review the experimental and computational tools used in our analysis, and then talk about future plans to expand and continue this line of research.

The term position effect is used to describe phenomena in which a gene’s behavior is affected by its location on the chromosome. One example of such a phenomenon is position effect variagation (PEV). PEV was shown to occur in yeast when the ADE2 gene was deleted from its normal locus on chromosome XV and placed immediately adjacent to the telomeric repeats on chromosome VII(31). The resulting cells produced predominantly red colonies, which is a phenotype characteristic of ade2- cells, demonstrating that ADE2 transcription was repressed simply by changing its location on the chromosome. Furthermore, it was noticed that some red colonies contained white sectors (a phenotype characteristic of ADE2+ cells), indicating that this repression could be variagated, or spontaneously reversed, presumably due to changes in chromosome structure near the ADE2 gene.

Transvection is another class of position effects. In transvection, a gene’s expression is altered depending on whether or not it is paired with its homologue(32). For example, in Drosophila, transvection has been observed at the yellow locus(33). The
y2 and y59b alleles of yellow cause abnormal yellow pigmentation. The y2 allele has a transposable element inserted in between its promoter and two enhancers which silences the effect of the enhancers. The y59b allele lacks part of the transposable element and has no promoter. The y59b allele has been shown to complement the y2 allele; however, if the two alleles are not allowed to pair, this complementation is negated. The interpretation of these observations is that the enhancer from the y59b allele can act in trans to activate the y2 promoter, if the genes are sufficiently close to one another in the nucleus.

The mechanisms of PEV and transvection are not well understood, but chromomatin structure is thought to play a role in these phenomena. Studies of position effects such as PEV and transvection have led to the discovery of sequences, called insulators, that mark the boundaries between inactive and active chromatin. A reporter gene flanked by two insulator sequences is protected against position effects, and insulators have also been shown to act as directional barriers to enhancers(34). The first insulator elements were found in Drosophila(35), and have since been found in mouse, chicken, human, Xenopus, and most recently in yeast (36,37).

Although position effects may be detected by looking for changes in recombination frequency or replication timing(31), most often they are detected by looking for changes in transcription of one or more genes. This is fortunate, as DNA microarray technology has recently revolutionarized the way we collect expression data, enabling us to look at position effects in ways that were previously impossible. DNA microarrays provide the ability to rapidly quantify mRNA abundance levels for tens of thousands of genes in a single experiment(14,15). This breakthrough has presented
biologists with the challenge of analyzing such large quantities of expression data. Most analyses to date have focused on assigning function to unknown or poorly characterized genes. This is commonly done by grouping together genes that display similar expression patterns in different conditions, a technique called clustering (38-42). It has been shown that genes which cluster together are more likely to have similar function.

Other groups have taken this approach one step further by demonstrating that genes with similar expression patterns are often controlled by the same regulatory sequences and developing computational tools to identify these sequences from expression data (43-45). The goal of the research presented in this portion of my thesis was to combine these types of whole-genome analyses with positional information to develop a set of tools to study position effects.

The results of this research are presented in chapter 4 of my thesis. A new tool, the chromosome correlation map, which displays the correlation among the expression patterns of genes on the same chromosome, is described. These maps are used to analyze whole-genome expression data gathered for the yeast *S. cerevisiae*. This analysis demonstrated that adjacent pairs of genes, as well as nearby non-adjacent pairs of genes, show significantly correlated expression in a manner that is dependent on the distance between the genes, but independent of their orientation. Also presented are specific examples of adjacent pairs of genes with highly correlated expression patterns, in which the promoter of only one of the two genes contains an upstream activating sequence (UAS) known to be associated with that expression pattern. Finally, genes with similar functions are shown to be more likely to reside in adjacent positions along the chromosomes. Taken together, these results suggest that in certain chromosomal
expression domains, a UAS can affect the transcription of genes that are not immediately downstream from it, and that evolution may take advantage of this phenomenon by keeping genes with similar functions in adjacent chromosomal positions.

Chapter 2

In Situ Localized Amplification and Contact Replication of Many Individual DNA Molecules
Introduction

We are faced with a ever increasing demand for DNA sequence information. Currently, most DNA sequencing is done using the Sanger method (1), which relies on electrophoresis, a technique that is difficult to perform in a highly parallel (greater than 1000 samples at a time per instrument) fashion. Therefore, other technologies are being investigated, such as sequencing by hybridization (2-4), and pyrosequencing (5), that avoid the electrophoresis step of the Sanger method, allowing more samples to be sequenced in parallel. This parallelization will increase the throughput of the sequencing stage; however, the samples must first be cloned, amplified and purified, and the throughputs of these obligate stages are not increased by these technologies and remain the major bottlenecks. To address this important issue, we propose a strategy in which a number of samples can be cloned, amplified, and sequenced on a single glass microscope slide in a highly parallel fashion.

We have developed a method to deposit DNA directly onto a solid surface and amplify it in situ. To do so, acrylamide is polymerized in a solution containing standard PCR reagents and a very low concentration of linear DNA template. The gel is poured on a glass microscope slide which is then thermal cycled. As the amplification reaction proceeds, the products remain localized near their respective templates, so that at the end of the reaction, a single template molecule gives rise to a PCR colony, or “polony” consisting of as many as 10^8 identical DNA molecules. By including an Acrydite modification (6) on the 5’ end of one of the PCR primers, the amplified DNA in each polony can be covalently attached by one of its ends to the polyacrylamide matrix.
We have also developed a manufacturing strategy analogous to replica plating to faithfully copy the polony slide. The polonies of one slide can be sequenced in a highly parallel fashion (see discussion), and would thus be known for all copies. Duplicate polony slides could then be used for mRNA expression analysis or other applications.

A technique for creating RNA colonies by \textit{in vitro} amplification has been previously described (7). RNA molecules were “cloned” by performing a Q\textbeta replicase reaction in an agarose gel. However, in this technique, the amplified RNA is not immobilized to the gel matrix, the colonies are grown at a low density, and no method was described for fabricating copies of the amplified colonies.

Materials and Methods

Primers

The primers used in this experiment are listed below. All primers were obtained from Operon (CA). Sequences common to multiple primers are indicated in bold, italic, underscored or bold and italic.

Primers used for solid phase amplification:

- Primer OutF 5'-\textbf{cca c}ta \textit{cgc c}tc \textit{cgc t}tt \textit{ctt ctc} -3'
- Primer OutR 5'-\textit{ctg c}cc \textit{egg gtt cct c}at c\textit{t}t -3'
- Primer AcrOutF 5'-Q\textbf{cca c}ta \textit{cgc ctc cgc ttt cct ctc} -3'
- Primer InF 5'-\textbf{ggg c}gg aag c\textit{tt gaa gga ggt} att -3'
- Primer InR 5'-\textit{gcc cgg tct c}ga \textit{gcg tct gtt t}a -3'
- Primer AcrInF 5'-Q\textbf{ggg c}gg aag c\textit{tt gaa gga ggt} att -3'

26
Primer PucF 5' - ggg cgg aag ctt gaa gga ggt att taa gga gaa aat acc gca tca gg-3'
Primer PucRI 5' - gcc cgg tct cga gcg tct gtt taa acc gat cgc cct tcc caa ca-3'
Primer PucR2 5' - gcc cgg tct cga gcg tct gtt taa att cac tgg ccg tcc ttt tac aa-3'
Primer PucR3 5' - gcc cgg tct cga gcg tct gtt tac caa tac gca aac cgc ctc tcc ttt ttc aa-3'
Primer PucNestF 5' - cca cta cgc ctc cgc ttt cct ctc ggg cgg aag ctt gaa gga ggt att-3'
Primer PucNestR 5' - ctc ggt ctt cct tct gcg cgg cgg cgg ggt ctt ttt ttc a-3'

The primers AcrOutF and AcrInF have an Acrydite modification (Mosaic Technologies) at their 5' ends (designated by the character Q in the sequences listed above. Acrydite is a phosphoramidite that contains an ethylene group capable of free-radical copolymerization with acrylamide; these primers will polymerize directly into the acrylamide gel as it solidifies (6).

Design of Amplification Cassettes

The cassette CP-234 was created as follows: the plasmid pUC19 was amplified in a PCR reaction. 50 µl of PCR Mixture (10 mM Tris-HCl pH 8.3, 50 mM KCl, 0.01% gelatin, 1.5 mM MgCl₂, 200 µM dNTPs, 0.5 µM primer PucF, 0.5 µM primer PucR2, 2 ng pUC19 plasmid, 2 units Taq (Sigma)) was cycled in an MJ Research PTC-100 thermocycler as follows: denaturation (1 min at 94°C), 5 cycles (10 sec at 94°C, 10 sec at 55°C, 1 min at 72°C), 20 cycles (10 sec at 94°C, 1 min at 68°C), and extension (3 min at 72°C). The PCR product was purified using Qiaquick PCR purification columns (Qiagen), and resuspended in dH2O.
To determine the relationship between the length of the amplification cassette and the resulting polony diameter, two more amplification cassettes were created: a 120 bp cassette, CP-120; and a 514 bp cassette, CP-514. These cassettes were created as above, except the reverse primers PucR1 and PucR3 were used instead of PucR2 in the first PCR mixture.

For the replica plating experiments we used cassette CP-281. This 281 bp cassette is identical to CP-234, but it is flanked by two additional primer sites. These sites allowed us to perform nested solid phase PCR to make duplicate polony slides without contamination from primer-dimer molecules. This cassette was created by using the PCR mix (10 ng CP-234, 10 mM Tris-HCl pH 8.3, 50 mM KCl, 0.01% gelatin, 1.5 mM MgCl2, 200 μM dNTP’s, 0.5 μM primer PucNestF, 0.5 μM primer PucNestR, 2 units Taq (Sigma)), and cycling it as follows: denaturation (1 min at 94° C), 5 cycles (10 sec at 94° C, 10 sec at 55° C, 1 min at 72° C), 22 cycles (10 sec at 94° C, 1 min at 68° C), and extension (3 min at 72° C). The PCR product was purified using Qiaquick PCR purification columns (Qiagen), and resuspended in dH20.

Creating Polony Slides

To create a polony slide, template DNA was amplified by PCR in a polyacrylamide gel poured on a glass microscope slide. Dilute amounts of template CP-234 (0-360 molecules, quantified by ethidium bromide staining and gel electrophoresis) were added to the solid phase PCR mix (10 mM Tris-HCl (pH 8.3), 50 mM KCl, 0.01% gelatin, 1.5 mM MgCl2, 200 μM dNTP’s, 10 units JumpStart Taq (Sigma), 6% Acrylamide, 0.32% Bis-Acrylamide, 1 μM primer AcrInF, 1 μM primer InR). Two 65 μl
frame-seal chambers (MJ research) were attached to a glass microscope slide that had been treated with bind-silane (Pharmacia). 2.5 μl of 5% ammonium persulfate, and 2.5 μl of 5% temed was added to 150 μl of the solid phase PCR mixture. 65 μl of this solution was added to each chamber. The chambers were then immediately covered with No. 2 18 mm x 18 mm coverslips (Fisher), and the gel was allowed to polymerize for 10-15 minutes.

The slide was then cycled using a PTC-200 thermal cycler (MJ Research) adapted for glass slides (16/16 twin tower block). The following program was used: denaturation (2 min at 94° C), 40 cycles (30 sec at 93° C, 45 sec at 62° C, 45 sec at 72° C), extension (2 min at 72° C). The coverslips were removed and the gels were stained in SYBR green I (diluted 5000 fold in TE, pH 8.0), and imaged on a Storm phosphorimager (Molecular Dynamics) or a confocal microscope (Leica).

Determining the Relationship Between Polony Diameter, Template Length, and Acrylamide Concentration

Slides were poured in the manner described above. The ratio of bis-acrylamide to acrylamide was 1:19 for all slides poured. After the slides were cycled, the coverslips were removed and the gels were stained as above. The gels were imaged using the Storm phosphorimager. Any gels with polonies less than 300 μm in diameter were imaged on the confocal microscope. Care was taken to image only the polonies that could be completely resolved from other polonies. These images were captured, and the intensity values saved as a text file. The data was smoothed using a 17 point averaging algorithm, and the full width at half maximum of each polony was recorded as its diameter.
Duplicating Polony Slides

To replica plate polony slides, the “original” slide is prepared in a slightly different fashion than as described above. The original is a sandwich of two layers of acrylamide, the transfer layer and the readout layer. To create the transfer layer, template DNA is added to a solid phase PCR mix (10 mM Tris-HCl (pH 8.3), 50 mM KCl, 0.01% gelatin, 1.5 mM MgCl₂, 200 μM dNTP’s, 10 units JumpStart Taq (Sigma), 6% Acrylamide, 0.32% Bis-Acrylamide, 1 μM primer AcrOutF, 1 μM primer OutR). Ten microliters of this solution is then pipetted onto a clean coverslip (18mm x 18mm), and the coverslip is picked up by a bind-silane treated slide. The slide is placed in an argon atmosphere to promote polymerization of the acrylamide. The coverslip is then removed, leaving a gel that is approximately 32 μm thick. To pour the readout layer, a fresh solid phase PCR mix is made; however, no template is added to this mixture. A frame seal chamber is then placed over the transfer layer, and, using a bind-silane treated glass coverslip, the readout layer (250 μm) is poured over the 32 μm transfer layer. The slide is then thermal cycled as described above.

When the coverslip is carefully removed from the top of the frame seal chamber, the readout layer will stick to the coverslip, while the transfer layer will be left on the slide. The readout layer can then be stained with SYBR Green I and imaged. The transfer layer is then used to make duplicates. To do so, the slide is washed 2x in 10 mM Tris-HCl, 2x in 500 mM KCl, 2x in 10 mM Tris-HCl, 100 mM KCl, and 2x in dH₂O.

The duplicate gel is then made by placing a frame seal chamber (15 mm x 15mm) over the transfer layer, and pipetting 65 μl of the duplicate solid-phase PCR mix (10 mM Tris-
HCl pH 8.3, 50 mM KCl, 0.01% gelatin, 1.5 mM MgCl₂, 200 μM dNTP’s, 0.5 μM
primer AcrInF, 0.5 μM primer InR, 10 units JumpStart Taq (Sigma), 6% Acrylamide,
0.32% Bis-Acrylamide), onto the transfer layer. The duplicate slide is then cycled as
follows: denaturation (2 min at 94° C), 25 cycles (30 sec at 93° C, 45 sec at 62° C, 45
sec at 72° C), extension (2 min at 72° C). Because the coverslip used to pour the
duplicate gel was not treated with Bind-Silane, the gel stuck to the transfer layer when the
coverslip was removed; therefore when the duplicate was stained and imaged, the polony
pattern was rotated 180 degrees from that of the readout layer.

Results

Creating Polony Slides

Our goal was to amplify polonies on a glass microscope slide by performing
solid phase PCR (8) in an acrylamide gel. The general design of the template DNA
cassettes used to create the polony slide is shown in figure 1. For most applications, the
variable region of each cassette molecule will contain a different DNA fragment. This
complex library will contain sequences derived from the genome or cDNA of the
organism of interest flanked by constant regions that allow PCR amplification (9).
However, to demonstrate and optimize the in vitro cloning of DNA, only one species of
DNA was used in the solid phase PCR: the cassette CP-234, a 234 base pair template
derived from the plasmid pUC19. We included very dilute amounts of the template DNA
CP-234 into a PCR mix that contained 6% acrylamide and 0.3% bis-acrylamide. This
mix was then used to pour a thin (250 μm) acrylamide gel on top of a glass microscope
slide. One of the primers included in the mix contains an Acrydite group at its 5’ end (6),
Figure 1. DNA Amplification Cassette. DNA amplification cassettes contain a variable region flanked by two constant regions. The constant regions contain primer binding sites to allow amplification by PCR. An amplification cassette can be 80 to 10,000 base pairs in length.
so that it was immobilized in the acrylamide matrix when the gel polymerized. Solid phase PCR (so named because one of the primers is immobilized to a solid support) was performed by thermal cycling of the slide. The gels went through 40 cycles of denaturation, annealing and extension, and were stained using SYBR Green I.

Upon imaging, green fluorescent spheres were seen in the gels that had been poured with template DNA (figure 2a). These spheres were not seen in the control slide lacking DNA template. The spheres were uniform in shape and roughly 300\(\mu\)m in diameter, with little variation in size. The number of fluorescent spheres shows a linear dependence on the number of template molecules added (figure 2b).

We hypothesized that the fluorescent spheres were polonies that were amplified from a single molecule of the template cassette CP-234. To test this hypothesis, polonies were picked using a toothpick; the toothpick was then dipped into tube containing a PCR mixture, and the mix was thermal cycled. As a negative control, regions of the gel that did not contain polonies were also stabbed with a toothpick. The reactions were then run out on an agarose gel. The results are shown in figure 2c. The picked polonies clearly show products at 234 bp as expected, while the regions of the gel that contained no polonies yielded no product.

In some experiments, a few larger fluorescent spheres (1-2 mm in diameter) were observed. Because these spheres were also observed on slides that were poured without template DNA, we suspected that these polonies were due to primer-primer mispriming (primer dimer). This was confirmed by repeating the polony picking experiment described above on the putative primer-dimer polony (data not shown). We
Figure 2. Solid Phase PCR. (A) The number of template DNA molecules included in each reaction are listed below each gel image. The polonies are stained with SYBR Green I.
Figure 2. Solid Phase PCR (B) Plot showing the number of polonies detected versus the number of template DNA molecules included in each reaction. (C) 2% Agarose gel of PCR products from polony picking experiment.
found primer dimer polonies can be reduced or eliminated by raising the annealing
temperature of the PCR and/or by careful primer design.

Relationship Between Template Length, Acrylamide Concentration and Polony Radius

To obtain slides with as many polonies as possible, it is necessary to minimize the size of each polony. To determine the parameters that influence polony size, solid phase PCR reactions were performed using template cassettes of different lengths; acrylamide concentration was also varied. The results are shown in figure 3.

Polony radius decreases as template length increases and as the acrylamide percentage increases. Using the 514 base pair template, CP-514, and an acrylamide concentration of 15%, the polonies produced were very small (average radius of 12.5 μm), and of uniform size (standard deviation of 0.29 μm).

These results showed that polony radius was very sensitive to length of the template. In order to further minimize polony size, we created a template cassette that was 1009 base pairs long, and performed a solid phase PCR in 15% acrylamide. The resulting polonies had radii of approximately 6 μm (figure 3b). At this size, we estimate that 5 million distinguishable polonies can be poured on a single slide. (over 13.5 million will be poured on the slide but 63% of these will overlap one another).

Duplicating Polony Slides

For some applications it would be desirable to make exact copies of a polony slide. Inspired by microbiologists who make replicas of bacterial colonies on agar plates,
Figure 3. Relationship Between Polony Radius and Length of Template. (A) Log-log plot showing the relationship between polony radius and template length. (B) Confocal image of polonies with an average radius of 6μM.
we developed a replica plating protocol to fabricate copies of our polonies. In this protocol, a polony slide, the “original,” was created by pouring a thin, 3.1 \(\mu \)m gel containing template DNA (the template layer) on a bind silane treated glass microscope slide, and then pouring a thicker gel (250 \(\mu \)m) over it. When the original is thermal cycled, the DNA in the thin layer produces polonies that span the interface between the two gels.

When the coverslip was carefully removed from the microscope slide, the thick gel remained intact and attached to the coverslip. This gel was stained with SYBR Green I, and saved for comparison with the duplicate. Because the surface of the slide was treated with bind silane before the original was poured, the 3.1 \(\mu \)m layer of acrylamide (the template layer) remained bound to the surface of the slide. The slide was washed, and a new gel, the “duplicate,” was poured on this glass slide. The duplicate was then thermal cycled and stained.

Figure 4 shows the imaged original and duplicate polony slide. The duplicate slide exhibits a polony pattern that is identical to that of the original. The polonies on the duplicate tend to be slightly larger than those on the original due to diffusion in the duplicate solid phase PCR reaction.

Discussion

In this report we have described a method for fabricating polony slides containing immobilized DNA by performing solid phase PCR in an acrylamide gel. We investigated the relationship between the length of the template included in the solid phase PCR reactions, the acrylamide concentration of the gel poured, and the size of the resulting
Figure 4. Replica Plating Polony Slides. (A) The original polony slide. (B) The duplicate slide. The image of the duplicate was rotated around its vertical axis to allow comparison with the original.
PCR colonies, or polonies. In addition, we have described a technique for copying a polony slide once it is created.

Our results provide three pieces of evidence that the stained polonies seen in figure 2a are due to the amplification of single template molecules. First, the number of polonies obtained in each reaction is linearly dependent on the amount of template included. As seen in figure 2b, eighty percent of the template molecules added to each reaction yielded polonies. There are a number of possible explanations as to why one hundred percent efficiency was not obtained: template molecules may have been damaged by the free radicals generated during the acrylamide polymerization, template may have been lost due to abstraction by tube or pipette tip walls, or the amount of template may have been underestimated when quantified by ethidium bromide staining. The second piece of evidence was obtained by a polony-picking experiment. Polonies that were picked and amplified by PCR produced products of the expected length. The third piece of evidence is the strong dependence of polony size on length of the template (figure 3), adding further weight to the argument that each polony has grown from a single template molecule.

Reducing polony size is crucial to achieving a high number of clones on each slide, because the number of polonies per slide goes up with the inverse square of the polony size. We systematically varied the length of the template DNA and acrylamide concentration in our solid phase PCR reactions to reduce polony radius. By using 1009 base pair template molecules and 15% acrylamide we obtained polonies that were 6 μm in radius. We believe polony radius could be further reduced by increasing the length of the template DNA, by using fewer cycles of PCR, or by immobilizing both primers.
The experiments that investigated the relationship between polony radius, acrylamide concentration, and template length revealed an interesting phenomenon: small polonies displayed less variation in size than large polonies (figure 3a).

To address this question, we developed a simulation for polony growth. This model assumes that at each cycle in the PCR reaction, every DNA molecule will move in a stochastic fashion (due to thermal energy) and then give rise to a complementary strand. The probability that a given molecule will give rise to a complementary strand is dependent on the number of unextended primers and the number of complementary strands in the immediate vicinity of the DNA. We ran this model using a number of different probability distribution functions for DNA motion (all runs assumed that the DNA does not travel too far in relation to the average distance between immobilized primers); in all cases the results were qualitatively similar. This model predicts that template amplification in each polony is exponential during the early amplification cycles. As the polony grows, it will reach a certain radius, the critical radius, after which the amplification proceeds at a polynomial rate. The critical radius is dependent on the diffusion coefficient of the template molecule, and the probability that a given DNA molecule is replicated after one cycle of the solid phase PCR. This phenomenon has a simple physical explanation: one of the primers in the reaction is immobilized; therefore, for a polony to achieve exponential amplification, one strand of each full length DNA product in the polony must diffuse and anneal to an immobilized primer at each round of amplification. During the early rounds, most of the immobilized primers in the vicinity of a template have not yet been extended so, the total number of DNA molecules in a polony increases exponentially with the cycle number. However, at later rounds, the
DNA at the center of the polony cannot diffuse far enough to find immobilized primer that has not yet been extended. So, only the DNA near the circumference of the polony can continue to amplify. Therefore, the number of new DNA molecules generated with each cycle increases as the square of the cycle number, so that the total number of DNA molecules in the polony increases with the cube of the cycle number.

The predictions of the polony growth model help to explain why the longer template molecules show less variance in size. When the long DNA template, CP-514, was amplified to form polonies, the polonies reached their critical radii and then grew very slowly for the rest of the reaction. Therefore, all of the polonies tended to be the same size. When the short DNA template, CP-120, was used, the polonies never reached their critical radii, so that some polonies were bigger or smaller than others due to the stochastic nature of PCR.

The replica plating protocol we used enabled us to replicate the polonies on a slide. The PCR mix used to pour the duplicate gel contained primers whose annealing sites were nested inside the annealing sites of the primers used to create the original gel. The nested primers have a higher annealing temperature than the outer primers used to create the original; therefore, when the duplicate layer is poured and the slide is amplified, there will be no extension of the immobilized outer primer in the transfer layer. This means that the polonies in the transfer layer will not increase in radius during the duplicate amplification, so that the transfer layer can be reused to produce a second (or third etc.) duplicate that has no significant difference in average polony radius from the first duplicate. Polonies on duplicate gels tend to be about 15% larger than the polonies on the original due to diffusion of the amplified DNA during amplification.
Applications of polony slides will capitalize on one or more of their four main properties: cloning, immobilization, gel imbedding, and in situ amplification. Many recombinant DNA cloning procedures typically done at low density on petri plates can now be done on chips. As many as 5 million clones per slide could be sequenced in parallel using a sequencing-by-synthesis method such as pyrosequencing, which is known to accurately sequence 40 bp of a PCR product (10). This is usually adequate for gene identification or minisequencing (11). A new sequencing-by-synthesis method, solid-phase fluorescent in situ sequencing extension quantitation (FISSEQ), would appear particularly suitable (Mitra R.D and Church G.M. in preparation). In this technique, the DNA is extended by adding a single type of fluorescently labeled nucleotide triphosphate to the reaction, washing away unincorporated nucleotide, detecting incorporation of the nucleotide by measuring fluorescence, and repeating the cycle until synchrony is lost. At each cycle, the fluorescence from previous cycles is bleached or digitally subtracted, allowing one to deduce the sequence of each polony iteratively. Because the signal registering successful dNTP incorporation is an immobilized fluorophore, rather than a rapidly diffusing pyrophosphate, one can uncouple base addition from scanning and can use off-the-shelf microarray scanners.

The ability to sequence polonies in situ would enable the rapid resequencing or possibly de novo sequencing of small genomes. Polony technology could also be used to measure whole genome RNA or DNA expression. For example, a cDNA library derived from the isolated RNA of interest could be used as template in a polony reaction. FISSEQ could be performed to determine enough sequence information to assign a unique expression tag to each polony. Then one could simply count the relative number
of polonies of each tag sequence, and thereby determine the gene's relative expression level. Alternately, one could make duplicates of the sequenced polony slide, hybridize fluorescently labeled mRNA or cRNA preparations, and quantify the amount of fluorescence at each polony. Hybridization in this type of gel-based format provides a 1000-fold increase in DNA layer thickness when compared to DNA attached to a surface, increasing signal per unit area (12). The high efficiency of polony amplification may allow one to measure whole genome mRNA expression from a single cell. Another advantage of this type of gel format is that it is compatible with miniature gel electrophoretic methods (6,13).

Acknowledgements

We thank John Aach for help with the polony growth computer simulations, and Tali Mitra for help with figures. We thank the members of the Church lab for helpful discussions and critical reading of the manuscript. This work was supported by the US Department of Energy (grant no. DE-FG02-87-ER60565).
2. Chee, M., Yang, R., Hubbell, E., Berno, A., Huang, X. C., Stern, D., Winkler, J.,
3. Drmanac, S., Kita, D., Labat, I., Hauser, B., Schmidt, C., Burczak, J. D. and
4. Parinov, S., Barsky, V., Yershov, G., Kirillov, E., Timofeev, E., Belgovskiy, A.,
 2349-2353.
 Acids Res, 25(6), 1313-1314.
 Research, 25(4), 781-786.
 Analytical Biochemistry, 242, 84-89.
 Nucleic Acids Research, 26(6), 1515-1521.
 452-455.
Chapter 3

Fluorescent *In Situ* Sequencing of Polonies
Introduction

In chapter 2, it was shown that as many as 5 million individual, linear DNA fragments can be cloned and amplified by growing polonies in a polyacrylamide film attached to a glass microscope slide. Each polony contains 10^8 identical molecules of DNA amplified from a single template molecule. One strand of the amplified DNA can be covalently attached to the polyacrylamide matrix, allowing washing and further enzymatic manipulation. This chapter describes progress in developing a technology to sequence these polonies by a new sequencing by synthesis method, fluorescent in situ sequencing extension quantitation (FISSEQ).

Sequencing polony DNA by FISSEQ involves several steps. First, the polonies are made single stranded by heat denaturation, and a sequencing primer is annealed. Next, DNA polymerase and a single type of deoxynucleotide triphosphate (e.g. dATP) are added to the polyacrylamide matrix. If the added nucleotide is complementary to the template base immediately 3’ of the primer for any given polony, the polymerase will incorporate the base into that polony. A fraction of the dATP is labeled with a fluorescent dye, so that polonies that have incorporated the added base will fluoresce when the slide is scanned with a confocal scanning microscope. After scanning, the fluorescence is removed by cleaving the linker between the dye and the nucleotid, and another extension reaction is performed with a different deoxynucleotide triphosphate (One can also perform another extension reaction without chemically removing the fluorescence from the previous cycle. Instead, the fluorescence from previous cycles can be subtracted digitally). In this fashion, many cycles of extension are repeated and the sequence of all the polonies on the slide can be read by monitoring the fluorescence incorporation at each
step. Sequencing by this method is fast and cost effective, due to the inherent parallelism of the technique, and due to the low reagent volume (1 femtoliter) per polony sequenced.

There are other sequencing technologies that may be appropriate for sequencing polonies, such as sequencing by hybridization (1-3), MPSS (4,5), and pyrosequencing (6-9). Pyrosequencing is a similar technology to FISSEQ in that DNA templates are sequenced by single base extensions. However, unlabeled deoxynucleotides are used; incorporation is detected by measuring the pyrophosphate released via a light emitting enzymatic reaction. Accurate reads of up to 50 bases from the primer have been demonstrated in 96 well plates. This technology may be suitable for polony sequencing if the diffusion of the free pyrophosphate is slow enough such that individual polonies can be distinguished during the chemiluminescent detection. MPSS and sequencing by hybridization are, in principle, compatible with polony technology. However, read lengths beyond 16 bases have not been demonstrated with MPSS, and sequencing by hybridization would require a very large number of hybridizations and scans to sequence a polony slide.

Results

To investigate whether FISSEQ technology would be useful for sequencing polonies, we first determined whether DNA polymerase could correctly extend a primer annealed to a gel-immobilized template upon the addition of a single deoxynucleotide triphosphate. As a model system, we synthesized four oligonucleotides with 5' acrydite groups (10) and co-polymerized them with acrylamide monomer and crosslinker on a glass microscope slide (Figure 1). Each sample was spotted on the slide in quadruplicate,
Figure 1. Single nucleotide extension reactions. (A) Four oligonucleotide templates were spotted by hand in quadruplicate. A universal sequencing primer was annealed to the templates. The base required to correctly extend each primer is shown to the left of each image. Upon addition of DNA polymerase and fluorescently labeled dUTP, only the template which required a dTTP (or its analogue dUTP) to extend the sequencing primer displayed significant fluorescence. This experiment was repeated using (B) fluorescently labeled dCTP, (C) fluorescently labeled dGTP, or (D) fluorescently labeled dATP in place of the labeled dUTP.
so that each row of four spots on the microscope slide represented a different template molecule. A sequencing primer was annealed, and a solution containing DNA polymerase and a single type of fluorescently labeled deoxynucleotidetriphosphate (dNTP) was added to the surface of the slide. As expected, only the oligonucleotide that contained a base immediately 3' of the sequencing primer that was complementary to the added nucleotide displayed significant incorporation (figure 1). From this we concluded that DNA polymerase can extend templates immobilized in a polyacrylamide matrix and that this reaction occurs only if the added nucleotide is complementary to the next base.

Because FISSEQ requires a number of sequential base extensions, the incorporation of the correct base must be a highly efficient reaction. For example, if only 85% of the primer:template molecules are extended each time a correct base is added, then after 6 extensions, only $(0.85)^6 = 38\%$ of the primer:template molecules will have correctly incorporated the added nucleotides. The remaining 62% of the molecules will be "out of phase" because they did not incorporate the correct base at an earlier cycle. To estimate the efficiency of nucleotide incorporation by DNA polymerase, immobilized oligonucleotide templates were spotted on three glass slides as described above, and a sequencing primer was annealed. One template required dTTP addition for correct incorporation (or its analogue dUTP). The other, a negative control, required the addition of dCTP for correct incorporation. Two of the three glass slides were incubated with unlabeled dTTP and Klenow DNA polymerase, one for 90 seconds the other for 360 seconds and then washed to remove unincorporated nucleotide. Cy5 labeled dUTP and polymerase were then added to all three slides, and the amount of fluorescent signal on each slide was compared to estimate how efficiently the unlabeled dTTP was
incorporated (figure 2a). If the extension reactions went to completion, we would expect to see no fluorescent signal on the slides that were incubated with unlabeled dTTP before the fluorescent extension. While increased incubation times with unlabeled dTTP did decrease the amount of fluorescent dUTP incorporated, even after 6 minutes there was still significant incorporation, indicating that the incorporation of dTTP did not go to completion. By quantifying the fluorescence, we estimated the efficiency of the 6 minute dTTP extension to be approximately 85%, which, as discussed above, is too low a value to sequence more than just a few bases. Allowing the reaction to proceed for longer times did not significantly improve the extension efficiency. To address this issue, we developed a technique called "polymerase trapping", in which DNA polymerase is allowed to bind to the primer:template molecule, acrylamide monomer is added to the reaction, and polymerization is initiated, trapping the polymerase in a complex with the primer:template molecule. The polyacrylamide matrix prevents the polymerase from diffusing away from the primer:template, so that every primer that is extended during the first cycle of extension will continue to be extended at later cycles. We repeated the experiment described above using polymerase trapping and estimated that 99.8% of the molecules that have a polymerase molecule trapped on them are correctly extended (Figure 2b). Trapping the polymerase within a polyacrylamide matrix also has the advantage that the enzyme does not need to be replenished every time a nucleotide addition is performed. In fact, we have shown that polymerase trapped in acrylamide can be washed in buffer for 4.5 hours without a detectable loss in activity.

To establish that templates could be subjected to multiple rounds of nucleotide extensions, we spotted two oligonucleotide templates in quadruplicate on glass
Figure 2. Estimating the efficiency of the extension reaction. (A) Two templates were immobilized in acrylamide spots, the first requiring a 'T' to extend the annealed primer, the second requiring a 'C'. Unlabeled dTTP and DNA polymerase were added to the slide for the indicated amount of time, followed by a 6 minute incubation with fluorescently labeled dUTP and DNA polymerase. In all cases there was incorporation of the fluorescent nucleotide, indicating that the primer:template complexes were not efficiently extended when the unlabeled nucleotide was added. (B) The experiment was repeated using the polymerase trapping technique. There was no fluorescent signal incorporated if the primer:template molecules were first incubate with unlabeled dTTP for 60 seconds.

A

<table>
<thead>
<tr>
<th>Time</th>
<th>Insert</th>
<th>Fluorescent Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 seconds</td>
<td>T</td>
<td>100 +/- 13.2</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>1.00 +/- 0.17</td>
</tr>
<tr>
<td>90 seconds</td>
<td>T</td>
<td>23.7 +/- 2.9</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>1.17 +/- 0.28</td>
</tr>
<tr>
<td>360 seconds</td>
<td>T</td>
<td>13.9 +/- 1.6</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>1.34 +/- 0.40</td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>Time</th>
<th>Insert</th>
<th>Fluorescent Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 seconds</td>
<td>T</td>
<td>100 +/- 14.5</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>1.83 +/- 0.024</td>
</tr>
<tr>
<td>60 seconds</td>
<td>T</td>
<td>1.97 +/- 1.38</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>1.73 +/- 1.22</td>
</tr>
</tbody>
</table>
microscope slides. Each slide was subjected to a number of extension and washing reactions with unlabeled nucleotide, followed by an extension reaction with fluorescently labeled nucleotide. The results are shown in figure 3. For each slide, only the expected template incorporated the fluorescent base after the unlabeled extensions. In figure 3d, we see that the templates remain in phase after 12 cycles of nucleotide addition, and were extended as far as 8 bases from the primer. To demonstrate that single base extensions could be performed on amplified polonies and not just on oligonucleotide templates, an 87 bp linear DNA fragment of known sequence was amplified in a polony reaction, and used as the template for single base extensions (Fig. 4). The immobilized polonies were denatured, a sequencing primer was annealed, and BST polymerase was "trapped" on the primer:template complex. Serial, single nucleotide additions were performed with unlabeled nucleotides for a number of cycles until the next base required to extend the growing strand was either a C or a T. A mixture of FITC labeled dCTP and Cy3 labeled dUTP was then added to the slide to determine if the correct base was incorporated. If the primer:template molecules in each polony had become dephased during the course of the unlabeled extensions, one would expect to see high levels of the incorrect base incorporated; however, even after 26 single base additions, which caused the DNA polymerase to extend the sequencing primer by 34 bases, only the correct base displayed significant incorporation (Fig. 4d).

In FISSEQ, it is important to remove the fluorescent label from the nucleotide after incorporation and scanning of the slide. One way of achieving this is to include a disulfide bond in the linker between the fluorophore and the nucleotide. The fluorophore can then be removed from the nucleotide by a reduction step followed by washing.
Figure 3. Multiple rounds of single nucleotide addition using oligonucleotide templates. A sequencing primer was annealed, and the slides were subjected to multiple rounds of extension with a single unlabeled nucleotide (the added nucleotides are shown above each image) followed by extension with a fluorescently labeled nucleotide (indicated in red). The sequences of the templates are shown below the images. (A) A scan of a slide subjected to 5 additions of unlabeled nucleotide followed by addition of fluorescently labeled dCTP. (B) A slide subjected to 7 additions of unlabeled nucleotide followed by addition of fluorescently labeled dUTP. (C) A slide subjected to 9 additions of unlabeled nucleotide followed by addition of fluorescently labeled dCTP. (D) A slide subjected to 11 additions of unlabeled nucleotide followed by addition of fluorescently labeled dUTP. In all scans only the expected templates incorporated fluorescent base, indicating the primer:template molecules remain in phase over the course of the 12 extensions.
Figure 4. Multiple rounds of nucleotide addition on polonies. The polonies were denatured and a sequencing primer was annealed. The polonies were subjected to multiple rounds of extension with unlabeled nucleotides (the added nucleotides are shown above each image) followed by the addition of a mixture of Cy5-dCTP and Cy3-dUTP. In (A) 8 rounds of nucleotide addition were performed extending the primer 11 bases. (B) 15 rounds of nucleotide addition were performed extending the primer 21 bases. The fluorescent region in the lower right portion of the red channel image is due to a primer-dimer artifact. (C) 19 rounds of nucleotide addition were performed extending the primer 26 bases. (D) 26 rounds of nucleotide addition were performed extending the primer 34 bases. In (D) the gel was torn during the course of the extensions, but polonies can be seen in the upper left corner of the slide. In all cases, only the expected fluorescent base was incorporated, indicating that the primer:template complexes remained in phase though 34 extension reactions.
Therefore, we had a dCTP analogue Cy5-SS-dCTP (figure 5a) synthesized, and demonstrated by a nucleotide addition reaction that this molecule is incorporated as efficiently and specifically into a immobilized primer:template complex as the commercially available Cy5-dCTP molecule (Fig. 5b). Additionally, the fluorescent label was removed from the Cy5-SS-dCTP molecule after incorporation by washing the immobilized DNA with buffer containing 5mM DTT.

Discussion

There are three primary sources of error that limit the read length of FISSEQ. These sources of error are mispriming, misincorporation, and incomplete extension. Mispriming occurs when the sequencing primer anneals non-specifically to the template molecule and is extended upon addition of nucleotide. Mispriming can also occur when the 3’ end of the template molecule loops onto itself and forms a hairpin, which is then extended upon base addition. Misincorporation occurs when a nucleotide is incorporated opposite a non-complementary template base. Once this happens, subsequent incorporation will be less efficient. Incomplete extension occurs when the incorporation reaction does not go to completion so that only a fraction of the primer:template molecules in a polony have correctly incorporated the added nucleotide. It is important to minimize misincorporation and incomplete extension as these types of error accumulate exponentially with the number of bases the primer is extended.

From the single base extension experiments on oligonucleotide templates shown in figure 1, we can estimate an upper limit for the error due to mispriming and misincorporation. When dUTP, dGTP or dCTP was added to the samples, the perfect
Figure 5. (A) Structure of Cy5-SS-dCTP. This molecule has a disulfide bond between the fluorophore and the deoxynucleotide so that the label can be removed after incorporation. (B) Extension of an immobilized primer:template with Cy5-dCTP and Cy5-SS-dCTP. Both molecules are efficiently and specifically incorporated. After a wash in 5mM DTT, the fluorescence was removed from the slide extended with Cy5-SS-dCTP, but not the slide extended with Cy5-dCTP.
match template displayed 40-100 fold more signal than mismatched templates. However, when fluorescent dATP was added, the perfect match template only displayed 11 fold more signal. To distinguish whether this erroneous signal was due to mispriming or misincorporation, we repeated the single base extension experiment on this template using a sequencing primer that was not complementary to any region of the template. We found the fluorescence signal was equal or slightly greater than previously measured signal, suggesting that most, if not all of the erroneous signal in figure 1 is due to mispriming (data not shown). Unlike misincorporation and incomplete extension, error due to mispriming does not accumulate exponentially with the number of base additions, so the mispriming that occurs in figure 1 should not substantially limit the read length of FISSEQ. However, it should be possible to further reduce mispriming by including a sequence at the 3’ end of the DNA templates that forms a stem loop structure when the templates are made single stranded. The 3’ end of the template molecule can then act as a primer for DNA sequencing (11). This hairpin reaction should be highly specific, reducing the chance of mispriming.

Figure 2a demonstrates the extension reaction does not proceed to completion if polymerase trapping is not employed. This may be due to the acrylamide restricting the diffusion of the polymerase, or an interaction between the acrylamide and the primer:template complex that sterically hinders polymerase binding. However, if polymerase trapping is used, over 99.8% of the primer:template molecules in a polony that have a polymerase molecule trapped on them are extended. Template molecules that do not have a polymerase molecule nearby during the trapping reaction are not extended during any cycle, so they never have a chance to contribute erroneous fluorescent signal.
Figure 4 demonstrates that as many as 34 extensions can be carried out without significant dephasing of the templates. Further extensions were not performed due to time considerations, but the best estimate is that the primer can be extended 100 bases before significant dephasing occurs.

Figure 5b demonstrates that by using a nucleotide analogue with a disulfide bond in the linker between the fluorescent tag and the base, the fluorophore can be efficiently removed after incorporation and scanning. This will allow multiple rounds of incorporation and quantitation to be performed on the same slide.

The development of software that takes the scanned images of polonies acquired during the FISSEQ protocol and outputs a sequence file is an important future direction of this work. If the polonies are restricted to a known grid, it would simplify pattern recognition and alignment of images from cycle to cycle. Forming polonies on a grid of isolated acrylamide islands not only simplifies image processing, but it also allows a high density of polonies to be achieved with short DNA templates and/or a more porous acrylamide matrix, since the maximum dimension of a polony is limited by the size of the island. This approach would have two other potential benefits. One is that low molecular weight, highly diffusible primer-dimer artifacts are restricted to a small area. The other is that contact replicas can be made without spreading of polony size.

We are now pursuing four methods to create ordered polony islands: a.) photogelation of acrylamide initiated by riboflavin and light through a chromium mask(12). b.) laser etching of 10 to 100 micron thick polyacrylamide slab, c.) discontinuous dewetting of acrylamide into cylindrical holes formed in elastomers such as polydimethylsiloxane (PDMS)(13). d.) forming arrays of hydrophilic islands on a
hydrophobic surface and then wetting the slide so that acrylamide islands form only over the hydrophilic surfaces. We have tested all four of these methods for forming high-density arrays of acrylamide islands. The results for a.) and b.) are shown in figure 6. Our preliminary experiments suggest that upon illumination, the riboflavin is converted to an active species that not only initiates the polymerization of acrylamide, but damages the template DNA, thus inhibiting polony formation. Early experiments with laser etching also suggest the standard 248nm laser also damages template DNA. This experiment will be repeated the using a 351 nm laser. From these results, we conclude that either discontinuous dewetting of PDMS or forming hydrophilic islands will be method of choice for fabricating miniature acrylamide islands.

It will be an important future goal to quantify the accuracy of polony sequencing. We expect the FISSEQ protocol to display a similar accuracy to pyrosequencing, which has been reported to call the correct base 99.9% of the time for read lengths of up to 40 bases. It is also possible that error could also be introduced during the polony amplification step due to misincorporation by the DNA polymerase. However, unless misincorporation occurs early in the process of the amplification (i.e. 1st round of the PCR), it will not affect the sequencing steps because only a small fraction of the template molecules will contain any given point mutation. Even a misincorporation event that occurs during the first round of PCR will only be found in 33% of the final molecules in a polony. If one uses E.coli cells that contain a plasmid bases DNA library as a template for polony amplification, one can reduce this error even further, since the initial population of molecules is now the copy number of the plasmid (which can be 5-500
Figure 6. Acrylamide Islands. (A) Formed by a photogelation technique. The islands are 50 micron squares separated by 50 microns. (B) Formed by pouring a 200 micron thick continuous acrylamide gel and removing sections of the gel by laser etching. The islands are 75 microns squares separated by 75 microns.
copies) so that even a misincorporation during the first round of PCR will not contribute significant sequence error.

Immediate goals are to have the remaining Cy5-SS-dNTP’s synthesized and test the FISSEQ protocol using all 4 fluorescent nucleotides. We will attempt to determine the base calling accuracy as a function of the number of bases read from the end of the sequencing primer. In addition, we plan to design and construct an integrated fluidics and optical system that will automate the FISSEQ protocol.

Materials and Methods

Primers and Oligonucleotide templates

All oligonucleotides were obtained from Operon (CA). The oligonucleotide templates used in this work are listed below. The region of each template complementary to the sequencing primer is listed in bold. Template OT1, 5’-Qtc aag ctc gac aac tgt tgg gaa ggg cga tct gct taa aca gac gct cga gac cgg gc-3’. Template OT2, 5’-Qtg ggc taa tca tgg tca tag ctt cct gtg tga act aaa cag aec ctc gag acc ggg c -3’. Template OT3, 5’-Qtc ggc cca cgc cgc ggg aga ggc ggt ttg cgt atc agt aaa cag aec ctc gag acc ggg c -3’. Template OT4, 5’-Qcc cag tca cga cgt tgt aaa cag aec gcc agt gtc gat aaa cag aec ctc gag acc ggg c -3’.

The following primers were used in this work: primer Seq1, 5’-gcc cgg tct cga gcg tct gtt ta-3’. Primer PR1-Fac 5’Qcca cta cgc ctc cgc ttt cct ctc. Primer PR1-R 5’ctg ccc cgg gtt cct cat tct ct. Primer mLC1-F 5’cca cta cgc ctc cgc ttt cct ctc tgg aag ctt ggc gta atc atg gtc a-3’. Primer mLC1-R 5’ctg ccc cgg gtt cct cat tct cta taa cca ttt cac aca gga a -3’.
All oligonucleotide templates and the primer PR1-Fac have Acrydite modifications (Mosaic Technologies) at their 5' ends (designated by the character Q in the sequences listed above.

Single nucleotide extensions using oligonucleotide templates

1 µl of 10µM Oligonucleotide template OT4 was added to 4 µl of dH20 and 5 µl of 2x acrylamide mix (25% glycerol, 1.6% TEMED, 6ng/ml riboflavin, and 7.96% acrylamide, 0.4% bis-acrylamide). 0.2 µl of this mixture was hand-spotted in quadruplicate onto 4 glass microscope slides (Acrylate treated glass slide, CEL associates). This procedure was repeated for the oligonucleotide templates OT3, OT2, and OT1 so that each slide contained a 4 by 4 array of acrylamide spots, the first row containing template OT4, the second OT3 and so on. The slides were then photopolymerized under a 35 W fluorescent light bulb at a distance of 3 cm for 45 minutes.

Annealing mixture [1x Sequenase buffer (USB), 0.25µM primer Seq1, 0.01% triton X-100] was added to each slide. The slides were placed in a PTC-200 thermal cycler (MJ Research) adapted for glass slides (16/16 twin tower block), and incubated for 1 minute at 95°C, then cooled at a rate 0.1 degrees/seconds to 55°C. The slides were held at this temperature for 2 minutes and then washed in 1x sequenase buffer that was heated to 50°C.

Each slide was extended with a different fluorescently labeled nucleotide by covering the acrylamide spots with 65 µl of extension mix and incubating the slides 2 minutes at room temperature. Labeled nucleotide (tetramethylrhodamine-dATP (NEN),
Cy3-dCTP (Amersham), tetramethylrhodamine-dGTP (NEN), or Cy5-dUTP (Amersham) was added to the slide in the following mixture: 1x Sequenase buffer, 4mM DTT, 100μg/ml BSA, 380ng/μl E.coli single stranded binding protein (United States Biochemical), 0.01% triton X-100, 0.169 units/μl Sequenase V 2.0 (USB) and 0.5μM labeled nucleotide. The slides were washed in 40mM Tris pH 7.5, 50mM NaCl, and 0.01% triton X-100 for 10 minutes, scanned using a Scanarray 4000 (GSI Luminomics), and the fluorescence was quantified using the software package ImageQuant.

Estimating the efficiency of the extension reaction

For the experiments performed without using polymerase trapping, oligonucleotide templates OT4 and OT2 were spotted on glass microscope slides as described above. Unlabeled dTTP mix [1x Sequenase buffer, 4mM DTT, 100μg/ml BSA, 380ng/μl E.coli single stranded binding protein (United States Biochemical), 0.01% triton X-100, and 0.5μM dTTP] was added to the slide for 0, 90, or 360 seconds. Each slide was then washed in 40mM Tris pH 7.5, 50mM NaCl, and 0.01% triton X-100 for 10 minutes. Cy5 labeled dUTP was then added to the slide [1x Sequenase buffer, 4mM DTT, 100μg/ml BSA, 380ng/μl E.coli single stranded binding protein (United States Biochemical), 0.01% triton X-100, 0.5μM dTTP, and 0.169 units/μl Sequenase v2.0]. The slides were washed in 40mM Tris pH 7.5, 50mM NaCl, and 0.01% triton X-100 for 10 minutes, and scanned as above.

For the experiments employing polymerase trapping, the primer Seq1 was annealed in separate reactions to the oligonucleotide templates OT4 and OT2. Equal amounts of template and primer were annealed at a final concentration of 5μM in 1x
EcoPol buffer [10mM Tris-HCl pH 7.5, 5mM MgCl₂] by heating to 95 degrees for 1 minute, slowly cooling to 50 degrees at a rate of 0.1 degrees per second and holding the reaction at 50 degrees for 5 minutes. The primer:template complex was then diluted by adding 30μl 1x Ecopol buffer (NEB) and 2μl 500mM EDTA. 1 μl of each annealed oligonucleotide was added to 17μl of Acrylamide gel mixture (40mM Tris pH 7.3, 25% glycerol, 1mM DTT, 6% Acrylamide (5% C), 17.4 units Sequenase version 2.0 (USB), 15μg/ml E.coli single stranded binding protein (USB), 0.1mg/ml BSA). Then, 1μl of 1.66% TEMED and 1μl of 1.66% APS were added and 0.2μl of each mixture was pipetted onto two Acrylate treated microscope slides (CEL associates).

One slide was incubated with unlabeled dTTP mix (1x Sequenase buffer, 4mM DTT, 100μg/ml BSA, 380ng/μl E.coli single stranded binding protein , 0.01% triton X-100, and 0.5μM dTTP) for 60 seconds. Both slides were then incubated with Cy5-dUTP mix (1x Sequenase buffer, 4mM DTT, 100μg/ml BSA, 380ng/μl E.coli single stranded binding protein , 0.01% triton X-100, and 0.5μM Cy5-dUTP) for 4 minutes. The slides were then washed in 40mM Tris pH 7.5, 100mM NaCl, and 0.05% triton X-100 for 2 x 5 minutes and scanned.

Multiple round of single nucleotide addition on oligonucleotide templates

Templates OT4 (sample 1) and OT2 (sample 2) were immobilized in acrylamide spots using the polymerase trapping technique described above. 4 slides were subjected to multiple rounds of nucleotide addition by first adding unlabeled dATP mix (1x sequenase buffer, 100μg/ml BSA, 0.01% triton X-100, 4mM DTT, and 0.5μM dATP) and letting the extension reaction proceed for 2 minutes at room temperature. The slides
were then washed in 40mM Tris, pH7.5, 50mM NaCl, 1mM EDTA, 0.05% triton X-100 for 3 minutes followed by three 1 minute washes in Tris pH 7.5, 0.05% triton X-100. Unlabeled dCTP, dGTP, and dTTP were added in an identical manner. After the appropriate number of cycles, the samples were extended with Cy5-dCTP or Cy5-dUTP by adding the labeled nucleotide mixture [1x sequenase buffer, 100μg/ml BSA, 0.01% triton X-100, 4mM DTT, 0.2μM dCTP or dTTP, and 0.4μM Cy5-dCTP or Cy5-dUTP] to the slide. The slides were scanned and quantified as above.

Multiple rounds of single nucleotide addition on polonies

The linear DNA cassette LC-1 was created as follows. The plasmid pUC 19 was amplified in a PCR reaction. Fifty microliters of PCR mixture [10mM Tris-HCl pH 8.3, 50mM KCl, 0.01% gelatin, 1.5M MgCl2, 200 μM dNTPs, 0.5 μM primer mLC1-F, 0.5 μM primer mLC1-R, 2ng pUC19 plasmid, 2U Taq (Sigma)] was cycled in an MJ research PTC-100 thermocycler as follows: denaturation (1min at 94°C), 5 cycles (10s at 94°C, 10 s at 55°C, 1 min at 72°C), 20 cycles (10s at 94°C, 1min at 68°C), and extension (3 min at 72°C). The PCR product was purified using Qiaquick PCR purification columns (Qiagen) and resuspended in dH2O.

Between 10 and 50 molecules of template LC-1 were added to the polony amplification mixture [10mM Tris-HCl pH 8.3, 50mM KCl, 0.01% gelatin, 1.5M MgCl2, 200μM dNTPs, 10U JumpStart Taq (Sigma), 5.91% acrylamide, 0.09% bis-acrylamide, 0.5μM primer PR1-Fac, 0.5μM primer PR1-R, 0.1% tween 20, 0.2% BSA]. Ammonium persulfate and temed were each added to the mixture, each at a final concentration of 0.083%. A 15μm thick gel was poured on a glass microscope slide that
was partially covered with a teflon coating (Erie scientific). The teflon coating served as
a spacer between the glass surface of the slide and a 18mmx18mm No. 2 glass coverslip
(VWR). The coverslip was overlaid with mineral oil and the slide cycled using the
following program: denaturation (2 minutes at 94°C) 46 cycles (30s at 94°C, 30s at
56°C, 1min at 72°C), and extension (2 min at 72°C). The mineral oil was removed by
rinsing the slides in hexane and the coverslips were removed. The immobilized DNA
was denatured by incubating in 70°C denaturing buffer [70% formamide, 1x SSC] and
electrophoresing in 0.5x TBE with 42% urea for 1 hour at 5-10 v/cm. The slides were
washed 2x4minutes in 6x SSPE. The acrylamide gel was covered with a frame seal
chamber (MJ Research) and annealing mix [0.25μM PR1-R, 6x SSPE, 0.01% triton-
x100] was added over the gel. The slides were heated at 94°C for 2 minutes, then at
60°C for 15 minutes. Unannealed primer was removed by washing the slides 2 x 4
minutes in 2x SSPE. 15 μl of polymerase trapping mix [BST DNA polymerase
6000U/μl, E.coli SSB (45ng/μl), 14.25% acrylamide, 0.75% bis-acrylamide, 25%
glycerol, 0.01% triton x-100, 1mM DTT, 0.1mg/ml acetylated BSA, 0.083% temed,
0.083% APS] was pipetted over the gel, covered with a No. 2 18x18mm coverslip and
allowed to polymerize. Unlabeled nucleotides additions were performed by submerging
the slides in 55°C unlabeled extension mix [20mM Tris-HCl pH 8.8, 10mM MgCl2,
50mM KCl, 0.5mg/ml BSA, 0.01% triton x-100, 2μM appropriate deoxynucleotide
triphosphate] for 3 minutes. After each nucleotide addition, slides were washed in wash
buffer 1 [10mM Tris-HCl pH 7.5, 50mM KCl, 2mM EDTA, 0.01% triton x-100] for two
5 minute washes then in wash buffer 2 [10mM Tris-HCl, pH 7.5, 50mM KCl, 0.01%
triton x-100] for 1 minute. Labeled nucleotide additions were performed by attaching a
frame seal chamber to the slide, pipetting 65µl labeled extension mix [20mM Tris-HCl pH 8.8, 10mM MgCl$_2$, 50mM KCl, 0.5mg/ml BSA, 0.01% triton x-100, 2µM FITC-dCTP, 2µM Cy3-dUTP], and washing 2 x 5minutes in wash buffer 1 and 1 x 1 minute in wash buffer 2. The slides were then scanned on a scanning confocal microscope designed for microarrays (Scanarray 5000, GSI luminomics), and the fluorescence of each polony was quantified using ImageQuantNT (Molecular Dynamics).

Removing Cy5 label after incorporation from Cy5-SS-dCTP

The primer Seq1 was annealed to the oligonucleotide OT4 (sample 1) or OT2(sample 2) by mixing equal amounts of template and primer at a final concentration of 5µM in 1x EcoPol buffer (10mM Tris pH 7.5, 5mM MgCl$_2$), and then heating the mixture to 95 degrees for 1 minute, slowly cooling to 50 degrees at a rate of 0.1 degrees per second, and holding the reaction at 50 degrees for 5 minutes. The primer:template complex was then diluted by adding 30ul 1x Ecopol buffer and 2µl 500mM EDTA.

One microliter of each annealed oligonucleotide was added to 17µl of Acrylamide gel mixture (40mM Tris pH 7.3, 25% glycerol, 1mM DTT, 6% Acrylamide (5% C), 17.4 units Sequenase version 2.0 (USB), 15µg/ml E.coli single stranded binding protein (USB), 0.1mg/ml BSA). Then, 1µl of 1.66% TEMED and 1µl of 1.66% APS were added and 0.2µl of each mixture was pipetted onto bind-silane treated glass microscope slides, and allowed to polymerize under argon. The slides were immediately put under an argon bed for 30 minutes to allow polymerization of the acrylamide.

The slides were then washed in 40mM Tris pH 7.5, 0.01% Triton X-100 for 30’’. Next, the acrylamide spots were incubated in 30 µl of Cy-5 dCTP extension mix (10mM
Tris pH 7.5 50mM NaCl, 5mM MgCl₂, 0.1mg/ml BSA, 0.01% Triton X-100, 0.1 μM unlabeled dCTP, 0.2 μM Cy5-dCTP) or in Cy-5-SS-dCTP extension mix (10mM Tris pH 7.5 50mM NaCl, 5mM MgCl₂, 0.1mg/ml BSA, 0.01% Triton X-100, 0.1μM unlabeled dCTP, 0.2 μM Cy5-dCTP) for 4 minutes at room temperature. The slides were washed 2 x 5 minutes in FISSEQ wash buffer (10mM Tris pH 7.5, 250mM NaCl, 2mM EDTA, 0.01% Triton X-100), spun briefly to dry and scanned on a Scanarray 4000 confocal scanner (GSI Luminomics). The slides were then incubated overnight in FISSEQ wash buffer + 5 mM DTT, washed 2 x 5 minutes in wash buffer, spun briefly to dry and scanned as before.

Creating Acrylamide Islands

Arrays of acrylamide islands were created by laser micromaching and by a photogelation techique. For islands created by laser micromaching, dilute amounts of template CP-234 (0-360 molecules) were added to 150 μl solid phase PCR mix (10 mM Tris-HCl (pH 8.3), 50 mM KCl, 0.01% gelatin, 1.5 mM MgCl₂, 200 μM dNTP’s, 10 units JumpStart Taq (Sigma), 6% Acrylamide, 0.32% Bis-Acrylamide, 1 μM primer AcrInF, 1 μM primer InR). Two 65 μl frame-seal chambers (MJ research) were attached to a glass microscope slide that had been treated with bind-silane (Pharmacia). 2.5 μl of 5% ammonium persulfate, and 2.5 μl of 5% temed was added to 150 μl of the solid phase PCR mixture. 65 μl of this solution was added to each chamber. The chambers were then immediately covered with No. 2 18 mm x18 mm coverslips (Fisher), and the gel was allowed to polymerize for 10-15 minutes. The frame seal chambers were removed, and the gel was laser etched with a 248nm eximer laser (resonetics).
For islands created by photogelation, a 15 \(\mu \text{m} \) thick chamber was created by using an aluminum foil spacer to separate a glass microscope slide from a 3" by 3" glass wafer with a chromium mask (Dupont Photomasks Inc.). Acrylamide photogellation mixture [3.8% acrylamide monomer, 0.2% bis-acrylamide, 12.5% glycerol, 10 mM Tris-HCl (pH 8.3), 50 mM KCl, 0.01% gelatin, 1.5 mM MgCl\(_2\), 9 ng/\(\mu \text{l} \) riboflavin, 0.012% temed] was pipetted into this chamber. The chamber was placed one inch away from two 13 watt fluorescent light bulbs (Sylvania F13T5/CW) with the chromium mask facing down. The mixture was allowed to gel for 30 minutes.

Chapter 4

A computational analysis of whole-genome expression data reveals chromosomal domains of gene expression
Note to Reader

The work described in this chapter is the result of a collaboration between myself, Barak Cohen, and Jason Hughes. The contributions that Barak and I made are difficult to separate. We had detailed discussions to decide how to proceed at every step of this project, we wrote most of the code together, and are co-first authors on the paper describing this work. Jason Hughes provided the idea for making chromosome correlation maps, was instrumental in choosing the correct statistical test for determining if groups of three or more adjacent genes were correlated more often than could be explained by the increased frequency of correlated pairs, and helped us address concerns that overlapping transcripts could influence the results of the project.
Chromosome position can have dramatic effects on gene expression\(^1-3\). The advent of DNA microarray technologies\(^4,5\) that allow mRNA expression to be measured across entire genomes has made genome-wide study of the effects of chromosome position on gene expression possible. We developed a new tool, a chromosome correlation map, that displays the correlations between the expression patterns of genes on the same chromosome. We demonstrate that adjacent pairs of genes, as well as nearby non-adjacent pairs of genes, show significantly correlated expression in a manner that is independent of their orientation. We also present specific examples of adjacent pairs with highly correlated expression patterns, in which the promoter of only one of the two genes contains an upstream activating sequence (UAS) known to be associated with that expression pattern. Finally, we show that genes with similar functions tend to occur in adjacent positions along the chromosomes. Taken together, our results suggest that in certain chromosomal expression domains, a UAS can affect the transcription of genes that are not immediately downstream from it, and that evolution may take advantage of this phenomenon by keeping genes with similar functions in adjacent chromosomal positions.

Chromosome correlation maps allow visualization of coexpressed genes along the chromosomes of the yeast, *Saccharomyces cerevisiae*. As a source of expression data, we used a data set in which the expression levels of all open reading frames (ORFs) in the yeast genome were measured over the course of two mitotic cell cycles. This data set was chosen because it had been previously noticed that ORFs that displayed periodic expression profiles were often found adjacent to one another on the chromosome, suggesting the presence of position effects\(^6\). In chromosome correlation maps, each
chromosome is displayed as a color-coded matrix. The rows and columns in the matrix represent the ORFs along a chromosome. The intersection of a row and a column is colored according to the correlation between the corresponding ORFs, green for positive correlation and red for anti-correlation. A representative map (Fig. 1a) is shown for a portion of the left arm of chromosome XIII. Adjacent groups of correlated genes show up as blocks of green squares centered on the diagonal. Blocks of green squares that occur off the diagonal represent correlation between groups of genes from distant portions of the chromosome.

Groups of correlated adjacent genes (pairs, triplets, etc.) appear throughout the genome. To determine whether this "regional coexpression" was statistically significant, we first compared the observed number of adjacent pairs with correlation coefficients greater than 0.7 ($r > 0.7$) to the expected number derived from a control set of non-adjacent genes. This analysis clearly showed that a significant number of adjacent pairs have correlated expression patterns (Table 1). We next examined the occurrence of correlated triplets and quadruplets, taking into account the increased occurrence of correlated adjacent pairs. Correlated triplets, but not quadruplets, were found to occur more often than expected by chance (Table 1). Similar results were obtained using other data sets in which global changes in gene expression were measured during sporulation and in response to the mating pheromone α-factor (Table 1), demonstrating that regional coexpression occurs in various physiological conditions.

In general the correlation of an adjacent pair in one data set is not predictive of its correlation in other data sets. For example $r = 0.086$ between the distributions of correlation coefficients for adjacent pairs in the cell cycle and pheromone response data.
Figure 1. Correlation maps for yeast chromosomes. In this analysis we included every ORF in the genome (excluding overlapping ORFs), not just those represented in the filtered list (see methods). The numbers along the side of the matrix represent the ORFs along the chromosome. The squares are colored green for positive correlation and red for anti-correlation. The intensity of the color at each position represents the degree of correlation or anti-correlation. (A) Correlation map for ORFs on the left arm of chromosome XIII between positions 58939 bp and 212515 bp. (B) Correlation map for ORFs on the left arm of chromosome VI between positions 53 bp and 106957 bp. The coexpressed group of adjacent ORFs extends from YFL061W at position 9545 bp to YFL050C at position 35848 bp. (C) Correlation map for ORFs on the right arm of chromosome XVI between positions 592327 bp and 657339 bp. The coexpressed group of adjacent ORFs extends from YPR027C at position 620420 bp to YPR034W at position 640953 bp. (D) Correlation map for all of chromosome I. The box shows a region of the chromosome in which regularly spaced blocks of correlated genes are found.
Table 1

Analysis of coexpressed groups of adjacent ORFs. For each size group, the expected number of coexpressed groups (See methods) is shown along with the observed number of coexpressed groups and the P-value for obtaining such a result by chance calculated using the cumulative binomial distribution.

<table>
<thead>
<tr>
<th>Group Size</th>
<th>Data Set</th>
<th>Observed</th>
<th>Expected</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pair</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cell cycle</td>
<td>394</td>
<td>98</td>
<td></td>
<td>2.3x10^{-114}</td>
</tr>
<tr>
<td>sporulation</td>
<td>647</td>
<td>323</td>
<td></td>
<td>2.7x10^{-60}</td>
</tr>
<tr>
<td>pheromone</td>
<td>489</td>
<td>257</td>
<td></td>
<td>9.0x10^{-39}</td>
</tr>
<tr>
<td>Triplet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cell cycle</td>
<td>50</td>
<td>30</td>
<td></td>
<td>5.5x10^{-4}</td>
</tr>
<tr>
<td>sporulation</td>
<td>103</td>
<td>80</td>
<td></td>
<td>6.7x10^{-3}</td>
</tr>
<tr>
<td>pheromone</td>
<td>63</td>
<td>43</td>
<td></td>
<td>2.1x10^{-3}</td>
</tr>
<tr>
<td>Quadruplet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cell cycle</td>
<td>7</td>
<td>6.5</td>
<td></td>
<td>0.47</td>
</tr>
<tr>
<td>sporulation</td>
<td>16</td>
<td>17</td>
<td></td>
<td>0.65</td>
</tr>
<tr>
<td>pheromone</td>
<td>11</td>
<td>8.5</td>
<td></td>
<td>0.23</td>
</tr>
</tbody>
</table>
sets. However, adjacent pairs that are highly correlated \((r > 0.7)\) in one condition are more likely to be highly correlated in other conditions. This point is illustrated by the observation that there were two-fold more adjacent pairs that were highly correlated in both the cell cycle and pheromone data sets than would be expected based on the probabilities of being highly correlated in either data set \((p=10^{-7})\). Similar results were obtained when other data sets were compared implying that some adjacent pairs tend to display regional coexpression in a variety of experimental conditions.

We also found two unusually large groups of correlated adjacent genes in the cell cycle data. The first spans 26 kilobases on chromosome VI (Fig. 1b) and includes YFL061W, SNO3, SNZ3, THI5, AAD6, YFL056C, AGP3, YFL054C, DAK2, YFL052W, YFL051C, and ALR2. The second spans 20 kilobases on chromosome XVI (Fig. 1c) and includes YPR027C, YIP2, APLA, CSR2, YPR031W, SRO7, HTS1, and ARP7. We searched for common promoter elements in these large groups using AlignACE\(^9\), and by looking for known UASs catalogued in the Saccharomyces Cerevisiae Protein Database\(^{10}\). We also looked for the presence of sequence motifs that had previously been shown to be associated with the expression of these genes during the cell cycle\(^{11}\). No sites were present in a majority of the intergenic regions within these groups. This suggests that the coexpression of these large groups was not due to the presence of similar UASs in the intergenic regions between the ORFs in these groups.

Using correlation maps we have shown that adjacent groups of genes are often coexpressed. In addition, correlation maps often reveal regularly spaced groups of correlated genes along the chromosomes that may be indicative of higher order chromosome structure (Fig. 1d).
We next examined the possibility that evolution takes advantage of regional coexpression by keeping genes with similar functions in adjacent positions. Using the Munich Information Center For Protein Sequences (MIPS) classifications we determined how often adjacent genes fall into the same functional category. Of the 2,081 adjacent pairs examined, 387 fell into the same functional category, significantly more than would be expected by chance (p=10^-8) (see methods). This suggests that regional coexpression may provide a selective advantage in keeping genes with similar functions close together on the same chromosome.

In yeast there are several examples of coregulated genes that are divergently transcribed from the same intergenic region. In these cases, UASs present in the intervening intergenic regions regulate both promoters. This fact, coupled with the observation that the average intergenic region in the yeast genome is small (~500 bp) has led to the hypothesis that the coregulation of divergently transcribed genes is a common mechanism of gene expression.

We therefore sought to determine whether the increased correlation of adjacent pairs we observed was due to divergently transcribed promoters. To test this hypothesis, we compared the distributions of correlation coefficients for divergent, convergent, and tandem pairs of adjacent genes to a control set of randomly picked non-adjacent pairs (Fig. 2a-c). There was a significant difference (X^2=357, d.f.= 9, p=10^{-71}) between the distributions for divergent and random pairs. Interestingly, there was also a significant difference between the distributions of convergent and random pairs (X^2=133, d.f.= 9, p=10^{-24}) as well as tandem and random pairs (X^2=221, d.f.= 9, p=10^{-42}). When a correlation of 0.7 was used as a cutoff we found more divergent, convergent, and tandem
Figure 2. Histograms of the distributions of correlation coefficients describing the expression of (A), divergent, (B), convergent, and (C), tandem adjacent pairs in the cell cycle are shown along with the distribution of correlation coefficients for a control set of randomly picked non-adjacent pairs of ORFs. The fraction of adjacent pairs with correlation coefficients above 0.7 in each orientation is plotted for the (D), cell cycle, (E), sporulation, and (F), pheromone response data sets.
pairs with correlation coefficients above this cutoff than randomly picked non-adjacent pairs (Fig. 2d). Similar results were also observed using the sporulation and pheromone response data sets (Fig. 2e-f). These results are not a consequence of recent duplications in the yeast genome as less than five percent of the most highly correlated adjacent pairs consisted of homologous sequences that could be identified using the BLAST algorithm. Our results are also not explained by crosshybridization of untranslated regions (UTRs) that overlap adjacent ORFs. When 1331 polyA-primed Expressed Sequence Tags (ESTs) representing 844 different genes were mapped to the yeast genome using BLAST no 3' UTRs were found that overlapped an adjacent ORF. This result suggests that overlapping transcripts are rare in yeast and makes it unlikely that regional coexpression can be explained by adjacent genes with overlapping transcripts. Furthermore, we continued to observe high correlation between adjacent genes when the most closely packed pairs of genes (and therefore the most likely to overlap) were not considered (http://arep.med.harvard.edu/adjacent/supplement). Taken together these results demonstrate that adjacent genes, in any orientation, are more likely to be coexpressed than non-adjacent genes.

Although adjacent genes in all orientations tended to be coexpressed, divergent pairs showed the greatest deviation from the control set of non-adjacent pairs (Fig. 2a,d). One explanation for this is that divergent genes share an upstream intergenic region whereas convergent and tandem pairs do not. Alternatively, the increased correlation of divergent pairs may result from the fact that the promoters of divergent pairs tend to be closer together than the promoters of convergent and tandem pairs (Fig.3a). To distinguish between these two possibilities we compared the distributions of correlation...
Figure 3. (A) Histograms showing the distances between the predicted start sites for divergent, convergent, and tandem pairs of adjacent ORFs. (B) Histograms showing the distributions of correlation coefficients for divergent and tandem pairs of ORFs whose predicted start sites are between 400 and 1000 bp apart. (C) Histograms showing the distributions of correlation coefficients for convergent and tandem pairs of ORFs whose predicted start sites are between 1600 and 3600 bp apart.
coefficients for divergent and tandem pairs whose starts sites are equally far apart (Fig. 3b).
Interestingly, we found no significant difference ($X^2=5.8$, d.f. = 9, $p=0.72$) between
the distributions. There was also no significant difference between the distributions for
convergent and tandem pairs whose start sites are equally far apart ($X^2=9.0$, d.f. = 9,
$p=0.44$). These results suggest that the distance between adjacent genes, apart from their
orientation, is important in determining their coexpression.

We therefore examined the relationship of the distance between adjacent ORFs
and their correlation. The occurrence of increased coexpression declined with the
distance between adjacent ORFs but remained significantly above background levels
even at the largest distances examined (Fig. 4). Therefore, the distance between ORFs is
not in itself predictive of increased correlation. However, the closer together two ORFs
occur the more likely it is that they will be coexpressed.

Divergent pairs of genes that share UASs account for some of the observed
regional coexpression. However, the increased correlation between pairs of genes that do
not share upstream intergenic regions must still be explained. One model that might
explain regional coexpression is that each ORF in a correlated pair has a similar UAS in
its upstream intergenic region. Contrary to this model, we found several examples of
convergent and tandem pairs with highly correlated expression patterns, in which the
promoter of only one of the two genes contained a UAS known to be associated with that
expression pattern (Table 2). For example YPL162C and SVS1 are an adjacent pair of
tandem genes with highly correlated expression. The expression of both these genes
peaks in the G1 phase of the cell cycle, a pattern that has been shown to be associated
with the SCB Box motif11,20,21. However, only SVS1 contains this motif in its upstream
Figure 4. Relationship of the distance between the predicted start sites of adjacent ORFs and their correlation. Each point represents the fraction of pairs of adjacent ORFs that have a correlation coefficient above 0.7 and whose predicted start sites are at a given distance apart.
<table>
<thead>
<tr>
<th>ORF 1</th>
<th>ORF 2</th>
<th>Orientation</th>
<th>Correlation</th>
<th>ORF 1</th>
<th>ORF 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>YRA1</td>
<td>RPP2B</td>
<td>Tan</td>
<td>0.96</td>
<td>none</td>
<td>M1a (x2)</td>
</tr>
<tr>
<td>YPL162C</td>
<td>SVS1</td>
<td>Tan</td>
<td>0.96</td>
<td>none</td>
<td>SCB Box (x3)</td>
</tr>
<tr>
<td>RPL35A</td>
<td>ARF1</td>
<td>Tan</td>
<td>0.95</td>
<td>Rap1 Site (x3), M1a</td>
<td>none</td>
</tr>
<tr>
<td>YDL025C</td>
<td>YDL027C</td>
<td>Tan</td>
<td>0.82</td>
<td>STRE (x2)</td>
<td>none</td>
</tr>
<tr>
<td>YJL163C</td>
<td>SRA3</td>
<td>Tan</td>
<td>0.88</td>
<td>none</td>
<td>STRE (x4)</td>
</tr>
<tr>
<td>RPP1A</td>
<td>RPL13A</td>
<td>Con</td>
<td>0.90</td>
<td>none</td>
<td>Rap1 Site (x2)</td>
</tr>
<tr>
<td>YAR003W</td>
<td>RFA1</td>
<td>Con</td>
<td>0.83</td>
<td>none</td>
<td>MCB Box (x4)</td>
</tr>
</tbody>
</table>

Table 2. Examples of convergent and tandem pairs of genes that show regional coexpression and their associated motifs.11
intergenic region. This and other examples demonstrate that regional coexpression cannot be explained by the presence of similar UASs in the promoters of adjacent genes.

Our results are consistent with the possibility that in some cases a UAS influences the expression of genes that are not immediately downstream from it. Many higher eukaryotic promoters contain enhancers that act over distances of up to 85 Kb both upstream and downstream of start sites. In contrast, the activity of UASs in yeast with respect to distance from start sites has only been examined for a small number of sequences at a few promoters. In general these studies have concluded that UASs only work upstream of promoters and only over a short distances (1-2 kb). However, in Ty element transcription, binding sites for important activators do occur downstream of the start site. In light of our results, the positional constraints on UAS function may have to be examined more closely on a case-by-case basis.

UASs may be capable of long-range interactions when they occur within particular chromosomal regions, such as areas of open chromatin structure. Open chromatin may be characteristic of certain chromosomal domains or it may spread from areas of active transcription and influence neighboring genes. Visualizing chromosomes as correlation maps will help uncover these areas in which genes are regionally coexpressed. Comparing chromosome correlation maps that use different expression data sets will reveal how chromosomal expression domains change in different conditions and mutants.

Not all adjacent pairs exhibit regional coexpression, suggesting that there are sequences that determine when and where regional coexpression occurs. The sequences that regulate regional coexpression might be additional sites for DNA binding proteins or
other sequence landmarks such as polyA tracts. These sequences may be functionally analogous to insulator sequences29-31 and might protect the highly compact yeast genome from unwanted regional coexpression. The identification of sequences that regulate regional coexpression will be an important extension of the methods used here.

The techniques presented here provide a valuable parallel approach to clustering algorithms11,32-36 for examining the vast amounts of expression data now being deposited in public databases37,38. This approach will be useful for studying position effect variegation, telomere silencing39, chromosomal rearrangements, and other position dependent effects on gene expression.
Methods

Data Processing

Our analysis was performed using whole-genome mRNA expression data generated for the mitotic cell cycle (http://genomics.stanford.edu/yeast/cellcycle.html). Briefly, transcript levels were quantified during the cell cycle of *S. cerevisiae* by synchronizing *cdc28-13* cells and harvesting mRNA from cells at 10-minute intervals over the course of two cell cycles. The abundance of each mRNA species in the yeast genome was quantified by hybridization to Affymetrix oligonucleotide microarrays. We also analyzed expression data generated on spotted cDNA microarrays including a study of the changes in gene expression during sporulation (http://cmgm.stanford.edu/pbrown/sporulation) and in response to mating pheromone (http://www.rii.com).

Before proceeding with our analysis, we excluded several data points. We deleted the 90 and 100-minute time points from the cell cycle data set, as the mRNA from these time points was not efficiently labeled\(^1\). We also ignored ORFs that displayed a mean intensity of less than 20 units in the cell cycle data set because experimental noise obscured meaningful quantitation of transcript abundance below this cutoff.

As we began to analyze the data, we discovered that there are a number of annotated ORFs whose sequences physically overlap in the genome. Overlapping ORFs are problematic because cDNA from both ORFs may hybridize to the probes corresponding to a single ORF, resulting in an artificially high correlation between
overlapping ORFs. To eliminate this artifact, we identified all pairs of overlapping ORFs in the genome and removed the smaller of the two ORFs from the data set.

The filtered data sets therefore consisted of the lists non-overlapping ORFs (with average intensities above 20 units in the cell cycle data set). The final lists contained 5531 ORFs for the cell cycle, 5622 ORFs for the sporulation data and 5797 ORFs for the pheromone response data. All experiments use these filtered lists unless otherwise stated.

For experiments analyzing adjacent ORFs, two ORFs were considered to be adjacent if they occurred on the same chromosome, and if there were no other ORFs, Ty elements, LTRs, centromeres, tRNAs, rRNAs, or snRNAs in between them. Triplets and quadruplets were defined as series of adjacent pairs.

Coexpression of Groups of Adjacent Genes

Adjacent pairs were considered to be coexpressed if they had a correlation coefficient greater than 0.7. Triplets and quadruplets were considered to be coexpressed if their component adjacent pairs all had correlation coefficients greater than 0.7.

To determine if the observed number of correlated adjacent pairs was significant, we used the cumulative binomial distribution, given by the formula,

\[P(n \geq n_0) = \sum_{n=n_0}^{N} p^n (1 - p)^{N-n} \frac{N!}{n!(N-n)!} \]

Where \(N \) is the total number of adjacent pairs sampled, \(n_0 \) is the observed number of correlated adjacent pairs, and \(p \) is the observed probability of two randomly picked non-adjacent genes having a correlation above the cutoff.
To determine the significance of correlated triplets we used the same formula except where \(N \) is the total number of triplets sampled, \(n_0 \) is the observed number of triplets with a correlation above the cutoff, and \(p = (p_{\text{pair}})^2 \) where \(p_{\text{pair}} \) is the observed probability of adjacent pairs having a correlation above the cutoff.

To determine the significance of correlated quadruplets we used the same formula except where \(N \) is the total number of quadruplets sampled, \(n_0 \) is the observed number of quadruplets with a correlation above the cutoff, and \(p = p_{\text{pair}} (p_{\text{pair-1}})^2 \) where \(p_{\text{pair-1}} \) is the observed probability of an adjacent pair having a correlation above the cutoff given that the previous adjacent pair has a correlation above the cutoff.

Comparing the correlation of divergent, convergent, and tandem ORF pairs with randomly selected non-adjacent pairs of genes

Adjacent pairs of ORFs present in the filtered data sets were grouped according to their orientations. Control pairs were derived by randomly picking two non-adjacent ORFs and grouping them together as a pair. The correlation coefficients for all pairs were computed, and a histogram showing the fraction of pairs in each correlation bin was plotted for each group. The significance of the differences between the control group and the different classes of adjacent pairs was determined using the chi-square test\(^{40} \). For the cell cycle analysis 1161 divergent, 1239 convergent, 2284 tandem, and 4542 random pairs were included in the analysis. The corresponding numbers were 1225, 1257, 2358 and 4840 for the sporulation data 1318, 1292, 2479 and 4963 for the pheromone response data.
Overrepresentation of adjacent pairs in MIPS functional categories

Adjacent pairs of ORFs were scored as having similar function if they were in the same MIPS functional group. If a MIPS category had more than 537 genes, and contained subgroups, we used only its subgroups. The “unclassified” MIPS category was excluded. This left a total of 105 MIPS categories for the analysis. Of 2081 adjacent pairs 387 were found in the same functional category. Of 27923 randomly picked pairs 3900 were found in the same functional category. Using the cumulative binomial distribution, we computed the probability of the adjacent pairs showing this level of functional similarity by chance to be 4.9x10^{-8}.

Acknowledgments

We thank J. Aach, W. Rindone, S. Tavazoie, J. Graber, K. Struhl, and F. Winston for helpful advice and suggestions, and for providing data files. We also thank P. Sudarsanam, A. Dudley, T. Pilpel, A. Derti, P. Estep, M. Steffen, V. Badarinarayana, T. Wu, and M. Bulyk, for discussions and critical readings of the manuscript. B. A. C. was supported by a postdoctoral fellowship from the American Cancer Society (PF-98-159-01-MBC). This work was supported by the US Department of Energy (DE-FG02-87-ER60565), the Office of Naval Research and DARPA (N00014-97-1-0865), the Lipper Foundation and Hoechst Marion Roussel.

9. Hughes, J. D., Estep, P. W., Tavazoie, S. & Church, G. M. Computational identification of cis-regulatory elements associated with groups of

Chapter 5

Conclusions and Future Directions
Polony Sequencing

Polony sequencing technology has the potential to greatly increase the rate at which we sequence DNA. We have shown in chapter 2 that as many as 5 million polonies can be amplified on a single microscope slide. In chapter 3, it was demonstrated that primer annealed to a polony could be accurately and efficiently extended 34 bases by single nucleotide additions suggesting that 30-100 bases is an achievable read length for FISSEQ. These number indicate that it will be possible to sequence 150 to 500 million bases in an afternoon on a single glass microscope slide, with reagent costs of less that one hundred dollars.

The read length of polony sequencing may eventually rival that of conventional electrophoretic methods. However, we believe read lengths between 35 and 100 bases will be achievable in the next few months. This is sufficient for most applications such as resequencing and mRNA expression analysis, since a sequence of 35 bases has a very high probability of being unique, even in a large genome. Repetitive sequences can be handled by size selecting the DNA library before polony amplification and then sequencing the DNA from both ends. This will aid in the assembly of the sequence tags, because it is known that every pair of sequences obtained from the ends of a polony must be separated by a given number of base pairs in the assembled genome.

Applications for a high throughput sequencing technologies have been described in chapter 1. However, polony sequencing has some unique features that may be exploited for new applications. Because each polony is amplified from a single molecule, polony sequencing seems particularly suited for measuring whole-genome mRNA levels from a single cell. Because such small amounts of DNA are needed as
input, it may be unnecessary to purify samples; instead, one could simply dilute them until the concentration of contaminants that may inhibit enzyme activity becomes negligible. For example, blood is known to contain a number of factors that inhibit PCR, but a blood sample could be diluted one million fold and still contain enough DNA to perform polony sequencing. This feature could make polony sequencing attractive for diagnostic applications.

Polony sequencing is intrinsically in situ, another feature that may make it useful for different applications. For example, one may perform "library versus library" two-hybrid screens and use yeast cells that survive the selection as input for a polony amplification. Because the bait protein and the prey protein are on two different plasmids in the same cell, the sequences of overlapping polonies (sequenced with different sequencing primers) should give the sequences of interacting proteins. Other applications that take advantage of the in situ nature of polony sequencing include mRNA analysis on tissue sections and detecting somatic mutations in tissue sections.

A computational analysis of whole-genome expression data reveals chromosomal domains of gene expression.

In chapter 4, computational tools to study the relationship between a gene’s position and its expression pattern are described. Using these tools, it was found that adjacent and nearby non-adjacent genes displayed correlated expression patterns. One explanation for this result is that an upstream activating sequence (UAS) can act over longer distances than previously thought and that a single UAS may influence the
expression of more than one gene. We next plan to test this hypothesis experimentally by mutating UASs that have been identified as candidates to control 2 or more adjacent genes over a large distance. We also plan on introducing mutations in the TATA elements of the two genes that are putatively under the control of the candidate UAS. This panel of mutants will allow us to determine whether the candidate UAS binds a factor that can initiate transcription on two nearby genes, or if the UAS binds a factor that initiates transcription on only one nearby gene but the process of transcribing that gene somehow increases that probability that the neighboring gene is transcribed.

Another interesting result described in chapter 4 is that only 10-15% of all gene pairs display regional coexpression. Even at a given intergenic distance, some gene pairs are highly correlated while others are not. One possibility is that there are sequences that determine where and when regional coexpression occurs. We will attempt to find these sequences by comparing gene pairs that co-express to pairs that do not co-express and attempting to identify over-represented sequences in either group.

It will also be interesting to create "inter-chromosome" correlation maps. These maps would be analogous to the chromosome correlation map described in chapter 4, but now the correlations between two chromosomes are visualized. If regions of different chromosomes are co-regulated, this type of tool should identify them. Finally it will be interesting to perform this type of position analysis in other organisms to see if regional coexpression is a phenomenon common to all eukaryotes.
Appendix A

Fluorescence Resonance Energy Transfer Between Blue-Emitting and Red-Shifted Excitation Derivatives of the Green Fluorescent Protein
Fluorescence resonance energy transfer between blue-emitting and red-shifted excitation derivatives of the green fluorescent protein *

(FRET; *Aequorea victoria*; fluorescent proteins; factor Xa)

Robi D. Mitra*[^1], Christopher M. Silva[^2] and Douglas C. Youvan[^3]

*Palo Alto Institute for Molecular Medicine, Mountain View, CA 94043, USA; and *KAIROS Scientific Inc., Santa Clara, CA 95054, USA

Received by C.A. Holt: 14 August 1995; Revised/Accepted: 6 September 1995; Received at publishers: 19 October 1995

SUMMARY

We report fluorescent resonance energy transfer (FRET) between two linked variants of the green fluorescent protein (GFP). The C terminus of a red-shifted variant of GFP (RSGFP4) is fused to a flexible polypeptide linker containing a Factor Xa protease cleavage site. The C terminus of this linker is in turn fused to the N terminus of a blue variant of GFP (BFP5). The gene product has spectral properties that suggest energy transfer is occurring from BFP5 to RSGFP4. Upon incubation with Factor Xa, the protein is cleaved, and the two fluorescent proteins dissociate. This is accompanied by a marked decrease in energy transfer. The RSGFP4::BFP5 fusion protein demonstrates the feasibility of using FRET between two GFP derivatives as a tool to monitor protein-protein interactions; in addition, this construct may find applications as an intracellular screen for protease inhibitors.

INTRODUCTION

Recently, groups have obtained mutants of GFP exhibiting diverse spectral properties that will allow researchers to simultaneously analyze gene expression from a number of different promoters (Heim et al., 1994; Delagrave et al., 1995; Heim et al., 1995; Ehrig et al., 1995). We aimed to determine whether two different GFP derivatives could participate in fluorescent resonance energy transfer (FRET) when brought in close proximity. FRET is a process in which an excited fluorophore (the donor) transfers its excited state energy to a light absorbing molecule (the acceptor). This transfer of energy is non-radiative, due primarily to a dipole-dipole interaction between the donor and acceptor. The rate at which energy is transferred from donor to acceptor is governed by the Förster equation (Förster, 1948):

\[
\kappa_{\text{ET}} = \frac{1}{\tau_0} \left(\frac{R_0}{r} \right)^6
\]

\[
R_0 = 8.785 \times 10^{-25} \text{ (cm}^3 \text{ mol}^{-1} \text{)} \frac{k^2 \phi_d \sigma_f}{\eta^4}
\]

The amount of energy transferred per unit time, \(\kappa_{\text{ET}}\), is dependent on \(\tau_0\), the lifetime of the donor in the absence of acceptor molecules, \(r\), the distance between the donor and the acceptor, and \(R_0\), the distance at which energy transfer is 50% efficient. This distance is determined by the following parameters: \(k^2\), a dimensionless factor accounting for the orientation of the donor and acceptor; \(\phi_d\), the quantum yield of the donor; \(\sigma_f\), the cross-section of the acceptor; and \(\eta\), the viscosity of the medium.

Abbreviations: A, absorbance (1 cm); aa, amino acid(s); BFP, blue fluorescent protein(s); bfp, gene encoding BFP; FRET, fluorescent resonance energy transfer; GFP, green fluorescent protein(s); gfp, gene encoding GFP; HIV, human immunodeficiency virus; IPTG, isopropyl-\(\beta\)-thiogalactopyranoside; oligo, oligodeoxyribonucleotide; PCR, polymerase chain reaction; RSGFP, red-shifted GFP; rsagp, gene encoding RSGFP; wt, wild type; ::, novel junction (fusion or insertion).
acceptor relative to one another; \(\phi_d \), the quantum yield of the donor in the absence of acceptor molecules; \(n \), the index of refraction of the medium; and
\(J = \int_0^\infty F_d(\tilde{\nu}) e_x(\tilde{\nu})/\tilde{\nu}^4 \), the spectral overlap integral, which is a measure of the degree of spectral overlap between the emission spectrum of the donor and the excitation spectrum of the acceptor. In this expression, \(F_d(\tilde{\nu}) \) is the normalized fluorescence intensity of the donor at wavenumber \(\tilde{\nu} \), \(e_x(\tilde{\nu}) \) is the extinction coefficient of the acceptor at wavenumber \(\tilde{\nu} \).

There are a number of good reviews on the applications of FRET in biochemistry and cell biology (Wu et al., 1994; Lakowicz, 1983; Stryer, 1978). FRET measurements are often used to determine the degree of association between two macromolecules, both intracellularly and in cell-free systems. For example, energy transfer has been used to monitor intracellular oligo hybridization (Sixou et al., 1994), to study the aggregation of ATPase molecules in lipid vesicles (Vandekerkoel et al., 1977), and as an assay for intracellular cAMP concentration (Adams et al., 1991). Another application of FRET is in a cell-free assay for HIV protease (Matayoshi et al., 1990). In this system, one end of a polypeptide is labeled with a donor fluorophore (EDANS), and the other end of the polypeptide is labeled with a strong light absorbing molecule (DABCYL). The polypeptide has an amino acid sequence derived from the natural processing site of HIV protease. The polypeptide is incubated with HIV protease, and FRET is used to monitor the hydrolysis of the substrate in real time.

Establishing an intracellular system that utilizes FRET can be a formidable challenge because of the need to label the biomolecule of interest with suitable fluorophores and then incorporate them back into living cells (Tsien et al., 1993). Using GFP derivatives for FRET experiments could overcome this limitation. Proteins can be genetically fused to mutants of GFP that act as donor or acceptors, eliminating the need to chemically label the proteins and inject them back into living cells.

We have constructed a concatemer of two GFP mutants that exhibits FRET. A blue fluorescent protein (BFP5) with an excitation band at 385 nm and an emission band at 450 nm is joined to a red-shifted GFP (RSGFP4) with an excitation band at 488 nm and an emission band at 505 nm. The two mutants are separated by a 20 amino acid flexible peptide linker that contains a Factor Xa protease site. When excited at 385 nm, two emission bands are obtained, one at 450 nm, and another at 505 nm, due to energy transfer from BFP5 to RSGFP4. Upon cleavage of the RSGFP4::BFP5 fusion with Factor Xa, the band at 505 nm disappears, and there is an increase in the fluorescence observed at 450 nm. This is the first demonstration of FRET between two GFP derivatives.

EXPERIMENTAL AND DISCUSSION

(a) Construction of the RSGFP4::BFP5 fusion

The aa sequence of RSGFP4 differs from the wt sequence at three aa, \(F^{64}M, S^{65}G, Q^{69}L \) (Delagrave et al., 1995). This derivative has an emission spectrum that is nearly identical to that of wt, but its excitation spectrum is shifted approximately 100 nm to the red (Fig. 1A). The aa sequence of BFP5 differs from the wt sequence at three aa: \(F^{64}M, Y^{66}H, V^{68}I \). The excitation and emission spectra are similar to the blue fluorescent protein previously reported by Heim et al. (1994) (Fig. 1B).

The coding sequence for BFP5 was recovered from a mutagenized derivative of the plasmid pTU58 (Chalfie et al., 1994) by PCR. The 5' primer is targeted to the N-end of the gene, and includes a BamHI site. It has the following nt sequence: 5'-CAGTTGCAGGAAGGATCCGCTAGCAAAGGAGAAGAACTTTTCACT. The 3' primer is targeted to the C-end of the gene and contains

![Fig. 1](image-url)
Fluorescence excitation and emission spectra of (A) a red-shifted excitation derivative of GFP, RSGFP4, and of (B) a blue derivative of GFP, BFP5. Excitation and emission spectra were measured with 2 nm bandwidths. Excitation spectra were corrected with a rhodamine B quantum counter, emission spectra were corrected using manufacturer supplied correction spectra (Photon Technology).
The 5'-primer contains a BamHI site and has the following sequence:
5'-CCACATGAATGGGGATCC-

The 3' primer is targeted to the C-end of rsgfp4, and contains the nucleotide sequence for the peptide linker separating the two mutants in the RSGFP4::BFP5 construct, as well as a BamHI site. The 3' primer has the following sequence:
5'-TATTAGACTGGGATCCACT-

(a) DNA manipulations

(b) Spectroscopic analysis of the RSGFP4-BFP5 fusion protein

Plasmid pR4B530a was transformed into Escherichia coli strain BL21(DE3). A 300 ml culture was grown at 25°C and induced at A 600 =0.9 with 100 μM IPTG. The culture was left at room temperature overnight, and the cells were harvested by centrifugation. Growth and induction at room temperature was found to significantly increase the amount of expressed protein. This was also true for wt GFP. The pellet was resuspended in lysis buffer (20 mM Tris HCl pH 8.0/100 mM NaCl/1 mM PMSF/1 μg pepstatin A 1 μg leupeptin per ml), and the suspension was French pressed. RSGFP4::BFP5 fusion protein was purified using a His-bind resin (Novagen).

The emission spectrum of RSGFP4::BFP5 (Fig. 3, spectrum 1) was taken on a Photon Technology Inc. fluorometer. Two bands are clearly visible in the emission spectra, one at 450 nm, and a larger band at 505 nm. To evaluate the utility of the RSGFP4::BFP5 concatemer as a tool to monitor protease activity, the emission spectrum of RSGFP4::BFP5 was taken at regular time intervals after the addition of the protease Factor Xa. The results are shown in Fig. 3 (spectra 2–8) and Fig. 4. Fig. 3 shows the gradual increase of the 450 nm band with time, with the concomitant decrease of the 505 nm band. There is an isosbestic point at 490 nm. The ratio of the fluorescence at 450 nm to the fluorescence at 505 nm is plotted versus time in Fig. 4. This ratio of donor fluorescence to acceptor fluorescence varies by almost two-fold. This is
consistent with the range of donor to acceptor fluorescence in other FRET assays (Adams, 1991). From Fig. 4, it may be deduced that Factor Xa cleaves the RSGFP4::BFP5 fusion protein under these conditions with a first-order time constant of approximately 25 min.

The emission spectra shown in Fig. 3 suggest that BFP5 is transferring excited state energy to RSGFP4. The distance between the two chromophores cannot be derived because the extinction coefficients and quantum yields of these two derivatives have not yet been determined. In addition, the orientation of these two chromophores with respect to one another is not known, so a theoretical R_0 cannot be computed. However, we hypothesize that the BFP5 and RSGFP4 proteins are actually in contact with one another before the concatemer is cleaved with Factor Xa. This hypothesis is made because wild type GFP has been found to dimerize at concentrations greater than 2.7 mg/ml (Cutler, 1993). Since the two derivatives are tethered to one another via a long, flexible linker, they may associate in a similar fashion. However, even within such a structure the chromophores may be some distance apart.

c) Conclusions

(1) We have shown that FRET occurs between two variants of GFP that have been linked together using molecular genetic techniques. Future spectroscopic studies the fusion protein will be directed at determining more details of this physiochemical process, possibly by the use of time-resolved spectroscopy.

(2) The RSGFP4-BFP5 concatemer may also find an application in a FRET protease assay. Use of this concatemer may have advantages over other methods of monitoring protease activity or screening for protease inhibitors because the assay could be carried out in living cells and in real time. This would be accomplished by cotransfecting cells with the gene for the protease of interest, and the gene for the BFP::RSGFP concatemer. An intracellular assay may be particularly useful for finding protease inhibitors because factors such as the cytotoxicity of a potential inhibitor and its ability to enter into the cell are automatically determined when screening with this type of assay.

(3) There are a number of ways in which the efficiency of FRET in this construct could be improved. First, mutagenic strategies such as recursive ensemble mutagenesis (Delagrave et al., 1993), parsimonious mutagenesis (Balint and Larrick, 1993), and PCR mutagenesis (Stemmer, 1994) can be applied to GFP to yield derivatives with higher extinction coefficients, better quantum yields, or better spectral overlaps. Also, mutagenizing the linker between the two mutants may allow the donor and acceptor to come into closer contact with one another, thus improving the efficiency of the energy transfer.

ACKNOWLEDGMENTS

This research was supported by NIH GM42645, DOE DE-FG03-96ER20211 and NIH R43GM53287.

REFERENCES

Appendix B

Cost Estimates for Polony Sequencing
This table estimates the cost per base that polony sequencing should achieve. This estimate makes the following assumptions: 1.) 1.5 million polonies can be sequenced on each slide. 2.) The polonies can be accurately sequenced to a read length of 30 base pairs.

<table>
<thead>
<tr>
<th>Component</th>
<th>$/slide</th>
<th>$/polony</th>
<th>$/Base</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA Extraction/ Purification</td>
<td>2.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Library Preparation</td>
<td>2.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amplification enzyme</td>
<td>6.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>slide, acrylamide etc.</td>
<td>4.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sequencing Enzyme</td>
<td>24.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Labeled dNTP</td>
<td>15.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instrumentation ($100K amort. Over 5yrs)</td>
<td>8.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>$71.40</td>
<td>$4.76 \times 10^{-4}</td>
<td>$1.6 \times 10^{-5}</td>
</tr>
</tbody>
</table>
Appendix A

Fluorescence Resonance Energy Transfer Between Blue-Emitting and Red-Shifted Excitation Derivatives of the Green Fluorescent Protein
Fluorescence resonance energy transfer between blue-emitting and red-shifted excitation derivatives of the green fluorescent protein *

(FRET; Aequorea victoria; fluorescent proteins; factor Xa)

Robi D. Mitraa, Christopher M. Silvab and Douglas C. Youvanc

aPalo Alto Institute for Molecular Medicine, Mountain View, CA 94043, USA; and bKAIROS Scientific Inc., Santa Clara, CA 95054, USA

Received by C.A. Holt: 14 August 1995; Revised/Accepted: 6 September 1995; Received at publishers: 19 October 1995

SUMMARY

We report fluorescent resonance energy transfer (FRET) between two linked variants of the green fluorescent protein (GFP). The C terminus of a red-shifted variant of GFP (RSGFP4) is fused to a flexible polypeptide linker containing a Factor Xa protease cleavage site. The C terminus of this linker is in turn fused to the N terminus of a blue variant of GFP (BFP5). The gene product has spectral properties that suggest energy transfer is occurring from BFP5 to RSGFP4. Upon incubation with Factor Xa, the protein is cleaved, and the two fluorescent proteins dissociate. This is accompanied by a marked decrease in energy transfer. The RSGFP4::BFP5 fusion protein demonstrates the feasibility of using FRET between two GFP derivatives as a tool to monitor protein-protein interactions; in addition, this construct may find applications as an intracellular screen for protease inhibitors.

INTRODUCTION

Recently, groups have obtained mutants of GFP exhibiting diverse spectral properties that will allow researchers to simultaneously analyze gene expression from a number of different promoters (Heim et al., 1994; Delagrave et al., 1995; Heim et al., 1995; Ehrig et al., 1995). We aimed to determine whether two different GFP derivatives could participate in fluorescent resonance energy transfer (FRET) when brought in close proximity. FRET is a process in which an excited fluorophore (the donor) transfers its excited state energy to a light absorbing molecule (the acceptor). This transfer of energy is non-radiative, due primarily to a dipole-dipole interaction between the donor and acceptor. The rate at which energy is transferred from donor to acceptor is governed by the Förster equation (Förster, 1948):

\[k_{ET} = \frac{1}{\tau_d} \left(\frac{R_0}{r} \right)^6 \]

\[R_0 = 8.785 \times 10^{-25} \text{ (cm}^3 \text{ mol}^{-1} \text{)} \frac{\kappa^2 \phi_d J}{n^4} \]

The amount of energy transferred per unit time, \(k_{ET} \), is dependent on \(\tau_d \), the lifetime of the donor in the absence of acceptor molecules, \(r \), the distance between the donor and the acceptor, and \(R_0 \), the distance at which energy transfer is 50% efficient. This distance is determined by the following parameters: \(\kappa \), a dimensionless factor accounting for the orientation of the donor and
acceptor relative to one another; ϕ_d, the quantum yield of the donor in the absence of acceptor molecules; n, the index of refraction of the medium; and $J = \int_0^\infty F_d(\tilde{\nu}) e_a(\tilde{\nu}) \tilde{\nu}^4 d\tilde{\nu}$, the spectral overlap integral, which is a measure of the degree of spectral overlap between the emission spectrum of the donor and the excitation spectrum of the acceptor. In this expression, $F_d(\tilde{\nu})$ is the normalized fluorescence intensity of the donor at wavenumber $\tilde{\nu}$, and $e_a(\tilde{\nu})$ is the extinction coefficient of the acceptor at wavenumber $\tilde{\nu}$.

There are a number of good reviews on the applications of FRET in biochemistry and cell biology (Wu et al., 1994; Lakowicz, 1983; Stryer, 1978). FRET measurements are often used to determine the degree of association between two macromolecules, both intracellularly and in cell-free systems. For example, energy transfer has been used to monitor intracellular oligo hybridization (Sixou et al., 1994), to study the aggregation of ATPase molecules in lipid vesicles (Vanderkooi et al., 1977), and as an assay for intracellular cAMP concentration (Adams et al., 1991). Another application of FRET is in a cell-free assay for HIV protease (Matayoshi et al., 1990). In this system, one end of a polypeptide is labeled with a donor fluorophore (EDANS), and the other end of the polypeptide is labeled with a strong light absorbing molecule (DABCYL). The polypeptide has an amino acid sequence derived from the natural processing site of HIV protease. The polypeptide is incubated with HIV protease, and FRET is used to monitor the hydrolysis of the substrate in real time.

Establishing an intracellular system that utilizes FRET can be a formidable challenge because of the need to label the biomolecule of interest with suitable fluorophores and then incorporate them back into living cells (Tsien et al., 1993). Using GFP derivatives for FRET experiments could overcome this limitation. Proteins can be genetically fused to mutants of GFP that act as donor or acceptors, eliminating the need to chemically label the proteins and inject them back into living cells.

We have constructed a concatemer of two GFP mutants that exhibits FRET. A blue fluorescent protein (BFP5) with an excitation band at 385 nm and an emission band at 450 nm is joined to a red-shifted GFP (RSGFP4) with an excitation band at 488 nm and an emission band at 505 nm. The two mutants are separated by a 20 amino acid flexible peptide linker that contains a Factor Xa protease site. When excited at 385 nm, two emission bands are obtained, one at 450 nm, and another at 505 nm, due to energy transfer from BFP5 to RSGFP4. Upon cleavage of the RSGFP4::BFP5 fusion with Factor Xa, the band at 505 nm disappears, and there is an increase in the fluorescence observed at 450 nm. This is the first demonstration of FRET between two GFP derivatives.

EXPERIMENTAL AND DISCUSSION

(a) Construction of the RSGFP4::BFP5 fusion

The aa sequence of RSGFP4 differs from the wt sequence at three aa, $F^{64} \rightarrow M$, $S^{65} \rightarrow G$, $Q^{69} \rightarrow L$ (Delagrave et al., 1995). This derivative has an emission spectrum that is nearly identical to that of wt, but its excitation spectrum is shifted approximately 100 nm to the red (Fig. 1A). The aa sequence of BFP5 differs from the wt sequence at three aa: $F^{64} \rightarrow M$, $Y^{66} \rightarrow H$, $V^{68} \rightarrow I$. The excitation and emission spectra are similar to the blue fluorescent protein previously reported by Heim et al. (1994) (Fig. 1B).

The coding sequence for BFP5 was recovered from a mutagenized derivative of the plasmid pTU58 (Chalfie et al., 1994) by PCR. The 5' primer is targeted to the N-end of the gene, and includes a BamHI site. It has the following nt sequence: 5'-CAGTTGCAGGAAGGATCCGCTAGCAAAGGAGAAGAACTTTTCACT. The 3' primer is targeted to the C-end of the gene and contains

![Fig. 1. Fluorescence excitation and emission spectra of (A) a red-shifted excitation derivative of GFP, RSGFP4, and of (B) a blue derivative of GFP, BFP5. Excitation and emission spectra were measured with 2 nm bandwidths. Excitation spectra were corrected with a rhodamine B quantum counter; emission spectra were corrected using manufacturer supplied correction spectra (Photon Technology).](image-url)
a XhoI site: 5'-CCTGGCCTAAACTCGAGTTTGTATA-
GTTCATCCATGCCATG. The PCR product was then cloned between the BamHI and XhoI sites of pET30a (Novagen). This construct is called pB530a.

The rsgfp4 gene was also recovered from a mutagenized derivative of pTU58 (Delagrave et al., 1995) by PCR. The 5' primer contains a BamHI site and has the following sequence: 5'-CCACATGAATGGGGATCC-
GAATTCGAGCTCATGGCTAGCAAAGAAGA-
ACTTT. The 3' primer is targeted to the C-end of rsgfp4, and contains the nucleotide sequence for the peptide linker separating the two mutants in the RSGFP4::BFP5 construct, as well as a BamHI site. The 3' primer has the following sequence: 5'-TATTAGACTGGGATCCACT-
TGAACTGCTACGACCCTCGATACCGCTTGAGCT-
ACTTCCACTACTTGATGATTTGTATAGTTCATCC-
ATGCCATGTGT. The PCR product was then cloned between the BglI and BamHI sites in pB530a. This construct is called pR4B530a (Fig. 2). The N terminus of the gene product is labeled with His6 and an 11 aa S-Tag. The linker separating the two mutants has the aa sequence: SSSSGSSSSGIEGRSSSSGS. Factor Xa cleaves preferentially after the sequence IEGR.

(b) Spectroscopic analysis of the RSGFP4::BFP5 fusion protein

Plasmid pR4B530a was transformed into Escherichia coli strain BL21(DE3). A 300 ml culture was grown at 25°C and induced at $A_{600} = 0.9$ with 100 μM IPTG. The culture was left at room temperature overnight, and the cells were harvested by centrifugation. Growth and induction at room temperature was found to significantly increase the amount of expressed protein. This was also true for wt GFP. The pellet was resuspended in lysis buffer (20 mM Tris HCl pH 8.0/100 mM NaCl/1 mM PMSF/1 μg pepstatin A 1 μg leupeptin per ml), and the suspension was French pressed. RSGFP4::BFP5 fusion protein was purified using a His-bind resin (Novagen).

The emission spectrum of RSGFP4::BFP5 (Fig. 3, spectrum 1) was taken on a Photon Technology Inc. fluorometer. Two bands are clearly visible in the emission spectra, one at 450 nm, and a larger band at 505 nm. To evaluate the utility of the RSGFP4::BFP5 concatemer as a tool to monitor protease activity, the emission spectrum of RSGFP4::BFP5 was taken at regular time intervals after the addition of the protease Factor Xa. The results are shown in Fig. 3 (spectra 2–8) and Fig. 4. Fig. 3 shows the gradual increase of the 450 nm band with time, with the concomitant decrease of the 505 nm band. There is an isosbestic point at 490 nm. The ratio of the fluorescence at 450 nm to the fluorescence at 505 nm is plotted versus time in Fig. 4. This ratio of donor fluorescence to acceptor fluorescence varies by almost two-fold. This is
studies the fusion protein will be directed at determining molecular genetic techniques. Future spectroscopic variants of may be some distance apart. However, even within such a structure the chromophores with respect to one another is not known, so a theoretical R₀ cannot be computed. However, we hypothesize that the BFP5 and RSGFP4 proteins are actually in contact with one another before the concatemer is cleaved with Factor Xₐ. This hypothesis is made because wild type GFP has been found to dimerize at concentrations greater than 2.7 mg/ml (Cutler, 1993). Since the two derivatives are tethered to one another via a long, flexible linker, they may associate in a similar fashion. However, even within such a structure the chromophores may be some distance apart.

(c) Conclusions

(1) We have shown that FRET occurs between two variants of GFP that have been linked together using molecular genetic techniques. Future spectroscopic studies the fusion protein will be directed at determining more details of this physiochemical process, possibly by the use of time-resolved spectroscopy.

(2) The RSGFP4-BFP5 concatemer may also find an application in a FRET protease assay. Use of this concatemer may have advantages over other methods of monitoring protease activity or screening for protease inhibitors because the assay could be carried out in living cells and in real time. This would be accomplished by cotransfecting cells with the gene for the protease of interest, and the gene for the BFP::RSGFP concatemer. An intracellular assay may be particularly useful for finding protease inhibitors because factors such as the cytotoxicity of a potential inhibitor and its ability to enter into the cell are automatically determined when screening with this type of assay.

(3) There are a number of ways in which the efficiency of FRET in this construct could be improved. First, mutagenic strategies such as recursive ensemble mutagenesis (Delagrave et al., 1993), parsimonious mutagenesis (Balint and Larrick, 1993), and PCR mutagenesis (Stemmer, 1994) can be applied to GFP to yield derivatives with higher extinction coefficients, better quantum yields, or better spectral overlaps. Also, mutagenizing the linker between the two mutants may allow the donor and acceptor to come into closer contact with one another, thus improving the efficiency of the energy transfer.

ACKNOWLEDGMENTS

This research was supported by NIH GM42645, DOE DE-FG03-96ER20211 and NIH R43GM53287.

REFERENCES

Appendix B

Cost Estimates for Polony Sequencing
This table estimates the cost per base that polony sequencing should achieve. This estimate makes the following assumptions: 1.) 1.5 million polonies can be sequenced on each slide. 2.) The polonies can be accurately sequenced to a read length of 30 base pairs.

<table>
<thead>
<tr>
<th>Component</th>
<th>$/slide</th>
<th>$/polony</th>
<th>$/Base</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA Extraction/ Purification</td>
<td>2.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Library Preparation</td>
<td>2.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amplification</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>enzyme</td>
<td>6.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>slide, acrylamide etc.</td>
<td>4.00</td>
<td></td>
</tr>
<tr>
<td>Sequencing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Enzyme</td>
<td>24.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Labeled dNTP</td>
<td>15.00</td>
<td></td>
</tr>
<tr>
<td>Instrumentation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>($100K amort. Over 5yrs)</td>
<td>8.00</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>$71.40</td>
<td>$4.76 \times 10^{-4}</td>
<td>$1.6 \times 10^{-5}</td>
</tr>
</tbody>
</table>