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Abstract

Accurate modeling of physical and biogeochemical dynamics in coastal ocean re-
gions is required for multiple scientific and societal applications, covering a wide range
of time and space scales. However, in light of the strong nonlinearities observed in
coastal regions and in biological processes, such modeling is challenging. An im-
portant subject that has been largely overlooked is the numerical requirements for
regional ocean simulation studies. Major objectives of this thesis are to address such
computational questions for non-hydrostatic multiscale flows and for biogeochemical
interactions, and to derive and develop numerical schemes that meet these require-
ments, utilizing the latest advances in computational fluid dynamics.

We are interested in studying nonlinear, transient, and multiscale ocean dynam-
ics over complex geometries with steep bathymetry and intricate coastlines, from
sub-mesoscales to basin-scales. These dynamical interests, when combined with our
requirements for accurate, efficient and flexible ocean modeling, led us to develop
new variable resolution, higher-order and non-hydrostatic ocean modeling schemes.
Specifically, we derived, developed and applied new numerical schemes based on the
novel hybrid discontinuous Galerkin (HDG) method in combination with projection
methods.

The new numerical schemes are first derived for the Navier-Stokes equations. To
ensure mass conservation, we define numerical fluxes that are consistent with the dis-
crete divergence equation. To improve stability and accuracy, we derive a consistent
HDG stability parameter for the pressure-correction equation. We also apply a new
boundary condition for the pressure-corrector, and show the form and origin of the
projection method's time-splitting error for a case with implicit diffusion and explicit
advection. Our scheme is implemented for arbitrary, mixed-element unstructured
grids using a novel quadrature-free integration method for a nodal basis, which is
consistent with the HDG method. To prevent numerical oscillations, we design a se-
lective high-order nodal limiter. We demonstrate the correctness of our new schemes
using a tracer advection benchmark, a manufactured solution for the steady diffusion
and stokes equations, and the 2D lock-exchange problem.
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These numerical schemes are then extended for non-hydrostatic, free-surface,
variable-density regional ocean dynamics. The time-splitting procedure using projec-

tion methods is derived for non-hydrostatic or hydrostatic, and nonlinear free-surface

or rigid-lid, versions of the model. We also derive consistent HDG stability param-

eters for the free-surface and non-hydrostatic pressure-corrector equations to ensure

stability and accuracy. New boundary conditions for the free-surface-corrector and

pressure-corrector are also introduced. We prove that these conditions lead to con-

sistent boundary conditions for the free-surface and pressure proper. To ensure dis-

crete mass conservation with a moving free-surface, we use an arbitrary Lagrangian-

Eulerian (ALE) moving mesh algorithm. These schemes are again verified, this time

using a tidal flow problem with analytical solutions and a 3D lock-exchange bench-

mark.
We apply our new numerical schemes to evaluate the numerical requirements of

the coupled biological-physical dynamics. We find that higher-order schemes are

more accurate at the same efficiency compared to lower-order (e.g. second-order)

accurate schemes when modeling a biological patch. Due to decreased numerical

dissipation, the higher-order schemes are capable of modeling biological patchiness
over a sustained duration, while the lower-order schemes can lose significant biomass

after a few non-dimensional times and can thus solve erroneous nonlinear dynamics.

Finally, inspired by Stellwagen Bank in Massachusetts Bay, we study the effect

of non-hydrostatic physics on biological productivity and phytoplankton fields for

tidally-driven flows over an idealized bank. We find that the non-hydrostatic pres-

sure and flows are important for biological dynamics, especially when flows are super-

critical. That is, when the slope of the topography is larger than the slope of internal

wave rays at the tidal frequency. The non-hydrostatic effects increase with increas-

ing nonlinearity, both when the internal Froude number and criticality parameter

increase. Even in cases where the instantaneous biological productivity is not largely

modified, we find that the total biomass, spatial variability and patchiness of phyto-

plankton can be significantly altered by non-hydrostatic processes.
Our ultimate dynamics motivation is to allow quantitative simulation studies of

fundamental nonlinear biological-physical dynamics in coastal regions with complex

bathymetric features such as straits, sills, ridges and shelfbreaks. This thesis develops

the necessary numerical schemes that meet the stringent accuracy requirements for

these types of flows and dynamics.

Thesis Supervisor: Pierre F. J. Lermusiaux
Title: Associate Professor of Mechanical Engineering
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tively) for the advection benchmark using p = 5, Ax = .. .. . ... 142

3-15 Spatial convergence of advection equation without limiter (left) and

with selective nodal limiter (right). The spatial resolutions used are

'AX = 1 1 1 1 1 .. 144 = ,8 16 , 52 64. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 143

3-16 Errors of the tracer advection test-case for the intermediate resolution,

p = 3, AX = 1, case in Fig. [3-15], without the limiter (left) and with

the selective nodal limiter (right). . . . . . . . . . . . . . . . . . . . . 144

3-17 Selectivity index a: (3.25) for the tracer advection test-case using p =

3 at resolutions of Ax = [_L, _L, ] on the left, center, and right,

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
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3-18 Test of the first numerical property introduced in §2.2.2 shown at T = 14
after one time-step using a first-order Euler scheme. A mesh of 16 x 16

elements with a p = 6 degree polynomial but a large time-step of

At = 0.1 is used. Using a divergence-free forcing function, the scaled

divergence of the predictor velocity, the scaled final velocity, the scaled

pressure correction, and the final scaled pressure are shown when using

the boundary conditions from Timmermans et al. (1996). . . . . . . . 149

3-19 As in Fig. [3-18], but using the boundary conditions from Shirokoff

and Rosales (2011). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

3-20 Sketch of a ID slice through the u-velocity from Fig. [3-18] or Fig.

[3-19]. With the uniform Dirichlet boundary conditions corresponding

to Fig. [3-18], the solution follows the solid green line, which has a

modified slope at the boundary. With the uniform Neumann bound-

ary condition corresponding to Fig. [3-19], the solution follows the

dashed blue line, which has a modified value at the boundary. The

true solutions follows the thin, solid red line. . . . . . . . . . . . . . 151

3-21 Test of the second numerical property introduced in §2.2.2 shown at

T = 21 after one time-step using a first-order Euler scheme. A mesh of4

16 x 16 elements with a p = 6 degree polynomial but a large time-step

of At = 0.1 is used. Using an irrotational forcing function, the scaled

divergence of the predictor velocity, the scaled final velocity, the scaled

pressure correction, and the final scaled pressure are shown when using

the boundary conditions from Timmermans et al. (1996). . . . . . . . 153

3-22 As in Fig. [3-18], but using the boundary conditions from Shirokoff

and Rosales (2011). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
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3-23 Spatial convergence of pressure (left) and velocity (right) using the

analytical stokes problem with Re = 1, and r = 1 (top), r, = 5000

(middle), and r, = 1.7e10 = 2At (bottom), with theoretical optimal

convergence in gray dashes. The Appendix B scheme is used with a

second-order accurate IMEX integrator, with time-step fixed at At =

10-. For small values of Tp the solution is not stable until sufficient

resolution is reached. For larger values of mr the convergence is optimal,

with excellent results for -r, = 1. ............ ....... 155

3-24 Temporal convergence of pressure (top) and velocity (bottom) using

the analytical stokes problem with Re = 1 for our §2.3.2 scheme. A

64 x 64 square mesh with p = 6 was used for the spatial mesh, and first

to third order accurate IMEX RK schemes were used. The rotational

correction is applied (right), and not applied (left). The rotational

correction lowers the absolute pressure-error. . . . . . . . . . . . . . . 157

3-25 As in Fig. [3-24], but using the Appendix B scheme with restarts. . . 158

3-26 Pressure error for second order accurate IMEX-RK time integration

using At = 0.1 for the standard (left) and rotational (right) pressure

corrections of our §2.3.2 scheme. The rotational correction removes

errors at the boundary of the domain, but errors at the corners remain. 158

3-27 As in Fig. [3-26], but using the Appendix B scheme with restarts and

A t = 0.025. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

3-28 As in Fig. [3-25], using the Appendix B scheme, but without the

pressure restart or the rotational correction. The second order scheme

converges near-optimally for both pressure and velocity, while the third

order scheme converges sub-optimally. The pressure converges at a

faster rate for the first order scheme, while it converge near-optimally

for the velocity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

3-29 As in Fig. [3-28], but with Re = co. Now the third-order scheme also

converges optimally . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
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3-30 Error (top) of pressure (left) and velocity (right), and order of temporal

convergence (bottom) using the analytical stokes problem with Re = 1.

A 64 x 64 square mesh with p = 6 was used for the spatial mesh, and

first to third order accurate IMEX RK schemes were used, the error is

plotted for At = 0.0125 and the order of convergence was calculated

using At = [0.025, 0.0125]. As the Reynolds number increases the

pressure error decreases while the velocity error increases for the first-

order IMEX scheme, with less effect for the higher-order schemes. The

order of converge remains unaffected, but when Re= oo, near optimal

convergence is obtained for velocity. . . . . . . . . . . . . . . . . . . . 162

3-31 To find the foremost point of the density front where p = 0, an alternat-

ing direction Newton-Rhapson root-find (green dashes) is followed by

a line-search (cyan dotted line). This procedure is applied iteratively

until convergence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

3-32 Density solution at time 10 of the Lock-Exchange problem (Cr = 1.25 x

106) using various orders of accuracy and spatial resolution, all runs

with approximately 160,000 degrees of freedom. There are some minor

differences in the front propagation speed and the shape of the Kelvin-

Helmholtz instabilities. . . . . . . . . . . . . . . . . . . . . . . . . . 165

3-33 Density front propagation speed for various resolutions for the no-slip

case. Solid and dashed lines indicate the solution obtained by HARTEL

and SUNTANS respectively. . . . . . . . . . . . . . . . . . . . . . . . 165

4-1 New HDG projection method scheme for a non-hydrostatic free-surface

ocean m odel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

4-2 New HDG projection method scheme for a hydrostatic free-surface

ocean m odel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
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4-3 The 2D free-surface gradient correction on the 2D elements are copied

down to the 3D element nodes, and non-vertical hybrid discontinuous

Galerkin edge nodes (red dash-dot). The correction on the 2D hybrid

discontinuous Galerkin edge-space is copied down to the 3D vertical

hybrid discontinuous Galerkin edge nodes (blue dashes). . . . . . . . 222

4-4 Sketch of domain for tidal flow benchmark. . . . . . . . . . . . . . . . 229

4-5 Relative errors (normalized by the maximum absolute value of the

analytical solution) for the tidal flow benchmark at tidal cycle 10.125,

T = 10.125 (12.42 x 3600). The errors for the non-resonant case (left)

and near-resonant case (right) are plotted for the first (top), second

(middle), and third (bottom) order-accurate time-integration schemes. 230

4-6 Lock exchange benchmark over domain L x H x B = 8 x 2 x 10--

at T = 5 (top two plots) and T = 10 (bottom two plots) for the

hydrostatic (first and third plots) and non-hydrostatic (second and last

plots) cases at Gr = 1.25 x 106. Both use N = 100 x 400 elements, p =

1, At = 0.001, and a second-order accurate time-integrator. Density

contours are plotted over velocity magnitude. . . . . . . . . . . . . . 231

6-1 Minimum triangle angle criterion (6.6) demonstrated on a circle with

equilateral triangles. hi = 2p does not satisfy the criterion, h2 = 2/3p

satisfies the criterion, and h3 = 2psin(7r/3) demonstrates the limiting

case. This result can be extended to arbitrary triangles as shown by

the dashed lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

6-2 a) The base mesh (gi) with 350 elements. b) First (g2) (1,400 ele-

ments) c) second (g3) (5,600 elements), d) third (g4) (22,400 elements),

and fourth (g5) (89,600 elements) grid refinements. The more-refined

meshes are used for lower-order schemes whereas less-refined meshes

are used for higher-order schemes such that the cost of the two schemes

are comparable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
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6-3 Details of (gi) using a a) curved and b) straight mesh for a p = 8 nodal

basis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

6-4 Test case domain with idealized strait bottom geometry described by
2

H (x) = H e7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

6-5 Solution profiles at all depths with -y = 5%. Magenta crosses show

the analytical steady-state solution, the thick black dashed lines show

the initial condition, green circles show the profile at t* = 250, and

thin blue lines show the profile at t* = 125. Plotted for biological

dynamics with a) single stable points at all depths, b) stable limit

cycles at bottom of euphotic zone, and c) stable limit cycles in en-

tire euphotic zone. The quadrature-based solution is plotted at the

quadrature points, whereas the quadrature-free solution is plotted at

the nodal points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

6-6 Solution profiles for all depths at t* = 500 using a 1 5 th degree poly-

nomial and 3 elements with y = 5% for dynamics with stable limit

cycles at the bottom of the euphotic zone. As in Fig. [6-5], the ma-

genta crosses show the analytical steady-state solution, thick black

dashed lines show the initial condition, green circles show the profile

at t* = 250, and thin blue lines give the profile at t* = 125. The solu-

tion is plotted at the quadrature points for the quadrature version, and

at the nodal points for the quadrature-free (i.e. where the source terms

are evaluated). a) Uses well-behaved (Gauss-Lobatto) nodal points, b)

uses uniform nodal points. . . . . . . . . . . . . . . . . . . . . . . . . 268

6-7 Biological dynamics at t* = 20 (with -a = 12.5[days]) using (g5,pl) .

Biolocial dynamics with a) single stable points, b) stable limit cycles

for depths z* = 0.4 - 0.9, and c) stable limit cycles in whole euphotic

zone. This is the reference solution against which all other solutions

are com pared. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
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6-8 Phytoplankton fields at time t* = 20 (with ;- = 12.5[days]), as com-

puted using four different spatial resolutions and order of the FE

scheme: a) (g3,pl), (16,800 DOFs) b) (g3,p2) (33,600 DOFs), c)

(g4,pl) (67,200 DOFs), and d) (g4,p2) (134,400 DOFs). All fields

are for biological dynamics with stable limit cycles in the euphotic

zone (bio case 3 in Table [6.2]). . . . . . . . . . . . . . . . . . . . . . 272

6-9 Temporal discretization differences for Phytoplankton field with stable

limit cycles in euphotic zone at t* = 40 using periodic boundary con-

ditions and on spatial grid (g4, p2). a) "1st order Euler" minus "4 th

order Runge-Kutta", and b) "2 n order Runge-Kutta" minus "4th order

Runge-Kutta". . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

6-10 Zooplankton fields at t* = 20 computed using (gi, p6) and a) quadrature-

based source terms, b) quadrature-free source terms. c) The difference

between the quadrature-free and quadrature-based source-term simu-

lations. The biological dynamics used has stable limit cycles within

the euphotic zone (bio case 3). . . . . . . . . . . . . . . . . . . . . . . 276

6-11 Difference between Zooplankton fields at t* = 20 (with - = 12.5[days])

computed using (g5, pl) and a) (g4, pl) , b) (g2, p5), and c) (gl, p6).

This shows the locations of the largest numerical errors for the high-

order and low-order schemes. The biological dynamics used have single

stable points at all depths (bio case 1). . . . . . . . . . . . . . . . . . 278

6-12 As Fig. [6-11], but for the biological dynamics with stable limit cycles

within the euphotic zone (bio case 3). . . . . . . . . . . . . . . . . . . 279

6-13 As Fig. [6-12], but zoomed in the region above the bathymetry. The

difference between Zooplankton fields using (g5, p1) and a) (g4, pl), b)

(g2,p5), and c) (gl,p6). . . . . . . . . . . . . . . . . . . . . . . . . . 280
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6-14 Approximate truncation errors for Zooplankton fields at t* = 20 (with

ra = 12.5[days]). Calculated on a) (g4, p2) using logio(EZ-I 2 aij), on

b) g2, p6 using logio(Ei-,j=6 ai), and on c) g1, p7 using logio(Ei-j= 7 aij).

d-e) Smoothness indicator o calculated on d) (g2, p6) and e) (gi, p7)

. The biological dynamics used has stable limit cycles within the eu-

photic zone (bio case 3). . . . . . . . . . . . . . . . . . . . . . . . . . 282

6-15 Detail around the biological patch with stable limit cycles at the bot-

tom of the euphotic zone at time t* = 14.4 for a) the phytoplankton

fields and b) the total biomass. The solution for (g2, p5) is plotted

on the left, (g4, pl) in the middle, and the difference between the so-

lutions, [(g2,p5) - (g4,pl)], is plotted on the right. This shows that

(g2, p5) correctly maintains the full peak of the biological patch, while

(g4,pl) does not, leading to large differences in the phytoplankton fields.285

6-16 The relative normed difference between the total biomass of the two

solutions, (Qi, (6.13)), the sum of relative normed differences between

the biological components (Q2 (6.14)), the relative normed difference

in production (Q3 (6.15)), and the relative normed difference in grazing

(Q4 (6.16)) over time from t* = 0 to t* = 14.4. This shows that the

difference in biological components is amplified beyond the effect of

numerical dissipation due to differences in the source terms such as

the production and grazing. . . . . . . . . . . . . . . . . . . . . . . . 286

6-17 Long term dynamical behaviour of NPZ system for high (green) and

low (red) order schemes at a depth of -0.667. The phytoplankton ver-

sus zooplankton phase diagram (left) and phytoplankton versus time

(right) plots show that the high-order scheme retains a stable limit

cycle, while the low-order scheme collapses to a single stable point. . 288
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7-1 Massachusetts Bay and Stellwagen Bank geometries, showing the coast-

lines and the complex bathymetry (red shallowest, blue deepest, with

ranges left 0-300m and right 0-160m). This bathymetry and the cor-

responding multiscale dynamics require high-resolution simulations. . 295

7-2 Idealized bank geometry. The extents of the domain are 200 m deep

by 100 km long. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

7-3 Stellwagen Bank bathymetry with -34 m contour, and steepest-descent

paths. The color of the steepest-descent paths correspond to the colors

in Fig. [7-4]. This procedure was used to characterize the Stellwagen

Bank geometry to obtain realistic values for the idealized bathymetry. 297

7-4 Depth variation in the steepest-descent direction from the -34[m] con-

tour on Stellwagen Bank used to calculate the slopes of the idealized

bathymetry. The color of the steepest-descent paths correspond to the

colors in Fig. [7-3] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

7-5 Variable resolution mesh used for idealized banks simulations. . . . . 299

7-6 Contours of the mode-1 Froude number over the criticality parameter.

The lines of the Froude number are marked by Fr and colored accord-

ingly. The criticality parameter space is filled in color according to the

colorbar and varies linearly with N. The triangle region shaded with

grey lines indicates parameters where both Fr and E are greater than

one, and where we expect both nonlinearities to be important. . . . 301

7-7 Steady state concentration of biological tracer fields over the first 30 m

in depth. Plotted versus depth are the concentrations of phytoplankton

P, zooplankton Z, nitrogen N and the total biomass (their sum). . . 302

7-8 Initial biological tracer fields on the numerical mesh. . . . . . . . . . 303

7-9 Order of magnitude estimation of vertical displacement (right) and its

effect on phytoplankton productivity (left). The maximum increase in

productivity is on the order of 25%. . . . . . . . . . . . . . . . . . . 307
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7-10 Depth-integrated relative productivity in time and across the bank for

various Froude numbers and constant criticality of c = 0.23 for hydro-

static minus steady (left), hydrostatic minus non-hydrostatic (middle)

and non-hydrostatic minus steady (right). The bottom side of the bank

d, is indicated with a plus, the top of the bank with a cross, and the

approximate tidal excursion with a line. Note the colorbar for middle

column differs from that of the left and right columns. . . . . . . . . 309

7-11 As in Fig. [7-10], but for Froude numbers Fr = 2 and various criticality

parameters. Note that here the colorbars for the top two rows are the

same, but differ from the colorbars of the bottom row. . . . . . . . . 311

7-12 As in Fig. [7-11], but for smaller Froude numbers and at constant

tidal forcing amplitude (U = 0.2) and increasing stratification (N =

[0.023, 0.032]. Here, colorbars are all the same. . . . . . . . . . . . . . 312

7-13 Phytoplankton field using hydrostatic (left) and non-hydrostatic (right)

simulations plotted at every second tidal cycle for Fr ~ 1.9, c = 1.1,

focusing on the Bank region proper. The non-hydrostatic simulation

has enhanced phytoplankton to the left of the bank, and lower phyto-

plankton to the right. . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

7-14 As in Fig. [7-13] but for the 7th tidal cycle. . . . . . . . . . . . . . . . 314

7-15 As in Fig. [7-13] but at the 8 th tidal cycle and for Fr 2, E = 0.67. . 315

7-16 Vertical velocity using hydrostatic (left) and non-hydrostatic (right)

simulations plotted for the 7 th tidal cycle, with Fr ~ 1.9, c = 1.1. . . . 316

7-17 As in Fig. [7-16], but for the baroclinic velocity. . . . . . . . . . . . . 317
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List of Analytical Symbols

Vo, The horizontal gradient operator, V, [ , a, 0].

V, The vertical gradient operator, V, = [0, 0, a].

7 The elevation of the free-surface above the mean ocean surface. q = q (x, y, t).

,, The surface-pressure at the top of the rigid-lid q, = 7,(x, y, t).

, The turbulent eddy diffusivity. For DNS simulations, this is the molecular diffu-

sivity. In general, , = r,(x, t).

rXY The turbulent eddy diffusivity in the horizontal directions. For DNS simulations,

this is the molecular diffusivity. In general, tc, = Kxy (x, t).

r' The turbulent eddy diffusivity in the vertical direction. For DNS simulations, this

is the molecular diffusivity. In general, KZ = Kz(x, t).

Pu The dynamic turbulent eddy viscosity in the horizontal directions. For DNS

simulations, this is the molecular dynamic viscosity of the fluid. In general,

PXY = py,(x, t).

p, The dynamic turbulent eddy viscosity in the vertical direction. For DNS simu-

lations, this is the molecular dynamic viscosity of the fluid. In general, 1, =

/1(x, t).

v The kinematic turbulent eddy viscosity. For DNS simulations, this is the molecular

kinematic viscosity of the fluid. In general, v = v(x, t).
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vXY The kinematic turbulent eddy viscosity in the horizontal directions. For DNS

simulations, this is the molecular kinematic viscosity of the fluid. In general,

vXY = vXY X, t).

v, The kinetic turbulent eddy viscosity in the vertical direction. For DNS simulations,

this is the molecular kinetic viscosity of the fluid. In general, v,, = v (x, t).

# A collection of tracer fields. For example, we usually reserve # = [ON, OP, OZ, OD]

for the biological tracers.

p The full, 3D density field p = p(x, t).

po The mean density field po = f2 pdQ.

p' The perturbation density field p' = p - po.

F An external forcing function to the momentum equations. F = F(x, t).

H The absolute distance from the ocean mean surface elevation to the sea floor.

H = H(x).

Phyd The depth-integrated hydrostatic, 3D pressure field Phyd = Phyd(x, t) = fz' Phldd(.

Re The Reynolds number, Re = IvID

S The salinity field S = S(x, t).

T The temperature field T = T(x, t).

U The depth-integrated horizontal components of the velocity field U = f u(x, y, (, t)d(

W The depth-integrated vertical component of the velocity field W = f w(x, y, (, t)d(.

d The number of spatial dimensions.

f The Coriolis parameter. In general, f = f(x, y) on the -plane.

g The gravitational constant. g = [0, 0, -9], g ~ 9.81m/s 2
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g Dirichlet boundary condition value for vector field.

g9 Dirichlet boundary condition value for scalar field.

gN Neumann boundary condition value for vector field.

gN Neumann boundary condition value for scalar field.

p The full, 3D pressure field p = p(x, t).

p' The non-hydrostatic, 3D pressure field p= P - Phyd.

p8 The rigid-lid surface pressure.

Phyd The hydrostatic, 3D pressure field Phyd = phyd(x, t) = fp(x, y, (, t)gd.

u The 3D divergence-free, horizontal components of the velocity field u = [u(x, t), v(x, t), 0].

v The 3D divergence-free velocity field v = [u(x, t), v(x, t), w(x, t)].

w The 3D divergence-free, vertical component of the velocity field w = [0, 0, w(x, t)].
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List of Discretization Symbols

- The first predictor of e. For example, the first velocity predictor is V.

o The second predictor of .. For example, the second velocity predictor is v.

6o The corrector to o. For example, the pressure correction is 6p.

0, The test-function restricted to the HDG edge-space, for example, the edge-space

equivalent of 0, is {Oe E L2 (e) : 0e1e E PP(e)Ve E E}.

* The DG edge-flux of .. For example, the DG edge-flux for the pressure gradient is

cp= q + -rp(P - Ap).

(e, O), The integration over a single discontinuous HDG edge-element. (oi, j) -

fe oi oj dx.

(.i, j), The integration over all discontinuous HDG edge-element. (oi, oj), = Ek fek

dx.

(oi, Oj)K The integration over a single discontinuous element. (oi, Oj)K = fK Oi e dx.

(oi, 0j)aK The integration over all the edges of a single discontinuous element. (oi, Oj)OK

Ek f9Kp i oj dx.

[[o]] The jump of the solution across discontinuous elements. [[01] = 0+ + .

{{}} The mean of the solution across discontinuous elements. {{0}} = *_ .2

aAt The numerical time-step size multiplied by constant a which varies depending

on the time-integration method used.
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At The numerical time-step size.

0 The domain of interest.

aQ The boundary of the domain of interest.

E The tensor test-function. {E E (L2(Q))dxd e K E (PP(K))dxdVK E Th}.

a The weighting function that selectively applies limiting/filtering.

e The HDG edge-space. That is, e = U&K.

E0 The HDG edge-space on the interior of the domain, excluding the boundaries.

That is, E0 = E \ Ea

Ea The HDG edge-space on the boundary of the domain. That is, Ea = E U &Q.

A The velocity defined on the HDG edge-space A E e.

A,5, The pressure correction defined on the HDG edge-space As, E e.

A, The pressure defined on the HDG edge-space A, E E.

Ap, The non-hydrostatic pressure correction defined on the HDG edge-space Asp, E E.

AXY The horizontal velocity defined on the HDG edge-space Axy E e.

Az The vertical velocity defined on the HDG edge-space Az E E.

T The HDG stability parameter for velocity diffusion T = T(x).

Tr, The HDG stability parameter for the pressure equation r , = T, (x).

0 The scalar test-function. { E L2 OIK E PP(K)VK E Th}.

6 The vector test-function. {6 E (L2(Q))d : OIK E (PP(K))dVK E Th}.

D The discrete derivative matrix. Defined as D = MIST

I The d x d identity tensor.
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J The Jacobian, that is, the determinant of the Jacobian matrix, J = det .,
(LK

Je The edge Jacobian, that is, the determinant of the Jacobian matrix, J = det (
K A discrete element in Th. That is, Th = UKi.

9K The boundary of an element K, composed of a number of edges.

L The edge lifting matrix. Defined as L = M-1Me

M The mass-matrix. Defined as M =(iI O ) K f

M, The mass-matrices of edges. Defined as Me = (A, 0i)8Kref

M. The mass-matrix for an edge. Defined as M, = ( ,,)ref

P P. is the L2 projection of the boundary condition o into the HDG edge-space.

Q The scaled velocity gradient tensor Qij = v .

S The stiffness matrix. Defined as S = (A , Voj)Kef

7h The triangulation of the domain Q into a set of non-overlapping elements K.

V The modal basis Vandermonde matrix Vij = 9,4(xi), where 0,7 is the Jth modal

polynomial, and xi is the jth nodal point.

e The unique HDG edge element existing between K+ and K-. That is, e = DK+ n

(9K-.

e Euler's constant. Usually used as a function, ex.

ii The outward-pointing normal from a face. fn = ii(x, t).

ii, The horizontal components of the outward-pointing normal from a face. ixy =

[n, nY, 01.

ii, The vertical component of the outward-pointing normal from a face. fi -

[0,0, n,].
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p The largest degree of the finite-element polynomial basis. A pth order basis has an

order of accuracy O(p + 1)

qSp The gradient of the pressure correction qp = Vop.

qp, The gradient of the non-hydrostatic pressure correction qjp, = Vop.

qp The pressure gradient qp = Vp.

q2 The scaled horizontal velocity vertical derivative vector q, = va.

qz The scaled vertical velocity vertical derivative vector q, = vza.
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Chapter 1

Introduction

Numerical models are playing an increasingly important role in engineering and

scientific applications. The demand for larger, more complex, and increasingly im-

portant problems requires more accurate modeling. While the steady increase in

computational resources allow the solution of larger problems, advances in the un-

derlying numerical methods allow the solution of previously intractable problems.

Recognizing the importance of application-specific considerations when designing nu-

merical models, this thesis develops new numerical discretization schemes for regional

ocean modeling applications.

Ocean modeling presents unique challenges not commonly present in classical me-

chanical engineering fluid flows. For forecasting applications, ocean modelers are

interested in knowing the ocean state at a future time and in understanding its dy-

namical evolution. In mechanical engineering applications, the mean state or average

performance of a device is often desired. As an analogy, forecasting the ocean state

would be like predicting the particular flame shape in a combustion chamber. Re-

cently, ocean modelers have also become interested in predicting the statistics of the

future ocean state, including the most probable state. Both the future state and its

uncertainty are then predicted. A second consideration is that oceanic flows span

a wider range of spatial and temporal scales than most engineering flows, from mil-

limeters to planetary length scales, and seconds to geological timescales. Finally,

many oceanic flows are in near-equilibrium states. For example, many regional mid-
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latitude flows are in are in near-geostrophic balance and near-hydrostatic balance.

Near-equilibrium flows are difficult to model since small discretization errors can grow

to become relatively large forcing terms. As such, the numerical treatment of ocean

flows require unique considerations not commonly present in classical engineering

flows.

Notwithstanding the challenges, there has been major progress in simulation for

ocean applications. These application span multiple engineering and scientific fields,

including scientific studies of tidal to mesoscale interactions, shelf-slope exchanges,

and climate dynamics. Additionally, ocean simulation is important for naval opera-

tions and national security as well as billion dollar industries such as fisheries, energy,

tourism, and shipping. Then, predicting the environmental impacts of pollution as

well as extreme weather events are important for human health and safety. These

applications are made possible at their present level of sophistication due to the

improvement of data from ocean measurements, the improvement of mathematical

models, and the steady increase in available computational resources.

We are specifically motivated by quantitative simulation studies of fundamental

nonlinear biological-physical dynamics in coastal regions with complex bathymetric

features such as straits, sills, ridges, and shelfbreaks. Such features strongly affect

flows and, if they are shallow enough, one can expect biological responses in the

euphotic zone. Multiple physical scales exist for these flows, from rapid tidal effects

to slower water-mass driven overflows, and biological resonances at some of these

scales are likely. Additionally, observations of phytoplankton blooms from satellite

imagery show the patchiness of biological activity. Due to the complex geometry,

the range of scales, and the non-linear dynamics, quantitative simulations studies

for this application would represent a major advance in numerical ocean simulation

technology.

Major research questions today involve multiple scales and complex processes,

and increasingly sophisticated simulations are required to push the limits of scientific

knowledge and engineering applications. There are various strategies for reducing er-

rors in present simulations, including: the increase of ocean measurements to reduce
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initial/boundary condition error; the increase in computational resources to reduce

the grid-size and numerical error of existing models; the refinement of mathemati-

cal models to more closely represent the physical system and reduce modeling error;

and the improvement of the numerical schemes to allow the simulation of previously

intractable problems and reduce numerical error. The first two strategies are costly

because both require large capital investments. The next two strategies are relatively

inexpensive, but require intellectual and research investments. However, since present

operational ocean models are aging, there is a need and opportunity to improve their

underlying computational fluid dynamics technology. Specifically, unstructured or

variable resolution grids, ubiquitous in modern day mechanical engineering applica-

tions, can be incorporated along with high-order accuracy. This strategy may dra-

matically impact the sophistication of current simulations, enable new applications,

and at a relatively low cost. As such, in this thesis we focus on schemes that reduce

the numerical errors incurred when solving the mathematical model, but we will also

include additional physics.

Some key questions arise when designing a new ocean simulation model. These

include: Are more accurate numerical schemes needed?, How will more accurate nu-

merical schemes impact simulations?, Why utilize unstructured grids?, and why use

higher-order schemes? We can address the first two questions in relation to our ap-

plication of interest. The coupled biological-physical dynamics problem is non-linear,

and its solution may exhibit chaotic behavior. As such, we require accurate numerical

methods, since small numerical errors can significantly affect quantitative modeling

studies. Such methods should be capable of accurate simulations of nonlinear dynam-

ics up to the predictability limit, which can be a relatively long period of time. For

the second question, we can illustrate the effect of numerical error using a simplified

system. Consider a dynamical system with a steady limit cycle and two components

A and B Fig. [1-1]. Small numerical errors integrated over time may cause phase

errors (top Fig. [1-1]), but the more insidious problem is the modification of the

dynamics (bottom Fig. [1-1]). In this case, the concern is that the numerical errors

modify the underlying dynamics described by the mathematical model and its param-
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Figure 1-1: Numerical errors types for a two-component (A and B) dynamical systems

with steady limit cycles. Phase plots (left column) and time evolution of component

A (right column) are sketched for analytical (blue line) and numerical (orange line)

solutions, illustrating phase errors (top row) and dynamical errors (bottom row).

eters. We will demonstrate this problem for an idealized system in §6.4.6. Presently,

model parameters are tuned by comparing the numerical simulation output to mea-

surements. Without an accurate numerical solution of the mathematical model, these

tuned parameters will also need to correct for numerical error, which may have no

direct relevance to the physical system. Thus, by using accurate numerical meth-

ods, the mathematical model and its parameters can be more directly compared to

measurements from the physical system, leading to refinement of the model, and ul-

timately improving our understanding of the ocean. Therefore, accurate numerical

schemes are needed for our application to allow phase-resolved simulations of the true

biological-physical dynamics in coastal regions.

To answer the third question, unstructured grids can impact the accuracy of ocean

simulation studies in a number of ways. First, unstructured grids can increase the

range of resolved scales for multi-scale studies. While structured grid models can

achieve the same effect using nesting approaches, unstructured grids are considerably

more flexible, needing fewer degrees of freedom for the same resolution. Additionally,
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an unstructured grid can more accurately capture complex geometrical features such

as coastlines and steep bathymetry. Finally, by using much larger elements near

open boundaries, the location of open boundaries can be moved further away from

the model domain of interest for a small computational cost. This would serve the

purpose of reducing the impact of the open boundary condition on the simulation.

The main disadvantage of unstructured grids is the increased difficulty of efficient

implementations, and its higher computational cost per degree of freedom. However,

since fewer degrees of freedom may be required, the overall simulation cost may be

similar.

For the last question, higher-order methods can be much more accurate at the

same efficiency compared to lower order methods. To illustrate this point, we can use

the ID Sommerfeld wave equation

-o ± C-o = 07
at ax

with initial condition

0(t = 0, x) = e- ,

on the periodic domain [-1,1] with c = 2. If we evolve this equation, advecting this

initial condition through the domain 20 times, we can see that the high-order scheme

is much more accurate compared to the lower-order schemes using the same number

of degrees of freedom Fig. [1-2], which is approximately the same wall-clock time

for our implementation. A similar observation can be made when comparing the

schemes at the same number of flops. Present ocean models (and commercial CFD

codes) predominantly use lower-order schemes. These schemes are usually formulated

to be second order accurate on structured grids, but often reduce to sub-second-order

accuracy on deformed meshes. As such, the best-case scenario for present ocean

models is the middle column of Fig. [1-2]. While the advantage of high-order schemes

are well documented in literature, their use has not yet become widespread due to

their relative difficulty in implementation and stabilization (Vincent and Jameson,
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Figure 1-2: The ID advection of a Gaussian bell over a periodic domain for various

discretizations. The advantage of high-order is illustrated; even after advecting the

initial conditions 20 time through the domain, the high-order scheme retains the

amplitude and shape of the bell, while the lower order solutions have visibly large

errors.

2011). Both of those issues are addressed in this thesis.

Now let us briefly describe the state-of-the-art in ocean models (for a more thor-

ough review see §4, Griffies et al. (2000), Ueckermann (2009), Griffies et al. (2010)).

In Fig. [1-3] we have categorized the majority of popular ocean models, although the

list is not exhaustive. Present operational ocean models solve rather similar geophys-

ical fluid dynamics equations and use similar numerical methods, essentially all based

on the schemes proposed by Bryan (1969) and others in the early seventies. These

models were developed for various applications, from basin scales to estuaries, and

they predominantly use low-order methods on structured grids (top-left box in Fig.

[1-3]). In the late nineties to early two thousands, the availability of increased com-

putational resources encouraged the development of new models for applications with

multi-scale interactions and in coastal regions with complex geometries (see §4). This

newer class of models utilize unstructured grids, but still predominantly use low-order
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Figure 1-3: Various popular ocean models are categorized by their grid type (struc-

tured or unstructured) and order of accuracy. To our knowledge, our MSEAS-3DDG

is the only code developed specifically as a high-order, unstructured grid model.

methods (bottom-left box in Fig. [1-3]). Recently, a number of researchers have be-

gun the pursuit of higher-order accurate schemes. In particular, the Spectral Element

Ocean Model (SEOM) is high-order accurate on quadrilateral grids (top-right box in

Fig. [1-3]), while the Regional Ocean Modeling System (ROMS) community model

is updating its model for higher order accuracy. Additionally, the Imperial College

Ocean Model (ICOM) and the Second-generation Louvain-la-Neuve Ice-ocean Model

(SLIM) are based on finite element methods and have demonstrated some high-order

accurate results. However, in our experience, the leap from a low-order to a high-

order model is not a trivial one. As such, our aim for the MSEAS-3DDG code was

to develop a stable, truly high-order accurate ocean model on unstructured grids

(bottom-right box in Fig. [1-3]).

These considerations led us to develop novel high-order unstructured grid nu-

merical schemes for regional ocean modeling. Our goal was to develop, verify, and

utilize a new regional ocean modeling code capable of accurately discretizing a wide
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range of spatial scales over relatively long periods of time. Consequently, we derived

and developed a discretization scheme using the promising new hybrid discontinuous

Galerkin (HDG) method, and combined it with a projection method. We verify the

formulation and implementation of our schemes using various benchmarks which also

test the numerical stability. Then, we utilize the new model to evaluate the numerical

requirements for accurate high-order simulation studies of coupled biological-physical

dynamics. We also study and characterize the effects of non-hydrostatic dynamics on

plankton productivity and concentration for tidally-forced motions over subsurface

ocean banks for various stratification and tidal amplitudes.

The presentation is organized as follows. We begin by deriving the discrete for-

mulation of our HDG projection method for Navier-Stokes (§2). In §2, we also prove

the consistency of our velocity correction on the HDG edge space, and we derive a

consistent HDG stability parameter for the pressure. Following this, in §3, we de-

scribe the implementation of our new quadrature-free integration scheme which is

consistent with HDG, we develop our novel selective nodal limiter, and we evaluate

our new schemes with benchmarks and convergence studies. In particular, we use a

tracer advection benchmark, manufactured solutions for steady diffusion and Stokes

equations, and the lock-exchange benchmark. In §4, we extend our HDG projec-

tion method scheme to regional ocean flows. This extension includes the non-linear

free-surface, Coriolis forcing, and hydrostatic and non-hydrostatic pressures. Then

in §5 we describe the extension of our implementation for regional ocean flows. This

includes numerical consistency and conservation for the advection and free-surface,

and the discretization of the explicit terms for vertical integration, the hydrostatic

pressure, the horizontal diffusion, and the Coriolis force. In §6, we evaluate the nu-

merical requirements of the coupled biological-physical dynamics. This is done for an

idealized strait. Following this, we study effects of non-hydrostatic flows and pressure

on biological productivity and concentrations over coastal banks in §7. Finally, in §8,

we present our conclusions and suggest possible avenues of future research.

46



Chapter 2

Discrete Formulation of 3D

Navier-Stokes Equations Using

Projection Methods and

Hybridized Discontinuous Galerkin

Finite Elements

Solving systems of equations that govern fluid flows is required for a vast num-

ber of engineering applications, from designing microfluid devices to predicting ocean

dynamics, the weather, and climate on Earth. Unfortunately, these equations are

difficult to solve accurately and quickly. A common trend in science and engineering

applications is to attempt larger, more complex, and increasingly important problems

that require more accurate answers. The need for novel numerical schemes that fully

utilize new computational architectures is therefore crucial. Our aim is to develop a

new class of numerical schemes which combines the recently developed hybrid discon-

tinuous Galerkin method with the well-studied Projection method to obtain a new

high-order accurate method with excellent efficiency for ocean applications.

A major challenge with the efficient solution of the incompressible Navier Stokes
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equations lies in the coupling of the velocity and pressure components. Considering

first the momentum equations, an important consideration is the stiffness of each

dynamical term in the equations. This is because the integration of differential equa-

tions can often be very efficient if the stiff terms are treated implicitly, while the

non-stiff terms are treated explicitly. For the conservation of momentum this means

implicit diffusion and explicit advection. These equations can then be efficiently

solved (often without a preconditioner) because the discrete matrices obtained for

the implicit terms are diagonally dominant, when the Reynolds number is sufficiently

large. Unfortunately, even with this efficiency for the momentum conservation equa-

tions, the second conservation equation for mass (the continuity or incompressibility

constraint) leads to a coupling of the different velocity components with the pressure.

The continuity constraint is not as easily invertible as the implicit diffusion terms

in the momentum equations. As such, a large system of equations containing all

components of velocity and pressure needs to be solved simultaneously.

One approach to address the challenge is to separate the numerical solution of the

coupled equations. The common method is to time-split the solution of the momen-

tum and continuity equations. Projection methods, pioneered by Chorin (1968) and

T6mam (1969) do just that. Using a projection method decouples the equations for

solving the velocity components and pressure. As a result, instead of solving one large

system, decoupled smaller systems can be solved. Unfortunately, the solution of the

pressure equation often dominates the cost of the scheme within a time-step. Con-

sequently, it is important to solve the resulting Poisson equation efficiently. Herein

we will consider a class of projection methods where the diffusion terms are treated

implicitly, while the remainder of the terms in the equation are treated explicitly, and

the pressure will be handled through the particular projection scheme.

Discontinuous Galerkin (Hesthaven and Warburton, 2008) methods are attractive

because they can be high-order accurate on arbitrary meshes. A high-order accurate

numerical scheme reaches a smaller error tolerance with fewer degrees of freedom

than low-order accurate schemes. They also promise to be more efficient on new

computational architectures because the computation to memory ratio is higher, and
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present computations are often limited by the memory bandwidth. Additionally,

the discontinuous Galerkin method is well suited to advection-dominated problems

because upwinding can be used to stabilize the scheme. However, continuous Galerkin

methods (Strang and Fix, 1973) are deemed to be less expensive for Poisson equations

(Kirby et al., 2012), which led us to the hybrid discontinuous Galerkin (Nguyen et al.,

2009a, Cockburn et al., 2009a) method, aiming for optimal combination of accuracy

with cost, hence efficiency.

The hybrid discontinuous Galerkin (HDG) method overcomes the computational

cost concerns associated with discontinuous Galerkin methods (DG). A major draw-

back to DG is that the degrees of freedom on the edge of an element are duplicated.

The cost of inverting a matrix is usually related to the square of the number of de-

grees of freedom. Thus, compared to their continuous counterparts, DG methods are

accused of being much more expensive. While this is true on the same mesh with

the same number of elements, the issue of accuracy also needs to be considered for

a fair comparison. Notwithstanding, the HDG method does not duplicate all of the

degrees of freedom on a edge. Additionally, the HDG solution can be post-processed

to obtain a solution that is one order of accuracy higher than the order of basis used

(Nguyen et al., 2009a, Cockburn et al., 2009a). Overall, the HDG method promises

to be an efficient solution method for the pressure equation, since fewer degrees of

freedom will be present in the discrete matrix for the Poisson equation.

As such, we wish to combine Projection methods with HDG Finite Elements.

We start by reviewing current literature on HDG, slope limiting, and Projection

methods. Then we present the particular form of the Projection method we are

using, and review selected theoretical aspects. Following this we derive the discrete

finite element formulation. We also prove the consistency of our velocity correction

on the HDG edge space, and derive a consistent HDG stability parameter for the

pressure correction. Finally, we explain the modifications needed in order to use a

Implicit-Explicit Runge Kutta time integrator.
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2.1 Literature review

The first papers published on the HDG method were for second order elliptic equa-

tions (Cockburn et al., 2009a,b) and convection-diffusion equations (Nguyen et al.,

2009a,b). Shortly after Cockburn and Gopalakrishnan (2009) published a derivation

for Stokes flow, which was applied by Nguyen et al. (2010a), with an analysis fol-

lowing in Cockburn et al. (2011). The extension to the incompressible Navier-Stokes

equations followed, see Nguyen et al. (2010b, 2011). The HDG method has also been

applied to compressible flows (Peraire et al., 2010, 2011, Nguyen et al., 2013, Schiitz

and May, 2013). Additionally, (Huynh et al., 2013) used HDG for elliptic interface

problems, and (Ueckermann, 2009, Palma, 2012) applied HDG for curved domains

using elliptic and convection-diffusion equations.

The computational aspects of HDG, such as its implementation and efficiency

compared to existing methods, has been explored by a number of researchers. Ueck-

ermann and Lermusiaux (2010) examined various solver/preconditioner combinations,

and found that a stabilized Bi-Conjugate gradient solver combined with a zero-fill-in

incomplete-LU preconditioner performed well. Waluga and Egger (2012) implemented

HDG in the DUNE framework by constructing a residual operator for an iterative

linear solver. In Kirby et al. (2012) the discrete matrices for CG and HDG were

constructed, and they found that HDG is computationally competitive on the same

mesh for polynomial orders of five and higher when comparing only solution time and

neglecting accuracy considerations. In Ahnert and Barwolff (2013) HDG is compared

to a finite-volume solver, and HDG is deemed competitive to finite volume because

of higher-order accuracy and better stability properties. While it is still too early to

judge whether HDG will be adopted for CFD, the current literature is promising.

Besides the theoretical and computational issues, there are a number of challenges

facing the wide-spread adoption of high-order numerical schemes by industry and

academia. One major issue is the subject of shock-capturing or slope limiting (Vincent

and Jameson, 2011). Without stabilizing a high-order numerical scheme, numerical

oscillations can lead to instabilities in the flow. There is an abundance of literature
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on slope limiting, and here we do not provide an exhaustive list. For linear elements,

there are a number of classical papers dealing with Total Variation Bounded (TVB)

limiters (Cockburn and Shu, 1989, Cockburn et al., 1989, 1990, Cockburn and Shu,

1998b, 2001). More recently, higher order limiters have received much attention

with WENO-type approaches (Qiu and Shu, 2005, Zhu et al., 2008) and higher-

order limiting (Hoteit et al., 2004, Krivodonova, 2007, Michoski et al., 2011, Huerta

et al., 2012). Alternatively, stabilization can be added using filtering (Hesthaven and

Kirby, 2008, Ueckermann and Lermusiaux, 2010) or artificial dissipation (Persson and

Peraire, 2006, Barter and Darmofal, 2007, 2010). Efforts to retain the full order of

accuracy of the scheme away from the discontinuities have also been pursued (Blossey

and Durran, 2008). However, a standard approach that retains high-order accuracy

while capturing sub-cell shocks does not yet exist, and research in this area is active.

We derived a new incompressible Navier-Stokes solver using Projection methods

and HDG discretizations, stabilized using a selective nodal limiter of our own design.

While many different Projection methods exist (for a recent review see Guermond

et al. (2006)), we use the scheme by Timmermans et al. (1996). We only consider a

class of Projection methods that treat the diffusion term implicitly, while the remain-

ing terms (such as the non-linear advection) is treated explicitly, and the pressure

is handled through the method. In relation to the Projection method literature, we

apply a new boundary condition for the pressure, which is related to that proposed by

Gresho and Sani (1987) and recently used by Shirokoff and Rosales (2011). We also

build on this work by illustrating the form of the splitting error and clearly explain-

ing its origin. The issue of splitting errors was also theoretically examined in Denaro

(2003). While incompressible Navier-Stokes solvers using HDG exist, ours is the first

to use a Projection method solution approach. In this area we show how to correctly

couple the spatial and temporal discretization for a numerically divergence-free, sta-

ble, and accurate solution algorithm. Finally, to stabilize our numerical solution while

maintaining higher-order accuracy, we derive a selective slope limiting approach. The

3D solver we developed builds on and extends existing methods in literature. It is a

step toward a new generation of coastal ocean simulator.
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Next, we review selected theory and derivations relevant to the HDG discretization

of the incompressible Navier-Stokes equations.

2.2 Projection methods: Selected theory and deriva-

tions

In this section we first present the particular form of projection method that

we will employ, the rotational incremental form. We then derive the correspond-

ing rotational correction. We also review the Helmholtz-Hodge decomposition while

highlighting properties that should be maintained numerically. Finally, we discuss

the issue of boundary conditions, and briefly touch on the inf-sup condition.

We consider the non-dimensionalized unsteady incompressible Navier-Stokes equa-

tions on a simply connected domain Q within a finite time interval [0, T].

&V 1
- V- Vv + Vp = -V -vv + f in Q x [0, T],

at Re

V -v=0 in Qx[0,T], (2.1)

vlan =gD in aQx[O,T],

vlt=o = vo in Q,

where v = [u, v, w] is the velocity, p = _LP, P is the pressure, f = gp when there

is only density forcing, po is the mean density, p is the density perturbation, gD is

some Dirichlet velocity boundary condition, and vo is some initial condition for the

velocity. For the Boussinesq equations, with density forcing, we need an additional

tracer (internal energy) equation for the density:

1- V -Vp=-V-vp+fV in Qx[0,T],
at ReSc

pIaz = gDp in a x [0, T], (2.2)

plt=o = po in Q,

where Sc = " is the Schmidt number, which represents the ratio of kinematic viscosity
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v to molecular diffusivity r. Alternatively, we can solve multiple tracer equations for

temperature and salinity, then calculate the density through a state equation (as

in §4). However, if the density is a linear combination of salinity and temperature

and the Schmidt number is the same for both, we can use (2.2) as above. For the

remainder of this chapter, we will focus on the momentum and continuity equations.

Now, since the non-linear term will be treated explicitly, it will not affect the

splitting error, and we can group it with the right-hand-side forcing term. As such,

we will only consider the Stokes equations henceforth.

,-I1
- V - Vv + Vp = F& in Q x [0, T],9t Re

V -v = 0 in Q x [0, T], (2.3)

vIa = 9D in DQ x [0, T],

vlt=o = vo in Q,

where Fat = -V -vv + f.

We now proceed with the time-discretization of these equations using the rota-

tional incremental pressure correction scheme (Timmermans et al., 1996). There are

many different variations of the projection method, and for a thorough review of the

different methods see Guermond et al. (2006). We employ this version because it is

among the most accurate available (to our knowledge). Considering for now a single

step in time, the time-split equations start by solving for the predictor velocity vk+1

using an old or guessed value for the pressure.

k+1 1
a - v - V + Vpk = Fk,k+1 (2.4)
aAt Re

aIQ1 = 9D, (2.5)

vjt=o = vo, (2.6)

Plt=O = Po, (2.7)

where a is some constant associated with the time-integration method, and Fk, k+1

contains the explicitly calculated terms (including old values of v) and the right-
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hand-side forcing (2.3), see also §2.4). Note, here we only consider Dirichlet velocity

boundary conditions, see §4 for other boundary conditions. Next, a Poisson equation

is solved for the pressure (note, negative signs are added so that this derivation

matches our numerical implementation, see §2.3):

-V 2 pk+1 = - , (2.8)
aAt

apk+l = 0. (2.9)
aii &

Finally, the velocities and pressure need to be corrected

vk+1 = vk+1 _ aAtVpk+, (2.10)

pk+1 _ Pk + 6pk+1 V . vk+1 (2.11)
Re

We first note that the boundary condition for the pressure-correction (2.9) comes

from (2.10) and a no-normal flow boundary condition on both v and V. Hence, the

v velocity satisfies the normal Dirichlet boundary conditions (v _ nik1 = gD -ii), and

is divergence free (V - v = 0), while V satisfies both the normal and the tangential

Dirichlet boundary conditions (VIk$ = gD) but is not divergence free (V - v f 0).

We then note that the final term in (2.11) is known as the rotational-correction term.

As the origin of this term is important to the HDG spatial discretization, we explain

its derivation next.

2.2.1 Origin of rotational-correction term

The _V Vk+I term in (2.11) arises because the diffusion term is treated implicitly,

as a function of Vk+1. This means that the subsequent update to p (from continuity

only) has to be modified based on this implicit momentum diffusion. As a corollary, if

the advection terms in Fk,k+1 had also been treated implicitly, the implicit advection

of vk+1 would then affect the updated pressure. This holds in general for any terms

(in Fk, k+1 or elsewhere) that depend on velocity if they are not divergence free and

if they are treated implicitly instead of explicitly. This can be seen by taking the
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difference between the final discretized equation (sum of all steps in the projection

method) and the predictor step (to obtain Vk+1). These comments will be expanded

upon later.

To explain the above mathematically, let's begin by writing the un-split equations,

that is, the discrete equations that we want to solve

V k+1 k+- v-- -Vvk+1 Vpk+1 = Fkk+1. (2.12)
aAt Re

Then subtract out (2.4)

k+1 1
- ±_ V VVk+ p k = Fk,k+1

aAt Re

which gives

vk+1 _ k+1 1V k1 V+1- V- - V(Vk+l _ Vk+l) + vk+l _ pk =o0aAt Re

noting that the forcing terms Fk,k+1 are the same for the split and un-split equations.

Now substituting for -k+1 using (2.10) and canceling terms, we have

V6pk+l - . V(aAtV6pk+l) + Vpk - VPk+1 = 0.
Re

Now, solve for Vpk+1

1
Vpk+1 Vpk + Vpk+l _ V V(aAtVpk+l) (2.13)

Re

= Vpk + Vjpk+l - ( . V(aAtpk+1)
(Re

V (pk + jpk+1 _ V- V. t6k+1Re vaMp )

where we have switched the order of the Laplacian and the gradient in the second

equality, which is correct if we assume Re is a constant (since these operators apply
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to the scalar Jp). Next, we can substitute (2.8) to obtain

Vpk+1 _ V k + Rpk+ e .v k+) (2.14)
(P Re

To recover (2.11), we drop the gradient,

k+1 _ k _+ jpk+l _ k+1.(.)Re (2.15)

Note, this is true up to a constant, since the gradient of a sum of constants is zero.

Also, (2.14) can be projected onto the normal of the boundary &Q, giving:

Vpk+1 . n -iV . n± + Vjpk+l - - V(V .Vk+1) - n. (2.16)
Re

and with a no-normal Neumann boundary condition on 6pk+1 we have:

VPk+1 . ni =V ni - -- V k+1) n. (2.17)

This equation (2.17) shows that any change in the normal pressure derivative at the

boundary comes through the rotational correction term. If a non-zero Neumann

condition was used for the pressure correction (2.9), then it would enter (2.16), but

it would not be consistent with the zero normal-velocity boundary condition.

While the above derivation shows mathematically where the correction comes

from, some intuition is useful, especially for later. When solving for the velocity

predictor, (2.4), the right-hand-side forcing terms are not divergence free because at

this stage we are not using the final pressure. Now, because the predictor velocity

is divergent, the implicit diffusion term will operate on this divergent component

of the velocity. The projection equation (2.8) sets the gradient of 6 pk+1 equal to

the divergent part of the predictor velocity. So, with V6pk+1 we are removing both

the divergent part of the right-hand-side forcing and the diffusion of the divergent

part of the right-hand-side forcing. Hence, when correcting the pressure, we have to

remember that the gradient of jpk+l was operated on by the implicit diffusion term,
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and this should not be a part of the pressure gradient; the pressure gradient should

only correct for the divergent part of the right-hand-side and not also its diffusion.

In other words, if we had used the final pressure gradient to start with, the whole

right-hand-side would have been divergence free and the implicit diffusion would not

operate on any divergent component. This suggests that evaluating the pressure by

projecting out the divergence of the right-hand-side before taking the implicit time-

step might be a better strategy. However, as we will show in §3.8, the standard

projection does more than just remove the divergence present in the right-hand-side.

In this section we mathematically showed the origin of the rotational correction

term, and gave an intuitive explanation of its function. Next we discuss some impor-

tant theoretical properties.

2.2.2 Helmholtz-Hodge decomposition

First we will discuss the underlying decomposition that makes projection methods

viable. The Helmholtz-Hodge decomposition states that any vector field on a simply

connected domain can be uniquely decomposed into a divergence-free (solenoidal)

part, and a curl-free (irrotational) part, see for example Girault and Raviart (1986),

Denaro (2003). In our case, using the notation from above we have

k+1 _ vk+1 + aAtVpk+l, (2.18)

> v k+1 _ vk+1 - aAtVdpk+l, (2.19)

with boundary condition

vk+1 .fj (2.20)

where the vector field Vk+1 is composed of solenoidal vk+1 and irrotational aAtV6pk+l

parts, and the re-arranged form (2.19) matches the velocity correction equation (2.10).

The gradient of 6 p is irrotational because of the vector identity V x V# = 0 for any

field #. The idea behind the projection method, then, is that the velocity solved from
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the momentum equations using the incorrect pressure is divergent, and we wish to

remove or project out this part.

In light of this decomposition we can better understand the mathematical role

of the pressure in the incompressible Navier-Stokes equations. Consider, now, the

divergence of the momentum equation in (2.3):

V - -- V-(V 1 Vv)+V2p= V -Fat
at Re

- V - V -V(V-v)+V2p= V-Fat
at Re

Applying the continuity constraint we obtain the pressure Poisson equation

V 2p=V - Fat.

This shows that the role of the pressure is to balance divergent terms in the right-

hand side forcing such that the final velocity is divergence free. This leads to two

important properties that need to be maintained in the numerical scheme.

1. If V - Fat = 0 then p is a linear function in space, or a constant if Vp - ii = 0.

2. If F = Vp, then v = 0, if the velocity is initially zero, and have zero Dirichlet

boundary conditions.

We will test these properties in §3.8.

2.2.3 Boundary conditions for pressure

Classical pressure boundary condition form: Another issue that often arises is the

question of boundary conditions for the pressure. The original equations did not re-

quire a pressure equation, but once we took an additional derivative of the momentum

equations, we require additional boundary conditions. What, then, are the correct

boundary conditions for the pressure? One way to find a pressure boundary condition

is as follows. If we project the momentum equations, (2.3), unto the normals of the

boundaries we obtain a boundary condition for the pressure that is "consistent" with
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the interior equations:

- -n- 1 -Vv + f -Vp = i -Fat,ot Re

In particular, if v - i is given and constant (i.e. time invariant) at the boundary (e.g.

no-slip boundary condition), we obtain

1
->i -Vp = ni -F,9t + ni -V Re- Vv, (2.21)Re (.1

Similarly in the discrete sense, for the un-split (2.12) which is the time-discrete of

(2.3), we obtain

f -vPk+1 = n -F k,k+1+ n -V Vvk+l (2.22)
Re

where we used the correct pk+1 instead of pk as in (2.4). We note that (2.22) is

thus the pressure boundary condition that the un-split equations will obey, and is

therefore the boundary conditions we wish to satisfy.

In the classical presentation of the rotational incremental pressure correction

method, no such "project the interior governing equations to the boundary" bound-

ary conditions is usually explicitly mentioned. Instead, a boundary condition for the

pressure correction (2.9) is specified instead, leaving the question of what boundary

condition is implicitly imposed on the pressure. However, we note that in fact, the

rotational increment gives a pressure boundary condition which is consistent with

this projection equation (2.22). To prove this, we start from (2.4) and solve for the

rotational correction term projected onto the normal of the boundary by expanding

the diffusion term using the identity V2 = -V x V + V(V-), and again assuming Re
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is a constant:

Fk,k+1- v- V__ . Vk+1 +Vpk,
aAt Re
-k+1 1

= + Vpk+1 X V k ,k+1 + vpk,
aAt Re Re

1 -k1 k+1 1
v vpk+l _ k+1 + --VXVxvk+l+vpk - Fk,k+1,

Re aAt Re

=> - VV k+1 fi n-VxVxVk+1+.Vpk-fi-Fkk+1.
Re Re

Substituting (2.26) into (2.17) we recover (2.22), completing the proof

n . Vpk+l -i Vpn - V -.k+1) . iiRe

=i n-vpk - 1 n - k+1 + ,p n-W -n-Fk, k+1 ,
(Re iVV + -f F

- n~i - V x V x ik+1 + k+1
Ren VX fF

=- - V -Vvk+ 1 + n - Fk,k+1
Re

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

where the final line follows from V -Vvk+1 = -V x Vvk+1 = _V X Vk+1. This proof

also shows that without the rotational correction term, the pressure would contain

an inconsistent numerical boundary layer ft - Vpk+1 - ii _ Vpk (see also Guermond

et al. (2006)).

New pressure boundary condition form with divergence-free predictor velocity: Us-

ing the boundary conditions from the rotational incremental pressure-correction algo-

rithm, the remaining splitting error manifests itself through the tangential boundary

velocity (Guermond et al., 2006). To explain this, we first note that the equation

for the predictor velocity (2.4) is solved using the correct boundary conditions for

velocity (2.5), but at this stage the velocity is divergent. When the predictor velocity

is corrected using the pressure-correction-gradient vk+1 - Vk+1 - aAtV6pk+l (2.10),

the tangential boundary conditions are modified. The normal boundary conditions

for the partial update of the pressure are not modified since we set V6pk+1 _ ii = 0

on the boundary (2.9), but the tangential boundary conditions are modified, since
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V6pk+1 - $ 7 0. An example of this can be seen in Fig. [2-5], where no-slip boundary

conditions are used, but after one time-step the final velocity does not vanish at the

boundary. We cannot constrain the tangential pressure-correction gradient at the

domain boundary since doing so will over-determine the system of equations, and as

a result we would modify the normal pressure-correction gradient. Finally, we also

see that this remaining splitting error in the tangential boundary condition is of the

order O(At). This splitting error is inherent in the scheme, and as such an order

of accuracy of greater than O(At 2) has not been achieved with standard projection

methods (Guermond et al., 2006).

Motivated by this remaining time-splitting error on the tangential velocity, some

researchers have argued that the boundary conditions should be split differently than

(2.5) and (2.9). Specifically, Gresho and Sani (1987) proposed using V - v as an

additional boundary condition, and Shirokoff and Rosales (2011) used this boundary

condition to solve the split equations. In Shirokoff and Rosales (2011), they show

that the split system of equations are equivalent to the original Navier-Stokes equa-

tions, and they claim that when using their boundary conditions, the scheme is not

limited to second order accuracy. It is important to note that Shirokoff and Rosales

(2011) used explicit diffusion for their method, and supported their claims with the-

ory and numerical convergence studies. Since we are interested in implicit diffusion,

we modified their approach, which gives the system of equations:

Vk+1 1- v- -Vk+1 + vP =F, (2.31)
aAt Re

fX flnXg9D, 
(2.32)

v-*9|$;1 =0
v . v i.+k+1

-V 2 6pk+1 _ - , (2
aAt

1jpk+l a (2.33)
= n - (vk+1 _ vk+1) (2.34)afn aQ aAt 1aQ
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with velocity and pressure corrector equations:

yk+1 _ -k+1 _ a95jk+1 (2.35)

Pk+1 _ Pk _+ 6 k+1 v. vk+1 (2.36)
Re

We note that while the governing equations and corrector equations remain unchanged

((2.31) = (2.4), (2.36) = (2.11), (2.35) = (2.10), and (2.36) = (2.11)), the boundary

conditions have been modified ((2.32) # (2.5), (2.34) # (2.9)). Also, note that (2.34)

comes from projecting the velocity corrector equation (2.35) onto the normal of the

boundary, and this quantity 1i - (vk+1 - Vk+1) ,9 is never expected to be zero, but

would be small for fine discretizations. Additionally, we could take the divergence of

(2.35) at the boundary, we obtain an alternate boundary conditions for the pressure

correction, that is, V 26pk+l = 0. However, (2.34) is simpler to implement in a finite-

element framework, and it assures that the final boundary condition for velocity is

numerically satisfied.

The implementation of the velocity-divergence boundary condition is simplified

for rectangular domains where the components of velocities are aligned with the

walls. In this case, no-slip boundary conditions are enforced as follows. For the first

step, set zero Dirichlet conditions for the tangential component of velocity and zero

Neumann for the normal component of velocity. For the second step, set the pressure-

correction boundary condition as the Neumann condition given in (2.34). Since this is

easily tested for simple rectangular domains, we examine the effect of these boundary

conditions in §3.8.

2.2.4 The inf-sup condition

Finally, we have some brief comments about the well-known inf-sup condition.

This condition is a requirement on the discrete spaces where the pressure and velocity

live. For the saddle-point problem (2.3) to be solvable, the discrete spaces require
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that (see for e.g. Guermond et al. (2006))

fn pv -V
inf sup > '3, (2.37)

P v 11pIl011vIlI

for some #3> 0, with the norms hello =(fa. 2)i, and2|ll|i=(faV.-V.)2. Ifwe

integrate by parts the numerator we have

jPV - V = jV (Pv) - Vp -v,

= j i (pv) - Vp -V,

= -VP -v,

and we see that this condition fails if the gradient of the pressure does not project

completely unto the velocity-space (for uniform Dirichlet boundary conditions on

the velocity). Fortunately, for discontinuous Galerkin finite elements this is not an

issue because the pressure gradient and velocity spaces live in the same piece-wise

polynomial space.

2.3 Spatial Discretization of Time-Split equations

using HDG

In this section we spatially discretize the set of equation (2.4) - (2.11). We begin

by defining our notation (also refer to the list of symbols starting after page 31). Then

we complete the basic derivation of the scheme. Following this, we explain some of the

less obvious terms in the discrete equations, that is the edge-space correction, and

the rotational correction. Finally, we offer guidance on choosing the correct HDG

stability parameter for the pressure poisson equation.
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a~
Ki

Figure 2-1: Notation for domain discretization.

2.3.1 Finite Element Definitions and Notation

We let Th = UKi be a finite collection of non-overlapping elements, Ki, that

discretizes the entire computational domain Q (Fig. [2-1]). Also, let Th = {DK :

K E Th} be the set of interfaces of all elements, where oK is the boundary of element

K. For two elements sharing an edge K+ and K-, we define e = &K+ n 0K- 4 0 as

the unique interior interface between elements K+ and K-. For a single element K

belonging to 7h, if e = oK n aO # 0 it is a boundary interface. Let e' and E' denote

the set of unique interior and boundary interfaces, respectively, such that e = e U E0 .

We note that in the interior 9Th contains two interfaces, aK+ and 0K-, at the same

location (one for each element sharing the edge), whereas the set e only contains a

single interface, e, at the same location.

K+ and K- have outward pointing normals fn+ and fi-, respectively. We then

let vector and scalar quantities [a±, c*] be the traces (i.e. the projections) of [a, c] on

the interface e from the interior of K±. The "mean" value {{.}} and "jumps" [o] on

the interior interfaces e E e" for scalar and vector quantities are then defined as

{{a}} = (a+ + a-)/2 {{c}} = (c+ + C)/2

a - fi] = a+ - [+ + a- -n- [cn] = c+n+ + Cn~.

On the set of boundary interfaces e E Ea, (with outward facing normal ii on On), we
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set these mean and jump quantities as

{{a}} = a {{c}} = c

[a -i= a - i [cni = cn.

since here a and c are single-valued. Note that the jump in a vector is a scalar

(involving only the normal component of the vector), whereas the jump in a scalar is

a vector. Additionally, the jump will be zero for a continuous function.

The main difference between continuous and discontinuous Galerkin lies in the

approximation subspaces used. Discontinuous Galerkin uses bases that are in normed

space L2 (Q) while continuous Galerkin uses bases that are in the Hilbert space H'(Q),

that is, the function has to be continuous across elements. For a function f(x) to

be in L2 (Q), it has to satisfy fu f(x)2 dQ < oc, whereas a function in H 1 (Q) has to

belong to a smaller space satisfying fn f(x) 2 + Vf(x) -Vf(x)dQ < oo.

Let PP(D) denote the set of polynomials of maximum degree p existing on a

domain D. For example, we will be using p = 2 to denote a second degree polynomial

basis, which will result in a 3 rd order accurate scheme. We introduce the discontinuous

finite element bases we use on the element for scalars, vectors, and tensors, and these

are defined as

{0 E L2 (Q) : 0 IKE PP(K),VK E 7h}

{0 E (L 2 (Q))d IKE (PP(K))dVK E Th}

{e E (L 2 (Q))dxd E IKE (PP(K))dxd,VK E Th},

respectively.

To use the HDG method, we will also require the traced finite element spaces
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existing on the unique interfaces E

{O E L2 (Q) : O6 leE JPP(e),Ve E El,

{O E (L2 (Q))d : 0E je (PP(e))dVe E E.

{eE E L2Q)x eE leE (-pp(e))dxd, Ve E E}

We also set {0 = PgD on OQ}, where P is the L2 projection of the boundary condition

gD into the same space as 0,. Note that 0, is continuous on the interface, e, shared by

K+ and K-, but discontinuous at the borders between different interfaces (that is,

for a iD-line-interface, discontinuities are the end-points of the line, see Fig. [2-3]).

These HDG spaces will be used to define consistent fluxes that essentially serve as

boundary conditions for the discontinuous elements. These consistent fluxes will be

a function of A variables (see §2.3.2), that live on these HDG spaces. Also, to obtain

equations for X and 4A, in §2.3.2, we will invoke the conservation of fluxes across

elements, which leads to global flux conservation (i.e. the fluxes on the interior E*

balance the fluxes from the boundary 0).

Finally we define the inner products over continuous domains D E Rd and OD E

Rd-1 as

(a, b)D = a-bdD (c d)D = cd dD (2.38)
JD JD

(a, b)D = a -b dOD (c d)D = cd daD (2.39)

for vector functions a, b and scalar functions c, d. Over discontinuous domains we

also define

(a, b)T = (a, b)K, (c, d)ah = (c, d)8K, (2.40)
KETh KErh

for vector functions a, b defined on 'Th, and scalar functions c, d defined on aTh. We

66



CG DG

Duplication of edge
degrees of freedom

Figure 2-2: Discontinuos Galerkin have more degrees of freedom compared to contin-
uous Galerkin on the same mesh.

will also require the additional inner product on the hybrid discontinuous domain

(a, 0e). = Z(a, 6e)e (c, 0)E = Z(c, 0e)e (2.41)
eEE eEc

for vector or scalar functions a, c defined on e.

The development of HDG methods (Nguyen et al., 2009a, Cockburn et al., 2009a)

were motivated by the desire to improve the computational efficiency of discontinu-

ous Galerkin methods compared to continuous Galerkin methods for elliptic problems.

Often, the conclusion that DG is too expensive compared to CG is reached by com-

paring the number of degrees of freedom required for DG and CG on the same mesh.

The DG discretization duplicates degrees of freedom on the edges of elements (Fig.

[2-2]), which means that a larger matrix needs to be inverted compared to the CG
case. This comparison is not necessarily fair, since the DG scheme may reach the

same level of accuracy with a coarser mesh (or the same number of degrees of free-

dom). Nonetheless, it has been shown that the HDG method can be competitive

with CG for elliptic problems (Waluga and Egger, 2012, Kirby et al., 2012). It does

this by reducing the number of globally coupled degrees of freedom. The premise

is that one can solve the equations of interest locally on an element as long as the

initial and boundary conditions are properly specified. While the initial conditions

for an element are specified as part of the problem, the boundary conditions on ev-

ery element edge are not given. The HDG method specifies an equation for these

unknown boundary conditions. To find this equation, the solution on the interior of
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Element local
solves

Global
solve

Figure 2-3: The HDG method splits the solution of the element local equations from
the solution of the globally coupled problem for the boundary conditions.

an element is parameterized in terms of new variables which represent the boundary

conditions for that element. These new variables live on the HDG edge-space 6.. The

globally-coupled equation for the HDG edge variables are then found by solving for

a boundary condition that would give conservative fluxes (that is, the same flux for

both elements on either side of an edge). As such, the solutions of the element-local

equations are split from the solutions of the globally-coupled equations for the edge

degrees of freedom (Fig. [2-3]).

As an example, next we show the HDG discretization of the Poisson equation

V2 O = f. A standard step for DG methods is to introduce a new variable q = VO

and re-write this equation as a system of first-order PDE's:

q - V = 0, (2.42)

V -q = f. (2.43)

Now, the DG discretization of (2.42)-(2.43) using the notation introduced above is

(q, 6 )K - (V#, 6 )K - - #, ii ) = 0, (2.44)

(V -q, )K +( - q, n')aK (f, O)K , (2.45)

where the discretization is completed once we have defined the flux quantities e and
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4. The HDG discretization uses the following flux definitions

q = A, (2.46)

q + T( - A)n. (2.47)

When we substitute these flux definitions into the DG discretization (2.44)-(2.45),

those equations become element-local if A is known or given

(q, e)K - (V#, 6 )K + (q, n - )aK = (A, K (2.48)

(V -q, O)K + (Tq5, n 0 )9K = (, 0)K + (rA, no)aK (2.49)

To solve for A, the HDG method defines a new equation on the HDG edge-space to

conserve the diffusive flux, or, in the interior we have:

([4 -n] , = 0, (2.50)

and when we substitute (2.48), this becomes

([q - i + -r( - A)], 0,)e = 0. (2.51)

The actual solution method is more involved; HDG methods require new implementa-

tion strategies (see Ueckermann (2009) and §3) and are inherently implicit (see §2.5).

Next we proceed with the basic spatial discretization of the Stokes equations.
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2.3.2 Discrete equations and their derivation

We start by introducing the variables (additional DG unknowns) Q = ;Vv and

qp = V6p. We then rewrite (2.4) - (2.11) (excluding boundary conditions) as:

-kk+ReQ -Vvffk 1 -=0, (2.52)

vk _ k+1 - V = Fkk+1, (2.53)
aAt

q -+1 V6pk+l 0, (2.54)

V . k+1-V - qk+1 = - , (2.55)bp aAt

k+1- + k+ 1 +1 (2.56)

p k+1 P k + 6Pk+1 _ v9 .k+1. (2.57)
Re

These are the time-discretized split equations, and the starting point of our finite-

element spatial discretization.

Next, we first give in (i) the basic DG discretization of the equations (2.52)-

(2.57) in the strong form, and then derive it in subsection (ii) (see Hesthaven and

Warburton (2008) for the difference between the strong and weak form DG schemes).

This basic discretization does not define the edge-flux quantities, which differentiates

different DG schemes. In (iii), we state the equations of our new HDG projection-

method discretization. To start the derivation, in (iv), we provide the equations

for the un-split method. In (v), we derive the element-local HDG equations and

obtain preliminary HDG relations and flux equations. These HDG fluxes and stability

parameter equations are then formally derived and justified in subsections §2.3.3 and

§2.3.4.

(i) Discontinuous Galerkin spatial Discretization

The first step in the splitting scheme is to solve for the velocity-predictor (2.52)-

(2.53). These equations are discretized as follows - derivations are in sub-section
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(ii):

(Re)Qk+1E) (vk+l, _ K)k+ _k+1.) =K

K' ) . (k+1 Kk K + KQk+l - Qk+1) _ f, + Pk)i,) = (Fk,k+l, O)K

(2.58)

where we have used the & notation to indicate that the solution on the edge is a
combination of the solutions bordering that interface. Then, to find the projection of
the predictor velocity onto the irrotational pressure space, we discretize (2.54)-(2.55)
as:

k+1 K jk - +1 ) K - lk+1 - 3 0k+1 . K

~~(v~~q~(q, 9)Ki,~ -q O)K - (Vrk ) K (k+ )aK
_ k+ K +1 k+ 8Kk+l K _k+l _ vk+l1 . K

(2.59)

Finally, the velocity and pressure are corrected using the algebraic equations (2.56)
and discretized version of (2.57)

k+1 =k+1 k+1

( k+ 1, ( k + j k+l1 K k+1 K-k+l _ k+1)8(p+ )K =~ ~+ )K - ~- (V . V O)K~ -- I((V*' - k1 .fi (2.61)

The boundary conditions for these equations are enforced through the flux quantities.

For our new HDG discretization, they are given and derived next in subsections (iii)

and (v).

(ii) Derivation of the generic DG discretization using the method of weighted

residuals

Now we derive the basic DG discretization given in (2.58)-(2.61) using the method

of weighted residuals (e.g. Chapra and Canale (2010)). We will derive the strong form

simultaneously for sets of equations that are similar.

We begin with (2.52) and (2.54), multiplying these equations by tensor test-

functions E and vector test-functions 0, respectively, and then integrating over an
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element K:

((Re) Qk+1, K (VVk+lI e) K -

(q , 6)k - (V6pk+1, o = 0.

Integrate by parts the second term in both equations to recover the weak form:

((Re)Qk+1 e)K + (k+1 K- Kk+ e)K

(q , 6)k + (6pk+1, V .)K - K .0K 0,

where we have used the & notation to indicate that the solution on the edge is a

combination of the solutions bordering that interface. Now, integrate by parts again,

this time using the interior solution as the edge-value to recover the strong form:

((Re)Qk+1' K (V k+1 E)K - Kvk+1 - V k+1 f, e 0, (2.62)

-+1 (K6pk+1,K - k+1 _ k1 ii o) . (2.63)

The strong form recovers the original equation, it highlights how DG methods penalize

the jump in the solution across elements, and while it is mathematically the same as

the weak form, we use it for implementation reason (see §3.3). This discretization is
k+1 ^k+

completed by the specification of the edge values, v and p .

Proceeding as above, we discretize (2.53) and (2.55) by multiplying with test-

functions 6 and 0, respectively, and then integrating over an element K:

(k'i k+1 (Vpk, )K = (Fk,k+1 O)K

k + 1 ' ~ ( . v k + l 0- () K ,aAt ) 
K

As before we integrate by parts the second and third terms in the first equation, and

72



both terms in the second equation:

(k+ ) + (Qk+1 K _k VK + k+ k K = (Fk,k+le)K

a ~ (iti VV) - ( q' ;,*+ Pk"' OKK O)K

( ~l 0) k+1 / v~l
(q6'o)-qp . VO

'/8K ~aL~t JK K aAtX,)K

where we have use Vr* to differentiate the edge value for this equation from V in

(2.62), since these two need not be the same (i.e. there is no numerical consistency

consideration, and DG methods allow some freedom in how flux quantities are chosen).

Finally, integrate by parts a second time, using the interior solution on the edge

i;k - (V .- Qk1' (VPk )K / k+1 -k+1 _pk k g K (Fk,k+1gaAt IJOK ')K + -) + )Q )ai +F =

(v q i1, )K ( ;k+1 _ +1)K (V " /~k+1 Vk+ 1) . K- V 45 ,0)K 6P - jP- i8~K aAt 0) \ aAt 08

Again, this discretization is completed by the definition of the edge-terms.

(2.56) does not require any further modification, since it is a simple algebraic

equation in terms of the unknown variables. For (2.57), we multiply by test-function

0, and integrate over an element K:

(pk+ O)K k pk+1 )K (v k+1 o)K

Integration by parts of the last term on the right-hand-side, twice (as before) gives

(pk+1 ) = k +6pk+ 1 ) vk+1 K ( k+1 k+1). g)

This completes the basic theoretical finite element DG discretization. We note that

the discretized equations (2.60) and (2.61) can also be obtained by taking the differ-

ence between the DG-discretized equations of the full un-split system (not given) and

the split system (2.58)-(2.59). This gives the same discretely-consistent element-space

scheme as that given above. Such a derivation is completed for our HDG scheme in

sub-section (v) and §2.3.3-§2.3.4. We also note that there is considerable effort re-

quired between the mathematical formulation and an actual implementation of the
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algorithm. As such, specific details of our implementation are in §3. Next we provide

our new HDG discretization.

(iii) Hybrid discontinuous Galerkin spatial Discretization: Equations

We state one of our main results, the new element-local set of equations, along

with their global flux-conservation equations. All of the equations for our new scheme,

including all fluxes to be derived later, are summarized in Fig. [2-4].

The element-local equations (with the HDG fluxes substituted) along with the

global flux-conservation equations are obtained next. Note, we re-arrange the local

equations such that locally-calculated quantities are on the left of the equal sign,

while globally calculated (i.e. A's) and known (or given) quantities are on the right.

Also, note that the distinction between the usual DG and HDG lies in the definition of

the numerical fluxes (see section v), where the A's belong to the new HDG edge-space.

The element-local equations for Vk+1, which complete the DG discretization (2.58)

are

((Re)Qk+1, ) _ k+1 K + k+l ,. )K (_k+l1fl. 8)K, (2.64)

vk__ - v -Q * , K + k+1 (TK - ( k+1 K (Vpk g K + (Fk,k+l, g)K

(2.65)

where r = 1 is the HDG stability parameter (see §2.3.4). The global flux-conservation

equations for A+1 are

K [[k+1 ii]f= N, 0e)

- k+1 - i - ( k+1 _ = ([[nkij, O)Ee + (gN, OE), , (2.66)

-1= gD (2.67)
ED

where gD and gN are the values of Dirichlet and Neumann boundary conditions for

the momentum equations, respectively.

The element-local equations for bpk+1, which complete the DG discretization of

74



1. Velocity predictor (momentum equations)

Element-Local equations:

V- Vk+lK +(ik+l . K k+ 1  8K

S) - . Qk+1 ) + 0"+) =}(K k+1.K Vk.K + (F)k,k+1 0

Edge-space global flux conservation equations:
k+1xk1 __) + (N! 0)

Flux definitions:

_k+1 P9D, onC
PgDJ. onlLV =

k+ k k+] k+1 _ k+i

2. Pressure corrector (to enforce continuity)
Element-Local equations:

- (Vpip0 _4_)K±(pk+I. il.o~ 0 (kInD

+~V~ (Tipkik)A

Edge-space global flux conservation equations:
([q 6 kl -SP(p~ - 0) (\0

Flux definitions:
k+1 P9D O1

+1 o 0
-kJ) k+l )1

q6p q15-1 1, ((1) -

I -k+] -k~t

3. Velocity and pressure corrections

Element-Local correction:
k+1 _ k+1 _ +1k V k aKtqk _

(1)k-;A o) (/± .l )K-Jp ( V k+lO 14 ((k+1 -- ]~±)

Figure 2-4: New HDG and projection method scheme. Plan boxes denote the main
equations, while dashed boxes give flux definitions.
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(2.59) are

q,+1) (Vpk+lK + (pk+l, f. *)8K +K ii. ')"K

(2.68)

- (V - q,,+),K + (K , Opk+l, g)K = KTpA, 0)8K k + )K (k+_k+)f . 8K

(2.69)

where we have used Vi A+1 as defined by (2.83), and T, = t is the HDG sta-

bility parameter for the pressure-correction (see §2.3.4). The global flux-conservation

equation for Ak+1 is

[[.p+1 -in , O) = (gN,, O)C

-. (tqgk+l1n - T (6 pk+1 - + , OE) = (gN,, 0e) , (2.70)

Ajp a = gD, (2.71)

where gD, and gN, are the values of Dirichlet and Neumann boundary conditions for

the pressure-correction, respectively (and these are often zero Neumann, §2.2.3).

The element-local DG velocity and pressure correction equations (2.60)-(2.61)

remain unchanged for HDG,

k+1 _Fk+l __ k+1

(pk+1 ) (k 1  K k+1 ) K k -k+1) . g, K

but a new correction vk k+1 + -k+1

edge-space is now required

=kl i-k+l ±k~

k*+ cor (2.72)

=k+1 qpk+l + aAtTp (pk+1 6 k+1) (2.73)

where we have used = + +1 as defined by (2.83). We note that a correction of
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the pressure on the edge-space is not needed in the present scheme: only needed are

local pressure corrections in (2.65) and jump terms corrections in (2.66). All of these

HDG fluxes are provided and derived in sub-section (v).

(iv) Hybrid discontinuous Galerkin spatial Discretization: Un-split equa-

tions

As done in the explanation of the time-discrete projection method (§2.2.1), we

now state the element-local and globally-coupled HDG discretization for the un-

split equations. These element-local un-split equations with HDG fluxes substituted

can be used to derive the velocity and pressure corrections for the split (projection

method) equations. The un-split equations are:

((Re)Qk+1,E) - (VVk+l, E)K + (vk+lii 8)K (Ak+1 I K

Vk+1 0 - (v Qk+1,o k+1 K (vpk+l, )K (rk+1 ,o)K + (Fk,k+l, o)K

(V. vk+1, )K _ (Vk+l . O aK -Kk+1 . K

(k+1 K =k+

(2.74)

Note that these element-local Stokes equations are solvable once the velocity bound-

ary conditions and average pressure are specified. The globally coupled equations

for A and the average pressure IpI = 1 fKpdK on the element (with volume IKI=

fKdK) are:

Qk+1 ± n _ 1k+i + T (Vk+l - Ak+1 )] ), = (gN, Oe), ,

Ak+1 . , i 0, (2.75)

A k+ I~a = gD.

(v) Hybrid discontinuous Galerkin spatial Discretization: Derivations

Next, we first provide a brief derivation of the element-space HDG equations,

then, give a few notes about the form of our flux definitions using HDG methods

(Nguyen et al., 2009a, Cockburn et al., 2009a). We then obtain the new HDG fluxes
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that are used to complete the discretization of (2.58)-(2.61).

Element-space HDG discretization: We start by implicitly deriving the element-

local equations (2.64)-(2.65), (2.68)-(2.69) and especially the corrections (2.60)-

(2.61). The derivation is implicit because these equations have already been derived

from the continuous projection-method equations and their discretization: this is be-

cause they are equivalent to the DG-discretized equations of subsection (ii), up to

the edge-space A parameters. Instead of starting from the continuous projection-

method equations, another formal derivation at the discrete level starts directly from

the element-space discrete equations, so as to ensure that the corrections (2.60)-

(2.61) are consistent at the discrete-level proper. To do so, one takes the difference

between the un-split HDG-discretized equations (2.74) and the corresponding split

HDG-discretized equations (2.64)-(2.65) and (2.68)-(2.69). The result is again the

same as in subsection (ii), i.e. the HDG correction equations (2.60)-(2.61). This

procedure of taking the difference between the un-split and split HDG-discretized

equations is also employed in §2.3.4 to derive consistent edge-space corrections and

stability parameters.

Edge-space HDG discretization and HDG fluxes: To justify (2.73), we first note

that Vk+1 in (2.72) is a dummy variable to be determined and that this relation (2.72)

is an algebraic equation correct both on the element-space and edge-space. The flux

chosen in (2.73) is discretely consistent with the discretized divergence equation, and

the consistency is proven in §2.3.3. Specifically, (2.73) was obtained by evaluating

(2.60) on the edge-space, using the definition of r = -aAtq,k+1 and assuming

that (2.83) was used for Q- . Note that we do not need an equation to update the

value of AP on the HDG edge-space, since this quantity is not used in the next time-

step. We only need the pressure gradient on the element interiors (2.61). The formal

derivation of (2.73) is provided in §2.3.3.

To complete the DG and HDG discretizations, we needed to define the fluxes

and edge terms, vk+1 k+1 -k+1 -k+l , k+1andede trm, V - 7 V ,6p )Q , P, and qp The diffusive fluxes for
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discontinuous Galerkin schemes are normally reported in the form

a= {{a}} - C1 [dfn + C 2 [a - ,(2.76)

d= {{d}} -C1 -[dfn]- C22 [a -fi,

for vectors and scalars a and d, respectively. However, the HDG flux definitions are

more easily understood in a different form.

To understand how HDG fluxes are specified, it is important to grasp the underly-

ing premise of HDG methods. The premise is that one can solve the set of equations

(2.58) or (2.59) locally on an element as long as all the necessary boundary and initial

conditions are specified. While the initial conditions are known, the boundary condi-

tions for the implicit variables are not known, and we desire an equation to solve for

these boundary conditions. To find this equation, the solution on the interior of an

element is parameterized in terms of new variables which represent the boundary con-

ditions for that element. For our equations, we need two new variables, A for (2.58)

and A, for (2.59), which live in the same spaces as 0, and 0e, respectively. That is,

A and Aj, only exist on the new hybrid discontinuous edge-space, and do not have

a value inside the element (i.e. no interior support). Finally, the globally-coupled

equation for the boundary conditions are found by enforcing the conservation of fluxes

across elements (more details about the implementation can be found in §3.4). As

such, we will define our flux quantities in terms of the new HDG variables X and A,.

Additionally, we note that the original Stokes system only required knowledge of

the velocity initial conditions, average pressure, and velocity-boundary conditions to

be solvable. However, for the time-split system using projection methods we need to

specify the initial velocity and pressure, and boundary conditions for the velocity and

pressure-correction. While this may appear to be an over-specification due to the

additional boundary conditions for the pressure-correction, the boundary conditions

for velocity and pressure are intimately related, and require careful treatment to be

numerically consistent. The proper specification of these HDG fluxes using Projection

methods has not been previously addressed.
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Each of the two main DG-discretized system of governing equations ((2.58) and

(2.59), and their state variables) of the projection method has in principle a A variable.

These A's are: A for V and Aj, for 6p. As a result, by algebraic consistency, one can

also introduce the corrections A for v and A, for p. These two A's for the corrections

are of course related to the other A's and to corresponding fluxes since the two

correcting equations are algebraic equations.

Now, our flux definitions for Vk+l in (2.58) at time k + 1 are:

-k+1 g9D, on e
V = k+1 (2.77)
k+1 I A ,on E

Q p k+ 1 _ k _ k + 1 _ k+ 1 Y

- I Q-k+1v + _V 1 (2.78)

where P is the L 2 projection of the boundary condition gD into the same space as

6 , and I is the d x d identity tensor, and (Vk+1 _ k1) ii is a d x d tensor. The

appearance of an explicit variable pk in (2.78) is justified in §2.3.4.

Similarly, the fluxes for the pressure-correction equation, (2.59), are expressed as:

J k+ A kD , on E OPgp, =ea(2.79)

,k, one

qk _ k+5p - ( 6_k+ _ 6^k+1 n (2.80)

However, the choice for the velocity fluxes V+ in the continuity (divergence) term

on the right-hand-side of (2.59) depends on the choice of the advective flux. For

example, a central, upwind, or hybrid flux choice in the interior would yield

v^k+i -k+1}} ,(2.81)

{{k+ _ k+1 + k+1 ) k+liI . ii(

.---I+1 \k+l
V+ =A , (2.83)

respectively. In our experience, (2.83) gives the most accurate results, as such we will
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use this flux.

Finally, our intent here was to summarize the order for solving the various systems

of equations, but the actual solution procedure is more complex, and the element-

local equations have to be solved multiple times (see §3.4).

2.3.3 Consistency of the velocity correction on the HDG

edge-space: formal justification

In this section we show that the edge-space correction of the predictor veloc-

ity, (2.73), is consistent with the discrete divergence equation and the pressure-

correction equations (2.68)-(2.69). The element-space derivation was already com-

pleted in §2.3.2-(v). Importantly, the edge correction is a gradient of 6p on the edge,

which is only continuous in the normal and not tangential direction: hence, even

"k+1though V' was unique on the edge, the gradient of 6p is only unique in the normal

direction: this has important implications which we will discuss.

To prove the consistency of the flux, we will use (2.69) and (2.72) (which is valid

on both the element and edge spaces). This will allow us to recover the discrete diver-

gence equation for vk+1, which we want to satisfy numerically. By setting the discrete

divergence to zero, we then show that the flux j'cor = -aAtqk+1 is consistent.

We begin by re-arranging (2.69), where the goal is to combine terms to make

the velocity correction equation (2.60) appear on the element-space and thus find

the consistent edge-space flux condition for 9k±1 from that of qsp (since vk 1 -

-aAtqpk+l on the element-interior):

( 1 ) a.+ k+( -+k+1)_V 
/ + 5 K k+1 7 K ~ pAk+1 \ (K .k K 0 0.0)~~~~~~ ~ ~ KOa aK+at)K+ at aK
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Multiplying by aAt and assembling terms we obtain,

=(V . -v +1 t-k~l_- ~ 6klAp~)aAtV -q6P + 0)±(V' .. k ) ft+ aAtTpGpl- ) 8K~1O = 0,
+ _ (Vk+l K k+1 k+ 1 - k++1 - aAtqk+1). 6, K

- (a C- (v+ _) + K 6 + (k+ _ 6+1 _ 19- a K

(-aAtk+1 . +aAt-p(6pk+l _ A6pk+1), )K '

where we have added and subtracted aAtqk 1 in the edge terms. Now substitute for

vk+1 ad 'k+1 + +1
v ndV V* Vcor

(v.Vk+1 O)K +K(k+1 -_k+1) . f_ Vk+1 K

-atq 1- + aAtTp(6pk+l _ A6pk+l) 8K 0

S(V . vk+1 o)K +K k+1 . Vk+1 ., K

+ -k - - aAtq -.6 + aAtr( 6pk+1 _ k+1 g 0.

Now, set (V . vk+l, O)K + k+1 .i - vk+1 . i K0) = 0, since this is the discrete

divergence equation. Finally we can solve for the edge-correction Z'k by projection

on the normal:

k+1 (-aAtq + 1 
.6±aAt-p(6pk+l _ \,k+1) 8K,

-> ') = (-aAtq' + aAtp(6pk+1 _ k+) .

Dropping the normal

ak+1 +1 (6pk+l _ Ak+l)6,
Vcor - 6tp +aA~

we recover (2.73).

A few remarks.

1. From (2.73) (and the above justification), the pressure correction leads to a

continuous change of velocity in the normal direction, but not in the tangential

one. This change in the normal direction is equal to v 6+1 - = - aAtqk+1 .
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n - aAtp ( 6 pk+1 - A+ 1), and is continuous because we solved (2.70). However,

the change in the tangential direction is not expected to be continuous. Hence,

the correction velocity is therefore discontinuous across the edge.

2. For the advective flux across elements, remark 1 has no consequence, since we

only require the normal component of the velocity on the hybrid discontinuous

edge-space. As such, we can use

v'/ac t = c {-q 5 6+k+l p +,k+l k+1) i+}

+ (1 - c) {-qj-,k+l ± (6p-,k+1 - A+ 1) ii+

for arbitrary constant 0 < c < 1.

3. For some implementations of the rotational correction term (see Appendix B),

remark 1 has consequences, and require additional consideration.

Next we discuss the appropriate size for the HDG stability parameters.

2.3.4 Derivation of consistent HDG stability parameter for

the pressure-correction

As of now, we have not given guidance on choosing the magnitude of the stability

parameters r and r. Fortunately, the effect of varying the magnitude of r has been

well-studied (Nguyen et al., 2009a, Cockburn et al., 2009a,b), and from these studies

r = 1 gives the most accurate fluxes. What remains is finding a consistent value for

Tr. In this section, we also justify the explicit pressure-flux present in (2.78).

To find Tr's consistent value, we compare the fluxes of the split equations to that

of the un-split equations. We first solve for the un-split A in terms of element-local

quantities. To compare the un-split fluxes to the split fluxes, we also have to express

the edge-space variables A and Asp in terms of element-local quantities, then form

the final edge-space velocity using (2.73).

To solve for Ak+1 in the interior of the domain (note gN = 0 on the interior),
we use the first equation in (2.75), then we expand the "jump" operator in terms of
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element-local quantities on either side of the edge, and finally we recombine terms

using the "jump" and "mean" operators:

0 = -Qk+1 - 1 + Pk+1± +fT ++ k+1 _ Ak+1

0 = _-Q+,k+l - n+ + Q -,k+l . nl+ + P+,k+l i+ _ P-,k+1ni+ + TdV+,k+l + V-,7k+1 _ 2 k+l)

k+l=1 k+1 _ k+1 + k+1n . (2.84)

Now, we want to compare this to the Ak+1 obtained from the split equations.

From the flux-conservation equation for Ak+1, (2.66) (that is, using our flux definition

(2.78), which includes the explicit pressure contribution), we proceed similarly

0 =[-Qk+1 i + Pki +r (k+1 _ k+1

- +,k+i f~0 =-Qk1n+ + Q-,k+1 - nl+ + P+,knl+ _-,n+ +,++-,k+ _ k+1lO_- p~±~~+ 1+ +).v +ik1-

-k+l - k+i - k+1 .]] + n .pkii4 (2.85)

Note that the time-level of the jump in the pressure is different between the split

flux (2.85) and the un-split flux (2.84) . To correct the velocity, we need to know

the form of the flux q'.k+1 (2.80). Starting from (2.70) we can find the form for A+1

(similar to before)

0 = f-q 6 Pk+i - ± T,, ( 6 pk+i _ Ak+A

0 = -q+,k+1 -++ -,k+l - n+ + T(p+,k+l + + T~,k+1 - 2A+l)

xk+l = {{6pk+1  _ 1 Rq k+1 . ni]]. (2.86)

Now, substituting (2.86) into (2.80) we find:

-k+l +,k+1 . f,+ _ +,+r 1q6p ~ q~p fl T(jp±,kl Akl)

+,k+l . n+ p+,k+1 + -1pk+1f k+1 .i]]

+,k+l - n+ - r ( + k+ _ 2k+ + 2-k+l (qk+l -k+l) - +

{{q6 pk+l} - + 2 6pk+ln]] . n+ (2.87)
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Finally, we construct the final edge-velocity for the split equations by substituting

for (2.85) and (2.87) into (2.73):

Ak+l -k+1 - k+1

1

2-T [[pkfi]] - aAt {{q k}1 2 k+

aAtq k+1 _ [[k+1 _ i'11 + 1tpkf1 ]]+ 2 6 pk+1ii]

= {{vk+1} [[Qk+1 - + 1 [ ] ± aAt-p [[jpk+1n .j (2.88)

Equating (2.84) and (2.88) we have

Q[[k+1]] + _ + + k+1 .- + [ ]k+]12- r2 TP ftpk+lii]] 2- RkQ 2-r±I[Eklil
(2.89)

Note that pk+1 in (2.89) is the un-split pressure. If we multiply both sides by 2 and

re-arrange we have

aAtr [[pk+1J k+1 - k+1) - f + (Pk+1 - Pk)i]

then if we substitute for pk+1 - Pk from (2.57) and re-arrange we have

aAtTp [[6pk+1fj] =
1

1~
[ (Qk+1 _ Qk+1) Si + (pk+l

1 [[ 6 pk+lifl] (1 + [Cfn])
ast-r [Jpk+lfn]

1 + [Eni ,
aAtT

where the value of [cii is
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= {{ k+1

Re
-k+1

(2.90)

1

2 -r

[In] ( - )n - 1 1(V-9)

(rAgp+1)

~0 Re f



where r > 0 depends on the accuracy of the time-integration scheme.

If we set J[Ei 0 we can take the correct value of r, as a constant. However,

then the split and un-split fluxes are different because the diffusive fluxes are not

exactly the same; the split equation's diffusive flux still contains a contribution due

to the non-divergence of Vk+1. This contribution is partly removed by the rotational

correction, but there are additional terms present in the normal vector (Q - Q) - .

As with any projection method scheme, this splitting error is expected to be small,

particularly for large Reynolds numbers (as we will show in §3.8.3).

Finally, we note that the explicit pressure flux present in (2.78) is crucial to

derive a consistent value for r. If this flux was not included, we would have a

ratio T, = 1 , which would depend on the time-integration scheme. There are

additional advantages to our flux choices, which will be discussed next.

2.3.5 Discussion and justification for discretization choices

In this section we discuss some of the discretization choices made, and explain

their repercussions. Specifically, we will focus on our choice for Pk in (2.58), and how

that affects the stability parameter mr and the rotational correction. In general, it is

important to treat the time-split equations as a single system. Treating the individual

equations or steps in the time-split scheme as a single system ensures the consistency

of the method. Failure to do so can lead to relatively poor numerical results, even

though the underlying scheme is consistent and stable. In Appendix A we described

alternative splitting schemes, unique to HDG methods, which attempt to retain the

un-split system of equation on the element, while time-splitting the HDG boundary

values. Here we deal with HDG discretization choices for the time-split equations

using Projection methods.

In our discretization we chose to include the explicit edge-flux p as part of the

definition for the predictor equations for the velocity gradient tensor (2.78). However,

it is tempting to choose k = A k instead. This alternative choice seems reasonable

because, in the time-split equations, we know the pressure at time-level k including

its value on the HDG edge-space. A numerical discretization that uses this choice is
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presented in Appendix B. The repercussions of such a flux are discussed next.

Effect of varying r,

The first issue with choosing p* = A, arises when solving for the consistent HDG

stability parameter -r,. As indicated in §2.3.4, this results in a value of the stability

parameter that depends on the time-integration scheme, -r, = 1 tr . This value

of the stability constant needs to be carefully chosen for consistent results at low

resolutions. Additionally, as we will demonstrate, using a consistent value for rp gives

an improved answer over using a value such as r, = 1, which would be result if the

second step in the time-splitting scheme, (2.59), was treated in isolation of the first

(that is, not treating the time-split equations as a single system).

We can show the effect of the different values for r with some simple numerical

experiments. For the first experiment we calculate one time-step of the lock-exchange

flow (described in §3.8). When using i,, = 1 we see that the solution is discontinuous

across the elements bordering the top/bottom boundary when the solution is not well-

resolved (Fig. [2-5]-top). An interesting feature is that the maximum velocity is well-

approximated by this discontinuous solution. When using the consistent value for Tp,

the solution is properly numerically diffused to give a smooth field, and the maximum

velocity is lower than indicated by high-resolution runs. When the resolution is

increased, both choices of mr give approximately the same solution. These results

show that increasing mr effectively increases the numerical dissipation in the scheme.

From a theoretical perspective, as r, -+ oc the solution approaches a continuous

Galerkin discretization (Cockburn et al., 2009a). Since continuous elements belong

to a smaller function space, this means that increasing r decreases the size of the

solution's function space. As such, for the saddle-point maximization-minimization

problem between velocity and pressure, we would expect a larger maximum velocity

magnitude when r is smaller, and this is exactly what we observe (Fig. [2-5]).

Additionally, this situation arises because the dominant velocity is aligned with

the grid. The tangential portion of the velocity-correction is not directly penalized

by the numerical scheme. That is, q,5p t is free to vary. Increasing rp, then, removes
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the discontinuity in the pressure field, which indirectly also removes the discontinuity

in qjp - t across edges. This is somewhat reminiscent of the inf-sup problem §2.2.4,

where the tangential pressure-correction gradient is free to vary in this case. That is,

its projection unto the velocity space is small. If we used a mesh of triangles instead

of squares, (Fig. [2-6]), the discontinuity is not nearly as severe, since in this case the

u-velocity component is not tangent to the diagonal edge of the triangles, and does

get penalized.

There are additional repercussions of using the inconsistent value for r, particu-

larly at low-resolution. First, we show in Fig. [2-7] the result of the lock-exchange

problem using our scheme from §2.3.2 with a consistent HDG stability parameter (as

derived in §2.3.4). Now, to illustrate the importance of a consistent HDG stability

parameter, we will utilize the scheme reported in Appendix B. In Fig. [2-8] we show

three low-resolution simulations of the lock-exchange problem for different values of

mr for the scheme reported in Appendix B. In this case, only the Fig. [2-8](b) case

gives a reasonable answer, while the low -rp case (a) does not develop the Kelvin-

Helmholtz instabilities, and the high r case (c) develops spurious vortices. To show

the impact of the time discretization scheme, we also plot the same simulations us-

ing a non-incremental (Guermond et al., 2006) projection method (Fig. [2-9]), since

the non-incremental projection method also has a constant consistent rp. Note, the

difference is that the non-incremental scheme does not use a predictor pressure, or

Vpk = 0 in (2.4). Here the consistent value of T, is larger than before, by a factor of

At. With the non-incremental method, the small value of Tp does not develop insta-

bilities Fig. [2-9](a) while the consistent value gives a reasonable answer Fig. [2-9](c).

Additionally, when using half the consistent value Fig. [2-9](b), the non-incremental

scheme still gives a reasonable answer, although the vortices are smaller. This in-

dicates that the relative magnitude of rp is less sensitive for the non-incremental

method. Also, comparing Fig. [2-8](c) and Fig. [2-9](c), we see that the results

for the consistent -r, (specific to those schemes) are not the same. Our numerical

experiments indicate that the size of the vortices for this benchmark are sensitive to

small numerical perturbations at this spatial resolution. When the spatial resolution
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Pressure u-velocity

Tp =1

__ 1

High-resolution
T =1

-0.5 0.5 -0.0225 0.0225

Figure 2-5: The pressure and u-velocity after 1 time-step At = 0.01 of the lock-
exchange problem (see §3.8) using a low-resolution (p = 1, Ax = 0.04) mesh of
square elements with T- = 1 (top), -r = (middle), and a high-resolution (p =
5, AX = 0.01) square mesh. The -r = case (middle) has a lower u-velocity
magnitude and the solution is smooth, while the low resolution Tp = 1 case (top)
does capture the maximum velocity, but the solution has large discontinuities at the
locations indicated with arrows. When the solution is properly resolved, the ip = 1
and Tr = ' (not shown) cases give essentially the same solution.
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Pressure u-velocity
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= 1

-0.5 0.5 -0.0225 0.0225

Figure 2-6: As in Fig. [2-5] but with triangular elements. The triangular mesh does
not have a large discontinuity for -r, = 1 because the tangential correction velocity is
penalized.
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-1.0

0

Figure 2-7: Density contours over velocity magnitude at time 10 of the lock-exchange
problem (see §3.8) using a time step of At = 0.001, a mesh of 100 x 25 linear elements
and a first-order accurate incremental pressure-correction scheme derived in §2.3.2.

a Ty v
0.82

0.95

0
C TP ant2 -

1.0

0

Figure 2-8: As in Fig. [2-7], but for the Appendix B scheme with (a) -r= 1,
(b)T =At , (c) Tp = .

is increased to 400 x 100, both schemes give the same answer (not shown). Finally,

when we use the scheme derived in §2.3.2, and use its consistent r, we see a result

very similar to the non-incremental version of the Appendix B scheme (compare Fig.

[2-9](c) and Fig. [2-7]). Regardless, these results show that the consistent value for Tr

gives qualitatively improved results over an inconsistent value of Tr at coarse spatial

resolutions.

We have shown that the magnitude of ip can significantly affect the numerical

solution for hybrid discontinuous schemes when the flow is not well-resolved and the

dominant flow is aligned with the element edges. We have derived the consistent

magnitude for this parameter, and we have shown how the solution of the lock-

exchange problem is affected by using different values. We suspect that this issue
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Figure 2-9: As in Fig. [2-7] but using a non-incremental projection method with the

Appendix B scheme, and (a) r, = 1, (b)r, = -, (c) -r, = .

is not limited to HDG schemes, and we speculate that the same problem would

occur with locally discontinuous Galerkin (LDG), internal penalty (IP), or other

discontinuous Galerkin methods. If we are correct and the problem does arise with

other methods, a similar approach to the one presented here could be used to find the

correct scaling of penalty terms. That is, the time-split equations need to be treated

as a single system, and consistent penalty terms have to be used in each case.

The rotational correction

The second issue with choosing p = A, arises when applying the rotational cor-

rection term. With our choice of including the explicit pressure jump in the implicit

flux for the velocity-predictor (2.65), we avoid having to correct the pressure on the

HDG edge-space. When using the scheme in Appendix B, either the edge-space

of the pressure needs to be corrected (since it is required to calculate the pressure

gradient), or the pressure gradient needs to be corrected directly.

The problem with correcting the edge-space of the pressure is that the rotational

correction, V-, is not uniquely defined on the edge-space. It can be constructed using

components of Q, but only Q f-t is uniquely defined (since we solve the global equa-

tion (2.66)), while Q -t is discontinuous. Using an inconsistent or non-conservative
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value for the rotational correction on the edge-space can lead to instabilities or poor

solutions. Thus a strategy that corrects the pressure gradient directly is employed

in Appendix B, and details can be found therein. The rotational-correction should

be explicitly calculable from known quantities, but because the HDG method is in-

herently implicit, a global solution is required to correct the edge-space pressure or

pressure-gradient with the rotational term (see Appendix B). Our scheme in §2.3.2

essentially combines the global calculation of the consistent edge-space rotational

correction with the calculation of the predictor velocity.

2.4 High-order time discretization using IMEX-

RK schemes

Once our equations have been spatially discretized, there are various ordinary

differential equation solvers that could be used to advance the equations in time. De-

signing new higher-order accurate time-discretization schemes are beyond the scope

of this thesis, as such we intend to use existing methods (Kennedy and Carpenter,

2003, Ascher et al., 1997). Unfortunately we cannot simply apply existing methods.

This is, due to the nature of projection methods, which already introduce a time-

discretization, and HDG methods, which have an inherent implicit component. A

question also arises as to whether the pressure should be treated implicitly or explic-

itly. As a result, we describe the modifications required to solve our equations using

semi-implicit Runge-Kutta (RK) methods. RK methods are attractive because they

are self-starting, and allow for variable time-step sizes.

We are interested in IMplicit EXplicit (IMEX) Runge-Kutta (RK) time-stepping

schemes with s stages that are of the form 1:

s-1 s-i

#k+i _k + At >b "fi'(0i) + At be-f"(), (2.91)
i=O i=O

'For MATLAB and FORTRAN programmers, note that Python/C/C++ indices are used, start-
ing at 0 and ending at s - 1 for an s-stage scheme.
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where the stage variables are solved using

i i-i
t0, = Ok+ At S if m~q 3  t5af~i13

j=0 j=0

i-1 i-1

(1 + Ata"fim)Oj = Ok + At 5 af m Q m(%) + At a2 f*q(#),
j=0 j=0

(2.92)

where q is some field satisfying the equation 2 = fi + fex and #o = Ok. IMEX

schemes treat one part of the right-hand-side implicitly (usually stiff terms such as

diffusion) and the other part explicitly (2.92). As such, we require two Butcher

Tableaus, one for the implicit terms, and one for the explicit terms. Also, we will

only consider schemes with Butcher Tableaus of the form:

0

0 ... 0
0

aex 0(S-1),(s-2)

... b _9 a

0

dt1

0

: 2

(5m_1),'

0 ... ... 0

a 0 ... 0

0
.-. ... 0

(S-1),(s-2) a

... ... bs-2 a

(2.93)

where these schemes have the following properties:

1. bi = b=

2. dtS- 1 = 1

3. a T = 0 Vj > i

4. aim = 0 Vj > i

5. aWT=a VO<i<s

Item 1 is an often-used constraint in the IMEX RK literature (e.g. (Kennedy and Car-

penter, 2003)). Item 2 is useful when using the HDG framework, as will be explained

below. Item 3 is a necessary condition for an explicit RK scheme. Finally, items 4
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and 5 are important for an efficient implicit method, where a single diagonal entry

allows for the creation of a single implicit matrix, and zero entries above the diagonal

allow different stages to be solved sequentially (as opposed to simultaneously).

The time-stepping procedure is complicated by the projection method's time-

splitting which needs to happen within every RK stage. If we write the momentum

equations for the true velocity from (2.3) as

9= Fm + Fe - Vp, (2.94)
at

where F" = Vg - Vv, F' = F&, then we can write a typical IMEX RK stage

calculation as:

i-1 i-i

vi-aAt m =Vk + At a Fm+At aexFe-x
j=0 j=0

i-2

-At a Vpj - Atax_Vp _1,L i 23 i,i-
j=0

i-i i-1

=>(1-aAtV-V vi=vk+At a"F"'m+At ae Fe
--2 j0 (2.95)

- At a'.Vpj - Ata_ 1 Vp_ 1 ,
j=0

where F'x and Flm contain the explicit and implicit terms calculated at previous

stages, respectively, and we are treating the pressure explicitly. However, for the split

equations, we would not yet know the correct Vpi_1 at each stage that would balance

the divergent parts of the explicit terms which will render V -vi = 0. Hence, we now

have to explain the modifications needed to the IMEX-RK integration to incorporate

our time-splitting.

As discussed in §2.2.2, the purpose of the pressure is to balance the divergent

terms in the right-hand-side of the equation, and the implicit terms evaluated using

a divergence-free velocity should remain divergence-free (see §2.2.1). As such, the

explicit contribution, Fi 1 which would have been newly calculated from the velocity
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at the previous stage Vi_ 1 , is the only source of divergence in the right-hand-side.

Unfortunately, at this point in the stage calculation we do not yet know the correct

Vpi_ 1 that would balance the divergent parts of the explicit terms which will render

V - vi = 0. As such, using the incremental pressure-correction method, we predict

the pressure at stage i - 1 using a function of the previously calculated pressures,

Vpi_1 ~ Vpi* = VF(po, ... ., pj), j < i - 1.

A typical, time-split, IMEX RK stage calculation for the predictor velocity Vi can

then be written as follows, where we have also divided by At

/1 -k i1 i-1
-aV - ie 1 =aj±Za ?F7 + EZa F~x

Rei-2 
(2.96)

- Z a Vpj - ai 1 Vp.
j=O

Proceeding as in §2.2, we perform the projection step (2.8)

_V26p, V -V~i

At'

and correct the stage velocity as in (2.10)

Vi = Vi - AtVwp.

To find what the pressure correction should be, we follow the same procedure in §2.2.1

and find that we require a new scaling in the correction terms

1 a 1
pi-1 = pi* + 1 a R-Vi.a' arri1 Re
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To prove this new result, substitute for vi into (2.96)

/ -I \ ik i-1 i-1
- aV V + a " F " + LF

j=0 j=0

i-2

- S agVpj - a 'L1 Vpj*.
j=0

Then subtract out the un-split equations

eaV - V AtVpi =-a _ 1Vpi. ai 1 Vpi_.
At Re iiii

Now solve for Vpi_1 , followed by pi_1 after substituting (2.8)

aex 1
ai,i_1Vpi_ ae,iVpi + Vopi - aV- .VAtVjp2 ,i'i Re

1 a 1
>Vpi- 1 =V Pi*+ 6pi - a V 1 VRe

1 a 1
Pi-1 Pi* + Epi V Vi.

aaed Re

Note that this gives the pressure at the present stage time.

While this procedure allows us to calculate intermediate divergence-free stage

variables, what the IMEX RK scheme actually requires are the implicit and explicit

function evaluations. Thus, the explicit pressure contributions need to be updated to

replace the guessed values Vpi* in the right-hand side of the momentum equations.

While we could evaluate the implicit diffusion terms using vi, it is more efficient

computationally to solve for F' from (2.95) as follows

i-1 i-1

vi - aAtF" = vk + At a"Fi' + At) aeFex
j=0 j=0

i-2

- At a Vp - AtaI 1Vpj_1 ,
j=0

F" a ajFj"a'F+ ax :1- a pj (2.97)
j=0 j=0 j=0
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With this procedure, the implicit terms should be completely divergence-free, that is

V -Fm = 0, and also the explicit terms V- {Fy - Vpj} =0. If not for the splitting

error, this shows that the pressure is an explicit contribution, and should be accurate

up to the explicit order of accuracy.

Unfortunately, from the discussions in §2.2.2 and §2.2.3, we will show that the

pressure also balances divergent components of the implicit terms, which arise due

to the boundary conditions. This means that the implicit term is not divergence-

free by itself, but instead V- {aFm + aS_ 1Fr1 - a'_LVpj}. This has unfortunate

consequences, since in subsequent stages, the ratio a : a'_ 1 is not maintained, and

the pressure calculated at the subsequent stage will have to balance the divergence

from right-hand-side contributions of previous stages. This is particularly evident at

the final solution stage, and leads to the requirement that dt,_ 1 = 1 (item 2 above).

Consider the final re-combination step (2.91). For this step, we need FeX(V, 1),

which is newly calculated after solving for the final stage values. For the Navier-Stokes

equations, this means we have to evaluate the non-linear advection terms, which will

be divergent. As such, we need to calculate the pressure p,-, which will balance these

divergent terms, and lead to a correct divergence-free velocity vk+1. To do so we have

to define vi (see §2.3.2), and if we have chosen to use the HDG flux v k+i k+1

(2.83), we have to solve for the solution on the HDG edge space at the recombination

step. To do so, we ignore the already-calculated FIM, which is the implicit terms

evaluated at dt,_ 1 = 1, and recompute this implicit contribution, similar to the

procedure followed for the stage calculations. That is, after the pressure-correction

step we have:

S-1

Vk+1 - aAtFim,k+1 = Vk + At E b {Fm + Fe - Vp} . (2.98)
j=0

This allows us to use the HDG flux for +1, at the cost of one additional matrix-

inversion for the implicit diffusion term. However, we do not expect this to add

significantly to the cost of the scheme. This is because the solution of the pressure

equation generally dominates the total cost, and we have an excellent guess for Xk+1,
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since A,_ 1 is known from the stage calculation, and it is is an approximation of the

velocity on the HDG edge space at the k + 1 time-level.

In summary, to use IMEX RK schemes with the HDG Projection method dis-

cretization, two new modifications are required. First, the projection step has to

be carried out at every stage and at the recombination stage. Second, the implicit

diffusion term has to be re-evaluated at the recombination stage, if the HDG flux is

chosen for v ".

2.5 Explicit hybrid discontinuous Galerkin schemes

In the §2.4 we saw that we needed to implicitly solve the HDG system of equations

at the recombination step. This was because we did not know what the solution was

on the HDG edge space. A very similar problem arose in §B.2, where we had to

define the velocity correction, Acor on the HDG edge space. In both cases it would

have been useful if we could have evaluated the HDG system explicitly. One might

hope that since it is possible to either implicitly or explicitly evaluate other schemes,

such as the locally discontinuous Galerkin method, that the same could be done for

HDG methods. However, we will show that even an explicit evaluation of the HDG

fluxes requires a matrix inversion. This is because the HDG edge-space is global, and

hence inherently implicit regardless of the time-integration procedure. The following

argument is carried out for readers unfamiliar with this property of HDG methods.

Consider the first time-step where both v and Q are known. Based on this we can

calculate A from (2.85). This is enough information to advance the velocity for one

time-step at the local-element level. Can we find an explicit time evolution equation

for the velocity on the edge space at an edge-local level? If we take the time-derivative

of (2.85), we obtain:

_X 8 1 [[BQ ]
(t e t 2 r t t

(where we have dropped the explicit pressure term for simplification). From this we
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see that we also need an equation for the time-evolution of Q. We can obtain an

element-local equation for this by taking the time-derivative of the discrete gradient

equation (2.65):

Qk+1 a-k+1
(Re) ,k-I-i - V ,1 - _ - fn- =0t )at at at'

Substituting for the time-evolution equation of A we obtain

(Re) , K k+1 ')K O ik+1

This equation highlight the inherent problem. We hope to write the above equation as

an element-local equation, but the jump of the gradient includes contributions from

bordering elements. As such, this problem becomes a globally coupled one. That is,

a globally coupled inverse is needed to solve this equation.

We can now restate the problem as follows. Given a discontinuous field v, what is

it's HDG gradient? We can solve this problem by defining the following element-local

system

((Re)Q, E)K - (Vv, e)K + (v, i -) = (A, ni - 9)aK (2.99)

(v, 6 )K -, - )K

with the globally coupled equations for A

([Q -ii - r (v - A)J, 6), = (gN Oe (,0
(2.100)

AIOan = gD.

Solving this set of equation for the HDG edge velocity A will allow one to calculate

the HDG derivatives of any field.
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2.6 Summary

In this chapter we formulated and derived a new Boussinesq solver using the novel

HDG Method, a projection method, and IMEX-RK time-integration schemes.

For the spatial discretization we mathematically derived the proper form of the

HDG edge-space velocity correction and the proper form of the HDG stability param-

eter for the pressure. We also provided guidance on applying the rotational correction

to the pressure. Finally, we detailed how we incorporate the projection method time-

split within a standard IMEX-RK time-stepping scheme.

Next we will extend this scheme for the equation governing ocean flows (§4). This

requires the extension to a free-surface boundary condition, and a reformulation of

the Boussinesq equations appropriate for thin-fluids. Future research into alternative

splitting methods based on the HDG method may be fruitful. In particular, we

suggest an alternative splitting scheme in Appendix A, which will not be dependent

on a properly chosen HDG stability parameter for the pressure.
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Chapter 3

Implementation of the 3D

Incompressible Navier-Stokes

Equations, Algorithmic Properties

and Numerical Verifications

In this chapter we explain some of the details pertaining to our particular im-

plementation of the scheme described in §2.3.2. There is often a considerable leap

between the mathematical formulation and the implementation. For help with low-

level implementation details (such as, how to create an orthogonal polynomial basis

on a triangle), we refer to the text by Hesthaven and Warburton (2008). First we will

discuss the choice of finite element basis, speaking on the advantages and disadvan-

tages of a modal or nodal approach. Specifically we justify some of the choices made,

and explain how to overcome some problems that will arise. Second, we discuss the

method for discrete integration, contrasting quadrature-free and quadrature-based

integration. We also discuss how to formulate a quadrature-free method that will

work in conjunction with the hybrid discontinuous Galerkin (HDG) space. Third,

we describe our nodal limiting procedure. Fourth, we explain how to implement the

HDG method without storing the globally-coupled matrix. Fifth, we explain the
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Figure 3-1: Sketch of the first three ID (a) modal Legendre and (b) nodal Lagrange
polynomial bases.

design philosophy of our python framework, and outline the primary function of dif-

ferent modules, as well as the main program data-flow. Then we perform verification

benchmarks to demonstrate the performance of our quadrature-free HDG scheme,

and our selective nodal limiter. Follow this, we describe and employ examples that

contrast the continuous properties of Projection methods with the numerical equiv-

alents. Lastly, we perform numerical tests and convergence studies to evaluate the

discretized system of equations for Stokes/Navier-Stokes.

3.1 Modal vs. nodal bases and test-functions

The choice between modal or nodal bases is not an obvious one, and either choice

has its own merits and pitfalls. Here we briefly describe the properties of both

approaches, discussing advantages, disadvantages, and implementation issues. We

mainly concentrate on polynomial bases, and issues related to Galerkin test-functions,

but we also include some discussion on other choices. In this section, we will consider

a function q(x, t) approximated by a finite element basis as 4(x, t) = E q$(t) O(x).

We will simplify the notation as # = #i5O, where no confusion should arise. Note that

our discussion will focus on scalar bases, 0, but the same properties will also apply

to our vector 6 and tensor E bases.
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3.1.1 Modal basis

A modal basis (Fig. [3-1](a)) has a number of important properties that influence

the implementation of the numerical scheme. These are summarized as follows:

1. Modal bases are orthonormal with respect to the Galerkin inner product: (A, O%)K =

4g, where 6 is the Dirac-delta function in this case.

2. Modal bases have a natural hierarchy: as an example, for a 1D basis, Oi-E P'.

3. The number of modal bases required to fully describe a p degree polynomial

depends only on the spatial dimension of the problem. It does not depend on

the type of element.

4. To evaluate the value of a function at a point in the element, every modal basis

needs to be evaluated at that point: #(x, t) = E i(t) O(x).

The main advantage of the modal approach is the orthonormality property (1). The

orthonormality of the polynomials may be defined in terms of any chosen inner prod-

uct, but in Finite Elements it is convenient to choose the basis such that the mass-

matrix is diagonal. This is very convenient, since the mass-matrix needs to be inverted

often, and a diagonal operator can be trivially inverted. Additionally, the derivative

matrices will be sparse. Thus, modal bases have sparser numerical operators, which

then require fewer floating point operations to compute. Next, the modal basis also

has a natural hierarchy (2), where each basis is associated with a particular poly-

nomial degree. For example, the first basis is usually a constant, for the p = 0

degree polynomial. The next basis, then, has linear terms, and is associated with

the p = 1 degree polynomial. Each level in the hierarchy, then, is related to the

derivatives of the solution. For example, the first derivative of the first basis is zero,

and non-zero for the rest. This is extremely convenient for filtering or nodal limiting

operations because a specified decay of the solution's derivatives can be imposed by

directly modifying the coefficients of the modal basis. Additionally, p-adaptivity is

easily handled with modal bases: when the order of the polynomial has to decrease

or increase, simply decrease or increase the number of modal bases used. This can
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potentially be implemented using a "masking" procedure. The next property (3) is

convenient for meshes composed of different finite elements (for example triangles and

quadrilaterals in the same mesh). Since both element types have the same number

of degrees of freedom, the same data-structure can be used for both. This makes

the implementation simpler because the same strides can be used in the array for all

element types.

The main disadvantage to the modal approach involves interpolation, or property

(4). If the solution needs to be evaluated at a point, all bases need to be evaluated

at that point. For discontinuous finite element schemes, the solution on the element

is frequently evaluated on the boundary of the element, so a modal basis requires

more evaluations than a nodal basis. This also has major repercussions for coordi-

nate transformations, quadrature-based integration schemes, and non-linear function

evaluations with a quadrature-free integration scheme.

In the case of coordinate transformations, the Jacobians, for example, can be

conveniently calculated using a nodal basis. The Jacobians from the nodal basis then

have to be transformed to the modal basis, but this requires additional computation.

For straight-sided simplexes (lines, triangles and tetrahedrals), this is not an issue

because the Jacobians are constant. For curved elements, such as those obtained from

moving mesh calculations (for example, a free-surface ocean model), the Jacobians

are polynomials, and the transformations add expense at every time-step.

Next, for quadrature-based integration, the solution has to be evaluated at quadra-

ture points. When integration over the element boundary is required, we have to eval-

uate every modal basis to calculate the value of the function at each of the quadrature

points. The first property gave sparse operators, but the Vandermonde matrix needed

to evaluate the basis at quadrature points is dense. Now, from an implementation

perspective it would be convenient to have a single Vandermonde matrix for each

edge that will do this evaluation. Unfortunately, the most efficient quadrature points

are not necessarily symmetric on edges (Fig. [3-2](a)). Since two edges can meet

at arbitrary orientations, we need a unique Vandermonde matrix for every orienta-

tion of the quadrature-points on every edge. Therefore, an implementation needs to
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select between the appropriate versions of the Vandermonde matrix for each edge

on an element, which adds to the complexity of data-structures and program flow.

Alternatively, the polynomial can be projected from the volume-space modal basis

0 unto a modal polynomial restricted to the edge-space 0, (Fig. [3-2](b)). In this

case the implementation is simplified, but additional calculations are required on the

edge-space to evaluate its polynomial at the non-symmetric quadrature points.

Finally, for equations with non-linear functional forms, quadrature-free imple-

mentations are expensive. Consider the integration of (f(#), 9 i)K, where f is some

non-linear function (such as sin(), 101, , ... ). In a quadrature-free approach, the

coefficients #i can normally be taken out of the integration sign, and then the re-

maining integration of known bases 9i and test-functions 03 can be pre-calculated

analytically (§3.2). Because of the non-linear function, this separation is not possi-

ble. As such, one has to resort to somehow projecting or interpolating the function

f() unto a polynomial basis f(#) ~ f2 02 . Once the fi coefficients are known, the

integration can, again, be pre-calculated analytically. The projection step could be

done using quadrature, but then the advantages of the quadrature-free approach is

eliminated. Interpolation of the function is most easily achieved using a nodal ba-

sis, and once known, can then be transformed to a modal basis, but this requires

computation which is unnecessary if using a nodal basis at the onset.

3.1.2 Nodal Basis

The important properties of nodal bases that influence the implementation of

numerical schemes are summarized as follows:

1. Nodal bases are defined with respect to a set of nodal points xi, such that

03(xi) = h.

2. The number of nodal bases required depends on the type of element.

3. To evaluate the value of a function at an arbitrary point in the element, every

nodal basis needs to be evaluated at that point: O(x, t) = E i (t)0i(x).
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(b)

I I Q K

Figure 3-2: Function evaluations required for quadrature-based integration over an
element edge. Each arrow represents a unique matrix operator, either a Vandermonde
or projection matrix. In (a), multiple Vandermonde matrices are required for each
edge to account for different orientations of the rotationally non-symmetric quadra-
ture points x9 and x1 . In (b), one projection matrix is required for each edge, but
every edge also has one Vandermonde matrix, which increases the number of op-
erations. Only one Vandermonde matrix is required because the orientation of the
quadrature points xf are defined with respect to the orientation of the edge (and not
the neighboring elements).
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The main advantage of the nodal approach is property (1). This property means that

the coefficients of the bases #i are equal to the value of the function at the nodal points

xi. Therefore, if we want to evaluate the function at nodal points, no computation is

required. This stands in contrast to property (3), if we want to evaluate the function

at a point x k xi V i (at a quadrature point, for example), then this requires the

same number of computations as the modal approach. This means that the difference

between the efficiency of modal and nodal approaches for quadrature-based integra-

tion should be small. For quadrature-free integration, however, the nodal approach

can naturally approximate the non-linear function by interpolating its values at the

nodal points, with no additional computation. If the non-linear function is projected

unto the basis instead of interpolated, again the modal and nodal approaches would

be similar in cost. The final advantage of the nodal approach is cheap evaluation of

the polynomials on element edges. In Fig. [3-2](b), the first arrow representing a

projection of the volume solution unto the edge required a dense matrix operator. In

the nodal case, this operator is very sparse, amounting to an indexing problem that

does not involve all of the nodal polynomials. From an implementation side, the nodal

approach has additional advantages. In particular, the calculation of transformation

coefficients (for example the Jacobians) is naturally handled by the nodal basis. For

moving-mesh applications, the implementation is therefore simplified. Also, plotting

is simplified because the solution does not have to be evaluated at spatial points.

In summary, the nodal approach has computational advantages over the modal ap-

proach when the scheme requires the polynomial to be evaluated at the specified nodal

points. This suggests the use of quadrature-free integration to take full advantage of

this property.

The main disadvantages of the nodal approach are: the mass matrix is full, there

is no natural hierarchy, and different element types require different number of bases

(2). The first disadvantage is a consequence of the desirable property (1). The

computational penalty can largely be eliminated by pre-calculating the mass-matrix

inverse, and using quadrature-free integration. Because the nodal approach does not

have a natural hierarchy, selective filtering or limiting of the solution does require a

109



transformation to a modal basis, which increases the overall cost of the scheme. From

an implementation side, because different element types require different number of

bases, the data-structures are more complex. The different element types require

different strides, or have to be stored in different arrays. Now, when evaluating the

solution on edges, one side of the edge may have a different element type than the

other. Thus, if the coefficients for different elements are stored in different arrays, the

data required on the edges will come from areas that are far apart in memory. While

localized memory access is always a problem with the edge operations, it is amplified

in the nodal case with mixed element types.

As a final note, we could consider the nodal basis as a modal one where the inner

product is defined in terms of a collocation-type projection. That is, if we choose

the test-functions as 6(xi), then the nodal basis is orthonormal to the inner-product

(oi, 6(xJ))K = 6U. However, because we chose the Galerkin approach, the nodal bases

are not orthonormal to themselves using the Galerkin inner-product (02, 3) K # 4 .

3.1.3 Discussion of choice between modal and nodal bases

Based on the the properties of the two different types of bases, we initially pur-

sued the modal approach. The hierarchical structure and simplified data structures

for mixed element-type meshes were attractive. However, because we were also inter-

ested in quadrature-free schemes, it became clear that the nodal approach is simpler

to implement in the case where we have non-linear functional forms. Additionally,

because a nodal basis is most convenient for calculating coordinate transformations,

it simplified the implementation of moving meshes. Therefore, our code uses a nodal

basis.

From a computational efficiency perspective, it is difficult to say which approach

would be more efficient. It depends on the type and polynomial degree of the elements,

the implementation, and even the ordering of elements in a particular mesh. We could

count the number of floating point operations required for various element types and

orders, but the bottleneck for modern-day computational fluid dynamics simulations

is the memory transfer bandwidth, not the number of floating point calculations per
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second (McCalpin, 1995). Analyzing the cache complexity of the different approaches

is beyond the scope of this thesis. As such, our decision mainly considered ease of

implementation for our specific problems of interest.

3.2 Quadrature-free operators

For discontinuous Galerkin finite elements discretizations, we have to integrate

polynomials over elements. That is, we have to evaluate inner products such as

(f(#),1 O)K. The difference between quadrature-based and quadrature-free methods

is how these integrals are evaluated.

Quadrature-based integration calculates an integral by evaluating the function at

quadrature points. The function evaluations at these points are then combined as a

weighted sum to give the integral. That is:

k<Nqp

(f (0),1 Oi), K a f (0 (x)) i(xk) Wk, (.1)
k=O

where Nqp are the number of quadrature points, and Wk are the quadrature weights.

In 1D, Gaussian quadrature schemes will exactly integrate polynomials of degree

p = 2Np - 1.

Quadrature-free integration calculates an integral by first projecting the function

unto the polynomial basis. The resulting coefficient can then be taken out of the

integral, which is then calculated analytically:

(), %)K = (fi02, O3K (3.2)

= f (oi, Oj)K

where f(#) fiAi and fi = [(Oi, O)K] 1 (f W) 0 3)K is the coefficients of the projection

of the function f(#) unto the polynomial basis 0.

For linear functions f(#), there is no theoretical difference in the accuracy between

quadrature-based and quadrature-free integration, that is, both are exact if enough
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quadrature-points are used. Computationally, the costs are also similar. For example,

to calculate the integral of the function f(#) = #, we have to compute the integrals

(#i4, oj)K. In the quadrature-based scheme, we first need to evaluate the polynomials

at the quadrature points, then we need to do the weighted sum. For this we need

Nqp = p + 1 quadrature points in 1D for exact integration, which gives an operation

count of O(4(p + 0.5)(p + 1)) ~ 0(4p2 ) (Ueckermann and Lermusiaux, 2010). Since

the operator is pre-calculated in the quadrature-free case, the operation count is

O(2(p + 1)(p + 1)) - O(2p 2 ), or 2 times fewer than the quadrature-based scheme.

For polynomial non-linearities, the costs of exact integration remain the same.

However, for the non-linear advection terms in the Navier-Stokes equations, ex-

act integration using high-order elements becomes prohibitively expensive, with lit-

tle added accuracy. Consider the integration of #2 on a curved domain. In that

case, we also have a non-linear Jacobian. Then our integral becomes (f(),1 Of)K =

((#Oi) (#k O JI 0),)K, where J, are the coefficients of the spatially variable Jaco-

bian. For an exact quadrature-based integration, we would require N. = 2p + j
quadrature points in 1D, which results in O(8p 2) calculations, or twice the number

seen before. For 3D, it means that we need 8 times more calculations. The quadrature-

free integration would have a similar additional cost if correctly implemented. The

additional expense of exact integration may not come at much improved accuracy for

smooth functions. As such, many researchers use fewer quadrature points than would

be required for exact integration.

Approximate integration gains computational efficiency at the cost of reduced

accuracy. Here we discuss the size of the resulting errors. If, for example, we use

only enough quadrature points to exactly integrate linear functions, aliasing will oc-

cur. That is, when we try to project the solution unto the polynomial of degree

p, higher degree polynomials that should integrate to zero will be aliased and con-

tribute to the calculation. If the solution is smooth, the size of the next-highest

polynomial will be of 0 , a ) from the Taylor series expansion. If we

take this as a constant over the element, and integrate this error over the element,

the final error isO(. For smooth functions, we can approximate
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P +fII= O(e-(P+l)), and on the master element we have Ax ~ 1, which gives

an approximate error of 0 ( . Evaluated for p = [0, 1, 2, 3, 4] we have errors

of the order 0([1, 0.37, 0.067, 0.0083, 0.00076]), for smooth functions. So, an order

of magnitude in accuracy is gained for each subsequent polynomial degree. Addi-

tionally, this error will be on the order of the underlying accuracy of the scheme.

The argument for inexact integration, then, is as follows: while we could eliminate

the inexact integration error by increasing the number of computations, but for the

same cost we could increase the number of elements (or increase polynomial order)

which should decrease the overall error of the discretization. Therefore, we choose to

approximately evaluate integrals of non-linear functions.

The final remaining question is how the approximations differ between quadrature-

based and quadrature-free integration schemes. In both we resort to interpolating

the function unto a polynomial. In the quadrature-based method, this polynomial is

evaluated at the Nqp quadrature points, and then integrated exactly for polynomials

of p = 2 Nqp - 1. In the quadrature-free method, this polynomial is evaluated at the

nodal points (that is interpolated, which is not exact, but will have errors as discussed

above), and then integrated exactly. Since well-chosen nodal points often coincide

with quadrature points, we argue that the result should be similar. If a nodal basis is

used, the additional step of interpolating the function from the nodal basis unto the

quadrature points may introduce additional dissipation, which is useful for stabilizing

the scheme. However, it is possible to add dissipation to the nodal approach using

an appropriate filter or nodal limiter (see §3.5). As such, we chose to implement a

quadrature-free integration scheme that exactly integrate linear functions.

Next we describe how to implement quadrature-free integration on curved elements

when also using the HDG method.
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x =f(W

X

Figure 3-3: Coordinate transformation from the reference coordinate system to the
physical coordinate system.

3.3 Quadrature-free integration consistent with HDG

schemes

In §2.3.2 we formulated the scheme to use the strong form of the equations. The

reason for this is directly tied to the quadrature-free implementation of the HDG

method on general curved meshes, where the coordinate transformation factors are

not constant on the element (but treated as polynomials). Here we explain why the

strong form of the equations is preferred for quadrature-free HDG implementations.

We first introduce some new notation, then describe our quadrature-free scheme which

is compatible with HDG schemes, and finally we explain the problems with other

choices.

We use for the coordinates in the reference finite element (Fig. [3-3]). The

coordinate transformation can then be described through a vector function x =

f(A), which can also be discretized using a truncated polynomial expansion, x( )

E> x;6;( ). In this case, a nodal basis becomes particularly useful since the coeffi-

cients of this polynomial will be equal to the real-space coordinate at the nodal points

of the reference element, or xi = x( j). With this polynomial representation of the

coordinate transformation, we can perform the necessary numerical derivatives, inte-

grals, and other operations after computing: the entries of the , matrix for every

element; the determinant of the 2 matrix for all elements and edges; and the normal

vector t for every edge. We shall refer to individual entries in the first matrix as the

"Jacobian factors," and to the determinant of the second matrix as the "Jacobian."

It is simple to calculate derivatives A on the master element (since we simply
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take the derivative of the known polynomial on the reference element), but we are

interested in calculating derivatives in the physical space -. Numerically, we always

calculate derivatives on the reference element, and then use the chain rule to obtain

the desired derivative =- '9 2. To calculate the Jacobian factors, then, we use the

identity:

axi a~ =
=~ ak J(3.3)

a [ -- jik (3.4)

However, when using a quadrature-free scheme, it is important that this property

is maintained discretely. Similar to the derivation in §2.3.2, we can show that the

gradient of a scalar function # (giving a vector function) can be taken discretely in

the strong form and weak forms using vector O's as:

(VO)strong [(ei, Oj)K1] {V, 6 3)K ± - , n- 6)K (3.5)

(V)weak ~[(i, Q)KI (01 V Q)K + ' K (3.6)

Let us define some discrete matrices

me =(, 
9 a)8Kref , ME (0e,i, Oej)Eref ,

S (oi, VOj)Kef , M = (Os, ,) Kref

D = M-ST, L = M- 1 Me,

J [d lK Je=det [ ,l49K'

where Kref is the reference element. Note that ME is a matrix of size N,e x N,e and

Me is a matrix of size Nb x (iEj Nb,e,i), where Nb is the number of bases on the

element, N,e,i is the number of bases on edge i of the element, and Ne is the number

of edges in an element. Also, J and Je are diagonal matrices, where each element of

the diagonal is the Jacobian at that particular nodal point.
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We can now write the discrete analogue of (3.3) using the strong form (3.5) as

x- a [Djxj] _ + J-L(ii - xi)Jeiik = Jik,
a~ DXk U9Xk

[Djxi] &X ik - J- 1 L(kj - Xi)Jenk,
axk

where, the Jacobian factor takes a value at each nodal point in the domain,aXk

and nk is the kth component of the normal. Numerically, Djxi is a matrix-vector

multiplication, with the Jacobian factor being multiplied term-by-term to the result

(i.e. Hadamard/Schur product). We can solve for the Jacobian factors using the

discrete analogue of (3.4) as:

= [Djxi]- 1 [6i4 - J-L(ki - x,)Jelk] , (3.7)
&Xk

which simplifies to

= [Djxi]- 1  (3.8)
aXk

for a continuous mesh. This discrete form is not unique, and some other choices will

be discussed. First a few remarks about the present form:

1. The Jacobians satisfy the identity (3.3) analytically in the volume term:

[Djxj] 2--1 = [(M-1)(STX ] .~

2. The edge-term J-'L(ii - Xi)Jelk = J-'MMe(ki - Xi)Jelk does not require

a Jacobian factor since ii is the real-space normal, and the edge Jacobian is

used.

3. The edge-term calculated here (the element-local equation for the gradient)

matches the discrete form of the HDG edge-conservation equation ([qpsp - n], 0,),

Me [q^8 - i]i Je. The HDG flux-conservation equation is used to enforce the con-

tinuity constraint (2.70), and needs to be consistent with the discrete continuity

constraint in the element-local equations (2.69) in order to satisfy continuity nu-
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merically.

Remark (1) holds analytically for the continuous operators and leads to a conve-

nient simplification for the numerical scheme without loss of accuracy. Remark (2)

reflects an important choice made for this scheme, and this choice leads to the result

of remark (3). The challenge with a quadrature-free implementation of the HDG

scheme (which remark (3) solves) is maintaining numerically-consistent edge integra-

tion terms. Without consistent edge integrals, the conservative flux calculated on the

HDG space will not be numerically conserved in the element-local calculations. This

makes the numerical solution of the Navier-Stokes equations unstable.

To appreciate the advantages of (3.7), consider the same approach using the weak

form of the equations. This leads to the following for the Jacobian factors:

a = -M-Sxi] -1 [fik - J- 1L(i)Jeik]

While this may appear reasonable, the weak derivative [-M-'Sjxi] is singular. So,

using the same strategy with a weak formulation fails. Alternatively, if we evaluate

the edge-integrals in the reference space, this gives:

___ = [Dx, + L(*s - Xi)Jrnef] .
8 Xk

While this approach works for both weak and strong forms, these edge integrals are no

longer consistent with the HDG integrals. Even though the form of the edge-integrals

in the HDG method could be modified, the above weak-form approach is less efficient

than the strong formulation (3.7). This approach requires d2 edge integrals, while

the strong form (3.7) only requires d calculations, where d is the dimension of the

problem.

The calculation of the Jacobians and edge normals follow the usual approach in

quadrature-free methods. As such, the only challenge was dealing with the Jacobian

factors and the quadrature-free derivative terms. We showed that the strong formu-

lation has distinct advantages over the weak formulation in this case. We verify that
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this approach works in §3.7, using a simple steady diffusion problem.

3.4 Implementation of HDG schemes

The implementation of a HDG scheme is challenging, and as such we elucidate

some of the subtleties. We first explain how the solution on an element is parame-

terized in terms of the boundary conditions following Nguyen et al. (2009a). Then

we outline some of the difficulties implementing the HDG flux conservation equation.

Additionally, we suggest a matrix-free implementation, suitable for iterative schemes.

Consider the time-dependent heat diffusion equation for q = #k+1 discretized using

HDG finite elements (where we have dropped the superscripts for simpler notation):

(-qo, 0) - (V5, 6 )K + - BK (AO, f 6 )aK 1 (3.9)

( 0t(VK -V q ,OK + (T , O) K ( (A o, OXK + (F , O),, (3.10)

where its derivation is very similar to that of (2.64)-(2.65). To match the quadrature-

free derivatives (§3.3), we have to multiply these element-local equations by an inverse

mass-matrix, which gives the following discrete matrix system of equations in d = 3

q0,$ J'L diag(fioJ)AO

Aloc q,4 _ J'L diag(iJe)A, (3.11)
q2, J 1L diag(fn2 Je)A4

0 _ F4 + J~L diag(Jer)A4

where Al"c is defined as

K-1 0 0 -diag (9) Dj + J-'L diag(fioJe)0~ 0 XO,

Ab* - 0 K'1I 0 -diag (-a) Dj + J-1 L diag( 1J)

0 0 -diag (a) Dj + J-L diag(fi2 Je)

-diag (c) Dj -diag (a ) Dj -diag (a) Dj (aAt)-'I + J-'L diag(Jer)

and where diag(.) indicates a diagonal matrix, with entries e on the diagonal. The

first three rows in Ac are the discretized version of (3.9), where the final column

takes the discrete x-, y-, and z-derivatives of < for the first, second, and third rows,
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respectively, and the contributions from the HDG edge space come through the right-

hand-side. The final row of A*c discretizes (3.10), and its first three columns calculate

the divergence of q, whereas its last column contains the time derivative term, and

the element-local edge contribution. Again, the HDG edge space contributions come

through the right-hand-side, where the forcing terms are also located.

Each element in the mesh will have a unique A"c with a unique [Aloc]-. These

matrices can either be built and inverted each time they are used, or the inverses

could be stored for each element. In case of storing the matrices, we can write the

inverse more compactly by substituting for the gradients, which are a function of #
and AO, or qj= i (diag (8j) Dj - J-L diag(iiJe)) # + J- L diag(niJe)AO:

ACo = [ Zdiag (k)DkK(diag( I)Dj - J-L diag(iiiJe)) + (aAt)-'I + J'L diag(Jer)

(3.12)

Al"C 4 = F, + (J1L diag(Jer) + j diag(2) D.-E L diag(niJe)) A, (3.13)

and then recomputing qO after solving for 0.

In either case, the next step is to create the discrete global matrix that solves for

the boundary conditions AO:

([qo - ( - - )] ,56 = (giNv, Oe - (3.14)

The final step, once AO is known, is to solve the local equations (3.11) again, with the

boundary conditions and forcing terms substituted. This is not the only approach,

but is amongst the least expensive.

Next we will describe a matrix-based solution scheme, followed by an iterative

matrix-free approach.

Matrix-based solve: The matrix-based solution scheme requires the construction

of a global matrix. Constructing the global matrix, A ob, is challenging, so we

offer some guidance. Since the global (based on (3.14)) and local equations (3.11)

are linear, we can solve them for decomposed right-hand-sides and sum the partial
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solutions to obtain the full solution. The strategy, then, is to decompose the solution

0 = qF + E A Obi and q0 = q' + E q' (Nguyen et al., 2009a), where the *F portion

solves the local equations with the known right-hand-side forcing

qF 0

Aloc _ 0 , (3.15)
q F 0

OF F0

and the oA portion solves the local equations with the unknown forcing from the

boundary conditions

q0A J-1 L diag(ioJe),

A c A1 + J-~1L diag(ii1 Je),,j(
Alo ,, (3.16)

2,0 A J 1 L diag(fi2Je)Oe,i

#Ai J-L diag(Jer)Og,i

where 0,,j is the ith basis function on aK n e. In other words, (3.16) solves for the

effect of the coefficient Ai on the solution of #, q0 (similar to a Green's function

approach). The global equations then become:

A ob ([[q i - - ( - eO,)]] , 6,), (3.17)

-o A (gN,, 0e), - fq' . i_- T(OF)]] , 0~j). (3.18)

As a note, (3.18) can be simplified if conforming meshes with equal polynomial orders

are used throughout. In that case, both sides of the equation are multiplied by the

same mass-matrix, M., which requires a matrix-vector multiplication. This matrix-

vector multiplication can be eliminated if both sides of the equation are multiplied by

the inverse mass-matrix M.- 1 . In either case, the global matrix needs to be carefully

constructed. In particular, we note that when j : i, the 0,, term is zero. Also,

constructing this matrix is expensive. The right-hand-side requires one inversion of
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the local equations, but to build the matrix we have to invert the local equations once

for every degree of freedom on the HDG edge-space, or Ne x N,e times. For example,

a 2D triangle with a linear or quadratic polynomial requires 6 or 9 local solves,

respectively. Thus, for a time-varying matrix, the actual construction of the matrix

will be expensive. As such, matrix-free iterative schemes become more attractive.

However, it is not immediately obvious how to construct a matrix-free version of the

HDG method.

Iterative matrix-free solve: Iterative methods require the evaluation of the residual

F - AglobAo. The key to an iterative method is abandoning the Green's function

approach. As such, first we need to invert the local equations (3.11) using the present

iteration's guess for AO to obtain the present guess values for # and qO. These local

solves could also be done iteratively, or the local matrix can be constructed and

inverted. With all the local values known at an iteration, the residual of the flux-

conservation equation (3.14) can be evaluated algebraically. In essence, this procedure

gives the result of a matrix-vector multiplication of the global matrix with the present

guess for AglobAO, which is what we desire. As such, the matrix-free method may be

more efficient, since the global matrix Aglob never has to be created. The solution

procedure is summarized in Fig. [3-4] for both the matrix-based and matrix-free

iterative method. Note that either method can use the smaller A"c matrix ((3.12)-

(3.13)) instead.

We can relate the iterative procedure to the matrix-free implementation of LDG

(for example Dedner et al. (2012)). In LDG, first the flux # is calculated based on the

present iteration's guess, this requires non-local memory access (Fig. [3-5]). Second,

q, is calculated element-locally. Third, 4. is calculated, again requiring non-local

memory access. Fourth, # is calculated for the present iteration, again using element-

local operations. Last the new residual is calculated, and 0 is updated for the next

iteration of the scheme. In HDG, there are many element-local operations to invert

A"c and these are nearly the same as steps 2 and 3 of LDG if an iterative solver

is used for the local operations. When the local variables have converged, global

communication is necessary to calculate the update for AO, and following this the
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Matrix-based solve
1. Solve local equations with only known forcing:[ F ]T _ Aof' [ o

[Aloc]- F

2. Construct right-hand-side of flux-conservation equation:

FX, = - (Iq, T()) - ()q

3. Solve for the boundary conditions:

AO = [Aglob] -1 F

Matrix-free solve
1. Solve local equations with forcing and boundary condition guess:

q T ~ = [A+]-1 J- 1Ldiag(Je)AT
"[ [] F[ + J-1Ldiag(Jr) ' ]

2. Evaluate residual of diffusive flux:

R m 
= (9N., Oe - (m-TO - A),0)

3. Update boundary condition guessed value:

AM+ = f(R m , AM)

4. Repeat steps 1-3 until convergence.

Figure 3-4: Summary of the matrix-based (left) and iterative matrix-free (right)
solution methods of diffusion equations using HDG methods.

residual is calculated. Thus, for each LDG iteration, there are two operations using

element-local memory access, and two operations using non-local memory access. For

each HDG iteration, there are many operations using element-local memory access,

and one operation using non-local memory access. Thus, HDG pushes more compu-

tation toward local memory access. If LDG and HDG converge in the same number

of iterations and non-local memory access (i.e. global communication) dominates the

cost of each iteration, then HDG will be more efficient. If the element local opera-

tions dominate the cost of each iteration, then LDG will be more efficient (because

the HDG scheme requires more local computations per iteration). Whether non-local

memory access or local operations dominate the cost of an iteration will depend on the

particular computer architecture. Naturally, if one scheme consistently converges in

fewer iterations, a clear choice may emerge. Hence, even though the matrix-free HDG

solution method is complex, it looks computationally similar to existing methods.
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4. Solve Local equations with forcing and boundary conditions:

q] = [AlOc]-i J Ldiag(Jen)A4
SF 4 + J-Ldiag(JeT)A I



At iteration i:
LDG

1. Calculate LDG flux: HDG
0i= f (0t, 0-)

2. Calculate local gradient: 1. Invert local equation:
=o~ f (0i Oi 1 qo ]T = f(oi

3. Calculate LDG gradient flux: 2. Calculate HDG flux residual:
, = f (0t, 0=, q , q- Ri =f (0i I44, A4,j)

4. Calculate local LDG residual: 3. Update guess:
R = f (0i, q4i, q40) A4,i+1 = f (Ai, Rj)

5. Update guess:f. Updat gue- Different flops, local memory access
0i+1 = f (O , Ri) - comparable flops, global memory access

- Different data, local memory access

Figure 3-5: Comparison of matrix-free iterative schemes for LDG and HDG. (Note,
the colors match those of Fig. [3-11]).

3.5 Dealing with Oscillations: Filtering and Lim-

iting

The non-linear advection terms in the Navier-Stokes equations offer unique chal-

lenges. In particular, high order methods can develop non-physical oscillations that

can lead to numerical instabilities. As such, any successful high-order numerical

scheme has to deal with these oscillations. Applying a filter or a limiter are two

approaches that can be used to suppress oscillations. A filter damps the modal

polynomial coefficients according to an arbitrary spectrum, where higher-frequency

modes are damped more. A limiter ensures that the solution remains within calcu-

lated bounds, usually determined from neighboring elements or nodes. While lim-

iting traditionally focuses on reconstructing completely oscillation-free solutions, we

are primarily interested in enhancing the stability of our numerical solutions. The

selective filters and limiters that we have evaluated and developed for this purpose

are described in this section.

Our initial selective filtering approach is described in detail in (Ueckermann and

Lermusiaux, 2010). There we used an exponential filter (Hesthaven and Warburton,
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2008, Hesthaven and Kirby, 2008), where the modal coefficients are modified using a

function o- that decays exponentially with the polynomial degree (Mavriplis, 1989).

The selectivity of the filter was determined by comparing the decay of the modal

coefficient to a reference spectrum. In Ueckermann and Lermusiaux (2010), there

was only a selective filter, while in this thesis, we have a new limiter and an improved

selective filter. These limiters and filters are derived next. First we will describe our

nodal limiting procedure, then our new selectivity criterion.

(i) Nodal Limiter: Our limiting procedure is based on previous nodal limiting

methods used for second-order accurate methods (Hoteit et al., 2004). We have

modified this method for high-order nodal DG. There are some drawbacks to our

modifications, in particular our procedure is Total Variation Bounded (TVB) as op-

posed to TVD, and without the selectivity, it does not remain high-order accurate.

However, it does successfully stabilize the numerical solution by suppressing spurious

oscillations, and with the selectivity criterion the solution does remain high-order

accurate.

Our procedure can be understood in 5 steps (Fig. [3-6]). The first step is to

find the limits, or the initial total variation of the solution. That is, we determine

the allowed maximum and minimum values for each element. Presently, this is done

by finding the maximum and minimum values of the solution in the present and

neighboring elements.

qmax = max(#)K±, Omjn = min(O)K±, (3.19)

where K' includes the element K, and all its immediate neighbors. Using the ter-

minology in Hoteit et al. (2004), this is similar to choosing a = 1. While our present

step 1 may cause the nodal limiter to fail the Hoteit et al. (2004) "stair-step" nu-

merical example, a small modification should guarantee the correct solution: if the

maximum and minimum values of the function is determined solely by the present

and upwind neighboring elements, then our nodal limiter should correctly solve the

"stair-step" problem. Another possible modification is to determine the maximum
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and minimum values for individual nodes by looking at the values of neighboring

nodes. This reduces the allowed variation for each node, which could also improve

accuracy. Nonetheless, our primary concern is stability, so these questions are left for

future research. The present nodal limiter is efficient, simple to implement, and guar-

antees that the solution will remain bounded. For example, if the density is positive

everywhere in the domain, these limits will never be negative. Once the bounds have

been determined, the limiting procedure can continue.

The first step determined the limits or total variation of the field before evolving

it in time, and this was the only operation that requires information from neighboring

elements. The remaining steps are all element-local.

In the second step of the limiting procedure, the solution is evolved using the

right-hand-side forcing without limiting

0k+1 _k + AtFE. (3.20)

The right-hand-side forcing terms, particularly the advection terms, can introduce

oscillations. Thus, this new solution may exceed the limits calculated in step 1.

The third step, limits the nodal values. That is, we find nodes where the evolved

solution exceeds the limits determined in step 1, and we calculate a forcing (which

is the first predictor for the limiter forcing) F" that sets those nodes equal to the

appropriate maximum or minimum values.

,k+1 + qk + At ± AtFit (3.21)

In this step, however, the mean of the initial solution in the element could be modified.

As it is important to conserve mass, the mean in the element has to be re-adjusted.

Thus, the change in the value of the mean in the element K caused by the adjustment

is calculated

Amean ( K = mean(F imit)K. (3.22)
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In other words, we want the final limiter forcing to have: mean(Fomit)K = 0-

The fourth step finds weights that determine by how much different nodes can

move to help with the re-adjustment of the mean in the element. While previous re-

searchers have developed sophisticated ways to minimize the error of this adjustment,

here we use a heuristic approach. If the mean was lowered or raised, we calculate

the maximum upward or downward adjustment allowed for each node, respectively,

Fmax, ajust. For example, if a node is already at the maximum value, it cannot be

adjusted upwards, and will therefore have a zero effective weight. The nodes furthest

away from the bounds will have the largest weight.

In the fifth and final step, we scale the maximum adjustment weight calculated in

step four by the required amount to correct the mean of the limiter forcing. That is,

we can now calculate the final limiter forcing

Fimit limt mean(m )K
Fen( x Fmax, ajust, (3.23)0 mean(Fm., adjut)K

where the sign of the final adjustment depends on the sign of the calculated maximum

adjustment.

In the graphical representation of these steps Fig. [3-6], we illustrate a normal

and degenerate case. For the normal case, note that while the solution is limited at

the nodes, between the nodes the polynomial is allowed to exceed the bounds. The

problem with the degenerate case is that the initial mean of the solution exceeds

the calculated bounds. As such the final solution is a constant equal to the original

mean; In other words, all oscillations are removed. This situation can occur for the

advection operator if it is treated explicitly, and the Courant-Friedrichs-Lewy (CFL)

condition is violated. In this situation, our limiting method can actually stabilize the

solution and prevent instability if the CFL condition is not violated by too large a

margin. The forcing due to implicit diffusion can also create a degenerate situation.

In this case, the support of the diffusion operator is global, but the bounds for the

nodal limiter are only calculated based on local neighbors. As such, the nodal limiter

bounds cannot capture variation in the solution that may be valid. For example,
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Figure 3-6: Graphical representation of the nodal limiting procedure from our high-

order selective nodal limiter. The nodal limiting procedure is sketched for a typical

and degenerate case in the left and right columns, respectively.
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when diffusing a step function, the immediate neighbors will know about the step,

but further away the bounds would suggest a constant solution. As the length-scale

for the diffusion could extend beyond immediate neighbors, some bounds will not

be correctly calculated. It is still important to limit the diffusive term, because if

the length-scale of the diffusion is small, the step function can develop non-physical

oscillations. This is because the small slope introduced by the diffusion may not

be resolved by the discretization, resulting in Gibbs oscillations. This suggests that

different bounds should be used for different parts of the forcing. In particular, we

note that some forcing terms should not be limited, as they should introduce new

variation in the solution. However, these forcing terms should be well-resolved, or

appropriately smoothed to avoid oscillations.

(ii) Filter: We have described how to calculate the forcing term Ff""'t that will

appropriately limit the solution to be within the calculated bounds. A similar function

for the filter can also be calculated, Flter. For details on the filter forcing, see

Ueckermann and Lermusiaux (2010).

(iii) Selective limiting/filtering: At this stage both the nodal limiter and filter

would be fully applied everywhere in the domain. What remains is finding an appro-

priate weighting function, &(x, t), that selectively applies this forcing in parts of the

domain where required. For this we use a discontinuity sensor similar to the one used

by Huerta et al. (2012), which was proposed in Persson and Peraire (2006), Nguyen

et al. (2007), where the difference is that we do not include the coefficient of the

zero-degree polynomial in the denominator of the sensor (see below).

The discontinuity sensor works as follows. First, the coefficients of the nodal

basis are transformed to modal-basis coefficients. To do so, we need to form the

Vandermonde matrix Vtj = 0y(xi), where OY is the Jth modal polynomial, and x; is

the ith nodal point. The modal coefficients can then be found as #Y = V'q#j. We can

then compare the decay of the modal coefficients to the decay of reference spectra.
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To do so, we follow Huerta et al. (2012), and define the weight as:

i>0

a = min(max(a*, 0), 1) (3.25)

where p* > p, #* = log1 0 (Z{i:1E ) and # '* are the modal coefficients

for the * reference spectrum. What this indicator does is compare the sum of the

coefficients for the highest degree polynomial to the sum of the coefficients for the

polynomials of degree greater than zero. An notable difference between our indicator

and that defined in Huerta et al. (2012) is that we do not include the coefficient of the

zero-degree polynomial in the denominator. This is because the constant term can

be arbitrarily scaled (based on non-dimensionalization, for example) and should not

have an impact on the smoothness indicator. Note that a is time-variable, spatially

variable, and a constant in every element. Two reference spectra and the ranges for a

are sketched in Fig. [3-7]. Depending on the smoothness of the modal coefficients of

the numerical solution, the weights for a can be anywhere in [0, 1]. Our approach is

different from that of Huerta et al. (2012) as we do not use the Mach number for the

discontinuity sensor, and we do not decompose the high-order element into low-order

sub-domains.

Note that we calculate the selectivity index by examining the field before the

advection term is added (that is, at the start of the IMEX-RK stage). At each

subsequent stage in the IMEX-RK time-stepping procedure, the selectivity index is

updated. Alternatively, we could calculate the selectivity index after the advection is

added (that is, advanced in time due to advection at that IMEX-RK stage). Another

option is calculating the smoothness index based on the advection term itself, or any

combination of the above-mentioned options. Additionally, to increase efficiency, the

selectivity index could only be updated at the first or final stage of the IMEX-RK

time-stepping procedure. However, we do not examine the effect of these choices.
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Figure 3-7: Sketch of the selectivity criterion. The solution is fully limited, partially
limited, or unmodified if the modal-polynomial-coefficient-decay is slower than the
top reference spectrum logio([p + 1]-3), between the two reference spectra, and faster
than the bottom spectrum loglo([p + 1]-6), respectively.

Finally, the selective nodal limiter can be applied as a weighted forcing term,

which gives the final evolution of # as:

# -'-1 -= o + AtFo + AteFmit, (3.26)

where s = 0 gives a non-selective nodal limiter, and s = 1 gives a linear weighting

between the reference spectra. For s > 1, the solution is weakly limited close to the

lower spectrum, and for 0 < s < 1 the weight quickly increases. The same approach

can be used for the forcing calculated from the filter.

In summary, we have derived a high-order selective nodal-limiting/filtering pro-

cedure. Our selective nodal limiter is based on existing nodal-based limiters, but we

have extended it higher-order polynomials, and we use an inexpensive heuristic to en-

sure mass conservation. We combined this nodal limiter with a smoothness indicated

to selectively limit the solution spatially and temporally. The selectivity criterion

could also be applied to a filter, instead of a limiter. This selective nodal limiter is

tested in §3.7, to ensure that high-order convergence is recovered when the solution

is sufficiently resolved.
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3.6 Code design philosophy and development us-

ing Python/C++

In this section we justify why we developed our finite element framework in

Python, for later optimization in C++. We also briefly outline the organization of

our code, explaining the design purpose of the most important modules and classes.

First, why develop a scientific computing code using a scripting language? With

the increase in computational power, and due to the rapid spread of knowledge

(through the Internet) there has been a shift in programming practices (Langtan-

gen, 2009). No longer is it necessary for researchers to spend their time meticulously

writing low-level code in languages like C++ or Fortran just to test a new algorithm

or idea. With the speed of current processors, even a poorly optimized code will exe-

cute fast enough to evaluate the merits of a new idea. The near-ubiquitous usage of

MATLAB in the scientific community strongly supports this claim. Instead, the fo-

cus has shifted to rapid development and flexibility; where computational power once

was the limiting resource, now shortening development/research time is the primary

concern.

While low-level solver optimization will always have its place in scientific com-

puting, researchers can benefit from developing portions of their code in higher-level

scripting languages. In large-scale scientific computing, computational resources will

always remain a restriction, but the computationally-expensive solver-portion is not

the only component of the code. Built around this solver are input, output, setup,

plotting, formatting, and reporting functionality. These portions are not limiting

in terms of computational time, and could save significant developer and user time

if written in high-level languages. Additionally, during algorithm development, the

solver-portion of the code is frequently updated, tested, and debugged using small

benchmarks. During development, significant developer time can be saved from de-

bugging grammatical and logical mistakes if using a high-level language with benefits

like interactive plotting. As such, even large-scale scientific computing project can

benefit from high-level scripting languages.
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Thus far we have implied that high-level languages are less computationally ef-

ficient than their low-level counterparts. While it is true that a new specialized

algorithm implemented in high-level languages, such as Python, may be an order

of magnitude slower than its C++ counterpart, many established algorithms have

already been implemented in Python. Or, more accurately, low-level optimized im-

plementations of established algorithms have been interfaced with Python. A lone

developer working in C++ would be hard-pressed to match the efficiency of the func-

tions available in Python. While the C++ developer can resort to libraries, we have

found that the Python packages are generally simpler to install and interface with

our codes. As such, from both a computational and developer efficiency, Python has

significant benefits.

Our strategy, then, has been to develop the numerical algorithms and schemes

entirely in Python. We chose Python because it is open-source, and was written

specifically with C++ extensions as part of the design (Langtangen, 2009). Once the

development was complete, the next step in our strategy was to optimize the solver

using C++. Functionality such as the setup, inputs, and outputs remains in Python,

and these components interface with the C++ portion using a common binary file

format.

Second, we briefly outline the important portions of our Python framework. In

Python terminology, modules are a collection of files containing function, class, and

variable definitions. We designed our modules to have specialized purposes, and when

grouped together they constitute our 3DDG "package." The different objectives from

the major modules as they are used in our program flow are shown in Fig. [3-8]. Next,

we describe the design purpose of each of these modules and summarize how they

work together. Finally, we delve a little deeper into the code, and explain some of

the important methods and members of the most important objects.

msh: The msh module contains all class and function definitions related to the

creation, storage, and manipulation of the underlying finite element mesh. This

includes creating the connectivity information. The primary objective of this class

is to create and manipulate one of the Mesh objects. As of writing this, there are
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Parameters

Pyutil

Util
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grad
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Mesh*

Solnodal
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Figure 3-8: Program flow diagram with major objects from python modules. Objects

instantiated inside other objects are contained within their borders. Here * is used
as a wild card, indicating various possible choices.
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Figure 3-9: The various different element types supported by the master module. In
the code, simplexes, quadrilaterals, and prisms are of types 0, 1, and 2 respectively.

three mesh classes, one for 2D, 3D, and 3D extruded meshes. Note, this module is

not specific to any type of finite element method, and does not depend on the degree

of polynomial.

master: The master module deals entirely with the creation, evaluation, compu-

tation, and storage of polynomials on the reference or master element. It also contains

functionality to calculate appropriate coordinate transformation factors to deal with

real-space calculations (see §3.2). The two major classes in this module are named

Master-nodal and Basis-nodal. The Basis-nodal class deals only with the creation,

evaluation, and storage of polynomials on reference elements. As such, the number-

ing conventions associated with the various different elements are defined in this class

Fig. [3-9]. Since the finite element method does not usually deal directly with the

polynomial bases, the Basis-nodal object is contained within the Master-nodal ob-

ject (i.e. it is a member of Master-nodal). The Master-nodal object calculates

commonly-used finite element operators and stores them. Finite element operators

then directly interface with the Master-nodal objects.

134



sol: The sol module ties together the master and mesh modules. It contains a

number of sub-modules and classes. One of these, the Sol-nodal class, contains the

solution vectors, and merges the functionality of the Master-nodal and Mesh classes.

For example, the Sol-nodal class handles the projection of polynomials (defined inside

Master-nodal) on the element to the edges (where the connectivity is defined inside

Mesh). Within the sol module, there are also specific modules related to specific

differential operators. For example, the advect module handles advection, the hdg

module handles HDG operators (such as diffusion), and the ode module implements

various ordinary differential equation solvers, such as Runge-Kutta. Finally, the

fluids module contains a Setup class and Solver class for fluids problems. The

sol module, then, acts as a high-level interface between lower-level operations. This

allows equations to be built using high-level abstraction, without the need for delving

into low-level integration.

plot: The plot module is a high-level interface for some specialized plots. Presently,

the sol.plot-nodal.Sol-nodal object is created using a sol object as one of its in-

puts, and specialized plots are then called using fields from sol as inputs.

util: The util module contains various finite element helper functions and classes.

In particular, the operators sub-module handles divergence, gradient, z-integral, and

other low-level operations. These would be utilized by, for example, the sol. advect

sub-module. Additionally, util's filter sub-module handles filtering and limiting

of the solution (§3.5).

pyutil: The pyutil module is similar to the util module, but here the helper

functions are not specific to finite elements. That is, these functions and classes

relate to general programming problems, such as finding the unique elements in a

list, parsing string inputs, and writing outputs.

The general program flow in Fig. [3-8] requires the user to interact primarily with

a Setup object to define a mesh and various parameters. Using this information, the

Setup object builds a Sol-nodal object, which gets passed to a Solver object. The

Sol-nodal object internally builds Master-nodal objects, which build Basis-nodal

objects. Continuing, the Solver object uses the parameters from the Setup object
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to build the appropriate finite'element differential operators. Calling the solve()

routine from the Solver object will integrate the solution in time or solve the steady

state problem, and return the final answer as part of a Sol-nodal object.

Delving deeper, Fig. [3-10] shows the important members (i.e. variables) and

methods (i.e. functions) for the major objects. The user interacts with the Setup

object primarily through a series of set*() methods, where the * is a used as a

wild card in this case. The Setup object informs the user using a series of print*()

methods. The mesh and parameters (*params) set by the user will be stored in

the Setup object to be used by the Solver object. After setting the solver options,

Setup will internally call the Setup. check-solver-opt ions() method, which en-

sures that the user has selected compatible solver flags. Once the Setup object is

complete, the user has to call the Setup . validate () method, which internally calls

Setup. check-solver-opt ions(), and also ensures that all the required parameters

are set by the user. Any errors or warnings will be reported to the user at this

stage. Finally, the user has to call Setup.make-sol 0, which creates the solution

data structure.

Next, the Solver object is initialized using the Setup object. Solver. __init_)

again calls the Setup .validate () method to ensure that the setup is valid. Based on

the parameters in Setup, Solver. _init--_) also creates the necessary objects to han-

dle different differential operators. Following this, the user invokes the Solver. solve ()

method, which will solve the specified problem. Internally, the Solver object passes

itself to the time-integrate object, which in Fig. [3-10] is an instantiation of the IMEX

class. The IMEX class is the most general ordinary differential equation solver, since

it requires both implicit and explicit function evaluation. Therefore it interfaces with

the Solver object through the save0, Fex, Fimex, Fim, and update methods. The

primary purpose of the time-integrate object is the combine the right-hand-sides of

the ordinary differential equation at different time levels, time-integrate. mk-rhs 0,

to yield a higher-order accurate solution. Internally, the important data-structures

are: the right-hand-side rhs at the present stage; the explicit function evaluations

f -ex for all stages; the implicit function evaluations f -im for all stages; and the
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Figure 3-10: The major classes from Fig. [3-8], but with more details, giving the
important members (variables) and methods (functions). Here '*' is used as a wild-
card for various similar constructs.
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Runge-Kutta coefficients coef fs. The time-integrate. .. call-() method returns

the Solver object. The Solver. solve() method returns the Sol-nodal object to

the user.

The Sol-nodal object acts as a high-level interface between the Mesh and Master

objects. Its most important methods get-elm2ed-arrayo, get-ed2elm-arrayo,

and updatej acs () projects the element polynomials on to the edge-space, distributes

the edge-space polynomials to the ed2elm-space, and updates the coordinate trans-

formation factors, respectively. In the code, there are three major storage array

structures: the elm-space array, the ed-space array, and the ed2elm-space array (Fig.

[3-11]). The first two are convenient for storing the solution on the element-space

and the HDG edge-space, respectively. The third, ed2elm-space is a convenient inter-

mediate array used to calculate the edge-integrals on the element-space, for example

(#, 0 )aK. The Sol-nodal object handles these transformations because it has the

mesh connectivity information from the Mesh object and the details of the polynomi-

als on the reference elements from the Master object. Apart from these important

functions, the Sol-nodal object also stores the solution data on the elements and

edges, which gets manipulated by the methods mentioned above. Additionally, it

stores the coordinate transformation factors, and, for convenience, it also stores some

specialized finite element matrices for the reference element (such M, D and L from

§3.3).

This concludes the philosophy and justification behind our code design, including

the brief description of our Python Framework.

3.7 Verification of HDG diffusion and selectively-

limited advection

Verification of a new code is a necessary to ensure that it solves the intended equa-

tions (Oreskes et al., 1994, Roache, 1998). To verify that the proposed schemes work,

we perform convergence studies on simple equations. To show that our quadrature-
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the left element elm2ed [0], and one for data from the right element elm2ed [1].
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free scheme works for HDG schemes, we perform a convergence study on straight and

curved meshes. Then we verify that the selective nodal limiter recovers high-order

convergence rates when the solution is adequately resolved.

3.7.1 Verification of quadrature-free hybrid discontinuous Galerkin

scheme

To verify that our HDG implementation works on curved meshes, we perform a

convergence study on a steady diffusion problem

V2 = f on Q, (3.27)

on OD, (3.28)

(VO) - = gN on 0 N, (3.29)

where

f = sin(7r(x + xo)) sin(7r(y + yo)), (3.30)

[xo, Yo] = [0.3, 0.3], and the bottom and right boundaries are Dirichlet (aQD), while

the top and left boundaries are Neumann (&QN) on the domain Q E [-1, 1] x [-1, 1].

We use both straight and curved meshes. The curved mesh for Ax = 0.5, p = 4 is

shown in Fig. [3-12], and it is made up of a mixture of triangular and rectangular

elements. We also perform the convergence study for two different values of the HDG

stability parameter r = [1, 1000].

Both the straight-sided and curved mesh simulations converge near-optimally for

both values of r (Fig. [3-13]). The error level is generally lower for the straight-sided

mesh. While the error levels are generally similar for the different values of r, the

p = 2 result using r = 1000 seems to converge faster for both meshes. However, the

p = 5 result using r = 1000 suggests the larger value of r reaches machine precision

earlier, possibly due to a larger condition number in the matrix.

These results verify that our scheme works for straight and curved meshes with
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Figure 3-12: Curved mesh for the Ax =
rectangular elements are colored green and

1.0

0.5, p = 4 simulation. Triangular and
blue, respectively.

mixes element types.

3.7.2 Verification of selective nodal limiter

In §3.5 we developed a selective nodal limiter and filter, and here we test the effect

of the selective nodal limiter. To do so, we study a modification of the swirl problem

in chapter 5 of Durran (1999). We do not include results for the exponential filter

because the nodal limiter is more robust, accurate, and does not require tuning. We

solve the unsteady advection problem

- + V - (vo) = 0 on Q,

q5=0 on BOD,

on the domain Q = [0, 1] x [0, 1] with Dirichlet boundary conditions everywhere, over

the time interval T = [0, 10]. The time-varying velocity is specified as

v = sin it) [ sin(27ry) sin2 (7rx), - sin(27rx) sin2(lry)]
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Figure 3-13: Spatial convergence of diffusion straight (left) and curved (right) meshes.
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Figure 3-14: Tracer concentration at T = [0, 5, 10] (left, center, and right, respec-
tively) for the advection benchmark using p = 5, Ax = .
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Figure 3-15: Spatial convergence of advection equation without limiter (left) and with
selective nodal limiter (right). The spatial resolutions used are Ax = 1 1 1 1 14' s' 1 32'1 Z4-

and to have a smooth solution with positive and negative values for the convergence

test, we have modified the initial condition for the tracer from Durran (1999) as

q(x, t = 0) = sin(21rx) sin(27ry).

The specified flow field causes the initial tracer concentration to swirl during the

interval T = [0, 5] (Fig. [3-14]). In the interval T = [5, 10] the flowfield reverses

direction, causing the tracer to "un-swirl." Thus, the final tracer concentration should

be the same as the initial tracer concentration. Using this property, we can compute

the error by comparing the initial q(x, t = 0) and final #(x, t = 10) fields.

For these simulations, we used a fixed time-step At = 10-, and a second-order

accurate explicit RK time-integrator (with the same coefficients as the IMEX-RK

integrators used later). The mesh is composed of uniform quadrilateral elements.

The selectivity index, (3.25), uses (p + i)-3 and (p + 1)- for the top and bottom

reference spectra, respectively.

The simulations without the selective nodal limiter converge near-optimally Fig.

[3-15]. However, for too coarse spatial discretizations, the higher order (p > 1)

simulations with the selective nodal limiter applied reduce to second-order accuracy.

This is because the limiter is being fully applied at these resolutions, causing the

tops of the sinusoidal tracer concentrations to be chopped off (Fig. [3-16]). Once the
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Figure 3-16: Errors of the tracer advection test-case for
p = 3, Ax = _, case in Fig. [3-15], without the limiter
nodal limiter (right).
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Figure 3-17: Selectivity index a (3.25) for the tracer advection test-case using p = 3
at resolutions of Ax = [n, 1, ] on the left, center, and right, respectively.

144

0.0222

-0.0222

Limiter

,6LX = 164



mesh is sufficiently refined, the effect of the nodal limiter is reduced by our selectivity

criterion, and the higher-order convergence rate is recovered. If we examine the value

of the selectivity index at T = 5 for the p = 3 case (Fig. [3-17]), we see that with

increasing resolution the selectivity index a takes a smaller value, and is localized

in space near sharp gradients. Recall, the nodal limiter is fully applied for a = 1,

and not applied at a = 0. Therefore, at these higher resolutions, the selective nodal

limiter is only active in localized regions throughout the domain. This allows the

higher-order rates of convergence to be recovered at high resolutions (seeFig. [3-15]).

We have performed additional convergence tests for the advection which are not

reported here, but gave similar results. Overall, these results verify both that our

quadrature-free advection scheme is properly implemented, and that our selective

nodal limiter can recover higher-order accuracy when the solution is sufficiently re-

solved.

3.8 Verification and Validation of Stokes/Navier-

Stokes system of equations

In this section we verify and validate our new algorithm derived in §2.3.2. We

first examine if the important theoretical properties from §2.2.2 hold for the nu-

merical operators. Following this we perform a detailed convergence study using a

manufactured solution. And finally, we solve the lock-exchange problem, comparing

our density contours and Froude numbers to existing literature.

3.8.1 Definition of Analytical Benchmark

To evaluate the implementation of our new scheme, we will use the same manufac-

tured benchmark used by Guermond et al. (2006). For this case, consider a domain
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Q x [0, T] where Q = [-1, 1] x [-1, 1]. The solution [v, p] is defined as

v(x, y, t) = 7r sin(t) [sin(27ry) sin 2 (7rx), - sin(27rx) sin 2 (7ry)] , (3.31)

p(x, y, t) = sin(t) cos(7rx) sin(7ry). (3.32)

From these definitions, we can calculate the forcing term Fat, which is

av 1
Fa = - - - Vv + Vp,at Re

FK = ir cos(t) sin(27ry) sin 2 (irx) - 27r3 sin(t) sin(27ry) cos2(7rx)

6 1r 3

+ Re sin(t) sin(27ry) sin2 (7rx) - ir sin(t) sin(rx) sin(iry), (3.33)

P& = -r cos(t) sin(27x) sin 2 (7ry) + R sin(t) sin(27rx) cos2 (7ry)

6 3 sin(t) sin(27rx) sin2 (7ry) + 7r sin(t) cos(irx) cos(7ry).

This gives us a smooth analytical solution with which we can verify the spatial and

temporal convergence of our scheme.

3.8.2 Numerical operator properties

In this section we evaluate whether the discrete operators maintain the two im-

portant properties introduced in §2.2.2.

To test the first property, whether p = 0 if V - Fat = 0, we modify the analytical

benchmark by setting p = 0. This results in the following forcing function:

F = 7r cos(t) sin(27ry) sin 2 (7rx) - 23 sin(t) sin(27ry) cos2 (7rX)Re

± Re in(t) sin(2ry) sin2 (r),

P& = -7r cos(t) sin(21rx) sin2 (7ry) + 27r3 sin(t) sin(27rx) COS2(7ry)Re
6ir 3

- 6R sin(t) sin(27rx) sin 2 (7ry).

We use a fine mesh 16 x 16 elements with a p = 6 degree polynomial but a large time-
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step of At = 0.1. Since we will be using a first-order time integration scheme for these

tests, that means the truncation error will be of O(At) - 0.1. In each case we use

a zero pressure as the predictor in order to highlight the numerical errors. As such,

the only difference between the pressure and the pressure-correction is the rotational

term, that is p = 6p - 1V - V. We examine the effect of using different boundary

conditions (see §2.2.3). We will use the standard boundary conditions proposed by

Timmermans et al. (1996), as well as the new boundary conditions suggested by

Shirokoff and Rosales (2011). The velocity and pressure plots in this section are

scaled such that the correct solution will have a magnitude of 1. That is, we plot

) and P-. The divergence is scaled as VV , which compares the magnitude3sin(t) cos(t) At Cos (t)' Ichcmae h antd

of the pressure to the forcing term in the pressure Poisson equation.

For either choice of boundary condition, clearly, p 4 0 (Fig. [3-18] and Fig. [3-

19]). Therefore, the time-split solution does not obey the first important property.

First, we note that the splitting-error in p is of the order of the truncation error

O(At) = 0.1. Even though this is re-assuring, we would like to understand the

reasons why the time-split solution fails to satisfy p = 0 exactly. These reasons are

now explained intuitively. Consider a one-dimensional slice through the u-velocity

component (Fig. [3-20]). If we diffuse this solution for one time-step using the

standard boundary conditions, we obtain the green solid curve. Because we fixed

the u-velocity component to the boundary, the slope 2 = a is modified. Since the
aft ax_

slope of u is coupled to the slope of v through the continuity equation, V = ,

any modification in the slope of u requires a corresponding change in the slope of

v. The decoupled Stokes equations (in this case, since p = 0, only diffusion and

rates of change are active) solved in the first step of the projection method cannot

communicate this change in slope. As such, the predictor velocities are divergent even

though a non-divergent forcing function was used (Fig. [3-18]).

The boundary conditions of Shirokoff and Rosales (2011) give the solution sketched

as the dashed blue curve in Fig. [3-20]. Here the v-velocity component is set to 0 at the

boundary, as such the correct boundary condition for the u-component is specified as

= -0 = 0. Thus, these boundary conditions will satisfy the continuity constraint,
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and we see that the predictor velocity is divergence-free (Fig. [3-19]). However, after

the diffusion step, there is no guarantee that u = 0 at the boundaries, and this needs

to be corrected by the pressure. Thus, in this case, the pressure signal comes directly

from a boundary value problem with no internal forcing. Using these boundary

conditions, we know that the resulting signal should not be part of the pressure.

Knowing this, we could actually obtain the correct pressure for this test.

In both cases the rotational correction increases the erroneous pressure signal

(Fig. [3-18] - Fig. [3-19]). The purpose of this term is to eliminate the diffusion

of the divergent parts of the right-hand side. In this case, the right-hand side is

divergence-free, and should not require the rotational correction. However, since the

pressure-correction is non-zero, the scheme will apply a correction, which in this case,

decreases the accuracy of the pressure. The error in the pressure should be 0 (A),

since we've argued that it comes from the boundary conditions of the diffusion term

over one time-step. In the next test we will see that the rotational correction will

improve the accuracy of the pressure instead.

Next, we test for the second property introduced in §2.2.2. if F = Vp, then v = 0.

Again we modify the forcing function for the analytical stokes problem, setting v = 0

in this case, which gives the forcing function

Fat = -7r sin(t) sin(irx) sin(7ry),

Fv = r sin(t) cos(irx) cos(7ry).

We use the same mesh and time-step as in the first test. Again, we use a zero pressure

as the predictor and examine the effect of using different boundary conditions.

For either choice of boundary condition, clearly, v / 0 (Fig. [3-21] and Fig. [3-

22]). Therefore, the time-split solution does not obey the second important property

either. In this case, the boundary conditions for the diffusion term transforms the

irrotational forcing such that part of it is in the divergence-free space. Since the

error in the velocity originates from the diffusion term, it will be of the order 0 (u).
Recall, we used a zero predictor pressure to illustrate the errors; If we used the exact
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-0.015 0.015 -0.123 0.123

Figure 3-18: Test of the first numerical property introduced in §2.2.2 shown at T = Z
4after one time-step using a first-order Euler scheme. A mesh of 16 x 16 elements

with a p = 6 degree polynomial but a large time-step of At = 0.1 is used. Using a
divergence-free forcing function, the scaled divergence of the predictor velocity, the
scaled final velocity, the scaled pressure correction, and the final scaled pressure are
shown when using the boundary conditions from Timmermans et al. (1996).
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Figure 3-19: As
Rosales (2011).

in Fig. [3-18], but using the boundary conditions from Shirokoff and

150



Initial Condition

True solution
U 0

Figure 3-20: Sketch of a 1D slice through the u-velocity from Fig. [3-18] or Fig.
[3-19]. With the uniform Dirichlet boundary conditions corresponding to Fig. [3-18],
the solution follows the solid green line, which has a modified slope at the boundary.
With the uniform Neumann boundary condition corresponding to Fig. [3-19], the
solution follows the dashed blue line, which has a modified value at the boundary.
The true solutions follows the thin, solid red line.

pressure, the right-hand-side forcing would have been zero, and the resulting velocity

would have been correct. As such, if we can construct a good pressure predictor, this

error in the velocity will be small. The pressure-correction is not a good predictor

since we see that its magnitude is significantly smaller than it should be, and in Fig.

[3-21] there are clear issues at the boundary. However, after the rotational correction

is applied, both Fig. [3-21] and Fig. [3-22] have the correct magnitude of pressure,

though some issues at the boundaries remain in Fig. [3-21]. Using this pressure as a

predictor in the next time-step will nearly (up to O(At)) set the forcing term equal

to zero, but the overall accuracy of the velocity using this scheme will be limited to

These results suggest an alternative splitting algorithm. The second test shows

that if the right-hand-side contains irrotational terms, part of these terms will be

modified by the boundary conditions of the diffusion operator and cause an erro-

neous signal in the velocity. As such, the pressure should be calculated explicitly,

such that the right-hand side forcing is divergence-free. This requires the solution

of a pressure Poisson equation for the pressure. However, the first test showed that

a divergence-free right-hand side does not give a divergence-free field, and we still

require a correction. Fortunately, we know that this correction should not be a part
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of the pressure. Additionally, if we use the boundary conditions of (Shirokoff and

Rosales, 2011), this correction can be written as a boundary value problem. Then,

what remains is to calculate the updated boundary conditions for the velocity, and

potentially an update for the pressure boundary condition. Alternatively, it should be

possible to solve a diffusion equation, which couples all the velocity components, that

will not introduce irrotational components when the forcing is divergence-free. Here

we have provided some basic guidelines, but the details of this alternative algorithm

is the subject of future research. Alternatively, a possible avenue is to modify the

scheme by Brown et al. (2001), where a high-order (in time) approximation of the

pressure-correction boundary condition is needed.

In this section we showed that the numerical scheme does not satisfy the properties

described in §2.2.2. We showed that it fails because of the time-splitting of the

boundary conditions for the diffusion operator. We tested two different methods for

splitting the boundary conditions, and both had similar errors. Based on our results,

we have suggested a new algorithm that could eliminate these splitting errors. Next

we examine the convergence of the present scheme.

3.8.3 Convergence Studies

We perform spatial and temporal convergence studies using the benchmark defined

in §3.8.1 to verify that our scheme is correctly implemented and theoretically sound.

For the spatial convergence study, we also test the effect of T, for the Appendix B

scheme (Fig. [3-23]). The results for our §2.3.4 scheme are similar, and nearly identical

for the consistent T,. We see that for Tr = 1 at mid-resolutions, there are large

errors (likely numerical instability) in velocity and pressure for higher than degree

1 polynomial bases. However, as resolution increases, the errors reduce significantly,

consistent with what was found in §2.3.4. As the magnitude of Tp is increased, the

errors start to converge more optimally, and when using the consistent value of Tr,

we obtain near-optimal convergence and nice straight lines.

The temporal convergence is more involved due to the additional complexity intro-

duced by the projection method time-splitting. As such, we contrast the convergence
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Figure 3-21: Test of the second numerical property introduced in §2.2.2 shown at
T = { after one time-step using a first-order Euler scheme. A mesh of 16 x 164
elements with a p = 6 degree polynomial but a large time-step of At = 0.1 is used.
Using an irrotational forcing function, the scaled divergence of the predictor velocity,
the scaled final velocity, the scaled pressure correction, and the final scaled pressure
are shown when using the boundary conditions from Timmermans et al. (1996).
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Figure 3-22: As in Fig. [3-18], but
Rosales (2011).
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using the boundary conditions from Shirokoff and
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Figure 3-23: Spatial convergence of pressure (left) and velocity (right) using the

analytical stokes problem with Re = 1, and T, = 1 (top), T, = 5000 (middle), and

r= 1.7e10 = 2at (bottom), with theoretical optimal convergence in gray dashes.

The Appendix B scheme is used with a second-order accurate IMEX integrator, with

time-step fixed at At = 10-
5

. For small values of m, the solution is not stable until

sufficient resolution is reached. For larger values of Tr, the convergence is optimal,

with excellent results for r, = 2a.
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of our §2.3.2 scheme and the Appendix B scheme. We will test the convergence of both

schemes with and without the rotational pressure-correction. The Appendix B scheme

requires restarts for stability when the rotational corrections is used. A "restart" here

refers to setting the pressure predictor to zero at the start of an IMEX integration

stage. For these tests, it is important to evaluate the different parts of the forcing

terms (3.33) at the correct time levels. The terms due to pressure should be evalu-

ated explicitly for the Appendix B scheme, while the terms due to velocity should be

evaluated implicitly for both, otherwise the convergence studies will be invalid. Also,

for the temporal convergence studies of Appendix B we choose r - 1ra for first

and second order time integration, and ,rp =sAt for third-order time-integration

without restarts. When restarts are used, we choose rm = 2a for first and sec-

ond order time integration, and r, = 2 jAt for third-order time-integration. For our

§2.3.2 scheme, we always use the consistent value, rpr=7t

The time-rate of convergence for the rotational and standard pressure-correction

for our §2.3.2 scheme show that the rotational correction decreases the error in the

pressure field, without as large an impact on the velocity field Fig. [3-24]. The

rotational correction removes part of the pressure error near the boundary of the

domain Fig. [3-26], as expected from Guermond et al. (2006).

Now examining the results of the Appendix B scheme. When using restarts, the

errors for the rotational scheme is also reduced compared to the standard pressure-

correction scheme (Fig. [3-25]). Again, pressure-errors near the boundary are removed

Fig. [3-27]. However, the restart also decreases the order of convergence, reducing

all time-integration schemes to essentially first-order accuracy. When the pressure

predictor is not restarted at each stage, the Appendix B rotational pressure-correction

scheme is unstable, and does not converge. Without restarts, the standard pressure-

correction scheme (i.e. without rotational correction) converges optimally for first

and second order time-integration schemes, and the third-order time-integration only

converges at second order Fig. [3-28]. In particular, note that the pressure converges

at second-order for the first order time-integration. This is likely related to our use

of mr = 1 for the first-order time-integration of this Appendix B scheme.
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Figure 3-24: Temporal convergence of pressure (top) and velocity (bottom) using the
analytical stokes problem with Re= 1 for our §2.3.2 scheme. A 64 x 64 square mesh
with p = 6 was used for the spatial mesh, and first to third order accurate IMEX
RK schemes were used. The rotational correction is applied (right), and not applied
(left). The rotational correction lowers the absolute pressure-error.

Comparing the Appendix B convergence (Fig. [3-28]) to our §2.3.2 results (Fig.

[3-241), we see that our §2.3.2 scheme has smaller errors, particularly for the pressure.

This demonstrates the advantage of our §2.3.2 scheme over the Appendix B scheme,

and further justifies the use of our flux definition (2.78).

We would like to have a truly high-order accurate numerical scheme, both in

time and space. However, the irreducible splitting error from the projection method

restricts the accuracy of the solution to second order in time Fig. [3-24]. Since we

argued that the origin of this error lies in the implicit diffusion term §2.2.2, §3.8.2, we

can verify the correctness of our time-integration method by considering an infinite

Reynolds number. When we do so, we find that pressure and velocity converge
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Figure 3-25: As in Fig. [3-24], but using the Appendix B scheme with restarts.

Without Rotational Correction
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With Rotational Correction

Figure 3-26: Pressure error for second order accurate IMEX-RK time integration

using At = 0.1 for the standard (left) and rotational (right) pressure corrections of

our §2.3.2 scheme. The rotational correction removes errors at the boundary of the

domain, but errors at the corners remain.
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Figure 3-27: As in Fig. [3-26], but using the Appendix B scheme with restarts and
At = 0.025.

optimally Fig. [3-29].

As the Reynolds number increases, we expect that the splitting error would have a

smaller impact on the solution because it originates from the diffusion term (§3.8.2).

To test this, we calculated the velocity and pressure errors for various Reynolds

numbers. We note that the error in the pressure steadily decreases with increasing

Reynolds number, and then saturates at Re - 106 (Fig. [3-30]). The velocity error

is not drastically affected for the second and third-order time-integration schemes,
but the first-order scheme's error increases for increasing Reynolds number before

plateauing. For the pressure, the calculated order of convergence approaches second-

order accuracy, then decreases as the error plateaus. For the velocity, the calculated

order of convergence is mostly unaffected. The transition from Re = 10 7 to Re = oc

is not smooth, suggesting that the mere presence of the diffusion operator has an

effect numerically. As such, there does not seem to be a benefit to using a time-

integration scheme higher than second-order accurate when the implicit diffusion

terms are present in a projection method.

However, we note that this projection-method restriction on the order of accuracy

for the time integration may not be the limiting factor for the solution accuracy. First,
since the time-step is restricted by the CFL condition for advection, the temporal

dimension is often much more finely discretized than the spatial one, particularly

when the non-dimensional physical advection-speed exceeds unity. Second, if higher-

159

Without Rotational Correction With Rntatinnal Correction



Pressure Velocity
10~1

-
4 2 ..-...

Figure 3-28: As in Fig. [3-25], using the Appendix B scheme, but without the pres-
sure restart or the rotational correction. The second order scheme converges near-
optimally for both pressure and velocity, while the third order scheme converges
sub-optimally. The pressure converges at a faster rate for the first order scheme,
while it converge near-optimally for the velocity.

order temporal accuracy is required, the projection method can be used as an iterative

scheme, where the pressure-predictor of the second iteration is the final pressure

from one full execution of the projection method (see for example Ferziger and Peric

(2002)). This may still be more computationally efficient compared to solving a

frilly coupled system of equations. The fully coupled system requires the inversion

of a matrix that is d + 1 times larger compared to our smaller matrix inversions.

Since matrix inversion often scales as the square of the number of unknowns, one full

execution of the projection method is expected to be (d + 1)2 times more efficient

(in d=3, this is a factor of 16). Thirdly, the results from a full execution of the

projection method could also be used as a starting guess (or preconditioner) for the

fully uncoupled problem.

Concerning the rotational correction, we argue that the rotational pressure cor-

rection is less important for higher-Reynolds number flows. Since Fig. [3-30] shows

a decrease in the pressure error with increased Reynolds number and the size of the

rotational correction is proportional to ~, the rotational correction will have a de-

creasing effect on the pressure error. Also, if a good pressure-predictor (resulting from

a fine temporal discretization for example) gives a nearly divergence-free right-hand-
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Figure 3-29: As in Fig. [3-28], but with Re = oo. Now the third-order scheme also
converges optimally.

side, the rotational correction may increase the error in the pressure (see Fig. [3-18]).

Given the small gain in accuracy using the rotational pressure correction scheme, the

use of the standard pressure correction may be justified for higher-Reynolds number

flows.

In this section we have evaluated that our implementation is correct, and that

our method behaves as expected. We showed that we can obtain near-optimal spatial

and temporal rates of convergence when using an analytically defined problem. Next

we need to validate our code against a standard benchmark case to ensure that our

model gives the correct solution for an unforced case.

3.8.4 Validation

We validate our scheme by using the Lock-exchange problem with the same non-

dimensional parameters as those of Hdrtel et al. (2000) and Fringer et al. (2006). Our

simulation uses a 2D domain of size [-8, 8] x [0, 2], discretized using uniformly sized

and distributed quadrilaterals of various resolutions, and we integrate for T = [0, 10].

We use the no-slip boundary condition at all boundaries, a Schmidt number of Sc = 1,

and a Grashof number of Gr = g'h3 = 1.25 x 106, where g' = is the reduced gravity
PO
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Figure 3-30: Error (top) of pressure (left) and velocity (right), and order of temporal
convergence (bottom) using the analytical stokes problem with Re = 1. A 64 x 64
square mesh with p = 6 was used for the spatial mesh, and first to third order
accurate IMEX RK schemes were used, the error is plotted for At = 0.0125 and
the order of convergence was calculated using At = [0.025, 0.0125]. As the Reynolds
number increases the pressure error decreases while the velocity error increases for the
first-order IMEX scheme, with less effect for the higher-order schemes. The order of
converge remains unaffected, but when Re= cc, near optimal convergence is obtained
for velocity.
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and h = 1 is the half-height of the domain. The initial density profile is defined as

1
p = - tanh(10 5x).

2

We use a second-order accurate time-integration scheme, with a fixed time-step of

At = 0.001.

To compare our results to Hdrtel et al. (2000) and Fringer et al. (2006), we have

to compute the Froude number Fr = f, where uf is the speed of the front, defined

as the speed at which the foremost point of the front travels, and ub = v is

the buoyancy velocity. To estimate uf, we find the foremost point of the front at

T = 5 and T = 10, then we simply use uf = , which gives an average front

speed over that time period. Finding the foremost point of the front is non-trivial

for cases using higher-order polynomial bases (Fig. [3-31]). In those cases we first

identify the element that contains the foremost point of the front. Following this, we

do an iterative root-find and line-search to find the foremost point. The root-find is

needed to determine where in the element the density is equal to zero (since the finite

element basis is a polynomial). When we find one such point, we evaluate the change

of the x-coordinate at that point, and take a step in the direction that maximizes x.

However, since this step is linear, we need to do a root-find again to get back onto

the line where p = 0. We use an alternating direction Newton-Rhapson method to

perform the root-find. That is, we do a ID step in the x-direction, followed by a

ID step in the y-direction. At each iteration of the line-search, we decrease the step

size by 2, approximating a bi-section method. While not an optimal scheme, it does

find the leading edge of the front to machine precision, and it is not a computational

bottleneck.

Our density contours are similar to those calculated by Hdrtel et al. (2000) (Fig.

[3-32]). The higher-order simulations also match the second-order accurate simula-

tion. Comparing the Froude numbers, as the spatial resolution is refined, our answer

approaches the value of Hirtel et al. (2000), and the spread in our results is on the

same order as the difference between Hdrtel et al. (2000) and Fringer et al. (2006)
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Figure 3-31: To find the foremost point of the density front where p = 0, an alternat-
ing direction Newton-Rhapson root-find (green dashes) is followed by a line-search
(cyan dotted line). This procedure is applied iteratively until convergence.

(Fig. [3-33]). We note that the first-order time integration scheme performs nearly as

well as the second-order time integration scheme for higher spatial resolutions. This

suggests that the temporal dimension is well-resolved. Also, as the spatial resolution

increases, the simulations with varying spatial order of accuracy agree more closely.

For the low spatial resolution cases, there is a large spread of values between the high

and low-order runs. In this case, finding the location of the foremost point of the

front may play a role in the error. Nonetheless, our results agree closely with Hirtel

et al. (2000) and Fringer et al. (2006).

3.9 Summary

In this chapter we addressed numerical implementation issues of our new solu-

tion scheme for the Boussinesq equations (described in §2). Specifically, we justified

our choice of using a nodal basis compared to a modal one. Then we discussed the

computational accuracy and efficiency of quadrature-based and quadrature-free inte-

gration schemes. Based on this discussion, we selected the quadrature-free integration

method for our implementation. As such, we also developed a quadrature-free scheme

that is consistent with the HDG method. Since the implementation of HDG methods
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Figure 3-32: Density solution at time 10 of the Lock-Exchange problem (Gr =
1.25 x 106) using various orders of accuracy and spatial resolution, all runs with
approximately 160,000 degrees of freedom. There are some minor differences in the
front propagation speed and the shape of the Kelvin-Helmholtz instabilities.
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Figure 3-33: Density front propagation speed for various resolutions for the no-slip
case. Solid and dashed lines indicate the solution obtained by HARTEL and SUN-
TANS respectively.
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is not yet standardized, we offered guidance on how to construct matrix-based or

matrix-free solvers. Then, we detailed our selective nodal limiting approach used to

stabilize high-order schemes while retaining high-order accuracy in regions where the

solution is smooth. Next we explained our code design philosophy, also describing

the classes and modules relevant to new users of the framework.

To verify the quadrature-free approach developed in this chapter (§3.2), we per-

formed a convergence study on a steady diffusion problem using straight-sided and

curved meshes. We showed that both straight-sided and curved meshes achieve near-

optimal convergence. To verify the selective nodal limiting approach (§3.5), we per-

formed a convergence study on an unsteady tracer advection problem. We showed

that when the selective nodal limiter is applied the rate of convergence reduces to

second-order for coarse resolutions while the high-order accuracy is retained for fine

resolutions.

For the class of projection methods considered, we showed that the time-splitting

error comes from the implicit treatment of the diffusion term and its boundary condi-

tions when the right-hand-side forcing is divergence-free. Then we demonstrated how

the splitting-error manifests itself in the pressure and velocity fields using an analyti-

cal benchmark for this particular case. We also showed that the rotational correction

to the pressure may increase the error in the pressure when the right-hand side forc-

ing is divergence-free. Using numerical examples, we showed that it is essential to

use the proper magnitude of the HDG stability parameter for the pressure when the

spatial domain is coarsely resolved. Then we showed that our discretization of the

rotational correction term removes pressure errors at the boundary of the domain for

the analytical benchmark. We also showed that while the splitting error decreases

with increasing Reynolds number, it continues to limit the time-order of accuracy of

the scheme.

We performed spatial and temporal convergence studies to verify that our full

Navier-Stokes solver based on the new HDG projection method scheme is properly

formulated and implemented. We evaluated our approach by comparing our results

for the standard lock-exchange benchmark to published literature. We found that
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our solution closely matched the previously published data.
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Chapter 4

Formulation and Discretization of

a Novel Non-Hydrostatic Ocean

Model

With advances in Computational Fluid Dynamics (CFD) over the last twenty

years, an improved understanding of ocean dynamics, and the evolution of computer

architectures, it has become evident that ocean science studies can benefit from a new

generation of prediction codes. We are interested in studying nonlinear, transient,

and multiscale ocean dynamics over complex geometries with steep bathymetry and

intricate coastlines, from sub-mesoscales to basin-scales. Our requirements for an ac-

curate, efficient and flexible next-generation ocean model led us to develop a variable

resolution, higher-order, non-hydrostatic ocean model.

Ocean dynamics and forcing can be highly nonlinear, with inhomogeneous, un-

stationary and anisotropic variability. With an improved understanding of ocean

dynamics, it is now known that many ocean processes involve multiple scales with

inherent transient effects and intense localized gradients. Depending on the phenom-

ena being studied, important time scales can be on the order of seconds to the order

of geological time scales. Similarly, important length scales can be on the order of

millimeters to planetary length scales. While significant scientific progress has been

made by studying only one or two scales at a time, strongly interacting dynamics
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over many time and space scales need to be studied to further advance scientific

understanding (Dolbow et al., 2004, Beck, 2009).

Present ocean models solve rather similar geophysical fluid dynamics equations

and use similar numerical methods, essentially all based on the schemes proposed by

Bryan (1969) and others in the early seventies. Since then, significant advances have

been made in the parameterization of subgrid-scale processes, in data assimilation

methodologies and in boundary conditions. Also, due to more efficient implemen-

tations on more advanced hardware, model resolution has substantially increased.

While they have excellent efficiency per degree of freedom (DOF), present models are

largely based on conservative but low-order discretizations on uniform, non-adaptive

structured grids (see Griffies et al. (2000, 2010) for a review). The increased sophis-

tication of ocean modeling systems and increased model resolution without updates

to the numerics is, however, not sufficient for simulating the vast scales present in

the ocean. It is the recent advances in CFD that can further increase the range of

resolved scales (Deleersnijder and Lermusiaux, 2008) without a concomitant increase

in computational cost.

Having recognized that present models can benefit from new numerical methods,

a number of groups have started developing next-generation ocean models. For a re-

view of next-generation models see Slingo et al. (2009), or Ueckermann (2009). While

the various new models adopt largely varying approaches, a unifying element for all

these models is the use of unstructured (normally triangular) meshes in the horizon-

tal direction. Also, it is notable that some models solve non-hydrostatic equations,

and some have sophisticated adaptive meshes. A whole community of modelers have

been formed, with annual workshops and special publications (Deleersnijder and Ler-

musiaux, 2008, Deleersnijder et al., 2010). A few examples of idealized and realistic

applications of these new models include two dimensional modeling of tides (West-

erink et al., 1994, Wunsch et al., 1997) and storm surges (Lane and Walters, 2009,

Westerink et al., 2007), and three dimensional modeling of tides (Walters et al., 2010),

internal tides (Jachec et al., 2007), estuaries and rivers (Baptista and Zhang, 2008, Liu

et al., 2008, de Brye et al., 2012), bays (Chen et al., 2008), and seas (Wang et al., 2009,

170



Ernsdorf et al., 2011). While the greater geometric flexibility of unstructured grids

used in new models allow more accurate solutions (because of improved discretiza-

tion of the boundaries and interior), the major drawback is a reduced efficiency per

DOF. As a result, new models have primarily been adopted in regions with complex

geometries (such as estuaries), but have not yet been used for real-time forecasting

in regional domains. Additionally, higher-order models, due to their complexity and

computational efficiency per DOF have also not yet been widely adopted.

Since our review of next-generation models (Ueckermann, 2009) there have been

a number of advances in numerics by the ICOM and SLIM groups. As our work is

most closely related to these two groups, it is important to frame our contributions in

reference to their efforts. In particular, ICOM has researched solution methods of the

Poisson equation (Kramer et al., 2010), efficient implementation methods on GPU

architectures (Markall et al., 2010b,a), the selection of finite element pairs (Cotter and

Ham, 2011), mesh adaptivity (Davies et al., 2011, Farrell and Maddison, 2011, Farrell

et al., 2011, Farrell, 2011, Maddison et al., 2011a) and how to numerically capture

geostrophic balances (Maddison et al., 2011b), to name a few areas. The SLIM group

has researched finite element pairs (Comblen et al., 2010b), time-stepping schemes

(Comblen et al., 2010a, Seny et al., 2013), Lagrangian schemes (Shah et al., 2011),

turbulence closure (Kirnd et al., 2012b) and generally improved their baroclinic ocean

model, including numerical conservation and consistency considerations (Blaise et al.,

2010, Kdrni et al., 2012a). While both groups are actively developing their numerical

schemes, both have applied their models to various applications. ICOM and SLIM

both utilize discontinuous finite elements and have evaluated different finite element

pairs, but neither have considered the novel hybrid discontinuous Galerkin (HDG)

method. Also, our focus is on higher-order accurate methods. In light of their work,

we develop schemes to evaluate whether high-order HDG-elements are appropriate

for ocean modeling. We also consider the efficient implementation of HDG methods

for various terms in the equations (including the Poisson term), semi-implicit time-

stepping schemes, and the numerical stability/consistency of the HDG scheme for

ocean flows.
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Based on our previous work developing new computational schemes for two-

dimensional unsteady biogeochemical ocean models, (Ueckermann, 2009, Ueckermann

and Lermusiaux, 2010), here we derive and develop new high-order, unstructured grid,

hybridized discontinuous Galerkin finite element schemes for ocean modeling. The

corresponding model codes can be solved hydrostatically, non-hydrostatically, and

with a free-surface or a rigid lid. First we review the derivation of the continuous

ocean equations starting from the Boussinesq equations (§4.1). Then we describe our

time-discretization scheme (§4.2) which uses projection methods. Following this, we

perform the hybridized discontinuous Galerkin spatial discretization (§4.3). Finally,

we validate our new code using idealized benchmarks (§4.4)

4.1 Formulation of continuous ocean equations

Governing equations for ocean dynamics are usually derived starting from the

full Navier-Stokes equations written in the reference frame of the earth (that is,

with Coriolis forces). In Cartesian coordinates, under the Boussinesq approximation

(small density variations and at first order incompressible flow) and eddy-viscosity

approximation (other closures are discussed later, all assume small molecular viscosi-

ties/diffusivities), one obtains the following governing equations:

au 1
- VZ * Vzu + -VXYp = -VXY uu - V1 .WUat PO(41

+ VXY -vVXYu - fk x u + -fu,
PO

Ow 1- V Vzw + -VZP = -VXY uw - VZ WW

PO P
P 1 (4.2)

+Vx - vrw + -g + -- e

VX -u + Vz -W = 0, (4.3)

aT
at- ,zVzT = -Vxy uT - V- wT + Vxy -XYVXYT + fT, (4.4)
as

-vz -Z KzVZS = -VXY US -vV. -WS+vVxY xYVXYS+ fs (4.5)

p = p(S, T), (4.6)
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where p is the full gauge pressure, p is the density, and the prognostic state variables

are the horizontal and vertical velocity components u = [u, v, 0] and w = [0, 0, w],

respectively, the temperature, T, and the salinity, S. The independent variables are

the spatial coordinates, denoted [x, y, z], and time, t. The horizontal and vertical

gradient operators are denoted Vx, = [-, ', 0] and VZ = [0, 0, -2], respectively.

We denote the constant reference density po, the gravity vector g = [0, 0, -g], the

Coriolis parameter f, the vertical and horizontal turbulent viscosities vxy and v, the

horizontal and vertical turbulent diffusivities nxy and r., and the forcing terms for

the horizontal momentum, vertical momentum, temperature, and salinity equations

fu, f., fT, and fs, respectively. Note, to avoid the re-arrangement of terms later, we

have written the terms that will be treated implicitly and explicitly on the left and

right sides of the equations, respectively.

Next, we introduce a set of approximations and derivations, and obtain the final

equations that we solve. Specifically, in §4.1.1, we justify the Boussinesq approx-

imation for our dynamics of interest and review the errors that are introduced by

this approximation. In §4.1.2, we consider two different definitions of the hydrostatic

pressure for ocean flows with a free air-sea surface (in short, free-surface flows), jus-

tify one of them, and provide related derivations. In §4.1.3, we derive our nonlinear

free-surface equation and boundary conditions. The rigid lid formulation and tur-

bulence closures are briefly outlined in §4.1.4 - §4.1.5. The final ocean equations

combining these approximations and derivations are summarized in §4.1.6, for both

the non-hydrostatic and hydrostatic dynamics.

4.1.1 Justification of Boussinesq approximation

In classical fluid mechanics, the density is often treated as a constant, where fast

time-scale variations due to acoustic waves are neglected. The Boussinesq approxima-

tion relaxes this assumption, and retains the gravitational forcing in the momentum

equations due to small density variations. The justification is that the gravitational

acceleration constant increases the size of the small density variations in this forcing

term. As such, to leading order, this is the most important variation to retain in
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the equations. We briefly review how this approximation affects the Navier-Stokes

equations, specifically indicating the size of the expected errors for ocean applications.

The full density field is decomposed into a constant reference, and temporally/spatially

varying component:

p(x, t) = Po + p'(x, t). (4.7)

Substituting this into the continuity equation ! + V -(pv) = 0 we obtain successively

8(Po + ± V- ((PO + p')v) 0,at
1 1 p' 1

PO PO at PO
V = 1'p'V. v - Ip

Po po Dt

>V V 0,

where v = u + w. In the ocean, the density variation is on the order of 1%. As such,

the kV - v term will be of a similar magnitude. Since the salinity is conserved and
PO

density differences due to energy dissipation is negligibly small in the interior of the

ocean, the density following a fluid particle is approximately conserved, and the 1 -2
po Dt

term will be of the order 1% or smaller (e.g. (Cushman-Roisin and Beckers, 2011)).

To summarize, the following terms were neglected in the continuity equation leading

to an error of order 1% in the continuity equation:

p'1 1 Dp p'-V. ± - 0.
PO po Dt

The error of neglecting the density perturbations in the momentum equations will

have a similar magnitude. Part of the error comes from dividing by the mean density

(that is, neglecting the perturbation density in the division), but this error is small.
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To see this, use a Taylor series expansion,

1 I 1 1 1

P Po +P' Po PO

which shows that the leading error term for this part of the approximation will be of

order 0.01%. However, when dividing only by the mean density, additional terms are

left in the momentum equations that will be neglected. For the horizontal momentum

equations, these terms are

p' p ' 1 &p'u
g-vy'r -- fk x U - - + VXy p'UU + Vz - ' 0.

Po Po Po at

The first term comes from the free-surface (see §4.1.2). The second term comes from

neglecting the perturbation density multiplied by the Coriolis parameter, Lfk x u.
PO

For the last term, the continuity equation was used to cast the momentum equations

in the conservative form. As such, we also neglected terms that are similar to those

neglected in the continuity equation, leading to the same error magnitude of order

1% in the momentum equations.

Thus, for our oceanic applications, the Boussinesq approximation introduces a 1%

error in both the continuity and momentum equations.

4.1.2 Hydrostatic pressure definitions and derivations

The full pressure can be decomposed as a sum of hydrostatic and non-hydrostatic

components

P = Phyd + POP'. (4.8)

In this section we focus explicitly on the hydrostatic component, Phyd, and while a

free-surface component will also appear, it is discussed in detail in §4.1.3.

Next, to simplify the solution method, a hydrostatic pressure that balances the

density forcing can be defined. This pressure can be defined in terms of the total

density or the mean density. The solution method of hydrostatic ocean models is
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simplified by defining the hydrostatic pressure in terms of the total density, but since

we are also interested in non-hydrostatic models, we want to explore all possibilities.

The hydrostatic pressure could be defined as either of the following

Phyd(X, y, z, t) = 0

phsvd(x, y, z, t) = 0

(4.9)

(4.10)

p(X, y, (, t) g d(,

po gd( = g po(rq - z)

where q is the height of the free surface relative to the undisturbed ocean, and C is

a dummy integration variable. To see how the different definitions of the hydrostatic

pressure appear in the momentum equations, we will calculate the horizontal and

vertical gradients.

First, for (4.9) we have

(X, Y, 0
VoyPhyd = V y j p(x Y , , g d(

= VXy j7(x'y't) Po 9 d( + Vxy { j(XY,t0 p'(x, y, C, t) g d(JZ J
gq poVy 7r - z} + g p'(x, y, 7, t)V Yri - g p'(x, y, z, t)VXYz

J (x,y,t)
+ Z VXYp'(x, y, (, t)gd(,

/± (x Y, t) 
p

9(po + p')VXYr/ + Z VXYP'

(4.11)

(4.12)

(4.13)

where we have used the Leibniz rule to interchange the order of the gradient and the

integral. We could have kept the gradient term outside the integral sign (4.11), and

this has implementation consequences. In (4.13) we have to calculate the vertical

integral of a gradient as opposed to a scalar. This, however, is more accurate when

terrain-following coordinates are used (Wang et al., 2008). Also, we will neglect the

gp'Vxyr7 term, since it will be of order 1% compared to gpoVxyrq, and this is consistent
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with the approximation made in §4.1.1. Now for the vertical gradient we have

VzPhyd = Vz { (x'y't)po g d( + Vz {f(XY p'(x, y, (, t) g d(

= gpoVZ{j - z} + gp'(x, y, i, 0)V 7 - gp'(x, y, z, t)Vzz
/n(x, Y, 0)

+ f ) VZp'(x, y, (, t) g d(,

= -g(po + p'),

where we note that p'(x, y, C, t) is not a function of z. This vertical pressure

gradient will exactly cancel the -g term in the momentum equations (recall that

g = [0, 0, -g]). This has vital consequences for a hydrostatic ocean model, as the

effects of the density forcing are fully captured in the horizontal momentum equations

through this hydrostatic pressure. In this case, we do not solve the vertical momentum

equations (4.2), but recover w through the continuity equations. As such, the density

forcing cannot be communicated through the vertical momentum equation and needs

to be communicated through the horizontal hydrostatic pressure gradients.

Next, let us examine the alternate definition of the hydrostatic pressure, (4.10),

which is approximate since it uses po. Calculating its gradients we have

VxYPh*,d =V'xgpo{77 - Z

= gpoVXY71-

This form does not require the calculation of any vertical integrals, which may appear

to have computational advantages. However, for the vertical gradient we have

VzPyd = Vgpo{ - Z},

= -gpo .

This only partially cancels the density forcing term in the vertical momentum equa-
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tion. As such, the remaining density forcing due to p' has to be communicated to

the horizontal components of velocity through the continuity equation. This means

that the non-hydrostatic pressure will have larger horizontal gradients (since it will

contain the hydrostatic horizontal gradients due to p'), which may negatively impact

the computational efficiency of solving the non-hydrostatic pressure.

For oceanic applications, the hydrostatic pressure defined using the full density is

preferred. The mean-density form is often used for classical engineering applications,

where the globally coupled 3D continuity constraint has to be imposed at all times. In

this case, the density forcing is communicated to the horizontal velocity components

through the continuity equation, and the additional computational and implementa-

tion effort required to vertically integrate the density gradient is not easily justified

(particularly on fully unstructured meshes).

For the hydrostatic ocean case, however, a globally coupled 3D continuity con-

straint does not need to be imposed. Instead, the continuity can be enforced using a

globally coupled 2D equation, and 1D equations for each vertical fluid column (see for

example Haley and Lermusiaux (2010a)). The 2D equation is for the free-surface (or

rigid-lid surface-pressure), and the 1D equations recover the vertical velocities from

the continuity equation. As such, the vertical momentum equation does not need to

be solved. Therefore, the full density form of the hydrostatic pressure, which captures

the full density forcing in the horizontal momentum equations, is advantageous. Ad-

ditionally, for terrain-following coordinate models, the vertical integration does not

present a large implementation challenge because the nodes are vertically aligned.

In terms of accuracy, the full-density hydrostatic pressure should better capture the

geostrophic balance.

For non-hydrostatic ocean models, the full density form also presents advantages

because it more completely separates the hydrostatic and non-hydrostatic pressure

terms. As such, the non-hydrostatic pressure should be closer to zero, and require

fewer iterations to solve numerically. Additionally, from an implementation stand-

point it is useful to have the non-hydrostatic formulation be similar to the hydrostatic

one, allowing a user to choose seamlessly between the two.
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Now we discuss further differences between the hydrostatic pressure definitions,

as they relate to the 3D divergence of the density forcing. Recall from @2.2.2 that

the full pressure balances the divergent terms in the right-hand-side forcing. Here we

have split the pressure into hydrostatic and non-hydrostatic components. Now, the

hydrostatic pressure was defined in terms of the forcing due to density only. Thus, we

can also ask whether or not our hydrostatic pressure definitions balance the divergence

from the forcing due to density variations. While this is not a required property, it

is desirable because then the non-hydrostatic pressure has to balance fewer terms on

the right hand side. That is, if we can define a hydrostatic pressure such that

(1p
V . -VPyd= V - g ,

P( PO

then the non-hydrostatic pressure only has to balance the remaining forcing terms

V- (Vp') = (Vz. zVzU - VXy * U - Vz - Wu+ Vxy - fk x U + -f )

PO

instead of all the forcing terms

1
V -(Vp') = VY - V vzVzu - VXY - uu - Vz wu + V y VX , U - fk x u+ -fu

PO
1/

+ Vz VZ vVZW - Vxy UW - Vz WW + VXy iYxyVXyW + if /
PO

+ V -- VPhyd -+ - -

However, with either the full-density (4.9) or mean-density (4.10) definitions, the

3D divergence of the 3D hydrostatic pressure gradient will not cancel the 3D diver-

gence due to the density forcing. To see what terms remain, we can compute the

divergence of the hydrostatic pressure summed with the density forcing. For the
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full-density pressure definition (4.9) we have

/ (X,y, 
0)

-f ( t p(x, y, (, t)gd( + Vz {Vzphyd -+ g(po + p'),V7. (-VPh~d + Pg) -VX jZ

7(x, y, t)
-gp(x, y, r, t)Vr - V p'(x, y, (, t)gd(,

where { VzPhyd + 9(Po + p')}

(4.10) we have

V - (-Vp*y + pg)

V 1'(x, y, (, t)gd(,

0 as defined. For the mean-density pressure definition

-gpo V~i 7 + V. {VZVZPaY - g(po - P')}

-gpoVr + VZ p'g,

where {VzPhyd + g(po)} = 0. In both cases, the free-surface term does not vary in

depth while the divergence of the density perturbation does (in general). However,

if we consider the case of a stably stratified (p' = p'(z)) ocean with an unperturbed

free-surface (r = 0), then we see that for (4.14), V . (-Vphyd + pg) = 0, while for

(4.15), V - (-Vphyd + pg) = V p'g. This shows that the full density (4.9) definition

for the hydrostatic pressure is closer to what we desire.

In the rigid-lid case, we can solve for a surface pressure component, ps = p,(x, Y, t),

so as to satisfy the depth-integrated continuity constraint. This is how the surface

pressure discrete correction is obtained in §4.2.4, in direct analogy to the free-surface

equation obtained in §4.1.3. The surface pressure could be further decomposed into

hydrostatic phyd and non-hydrostatic p' components. Aiming to reduce the size of

p' as discussed above, one could have also defined a "modified surface" pressure,

P = p*(x, y, t), so as to set (4.14) to zero in the vertical integrated sense, i.e. set the

depth-integrated 3D divergence of (-Vphyd - Vp* + pg) to zero. One then obtains:

V- (-VPhyd - Vp* + pg)d( ] --V {V'7phyd - Vyps*} d(/o-H -0H

- = 0, (4.16)
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where the divergence and integral sign would commute if H is a constant (flat bottom).

This latter p* definition is not used.

To summarize, we will use the hydrostatic pressure as defined in (4.9), where the

rigid-lid case takes j = 0.

4.1.3 Free-surface derivation

The free-surface height, q, appears in the horizontal momentum equations due

to the vertical integration of the density forcing term (§4.1.2). It is essentially an

unknown boundary condition describing the size of the domain, and it is related to

the vertical velocity kinematic boundary condition at the free-surface through

Dij(x, y,t) = w(x, y, z = q, t). (4.17)
Dt

Subsequently, we need to derive an expression for q which we can solve directly. This

is a common exercise, which we repeat here for convenience.

With the knowledge that the free-surface height can be understood as a com-

ponent of the full pressure, and that the mathematical purpose of the pressure in

the Boussinesq equations is to enforce the continuity constraint, we can derive an

equation for q from the continuity equation:

Vz . w + VXY- u = 0.

Vertical integration from the ocean bottom to surface yields:

{ w+VXY -u}dz =0,

w(z = 7) - w(z = -H) + Vy udz = 0.

Substituting the Lagrangian equations (4.17) and w(z = -H) = WJ-H - , and

181



transforming to the Eulerian form:

Di/ DHfH+T -D + 'qVX -udz=0
Dt Dt H{T; +uL-VXr} + OH + UD-VxyH + HVy'udz=0,

{ + uK71. VXyr/ + {Uj-H VxyH} + V * udz 0, (4.18)

where, we have assumed that the depth H of the ocean is not changing in time O = 0.

We could stop here, but further simplification is possible if we use the Leibniz rule to

interchange the order of integration on the last term:

{ + 11 - VXyI + {Ul-H VxyH} - uij - Vyr] - U-H VyH + Vxy j udz = 0.

Finally, after cancellations, we have:

j + Vxy udz = 0. (4.19)
at Y- -H

Apart from its simplicity, the second form (4.19) has accuracy advantages over the

first (4.18). In the second form, baroclinic velocities will be numerically integrated out

accurately, and a non-conservative advection operator is also not required. The only

disadvantage of the second form is that it is more challenging to make it numerically

consistent with the 3D continuity equation (Wang et al., 2008, White et al., 2008).

4.1.4 Rigid-lid formulation

For the rigid-lid ocean model, we need to solve for the surface-pressure p, at the

rigid lid. In this case, an equation for a modified surface-pressure, p*, was derived

from the depth-integrated 3D divergence of the momentum equation (4.16) in @4.1.2.

In our case, we will derive a classic surface-pressure in @4.2.4, starting directly from

the time-discretized form of the equations and using the depth-integrated continuity

equation.
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4.1.5 Turbulence Closure Scheme

A study of various turbulence closer schemes is beyond the scope of this thesis.

However, the form of the equations chosen include diffusion terms, since commonly-

used turbulence closure schemes depend on the second derivative of velocity. Some

of these schemes model turbulence as a diffusive effect, and modify the effective

viscosity of the fluid. A zero-equation turbulence model would simply select a value

of vxy, vz, Kxv, and Kz, but more sophisticated models will solve evolution equations

to determine appropriate temporally and spatially variable turbulent viscosities and

diffusivities. Thus, the chosen form of our equations allows the implementation of

these classical turbulence closure schemes. For a survey of turbulence models see

(Umlauf and Burchard, 2003, Warner et al., 2005, Umlauf and Burchard, 2005).

In this thesis, we will be using a zero-equation turbulence closure.

4.1.6 Summary of final equations and hydrostatic approxi-

mations

Here we summarize the continuous equations after decomposing the density and

pressure as described in §4.1.1 and §4.1.2, and adding the equation for the free-

surface from §4.1.3. Combining (4.1)-(4.3), (4.8), (4.9) and (4.19), we have the non-

hydrostatic form of the equations that will be the starting point for our discretization:

Du 1 ? ,
-- - VZ -vzVzu + VXyp' + gVy'rj -= ]gVyp'd( - Vy - uu - Vz - wu (4.20)

+ VXy v2YVXYu - f k x u + -fu,
PO

- VZ i-Vzw + Vzp' = -Vxy UW - Vz - WW

+ 1 (4.21)
+I Voy - v'yVoyw + -fm,

PO
VXY -u + Vz - w = 0, (4.22)

B'rr
-- + V ]Y - udz = 0, (4.23)
at -H
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along with (4.4) - (4.6)

-_ VZ' -ZVzT = -V., -uT - V - wT + - VXY KXYVXYT+fT,
at P

- VZ * nZVZS = -VXY - uS - V - wS + 1V XYVXYS + fs,at P

p = p(S, T),

where: p = po + p' (4.7), p = Phyd + PoP' (4.8), Phyd = f p g d( (4.9) and gp'V.,;y has

been neglected compared to gpoVxynl. We note that p' and p' are not directly linked:

p' is the total density anomaly with respect to po while p' is the non-hydrostatic

pressure normalized by po. We also note that in (4.20), the non-hydrostatic pressure

gradient due to the free-surface is all in Vxyp' while the hydrostatic pressure gradient

due to the free-surface is all contained in the sum gVxvq + y; f, gVxyp'd(.

The boundary conditions are

UIaQD = gD, W 0D = 9D, (4.24)

= gN, 
- gN, (4.25)

TJaQDT = gDT, SI8D's = 9Ds, (4.26)

= 9N, (4.27)
Dn DQNT -9NS

on Dirichlet boundaries aQD and Neumann boundaries aQN. Note that one compo-

nent of velocity may have a different boundary condition type in the same location.

For example, at an inlet, u might be Dirichlet, while v could be Neumann. For

open boundary conditions, we refer for example to Lermusiaux (1997) and Haley and

Lermusiaux (2010a).

The hydrostatic equations are a subset of these equations. As such, we will treat

the more general, non-hydrostatic pressure formulation first. The solution method

for both will be similar, with the major differences being the solution of the ver-

tical velocity. In any case, the system of equations under the hydrostatic pressure
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assumption can be found by setting p':::: 0, which leads to

u - Vi - VU + qVoYV = oyp'd( - V.y -uu - Vz wu
at VO. V -P z + If1(4.28)

+ VXY - - fk x u + -fe,Po

VXy -U + V" - w = 0, (4.29)

- + VXY - udz = 0. (4.30)

This approximation assumes that w < u and 2 < ' ~ 2, which is a thin-fluid

assumption. In essence, we assume that the vertical scales are much smaller than the

horizontal scales. In the open ocean, the associated error will be on the order of 1%

(Cushman-Roisin and Beckers, 2011), similar to the error in the approximations of

§4.1.1 for the density forcing. In the coastal ocean and for specific 3D ocean processes

where horizontal scales become smaller and closer to vertical scales, the size of the

non-hydrostatic terms (e.g. pressure) increase and can become significant. Examples

of processes where the non-hydrostatic pressure and corresponding velocities can be

significant include short wavelength high frequency internal waves, convection plumes,

overturning cells as well as varied processes over steep and shallow bathymetries.

4.2 Semi-implicit Time Discretization using Pro-

jection Methods

Herein we describe the semi-implicit time-integration scheme for (4.20) - (4.23),

as well as the time-integration for the temperature and salinity equations (4.4)-(4.6).

As'in §2, we will be using a projection method, which is commonly used for non-

hydrostatic ocean models (for example Marshall et al. (1997), Fringer et al. (2006)).

The difference between §2 and the present derivation is the inclusion of the free-

surface equation, the different form of the density forcing, and, for the hydrostatic

case, the calculation of the vertical velocity from the continuity equation. We will

describe the time-discretization of a rigid-lid or free-surface, and a non-hydrostatic
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or hydrostatic solver. As such, there are four different solver options in total. While

they are similar, important differences do appear and need to be handled separately.

We first provide the un-split time-discretized equations §4.2.1 and then our split

projection method schemes §4.2.2. Taking differences between un-split and split equa-

tions, our projection method corrections are then derived for different dynamical

equations, specifically, the first velocity corrector with a free-surface §4.2.3, first ve-

locity corrector with a rigid-lid §4.2.4, final velocity corrector with non-hydrostatic

pressure §4.2.5, final velocity corrector with hydrostatic pressure §4.2.6 and, finally,

the free-surface and pressure corrector boundary conditions §4.2.7. Then, we derive

splitting errors in §4.2.8. Finally we give the time-discretization of the temperature

and salinity equations in §4.2.9.

4.2.1 Un-split Discretization

Following §2.2, we lump the explicit terms into a right-hand side forcing function,

and deal exclusively with the implicit solution step. The un-split time-discretized

equations are then:

Uk+1
u_ _- vVzuk+1 + V r,pk+l ± gV_ qk+l = F k,k+1 (4.31)
aAt

Wk+1 k1+Vp,~ ~~
-lVz - v2Vzwk+ + =zpr~k+l = Fk+l, (4.32)

aAt

V -uk+l ± V2 - wk+l = 0, (4.33)
+ k+1 k

77 k+1 + VXY f ?7l - k+ 1dz = 77, (4.34)aAt _H aAt'
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for a first-order time integration scheme, where

F k,k+1 - uk 1 IC ''k - k v - WkUk
aht P0 fz

+ V, -v V u - fk x uk + Ifk,k+1

wkF k,k+l~ -
Fk _ - -u w -Vz .wkwk
aAt

+ VX -XY VY Pk + Wfk1

with boundary conditions

uik+gD, + = gD, (4.35)

a k+1 k+1

= 9N, = 9N, (4.36)
an aQN ai IaN

on Dirichlet boundaries aQD and Neumann boundaries DQN.

4.2.2 Projection Method Scheme

Our projection method consists of predictor steps and correction steps. The pre-

dictor will be executed in two steps for the non-hydrostatic solver, and one step for

the hydrostatic solver. After these predictor steps, the corrections can be obtained

by taking the difference between the final un-split equations and the split predictor

equations (as we have done in §2.2.1). The free-surface non-hydrostatic scheme is

summarized first, followed by the rigid-lid and hydrostatic modification. They are

derived in the following subsections.

Step 1: First Velocity predictor. Consider the first step of the projection method,

which is similar for the non-hydrostatic and hydrostatic case. The previous time-

step values (that is, at k) are used as predictors for the free surface height and the
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non-hydrostatic pressure. This leads to the velocity predictors U- and f':

___t - v vVziik+1 + VxPI''k + gVxy77k = Fk,k+1
aAt 7

- k+1W - vzVzik+1 + VpIk - F k,k+1,

aAt

with boundary conditions

-ka+1= gD,

aN k+1,

ai 9N= 9N,

a = gD,
k+1

= 9D)

(4.37)

(4.38)

(4.39)

(4.40)

The hydrostatic version will not solve (4.38), but (4.37) is the same for both.

Step 2: Free-surface corrector. To update the free-surface, we solve for the free-

surface corrector (could also be referred to as "free-surface-change predictor"):

at k+1 (,k Vx6Tk+l] = Fkk+l
aAt Vxj, - [aAtgr} + H)Vr+] =77,+1

where Fk,k+1 - - . fol iik+ldz, and with boundary conditions:

1 f 7 )
27 a+Q Nz = aAtg(H + 71k) -nH (+ gD) - fixydz,

07lg= go,,

(4.41)

(4.42)

(4.43)

where &QN and Q0%, are boundaries with wall and open conditions for the velocities.

This step is the same for both the hydrostatic and non-hydrostatic version.

Step 3, Free-surface corrections: Second velocity predictor and free-surface up-

dates. Once the free-surface corrector is calculated, the second predictor velocities

and updated free-surface elevation are then obtained by using the algebraic corrector
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equations:

=k+1 =--k+1 - k+1 (4

7k+1 6 k+1 k. (4.45)

These equations are derived in §4.2.3. We are primarily interested in free-surface

models, but the rigid-lid version of these equations are similar (see §4.2.4).

The final steps in the split time-discretization are different between the non-

hydrostatic and hydrostatic solvers, so we will summarize them separately.

Step 4 for non-hydrostatic formulation: Pressure corrector. To update the non-

hydrostatic pressure, we solve for the non-hydrostatic pressure corrector:

p k+1 . =k+l
2 /,k+,k+ 41 V Y + , (4.46)

6 g v26k+k ±aAt aAt

with boundary conditions

V ip'NS,, S = (gk+1 _ D) ' fxy + _ 9D) ii , (4.47)

jp'i = 0, (4.48)

6plik =go,, (4.49)

where OQNS,S, OR1 and MO,, are boundaries with no-slip, slip, free-surface, and open

boundary conditions for the velocities. Usually no-slip and slip boundaries are used

for lateral and bottom boundaries.

Step 5 for non-hydrostatic formulation: Final velocity and pressure corrections.

The velocity and pressure are then corrected using

k+1 = =k+1 _ ',k+1 k+1 k+u u aAtVx~p , w aAtVzpIkl (4.50)

p1,k+1 = p,k + pk+1. (4.51)

Next we state steps 2 and 3 for the rigid-lid case.

Step 2: Rigid-lid corrector. To update the rigid-lid, we solve for the rigid-lid
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surface pressure corrector:

-aAtHV 9Y+1 - aAtV6pk+1 -V H = Ps+ (4.52)

where 0+ = f0  I7 . ik+ldz - _ k+1 V _H, and with boundary conditions:

Vxyjpslk~l i = 0, (4.53)

VXYjPSS - aAtgH I-H k+1 . fidz, (4.54)

jp,|$$ = gon (4.55)

where aQNS, 0 Qs, and &Q0 , are boundaries with no-slip, slip, and open boundary

conditions for the velocities. This step is the same for both the hydrostatic and

non-hydrostatic version.

Step 3, rigid-lid corrections: Second velocity predictor and rigid-lid surface pres-

sure updates. Once the rigid-lid corrector is calculated, the second predictor velocities

and updated rigid-lid surface pressure are then obtained by using the algebraic cor-

rector equations:

Ek+1 - jjk+1 _- at 6p+ 1 , (4.56)

pk+1 _ S.++p. (4.57)

These equations are derived in §4.2.4. Next we state step 4 for the hydrostatic case.

Step 4 for hydrostatic formulation: Vertical velocity. For the hydrostatic form,

the final horizontal velocities are calculated in Step 3, that is:

uk+1 k+1 (4.58)

The vertical velocity is recovered from the 3D continuity equation:

VZ Wk+1 -- VXY Uk+1, (4.59)
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with boundary condition

wk+1 iH ~= -Uk+1 -VxH. (4.60)

This completes the summary of the time-split equations. In what follows we

provide derivations and notes about these time-discrete equations.

4.2.3 Derivation of first velocity corrector with a free-surface

To decouple the free-surface equation from the horizontal momentum equations,

we follow an approach similar to that of Dukowicz and Smith (1994), Casulli (1999),

Casulli and Zanolli (2002) and Fringer et al. (2006), but with two main differences.

First, since we are interested in shallower areas, we also include the non-linear terms

as in Haley and Lermusiaux (2010a), i.e. we compute the integral of velocity up to

an estimate of the free surface (and not up to a zero free-surface). Second, we do not

decompose the velocity into barotropic and baroclinic components, even though this

is very often done in classic ocean modeling.

First, some preliminaries. We wish to treat the free-surface equation implicitly

for numerical stability. As such, we ideally want to use uk+1 in the vertical integral

of (4.34). Since it is not yet available (or would require an implicit solve of the

larger system of equations), we will use instead uk+ U k+1, the second predictor

velocity. Remembering that the gij term is the contribution to pressure linked to the

free surface, i.e. p'k+l+ gk+1, we expect that the updated predictor velocity will be

similar to a classic Navier-Stokes pressure correction of velocity. To show this, we

start from the un-split equations (4.31) and note that:

pk+1 ±g k+1= (p+ g?)k+6p ±g? 7 kl. (4.61)

For the first predictor velocity step ((4.37)-(4.38)) that we specified, both "" terms

were set to be null. However, for the free-surface corrector step and thus free-surface

corrections step (including the "first velocity corrector" which can also be referred to
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as the "second velocity predictor"), we solve for 67qk+1 implicitly. Hence, we replace

p'k+1 + gk+1 by the predictor P' + grk + g6 k+1, and thus, by analogy to classic

pressure corrections, imply a velocity correction of the type (4.44)

=k+1 - k+1 - A 7ok+1U =U aLtgV_,o77

where 67 k+1 , yk+1 - rk. With (4.44), we can now solve for 6 77k+1 implicitly from

(4.34). The magnitude of the splitting error due to this approximation will be exam-

ined in §4.2.8.

As outlined above, the free-surface corrector step 2 is derived by inserting (4.44)

into (4.34), which gives:

k+1 7 - k1 kI 7k

-+ Vo -Y fuk+ - dgVyok} dZ = .
aAt + - H -A

To simplify the time-integration, the vertical integral term can be re-written as:

/ k + 1 = + k = + k + k1
k+1- _ 1d= ik+ldz ] 7 k+ldz. (4.62)

The final term in (4.62) will be of order 0 (Ate) compared to the first. As such, the

final term in (4.62) is small, i.e. of higher-order than the first, and is thus dropped.

This gives:

k+1 Ukk
k1+ VY _ {k+1 - aAtgVxy 6?k+l } dz = _ ,aAt H aAt'

7k+1 _ k J n 6kd nk
tI k - aAtgVxy - VXY6qk+1dz = -V j k+1dz,
aAt V-H j-dH

-7 kI AntgVXY - [(77k + H)Vxy67k+1] _ _Vx . -H k+ldz,
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or finally, we derive (4.41):

&Ik+1 - 7kxjn l] - kk l
aAt - ,V - [aAtg(q' + H)V2,62 k+1] - F7,k+1, (4.63)

where F k,k+l V I jkjk+1dz, and with boundary conditions (4.42)-(4.43):

V26nik$i - n fi = 0,

1 jnIk+1 7 id
XV2,62 -nz = aAtg(H + 77k) I-H k+1

& |k2l = g0,7,

where 0
9NS, 00s, and &Q0 , are boundaries with no-slip, slip, and open boundary

conditions for the velocities. These boundary conditions are derived from the velocity

boundary conditions (see §4.2.7).

To summarize, after solving for U6 from (4.37), we solve for 67 7k+1 from (4.41)

above, then we correct the velocity to obtain = from (4.44), and update the free-

surface height using

77k+1 _ Jqk+1 + k. (4.64)

If we had treated the Coriolis terms implicitly, this correction would have been more

complicated, and we would have had a contribution similar to the rotational correction

term in §2.2.1. The reason why we do not have a rotational correction term in the

present scheme (step 3) is because only the vertical diffusion term is treated implicitly,

and V,67 7k+l = 0 since 7 does not have any vertical dependence. Next we repeat this

step, but for the rigid-lid formulation.

4.2.4 Derivation of first velocity corrector with a rigid-lid

For the rigid-lid formulation, we wish to impose the 2D (vertically integrated)

continuity constraint. That is, after this step we want the depth-integrated continuity
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equation to be zero. In this case, we again define a second velocity predictor, (4.56)

=k+1 - k+1 - A Vok+1,

U - atvx S(4.65)

where here we use p, for the surface pressure. To derive an equation for p5 k+l, we set

the depth-integrated continuity of the corrected velocity equal to zero:

j VX. k+1dz + j V -. +1dz = 0,

/ p0 =~ 0 _=
J V {k+1 - aAtV +1' dz + _ + k+1 -H = 0,

-±Vj pk+ + -H _ lZk+ =k+11 0 _ gk+IH 0.

We want to eliminate the vertical velocity from these equations. At the rigid-lid,

the vertical velocity will be perpendicular to the surface, and for no flow across this

boundary, it has to be zero, iGk+1 I = 0. At the bottom, the vertical velocity will be

non-zero for slip boundary conditions and sloped boundaries. The bottom vertical

velocity can be written in terms of the horizontal velocity components, by using the

no normal flow boundary condition, uIk. flxyI-H + WIE - fz I-H = 0:

5k+l = ik_ -i ,(4.66)
nz -H

= nii_ - VxH - aAtVxy6pk+1 - VxH, (4.67)

where we have used the mathematical identity 2-H = V ,H (see also (4.18)).

Substituting and re-arranging we obtain the equation for the rigid-lid pressure, (4.52):

-aAt HVy pk+l - aAtV6pk+1 - V2,H = P+ (4.68)

where

k+1 _Jv - k+ldz - n|I_1 - Vx.H,
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with boundary conditions

V y6psIk$l -n = , (4.69)

VXY6PsK$S -n' aAtgH j k+x1 - dz, (4.70)

p, = go,, (4.71)

where aQNS, aOs, and Q0l, are boundaries with no-slip, slip, and open boundary

conditions for the velocities. As in §4.2.3, these boundary conditions are again derived

from the velocity boundary conditions (see §4.2.7).

We now provide a few notes. First, Fk+1 can also be written in different forms,

whatever may be computationally convenient. For example, we could have solved for

-aHV2 opk+l = F+1-aAt IVY S PS

where

k+1 = J- . ik+1 + VZ . =k+l} dz.

With this form for no-slip boundary conditions, it is tempting to set Wk+1 -H equal to

zero in the equation, since with no-slip boundaries, all components of the final velocity

should be zero. However, this would not be correct for the predictor velocity fk+1 I-H,

since the no-slip boundary condition cannot be satisfied at this step. This is because

the rigid-lid correction does not change in depth. The quantity aAtVy6pk+1 . VxH

from (4.68) is what modifies Thk+l- H such that i_H ' y-H + * nz -H equals

zero at the bottom. This happens because when the horizontal velocity components

are corrected with a constant-in-depth correction, they will no longer satisfy the

no normal flow condition at the bottom sloped boundary when using the -ok+1 1-H

velocity. The aAtVxy6pk+l . VxyH quantity, then, effectively corrects the vertical

velocity at the bottom boundary to satisfy the no normal flow boundary condition.

Second, note that we could have taken the vertical integration first, followed by
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the divergence. While the choice does not matter mathematically, numerically, there

are consequences. Since the finite element operators do not commute (White et al.,

2008), the order of the integration and divergence matters. Because we want the 2D

continuity operator to be numerically consistent with the 3D continuity operator, we

used the chosen form, which is naturally numerically consistent.

4.2.5 Derivation of final velocity corrector with non-hydrostatic

pressure

In the non-hydrostatic pressure formulation, the 3D continuity constraint, which

ensures that the final velocity is divergence-free, is imposed by the non-hydrostatic

pressure. At this point, we have solved for the second velocity predictor, either using

a free-surface or a rigid-lid approximation. This velocity predictor satisfies a depth-

integrated continuity constraint. In the spatial discretization, we will make use of

this fact. For the temporal discretization, we introduce the final corrector equations

(4.50) (as was done in §4.2.3 for (4.44) with (4.61)):

k+1 = =k+1 _ /,k+1 k+1 = =k+1 - zpl,k+1u ukW a~~yp~ ,w w aAtV,~~kl

Next, we provide some preliminaries before the derivation proper. First ?k+ _

ijk+1 in the interior of the domain, while at the bottom sloped boundary, W= k+1 can be

obtained from (4.38), W'I_ = -iH - VYH (see (4.66)), and at the free-surface we

can recalculate the vertical velocity which should be consistent with the free-surface

equation (4.17), i.e. - -+ = 7 + |l__Hrk+1 (see §4.1.3). In practice,

the recalculated vertical velocity at the free surface may not be numerically consistent

with the vertical velocity recovered from the free-surface equation: the error comes

from the inconsistency of the numerical operators (White et al., 2008). Also, we never

actually calculate the updated bottom boundary velocity, but impose it through the

Poisson equation for the pressure correction.

Second, we could, alternatively, take Gk+1 _ -k+1 = 0 if we did not want to calcu-

late the vertical momentum equation. In this case, the vertical non-hydrostatic pres-
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sure gradient predictor would also be zero, which means that Vzp',k+l = VJp,k+1,

i.e it is the corrector step that adds all of the non-hydrostatic effects. With this

approach, the non-hydrostatic solver will more-closely resemble a hydrostatic one.

Therefore, this could be useful for adding non-hydrostatic terms to an existing hy-

drostatic model.

For the derivation proper, we simply use the property that the final velocity should

be divergence-free, (as would be for the original equations (4.20)-(4.23), and un-split

equation (4.31)-(4.34)). Hence, taking the 3D divergence of (4.50) (as in §2.2), we

obtain the equation for the non-hydrostatic pressure corrector (4.46):

- . =k+1 . k+1
v9jjjP,k+1 + 2p,k+1 _ VXy z

SZr aAt aAt

with boundary conditions (4.47)-(4.49)

19Op' ,S n e -u n1 - nz,

6P'11 = 0,

6p'||J = go ,

where aQNSS, &Q,1, and d9O, are boundaries with no-slip, slip, open boundary, and

free-surface conditions for the velocities. Again, these boundary conditions are derived

from the velocity boundary conditions (see §4.2.7). The non-uniform value for 1aNS,S

ensures no normal flow at solid boundaries. Normally, a uniform Neumann condition

for the pressure-correction can be used on no-slip boundaries. However, after solving

for the rigid-lid or free-surface, =k+1 only satisfies the depth-integrated continuity

equation. Since =k+1 is corrected using a 2D field (that is, constant in depth) the no

normal flow velocity boundary condition cannot be enforced on sloped bottoms. As

such, the non-hydrostatic pressure has to correct the bottom boundary velocities.

The new non-hydrostatic pressure is recovered from (4.51)

',k+1 _ P/,k /,k+1
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For ocean applications the rotational correction term is small and we will neglect it,

reo+= -Vz, - vVzaAtVjp',k+1 0 (see §3.8.3).

We note that once the velocities are corrected using (4.50), the vertical velocity

at the free-surface may not be consistent with the free-surface height calculated.

The time splitting errors, as well as inconsistencies in the numerical operators can

lead to differences between the vertical velocity calculated here and the free-surface

height calculated in (4.41). However, for the non-hydrostatic solver this numerical

inconsistency is not a major concern, since the free-surface calculation is not a required

step. The free-surface calculation is a constant-depth update to the old total pressure

Pk, which enforces depth-integrated continuity, but the pressure pk still requires a

depth-varying update. As such, the constant-depth update from the free-surface

could be absorbed into the non-hydrostatic pressure correction. Thus, the advantage

of a numerically consistent free-surface calculation is that it may give an improved

pressure predictor pk + pOgV.Y6'qk+1, which may affect the computational efficiency

of solving for the non-hydrostatic pressure corrector (that is, reduce the number of

iterations until convergence for an iterative matrix solver). Additionally, the vertical

displacement of the domain will be more accurate with a consistent free-surface.

Nonetheless, the accuracy and stability of the algorithm should not be significantly

affected.

4.2.6 Derivation of final velocity corrector with hydrostatic

pressure

In the hydrostatic formulation, the second horizontal predictor velocity which

satisfies the 2D depth-integrated continuity equation will not be modified by the 3D

continuity constraint. As such, we directly use (4.58)

k+1 = =k+1U =U
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At this point, the vertical velocity has not been calculated. It is normally recovered

from the 3D continuity equation (4.59):

Vz .wk+1 -V . uk+1,

with boundary condition (4.60)

wk+ 1 1H = -Uk+1 - VxV H.

Even though the above derivation is straightforward, some discussions are warranted.

First, we discuss the consistency of operators and boundary conditions. Instead of

using the bottom boundary condition, the top boundary condition could be used,

if the depth-integrated continuity equation is numerically consistent with this 3D

continuity equation. For the rigid-lid hydrostatic pressure case, numerical consistency

of the operators is crucial because the velocity at the top of the domain has to be zero,

and at the bottom it has to enforce the no normal flow condition. If either of these

are not satisfied, mass will not be conserved. As we can only enforce either the top or

bottom boundary condition, the vertical integration has to be numerically consistent.

For the free-surface case, numerical consistency is not as important, because the only

effect will be on the velocity of the free-surface, which is allowed to vary. If the

numerical inconsistency error is small, the results will be acceptable, since the mass

conservation is in that case not affected.

Second, we discuss the differences in pressure between the hydrostatic and non-

hydrostatic formulations. While the hydrostatic form does not correct the verti-

cal velocity using a pressure (as in the non-hydrostatic case), we can formulate

the correction through a pressure to show this difference between the hydrostatic

and non-hydrostatic approaches. Consider the non-hydrostatic velocity correction

step (4.50) and the pressure correction equation (4.46), but we let Wk+1 = 0, and
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aAtVxyjp'k+l ~ 0. Then these equations become

uk+1 1jk+1 wk+1 = aAtV6p',k+1(

and

V k+1
v26p1,k+l VXY U.1 +

aAt (4.73)

with boundary conditions

- aAtU - nxy, (4.74)

6p'ikg =0. (4.75)

This form highlights the difference between the non-hydrostatic and hydrostatic for-

mulations. We assume in the hydrostatic case that the horizontal, depth-varying

pressure-correction gradients are small compared to the vertical gradients. Recall,

the depth-integrated horizontal pressure gradients are calculated from the 2D depth-

integrated continuity equation in the previous step. As such, we simply eliminate

these gradients from the equation. Also, we use a zero vertical velocity predictor,

which could also be done in the non-hydrostatic case. The only difference, then,

is that we have dropped the horizontal gradient terms in the pressure-correction

equation. The hydrostatic approximation drastically increases the computational ef-

ficiency of enforcing the 3D continuity constraint; if the horizontal gradients are kept,

a 3D globally coupled set of equations need to be solved, whereas the hydrostatic

approximation allows ID uncoupled equations to be solved.

The correction specified through the pressure (4.73) also has numerical conse-

quences. In the first case (4.59) we solve a first-order differential equation, whereas

in the second case (4.73) we solve a second-order differential equation. Because of

the numerical consistency consideration, the vertical integration scheme used to cal-

culate the vertical velocity should match the integration scheme used to calculate the

depth-integrated divergence. As such, for hydrostatic computations, we will use the
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(4.73) form to calculate the vertical velocity.

4.2.7 Free-surface and pressure corrector boundary condi-

tions

In §2.2.3 we showed that the uniform Neumann boundary condition for the pressure-

corrector is consistent with the pressure boundary conditions that follow from the

momentum equations. However, in §2.2.3, we were treating all components of the dif-

fusion term implicitly, whereas here we only treat the vertical diffusion term implicitly.

As a result, the boundary conditions for the pressure-corrector can be affected.

In this section we derive new boundary conditions for the free-surface and pressure-

corrector equations, focusing on lateral boundary conditions (u -ii, = 0 for no normal

flow). Then we show that they are consistent with the boundary conditions from the

un-split equations.

To explain the issue, consider the first velocity predictor (4.37) projected on to

the normal of the boundary:

-k+la . - .- -M +1' -p ni +1 gVfy k . fix = F ny,k+1 ,
aAt+ =kkt1-

(4.76)

re-arranging

k+1 . fl - tV.vik+1 . fix = V k -gyrk ± F~k+l)

(4.77)

Since we do not treat all of the diffusion terms implicitly, we cannot impose the final

lateral no normal flow boundary conditions on nk+l _ nx, using (4.37) as was done in

§2.2.3. This is because the spatial discretization of the vertical diffusion term uses

the z-component of the normal, which will be zero on vertical faces. As such, the

boundary conditions of the first predictor velocity, n- k+1 - i / 0 on some slip and

no-slip boundaries. The final no-flux boundary condition, then, has to be imposed
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through the free-surface and pressure corrector equations.

Derivation of no normal flow boundary conditions: First we consider the lateral

no-penetration boundary conditions for the free-surface corrections (step 3 in §4.2.2).

To obtain a lateral boundary condition, we use the first first corrector equation (4.44)

and project it on to the normal iiy of a lateral boundary:

1k+1 k+1 1 - k+1 .f

aAtg - aAtg U (4.78)

Since the free-surface corrections (4.44)-(4.45) do not vary in depth, the second ve-

locity predictor can only satisfy the depth-integrated lateral no normal flow condition

flk = k+1 - nydz = 0. Taking the vertical integral of (4.78):

J-H VJY6#q dz =-H a~tg k dz - H aztgk dz

(H + rik)V V6 7 k+1 . aLxt =I dk+1 . fi 2ydz,
J-qH aAtg

and re-arranging we recover (4.42)

Vxqk+1 .fx= 1iik+1 - fixydz.
aAtg(H + 77k) J -H

Second, for the non-hydrostatic pressure corrector (step 4 in §4.2.2) and any no

normal flow boundary condition (lateral and bottom), we start from (4.50) projected

on to the 3D normal of the boundary:

k+1 .f +k+1 . nz = =k+1 . =k+1 -n-k+1 .'u *n,+ *,+w *n - aAtV6p" .~,

re-arranging, and setting uk+i.fnxyw k+1in_= 0 (no penetration boundary condition

for the final velocity), we recover (4.47)

=1 =k+i . k~iVP,k+ . k+ + - nz+.
aAt aAt
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Note that both (4.42) and (4.47) reduce to the original zero Neumann bound-

ary conditions for the corrector if the no-flux boundary condition is satisfied by the

predictor velocities.

No normal flow boundary condition consistency proof Having derived boundary

conditions for the free-surface and pressure correctors, we now have to verify that

the boundary conditions imposed implicitly on the free-surface and non-hydrostatic

pressure are consistent. The no normal flow boundary condition from the momentum

equation can be found by projecting the un-split equation (4.31)-(4.32) on to the

normal of the boundary

k+1 k+1
y± -+ wk Ez- Vz ' V~uk+1 y -fi k+. fi*z + (Vpfk+l ± gVxy'7k+l) .

aAt aY

=k,k+ - ni +Fk+± . ii

and re-arranging:

,k+l . k+ + y ~ z zzk+1 ii = (VZ V. Uk+1 + F kk+l) .
P Y U iixy(4.79)

-- Vz , "zVzIEk+1 - niz + F k,k+l) - ii,

where we have enforced the desired nor normal flow condition uk+1. i, + Wk+1 .nz = 0

on the final velocity. We have to show that the implicit boundary conditions imposed

by (4.42) and (4.47) on the corrections have the same form as (4.79). To do so, we

will substitute from the time-split equations to recover (4.79).

Starting with the non-hydrostatic pressure, take the gradient of (4.51) and project

it on to the normal of the boundary

VPi,k+l . n = Vp'' - n ± V 6p,k+l . fi.

Substituting for our derived boundary condition for the pressure-corrector, (4.47), we

obtain

ii~ ,= V ,k 1 f_ 1 =k-- .- fi

Vp',k1 - n -- 'n+ k - + W Wk+1 . nz. (4.80)
aAt aAt

Then substituting for the second velocity predictor from its update equation, (4.44),
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we have

Vp',k+l . I'k - f + 1 -k+1. 1 k+1 -. k+1 . (4.81)aAt / + aAtW - nl .

To obtain the left-hand-side of (4.79) , we sum (4.81) with gVXyr7k+1 .

Vp',k+1 . f _+ 9± gV ik+1 .  _ V f,k . fn + gvyrk+l _ gV6k+ 1 .

1 nk+1 - 1i+ k+1 - z.
+ aAt U aAt iv

Using (4.37) and (4.38), we substitute for 1 5k+1 and 1 uk+1 in (4.82):

(4.82)

Vp'/,k+1 . f + k+1 .inxy

(4.83)

_ gf,k . fn + gvxyk+1 .~ _ g~y7k+1 . f

± (vz . ,vzVk+ 1 + F ,k+ 1 )

+ (Vz . vzVzfk+1 + F l± k+1) ii.

Finally, substituting for &r k+1 from (4.45) and canceling terms, we have

VpIk+1 . n + gVxZyik+1 . -'xy _ Vip,k . f + gvxyk+1. i xy k+ _ 77k .i7k

+ ( * vz~ l z Uk+1 + F ,k+ 1 )fi

+ z ( v' .zzk+1 + F;k+l) fn

= 'z - z,7z Uk+1 + F k,k+1)-n= ( . V ± ) . fi(4.84)

±- z ( v' -vzV k+l + Fkk+1) . fn.

The difference between the split and un-split boundary conditions are only due to

the rotational correction term which we have neglected, since it is small for ocean

applications. To see the error 9b, let us subtract (4.84) from (4.79):

Sbc = (Vz - vzz(uk+1 - nk+1)) . nx + (v - v2vz(w k+1 - ik+1)) . niz. (4.85)
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This error will be of order Eb ~ O(vzAt), since there are only O(At) corrections

between uk+l and U.k+1 When v. is constant (i.e. no spatial variance), this error can

be eliminated by applying the rotational correction to the non-hydrostatic pressure.

However, for practical ocean simulations v_ is small, and the inclusion of the rotational

correction does not seem to make a noticeable difference.

Thus, we have shown that our boundary conditions for the free-surface and pres-

sure corrector equation are consistent with the un-split equations.

4.2.8 Splitting errors

In this section, the magnitude of the various time-splitting errors are examined

one-by-one. We first show the errors between the splitting of the depth-integrated 2D

continuity equation, which is different between the hydrostatic and non-hydrostatic

formulations. Then, we show the error of the final projection step from the non-

hydrostatic case. We note that we derive the splitting error in each step assuming

that it is not affected by errors in the other steps, i.e. we don't evaluate the total

(nonlinear) splitting error.

Splitting error for steps 2-3 with hydrostatic pressure: From §3.8.2 we argued that

the magnitude of the splitting errors for the velocity and pressure wereO and

O (t). In that section, we also saw that for the case examined, the splitting errors

were from the boundary conditions of the implicit diffusion equations when the right-

hand-side forcing was divergence-free. Since in the ocean case we are only solving

implicitly for the vertical diffusion, and we only impose the depth-integrated continu-

ity constraint at steps 2-3 of the time-integration procedure (§4.2.2), we do not expect

this step to introduce any additional splitting errors. That is, since the forcing term

of the depth-integrated equations are completely explicit, the 2D pressure-correction

will be projecting out the divergence of the explicit terms only. Therefore, the hy-

drostatic pressure form should not have a splitting error.

Splitting error for steps 2-4 with non-hydrostatic pressure and free-surface: Next

we focus on the splitting errors for the non-hydrostatic solver, involving steps 2,3 and

4 of §4.2.2. For this, we begin by evaluating the splitting errors in step 2, i.e. the
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errors introduced in the free-surface calculation when the non-hydrostatic pressure

component is neglected. We should have used uk+l instead of Uk+1 in (4.41). To

evaluate the error, we substitute for uk+l - Gk+1 - aAtVp',k+l in the un-split

equation (4.34) to derive after some manipulations (as in §4.2.3)

67k+1 nk

aAt - V.y - [aAtg(71k + H)Vx,6gk+l] _ . -H j{k+1 - aAtVxyplk+l} dz,

where we have neglected the integral from 7k to k+1 as in (4.62). Hence, the splitting

the splitting error £ is due to the neglected term

,k

£ = VXY j aAtVxyjp',k+ldz

7k
k / xyp,k+1 I /,k+l vH -- yl,k+ld= aAt IVVXY 6p 1I7 + V Vxy6p/~I-H + f-2 Vx6P/+dz]

Substituting from (4.46), the last term becomes

k y7d j {k'1

-HaAt aAt

- Vz jp/,k+1 __7 + VzPfk+1 -H,

since the depth-integrated divergence of the second predictor velocity is zero. Using

the mathematical identities VxYjk - - and VxyH = (for outward

facing normals), the error becomes

&_ = aAt [- y . V xp/,'~' + . V x 6 p~k+1 -H - Vz6P 1,k+1|q + Vz6P/,k+1IH ,]
k ~ n -HJ

a [ . p/,k+1 + . V jp,k+1
= aA - + -

nz 7k nz _H]

and using the bottom boundary conditions (4.47) we finally have

ii -V6p', 1 k. _+H + =± + . fiz
&=-aAt - +

nz nk nh.
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Note that the second term will be of O(At), since the velocity at the previous time step

would have satisfied the no normal flow boundary condition UlkH - ii + WIkH -n --

0. This expression shows that the splitting error will be large for steep bottom

bathymetry (flz-H < 1) and if the normal gradient of the non-hydrostatic pressure-

correction is large at the free-surface, that is, for surface waves of high amplitude or

short wavelengths. However, as argued in §4.2.5, any errors during the free-surface

calculation only affect the quality of the pressure predictor, and does not impact the

final accuracy or stability of the scheme. As such, the pressure predictor is expected

to be poor in regions of steep bathymetry.

Splitting error for steps 2-4 with non-hydrostatic pressure and rigid-lid: For the

rigid-lid formulation (§4.2.4), the derivation of the splitting error is similar to that

of the free-surface. However, by construction the no normal flow boundary condition

will be satisfied at the bottom for the rigid lid, and at the surface the normal only

has a component in the z direction. As such, its splitting error reduces to:

ERL = ~aAtVz6pk+1 10,

which is zero due to the boundary condition (4.47).

Splitting error for step 4-5 with non-hydrostatic pressure: What remains is to ex-

amine the error for the non-hydrostatic pressure split. For this analysis, we can ignore

the first splitting step, which is not required. Here we can utilize the results of §3.8.2.

In this case, our expected splitting error will be of order 0 (vAt2 ) and 0 (vzAt) for

the velocity and pressure, respectively. The splitting error will manifest itself only at

the free-surface and bottom boundary. However, as both vertical gradients and the

vertical viscosity are expected to be small for the ocean, we expect this splitting error

to be smaller than the leading order error terms from approximations made as part

of the mathematical formulation (§4.1.1). As such, the numerical error introduced

due to this splitting error will not dominate the error of the simulation.

In summary, the hydrostatic formulation does not contain any time-splitting er-

rors, while the non-hydrostatic formulation's errors are expected to be smaller than
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the approximations made when formulating the mathematical model. As such, the

proposed time-integration scheme should be sufficient for our purposes. Finally, as

discussed in §3.8.3, we note that the results from a full execution of the projection

method could also be used as a starting guess (or preconditioner) for the fully coupled

problem. Thus, for flows where the splitting errors are large, they could be eliminated

with an iterative approach.

4.2.9 Time discretization of tracer equations

For the time discretization of the tracer equations (4.4)-(4.6), we use a semi-

implict time discretization scheme, simlar to the discretization of the momentum

equations:

Tk+1 k = Fkk+l
- Vz , Vzk+ = Fkk+, (4.86)aAt

sk+1 
kl- Vz - KZ Vzgk+l = F ,+,(4.87)

where, for a first-order time integration scheme, we have a = 1 and

T akFk,k+1l -cI - .k1T - V,. -W'+1T + V2ty -n2,V2,Tk + f#+l,

kk+l - Sk
Fk _ - - uV WkSk + VY, . ,k+1V sk + k+1,aAt

with boundary conditions

T -k+1 9DTI Sk+1 =S = 9Ds (4.88)

aT k+1 as k+1

-n a N N T, - = N s, (4.8 )

on Dirichlet boundaries &QD and Neumann boundaries 9QN. Note, while the velocity

field at k may be used, we use it at time k + 1 in the advection term. This does not

require coupling since the tracer fields can be advanced after calculating the new

velocities, and it marginally improves stability.
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4.3 Spatial Discretization of ocean equations using

HDG

In this section we give the hybrid discontinuous Galerkin discretization of the

time-split equations. We begin by defining the additional notation needed, then give

the discretized equations for each step in the time-split procedure.

4.3.1 Finite Element Notation

We will use the same notation as in §2.3.1, along with a few additions. The top

surface of the domain 9Q, Q" is discretized by a finite collection of non-overlapping

elements a7h' = UK', where K" = oK n a Q # 0. That is, for a 3D (or d = 3) domain

discretized using prisms, the top surface is a 2D (or d - 1 = 2) domain discretized

using triangles. For these 2D elements, we will use the same notation as for the

3D elements, but we usually add a superscript *I, or sometimes a subscript e. In

particular, we define the 2D finite element spaces for tracers and vectors as

{0" E L 2 (Q?): ' K,7 E PP (K"), VK7 E V4 ,

{On E (L 2(Q,7))d-I : 071 1K17E (PP (K7) )d-1, VK77 E 'Th" ,

respectively. Note that the vectors on this space have one fewer component, d -1. To

use the HDG method, we will also require the traced finite element spaces existing

on the interfaces 6" of the d - 1 finite elements:

{,6F E L2o : I4 en E PP (e"), Ve" E 01)

{6q E (L2(Q,))- 1 : 0, JeO E (PP(e7))d-1, E E711.

We also set {7 = PgD on D9Qi}, where P is the L2 projection of the boundary

condition gD into the same space as 0,7. Note that 0'7 is continuous on the interface,

ei7, shared by K", + and K77, -, but discontinuous at the borders between different

interfaces.
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4.3.2 Discrete equations, remarks and derivations

Here we state and derive our HDG finite element spatial discretization of the

time-discrete equations obtained in §4.2.2, and the tracer equations for temperature

and salinity (4.86)-(4.87). In what follows, we first obtain in (i) the complete time-

discretization of the §4.2.2 scheme, outlining its derivation. In (ii), we then complete

the details of the derivations and provide additional discretization remarks. Finally,

in (iii), we report the HDG discretization of the tracer equations for temperature and

salinity (4.4)-(4.6).

(i) Discrete equations

Our projection method is executed in 5 steps for the non-hydrostatic equations,

and 4 steps for the hydrostatic ones. These steps follow the same order as in §4.2.2,

and are composed of predictor and corrector steps. The various steps can be com-

bined in four different ways for either a rigid-lid or free-surface model, with either a

hydrostatic or non-hydrostatic pressure. The full discretization for a non-hydrostatic

free-surface model is summarized in Fig. [4-1], and for a hydrostatic free-surface

model in Fig. [4-2]. For both cases, Steps 2 and 3 can be replaced by the rigid-lid as

given next also.

Step 1: First velocity predictor. The first step in the time-split equations is to solve

for the first velocity predictor, u k+1, from the horizontal momentum equations (4.37).

The discretizations of the explicit forcing terms in our time-integration schemes are

covered in §5, as part of the description of our implementation and of the consistency

and algorithmic properties of our schemes. Here we assume that the right-hand-

side forcing terms have been appropriately calculated using standard discontinuous

Galerkin finite element approaches (see §5). The discretization of (4.37) then leads
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to the element-local set of equations

(90) - Vzjk+1, 0) + jk+l1, . )a = A'k+l1, ,
LIZ KKK OK K( -k-1 q+1 ±+Tk+1 e \ T -k+1

a t K K K 8K

Sgq VxYpIk ) K + (Fkk+1, ) K

(4.90)

where r = 1 is the stability parameter (see §4.3.3), 4 k+1 = VzVz k+1 is the vertical

derivative of the velocity predictor, and qk = VXY 77k is the horizontal gradient of the

free-surface at time-step k (constant in depth). The global flux-conservation equations
- k±1

for AX, are

k [-+1 _k+1 k+1 0 9N, OE)E (pk] o) 4.9y1)

-k+1 
9D-k-i--iI8o = gD,

which is solved Ve where fiz > E, that is, only on non-vertical faces. The derivation of

these equations are similar to those in §2.3.2, and are therefore not repeated here. In

the case of meshes where the nodes are vertically aligned (sigma-layer models), Ax+

will not be defined on the vertical faces. As such, for these faces we could calculate

an edge value using

Xy = C1 {{i}}+ C2 [ii-1, Ve where hz c,

but this edge value may not be needed by the discrete algorithm. Where this edge

value is needed, the particular values of C1 and C2 will depend on the particular

operator. For example, an edge value is required to correct the divergence of the

predictor velocity, and this edge value should mimic the discretization of the advection

operator.

For the hydrostatic solver, the non-hydrostatic pressure p' = 0, and the next

step is the free-surface or rigid-lid corrector (step 2). For the non-hydrostatic solver,

first the vertical velocity momentum equation (4.38) is solved, which is discretized
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similarly as:

o) K ~~ z k+1, )K k+1 Oz '0)8K - ()k+1 OK 

( )k+1 70 k+ ± (TjiVk+l, (Tjk+)aAt 'K- (Vz -z I2k1)K+ k+1X9K +1 OBK

(VzpkO)K +(F kk+lg)K.

(4.92)

The global flux-conservation equation for Ak+1 is

(ftk+1z ~- T (ik+1 _ Ak+1N)]], 0) + pik~z ,)
Z A + 1 0 C ( 9 , O ) E + ( [ P Z 0 6 E 7 ( 4 .9 3 )

W +IonD = 1D-

We note first that the equations (4.91) and (4.93) are defined for a non-zero hz, i.e.

for fluxes with a vertical component, which is in accord with the vertical-only implicit

diffusion. We also note that in (4.90), the q variable is used for rq while the gradient

is used for p'. These properties have implications which are discussed later in the

remarks sub-section (ii).

After obtaining the first horizontal velocity predictors, jk+1, we have to correct

these velocities to obey the depth-integrated continuity equation. This continuity

equation can either allow for a free-surface taking the form of (4.41), or have a rigid-

lid taking the form of (4.52). Both discretizations are described next.

Step 2 for free-surface model: Free-surface corrector In this step, the free-surface
corrector is calculated. It is calculated such that the corrected velocity (from step
3) will satisfy the depth-integrated continuity equation. The discretization of (4.41)
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leads to the element-local equations

q k+ 1
6 71 On (Vxyjs7k~l,2)? + (sk+l, i, 7 017) (Ak~

aAtg( 7k + H) KK - 67k ) K" + * K7 6k+1 XY ?8K?

(6 077k ) ? v' q k+l 027) + (T2776?k+l, 727)OK??07

k+1 K7 _ 6+77 K17 k+1 gnK,7 += (57 )K,

': k+1 - Uk+1
- k+1 K * 07

aAt ,7) K + aAt , K?,
xKy )Kn

(4.94)

where -r7 = g(H+)7k) 67k+1 aAtg(?k + H)Vxy6r5/k+1 is a function of the horizontal

gradient of the free-surface corrector, -k1 = f nk+ldz is the numerically depth-
, k

integrated horizontal velocity (see §5.2.1), and U* = f(U+, U) is some function of

the solution from the elements bordering a particular edge. We note that the form of

this function should be consistent with the discretization of the advection operator

(see §5.1.1 or §2.3.2), and the derivation of T, is given in §4.3.3.

The global flux-conservation equation used to calculate A k+ is

F k 1 n -7 r7 7 (&rk+1 _ k+ )] , k=1- (g9N , 0 7) E, ( )
A n k+1 Q= gD-

The details of the derivation for (4.94)-(4.95) are similar to those in §2.3.2.

Step 3 Free-surface corrections: Second velocity predictor and free-surface updates.

The free-surface corrections ((4.44)-(4.45)) are algebraic equations and obtaining

their discretizations is straightforward, up to the edge-space relations. Specifically,

using the free-surface corrector, the second velocity predictor is obtained from (4.44)

on the element and non-vertical HDG edge-space as

k+1
Gk+1 -- k+1 _ 57,74.6=k± -kI- (4.96)

i k + 1 7

(which is the discrete form of Uk+ = k+- adtgV,, k+1) and on the vertical HDG
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edge-space as

kk+ l -k+1 k+1 A k+1 _ +1

7 = k- H+T 77k±H ), (4.97)
* * k+ H 7k + H

"k+1 - k+1
where + = f(ji+, U--), using the same function as for U, above, consistent with

the advection operator.

Additionally the free-surface can be obtained directly from (4.45)

77k+1 _ k + Jk+1, (4.98)

on the element local 2D space, and

Ak+1 Ak + A k+1 (4.99)

on the 2D HDG edge-space.

Details and remarks on the above derivations, especially for the edge-space rela-

tions, are provided in (ii).

Step 4 for non-hydrostatic model: Pressure corrector. After calculating the sec-

ond predictor velocities =k+1 and t71k+1, which satisfy the depth-integrated continuity

equation (either using the free-surface or rigid-lid formulation), we wish to enforce

the full continuity constraint.

The discretization of the non-hydrostatic pressure corrector 6p,k+1 (4.46) leads to

the element local set of equations

SK (V6pIk+1, K k+1, i g - (AK_,k+1 K

__ .k+1 K gI,k+1 g KP k+1 VK / K

-(V~~' ) K + ( rykjlo = TAPO~)aK =- (V.~+ )K

( k+1)

aAt ' (41

(4.100)
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where q I Vp',k+ is the gradient of the pressure corrector, -T = a ,tr k+1

[Uk+i, k+1, k+i] and -, = f(,+ -) should match the discretization of the

advection term (see §2.3.2, (2.81)-(2.83)). The global flux-conservation equations

used to solve for Akl are then

(Pqi1 - - T, (6 p',k+1 - , O) = (gN,, e (4.101)

A p,k+1lanD, = gD,.

Step 5 for non-hydrostatic model: Final velocity and pressure corrections. Once we

know the non-hydrostatic pressure corrector, we can correct the second velocity pre-

dictor and the non-hydrostatic pressure on the element using the algebraic equations

(4.50) and (4.51), whose discretizations are straightforward:

vk+1 _ - aAt + 1,

pk+1 _ 6k pk+

The velocity is also corrected on the HDG edge-space using

-k+1 - -k+1 k+1q~ -I at ,k, k/+1v+ =v, - A k+1 - - (,k+ __ +) n. (4.102)

Step 2 for rigid-lid model: Rigid-lid corrector The discretization of the rigid-lid

corrector equation (4.52) leads to the element-local equations

(ki+1, 07 )(Vypk+i,),, +(5pk+1, , -ln -)K KA. +' 1) (4.103)

-aAtH (VX, . q ,+1o i) K + aAtH (rk+1, 0'7),K - (aAtVyH - ) K7 (4.104)
(4.104

= aAtH KT)+, 6'7)8 K,, + (F )K,

where rPS= ar (see §4.3.3). Here, the order of the discrete operators are important

for numerical consistency. The discretization of the explicit terms, Fk+1, are detailed

in §5.2.1.
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These element local equations are subject to the global equation for P,

k+ 1 . T ( k+-1 _ k+ l _ (g , G (

Ak+ a -(4.105)
6P- 9D -

Step 3 for rigid-lid model: Second velocity predictor and rigid-lid surface pres- sure

updates.. The rigid-lid corrections (4.56)-(4.57) are algebraic equations and obtaining

their discretizations is straightforward, up to the edge-space relations. Specifically,

using the rigid-lid corrector, the second velocity predictor is obtained from (4.56) on

the element and non-vertical HDG edge-space as

=k+1 - k+1 _ k+1 (4.106)

(which is the discretized form of Uk+1 - -+aAtV 
1 ) and on the vertical

hybrid discontinuous Galerkin edge-space as

-k±1 -k+1 k+1+A~)f
U = + - aAt(q+1 + rP, (6pk+1 _ +l) ) (4.107)

where the 2D field is copied as in Fig. [4-3]. Also the surface pressure at the rigid lid

can be recovered from

p+1 = 9 + 69k1. (4.108)

Details and remarks on the above derivations, especially for the edge-space rela-

tions, are provided in (ii).

Step 4 for hydrostatic model: Vertical velocity. For the hydrostatic model, the

horizontal velocities satisfying the depth-integrated continuity equation are the final

velocities, and require no further modification, uk+l _ .k+1 However, the vertical

velocity still needs to be calculated such that the 3D continuity constraint is satis-

fied. This is done by depth-integrating the continuity equation. However, for finite

elements, it is simpler to formulate the integration as a derivative equation. Addition-
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ally, numerical consistency considerations dictate the form of these equations. The

different options are described in §5.2.1, and here we give the form that we use, since

it is discretely consistent with the rigid-lid formulation.

We slightly re-write the pressure-correction form of the vertical integration equa-

tion (4.72)-(4.75) by letting Wk+1 = _aAt6pI,k+l 1 f wk+1d(. This gives the follow

set of equations to be discretized:

wk+1 = VzWk+1

-VlWk+l -_ . =k+

with boundary conditions

VZWIJ - = wU - nz = - nxy,

W|+ =0.

Note, the direction of integration depends on the choice of boundary conditions. For

example, for Wk+1 - zH Wk+ld(, we would use a Dirichlet condition on Wk+1 at the

bottom boundary instead.

The HDG discretization of the above equations leads to the element-local equa-

tions

k+1 g)K - (VzWk+l )K ± (Wk+l, - 0K (Ak+ 1, f]z

- (Vzwk+l, (K (TwWk+l - fiz, fz -0)K (WAk+ 1 ' fz, 0z ' 0K (4.109)
± V~.u~,O)K + (iia + - 'kl flX) a

x k+1 g k+1 Uk+1 0

The globally-couple flux-conservation equation used to solve for Aw is

k+1z - 7-W (Wk+l _ _k+1 9N, 0,)E
W (4.110)

Ak+1| a = 0.

This solves directly for wk+1 = VzWk+1 on the element, and on the non-vertical edges
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we have

Ak+l + - TW ({{Wk+1} _ Aw+) . (4.111)

On the vertical edges, w -ii = 0, and we do not need to calculate an edge value, but

for completeness, it could be calculated as:

+ {{wk+l}}. (4.112)

The major advantage of the hydrostatic approximation is that the above equation

is only coupled vertically, that is, in columns of fluid. As such, instead of having to

solve a globally coupled 3D pressure equation, the columns of the fluid can be solved

independently, or even in parallel.

(ii) Remarks and derivations

Here we provide a number of remarks and derivations concerning the discrete

HDG equations. First we explain why the explicit gradients of the free-surface and

pressure are discretized differently. Second we note how to properly implement the

rigid-lid corrector equations. Third we note how to implement the 2D corrections of

the 3D fields. Finally, we explain how to derive the edge-space corrections for the

velocity.

First, in step 1, for (4.91), we note that the q variable (which explicitly includes

an integration over an edge) is used for q; while the gradient is used for p' (which does

not explicitly include an integration over an edge). Because qj has a time-derivative in

its equation, it should to be treated differently from p'. To solve the original system

of equations (4.31)-(4.34), we need to know the initial free-surface height, and the

"instantaneous" average pressure (such that the final velocity is divergence free). In

the time-integration, then, we have to calculate the change in free-surface height 67rk+1

and the pressure that gives a divergence-free velocity. As such, we can use the known

edge-flux for the free-surface A, to calculate the numerical gradient of the free-surface
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1. First velocity predictor(momentum equations)
Element-Local equations:

) - (V. - + )K + (rI .)1K 0 ( K4-) + (

Edge-space global flux conservation equations:k+-' OXW

0 ~ ~~~~ ce+-i- I7-k1O;K 1

2. Free-surface corrector (to enforce 2D continulty
Element-Local equations:

it,1i+ H ) , i 1 k+1 . 7r fl- 0K) K( pk+ I

(~I~k , ) (~ (V:P) +(-,-/' qz8K : O). +k+ 'O )O (;COK- ii (V:

Edge-space global flux conservation equations: onsisten N
([[<g - nLf - a (6 11 Ai-+- A+ 1)1] , = 9N I pat g(H + )

3. First velociy and free-surface corrections

+I ~ ~ k+ Akl) + H +

4. Pressure corrector (to enforce 3D continuity)

Element-Local equations:

q 6 )A - (Vr51/k**l ,) 1 . + (%
1
/k" -i 6~ = (xs,/ 4 n .

/+7| +- ' ki

/ + I-r, -(V-v

Edge-space global flux conservation equations: :Consistent HOG stability

R I k- i-I = 7k
r1%, = Or%, parameter

5. Final velocity and pressure corrections
Element-Local equations: Edge-space corrections:

k+1 _k+1 _ + +1 k k1

Figure 4-1: New HDG projection method scheme for a non-hydrostatic free-surface
ocean model.
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1. First velocity predictor (momentum equations)
Element-Local equations:

___ - (v~k+1,6 + ( (ak+-. .6).

6) - (Vq '.) + (_rak+17) +u - ( +qq. (Fk+ 1k1.6) K

Edge-space global flux conservation equations:

K [k+1 . z- (7ik~-~ ']~e)=(J.6)
\y I|(D = gD

2. Free-surface corrector (to enforce 2D continuity)
Element-Local equations:

aug r + H;_ ),,I+1 iq - Ott5k+ \,F + {5k+1' _ " 1 1

7'7'& 1' 0#1 V~ my O . l#

At K (r~i 1 K Jq\ (; )0K, - j~ ( )K. ( L t

Edge-space global flux conservation equations: :Consistent HDG stability
,7 - 7- (6&+' - AN, 0,n), :parameter:

3. Velocity and free-surface corrections
Element-Local corrections: Edge-space corrections:

=k~l -~l q*+1 '/ k--1
1 k+1 _ + _k+-1 _ek+1 _ +1-

S-u Ilk + + r/ k +
1k+1 k r + &),k+1. k Ak k1

4. Vertical velocity (to enforce 3D continuity)

Element-Local equations:

(w"k-,1)K - (VIWk0)K + (w'k+ OK OLK

- () +( w 1 f n - a),, = (rwA-T l.f O). .) +(V',- uf+i.), + ( *- u+ 1
., fI!/

Edge-space global flux conservation equations:
([+1 - ry (W1'V - AAg)]] 0 ) = (YN. 6s)s

Figure 4-2: New HDG projection method scheme for a hydrostatic free-surface ocean
model.
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at time k (qk), but the edge-flux for the pressure needs to calculated for a consistent

flux, as was done for the scheme in §2.3.2. We note that it is not necessary to use

this approach, since a scheme similar to the one presented in Appendix B could be

used. However, with the present approach, we can find consistent values for the HDG

stability parameters that do not depend on the type of time-integration scheme used

(see §4.3.3). Hence, we have slightly different discretizations for the gradients of the

explicit free-surface and non-hydrostatic pressure contributions.

Second, in step 2 of the rigid-lid calculation, we note that the H term appears

outside of the element-local integrals. This is because the finite element discretization

of each term will be integrated vertically to preserve numerical consistency between

the 2D and 3D continuity equations. We note that, depending on the implementation,

a mass-matrix inverse may pre-multiply the operators. In this case, the H term

is still in front of all the operators (as opposed to sandwiched between the mass-

matrix inverse and the finite element operators). The numerical stability of rigid-

lid hydrostatic ocean models depends on this numerical consistency. As such, any

successful implementation will pay careful attention to the order of operations (see

§5.2.1).

Third, for step 3 of the free-surface and rigid-lid updates, the 2D correction needs

to be applied to a 3D field. As such, the 2D correction field is copied down to the

vertically aligned nodes in the 3D field. Note that only the vertical 3D HDG edge-

space (corresponding to the 2D free-surface edge-space) requires the HDG edge-space

update (Fig. [4-3]).

Last, for step 3 of the free-surface and rigid-lid updates, the form of the HDG

edge-space updates for the velocity ((4.97) and (4.107)) are consistent with the 2D

continuity equation. The consistency can be proven by substituting these fluxes into

the discrete 2D continuity equations ((4.94) and (4.104)) as was done in §2.3.3. As

the proof is similar, we do not repeat it here.
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/

Figure 4-3: The 2D free-surface gradient correction on the 2D elements are copied
down to the 3D element nodes, and non-vertical hybrid discontinuous Galerkin edge
nodes (red dash-dot). The correction on the 2D hybrid discontinuous Galerkin edge-
space is copied down to the 3D vertical hybrid discontinuous Galerkin edge nodes
(blue dashes).

(iii) Discrete tracer equations

The temperature and salinty tracer equations discretized using HDG is described

next. The derivation of these equations is similar to those in §2.3.2, so we do not

repeat it here but only report the result.

The HDG discretization of the temperature and salinity equations (4.86)-(4.87)

are:

z,T , - (VzTk+1, 0). + KTk+1, ii )Kz K

(Tki )K- .zq+1gl )K+K k+1,9)K

k+1
(zx 1 0) - (Vzgk+1 g)+ k+l, flz Oa

Kz K K K

K1 (Vz'+1 ) k + TSk+l
S~ OK l qZ', o) K + Tk1 )OK

(Ak+1, iz *

(TAk+1g () F+k+1

(4.113)

Ak+1' ii' 0z

k+1 g K k,k+A ( ', O)I + (FS (1 ) 4K'

(4.114)
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where -r = 1, qk = V2Tk+l, q 1 = V' S'+1 , +1 is the temperature on the HDG

edge space, Ak+1 is the salinity on the HDG edge space, and 4,k+1 F k,k+l are the

combination of explicit, known, and forcing functions for temperature and salinity,

respectively. The discretization of the explicit terms are described in §5.1.1 for the

advection, and §5.2.3 for the diffusion.

4.3.3 Derivation of consistent HDG stability parameters

We have yet to justify the choices of the stability parameters r, r,, and r,7. As

stated in §2.3.4, the magnitude of the stability parameter for the velocity r has been

well-studied, and suggests that T = 1 is a good choice. What remains is to derive the

consistent values of mr and -r. We utilize the free-surface, non-hydrostatic pressure

model for the proof, since the derivation is similar for all other cases.

Following the same procedure as in §2.3.4, we can construct the un-split velocity

on the HDG edge-space in terms of the element-local values. For the non-hydrostatic

velocity, the edge-term has nearly the same form as (2.84), but with the addition of

the 2D free-surface (or surface pressure) component. Then we can compare this flux

of the un-split equation to the final edge-space flux of the split equation.

We begin by obtaining the element-local and globally-coupled HDG discretization

for the un-split equations. Then, we solve for the un-split A in terms of element-local

quantities. To compare the un-split fluxes to the split fluxes, we also have to express

the edge-space variables A, Ap,, and Aj, in terms of element-local quantities, then

from the final edge-space velocity using (2.73).

The un-split equations discretized using the HDG method are as follows. The
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element-local set of equations with HDG fluxes substituted are:

(_k+1

\ K -- (Vuk+ 0)K +k+, iz .0)0K = X z )OK

( k+1 Vz q k+1 + +(k+ + +k+ K uk+l, rAk+1 ' Kk't JK Z + Vkl+ pkl K OaK + = ' /0K

- (gqk,0), + (Fk,k+l,0)K'

(4.115)

k+1

K zwk+l O)K + (Wk+1, .00K Kk+lfz .00K ,'

wk+1 k+1 + ( Wk 1 , vzpk+l, +' k~k+1O)
a/At' 1K ~~1z'qz K k+ aK + zk K + g OK + (F;k K'

(4.116)

k+1 Yy , Uk+1 Uk+l +1
+,t ~ az~t X - ~ ,n' 07a~t, + aa ,69 + at, g,9/ a/At , 6 , (4.117)Kn'Oq)KII 'i'Y')KII )K,

(V - Vk+ (K _ (Vk+l f K = - (Ak+1 K ( 8

SI+1 #i)K = I k+1 /.K

where Uk+1 = ' k uk+ldz is the numerically depth-integrated horizontal velocity

(see §5.2.1), and U, = f(U U~) is some function of the solution from the elements

bordering a particular edge. Note that this system of coupled element-local equations

is solvable once the velocity boundary conditions, average pressure, initial free-surface

gradient, and forcing terms are specified (note the forcing terms also contain velocity

initial conditions). The globally coupled equations for Ak+1 I+1, and |p',k+1 are
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k+1 -zpk+1 - gnk+l y - T (uk+1 _ 1 (g, -\k

Ak+1 0 ~= DAY 18D 9D,

(4.120)
q~jj ri p r -T(w+ -k1\] N = g,

qk+1 _ Ak+1 k+1

A ,+1 IaD = 9D-

(4.121)

f,+ - aK 9n 0K ' j&K/ = (4.122)

Ak+1 1= E, D-
D

To solve for Ak+1 and Ak+1 in the interior of the domain, we proceed as in §2.3.4.

Using (4.120) and (4.121) we expand the "jump" operator in terms of element-local

quantities on either side of the edge, and finally we recombine terms using the "jump"

and "mean" operators. The result gives the following fluxes:

Akl+1 = {k+1 [[qk+lz]] + 9 [[6 7rk+1fI + [Pyk+lin ,]] (4.123)

A -+1 {{k+1 I fqk+1h] + 1 k+1inZ (4.124)

Note, the hydrostatic pressure contribution does not show up here, since it was treated

explicitly.

Now we want to compare this to the Ax, and Az obtained from the split equations.

Again proceeding as in §2.3.4, and starting with Axy, we construct the horizontal

velocity from the split equation. This was done by first constructing the flux for

I,\+l (using (4.91)) in terms of element-local quantities, then applying the edge-

space corrections for the free-surface (4.97) and non-hydrostatic pressure (4.102).
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The derivation is similar to that in §2.3.4, and thus we only give the resulting fluxes

Ai = {k+1 k+1 2 7 H)iFk+1fixJ +1 [pky] + aAtP' [[j Ik+is,],
X fl2T c + 2 (77k + H) 2T LJ r1'~J

(4.125)

-+1 {{wk+1 - k+liij + ' [[pk-] aAt [[p'k+1h ]] (4.126)

Comparing the horizontal edge-velocities for the un-split and split equations, we find

7 g(H ,k) (4.127)
T

1
el e , (4.128)

'raAt'

which is similar to the result in §2.3.4. Note, the approximation sign in (4.128)

comes from assuming that [[(qzk+l - 4k+1)i 0 (as formally justified in §2.3.4).

Also, if we compare the Az's from the vertical equation, we obtain the same result

for Tp. Hence, we don't provide this derivation here. Thus, for a consistent scheme,

the stability parameters Tp and T, should be specified using (4.127) and (4.128),

respectively.

4.4 Verification and validation benchmarks

In this section we show that the free-surface and vertical integration terms are

correctly formulated and implemented. Verification of a new code is a necessary to

ensure that it solves the intended equations (Oreskes et al., 1994, Roache, 1998). To

evaluate our extension of the schemes from §2.3.2 to §4.3.2, we use an analytical tidal

flow in a channel benchmark followed by a 3D version of the lock-exchange problem.

4.4.1 Tidal flow benchmark

Setup: We use the the rectangular channel benchmark from Chen et al. (2007).

The geometrical setup is shown in Fig. [4-4], where the depth of the channel is

H(x) = xHO, the length and width of the computational domain is L - L1 and B,
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respectively. The boundary conditions are as indicated: the coastline is a rigid, no-slip

wall; the channel walls and bottom are free-slip boundaries; the top is a free-surface;

and the open boundary is Dirichlet for velocity and Neumann for the free-surface.

For this benchmark, we consider a reduced set of equations, that is:

au aBr

&r9 auH
+ -=0,

at ax

with boundary conditions

u=O on aQIx=L1,

u =uo (L)e~" on aQ|x=L,

x
0 on af|x=Lj,x=L,

where uO is defined below. In our model, we turn off the nonlinear advection term,

the Coriolis forcing and the density forcing. We set the turbulent eddy viscosity to a

small value v = c, such that it will be negligible. The solution to the above equations

are given in Chen et al. (2007) as:

rq(x, t) = rlo(x)e-',

u(x, t) = uo(x)e-'t,

(4.129)

(4.130)

where

7(X) = F(LL 1 ,k) [YO' (2k L1) Jo (2kv/) - J1 (2kLi) Yo (2kVl )]

F(L, L1, k) = Y' (2k Li) Jo (2kv7L) - J (2k L) Yo (2kvL) ,

k = ,
07

2 L
g Ho

227



Parameter Non-resonant Near-resonant
L 580 km 300 km
L, 290 km 19 km
HO 10 M 0.67 m

Table 4.1: Parameter values for the tidal flow benchmark

Yo and JO are the zeroth-order Bessel functions of the first and second kinds, and with

some manipulation we can find

UO(X) = F(L k) [YO' (2k Li) JO (2kV x) - JO' (2kii) Y0' (2kvi)] .

The problem is forced using the M 2 tidal frequency, a- = 12.426OOs with an amplitude

A = 0.01[m], and the parameter values for the non-resonant and near-resonant cases

are given in Table [4.1], while the channel width B = 5[km] does not affect the

solution, but allows us to test our 3D code. The analytical solutions are used to

initialize the fields.

For these 2D simulations we use p = 2 basis functions, with 100 elements in the

x-direction, and 1 element in the y- and z-directions. For the time-step, we use 80

time-steps per tidal cycle, or At = 2= 558.9s. We perform the simulations using

first, second, and third-order-accurate time integrators.

Results: The relative errors are calculated by dividing the absolute errors by the

maximum amplitude of the analytical solution. We observe excellent agreement for

this benchmark with the second and third-order time integration schemes for both

cases (Fig. [4-5]). The first-order time integration scheme has significant errors, up

to 60%, while the second-order scheme has errors up to 3.1% for the first case and

0.5% for the second case. The third-order time integration scheme performs best with

errors up to 2.1% for the first case and 0.31% for the second case.

These results demonstrate that our free-surface time-stepping algorithm is cor-

rectly formulated and implemented, since the higher-order schemes have lower error

levels than the first-order accurate scheme.
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Figure 4-4: Sketch of domain for tidal flow benchmark.

4.4.2 Lock exchange benchmark

Setup: The setup ofwi th ydrosati psumenmb as that reported in 3.8.4. How-

ever, here we use a 3D domain, with a domain length (L), height (H), and width (B)

of L x H x B = 8 x 2 x 104 , where the width is discretized using 1 element, and

free-slip boundary conditions are used on the side-walls of the channel.

We perform this simulation for both the non-hydrostatic and hydrostatic versions

of the code to compare our results to that of Fringer et al. (2006). The simulation

uses a rigid-lid with the hydrostatic pressure contribution calculated as described in

§5.2.2 (also see @4.1.2). Therefore, the numerical nature of the Boussinesq forcing

is much different from the 2D simulations in §3.8.4. In particular, since we are now

integrating the density variation in the vertical, an asymmetry is introduced due to

the direction of integration (from the free-surface down to the bottom).

Results: The results at T = [5, 10] are shown in Fig. [4-6], and the Froude

numbers from various sources are reported in Table [4.2]. First, we find that our non-

hydrostatic simulation approximately reproduces the results of Hdrtel et al. (2000)

and Fringer et al. (2006). Nonetheless, when compared to Fringer et al. (2006), our
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Figure 4-5: Relative errors (normalized by the maximum absolute value of the analyt-
ical solution) for the tidal flow benchmark at tidal cycle 10.125, T = 10.125 (12.42 x
3600). The errors for the non-resonant case (left) and near-resonant case (right)
are plotted for the first (top), second (middle), and third (bottom) order-accurate
time-integration schemes.
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Source
Hirtel et al. (2000)
Fringer et al. (2006)
HDG

Table 4.2: Froude numbers Fr =
benchmark.

Hydrostatic Non-hydrostatic
- 0.574

0.470 0.562
0.544 0.576

from various sources for no-slip lock exchange

11.9

11.03

0

T=10.0

0.963

-8.0 8.0 1

Figure 4-6: Lock exchange benchmark over domain L x H x B = 8 x 2 x 10-1 at
T = 5 (top two plots) and T = 10 (bottom two plots) for the hydrostatic (first and
third plots) and non-hydrostatic (second and last plots) cases at Cr = 1.25 x 106.
Both use N = 100 x 400 elements, p = 1, At = 0.001, and a second-order accurate
time-integrator. Density contours are plotted over velocity magnitude.

density contours are less oscillatory and our front moves faster (see Table [4.2]). This

may be because Fringer et al. (2006) used a diffusive upwind advection scheme and no

diffusion for their tracer field, or because they used an asymmetric free-slip boundary

condition on the top boundary. Secondly, we find that our 3D non-hydrostatic results

correspond to our 2D results from §3.8.4, that is, we find the same Froude number

for both setups, very close to those of Hdrtel et al. (2000).

Similar to Fringer et al. (2006), we find that the maximum magnitude of to total

flow velocity is approximately an order of magnitude larger for the hydrostatic case

(0(10)) compared to the non-hydrostatic case (0(1)), see Fig. [4-6]. This is primarily
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due to a large vertical velocity at the front. In addition to being incorrect physically,

this implies a smaller time-step for the hydrostatic simulation to satisfy the advection

CFL condition, which would make the computational times comparable, depending

on the implementation. Additionally, we observed that as the resolution of the dis-

cretization increases, the maximum velocity increases for the hydrostatic case. For

example, using 50 elements in the y direction yields a maximum velocity at T = 10

of 5.68 compared to the 9.76 velocity when using 100 elements. Therefore, as the grid

resolution increases, it might become more efficient to use a non-hydrostatic model

due to the CFL restriction when treating the advection terms explicitly.

Comparing our non-hydrostatic and hydrostatic simulations, we first note that the

hydrostatic front travels at a slightly reduced speed compared to the non-hydrostatic

front. This is even though the hydrostatic simulation cannot exactly satisfy the no-slip

boundary condition, which can be observed from the density contours in Fig. [4-6].

If we assume there are no Taylor instabilities in the boundaries, then the heavy (or

light) fluid at the top (or bottom) boundary should remain at x = 0, y = 0 due to the

no-slip condition. However, from the figure we notice the density contours have been

displaced from x = 0. The same is true for the non-hydrostatic simulation, but its

contours are closer to x = 0, but in this case the discrepancy is only due to numerical

discretization errors (and possible mixing due to Taylor instabilities in the boundary

layer). That is, the thin boundary near the top (or bottom) surface where heavy (or

light) fluid should remain cannot be resolved with the present discretization. Addi-

tionally, the density contours for the hydrostatic simulation are significantly diffused

compared to the non-hydrostatic runs. Additional benefits of the non-hydrostatic

solver therefore include: improved front-speed evolution, improved no-slip boundary

layer modeling, and improved mixing characteristics.

Finally, we observe excellent symmetry of the solution, even though an asymmetry

is introduced by the vertical integration of the Boussinesq term. Only at coarse

resolution (not shown) were we able to observe asymmetries in the density field.

This suggests that our discretization of the hydrostatic pressure term is sufficiently

accurate.
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4.5 Summary

In this chapter we formulated our new HDG finite element ocean modeling schemes.

We began by reviewing the derivation of our continuous equations, drawing attention

to the errors from various approximations, and to the numerical consequences of var-

ious choices. Following this, we described the temporal and spatial discretization of

free-surface or rigid-lid and non-hydrostatic or hydrostatic formulations. We showed

that the hydrostatic formulation does not suffer from time-splitting errors due to the

projection method used, while the non-hydrostatic form will have negligibly small

splitting errors (O(vAt) for the pressure). We again derived consistent expressions

for the HDG stability parameters for the free-surface elevation and non-hydrostatic

pressure.

We used a tidal flow benchmark with an analytical solution to show that our

free-surface is correctly formulated and implemented. Then, using the lock ex-

change benchmark, we verified that our rigid-lid hydrostatic and non-hydrostatic

ocean solvers are correctly formulated and implemented. Specifically it tested the var-

ious vertical integration terms that were not present in the 2D simulations of §3.8.4.

We have discussed that when non-hydrostatic terms become significant, the velocities

computed by a hydrostatic code can become much larger than those computed by the

non-hydrostatic code, such that the cost of stable non-hydrostatic and hydrostatic

simulations at these resolutions can become similar. Then, we argued that for the

lock-exchange benchmark, the non-hydrostatic version improves the calculation of the

front-speed, the no-slip boundary layer, and the mixing.
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Chapter 5

Implementation of Novel

Non-hydrostatic Ocean Modeling

Schemes, Consistency and

Algorithmic Properties

In this chapter, we cover implementation issues for the formulation described in

§4. Specifically, we detail our numerical flux choices for the advection terms, and

we describe our implementation of the moving free-surface that yields a consistent

and conservative discretization. For the moving free-surface, we use an arbitrary

Lagrangian-Eulerian (ALE) formulation, and we combine this with an IMEX-RK

time-stepper. Then, for completeness, we describe the discretization of the explicit

terms in our time-integration scheme. That is, we detail the implementation of ver-

tical integrals, the horizontal diffusion, and the Coriolis forcing.

5.1 Consistency and conservation

For schemes to be conservative it is important for the numerical operators to

be consistent. This issue has been dealt with by various authors recently as new

finite element ocean models are being developed (Wang et al., 2008, White et al.,
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2008). However, to our knowledge, the specific issues involving hybrid discontinuous

Galerkin (HDG) methods have not been examined. Drawing from what has been

found by previous authors, we explain the modifications required for HDG elements.

The issue of conservation is directly related to the numerical divergence operator,

which appears in the advection operator, whose discretization is discussed next.

5.1.1 Advection

Consider a generic collection of tracer fields 4 = [Oo, 01, ... ] being advected by a

velocity field v. The pure advection problem, in this case, is:

-- + V - (VO) = 0.
at

It is discretized using standard discontinuous Galerkin methods as:

( , )0) + (V -(v ), 6)K + v -fq5 - v - i, ) = 0. (5.1)

What remains, and what differentiates various discontinuous Galerkin methods, is

the choice for the inter-element flux quantity v- fio. Now, for our projection method

described in §4, the choice of the inter-element velocity flux is related to the discrete

divergence of the velocity field. To see this, consider the advection of constant tracer

fields, where the constant is 4 = [1, 1, .. ]. In that case, (5.1) reduces to

(V -V, 6)K + v n - v - ) n, -=0, (5.2)

which is the discrete divergence equation. Now, for traditional finite element meth-

ods, v i is chosen as a combination between the mean and jump in velocity across

elements

v n = {{v}} - n + a [v - n],
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for some spatially and temporally variable a. As in (2.81), a central scheme is recov-

ered for a = 0, and as in (2.82), an upwind scheme is recovered for a = !sign(v - ),

but other values of a are also possible, and may be based on Riemann solvers. With

the HDG method, a third choice is available, (2.83),

v-n=A-n.

While any of these fluxes are appropriate when calculating the discrete divergence

of the first velocity predictor V, numerical experiments indicate that vi n = A - n

gives accurate results. However, only the hybridized discontinuous Galerkin flux

may be used for the second velocity predictor V= and when advecting tracers with

the final divergence-free velocity, v. This is because the second velocity predictor

and divergence-free velocity require unique corrections on the HDG edge-space, see

(4.97), (4.107), (4.102), and/or (4.111). Therefore, without using the HDG flux on

the edges, the final velocity will not be numerically divergence-free.

What remains is to define the value for S. Again, the same choices exist,

{{}} + a [#in - i,

but we are not restricted as we were for the velocity, even in the case for # = v. This

is because the velocity should be discretely divergence free, while there is no such

restriction on #. While we expect the HDG flux to give the most accurate answer,

we use an upwind flux for stability. Therefore, in our case we use

v -fi = A - [ {{#}} + sign(v -fi) fi]j - .i

Next, we address the conservation and consistency issues related to the free-surface

and the time-varying movable domain.
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5.1.2 Free-surface and moving and stationary meshes

To deal with the movement of the free-surface, we use an arbitrary Lagrangian-

Eulerian (ALE) method, following Persson et al. (2009). As described in §3.3, because

of efficiency and convenience, we implement our finite element method by performing

calculations on a reference element, using coordinate transformation factors to obtain

the correct results. To calculate the transformation factors, we define a time-variable

mapping function in terms of our polynomial basis x( , t) ~ xi(t)O( ), where in

§3.3 this mapping was constant in time. We now describe the general ALE method,

summarizing the results of Persson et al. (2009), and following this we detail our

particular solution method.

Consider the general system of conservation laws (of which the Boussinesq equa-

tion is a subset):

4X, t) + Vx -F (4(x, t), x, t) = 0, (5.3)at

where V, is the gradient taken in the physical space. This can be re-written in the

stationary reference domain as

a t) + V< -JF ( t), (, ) Va ( t)vm( , t) = 0, (5.4)

where J = det is the Jacobian, 9 is the Jacobian matrix of size d x d, V is

the gradient taken in the reference space, and vm(C, t) = 4 is the mesh velocity.

This formulation puts a restriction on the Jacobian which is often referred to as

the Geometric Conservation Law (GCL) (see Thomas (1979)). It can be seen by

considering the evolution of a constant field. For example, for 4 = 1, (5.4) becomes:

SVC TA vm(, t) # 0,

which will not be zero discretely, because the Jacobian is not exactly integrated by the

numerical scheme. The error will be small for high-order discretizations, but it can
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be corrected by slightly modifying the scheme (Persson et al., 2009). First, defining

a predictor Jacobian, one needs to solve

a j (55
VC xvm( , t) = 0. (5.5)

Second, modifying (5.4), and simplifying notation we have

+V J - F -VC-J aq5VM = 0. (5.6)at ax 0'1x

The main difference between (5.6) and (5.4) is the Jacobian correction (3-1), which

ensures numerical conservation of tracers.

This completes our brief summary of the approach by Persson et al. (2009), which

guarantees the numerical conservation of quantities. What remains is to explain the

order of operations when using the time split Projection method and an IMEX-RK

time integration scheme.

Note that the discrete free-surface equation is is treated completely implicitly.

Consider this equation (4.41) discretized using the IMEX scheme, also substitute for

F7,k+1 = -V . fk ak+1dz:

6ri - aiiAt (AtV, - [g(I'~ 1 + H)Vxyo6n,]) =

j=i-1 tV j=i '3.- 1 (5.7)
aI At 2 V [g(i-1 + H)Vxyo67i] + E AtaV y - iidz

j=1 j=1

Starting with the time-integration from k to k + 1 at stage i - 1 of the IMEX-RK

scheme, with the domain at Pi-, the time-integration procedure is as follows.

1. Using Q'-, calculate the explicit terms at stage i. This does not include a

predictor for the free surface.

2. Update the mesh using the most-recent free-surface height, which gives Qi-1

Qi. Also advance the predictor Jacobian explicitly to Ii (5.5).

3. Re-calculate Jacobians and transformation factors on the new mesh, and rebuild
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implicit operators for the new domain.

4. Apply the Jacobian correction to the right-hand-side vectors of the predictor

velocities and tracers. For example, for the tracers, the right-hand-side RHS'

becomes:

1
RHSi = (FO.

5. Set ja = J' for the next time-step or IMEX-RK stage.

6. Using Qi, calculate the implicit terms, to obtain the predictor velocities and

stage-final tracers. Note, the free-surface predictor, r' (the free-surface height

at the start of the stage) is included with the implicit terms on the right-hand

side of the velocity predictor .

7. Using the predictor velocities, calculate 6rq as in (5.7).

8. Correct the predictor velocities with 6r (4.96)-(4.97), and correct the free-

surface (4.98).

9. Perform additional calculations for non-hydrostatic or hydrostatic solver.

10. Calculate the implicit terms for the momentum equations at stage i as in (2.97).

Also, calculate the implicit terms for the free-surface equation at stage i as

At i %

11. Repeat steps 1-10 for every IMEX-RK stage.

Step 4 comes from the discretization of (5.6). To see this, consider a first-order time
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discretization of (5.6)

(ij-)k+jk+lk+1 (j-1)kjk4k 09 k Fa- k vk

At At x _ . 101 F± + k [1 q5k vk

- k ok Tk rJk[ -]kkv Jk a k k - k

F O,k

At'

jk+1 k+1 1 ,k

At -(,j-)k±1 At

-1k)k+1Fk+

where the second equality follows from setting jk+1 - jk+1 in step 5. These steps

are followed for each stage in an IMEX-RK integrator.

Using this method, the system of equations can be advanced with a moving-

mesh free-surface, while maintaining conservation numerically. While most of the

modifications to the integration scheme are minor, step 3 requires the re-calculation

of matrices for the implicit terms (when a matrix-based solver is used), which may

be expensive. For small free-surface displacements, this step can be omitted without

introducing significant error, thereby increasing the efficiency of the scheme. For a

matrix-free implementation, however, little modification should be required, and it is

likely that preconditioners calculated for the mean free-surface (undisturbed ocean)

would be sufficient. As such, a matrix-free solver is recommended when using a

moving-mesh free-surface.

As a final note, since the free-surface field is discontinuous, the domain will also

be discontinuous. Fortunately, this is not an issue, since the calculations are made on

the reference domain, which is time-invariant and remains continuous. Some care is

required when calculating the transformation factors for quadrature-free implemen-

tations, but this is discussed in §3.3 (see (3.7)).

5.2 Discretization of explicit terms

In this section we detail the numerical discretization of the explicit terms, which

were not described in §4. The advection term was described in §5.1.1, so what re-
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mains is to detail the vertical integration required in the free-surface, rigid-lid, and

hydrostatic pressure equations, the horizontal diffusion terms, and the remaining

source-terms.

5.2.1 Vertical integrals

Here, we discuss the discretization of the vertical integration terms on the right-

hand-side of the free-surface or rigid-lid equations. Also, while we have already dis-

cussed the HDG discretization of the vertical integration to compute the vertical

velocity in §4.3.2, we will also describe alternative formulations, explaining their ad-

vantages and disadvantages.

2D total integrals fH j: In the free-surface or rigid-lid equations, we need to

integrate the velocity or divergence of velocity. Unlike the calculation of the vertical

velocity or hydrostatic pressure, we only need the 2D, total integral field f'H #d(, as

opposed to the 3D field f 7 #d(. As such, the single-derivative discontinuous Galerkin

formulation is appropriate. That is, to calculate the integral 4) = f"H #d(, we let

V_,4b= #, and discretize this as

(Vzb, Q)K + (D - <D, h6 O) (5.8)

with boundary condition

(pan = 0, (5.9)

where the direction of integration depends on whether the boundary condition is

applied at the top &Q, = aQ, or bottom (9Q, = 0_LH of the domain. The one-sided

flux 4 = 4* is used, where the top face is used if integration is from the top to

bottom, and vice versa. This HDG integration happens over the 3D domain and

yields a 3D field, so the final result is found by extracting the value of the field at the

bottom if integration is from top to bottom.

This approach gives an efficient solution method because the one-sided flux allows
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a marching scheme. That is, if the boundary condition is applied at the top, the

top elements may be solved completely without knowledge of the element below it.

Following this, the element below the top elements may be solved, and so forth.

3D partial integrals f' and second derivatives: It is still possible to use a second-

derivative formulation discretized using the HDG approach as in §4.3.2. However, for

those schemes the solution method is coupled in the vertical direction, and a marching

approach can no longer be used. Also, care needs to be taken because the final solution

is extracted from the HDG flux on the edge-space, and not from the elements. Since

the single-derivative and second-derivative schemes give numerically equivalent results

for the total vertical integral, the single-derivative form is preferred because of its

computational efficiency.

Finally, an alternative second-derivative formulation can be obtained by simply

taking an additional derivative of the first-derivative form:

V2 = V2<. (5.10)

This can also be discretized using HDG, and it can be used for all three vertical in-

tegrals. The advantage of this scheme is that information from the HDG edge-space

will be utilized, which may improve accuracy. However, it has a number of disadvan-

tages over the other formulations. First, it is not appropriate for finding the vertical

velocity since it is not consistent with the numerical divergence equation; using this

scheme, the vertical derivative of the velocity will be numerically divergence free, but

due to numerical errors the actual velocity will not be. Next, for the hydrostatic

pressure, this form is actually more consistent with the continuity equation, since the

vertical derivative of the density will be proportional to the second vertical derivative

of pressure. As such, it may be useful to calculate the hydrostatic pressure in the

free-surface formulation. However, it is more difficult to solve for the horizontal gra-

dients of the hydrostatic pressure, and the scheme used in §5.2.2 has computational

advantages for the rigid-lid formulation. Last, the single-derivative form has compu-

tational advantages for the total vertical integral from this section, with no apparent
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loss of accuracy. As such, the second-derivative scheme from this section (5.10) is not

used for our implementation.

Thus, we have detailed the discretization of the total vertical integration required

for the right-hand-sides of the free-surface and rigid-lid equations. We also briefly

discussed an alternate second-derivative formulation which we do not use, but could

be employed for the hydrostatic pressure in the free-surface formulation.

5.2.2 Explicit hydrostatic pressure

Here we describe the HDG discretization of the hydrostatic pressure term. There

are some slight differences between the free-surface and rigid-lid calculations for this

term, but both are based on a second derivative form, similar to that used to calculate

the vertical velocity in §4.3.2. The major difference between the free-surface and rigid-

lid is in the boundary conditions, and the rigid-lid form includes an easily-calculated

2D divergence update (see §4.1.2).

We could formulate the integration using only a single derivative, however we

choose to use two derivatives. The main advantage of the single-derivative approach is

that it can be solved efficiently using a marching approach. The advantages of the two

derivative approach is that it is consistent with our continuity equation discretization,

we can efficiently apply a correction in the rigid-lid case, and the accuracy is improved.

Since the efficiency is not drastically impacted by this choice, we prefer the two-

derivative form. Thus, to solve for the hydrostatic pressure, we introduce the depth-

integrated hydrostatic pressure contribution Phyd (see §4.1.2), which gives

with boundary conditions for the free-surface case as

(VZVXYP ,+'l,) - i = g 'ypk+dz -nz = 0,

VXyPi,+8LH = gvxypt~k+ldz dz = 0,
Y ydIQ- =f-H -"H
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and for the rigid-lid case as

(VzVxypkl) . nz = Vxypkgl - n~z = 0.

Note that we are solving for the gradient (VxyPhyd) directly. We could have solved

for the integrated pressure, then taken its gradient, but as discussed in §4.1.2, the

present form has advantages for sigma-coordinate models. Next, these equations are

discretized using HDG fluxes locally as

(Vxypk+, )K-(z zydk K Vy(+ h z p))K KAVZYkhld, fiz 0 .)K

- ( 0) + KTPhyd VXY * nz, n - 6)K = (TPhydVYPhyd - iZ, z ) 8K

- (gVxprk+1 ) K (gAk+l Pk+1l ij 0)8K'

(5.11)

and with the globally coupled equation

y+pk+1 (g_ +l,K [VxyphydnTz - XYd hyd - AVZVPhyd) ],OE) E=(N 6) (5.12)
AVZJ+1, Ian, 0.

This solves directly for Vypk = Vx VzPly on the element, and we do not need to

calculate a value for the hydrostatic pressure on the HDG edge-space. This completes

the procedure for the free-surface case, but the rigid-lid case requires one additional

step.

In §4.1.2, we derived a 2D correction (4.16) for the rigid-lid flat bottom case,

such that the density forcing and hydrostatic pressure would balance to give a depth-

integrated divergence-free contribution. This correction can easily be calculated using

available quantities when H is constant

hyd,k+1 f-H Vxyp+d
= H H

V~ p~~ k -H

H
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This shows one of the major advantages of calculating the hydrostatic pressure using

two derivatives instead of one. For the rigid-lid formulation, then, the total contri-

bution on the right-hand-side is therefore Vyp + Vphyd,k+l. This completes the

discretization of the explicit hydrostatic pressure.

5.2.3 Horizontal diffusion

All of the horizontal diffusion terms axe computed explicitly at each time-step,

ideally using the discrete HDG variables predicted at the previous time-step. While

we would prefer using an HDG flux for the explicit horizontal diffusion terms, we

have shown that this scheme would be globally coupled (§2.5). Therefore, for com-

putational efficiency we employ a standard locally discontinuous Galerkin (LDG)

discretization (Cockburn and Shu, 1998a) for the horizontal diffusion. The to-be-

determined horizontal diffusion Fdiff is obtained from the following DG discretization:

vx, Ek+1 ) K _ k+' K - (Vk+1 - fk+1, e K = 0, (5.13)

(vX- Qk+1 )K k+1 k+1 0 K = (F if O)K 1

(5.14)

where

2 2 {(5.15)

V {{ff k+1} -1 j1 Fk+1]]

or simply

k+1 +,k+1 _ TLDG [[k+lf1Q~ - 2 X

.k+1 -,k+lV =V

This term is solved in two steps. First the gradients are calculated (5.13), followed by

the divergence of those gradients (5.14). After the edge quantities have been deter-
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mined, the remaining calculations are element-local and require no matrix inversion,

resulting in an efficient scheme. For a minimum dissipation scheme, rLDG = 0 can be

used. But for additional stability, a finite value can be used, however its magnitude

will be limited by an explicit time-stepping stability condition.

The discretization of the diffusion terms for the tracer equations are the same. In

this case Vk+1 is replaced by the collection of tracers <).

5.2.4 Coriolis and Forcing terms

We chose to discretize the Coriolis terms explicitly, and we assume that the forcing

terms are known and can be evaluated at the implicit time step (k±1 in our notation),

to be used for the next time-step. As such, the discretization of these terms are

trivial; since we pre-multiply with a mass-matrix inverse, the discretization requires

the evaluation of the linear Coriolis and forcing terms at the nodal points.

For nonlinear forcing terms, this does introduce an interpolation error, which can

be eliminated by projecting these nonlinear forcing terms onto the polynomial basis

instead. That involves evaluating them at sufficiently many quadrature points, and

performing a numerical integration. For efficiency, we incur the interpolation error

(see §3.2), and we expect that for our problems of interest, the error should not be

significant with an appropriate discretization (that is, with sufficient resolution).

5.3 Summary

In this chapter, we discussed implementation issues related to the advection terms,

the moving free-surface, vertical integration terms, and explicit Coriolis and other

forcing terms. We detailed our flux choices for the advection terms, where we use the

HDG edge-space value for the velocity, and an upwind flux for the tracer. We walked

through the correct time-integration procedure for each IMEX-RK stage to correctly

implement the free-surface and moving-meshes. Then we covered the single-derivative

formulation of the vertical integral, and we introduced an additional vertical integra-

tion discretization which we do not utilize. Finally, we listed the LDG discretization
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for the horizontal diffusion, and explained that the Coriolis and other forcing terms

are calculated by simply evaluating them at the nodal points.
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Chapter 6

Numerical Sensitivity of

Biogeochemical Models:

High-Order Finite-Element

Schemes

6.1 Introduction and motivation

Accurate modeling of biogeochemical-physical ocean dynamics is required for mul-

tiple scientific and societal applications, covering a wide range of time and space scales.

With the increased understanding of biogeochemical interactions (Lalli and Parsons,

1997, Robinson et al., 2002b, Fennel and Neumann, 2004), ecosystems models have

substantially improved in the past decades (Fasham et al., 1990, Hofmann and Las-

cara, 1998, Robinson and Lermusiaux, 1999, Hofmann and Friedrichs, 2002, Lynch

et al., 2009). Coupled biogeochemical-physical models have been used from coastal

regions e.g. (Anderson et al., 2005, Spitz et al., 2005, Ji et al., 2008, Stow et al., 2009)

to basins and global ocean domains e.g. (Oschlies and Garcon, 1998, Rothstein et al.,

2006, Doney et al., 2009). However, in light of the strong nonlinearities observed

in biological processes, an important subject that has been largely overlooked is the
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numerical requirements for such simulation studies. One of the major objectives of

this chapter is to address such computational questions for reactive ocean tracers,

directly including the latest advances in computational fluid dynamics e.g. (Chung,

2002, Ferziger and Peric, 2002, Lomax et al., 2003, Cebeci et al., 2005, Karniadakis

and Sherwin, 2005) and multiscale ocean modeling (Deleersnijder and Lermusiaux,

2008).

Previous numerical ocean studies related to ours have primarily focused on passive

or dynamic (density-related) tracer advections. The most significant progress include

the results of Hecht et al. (1995), Hanert et al. (2004), Budgell et al. (2007), but

none of these advances have dealt with higher order advection of reactive tracers on

unstructured meshes with curved geometries. Iskandarani et al. (2005) applied and

studied high-order schemes for passive tracer and density dynamics in two-dimensions,

including Hecht et al. (1995)'s test and the gravitational adjustment of density in a

channel of constant depth (Haidvogel and Beckmann, 1999), but they did not con-

sider curved elements. Levy et al. (2001) assessed five different low-order finite volume

advection schemes for biological modeling and found a 30% difference in new produc-

tion estimates, highlighting the need for careful numerical studies. In Bernard et al.

(2009), high-order discontinuous Galerkin (DG) methods are used to solve tidal flows

around shallow water islands with non-trivial geometries and using curved triangular

meshes. Here, we are interested in biogeochemical tracers with possibly highly non-

linear reactive or source terms, and we compare a set of low to high order schemes,

both in time and in space. Due to numerical discretization, we expect to observe

phase errors, path-accumulated errors, and errors that modify the phytoplankton dy-

namics. To assess these errors, we employ the DG Finite Element Method (Cockburn,

B., 1998), using both straight and curved elements, and we study a varied set of nu-

merical properties. As in previous computational studies, we restrict our numerical

analyses to two-dimensional (2D) flows, focusing on coupled dynamics in idealized

straits.

Our ultimate dynamics motivation is to allow quantitative simulation studies

of fundamental nonlinear biological-physical dynamics in coastal regions with com-

250



plex bathymetric features such as straits, sills, ridges and shelfbreaks. Such features

strongly affect flows and, if they are shallow enough, one can expect biological re-

sponses in the euphotic zone. Multiple physical scales are possible, from rapid tidal

effects to slow water-mass driven overflows, and biological resonances at some of these

scales are likely. Our focus is on the numerical requirements prerequisite to such stud-

ies. Our work is partly inspired by our experience in coastal regions with complex

geometries (Haley and Lermusiaux, 2010b), especially with steep shelfbreaks such as

the Massachusetts Bay and Stellwagen Bank (Besiktepe et al., 2003), Middle Atlantic

Bight shelfbreak (Lermusiaux, 1999), Monterey Bay shelfbreak (Haley et al., 2009),

Taiwan region shelfbreak (Lermusiaux and Xu, 2010) and Philippine Archipelago

Straits (Haley and Lermusiaux, 2010b). The latter effort particularly motivated the

present work, within the context of the Philippines Experiment (PhilEx) which is

a five-year joint research project focused on interdisciplinary modeling, data assim-

ilation, and dynamical studies in the straits regions of the Philippine Archipelago

to better understand, model and predict sub-mesoscale and mesoscale physical and

biogeochemical dynamics in complex regions. For realistic PhilEx simulations, we

employ our MIT Multidisciplinary Simulation, Estimation, and Assimilation Sys-

tems (MSEAS-Group, 2010). It includes a free surface hydrostatic ocean model over

complex geometries with novel implicit schemes for telescoping nesting (Haley and

Lermusiaux, 2010b). This physical model is coupled to biological models (Besiktepe

et al., 2003), forced with multiscale barotropic tides (Logutov and Lermusiaux, 2008)

and initialized with new objective mapping schemes specific for multi-connected do-

mains (Agarwal, 2009, Agarwal and Lermusiaux, 2010). The multi-resolution nested

domains cover very shallow regions with strong tides, steep bathymetries and the

deep ocean. The MSEAS system was employed in real-time, assimilating data sets

from ships, gliders and satellite remote sensing, and issuing daily physical-biological

forecasts with dynamical descriptions and adaptive sampling guidance (Lermusiaux

et al., 2009). The complex, nonlinear and multiscale biology in the region confirmed

the need for the present computational studies.

Our work is part of an incubation for the next-generation of ocean modeling
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systems, focusing on key numerical questions for biogeochemical dynamics. The bio-

logical model we employ is based on Flierl and McGillicuddy (2002), Burton (2009)

and Ueckermann (2009). We restrict ourselves to a relatively simple model to focus

on the numerics. However, the model is complex enough to reveal important char-

acteristics and to complete a large number of parameter sensitivity studies which we

can synthesize. We study three biological regimes, one with single stable points at all

depths and two with stable limit cycles. We consider idealized simulations of biolog-

ical patchiness which is commonly observed in the coastal ocean. For these regimes

and interactions, we study a wide range of temporal and spatial discretizations. The

results in this chapter have been published in (Ueckermann and Lermusiaux, 2010).

In what follows, we give our dynamical problem statement, definitions, and notation

in §6.2. The results of our varied numerical and scientific investigations are described

in §6.4. Finally, our conclusions are stated in §6.5.

6.2 Dynamical Problem Statement

The biological dynamics are governed by the following advection-diffusion-reaction

equations:

+ V_-(U4) -KV2D= S(4D,x,t), inQ (6.1)
at

with boundary conditions

(D gD, onl F(6.2)

(u - rVD) -n = gN, on EN

where 4D(x, t) = [# 1(x, t),... , ON- (x, t)] is the vector of Nc biological components, u

is the prescribed velocity field, r, is a positive diffusivity coefficient, S((, x, t) is the

biological reaction terms, and gD, gN are the boundary conditions for the Dirichlet

and Neumann boundaries respectively. Equations 6.1-6.2 are solved on the domain

Q E Rd, where d is the dimension of the problem, with boundary aQ = rD U EN such
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that FD n PN = 0.

Since we are interested in strait dynamics, for the flowfield u, we assume that

earth rotational effects are negligible, which is true if the ratio of the strait width

to the Rossby radius is small (Pedlosky, 1987, Signell, 1989, Bourgault and Kelley,

2004, Cushman-Roisin and Beckers, 2011). Additionally, for uniform geometry across

the strait with a rigid lid approximation, a small Froude number, and a homogeneous

density, the velocity field can be approximated as a potential flow field. A similar

setup was used by Signell (1989) for tidal flows. The potential velocity u is obtained

by solving for the stream function

,20 = 0, in Q (6.3)

u = VxV) (6.4)

with boundary conditions

hD, on aQ. (6.5)

Note, potential flow is usually solved with a velocity potential, but here we chose

to use the stream function because it has convenient boundary conditions for this

problem.

6.3 Comparing numerical codes: Defining Efficiency,

Accuracy, and Performance

To be clear, we use the term "efficiency" or "cost" to refer exclusively to the

computational resources (elapsed-time, memory) required for a simulation, and we

do not use "efficiency" to imply any degree of correctness of the solution. We reserve

the term "accuracy" to refer to the correctness of the solution. Finally, here we also

use the term "performance" as the combined consideration between efficiency and

accuracy (Chapra and Canale, 2006).
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Comparing different numerical schemes is not a straight-forward task (see Ku-

batko et al. (2009)). First, results are not universally applicable and are generally

problem dependent. After focusing on a particular class of problems, the usual ap-

proach is to fix the computational efficiency of both schemes and then compare the

accuracy, or vice versa. The scheme that performs better will then have a superior

accuracy, since the efficiency will be the same for both. However, the efficiency of the

scheme is dependent on its implementation, as well as the computer architecture on

which the simulations are performed. A simple approach, then, is to fix the number of

degrees of freedom (DOFs) of the different schemes, that is, having the same number

of unconstrained parameters in both schemes. Because the DOFs are related to com-

putational efficiency, this approach is useful for comparing similar numerical schemes

with different implementations. However, it is not a good approach when comparing

different numerical schemes where the computational cost per DOF is inherently and

significantly different between the schemes, which is the case for comparisons between

high order and low order schemes. Finally, conclusions drawn about the performance

is also dependent on the particular definition of accuracy. The accuracy is normally

defined in terms of a quantity useful to a particular researcher. Thus, researchers

with different quantities of interest may draw different conclusions about the perfor-

mance of a scheme. We address the efficiency issue by presenting results for multiple

efficiencies, and we address the accuracy issue by using generic global error measures

(see §6.3.1) and by using difference plots.

6.3.1 Error Norm Calculation

A sufficiently complete set of error measures should be used to assess the accuracy

of the numerical solutions. In our set of error measures, we include point-wise error

measures to quantify phase and path-accumulated errors that lead to a loss of point-

wise accuracy. In addition, integrated or global error measures are included as a

bulk indication of the accuracy. Finally, to assess the accuracy of the numerical

scheme in reproducing the dynamics described by the mathematical model and its

parameters, we compare the phase-space dynamics of the biology for the biological
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patch simulation in §6.4.6. The point-wise and integrated error norms are numerically

calculated as follows.

Unless indicated otherwise, the global domain L2 norm jell = (f2 e2 dQ) 2 is calcu-

lated using the quadrature-based approach as described in §3.2. That is, the numerical

solution is interpolated unto the quadrature points, the error e = Oh - # is evaluated,

and then multiplied by the quadrature weights and summed for an approximate inte-

gration. In some cases, we evaluate the global error using an interpolation approach

(similar to quadrature-free) and this is mentioned when we do. In these cases, the

error is evaluated at the nodal points, then the error is interpolated to the quadra-

ture points, multiplied by quadrature weights, and summed. Where ambiguous, we

indicate the quadrature-based error evaluation using ||e||* (quadrature points), and

the interpolated error evaluation using IleI|nd (nodal points).

The infinity norm Ilell. = maxlel is calculated by evaluating the error at nodal

points, and taking the maximum absolute value.

6.3.2 Higher-Order Mesh Generation

Since higher order DG schemes have more degrees of freedom per element, a coarse

mesh with large elements is required to keep a similar performance across discretiza-

tions. To obtain an accurate solution with a coarse, high-order discretization, it is

necessary to use curved boundary interfaces, as will be demonstrated in Ueckermann

and Lermusiaux (2010). Here we describe our new method for creating such a coarse,

high-order curved mesh.

When curving the boundary of an element, care needs to be taken because it is

possible to create an element where two of the interfaces cross. The left triangular

element shown in Fig. [6-1] has the true circular geometry crossing one of the straight

interfaces. To avoid this situation, we need to ensure that

h < 2p(x) sin(O), (6.6)

where h is the length of the element side bordering the boundary, p(x) = ,
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is the radius of curvature of the boundary described by f(x), and 0 is the minimum

angle of the two angles on the edge bordering the boundary. The element shown on

the right side of Fig. [6-1] illustrates this limiting case for an equilateral triangle, but

our condition (6.6) is trivially extended to arbitrary triangles as shown by the dashed

lines.

Using our criteria (6.6), we define the minimum edge spacing on the boundary as

h..in = 2p sin(300) = p. Then, we let the minimum edge length grow linearly by a

certain percentage (fit to 12% here) away from the boundary upto a specified mini-

mum edge length. Using these criteria, we create coarse base-meshes, then uniformly

refine these meshes to obtain finer discretizations. To create the meshes, we primarily

used the free mesher Distmesh (Persson and Strang, 2004), but we also used Gmsh

(Geuzaine and Remacle, 2009). Distmesh uses an implicit geometry representation,

that is, we define the geometry by a distance function that gives the distance between

a queried point and the nearest boundary. Using Distmesh, we create meshes with

straight sides.

To curve the boundary interfaces, we use the same distance function provided

to Distmesh, and numerically calculate the gradient of the distance function to the

boundary. The normalized gradient vector provides the direction of translation, but

to determine the magnitude of the translation a weight needs to be applied to the
Peiod Vd fo

calculated distance. That is, pie -- od +±Wd , where d is the distance from

the point pold to the boundary, and W is the weight. Now, points on the straight

boundary interface are translated to the true, curved boundary with a weight 1, and

points on interior interfaces are not translated, i.e. having weights 0. Points in the

volume have weights defined by the same weighting functions used to create the nodal

basis, that is

We) 2A3 2A2
W(eA) = l 2A l

where the point is defined by the barycentric coordinates Ai corresponding to vertices

i, and el is the curved boundary interface defined by vertices 2 and 3. For details of
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Figure 6-1: Minimum triangle angle criterion (6.6) demonstrated on a circle with
equilateral triangles. hi = 2p does not satisfy the criterion, h 2 = 2/3p satisfies the
criterion, and h3 = 2p sin(ir/3) demonstrates the limiting case. This result can be
extended to arbitrary triangles as shown by the dashed lines.

this blending function, see Hesthaven and Warburton (2008).

The base mesh with three mesh refinements is shown in Fig. [6-2], and details

of the base mesh for a curved and straight mesh boundary are shown in Fig. [6-3].

Using our criterion hmin = p, the minimum theoretical edge length for our geometry,

that is a Gaussian bump defined by H(x) = e-x 2 , is hmin = 0.25. The mesh shown

in Fig. [6-2]a) has a minimum edge length of hmin = 0.2418, close to the theoretical

value.

6.4 Numerical Studies and Scientific Implications

Biogeochemical models may contain a large number of biological or chemical com-

ponents (Hofmann and Friedrichs, 2002). The simplest models often only use Nu-

trient, Phytoplankton, and Zooplankton as components, and are commonly called

NPZ models. More complicated models (Besiktepe et al., 2003) can be adaptive and

contain many components. Each component requires the solution of an advection-

diffusion-reaction (ADR) equation of the form (6.1). The source terms describe the

commonly nonlinear "reactions", and may lead to stationary, periodic, or chaotic dy-

namics. For this numerical work, a non-dimensional version of a NPZ model (Flierl
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a)

b)

C)

d)

e)

Figure 6-2: a) The base mesh (gi) with 350 elements. b) First (g2) (1,400 elements)
c) second (g3) (5,600 elements), d) third (g4) (22,400 elements), and fourth (g5)
(89,600 elements) grid refinements. The more-refined meshes are used for lower-order
schemes whereas less-refined meshes are used for higher-order schemes such that the
cost of the two schemes are comparable.
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a)

b)

Figure 6-3: Details of
basis.

(gi) using a a) curved and b) straight mesh for a p = 8 nodal

and McGillicuddy, 2002) is used since it contains all characteristics required for our

studies:

N+ V- (U**N) - V- PVO*Nat* e

a#* 1
at* + P -

z+ V. (uoq) V. V*V
at*e

= -U*ez*/h* + d*p#* + d**

+(I - a)g**(1 - e-**P

= U*ez*/h* 4y - d*+ *
0* + k* P

-g*,#*q -a~~q"#*1

= -d*0* + ag,*z*(I - Cv *-P)

whr ( Z (NZ),* * * = z, t* = , the parameters

are explained in Table [6.1], the non-dimensional groups with values are given in Table

[6.2] with P the Peclet number and D* the aspect ratio, the subscripts (.)N, (-)P, (-)z

refer to Nutrients, Phytoplankton, and Zooplankton respectively, V = + ± y, and

lowercase z* refers to the depth coordinate which is positive upward with z* = 0

at the surface. Note that not all three equations (6.7)-(6.9) are required since the

biological model satisfies the following conservation law for total nutrients, assuming
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a closed ocean system:

O*N OP -Z. (6.10)

The first equation (6.7), for example, could be eliminated in favor of (6.10); however

here we still use (6.10) to check the conservation of the numerical schemes.

Table 6.1: NPZ equation parameter descriptions and units.
Parameter Description [units]

U Phytoplankton uptake rate [1/day]
k, Saturation concentration of phytoplankton [pmol/L]
dp Mortality rate of Phytoplankton [1/day]
dz Mortality rate of Zooplankton [1/day]
9bio Grazing rate of Zooplankton [L/(ptmol-day]
a Assimilation (efficiency) rate []
h e-folding depth for light (photosynthesis) [im]
Vbio Parameter for Ivlev form of grazing function [L/pimol]
Ar Total biomass [pmol/L]
ii Average inlet velocity [km/day]
H Height of bathymetry [m]
D Total maximum depth [im]
L Effective width of bathymetry [km]
K Diffusion tensor (vertical and horizontal diffusion different) [m 2/s]

Table 6.2: Values of the dimensionless numbers entering the NPZ equations (6.9), that
are used in the examples for this manuscript. Bracketed triplets of values correspond
to the three bio cases [1,2,3]. The other values are the same for the three cases.

Parameter Value

U* =~ ui 7.5
k, = k [ I, 1, 1]
d*= d P- 0.2
d* dzi 1

* = bioT 12.5
a* = a 0.4
h = 0.34
vgjo = ArTvbio [0.3, 0.5,1]

Pe =M o
D* =2

The domain setup is depicted in Fig. [6-4] for the geometric parameter values

given in Table [6.2]. With this setup, an upwelling of nutrients is created (see §6.4.2),

and the study of idealized biological blooms, which may occur in straits or sills, can
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be studied. In total, we consider three sets of parameter values, differing by the

non-dimensional parameters vbi. and k*. In the absence of advection and diffusion,

they lead to equations 6.9 with at most one physically relevant steady state solution

(Burton, 2009). The three sets of non-dimensional parameters visj and k* correspond

to biological dynamics with single stable points at all depths (bio case 1: k*

1/30, vgjo = 0.3), with stable limit cycles for depths around z* = 0.4 - 0.9 and

single stable points elsewhere (bio case 2: k* = 1/50, vusO = 0.5), and stable limit

cycles everywhere in the euphotic zone (bio case 3: k, = 1/100, vuj. = 0.1). The

middle parameter values, bio case 2, correspond to those values used by Flierl and

McGillicuddy (2002): they are idealized and not meant to represent a specific ocean

region. We note that biological models with discontinuities in stable solutions are not

always representative of nature. However, biology of interest is likely to have intrinsic

oscillatory or chaotic time dependence, e.g. Flierl and McGillicuddy (2002). For our

purposes, we address these issues by considering three sets of parameter values and so

cover a range of biological dynamics. To handle non-physical negative concentrations

due to numerics, we use max(0, 0*'NPZ)) when evaluating the source terms. In the

absence of advection, a timescale of i = 1[days] is used, while in the presence of

advection, the advective timescale -a = L/IU is used, where - = finiet jujdz is the

average inlet velocity.

In our numerical study, we need to characterize the three dynamical regimes and

their behaviour since these properties affect numerical errors. Specifically, for each

dynamical regime, we study the balances of terms in (6.7)-(6.9): biological terms dom-

inating; advection and biological terms balancing. When biological terms dominate,

the advection is slow, and the problem reduces to a one dimensional problem, studied

in §6.4.1. Finally, the case where the advection and biological terms are approximately

balanced is studied in §6.4.2, with the effect of biological patches demonstrated in

§6.4.6. Since the timescale of biology varies in depth, the advection and biological

terms can only be exactly balanced for one depth. Also, for parameters sets where the

biology exhibits steady behaviour, we determine the biological time-scale based on

how quickly a perturbed initial condition returns to the steady one. While this results
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Figure 6-4: Test case domain with idealized strait bottom geometry described by
- r

2

H(x) = Hem.

in many choices of approximately balanced terms, we will focus on one parameter set

where -r = 12.5[days]. For more details on biological dynamics in straits, we refer to

Burton (2009).

Results in this section will be reported for various grid and polynomial degree

combinations, and the notation (grid number, polynomial degree) is used to denote

this information. For example, (g2,p4) refers to the second grid (Fig. [6-2]b) with a

4th degree basis function. We provide a table with the number of DOFs and computa-

tional time estimates for the test cases we completed Table [6.3]. In what follows, we

show the results of (gi, p6) and (g2, p5) for our high-order simulations and compare

them to (g4,pl). Normalizing by the average computational time of (g4,pl) these

simulations have relative computational times of 0.34, 1, and 1.2 for (gl,p6), (g4,pl),

and (g2,p5), respectively (see Table [6.3]). Following the discussion in §6.3, we note

that, in terms of efficiency, (g4, p1) and (g2, p5) are comparable (in fact, (g2, p5) would

be cheaper if fully optimized, see Ueckermann and Lermusiaux (2010)). (gi, p6) is

included because it is comparable in accuracy to (g4,pl) and it highlights the effect

of under-resolution (here gl) when using higher-order schemes (here p6).

6.4.1 One-dimensional Biogeochemical Source terms studies

In this section we first illustrate the convergence of our numerical implementation.

Following this, we examine the numerical behaviour of the biological source terms

using three tests: Perturbations of steady-states, Vertical resolution, and High-order

bases.
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Table 6.3: Normalized run-times and DOFs for various grids/polynomial degree basis
functions, for the simulations in §6.4.2. The times are normalized by the (g4, p1)
run-time, and numbers in parentheses are the DOFs.

Degree of basis Grid 1 Grid 2 Grid 3 Grid 4 Grid 5
1 0.0014 0.014 0.12 1.0 8.2

(1,050) (4,200) (16,800) (67,200) (268,800)
2 0.007 0.057 0.1 4.2

(2,100) (8,400) (33,600) (134,400)
3 0.026 0.21 1.8

(3,500) (14,000) (56,000)
4 0.062 0.51 4.1

(5,250) (21,000) (84,000)
5 0.15 1.2

(7,350) (29,400)
6 0.34 3.1

(9,800) (39,200)

Numerical convergence in space and time: Since an analytical solution to (6.9) does

not exist, we verify the spatial implementation of the quadrature-free and quadrature-

based source terms using the analytical test problem 2 - 2 = S (z, t) on Q E

[-100, 0] integrating until t = 7r/200, with solution q = sin(t) cos2 (7r/50z) (for an

appropriately chosen S(z, t)). We use a sufficiently small time-step, such that the

errors are dominated by the spatial discretization. The results are shown in Table

[6.4], with the norm of the error e = #h - # calculated as described in §6.3.1. From

Table [6.4], we note that our implementation converges at the optimal rates for both

the quadrature-based and quadrature-free treatments. While the error numbers are

for a special case and not those for (6.7)-(6.9), they show that the solution using

quadratures is more accurate than the solution without quadratures, and this result

will be generally expected.

We verify the implementation of the 4 th order low-storage Runge-Kutta time in-

tegrator using the ordinary differential equation 2 = 0 on Q E [-100, 0] integrating

up to a time t = 1, with solution # = oet. Here we choose #o = 1, such that the

spatial discretization does not affect the error. The results are given in Table [6.5],

from which we note that our implementation converges at the optimal rate for this
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low-storage Runge-Kutta scheme. While this test corresponds to exponential biolog-

ical growth, as above, the error values are of course not those that would occur for

(6.7)-(6.9).

Table 6.4: Spatial convergence of 1D DG solver used to evaluate the source terms

using Nh elements. The L2 norm (see §6.3.1) of the error, e = Oh - #, is smaller
for the quadrature-based scheme, but the order of convergence is the same for both.
Order of convergence is computed in a standard way, e.g. Chapra and Canale (2006).

Table 6.5: Temporal convergence of 1D DG solver using Nt time steps (different values
of Nt given only to show that the order does not vary with Nt, but the absolute error
of course changes). Order is computed using Chapra and Canale (2006).

Integration Nt = 16 Nt = 32 Nt = 64
Scheme ||ell 2  Order |jell2 Order ||ell2  Order
RK4 5.683e-006 3.9 3.646e-007 4.0 2.308e-008 4.0

Perturbations of steady-states: The purpose of these studies is to examine how

the biological dynamics behave as a result of perturbations away from the steady-

state. Perturbations will arise due to the forcing and dynamics, and due to numerical

reasons in the more complicated tests in §6.4.2, and it is important to understand how

these perturbations will affect the biological dynamics. All three different biological

regimes were examined in these perturbation tests. We focus on the behavior of the

one-dimensional dynamics for the time interval t* = [0, 250], because this corresponds

to the residence time of the biology for the dynamics in §6.4.2. We initialize all tests
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Nh = 10 Nh= 20
Degree IIell 2  Order BeII2 Order

Quadrature- p=1 5.550e-003 1.9 1.409e-003 2.0
based p= 2  5.901e-004 2.9 7.491e-005 3.0

p=3 4.690e-005 3.9 3.019e-006 4.0
p=4 2.976e-006 4.9 9.673e-008 4.9

Quadrature- p=1 1.340e-002 1.9 3.435e-003 2.0
free p=2 1.068e-003 2.9 1.332e-004 3.0

p=3 7.464e-005 3.9 4.724e-006 4.0
p=4 4.282e-006 5.0 1.274e-007 5.1



using a perturbed or unperturbed exact steady state, which can be found by setting

* (u*(*) - V VD* 0 in (6.7)-(6.9). The steady state solution is perturbedP'n

by setting 4(PbZ)perturb = (l+Y)(Pz)teady, where -y is some constant, and using (6.10).

Where required, we impose +*4 + #*, < 1, by setting (1 P,z)per.urb -( . This

initialization is done numerically by setting the value of the numerical solution equal

to the calculated solution at the nodal points.

First we ensure that the exact steady state solution can be maintained, and then

we initialize with a perturbation from the exact steady state, and the results are

reported in Table [6.6]. For these runs we used 100, second-order accurate linear

elements (p = 1), which roughly corresponds to the resolution at the inlet for (g5, pl).

We find that the steady solution can be maintained for all cases up to machine

precision for the quadrature-free implementation when evaluating the error at the

nodal points. This is because we initialized the numerical simulation using the exactly

calculated steady state at the nodal points. Note that the quadrature-based scheme

has a smaller difference than the quadrature-free version when evaluating the error

at the quadrature points, except for the case with stable limit cycles in the euphotic

zone (bio case 3). Because the quadrature version evaluates the source term at the

quadrature points, and the interpolation of the solution onto the quadrature points

is not exactly at the analytical steady-state, the source-terms are non-zero, and the

solution evolves. If the source-terms were polynomials of lower degree than the basis

in the z direction, this would not happen.

Finally, Table [6.6] gives a rough description of the dynamical properties of the

equations. Here the norm of the initial difference, IIDiI| should be compared to the

norm of the final difference at quadrature points for the quadrature-based treatment,

and at the nodal points for the quadrature-free implementation. For the case with

single stable points (bio case 1), the initial difference of the perturbed solution to the

analytical steady state is greater than the final difference, which indicates that the

solution is approaching the calculated steady-state value. For the case with stable

limit cycles in the euphotic zone (bio case 3), the final difference is greater than

the initial perturbed difference, showing the solution is logically not approaching the
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steady state, but instead spiraling outward toward the stable limit cycles present at

each depth. Additionally, plotting the solution (Fig. [6-5]) profile for the largest

perturbation, we can see that the perturbed solution tends towards the steady state

for the entire column for bio case 1, only for the top part of the water column for

bio case 2, and nowhere for bio case 3. Thus, the parameter set with limit cycles in

the euphotic zone (bio case 3) has the most structure in the vertical, and will require

the most resolution to model accurately. Also, numerical perturbations will be most

important for bio case 3 because the differences will grow away from the calculated

steady state, as opposed to decaying.

Table 6.6: Difference between analytical steady state solution, and perturbed solution

at t* = 250. Here D = -,] - 100% is the percent error per area in the domain.

The column ||Dill gives the initial difference, Dq indicates using quadratures, Dqf

indicates quadrature-free, 11.110 indicates the error evaluated at quadrature points,

|. 1nd indicates the error evaluated at nodal points.

Stability .-100% IIDill' 11Di I d D1 D 1D1 I|f D |Dql1fld ||Dqf1nd
Single 0 0.361 0.000 0.296 0.361 0.117 0.000
stable 0.05 0.361 0.014 0.296 0.361 0.117 0.002
points 0.50 0.377 0.126 0.295 0.363 0.122 0.015

5.00 0.906 0.860 0.318 0.402 0.208 0.141
Stable limit 0 0.364 0.000 0.352 0.364 0.015 0.000

cycles at 0.05 0.366 0.017 0.353 0.365 0.019 0.011
bottom of 0.50 0.410 0.169 0.377 0.387 0.116 0.112

euphotic zone 5.00 1.360 1.29 1.01 0.974 0.945 0.915
Stable limit 0 0.109 0.000 0.112 0.109 0.038 0.000

cycles in whole 0.05 0.111 0.021 0.637 0.517 0.736 0.619
euphotic zone 0.50 0.234 0.205 1.40 1.20 1.51 1.36

5.00 1.880 1.88 2.39 2.17 2.51 2.37

Vertical resolution: By varying the resolution of the problem, we found that a

minimum of 25 degrees of freedom were necessary to roughly capture the vertical

structure of the biological model dynamics at the final time. For the tests in §6.4.2,

(gl,p6) has approximately 21 degrees of freedom, indicating that it will be under-

resolved.

High-order bases: We find that the quadrature-based treatment of the source
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Figure 6-5: Solution profiles at all depths with -y = 5%. Magenta crosses show
the analytical steady-state solution, the thick black dashed lines show the initial
condition, green circles show the profile at t* = 250, and thin blue lines show the
profile at t* = 125. Plotted for biological dynamics with a) single stable points at all
depths, b) stable limit cycles at bottom of euphotic zone, and c) stable limit cycles
in entire euphotic zone. The quadrature-based solution is plotted at the quadrature
points, whereas the quadrature-free solution is plotted at the nodal points.
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Figure 6-6: Solution profiles for all depths at t* = 500 using a 1 5 th degree polynomial

and 3 elements with -y = 5% for dynamics with stable limit cycles at the bottom

of the euphotic zone. As in Fig. [6-5], the magenta crosses show the analytical

steady-state solution, thick black dashed lines show the initial condition, green circles

show the profile at t* = 250, and thin blue lines give the profile at t* = 125. The

solution is plotted at the quadrature points for the quadrature version, and at the

nodal points for the quadrature-free (i.e. where the source terms are evaluated). a)

Uses well-behaved (Gauss-Lobatto) nodal points, b) uses uniform nodal points.
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terms results in large jumps of the solution between elements. This is illustrated in

Fig. [6-6] after 500 time units of integration using a 1 5 h degree polynomial and 3

elements. The problem is amplified when using a uniform nodal spacing, due to a

larger interpolation error. Also, increasing the number of quadrature points used for

integration did not solve this problem. The problem originates from the discontinuous

jump in the solution, causing oscillations known as Gibbs phenomena. Note that

both simulations are initialized in the same manner, but the Gibbs oscillations can

only be "seen" when evaluating the initial condition at points other than the nodes.

The quadrature-based integration, then, "sees" these oscillations because the source

terms are evaluated at the quadrature points. Using the quadrature-free approach for

this one-dimensional problem essentially decouples the vertical nodes, so numerically,

the quadrature-free version does not "see" the oscillations. The Gibbs oscillations

would have occurred in the quadrature-free scheme if the initialization was done at

the quadrature-points instead. This example illustrates one of the drawbacks of using

increasingly higher order schemes, that is, without special treatment, large oscillations

occur for non-smooth functions. Using lower-order but on a finer discretization (more

elements) can be a better strategy if special treatment is not used.

In this section we showed that, with our implementation, both the quadrature-

based and quadrature-free treatment of the source-terms give accurate, convergent

results (see Table [6.4]), although the absolute error of the quadrature-based imple-

mentation is smaller than the quadrature-free implementation. Then we showed that

the analytical steady state solution could be maintained, and illustrated the dynam-

ical behaviour of three different biological parameter sets through perturbations of

the steady state solutions. With the vertical resolution tests we found a minimum

of 25 degrees of freedom necessary to roughly capture the vertical solution features

of our particular setup. Finally, we showed that oscillations can occur solely due to

numerics for a high-order discretization. While the quadrature-based algorithm was

shown to be more accurate, the oscillations at element interfaces and the added nu-

merical cost need to be considered. The additional accuracy may be warranted when

a bifurcation of the solution could occur, or when the solution is under-resolved. As a
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whole, a key result is that, for any numerical scheme, careful numerical studies should

be performed in one-dimension to understand the potential errors arising from the

nonlinear source term discretization before proceeding with advective models.

6.4.2 Full NPZ equations

In this section we explore the case where the advection and biological source

terms are approximately balanced. We examine effects of low-order and high-order

temporal discretizations in §6.4.3. In §6.4.4, we illustrate the difference between using

a quadrature-based and quadrature-free scheme to discretize the nonlinear biological

source terms. Finally, in §6.4.5, we study effects of spatial resolution, through both

grid resolution and polynomial degree.

We still study the three biological parameter sets: single stable points, stable

limit cycles at the bottom of the euphotic zone, and stable limit cycles for the entire

euphotic zone, as given in Table [6.2]. Since the timescale of biology varies in depth,

the advection and biological source terms can only be balanced for one depth. While

this results in many choices of approximately balanced parameter sets, we focus on

one where -a = 12.5 [days]. For these tests, the inlet is specified as the steady state

solution with a smoothed discontinuity. The discontinuity is smoothed by fitting it

with a cubic polynomial which can be resolved on (gi, p6). The fit is biased such that

3/4 of the polynomial is below the euphotic zone. For the outlet boundary we use

T = 0. Also these results are compared to a (g5, pl) simulation, which is taken as

the true solution.

We use a potential flow-field for this case. A potential flow-field is calculated by

solving (6.3) using HDG as described in §2. Once O is found, we take u = [V7, -O].

The value of i is specified on all boundaries. The top and bottom boundaries are

specified as constants L = 4 'it and V' = 4bot. The inlet and outlet stream functions

are specified to vary linearly in z*, i.e. V) = to, + z*(Obot - Otop)/D*.

The final solution fields for the three different regimes of biological dynamics

(from Table [6.2]) and using quadrature-based source terms for (g5, pl) (the reference

solution) is plotted in Fig. [6-7]. The results show that idealized strait bathymetry
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Figure 6-7: Biological dynamics at t* = 20 (with ' = 12.5[days]) using (g5, pl)
. Biolocial dynamics with a) single stable points, b) stable limit cycles for depths
Z* = 0.4 - 0.9, and c) stable limit cycles in whole euphotic zone. This is the reference
solution against which all other solutions are compared.

effectively perturbs the biology away from the inlet conditions. The case with single

stable points (bio case 1) adjusts back to the stable equilibrium, whereas the two cases

with limit cycles show complex structures in the vertical. In all cases, a Phytoplankton

bloom over the bump is observed.

To qualitatively evaluate the effect of refining the grid or polynomial degree, we

show the solution field for Phytoplankton for (g3, pl), (g3, p2), (g4, p1), and (g4, p2)

in Fig. [6-8], and these discretizations have 16,800, 33,600, 67,200, and 134,400

DOFs respectively. This figure shows that the solution is converging with increased

resolution. More quantitative comparisons are completed next.
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Figure 6-8: Phytoplankton fields at time t* = 20 (with -a = 12.5[days]), as computed
using four different spatial resolutions and order of the FE scheme: a) (g3, pl), (16,800
DOFs) b) (g3, p2) (33,600 DOFs), c) (g4, pl) (67,200 DOFs), and d) (g4, p2) (134,400
DOFs). All fields are for biological dynamics with stable limit cycles in the euphotic
zone (bio case 3 in Table [6.2]).
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6.4.3 Comparing low-order and high-order temporal discretiza-

tions

We compare the solutions using 4 th order Runge-Kutta, 2 nd order Runge-Kutta,

and 1st order Explicit Euler on (g2, p4) for the biology with stable limit cycles in

the euphotic zone (bio case 3). The differences of the lower order schemes compared

to 4 th order Runge-Kutta at t* = 40 is plotted in Fig. [6-9] for the Phytoplankton

field. These difference fields are plotted at a point in time, and will measure the

effect of phase and path-accumulated errors. Note, the timestep size for the 1 st

order scheme is half of the 2 nd order scheme, such that the cost of the two are the

same. For this test case we used periodic boundary conditions. From the figure, we

note that the major differences occur within the euphotic zone. The stable explicit

timestep for the 2 nd order scheme is set by the Courant condition for the advection

discretization, and since the largest velocity occurs in the smallest element for this

discretization, the timestep size is approximately four orders of magnitude smaller

than the biological timescale. Therefore, it is expected that temporal errors in the

source-term should be small even for the low order scheme. Nonetheless, we still

observe differences between the 1 st, 2 nd and 4 th order schemes. We found that the

difference at t* = 40 is approximately two orders of magnitude larger than at t* = 20,

which indicates the errors are growing quickly. The 1 st order scheme will have a bias

which is more affected by path-accumulated errors, and for it we observe a maximum

error of 0(1) at t* = 40. This suggests that a low-order time discretization may

result in significant errors when long integration times or fast biological timescales

are involved. For example, the latter occurs in coastal applications. As another

example, for stiff biogeochemical source terms, Burchard et al. (2005) found that

even 4 th Runge-Kutta integration is insufficient to maintain the non-negativity of

the biological components. They suggest that positivity preserving Patankar-Runge-

Kutta schemes should be used to obtain a non-negative, conservative solution.
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Figure 6-9: Temporal discretization differences for Phytoplankton field with stable
limit cycles in euphotic zone at t = 40 using periodic boundary conditions and on

spatial grid (g4, p2). a) "1 ' order Euler" minus "4 th order Runge-Kutta", and b)
"2 nd order Runge-Kutta" minus "4 th order Runge-Kutta".

6.4.4 Comparing quadrature-based and quadrature-free source

terms

In §6.4.1 we found that the greatest difference between the quadrature and quadrature-

free treatment of the source-terms occurred for the biological parameter set with stable

limit cycles in the euphotic zone (i.e. bio case 3). Here we examine this case for full

ADR dynamics using the (gl,p6) discretization. Note that we obtained the same

results and conclusions with the (g4, pl) and (g5, p2) discretizations (not shown).

Plotting the difference (quadrature-free minus quadrature-based) of the solution in

Fig. [6-10] for (gl,p6) we see that the largest differences occur near the outlet of

the domain where the mesh solution is under-resolved. The quadrature-based solu-

tion is more accurate in the under-resolved region because the source-term integral

is more accurately evaluated, and this was verified by comparing the errors of the

two schemes. However, where the solution is sufficiently resolved, the quadrature-

free and quadrature-based treatments of the source terms have similar accuracy, that
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is, they differ by approximately 0.1%. From the one-dimensional studies, we found

that the quadrature-free algorithm was less oscillatory at element interfaces than the

quadrature-based algorithm, and we observed the same effect in these 2D simulations

for p > 7 on gl, although the difference between quadrature-free and quadrature-

based was less drastic. The largest differences between the quadrature-based and

quadrature-free schemes did occur at element boundaries, and the quadrature-based

algorithm was more accurate when under-resolved.

Using equation (6.10), we verify the conservation of the scheme. The results for

the quadrature-free and quadrature-based source terms were similar up to floating

point precision. Also, we find that the conservation error is dominated by the flow

field divergence error. Therefore, the conservation properties of the source term dis-

cretization does not affect the choice between quadrature-free and quadrature-based

algorithms.

Because the quadrature-free and quadrature-based algorithms had similar accu-

racy in well-resolved regions, we recommend using the quadrature-free treatment in

these regions because of the improved efficiency. However, when the solution is poorly

resolved, the quadrature-based treatment of the source terms is more accurate. Now,

depending on the total solution cost of a particular numerical scheme, a finer reso-

lution quadrature-free scheme may be more efficient for the same accuracy than a

quadrature-based scheme.

6.4.5 Comparing low-order and high-order spatial discretiza-

tions

Fig. [6-11] shows the differences between the reference solution and the solutions

using other grids and polynomial degrees in Fig. [6-11] for Zooplankton. We see

that the (g2,p5) simulation has the smallest differences, and is therefore the most

accurate. This is a key result since it indicates that when the solution is resolved,

for the same cost/efficiency, a higher order scheme on a coarser grid performs better

than a lower-order scheme on a finer grid. Results for the biological dynamics with
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Figure 6-10: Zooplankton fields at t* = 20 computed using (g1, p6) and a) quadrature-
based source terms, b) quadrature-free source terms. c) The difference between the
quadrature-free and quadrature-based source-term simulations. The biological dy-
namics used has stable limit cycles within the euphotic zone (bio case 3).

276



limit cycles at the bottom of the euphotic zone (bio case 2) are similar, but for the

biology with limit cycles in the entire euphotic zone (bio case 3), both high and

low-order schemes are under-resolved for x* > 7, especially for the (gi, p6) scheme.

The differences between a fine grid solution (g5, pl) and the low-order and high-order

schemes are plotted in Fig. [6-12] for Zooplankton. From Fig. [6-12], we note that

the errors in the low-order scheme are more localized in the x* > 7 region. However,

the differences for (g4,pl) and (g2,p5) are similar in the x* > 7 region. The (gl,p6)

scheme has the least localized and largest magnitude errors in the x* > 7 region.

However, as plotted in Fig. [6-13] where the solution is smooth and the biology has

less structure in the vertical, both the high-order schemes are more accurate than the

low order scheme. Particularly, note the solution near the surface for x* < 7 in Fig.

[6-13].

We examine the error characteristics of these fields more closely by considering

the truncated Taylor expansions of the true solution. By the mean value theorem, the

truncation error for (g4,pl) is _ + ) (x,7) for some unknown point xq, and

for (g2, p5) and (g1, p6) these terms are (2- + y)4(xc) and T ( +

for unknown points xC and xC, where h is the characteristic discretization length

of an element. Now, we can examine the approximate truncation error by running

simulations (g4, p2), (g2, p6), and (gl, p7), and evaluating the highest order non-zero

derivatives of the approximate solution Oh. To evaluate the derivatives, we inter-

polate the solution onto an orthogonal modal polynomial basis, that is we find the

coefficients ai3 such that Oh - E,i i - E= aij Pi, where Pij is a modal orthog-

onal polynomial with maximum degree of i on x and j on y, for a maximum total

degree of i + j. The derivatives then evaluate as I L + (x,) -)2+=2 ij,
6! + ax 7!7 = , we=

Oh a+ h(xC) - Ei+=6 a, and - + A Oh(XC) - Ei+j=7 aij, that is, we

simply need to sum the coefficients of the modal orthogonal polynomial basis which

correspond to terms with total degree of 2, 6, and 7, respectively. Since the coeffi-

cients of the polynomials are evaluated on the reference element, h ~ 1 will be the

same for all elements. Also, while this approach gives an estimate of the leading order

truncated term, it does not give an exact value. In our case, we are not interested in
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Figure 6-11: Difference between Zooplankton fields at t* 20 (with fa = 12.5[days])
computed using (g5,pl) and a) (g4, pl) , b) (g2,p5), and c) (gl,p6). This shows the
locations of the largest numerical errors for the high-order and low-order schemes.
The biological dynamics used have single stable points at all depths (bio case 1).
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Figure 6-13: As Fig. [6-12], but zoomed in the region above the bathymetry. The

difference between Zooplankton fields using (g5,pl) and a) (g4,pl), b) (g2,p5), and

c) (gl, p6).
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a rigorous error estimator, but instead we only require an estimate of the error to aid

the discussion.

Our approach is similar to that followed by Mavriplis (1989), where Legendre

polynomials were used instead. The author proposed a smoothness estimator, where

the coefficients aij are fit to the exponentially decaying function a(i + j) = Ce-(i+).

There the author claims that a < -1 indicates good resolution or smooth functions,

and a > -1 indicates poor resolution or non-smooth functions. The adaptive strategy

used was to increase the polynomial degree for elements with a < -1, and to refine

the mesh for elements with a > -1, if the error level in that element was insufficient.

We evaluate this smoothness indicator a on (gi,p 7 ) by doing a least squares fit of

the coefficients to CeG(+). In regions where the magnitude of the solution is close to

0, that is below the euphotic zone for the Zooplankton field, ai3 Vi, j will be small,

and the smoothness indicator a will not be accurate. The approximate size of the

truncated derivative terms along with the smoothness indicator are plotted in Fig.

[6-14]. Only the smoothness indicators calculated on (g2, p5) and (gi, p7) are plotted

since the accuracy of the smoothness indicator improves with the number of terms in

the polynomial expansion, and is not accurately represented on (g4, p2) (Mavriplis,

1989).

From Fig. [6-14], we note that the largest differences in Fig. [6-12] correspond

to the regions with the largest approximate truncations errors in Fig. [6-14]. Also,

in the region x* > 7 where the low-order solution is more accurate than (gl,p6),

we have a > -1, which suggests that refining the elements instead of the order

of accuracy is more appropriate. After one level of refinement on (g2,p5), we see

that the smoothness indicator shows a smaller region of non-smooth elements. This

illustrates that the smoothness is defined in terms of the numerical discretization,

and is not solely a function of the solution field. Also note in the region where the

high-order solution is more accurate (see Fig. [6-13]), the approximate derivative

of the truncation term is small in both fields, and a < -1, suggesting a higher

degree polynomial basis is more appropriate in this region. This shows that our

mesh is not optimized in terms of the solution field, and highlights the importance of
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Figure 6-14: Approximate truncation errors for Zooplankton fields at t* = 20 (with
- = 12.5[days]). Calculated on a) (g4, p2) using logio(Ei+j=2 aij), on b) g2, p6 using
logio(Ei+j= j j), and on c) gl, p7 using logio(Ei+j, aij). d-e) Smoothness indicator
a calculated on d) (g2,p6) and e) (gl,p7) . The biological dynamics used has stable
limit cycles within the euphotic zone (bio case 3).
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using both mesh refinement and polynomial basis adaptation to generate an optimal

discretization for complex biological ocean dynamics. Also, this shows that whether a

coarsely discretized higher order scheme is better than a finely discretized lower order

scheme depends on the smoothness of the solution and can vary spatially across the

solution. The benefit from a higher-order solution is as follows: when the solution is

smooth, increasing the polynomial degree causes the error to decrease exponentially,

whereas the error would only decrease algebraically if decreasing the element size. The

cost of increasing the polynomial degree also scales algebraically, and because of this,

a higher-order scheme performs better for smooth or well-resolved fields. Using our

implementation, the (gi, p6) simulation took approximately 0.34 of the time taken

by the (g4,pl) simulation. We also ran (g3,pl), which was approximately three

times more efficient than (gl,p6), but this solution (not shown) was less than 1%

accurate for the majority of the domain. When the solution is not resolved (i.e. not

smooth for the grid resolution or polynomial degree chosen), higher-order schemes

will lead to Gibbs oscillations and filtering is required (see §3.5), while lower-order

schemes may "look good" but will be very dissipative. When the solution is resolved

(i.e. smooth enough for the grid resolution or polynomial degree chosen), higher-order

discretizations perform better than lower-order ones: they are more accurate and less

dissipative for the same cost.

Finally, we note that the approximate truncation error and smoothness metrics

were different for the different biological components. Therefore, the optimal dis-

cretization for one component is not the same as the optimal discretization for an-

other component. Ueckermann (2009) proposed a scheme that uses a different order

basis function for different biological components, but also cautions that an incurred

interpolation cost needs to be considered for adaptation strategies.

6.4.6 Evolution of Biological Patch

In this section we demonstrate how biological activity can enhance the differences

between low order and high order discretizations beyond the effect of numerical dis-

sipation alone. For this example, we modify bio case 1 (single stable points at all
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depths) from §6.4.2 by introducing a vertical column, or "patch", of biology that uses

the parameters from bio case 2 (stable limit cycles at depths z* = 0.4 - 0.9 and single

stable points elsewhere). This is easily done in the dimensional form of the equations

by increasing the value of AfT locally in the patch. Such situations occur frequently

in nature, e.g. an eddy or front upwelling additional nutrients locally towards the

surface. The initial condition and boundary condition is the same as in bio case 1 (the

steady state solution with smoothed discontinuity), except inside the patch where the

initial conditions for bio case 2 are used instead, that is:

(x *+6.4)4

*patch) = (bio case 1) + kbio case 2) - (bio case 1)] e 2.84), (6.11)

where 0* atc) is the initial condition used for this example, 0*(bio case 1) is the steady

state with smoothed discontinuity for bio case 1, and k(bio case 2) is the steady state

with smoothed discontinuity for bio case 2. Note, for this example, we non-dimensionalize

=Nrio case1 by the total biomass for bio case 1. In addition we superimpose a

periodic velocity onto the mean velocity,

U= U* ea[1 + 5 . sign{cos(O.16lrt*)}I], (6.12)

where u* is now the velocity used for this example, and U*ea is the potential flow-

field.The superimposed velocity increases the distance traveled, as well as the number

of time integration steps (due to the CFL condition), and therefore has the effect of

increasing the numerical dissipation.

Fig. [6-15] plots the phytoplankton fields and total biomass for (g2,p5) and

(g4,pl) around the patch, as well as the difference of the solution, (g2,p5) minus

(g4,pl), at t* = 14.4. We do not use the (g5,pl) solution (as was done in §6.4.2) for

the difference plots here because we found that even (g5,p1) is more dissipated than

(g2, p5), and therefore (g2, p5) is more accurate inside the biological patch where our

calculations are performed. These results show that the total biomass peak is not

maintained by the low order scheme, (g4,pl), and the details in the phytoplankton

fields are also dissipated. Since these simulations do not contain physical diffusion,
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Figure 6-15: Detail around the biological patch with stable limit cycles at the bottom
of the euphotic zone at time t* = 14.4 for a) the phytoplankton fields and b) the total
biomass. The solution for (g2, p5) is plotted on the left, (g4, pl) in the middle, and
the difference between the solutions, [(g2, p5) - (g4, pl)], is plotted on the right. This
shows that (g2, p5) correctly maintains the full peak of the biological patch, while
(g4, p1) does not, leading to large differences in the phytoplankton fields.
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Figure 6-16: The relative normed difference between the total biomass of the two

solutions, (Qi, (6.13)), the sum of relative normed differences between the biological
components (Q2 (6.14)), the relative normed difference in production (Q3 (6.15)),
and the relative normed difference in grazing (Q4 (6.16)) over time from t* = 0 to

t* = 14.4. This shows that the difference in biological components is amplified beyond

the effect of numerical dissipation due to differences in the source terms such as the

production and grazing.
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any diffusion is due to the numerical scheme, and therefore the (g2, p5) solution is

more accurate than (g4, pl) because it does maintain the total biomass peak. Apart

from the effects of the periodic velocity, the solution inside the patch should resemble

that of Fig. [6-7]b), and (g2,p5) resembles this solution more closely than (g4,pl).

While some of the differences between the (g2, p5) and (g4, p1) simulations can be

accredited solely to the numerical dissipation, the error due to numerical dissipation

is amplified by the change in biological activity. To illustrate this point, we show

in Fig. [6-16]: the relative normed difference between the total biomass of the two

solutions, (Qi, (6.13)), the sum of relative normed differences between the biological

components (Q2 (6.14)), the relative normed difference in production (Q3 (6.15)), and

the relative normed difference in grazing (Q4 (6.16))

Q* +*P ( + O*Z}(92,p5) - f ± + Op + 0 Z(g1,p4) (6.13Q1 =10 *+0 -1 1ac (6.13)
{ *N Ppatch

Q2 - ZI=(N,PZ) II (2,p5) I,(91,p4) patch 6.14)
ll{O* + *p + 5* - 1}(g4,p1)I patch

I { e*/e * O } -- U*ez*/h* **O** patch

Q3 = 25 __gp (6.15)
I {U*ez*/h* OO patch

$* + k.* g4p1

Qj{ag**(1 - e-v*o)} 2 5 - {ag**(1 - evio } 4 I patch,

Q{ag*o*(1 - e -vbi o } ||patch ( .

where Ilel|Patch = (fpatch e2 dx*dz* 2 with the patch area is determined from (g4,pl),

and the quantity j {#*v + * +* - 1}Pip gives the size of the difference between

the base solution and the solution inside the patch since the base number of nutrients

(non-dimensionalized to 1) is subtracted out.

Since our numerical scheme conserves the total biomass, the first quantity, Q1,

gives a quantitative estimate of the numerical dissipation error only. Note, the initial

differences between the two solutions are due to interpolation errors, since the poly-

nomial representation and number of degrees of freedom are not the same for the two

simulations. The second quantity, Q2, should be the same as Q, if the only difference

is due to numerical dissipation. However, from Fig. [6-16], we note that Q2 > Qi,
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Figure 6-17: Long term dynamical behaviour of NPZ system for high (green) and

low (red) order schemes at a depth of -0.667. The phytoplankton versus zooplankton

phase diagram (left) and phytoplankton versus time (right) plots show that the high-

order scheme retains a stable limit cycle, while the low-order scheme collapses to a

single stable point.

which means the differences in dissipation is amplified by nonlinearities and the bi-

ology. This is explained by the differences in biological terms in the two simulations,

for example in the production and grazing terms, Q3 and Q4. Also, note that these

differences are growing over time, and for longer integration periods, the differences

will be even greater. We can examine the long-term dynamics by integrating a point

in the patch until steady behaviour is observed (Fig. [6-17]). From Fig. [6-17], we see

that the dynamics of the high-order and low-order simulations are different. This is

expected because the dynamical behaviour of this NPZ model is affected by the total

biomass in the system. This shows that the high-order scheme can more faithfully

reproduce the dynamics described by the mathametical model and its parameters.

The example shows that the numerical dissipation due to a lower-order numerical

scheme can be amplified by the biological reaction terms. This is significant since for

accurate biological ocean science through numerical simulations, it is important to

maintain the amplitudes of biological patches. This is particularly true for biology
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with multiple attractors, where relatively small perturbations can lead to vastly dif-

ferent dynamics. The conclusion is that for the same cost, higher-order schemes on

coarser grids are more accurate than lower-order schemes on finer grids.

6.5 Conclusions

We completed a set of computational studies for the modeling of multi-scale bio-

geochemical dynamics in coastal ocean regions with complex bathymetric features,

utilizing recent advances in computational fluid dynamics. Specifically, we compared

low to high order discretization schemes, both in time and space, employing stan-

dard and hybrid discontinuous Galerkin Finite Element Methods, on both straight

and curved elements. We studied the effects of a varied set of numerical properties

including: quadrature-free and quadrature-based discretizations of the source terms;

order of the spatial discretizations of advection and diffusion operators; order of the

temporal discretization in explicit schemes; and, resolution of the spatial mesh, with

and without our new curved elements. We verified the convergence of our numer-

ical schemes for both the biology and flow fields, validated the codes on analytical

solutions, and completed a rigorous truncation error analysis.

Our numerical analyses concentrated on the nonlinear nutrient-phytoplankton-

zooplankton dynamics under advection and diffusion within an ocean strait or sill,

in an idealized 2D geometry. We first non-dimensionalized the PDEs, evaluated sta-

bility regions and selected three biological dynamical regimes: single stable points at

all depths, stable limit cycles at the bottom of the euphotic zone, and stable limit

cycles within the whole euphotic zone (the latter two cases have limit cycles that are

depth and light dependent). We evaluated the effects of numerical parameters on the

three biological regimes, but illustrated only the most relevant results. In addition,

for each of these biological regimes, we examined two types of coupled physics-biology

interactions: biological terms dominating; and advection and biological terms balanc-

ing. For the balanced situation, relatively common in the real ocean, we considered

biological dynamics that were either as fast as (e.g. coastal ocean) or slower than
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advection time-scales.

In the regime where biological terms dominate, we found that both the quadrature-

based and quadrature-free treatment of the source-terms give accurate, convergent

results, although the quadrature-based algorithm had slightly smaller errors. We also

showed that oscillations can occur solely due to numerics (Gibbs-like phenomena) for

a high-order discretizations. A key result is that, for any numerical scheme, careful

one-dimensional studies should be performed to understand the potential errors from

the nonlinear source-term discretization.

For the case of approximately balanced advection and biological terms, we com-

pared low and high order temporal and spatial discretizations, and studied quadrature-

based and quadrature-free discretizations of the source terms. Using point-wise error

measures that quantify phase and path-accumulated errors, we found that for lower-

order temporal discretizations, the errors grew rapidly and would lead to inaccurate

solutions for applications with faster biological timescales or longer integration times.

We also showed that the quadrature-based source-term discretization was more ac-

curate in regions where the solution was under-resolved, but in well-resolved regions,

there was only a 0.1% discrepancy, and the quadrature-free algorithm could be used

for efficiency purposes. By quantitatively evaluating the truncation error and smooth-

ness of the solution fields, we confirmed that higher-order spatial discretizations were

more accurate in regions where the solution was smooth (i.e. resolved enough), but

less accurate where non-smooth (un-resolved) due to Gibbs-like oscillations. Finally,

we demonstrated the importance of non-dissipative numerical schemes when biologi-

cal patches are present which is common in the real ocean. First, we found that effects

of numerical dissipation were amplified by biological activity, causing dissipation er-

rors to increase faster with integration time. Higher-order spatial discretizations were

more accurate when modeling biological patches because they maintained the patches

while lower-order schemes did not. For resolved biology (e.g. as in Fig. [6-11]), higher-

order schemes on coarser grids were for the same cost more accurate than lower-order

schemes on finer grids. This conclusion is most important for longer-term simula-

tions, since we showed that the long-term phytoplankton dynamics can be altered
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by the numerical error. We showed that the low-order scheme had a single stable

point, while the high-order one retained the stable limit cycle described by the math-

ematical model and its parameters. This has major implications for fundamental

studies of biological blooms, patchiness and other nonlinear dynamics in coastal re-

gions with complex bathymetric features such as straits, sills, ridges and shelfbreaks.

One can expect similar implications for longer-term eddy-resolving ecosystem studies

or climate applications.

Based on our results, future research directions are to further develop schemes to

reduce Gibbs-like oscillations without significant loss of accuracy and efficiency (e.g.

Persson and Peraire (2006)). Without oscillation limiters or filtering, the optimal

performance could be obtained by using different polynomial degree basis functions

in the domain, where low-order elements could be used in non-smooth regions while

high-order elements could be used in smooth regions. Because the smoothness can be

determined from the discretization, an adaptive grid and polynomial degree scheme

could be developed. Another possibility in this case could be to increase the grid

resolution and decrease the order of schemes (e.g. medium order schemes, i.e. (g3, p3)

or (g3, p4 )) up to the point when numerical oscillations reach the size of other errors.

Another research direction is to develop and evaluate schemes that would preserve

the non-negativity of the biological solution. Our results can now be utilized for

idealized studies of biological dynamics in straits or sills. Uncertainty quantifications

(Lermusiaux, 2006, Sapsis and Lermusiaux, 2009) as well as adaptive model learning

(Lermusiaux, 2007) for biological predictions would also be useful. Finally, we are

now well positioned to implement these new methods in three-dimensional ocean

modeling systems (e.g. MSEAS-Group (2010)) for realistic coupled biogeochemical-

physical ocean science and applications.

291



THIS PAGE INTENTIONALLY LEFT BLANK

292



Chapter 7

Sensitivity of Phytoplankton

Productivity to Non-Hydrostatic

Dynamics over Idealized Banks

Internal tides/internal waves can affect biological productivity through a number

of different mechanisms. These include: breaking internal waves that can enhance

mixing, transporting nutrients into the euphotic zone (MacIntyre and Jellison, 2001,

Sangra et al., 2001, Gaxiola-Castro et al., 2002, Yang et al., 2010); the aggrega-

tion of phytoplankton above internal wave troughs and below internal wave crests

(Kushnir et al., 1997, Lennert-Cody and Franks, 2002); and the movement of phyto-

plankton through the non-linear light-field (Patterson, 1991, Holloway, 1984, Evans

et al., 2008). With the advent of non-hydrostatic ocean models, quantitative numer-

ical studies of the effect of internal waves/tides on phytoplankton productivity over

shelfbreaks and banks have recently become possible. To our knowledge, little work

has been conducted to quantify the effect of non-hydrostatic effects on phytoplankton

productivity on regional scales with steep topography. In Lai et al. (2010), the non-

hydrostatic FVCOM model is used to model phytoplankton growth over Stellwagen

Bank for an entire cycle of high-frequency internal waves, including their origin, prop-

agation, shoaling, and dissipation. While Lai et al. (2010) do compare their results

from the non-hydrostatic model to a hydrostatic one, they do not try to quantify

293



the importance of non-hydrostatic effects for various stratifications and tidal forcing

amplitudes.

We are also motivated by the fascinating Stellwagen Bank (SB) ecosystem and its

dynamics. Within Massachusetts Bay and the greater Gulf of Maine system, SB is

widely known for its highly productive pelagic ecosystem with actively feeding popula-

tions of fish and cetaceans. Even though (sub)-mesoscale physical and biogeochemical

dynamics in Massachusetts Bay has been studied (e.g. Lermusiaux (2001), Besiktepe

et al. (2003) and Moreno (2007)), the detailed dynamics of the SB ecosystem remains

relatively unquantified. Therefore, our goal here is to study and quantify one aspect

of such an ecosystem, specifically, the importance of non-hydrostatic effects on phyto-

plankton productivity for tidally-forced circulations over a bank, considering various

stratifications and tidal forcing amplitudes. In our focused study, the biological pro-

ductivity will be primarily affected by the vertical motion through the non-linear

light field, and possibly due to breaking internal waves. However, we do not have

a particle drag model or biological motility models that would allow biological con-

stituents to aggregate, so these effects are not captured. Only aggregation due to

flow-driven accumulation of passive tracers is considered (for example, accumulation

due to non-coherent structure dynamics, e.g. Pasquero et al., 2004).

7.1 Problem setup

In this section we describe the geometric setup, including the mesh and time-

discretization, we give the parameters and equations we are solving and we give our

initial and boundary conditions.

7.1.1 Geometry

The idealized geometry for our study is based on that of Stellwagen Bank and its

region, illustrated in Fig. [7-1]. Our goal is to capture essential features of SB using

an idealized analytical expression with a minimal number of parameters. To this end,

we choose to use a piece-wise linear representation of the bank as shown in Fig. [7-2].
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Figure 7-1: Massachusetts Bay and Stellwagen Bank geometries, showing the coast-

lines and the complex bathymetry (red shallowest, blue deepest, with ranges left

0-300m and right 0-160m). This bathymetry and the corresponding multiscale dy-

namics require high-resolution simulations.

We use a total domain length of 100 km. For the geometric parameters defined in

Fig. [7-2], we used the values from Table [7.1]. Next, we explain how we obtain this

idealized but representative SB geometry.

This simplified representation of the geometry captures a number of important

features. The slopes of the geometric features are important for internal wave gener-

ation since some of these slopes can be critical (Vlasenki et al., 2005, Gerkema and

Zimmerman., 2008, Kelly et al., 2010); in our case, particularly si, since it is the

steepest. The bathymetric slopes also affect the vertical displacement of phytoplank-

ton through the non-linear light-intensity field. The depth (or height) of the bank

Hbak is important for phytoplankton growth, because as this depth decreases, phyto-

plankton above this point is brought closer to or within the euphotic zone. The depth

of the Bank at the coast, H, and at the open boundary, HOB, are are less critical,

but they serve to constrain our domain size. We keep these parameters constant for

the current study, but their values may have important effects, e.g. for other banks.

To find realistic values for the slopes and heights, we characterized SB's bathymetry.

Using Smith and Sandwell (1997) topography, we first extracted the -34m depth

contour Fig. [7-3]. Then, using a steepest descent algorithm, we found the slopes
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Figure 7-2: Idealized bank geometry. The extents of the domain are 200 m deep by
100 km long.

Table 7.1: Values of the geometric parameters.
Parameter Value Units

Sshelf -2.1 [m/km]
Si 6.74 [m/km]

82 -1.4 [m/km
S3 -3.2 [m/km]
di 20.11 [km]
dbank 12.0 [km]
Hbank 30 [m]
Hcast 20.0 [m]
HOB 200.0 [m]

surrounding SB Fig. [7-4]. These lines were then simplified using the Recursive

Ramer-Douglas-Peucker Polyline Simplification (Ramer, 1972, Douglas and Peucker,

1973). The slopes were then calculated for the simplified lines, and sorted accord-

ing to the normal of their initial descent direction. Using the lines sorted by their

direction, we calculate mean slopes for S1, 82, and s3.

7.1.2 Spatial and Temporal Discretizations

To discretize the geometry, we use a variable size mesh with the smallest horizontal

resolution of 200 m and the largest of 2 km. We also employ 30 vertical sigma-layers,
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Figure 7-3: Stellwagen Bank bathymetry with -34 m contour, and steepest-descent
paths. The color of the steepest-descent paths correspond to the colors in Fig. [7-4].
This procedure was used to characterize the Stellwagen Bank geometry to obtain
realistic values for the idealized bathymetry.

giving a minimum vertical mesh size of 1 m (see Fig. [7-5]). We use a linear (p=1)

polynomial basis for second-order spatial accuracy. Also, since we are using a 3D

simulation code, we also need to specify a width of 100 km, but we only use 1 linear

element in this direction to give an approximately 2D simulation.

For the time-step, we divide a tidal cycle into 4096 equal sections to give At ~~ 11 s.

This time-step satisfies the CFL stability criteria for the explicit treatment of the

advection and internal gravity wave propagation. The horizontal advection speed is

expected to be on the order of 50 [cm/s], with a CFL restriction At < Ai4, where c is

the magnitude of the velocity, and A1 is a constant dependent on the time-integrator.

The internal gravity waves propagate at /' 7 , where g' is the reduced gravity g' =

g 4 P. The maximum internal gravity wave speed for our highest stratification isp

approximately [70 cm/s]. This wave speed has a CFL-like condition of At < A 2 ,

where A 2 is, again, a constant dependent on the time-integrator. We do not have to

deal with a CFL-like restriction for surface gravity waves because we have treated the

free-surface implicitly, and the internal gravity wave speed is approximately 5 times
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Figure 7-4: Depth variation in the steepest-descent direction from the -34[m] contour
on Stellwagen Bank used to calculate the slopes of the idealized bathymetry. The
color of the steepest-descent paths correspond to the colors in Fig. [7-3]

smaller for our highest stratification.

7.1.3 Equations and Parameters

Biological fields: The dimensional parameters used in the biological model (6.7)-

(6.9) are summarized in Table [7.2]. Note that we are using no vertical or horizontal

diffusion for these fields. Also, we primarily use values from Lai et al. (2010) who

studied the SB region, unless the functional form for the term in the equation is

different than that of our model.

Table 7.2: Values of the dimensional numbers entering the NPZ equations (6.7)-(6.9),
that are used for our idealized bank study.

Parameter Value Reference

U 1.5 [1/day] Ji et al. (2008)
k, 1 [pmolN] Lai et al. (2010)
dp 0.1 [1/day] Ji et al. (2008)
dz 0.1 [1/day] Lai et al. (2010)
9bio 0.25 [1/day] Lai et al. (2010), Ueckermann and Lermusiaux (2010)
vbio 0.1 [L/pmolN] Lai et al. (2010)
a 0.4 Lai et al. (2010)
h 5.88 [m] Lai et al. (2010)
rK 0 [m 2/s]
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Figure 7-5: Variable resolution mesh used for idealized banks simulations.

Physical fields: For the physical fields we are solving the hydrostatic and non-

hydrostatic equations, (4.28)-(4.30) and (4.20)-(4.23), respectively, using a horizon-

tal turbulent diffusion coefficient of v., = 200 cm 2/s a vertical turbulent diffusion

coefficient of v,, = 5 cm 2/s, and f = 0. We are also solving an additional tracer

advection equation directly for the density perturbation 2, which does not contain

any diffusion.

For the uniform (linear) stratification, the Brunt-VWissld frequency N = 7 -

we examine a range of N = [0.005,0.051. This range was obtained by first averaging

density profiles obtained from CTD casts over SB during the Assessment of Skill for

Coastal Ocean Transients (ASCOT) project in 2001 (Robinson et al., 2002a). The

buoyancy frequency was then numerically calculated from the averaged density profile,

giving a maximum stratification of 0.045, and a minimum of 0.003. To simplify the

range, we rounded to 0.05 for the maximum, and took the minimum an order of

magnitude smaller so that we could examine the effect of stratification.

For the tidal amplitude, we use a range of U = [0.02,0.2] m/s for the barotropic

velocity at the open boundary. From measurements, the maximum velocity at the

bank is approximately 0.5 m/s. We ran numerical experiments with unstratified flows
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to find that 0.2 m/s approximately gives this 0.5 m/s velocity at the bank. The lower

bound was chosen to be an order of magnitude smaller, such that the effect of the

tidal amplitude or other flow amplitudes could be studied.

To evaluate the importance of nonlinear effects for these parameters, we can ex-

amine the Froude number and the criticality (or steepness) parameter. The Froude

number, which captures the joint effect of tidal amplitude and stratification, serves

as a test for nonlinearity, where Fr = u > 1 roughly indicates nonlinearities are

important. Additionally, we can calculate the criticality (or steepness) parameter

81 =(7.1)
w/N'

which compares the slope of the topography to the slope of the internal wave rays

at the tidal frequency w e.g. (Garrett and Kunze, 2007). When c = 1, the slope is

described as "critical," whereas gentler slopes are subcritical, and steeper ones are

supercritical. If we plot the internal Froude number and the criticality parameter for

the parameter space chosen, we obtain Fig. [7-6]. We note that for the majority of

the parameter space, either the Froude number or the criticality parameter is larger

than 1. The shaded (with grey lines) region in the Fig. [7-6] indicates where both c

and Fr are greater than 1. Also, note that we have plotted the Froude number for the

mode 1 internal waves. The higher mode internal waves will exhibit nonlinearities

sooner, for example, the mode 2 internal wave will be greater than 1 when the plotted

Fr > 0.5. Finally, these boundaries between linear and nonlinear are not sharp, and

Fig. [7-6] is only meant to serve as a rough guide.

7.1.4 Initial Conditions

Biological fields: We initialize the NPZ model as in §6.2 by first calculating the

steady-state of the equations (6.7)-(6.9) which can be found by setting i+V. (uD)-

V - V<D = 0. The background nutrient field is specified as

AIT = min 5 - 50.5h, 10), (7.2)
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Figure 7-6: Contours of the mode-1 Froude number over the criticality parameter.
The lines of the Froude number are marked by Fr and colored accordingly. The
criticality parameter space is filled in color according to the colorbar and varies lin-
early with N. The triangle region shaded with grey lines indicates parameters where
both Fr and c are greater than one, and where we expect both nonlinearities to be
important.
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Figure 7-7: Steady state concentration of biological tracer fields over the first 30 m in

depth. Plotted versus depth are the concentrations of phytoplankton P, zooplankton

Z, nitrogen N and the total biomass (their sum).

where the linear profile is chosen to represent the nutrient profile due to sinking

and to sediment-mixing sources. Such a profile is commonly observed in the region

Besiktepe et al. (2003). We note that Lai et al. (2010) used a constant-with-depth

ArT 6.8 pmolN.

The phytoplankton field is slightly perturbed everywhere to ensure that phyto-

plankton initially below the euphotic zone will have an opportunity to grow when it

is brought into the light field

)p = <1 steady + 0.01. (7.3)

These analytically calculated initial conditions are shown in Fig. [7-7], and on the

mesh they are shown in Fig. [7-8]. Note that the sharp gradient in the phytoplankton

field results in a saw-tooth pattern on the mesh (Fig. [7-8]). This happens because

when using a sigma-coordinate mesh for the vertical discretization, the degrees of

freedom are not horizontally aligned but form as saw-tooth pattern as observed. This

continuity will require a good slope-limiter to avoid non-physical, negative, phyto-

plankton, and is a good test of our numerical scheme.

Physical fields: To initialize the density, we use a linear stratification, with the
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Figure 7-8: Initial biological tracer fields on the numerical mesh.
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degree of stratification dependent on N
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Recall that we computed our range of N values by examining an averaged density

stratification profile from the strongly-stratified summer season. As such, our density

profiles approximately cover the range of density variations observed at SB in the

summer.

The velocities are initialized as zero everywhere, and for the free-surface we use

an analytical expression for a wedge (4.129), as an initial conditions. The free-surface

is initialized at the lowest level calculated from the analytical solution.

7.1.5 Boundary conditions

Biological fields: For the biological fields, we use the no-normal flux boundary

condition at solid boundaries (coast, bottom boundary) and at the free-surface. At the

open boundary, we use a Dirichlet boundary condition equal to the initial conditions

when the flow is into the domain. When the flow is out of the domain, we do not

need a boundary condition since we calculate our numerical flux using the upwind

value.

Physical fields: For the density, we use the same boundary conditions as for the

biological tracers, that is, no-normal flux at the solid boundaries and free-surface,

and Dirichlet at the open boundary for inflows.

For the velocities, we use free-slip on the bottom and free-surface, no-slip at the

coast, and a zero Neumann boundary condition at the open boundary. For the free-

surface, we use a zero Neumann boundary condition at the coast, and a Dirichlet

boundary condition at the open-boundary. Therefore, the M2 tides, with tidal fre-

quency o = 127x30,, are forced with the free-surface height only, and the velocity

is free to vary in depth at the open boundary. The non-hydrostatic pressure uses zero

Neumann boundary conditions everywhere.
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7.2 Results

In this section we begin by performing a scale analysis, followed by detailed nu-

merical simulations. The scale analysis serves as a baseline comparison to ensure that

the detailed numerical solution is producing reasonable results. We present numerical

simulation results of phytoplankton productivity for hydrostatic and non-hydrostatic

simulations. We study the effects of the internal-tide-bottom-slope criticality and of

the Froude number. We show results for constant criticality with varying Froude

number, as well as approximately constant Froude number with varying criticality.

Additionally, we show detailed phytoplankton fields over time, and we examine the

flow-field for a particular case.

7.2.1 Scale analysis

In this section we perform a scale analysis on the biological productivity to serve

as a baseline for the detailed numerical model. We begin by describing how vertical

displacements are estimated. Then we use the calculated vertical displacements to

obtain a depth-averaged light-intensity field. Using the averaged light-intensity field,

we estimate the time-integrated ("steady-state") of the system and the corresponding

productivity (this follows the circadian biogeochemical balance approach of Besiktepe

et al. (2003)).

To estimate the effects of vertical displacement on the biology, we begin by esti-

mating the effect of moving the phytoplankton field vertically through the non-linear

light profile. We can approximate the magnitude of vertical velocity using the scale

analysis (see Cushman-Roisin and Beckers (2011)):

W/f= Fr 2

U/L
U H

-> W = L min(1, Fr2 ),

= Us, min(1, Fr2 ), (7.5)

where the Froude number is used to estimate the reduction in vertical displacement
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due to stratification, and should not increase the vertical velocity. Now we can es-

timate the maximum vertical displacements by integrating the vertical velocity over

half a tidal period

JH = jrL Wdt

= j sin(wt)dtUs, min(1, Fr2 )

2
= -Us, min(1, Fr2 ) (7.6)

where the Froude number Fr = , is calculated using H = Hbk = 30 [m], and

U = UQR Hbak (from mass conservation).

Then, we integrate the non-linear light fields in the phytoplankton source-term to

find an average light-intensity over a tidal period

- 1 21r hz
I(z) = - j exp hz + - 6H sin(t) dt,

2r 30
(hz

=exp (hz) Io 6H ,
(30 /

where Io is the modified Bessel function of the first kind, and we have assumed the

vertical displacement varies linearly from the top of the bank to the free-surface. This

also assumes that the timescale of the vertical displacements are much faster than

the biological timescales. Once the averaged light-intensity is found, we calculate the

circadian-averaged steady-state biology at all depths, and numerically integrate the

productivity

PH HUez/h OPON dz. (7.7)
J-0H ON+ ks

This integrated productivity is compared to the steady-state of the 6H = 0 case,

Psteady. The vertical displacements and the relative productivities are plotted in Fig.

[7-9]. From the figure we note that we would expect an increase in productivity on

the order of a 25% using this biological model, with these parameters. Additionally,
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Figure 7-9: Order of magnitude estimation of vertical displacement (right) and its
effect on phytoplankton productivity (left). The maximum increase in productivity
is on the order of 25%.

as the stratification increases, the vertical displacements are expected to decrease,
and the biology is expected to be less affected (on linear average). Based on this,
we focus several of our model runs on the lower stratification levels. However, we

also note that local nonlinear wave effects not accounted for in our scale analysis can

become significant when stratification is large and this thus also investigated.

7.2.2 Numerical simulations and dynamical results

Productivity. To estimate the importance of non-hydrostatic effects with increas-

ing Froude number (or tidal forcing amplitude), we plot the depth-integrated pro-

ductivity normalized with the steady-state depth-integrated productivity over time

for various Froude numbers (Fig. [7-10]). The value of the criticality parameter

chosen for this first study is relatively small, c = 0.23. The left (right) column

shows the effect of the unsteady tidally forced flow on the biological productivity

for the hydrostatic (non-hydrostatic) simulation. For areas in the domain where
PHSsteady = 0, he unsteady forcing has no effect on the depth-integrated produc-

tivity. When PHSPsteady / 0, the unsteady forcing either increases or decreases the
Psteady

depth-integrated biological productivity. Examining Fig. [7-10], it shows that as the
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Froude number increases, the unsteady forcing has a larger effect on the biology, up to

approximately 20%. This in agreement with the scale analysis, which suggested that

as stratification increases (or Froude number decreases) the vertical displacements

would be smaller, leading to smaller productivity. Additionally, once the simulation

reaches approximately the 5th- 6 th tidal cycle, the depth-integrated productivity dif-

ferences reach their maximum amplitudes. Finally, we note that the wavy patterns

over tidal cycles are approximately at the same length-scale as the tidal excursion.

Next, we examine the middle column of Fig. [7-10]. This column compares the

effect of hydrostatic to non-hydrostatic simulations on the depth-integrated produc-

tivity normalized with the steady-state productivity. We note that the differences

are small far away from the top of the bank (indicated with a cross in the plots),

while near the top of the bank, they are on the order of 1% (for this small critically

c = 0.23). The hydrostatic simulation tends to produce a larger depth-integrated

productivity to the left of the bank, while the non-hydrostatic tends to produce a

larger depth-integrated productivity to the right and top of the bank. As the Froude

number increases, the differences between the hydrostatic and non-hydrostatic simu-

lations also tend to increase, although the second-largest Froude number shows larger

differences than the largest Froude number.

To estimate the importance of non-hydrostatic effects with increasing the crit-

icality parameter (that is, when increasing stratification and tidal amplitude as to

keep the effect of stratification the same), we plot the depth-integrated productivity

normalized with the steady-state depth-integrated productivity over time for various

criticality parameters, with an approximately constant Froude number (Fig. [7-11]).

As in Fig. [7-10] the left (right) column shows the effect of the unsteady flow on the

biological productivity for the hydrostatic (non-hydrostatic) simulation. Examining

Fig. [7-10], it shows that as the criticality increases, the unsteady forcing has a larger

effect on the biology, up to approximately 50%. This value is on the same order, but

logically larger, than the 25% increase we calculated for the linear scale analysis. Also,

as the criticality increases, the depth-integrated productivity is smaller, suggesting

that biological activity is decreased compared to the steady reference. Finally, with
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Figure 7-10: Depth-integrated relative productivity in time and across the bank for
various Froude numbers and constant criticality of E = 0.23 for hydrostatic minus
steady (left), hydrostatic minus non-hydrostatic (middle) and non-hydrostatic minus
steady (right). The bottom side of the bank di is indicated with a plus, the top of
the bank with a cross, and the approximate tidal excursion with a line. Note the
colorbar for middle column differs from that of the left and right columns.
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increasing criticality, the wavy patters are no longer periodic, and episodic events in

the productivity can be observed, which indicates an increase in nonlinearity.

Examining the middle column of Fig. [7-11], we note that the differences between

the hydrostatic and non-hydrostatic simulations are not as localized to the top of the

bank (indicated with a cross in the plots), and larger than observed previously (Fig.

[7-10]) for the larger criticality parameters. Near the top of the bank, they are on

the same order as the differences between the steady and unsteady simulations (side

columns). As the criticality increases, the differences between the non-hydrostatic and

hydrostatic runs increase. This is particularly evident when the criticality increases

past unity.

We can also examine the effect of increasing criticality at a lower Froude Number.

At a constant tidal forcing amplitude, we can increase the stratification to increase

the criticality. Fig. [7-12] shows the effect of increasing criticality with a constant

tidal forcing amplitude. As in Fig. [7-111 we see an increase in the difference between

the hydrostatic and non-hydrostatic simulations. However, the differences are more

localized and not as large compared to the higher Froude-number case in Fig. [7-11],

even though again much larger than for the lower critically number (Fig. [7-10]).

Phytoplankton. While we have been examining the differences in depth-integrated

productivity, we can also look at the actual phytoplankton fields over time. The

phytoplankton fields approximately give a time-integrated view of the effect of the

productivity differences. In other words, over time, even a small increase or decrease

of the instantaneous and circadian-averaged productivity can lead to a large difference

in phytoplankton fields. Differences can be large in mean concentrations but also in

the spatial features of the phytoplankton field. These properties are illustrated and

analyzed next.

We show the hydrostatic (left) and non-hydrostatic (right) phytoplankton fields

at every 2 nd tidal cycle in Fig. [7-13], and over the 7 th tidal cycle in Fig. [7-14] for

the case that showed the largest differences (Fr=1.9, c = 1.1, which are both well

within our range of expected values, see Fig. [7-6].). From Fig. [7-13] we see that the

differences between the hydrostatic and non-hydrostatic simulations are significant
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Figure 7-12: As in Fig. [7-11], but for smaller Froude numbers and at constant tidal
forcing amplitude (U = 0.2) and increasing stratification (N = [0.023, 0.032]. Here,
colorbars are all the same.

after the 6 th tidal cycle. Examining Fig. [7-14], we can see finer-scale features and

larger vertical displacements in the hydrostatic simulation to the left of the top of the

bank. As we decrease the criticality, we see that the non-hydrostatic and hydrostatic

results become more similar (Fig. [7-15]).

Velocity. To further examine the differences observed between the hydrostatic

and non-hydrostatic simulations, we compare the vertical velocity and the barocinic

horizontal velocity, see Fig. [7-16] - Fig. [7-17]. Examining Fig. [7-16], we note that

the larger-scale features are similar for both simulations. The hydrostatic simulation,

however, has smaller-scale features with larger vertical amplitudes to the left of the

top of the bank.

Similar observations can be made for the baroclinic velocities (Fig. [7-17]). We

again see larger velocities in the hydrostatic case, and smaller scale features, and

the large scale features are again similar for both. Several of the internal tidal wave

beams are similar but the nonlinear wave effects and smaller scale (non-hydrostatic)

features are different.
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Figure 7-13: Phytoplankton field using hydrostatic (left) and non-hydrostatic (right)
simulations plotted at every second tidal cycle for Fr ~ 1.9, c = 1.1, focusing on the
Bank region proper. The non-hydrostatic simulation has enhanced phytoplankton to
the left of the bank, and lower phytoplankton to the right.
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Figure 7-14: As in Fig. [7-13] but for the 7th tidal cycle.
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Figure 7-15: As in Fig. [7-13] but at the 8 th tidal cycle and for Fr a 2, E = 0.67.

7.3 Discussion and Conclusions

We completed a set of computational studies of coupled physical-biogeochemical

dynamics over an idealized coastal bank with steep bathymetric features, utilizing our

new non-hydrostatic and hydrostatic HDG finite element ocean modeling schemes.

We studied the effects of a varied set of physical parameters including tidal amplitude

and stratification. We analyzed effects of non-hydrostatic physics by examining the

depth-integrated biological productivity, the phytoplankton concentration, and the

velocity fields.

The results of the numerical simulation experiments suggest that non-hydrostatic

physics is important for accurate and quantitative modeling of biogeochemistry over

steep topography when the flow is supercritical. The non-hydrostatic effects increase

with increasing nonlinearity, both when the Froude number and criticality parameter

increase.

Scientific or societal applications that require physical-biological coupling (that

is, those that require unsteady effects to be modeled) would benefit from includ-

ing non-hydrostatic effects when the flow is super-critical. From Fig. [7-10], the

differences between non-hydrostatic and hydrostatic simulations at low criticality are

small compared to the differences between the steady and unsteady simulations. This

shows that increasing the Froude number at low criticality has little influence on

the biological-physical coupling with non-hydrostatic effects. When going from sub-

critical to super-critical at a constant Froude, however, the effect of non-hydrostatic
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Figure 7-16: Vertical velocity using hydrostatic (left) and non-hydrostatic (right)

simulations plotted for the 7th tidal cycle, with Fr ~ 1.9, c = 1.1.
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physics becomes as large as the effect of unsteadiness (Fig. [7-11]). That is, the

unsteady physical dynamics account for a 50% difference compared to the steady

calculation, while the difference between the hydrostatic and non-hydrostatic is also

50% different. At lower Froude number, the transition where non-hydrostatic physics

are important occur at a larger criticality. This shows that increasing the Froude

number at higher criticality also increases the influence of non-hydrostatic physics

on the biological-physical coupling. Thus, for super-critical flows, non-hydrostatic

physics have a significant effect on biological productivity and on biological fields and

dynamics.

While the biological concentrations and spatially varying details of the coupled

physical-biogeochemical system are affected by the non-hydrostatic physics, a bulk

or averaged productivity over the bank may not change significantly. In some cases,

the enhanced productivity and reduced productivity could even cancel, which means

a bulk estimate of the productivity for the region will be unaffected. Then, the hy-

drostatic simulations could appear sufficient since the larger-scale averaged produc-

tivity behavior is captured. However, over time, the productivity variability, however

small, will lead to variations in the total concentrations and the spatial features.

In a more realistic setting than modeled here, the concentration changes and the

spatially variable fields will interact with other processes. Episodic wind-driven or

rotationally-driven circulations are likely to interact with the tidally driven fields,

amplifying differences between hydrostatic and non-hydrostatic simulations. The bio-

logical dynamics, limit-cycles and other nonlinear equilibrium, would also be affected.

Therefore, we argue that even for applications where bulk estimates of productivity

are sufficient, detailed modeling with non-hydrostatic physics may still be important.

While the magnitude in productivity reaches its maximum amplitude after about

5 tidal cycles for the Fr=1.9, c = 1.1 case (Fig. [7-11]), we note from Fig. [7-13] that

the differences in phytoplankton between the non-hydrostatic and hydrostatic runs

continue to increase. While larger-scale features remain similar, smaller-scale fea-

tures, particularly toward the coast, become more different between the hydrostatic

and non-hydrostatic simulations. It is generally expected that the hydrostatic dy-
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namics will have enhanced phytoplankton concentration due to increased (erroneous)

vertical velocities. We see from Fig. [7-16] that the hydrostatic simulation indeed

has increased vertical velocities and at finer scales toward the shore. This is an ex-

pected behavior because the non-hydrostatic simulations can communicate changes

in continuity over larger length-scales than the hydrostatic case. This is because

the non-hydrostatic pressure enforces the continuity constraint by changing both the

horizontal and vertical velocities, while only the vertical velocity is modified in the

hydrostatic case. Therefore, larger horizontal and vertical velocities are expected for

the hydrostatic case, and these are observed in Fig. [7-16]-Fig. [7-17]. The small-

scale vertical oscillations in the hydrostatic case, then, increase the time-averaged

light-intensity field.

However, we do not necessarily observe higher phytoplankton concentration for the

hydrostatic case everywhere through the domain at all times. Additionally, away from

the coast, we observe higher velocity, small-scale nonlinear internal wave features that

are generated at the bank in the non-hydrostatic simulation and propagate away from

the coast (Fig. [7-16]). Therefore, at such super-critical flow conditions, the effect on

biological productivity of non-hydrostatic physics (compared to hydrostatic physics)

are complex, and do not seem amendable to simple rules.

We also note that the phytoplankton fields are nearly identical for lower-criticality

Fig. [7-15]. Thus, for sub-critical flows, the effect of non-hydrostatic physics on

biological productivity and fields does not seem to be important, at least for the

dynamics considered here. For more realistic cases where wind-driven and rotation-

driven dynamics are included, differences are likely to be larger, even for sub-critical

flows.

Based on our results, future research directions are to further examine the effect

of non-hydrostatic physics in three-dimensional settings. For simulations with higher

stratification and in realistic conditions, three-dimensional effects will be important.

Another direction is to study the coupled effects of tidal forcing with episodic wind-

driven forcing, and/or rotational effects. Parameterized studies using reduced order

methods (Lermusiaux, 2006, Sapsis and Lermusiaux, 2009, Ueckermann et al., 2012a)
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as well as adaptive model learning (Lermusiaux, 2007) for biological predictions would

also be useful. Our results indicate that non-hydrostatic effects are important for

coupled physical-biological dynamics in coastal regions with steep topography and

super-critical flows. Overall, we are now well positioned to extend our idealized

studies to more realistic coupled physical-biogeochemical ocean science and societal

applications.
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Chapter 8

Conclusions and Future work

In this thesis we derived and developed new numerical schemes to solve the Navier-

Stokes equations using a hybrid discontinuous Galerkin (HDG) spatial discretization

with a projection method. We then derived and developed new high-order HDG

schemes for ocean modeling. The corresponding ocean model dynamics can be solved

hydrostatically, non-hydrostatically, and with a nonlinear free-surface or a rigid lid.

These schemes were implemented in a python framework. We also developed a

new quadrature-free implementation which is consistent with hybrid discontinuous

Galerkin methods. Then, based on existing low-order slope limiters, we developed a

higher-order nodal slope limiter, and combined it with a selectivity criterion to re-

tain higher-order accuracy. We verified the correctness of our new numerical schemes

through various benchmark tests, confirming the theoretical convergence rates.

Using our new model codes, we studied the effect of higher-order discretizations

on patchy biology, and showed that higher order accuracy is important to retain the

concentrations in such patches. It is the high-order accuracy that allows sustaining the

correct nonlinear dynamics over a significant duration. To address the issue of when

high-order polynomials should be used, we evaluated the numerical truncation error

to show which regions of the discretization would benefit from increased polynomial

order versus decreased mesh resolution. We argued that where the solution had

sharply decaying modal coefficients, the polynomial order should be increased.

We also studied effects of non-hydrostatic physics on biological productivity and
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phytoplankton fields over idealized banks, focusing on Stellwagen Bank in Mas-

sachusetts Bay. We found that non-hydrostatic physics are the most important when

the flow is super-critical, that is, when the topography has a larger slope than the

internal wave characteristics. The non-hydrostatic effects increase with increasing

nonlinearity, both when the Froude number and criticality parameter increase. With

only hydrostatic physics, vertical and baroclinic velocities are often too large and it is

the dynamics at smaller scales that is most strongly modified by the non-hydrostatic

physics. As a consequence, these smaller scales non-hydrostatic advections alter the

biological productivity. Even in cases were the instantaneous biological productiv-

ity was not largely modified, we showed that the phytoplankton biomass as well as

the phytoplankton spatial variability and patchiness could be significantly altered by

non-hydrostatic processes over the idealized bank. For the real Stellwagen Bank, with

its wind-driven and rotation-driven dynamics, non-hydrostatic influences are likely to

be larger, even for sub-critical flows.

8.1 Discussion and Future Work

During the course of this work, we have identified several area of future research

directions, both in numerical research and in multiscale ocean dynamics research.

Some of them are discussed next.

8.1.1 Numerical Directions

e Nodal limiter's TVD bound determinations. Currently our nodal limiter cal-

culates the bounds of the solution in an element based on the maximum and

minimum values of itself and its immediate neighbors at the nodal points. This

does not provide a tight bound for higher-order elements, and localized violation

of the total variation diminishing criterion may occur. One improvement is to

calculate individual node bounds based on surrounding nodes in the up-wind

direction. Furthermore, to improve the accuracy, the bounds may be evaluated

by sampling the solution between nodes, although, depending on the number
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of sampling locations, this may significantly increase the cost of the method.

Sampling between nodes tries to avoid numerical dissipation that often occurs

at the apex of sinusoids, for example, where the top of the sine wave is flattened.

" TVD HDG diffusion. Our tests have shown that the numerical HDG diffu-

sion operator can introduce over/under-shoots in the solution when a small

diffusivity is applied to a problem with sharp interfaces. Specifically, for the

lock-exchange problem §3.8.4, the right-hand-side contributions from the diffu-

sive terms had to be limited to prevent over/under-shoots of the density. Our

selective nodal limiter is designed for advective terms with local support, and is

not well-suited to diffusive terms. As such, creating TVD-satisfying HDG dif-

fusion operators, or designing an appropriate limiter for the diffusion are areas

of potential research.

" Numerical consistency and conservation: free-surface and secondary variables.

The vertically integrated 2D continuity constraint that determines the free-

surface displacement is not consistent with the 3D continuity constraint that

determines the non-hydrostatic pressure or vertical velocity (in the hydrostatic

case). This is because in the former case, we integrate the velocity before tak-

ing its 2D divergence, and the operators do not commute. Additionally, the

time integration of the non-hydrostatic pressure and free-surface are not consis-

tent, since the non-hydrostatic pressure is evaluated instantaneously at Runge-

Kutta stages, while the free-surface is calculated as a time-integral over multiple

Runge-Kutta stages. While the inconsistency of the current scheme does not

seem to cause any significant problems, the accuracy and stability of the scheme

may be improved by using a fully consistent discretization. The HDG consis-

tency with secondary quantities such as kinetic energy, vorticity or enstrophy

as well as the numerical conservation of such quantities is also a major area of

research, especially for geophysical dynamics.

" Uncertainty quantification: Ocean prediction is an inherently probabilistic ven-

ture. Uncertainties arise from model errors and from unknown initial and
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boundary conditions constructed from sparse and noisy measurements. Ad-

ditionally, uncertainty in the system continues to grow due to the chaotic dy-

namics. In this thesis, we developed a high-order ocean model to mitigate the

effect of uncertainty due to numerical discretization error, but numerical er-

ror may remain a source of model uncertainty. As such, to quantify all of the

modeling uncertainties, the Dynamically Orthogonal (DO) method (Sapsis and

Lermusiaux, 2009, Ueckermann et al., 2012b, Sapsis and Lermusiaux, 2012) can

be implemented. When coupled with a non-Gaussian data assimilation method

(Sondergaard and Lermusiaux, 2011a,b), this modelling system would be more

capable of providing realistic ocean field estimations and predictions.

Additionally, coupling the DO method with high-order discretization could

could lead to accurate quantification of numerical discretization errors. The

decay of modal polynomial coefficients from a high-order HDG discretization

gives an accurate approximation of the local numerical error. Feeding this local

error into the DO framework allows this uncertainty to propagate, grow, and

dissipate. This area of research could enable the accurate time-space integra-

tion of numerical errors, which would allow researchers to assess the accuracy

of their predictions, and evaluate how to improve their numerical model.

8.1.2 Multiscale Multi-Dynamics Directions

* Coupled dynamics: In this thesis we studied a simplified coupled physics-biology

system §7. This application can be further extended by studying additional

parameters. For example, the effect of geometric parameters could be examined.

Particularly, the relative shelf/bank slope, the depth of the bank, and the width

of the bank could have significant impacts. Additionally, the criticality was

calculated using the steepest slope, which was composed of a line. What if the

side of the bank had a variable slope (which means the criticality would also

be variable)? Would the criticality need to be large enough at one point on the

slope, or for a certain percentage of the slope for non-hydrostatic dynamics to
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be relevant? Additionally, extending this case to 3D would allow the study of

rotational effects, and 3D flow interactions, helping to answer questions such

as: Do nonlinear non-hydrostatic processes modify 4D physical exchanges and

biogeochemical productivity at banks? Then, the interaction of various forcings,

such as the tidal and wind forcing, can also be studied.

* Multi-scale, inner-shelf dynamics: The high-order accuracy of the new code

allows simulations of phase resolved larger-scale dynamics. This can then be

coupled with a phase-resolved surface wave model to extend the modeling and

computational capability for the inner shelf regions. This extension would allow

scientific investigations into the dynamics and interactions of the flow domain

and wave domain. Resolving the phase of the dynamics is important for non-

linear interactions in regions with complex geometry such as the inner shelf,

and with this new capability the issues behind using phase-averaged/spectral

descriptions can be examined. This can also lead to improved parameteriza-

tions of the wave field. Additionally, the effects of the slowly-varying 3D current

and density variations on the surface and internal wave fields can be studied

to answer questions such as: Are the interactions of internal tides/waves with

background currents affected by non-hydrostatic and nonlinear free-surface pro-

cesses?. The cross-scale interactions and dynamics in the coupled flow and wave

fields could potentially be examined.

* Realistic Regional Ocean Model and High Performance Computing: While the

high-order unstructured grid numerical schemes are developed in this thesis,

issues such as initialization, grid optimization, objective analysis, and turbu-

lence closures require further consideration before realistic applications can be

attempted. In particular, an optimized C++, and MPI parallel implementation

(Mirabito et al., 2013), would significantly enhance the utility of the code to

handle the resolution required for realistic applications.
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Appendix A

Alternate splitting equations based

on hybrid discontinuous Galerkin

discretizations

Hybrid discontinuous Galerkin methods offer unique possibilities for splitting

schemes. Because the full, un-split equations can be cheaply solved on each element

once the boundary conditions are known, it is possible to time-split the boundary

condition solution instead of the solution of the full equations. That is the basic idea

behind the method. One algorithm based on this idea is presented next, but a family

of schemes exist.

If we decompose the boundary velocity into normal and tangential components as

A = Anie + At, where the magnitude of the normal component, A., is a scalar in any

dimension, the tangential components At = A)iQ + A 2j will be a vector in 3D, nie is

the unique normal vector as defined on the hybrid discontinuous Galerkin space, and

ti and j2 are orthogonal tangential vectors. If we take the full hybrid discontinuous

Galerkin discretized system that should be solved simultaneously ((2.74), (2.75)) and
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we substitute for the normal/tangential decomposed boundary velocity we obtain:

((Re)Qk+l,8)K (VVk+, + (Vk 1 , - (Ak+K + A k+'f1 )K

vk _ . Qk+1 K + Vk+1, 0K + (Vpk+l, K ((Ak+1 + fe K

+ (FO)K

(V vk+1,O)K (Vk+l .f)lK -(Ak+lf .')K

pk+1 I I) = i 1 k+1.

( 1 -Qk+l f. + pk+1f + T (Vk_+ 1 _ k 1ie) ,0)= (g-, xkI -,

A +ine - 'l K = 0,

Ak+ IoaD = gD-

We now time-split these equations by initially setting the normal velocity A+1 -

and averaged pressure =P~k+1 _ k* to guessed values. The solution method is then

as follows. First solve the local equations

((Re)Qk+1, (Vk+l, K + k+,1 K f . + k+ * ,k* f K

( ) K k( k+1o + (r+1, )aK (Vpk+l, )K = (r\tk+1 + A k*f K

+ (F,O)K

(V . ik+l, I- I) - (Vk+1 - 101)K i i, 0

(pk+1 I)K k *

where we had to modify the local solver by introducing 101 = fK OdK to make the

equations solvable. These local equations are subject to the global equations

k+1 . i + k+1n +,T ( k+1 _ \+l . C) (9N ' ie, OE )

Ak+l IOD - e =D - ie
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where A'*nie = 0. Next, we substitute for the known At+1, and solve the next set:

((Re)Qk+ K (vvk+l, K k+1 fi K

V ) (VQk+1) K +1 )K +1 K O)

(V -vk+1,O)K - (Vk+l .' )aK

(pk+1I 
K

xk+1 k+1lf7 i. E K(At + An 1fef e)aK

T Ak+1 +1e), K

+ (F,O)K

(Ak+1

ik+l,

These local equations are subject to the global equations

([[Qk+l - &k . T k+1 - A- 1iie nie, = (9N ' ne, 0)e

+ lfne .ni, = 0 ,

Ak+1 119Q -nle = gD - nle7

where Ak+1 -ne = 0. The splitting error can be calculated from noting that the jump

of the tangential diffusive fluxes will not longer be zero. That is, the splitting error

manifests itself in an inexact diffusive flux conservation. Or, where we had

Qk+1 -f + pk+ln+ T ( _k+1 - \k+1 .e N O) = K eN .

we now have

(FQk+l fi + pk+lf + 7 (k+1 + ., N -e, xk)l

and the difference of the two is

K (-Qk+1 + -k+1) . + (Pk+1 _ pk+1. + T k+1 _ k+1) -e, 6, = 0.

Now, the size of this splitting error depends both on the time and space discretization.

The time discretization error depends on the accuracy of the approximations Ak* and

Ipk**. For example, if we use the solution at the previous time-step as the guessed
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value, then the splitting error above should be O(At). For the spatial error, we

consider the jump of the splitting error across elements. For the velocity term, both

vk+1 -i and Vk+1 - are calculated by weakly enforcing the same tangential boundary

condition Ak+1 - on the boundary of the element. While this boundary condition

is only enforced weakly, we can still expect vk+1 -i and vk+1 - to be comparable,

their total difference of O(AxP+1 At) for polynomial of degree p. The difference in

the velocities will also be affected by the difference in the pressures (pk+1 _ pk+- i

since the pressures and velocities are related. We can expect this error to be similar

to the error in the velocities. The error in the diffusive flux, (-Qk+1 + Qk+1) .fi is not

generally expected to be small, but it will be for high Reynolds numbers, or 0 (u).
Therefore, we expect the splitting error to be 0 (A) + O(AxPAt).

Numerical experiments show that the diffusive fluxes are indeed the leading order

term in the splitting error. We also see that this scheme results in larger errors than

the projection method described in §2.3. As such, we did not further pursue this type

of time-splitting algorithm. However, we note that the method described above is one

part of a larger family of potential time-splitting methods. For example, instead of

using an old value of A, in the first step, we could have calculated one by also solving

for the normal component of the diffusive-flux. We would have had to solve it again

in the next step, but then it would have included a velocity correction similar to that

of projection methods. Alternatively, while we solved for the tangential component

of the diffusive fluxes first, we could have solved for the normal component instead,

followed by the tangential components. Other possibilities also exist; perhaps a least-

square approach would improve accuracy. So, even though time did not permit further

research in this area, we feel there may be opportunities using methods similar to the

one described above. There should be advantages to this approach over projection

methods.

One main advantage this method has over the projection method approach is that

here we do not have to carefully choose the value of -r. Additionally, as discussed

in §2.2.3, projection methods have an irreducible splitting error in the tangential

velocity components. In particular, we have to correct A on the hybrid discontinuous
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Galerkin space for projection methods, while with this method we would assign the

correct value of A at boundaries. These advantages make alternative splitting methods

based on hybrid discontinuous Galerkin discretizations attractive, but further research

is needed.
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Appendix B

Alternate Hybrid discontinuous

Galerkin formulation of Stokes

equations

In this Appendix we present an alternative discretization of the scheme presented

in §2.3.2. The main difference between this scheme and the one presented in §2.3.2

is the specification of the pressure-flux.

B.1 HDG discretization

Here we begin by stating the new element-local set of equations, along with their

global flux-conservation equations. Following this, we define the HDG fluxes that

were used to complete the discretization of (2.58)-(2.61) and obtain these equations.

The element-local equations for Vk+1, which complete the DG discretization of

(2.58) are

((Re)Qk+l, 6) _ (Vk+1' + (Vk+1, e)K K k+= 8K)

-k+1 0Kl, o + (k+lO1a g (K k+1 'K K + (Fk,k+l, )K

(B.1)

where r = 1 is the HDG stability parameter (see §2.3.4). The global flux-conservation
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equations for Ak+ are

K [ nk+l j , (E = (g O:),

4 k+1 k+ - (vk+1 _ A +1)]] o ) ( OE, ),, (B.2)

Aikl = gD (B.3)
ED

where gD and gN are the values of Dirichlet and Neumann boundary conditions for

the momentum equations, respectively.

The element-local equations for 6pk+1, which complete the DG discretization of

(2.59) are unchanged from §2.3.2, and these are

(qi,0 k - (v jpk+1, + K pk+1, i. g pK k+1' ii g&

(B.4)

- (v. qik , o +(r,6pk+1, k ~ +1 (V.k+ 1  ( k+l _ik+1). i K

(B.5)

-: k+i A-k+1 _____ isth

where we have used V + as defined by (2.83), and T, aAtr is the

HDG stability parameter for the pressure-correction (see §2.3.4). The global flux-

conservation equation for Ak+1 is also unchanged,

qp I]+ I n ,E = (gNp, OE)s

q5pk+i . ilT 6k+1 _ A+1 N O),(B)~~~~~~6 (Aql,~ Ii OE~(p1
-)]], = (gNp, OE),, (B.6)

E += 9D, (B.7)
D

where 9D, and gN, are the values of Dirichlet and Neumann boundary conditions for

the pressure-correction, respectively (and these are often zero Neumann, §2.2.3).

The velocity correction equation (2.60) remains unchanged, but now we use the
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pressure-gradient correction equation instead (2.61),

V k+1 k+1 - aAtq k+1

k+1 k 6 k 1 k+1
qk + Jq+ - rcor

where the rotational correction term rk+1 V-1 - V(aAtqk') is discretized as

((Re)Qc+, (VV

cr 8K =(k+1
rc 0) K =

k+1 K k+1 -V k+1
Se) K + cor IOK

Qk+1, 6)K k+1 _ Qk+) Kf,cor I O OK'

vk+1 = -aAtq k+
cor S

1
Qcor = cr,

(B.9)

(B.10)

since -aAtq,,' is the velocity-corrector.

The correction on the velocity edge-space also remains unchanged from §2.3.2

Ak+1 _ i--k+l + l+ (B.11)

= k+1 - aAtqsk+1 + aAtTr ( 6 pk+1
- ^k+1) (B.12)

where (2.73) was obtained by evaluating (2.60) on the edge-space, using the definition

of vcor = -aAtqpk1 and assuming that (2.83) was used for v'-+

,'k+1 -- k+1
To complete the DG discretization, we needed to define the fluxes, v ,+

- k+1 -k+1 - - k+1 Wk1 an k+1
bp , Q , p, and qsp+. We also have yet to define the fluxes for Cco and Qcor-

Now, our flux definitions forV"k+l in (2.58) at time k + 1, are:

.k+1
v =

PgD, on ea

-k+1

_k 1 _ k+1 _Q =

on E

T k+ _k+1)
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where P is the L2 projection of the boundary condition gD into the same space as 0,

In the same equation, we are now implicitly using

(B.15)

The fluxes for the pressure-correction equation, (2.59), are unchanged, and ex-

pressed as:

- k+1 1D,,

k+q k5p+1

On Ea

one 0

7 (6 pk+1 _ g_ k+1)

v-k+1 k+1
V* (B.18)

The form of the fluxes ck+1 and k+1 are explained in §B.2. While there is only
k+1 k+1

one sensible choice for Vkco , there are various choices for Qcor . The different choices
f k+1

for Qcor are given in §B.2, and here we report the flux that we have used:

-k-+i = A4 1 -k+1
v cor a~ i q8p f

= -aAt {{q+ 1 }} + aAt-r [[jpk+lfnJ

-k+1 Qk+1 T [[VkjnfJQcor = cor 2 [[co .

(B.19)

(B.20)

This completes the specification of the numerical scheme used in this Appendix.

In summary, the most significant difference between this scheme and that of §2.3.2 is

the choice of the pressure flux.

336

with

(B.16)

(B.17)

P = AP.



B.2 Consistency of the gradient of the rotational

velocity correction: formal justification

In this section we explain how to apply the rotational correction to the projec-

tion method when using the hybrid discontinuous Galerkin method with the fluxes

reported in Appendix B. We begin by describing the problem to gain an understand-

ing of the issue, then we present different choices for the fluxes, and we show why

calculating the pressure-correction directly does not avoid the problem.

The main issue here is that the rotational (velocity-based) correction of the pres-

sure is in reality an algebraic equation update that should be directly consistent with

the pressure update. This quantity should be explicitly calculable from existing quan-

tities, but due to the implicit nature of HDG methods, a globally coupled solve is

required for a fully consistent scheme. The rotational correction originates from the

diffusion operator applied to the non-divergent component of the predictor velocity,

or -aAtqki+ 1 (see §2.2.1). As such, the same diffusion operator used in the velocity

predictor equation, (B.1), including the same flux definitions, and stability parame-

ters (that is, T) should be used. However, these fluxes are not well-defined, and the

problem of constructing consistent fluxes with known quantities becomes clear when

we examine the form of the HDG fluxes as expressed by element-local quantities.

The problem: In §2.3.3 we remarked that the corrector velocity used is single-

valued only in the normal direction. To see from where the discontinuity arises,

consider the velocity correction on the *+ element:

vcr/aAt {-qsp+ + r (Jp+ - Ab) fi+

This can be re-written in terms of element-local quantities only by substituting for
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A6p

vcOr/aAt = {-q,,+} + T, 6P+ - {{6p}} + [ qap - i n+

= {-(qp+ - ni+)n+ - (q+. +)+1} + [q - fil n+ + Tr, (6p+ - {{ p}}) fj+

=-{ -{{ - n}}n+ + L [[6pn+ - (q+ .+){+ (B.21)

Now, since (qc,. + ( .(q- -+)i+, this flux is not single-valued. The equation

(B.21), shows that the edge-correction fluxes on either side of an edge differ only by

the tangential components of pressure-correction gradient.

The situation, however, is exacerbated for the diffusive fluxes. To see this, we

proceed as above:

Qco - += Q+ -n+ - r(v+ - vco)

=Q + , nf+ _ at _q+, +{{fq6P - fi}}nf+ - _' [ 6pn]l+ (q , -i-')i+)

= Q+, f-+ - aAtr (-(q, - n+)+ _ (q+* .+)+ + {{qP - n}}n* - i" [3pfi + (q+ .i+)+

Q+, -+ - aAtr [q , -n fi+ -_ jpfi] (B.22)

Now, since Q+ - i+ # Q-r - ii, this flux is not single-valued in the normal or

tangential directions. The problem, then, is that Qcor can not be directly related

to (q6 - f)ii and 6pni defining a new flux that is single valued and consistent with

the HDG fluxes chosen for the velocity predictor and pressure corrector equations.

Unfortunately, an exact solution requires the solution of a globally coupled equation

(§2.5). Thus, we explore approximate solutions.

Flux choices: Let us first discuss the choices for cor. We can choose to have either

a continuous flux that is single-valued on the HDG edge-space, but a discontinuous

flux is also possible. For a continuous Vcor, the hybrid discontinuous Galerkin flux

has to be of the form

Vcor/aAt =- {{qp}} - b qp - ]] i + p [n,

which is written to resemble an advective flux. From this it becomes more clear that
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we could use a purely central, purely upwind, or mixed scheme if we choose

b = 0,

b = sign (-qp - ft + rp (6p - Asp)),

b = f (V, qsp, Jp, Alsp, -r,, n) ,

respectively. Since the equation in question is of a diffusive nature, we choose to use

a central scheme, as there is no preferred direction of propagation for information.

This leads to the flux:

Vcor/aAt = - {{ -, - n}} ii + T, [pn] - {{q }}

= - {{q,}} + r [ 6p]

Also, the central scheme most closely resembles the expected hybrid discontinuous

Galerkin flux and numerical experimentation seemed to indicate that this choice gives

the most accurate and stable solution.

For a discontinuous j'ko+ , the flux can be defined local to each element. In that

case, a sensible choice is

Vcor/aAt = -qjp + Tr (6p - Ap) ii,

however other choices also exist. This flux is discontinuous because on the 0+ element

the (q+.+) + term from (B.21) is used, while on the e- element the (q- - -)&~ term

is used (as in (B.21)). Our tests showed that this discontinuous flux representation

was less stable than a continuous choice.

As a final note, we could add a tangential component to the correction. For

example, we could have

Vr + -- j+ +T7P (6p+ - A k 1 ) f,+ (6p+ - Aj)&
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This will modify (B.21) to give:

Acor/aAt = - {{q fi l l}} n+ + Tp [[6pfi+]] - {{q8p -} 1++ p pfT6pi+]

This form will not affect the solution of any global equation, the discrete divergence,

or the advection operator, since the tangential terms will be zero when the flux is

dotted with the normal. It will only affect the rotational correction of the pressure

which is used as a predictor for the pressure at the next time-step.

k+1
Next, we have to consider the flux choices for Qco, . The problem in this case

is different from Vk+, where we at least know that the normal component of the

flux is continuous for all reasonable choices. The diffusive flux, Qk+l, however, is

not expected to be continuous, since we never solved an equation to preserve the

flux of, what is effectively, the third derivative of the pressure. As such, enforcing a

continuous flux may not be required or desired. With this in mind, we could simply

apply the hybrid discontinuous fluxes with local values in each element

Qcor Qr ~ (Vr -cor ) -

The only problem with this flux is that the stabilization term will be different on the

left and right sides of the element. As such, we propose a small modification

crcor rVcorfi -
Qcor Q -~ 2

While this flux is still discontinuous, numerical experiments seem to indicate that it

is slightly more stable compared to the previous choice.

Another strategy would be to define a completely continuous flux, which takes the

usual form for diffusive discontinuous Galerkin fluxes, that is using

Qcor {{Qcor}} - C11 [corfi] + C12 l[Qcor f il
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we have to define C12 and C22. If we use the hybrid discontinuous Galerkin fluxes,

C11= T, C 12 = 0, but numerical experiments show this flux is much less stable than

the discontinuous one above.

In summary, we argued that a wide range of fluxes could be used for calculating

the rotational correction. None of them will be completely consistent with the hybrid

discontinuous Galerkin method, unless a globally coupled equation is inverted. The

approximate fluxes that we use attempt to remain somewhat compatible with hybrid

discontinuous Galerkin, but are not continuous across elements. We have tried various

different flux choices, but numerical experiments seemed to indicate that the best

result is obtained if we solve the element-local equations for rcor using the following

fluxes (B.19)-(B.20)

Vcor = -aAt {{qsp}} + aAtr, 6pfij,

Qcor = Qcor - IVcorfn.

Direct calculation of pressure: Since the rotational correction term is difficult to

compute, why not solve for the true pressure correction directly? Unfortunately,

this strategy leads to a problem with the velocity correction. Consider the pressure

gradient correction equation, and take its divergence:

k+1 k + I - -1% ~ = + '- V- VtAt k+- % + %P Re
1- -(qk+1 _gk) V . k1 _Vp. V R- aqsk+1,% - qP % Re atp

= V q1 + V - V 1 ..pk+,
Re

-l .k+l 1. -~)aAt V +VRe '

where the third line is explained by V -vk+1 = 0, V - - = -aAtV -qsp. Having solved

this equation, the pressure is corrected as

k+1 k+1 _ k) + qk
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The velocity, correction, unfortunately, requires the solution of an inverse problem

v k+1 = + - aAtq k 1

Ik+ Re I

-1
k+1 qk)

since q - q = [I - V - Vant] q,+

Hence, we prefer solving for qgp with fluxes (B.19), (B.20), which only explicit

solves.
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