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ABSTRACT

A new hybrid ensemble Kalman filter/four-dimensional variational data assimilation (EnKF/4D-VAR)

approach is introduced to mitigate background covariance limitations in the EnKF. The work is based on the

adaptive EnKF (AEnKF) method, which bears a strong resemblance to the hybrid EnKF/three-dimensional

variational data assimilation (3D-VAR) method. In the AEnKF, the representativeness of the EnKF en-

semble is regularly enhanced with new members generated after back projection of the EnKF analysis re-

siduals to state space using a 3D-VAR [or optimal interpolation (OI)] scheme with a preselected background

covariance matrix. The idea here is to reformulate the transformation of the residuals as a 4D-VAR problem,

constraining the newmember with model dynamics and the previous observations. This should provide more

information for the estimation of the new member and reduce dependence of the AEnKF on the assumed

stationary background covariance matrix. This is done by integrating the analysis residuals backward in time

with the adjoint model. Numerical experiments are performed with the Lorenz-96 model under different

scenarios to test the new approach and to evaluate its performance with respect to the EnKF and the hybrid

EnKF/3D-VAR. The new method leads to the least root-mean-square estimation errors as long as the linear

assumption guaranteeing the stability of the adjoint model holds. It is also found to be less sensitive to choices

of the assimilation system inputs and parameters.

1. Introduction

Data assimilation (DA) aims at determining the best

possible estimate of the state of a system by combining

information from observations and a model forecast

according to their respective uncertainties (Ghil and

Malanotte-Rizzoli 1991). Techniques based on the four-

dimensional variational data assimilation (4D-VAR)

approach (Lewis and Derber 1985; Dimet and Talagrand
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1986) and the ensemble Kalman filter (EnKF) approach

(Evensen 1994; Tippett et al. 2003) are now recognized

as the most promising assimilation methods. The 4D-

VAR produces the model trajectory that best fits the

data over a given period of time by adjusting a set of

control parameters. The EnKF optimally blends model

outputs and observations according to their respective

uncertainties. Continuous progress in computing resources

recently enabled the implementation of these methods

with state-of-the-art atmospheric and oceanic applica-

tions. We refer to Klinker et al. (2000), Houtekamer

et al. (2005), K€ohl et al. (2007), Carton andGiese (2008),

and Hoteit et al. (2010, 2013) to cite a few.

Several studies discussed and compared the strengths

and weaknesses of these two approaches (Lorenc 2003;

Caya et al. 2005). 4D-VAR methods are mainly known

for generating dynamically consistent state estimates

within the period of validity of the tangent linear model

(Hoteit et al. 2010). Their performance, however, strongly

depends on the specification of the background co-

variance matrix that represents the prior uncertainties

about the controls (Weaver et al. 2003). Constructing the

background covariance is still the subject of intensive

research and various methods have been proposed to

model and parameterize this matrix (Parrish andDerber

1992; Daley 1991; Weaver et al. 2003). These assump-

tions are, however, not always appropriate, and more

importantly the resulting background matrix is not flow

dependent in the sense that there is still no available

efficient variational method to update the background

uncertainty in time.

EnKFmethods operate sequentially every time a new

observation is available. The update of the background

covariance matrix in time is carried out through the in-

tegration of an ensemble of states representing the un-

certainties about the prior (or forecast) with the nonlinear

model. Accounting for model deficiencies and use of

large ensembles are important factors in obtaining ac-

curate estimates of the background covariance with an

EnKF. However, prior knowledge about the nature and

the statistics of model uncertainties are generally lack-

ing to properly take into account model errors in the

EnKF (Hamill and Whitaker 2005; Hoteit et al. 2007),

and computational resources are still lacking for imple-

menting the filters with large ensembles. Using a small

ensemble means that the EnKF starts from a prior space

that is almost certainly too small and distorted. As the

filter proceeds, this space shrinks and can drift even fur-

ther from truth. Small ensembles also mean rank defi-

ciency and spurious correlations that could prevent the

filter’s correction from efficiently fitting the observations

(Houtekamer and Mitchell 1998; Hamill and Snyder

2000). This problem is often mitigated by covariance

localization that ‘‘artificially’’ increases the effective rank

of the background matrix. Strong localization may, how-

ever, distort the dynamical balance of the analysis and

may lead to a bad forecast (Mitchell et al. 2002). This

latter problem has been recently investigated by Kepert

(2009).

Recently, the assimilation community has become

strongly interested in developing hybrid methods that

combine the variational and filtering approaches. The

idea is to develop new assimilation schemes that could

potentially incorporate the advantages from both ap-

proaches. Existing hybrid methods can be basically

classified into two main categories; either following the

hybrid EnKF/three-dimensional variational data as-

similation (3D-VAR) [or ENKF/optimal interpolation

(OI)], which augments the EnKF covariance by the sta-

tionary background covariance B of a variational system

as a way to reduce the impact of ensemble sampling

errors on the EnKF (Hamill and Snyder 2000; Lorenc

2003; Buehner 2005;Wang et al. 2007), or using the flow-

dependent covariance matrix of the EnKF as the back-

ground matrix for the 4D-VAR problem (Evensen and

van Leeuwen 2000; Hunt et al. 2004; Liu et al. 2008;

Zhang et al. 2009). For convenience we will refer to

these approaches as the 3D and 4D hybrid methods.

Augmenting the ensemble by B in an ad hoc manner in

the 3D hybrid approach is not optimal, but might at least

improve the EnKF correction by including some of the

omitted features in the rank-deficient EnKF covariance.

The main problem with 4D hybrid methods is that they

require running both the EnKF and 4D-VAR and this

can be algorithmically and computationally quite

demanding.

In this work we propose a different approach to com-

bine the good features of the EnKF and the 4D-VAR. It

is based on a new hybrid scheme that has been recently

introduced by Song et al. (2010), called the adaptive

ensemble Kalman filter (AEnKF). The idea behind the

AEnKF is to adaptively improve the representativeness

of the EnKF ensemble by ‘‘enriching’’ it with new

members. The new members are generated after every

analysis cycle by back projecting the analysis residuals,

onto the state space using a 3D-VAR (or OI) assimila-

tion system. The use of information contained in the

residuals to enrich the ensemble was already investigated

by Ballabrera-Poy et al. (2001) and Lermusiaux (2007) in

the context of reduced Kalman filters. Cumulative errors

in the EnKF background covariance can be seen by the

increase in residuals, and in particular structures in the

residuals. These contain information about the missing

part of the background covariance that prevented the

EnKF fromfitting the data, typicallymodel errors and the

null space of the ensemble (Song et al. 2010). In contrast
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to the 3D hybrid approach, the AEnKF uses the analysis

step residuals to target specific directions of the pre-

selected background matrix to enrich the EnKF en-

semble. This should reduce the addition of unnecessary

structures to the EnKF background. Moreover, the

EnKF and 3D-VAR analysis steps are applied sepa-

rately, which offers more numerical and implementation

flexibility.

As with the 3D hybrid approach, the AEnKF behav-

ior depends on the stationary background matrix, which

is often not well known. The AEnKF was also found to

be sensitive to the amount of available observations for

efficient reconstruction of the residuals in the state space

(Song et al. 2010). Here we further develop the idea of

the AEnKF and propose to generate the new members

from a 4D-VAR assimilation system. We refer to this

approach as the 4D-AEnKF.

4D-VAR analysis lets the model–data misfit choose

the descent directions used to fit the data. These vectors

are created using the assumed background error co-

variance. In an analogy to filtering, each member along

a descent direction from an iterative fit can be consid-

ered to be an adaptive ensemble element. The idea is

then to use the 4D-VAR method to transform exces-

sively large residuals left by the incomplete ensemble

into descent directions, or new ensemble elements that

improve the fit to observations and diversify the en-

semble. Reformulating the selection process of the new

members as a 4D-VAR problem allows inclusion of

more information from the model dynamics and the

previous observations, and reduces dependence on the

specified stationary background. This would further

provide a dynamically consistent new member that is

more suitable for forecasting.

The paper is organized as follows. After briefly recall-

ing the characteristics of the AEnKF, we describe the

4D-AEnKFapproach in section 2. Results of numerical

experiments with the Lorenz-96 model (Lorenz and

Emanuel 1998) are then presented and discussed in

section 3, followed by a general discussion to conclude

in section 4.

2. The 4D adaptive ensemble Kalman filter

a. Review of the adaptive ensemble Kalman filter

The AEnKF is introduced by Song et al. (2010) as an

adaptive approach tomitigate the background covariance

limitations in the EnKF.

The hypothesis motivating the AEnKF is that null

space of the ensemble may grow in time and will mani-

fest itself as increasing residuals. The idea is then to use

the residuals to estimate corrections to the model state

and use these as new ensemble members. This was

demonstrated to significantly enhance the EnKF perfor-

mance in the case of small ensembles and the presence of

model errors.

The algorithm of the AEnKF is based on that of the

EnKF and has the same succession of a forecast step to

integrate the analysis ensemble forward in time and an

analysis step to correct the ensemble every time a new

observation is available. After every analysis step, new

members are generated by solving a 3D assimilation

problem and then added to the analysis ensemble before

a new forecast step takes place. At any time, the state is

estimated as the mean of the current filter ensemble.

We present the adaptive approach in the framework

of the standard (stochastic) EnKF as described by

Evensen (2003). However, the method can be however

easily implemented in the framework of any determin-

istic, or square root EnKF (Tippett et al. 2003; Hoteit

et al. 2002). Assuming an ensemble of state estimates is

available at an analysis time, the forecast step consists

of integrating the ensemble members forward with the

model to the time of the next available observation. The

forecast ensemble is then corrected using the observa-

tion with the Kalman analysis step:

xai 5 x
f
i 1K(di 2Hx

f
i ) , (1)

where xfi and xai are the ith forecast and analysis en-

semble members, respectively; di is the observation vec-

tor, perturbed with a realization of independent random

noise generated from the probability distribution of the

observational errors (Burgers et al. 1998); and H is the

observational operator relating the state to the obser-

vation. Here K is the Kalman gain matrix given by

K5Pcr(Ppr 1R)21 , (2)

where Pcr is the sample cross covariance between the

background ensemble and its projection on the obser-

vation space, Ppr is the sample covariance matrix of

the background ensemble projected on the observation

space (Evensen 2003), and R is the observational error

covariance matrix.

Instead of adding a stationary covariance matrix B to

the EnKF sample covariance matrix as in the hybrid

EnKF/3D-VAR, the AEnKF generates new ensemble

members first through the minimization of the cost func-

tion of a 3D assimilation problem (OI or 3D-VAR)

J(dx)5
1

2
dxTB21dx1

1

2
(r2Hdx)TR21(r2Hdx) (3)

with respect to dx. The residual vector r is the difference

between the filter analysis xa and the observations:
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r5 d2Hxa . (4)

The analytical solution for (3) is

dxe5BHT(HBHT 1R)21r . (5)

A new ensemble member xa,e is then taken as

xa,e5 xa1bdxe , (6)

with b a factor controlling the distance of the new

member from the ensemble mean (Song et al. 2010).

Replacing an ensemble member will of course change

the ensemble distribution (e.g., mean and covariance),

rather than preserving it. This is also true for the hybrid

approach where, roughly speaking, a full matrix is added

to the ensemble distribution. In the proposed approach,

the significance of these changes, which can be easily

quantified, depends on the residuals and the specified

static background covariance matrix. For instance, the

sample mean after adding the new member becomes

~x5
1

N
(xa1bdxe)1

1

N
�
N

i51,i6¼k

xi , (7)

5
1

N
(xa1bdxe)2

1

N
(xa 1 x0k)1

1

N
�
N

i51

xi, and (8)

5

�
xa2

1

N
x0k

�
1

1

N
bdxe , (9)

where N is the ensemble size and x0k is the perturbation

of the kth ensemble member that is removed. We argue

that these changes may be desirable, even necessary, in

certain situations where the EnKF background co-

variance is not well estimated, which could happen from

uncertainty omitted from the original ensemble sub-

space and/or unanticipated model error. In this case, it

would make sense to enrich the filter ensemble with new

members sampled not from the ensemble distribution,

but from its ‘‘complementary part,’’ which we estimate

here from the statistics of the residuals back projected

into the state space.

Figure 1 illustrates an optimal choice for the value ofb

in the ideal situation where there is no observation error,

and the truth xt is known to us. In practice, the above two

conditions are not satisfied, therefore, one may have to

rely on some ad hoc criterion. In the present work, we

set b 5 1 in all our experiments based on the results of

Song et al. (2010), who reported that the AEnKFwas not

strongly sensitive to the value of b in the small ensemble

case. Further tuning of this parameter is expected to

improve the behavior of the adaptive scheme. One may

certainly use more sophisticated criteria. For instance,

similar to Li and Reynolds (2007), one may adopt some

iterative search algorithm to choose b such that the norm

kd2Hx̂k of the new residual, where x̂ is the mean of the

ensemble, is less than that at the previous searching

step. This type of iterative searching, however, may in-

cur substantial computational cost, especially in the case

of nonlinear observational operators.

More members can be generated from the a posteriori

distribution of dxe, or by using the conjugate gradient

descent directions in an iteration minimizing J as dis-

cussed in Song et al. (2010). To avoid growth of the en-

semble from adding newmembers, some ‘‘old’’ members

may be dropped from the ensemble. Here we follow Song

et al. (2010) and remove the closest member(s) to the

mean after every analysis step. Distances between the

ensemble mean and the members were determined by

theEuclidean normnormalized by the standard deviations

of the model variables computed from a long model run.

One can also show, using some simple algebra, that this

FIG. 1. The position of the ensemble sample mean before and

after the new member xa,e has been added. The original sample

mean xa (square) and its adjacent point xa 2 (1/N)(xa 1 x0k) (closed
diamond) after dropping the member xk 5 xa 1 x0k are in the sub-

space E generated by the original ensemble, while the truth xt

(open circle) lies outside. After adding xa,e, the new sample mean

(open diamond) becomes ~x5 [xa 2 (1/N)x0k]1 (1/N)bdxe. By tun-

ing the coefficient b, one can make the distance k~x2 xtk2 less than
kxa 2 xtk2. The minimum of k~x2 xtk2 is achieved if ~x reaches the

filled circle, such that ~x2 xt is orthogonal to ~x2 xa 1 (1/N)x0k.
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choice imposes minimal changes to the mean and the

covariance of the original ensemble.

b. The 4D adaptive ensemble Kalman filter

To reduce the dependence of the AEnKF on the

specification of B and to include more information from

the model dynamics and previous data in the estimation

of the new member, we propose a 4D variational for-

mulation of the AEnKF, that we will call 4D-AEnKF.

More specifically, the idea behind the 4D-AEnKF is to

replace the 3D cost function in (3) by the following 4D

cost function:

J4D[dx(ti2n)]5
1

2
dx(ti2n)

TB21dx(ti2n)

1
1

2
�
i

j5i2n
aj[rj 2Gjdx(ti2n)]

T

3R21
j [rj 2Gjdx(ti2n)] . (10)

The parameter aj allows for varying weight of the dif-

ferent time levels, which will be explored in the exam-

ples later, where earlier data are not always used in the

experiments. Here we followed the incremental formu-

lation of the 4D-VAR approach (Courtier et al. 1994) to

define J4D in which the matrix Gj propagates the per-

turbation dxe(ti2n) from time ti2n to time ti in the ob-

servation space and is given by

Gj 5HjMj,i2n , (11)

with Mj,i2n as the tangent linear model of the transition

operatorMj,i2n integrating the state between ti2n and tj.

As in (6), the solution dxe(ti2n) of (10) is then added to

the analysis xa(ti2n) as in the AEnKF to form a new

member at time ti2n:

xa,e(ti2n)5 xa(ti2n)1bdxe(ti2n) . (12)

As discussed in section 2a, the value of b was to set to 1

in all the experiments presented in this study. Themember

xa,e(ti2n) is next integrated forward in time with the non-

linearmodel to obtain the newensemblemember xa,e(ti) at

the current time ti. As in the AEnKF, the 4D-AEnKF

augments the EnKF ensemble with this new member,

before starting a new forecast step. The algorithms of the

AEnKF and 4D-AEnKF are depicted in Fig. 2.

This 4D formulation of the problem reads as if we are

looking for a new member dxe(ti2n) in the past time ti2n

(and not at the current time ti as in the AEnKF) that

provides information from the model dynamics and the

observations about the part of the correction subspace

that was not well captured by the EnKF ensemble in the

n most recent analysis steps. Integrating xa,e(ti2n) for-

ward with the nonlinear model should provide a better

and dynamically consistent newmember to start the new

analysis step.

The analytical solution dxe(ti2n) of (10) is given by

(Courtier et al. 1994)

dxe(ti2n)5

 
B211 �

i

j5i2n
ajG

T
j R

21
j Gj

!21

�
i

j5i2n
ajG

T
j R

21
j rj .

(13)

Computing dxe(ti2n) requires specifying GT
j , and there-

fore the integration of the adjoint model MT
i2n,j. The

backward integration of the residuals is therefore only

efficient within the period of validity of the tangent

linear model (Weaver et al. 2003).Moreover, computing

the analytical solution requires the inversion of the

matrix (B21 1�l
j5l2najG

T
j R

21
j Gj), which can become

numerically problematic when the system dimension is

large. In this case, one can either solve this problem by

performing the optimization in the observational space

(if the number of observations is not too large) as sug-

gested in the representer method (Bennett 2002), or

using an iterative optimization algorithm, such as the

steepest descent or the conjugate gradient algorithm as

it is commonly done in realistic 4D-VAR applications

(Fisher 1998; Lorenc 2003). Both of these methods use

the adjoint model to compute the gradients of the cost

function with respect to the control.

Note that it is possible to generate more than one

member in the 4D-AEnKF after every analysis step

following similar ideas to those presented in the AEnKF

(Song et al. 2010). For instance, several descent di-

rections could be used during the optimization of (10) if

desired. The 4DVAR has no error estimates, so the

weighting of the descent directions in the ensemble is

heuristically chosen. Another way would be to sample

several realizations from the distribution of the residuals

as described in Song et al. (2010) and then integrate these

backward in timewith the adjoint before integrating them

forward with the model to generate the new members

(exactly as it is done for one member). This obviously

could become computationally demanding as each new

ensemble member would require forward and backward

integrations of the dynamical model and its adjoint.

3. Numerical experiments

a. Model description and settings

We use the Lorenz-96 (L96) model (Lorenz and

Emanuel 1998) to test and evaluate the behavior of

the 4D-AEnKF and to compare its performance to the
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EnKF, AEnKF, and the hybrid EnKF/3D-VAR. This

model is widely used in the assimilation community to

test EnKF-based schemes and provides a repeatable

performance benchmark (Whitaker andHamill 2002). L96

was designed to mimic the evolution of an atmospheric

variable in time and is described by the following highly

nonlinear set of differential equations j 5 1, 2, . . . , L:

dx(j, t)

dt
5 x(j2 1, t)[x(j1 1, t)2 x(j2 2, t)]2 x(j, t)1F .

(14)

The model was implemented here in its most common

form. We therefore considered L 5 40 variables, forc-

ing term F 5 8, and periodic boundary conditions, i.e.,

x(21, t)5 x(L2 1, t), x(0, t)5 x(L, t), and x(L1 1, t)5
x(1, t). For F 5 8, disturbances propagate from low to

high indices (from ‘‘west’’ to ‘‘east’’) and the model be-

haves chaotically (Lorenz and Emanuel 1998). L96 and its

tangent linear model (and adjoint) were discretized using a

Runge–Kutta fourth-order integration (Sandu 2006) with

a time step t 5 0.05, which corresponds to 6 h in real-

world time.

FIG. 2. Diagram describing the algorithms of (top) the AEnKF and (bottom) the 4D-AEnKF;

Xf and Xa denote the forecast ensemble and analysis ensemble, respectively. In the AEnKF, the

ensemble members are first integrated forward with the model (➊), then updated with incoming

observations (➋), exactly as in the EnKF. The residual r at the analysis time is computed (➌)

before getting back projected into a new ensemblemember in the state space (➍). A new filtering

cycle then begins. The 4D-AEnKF follows a very similar procedure, except that the residual

computed at the analysis time is integrated backward with the adjoint model (➍) before getting

integrated forward with the model (➎) to generate a new ensemble member.

3348 MONTHLY WEATHER REV IEW VOLUME 141



We follow Song et al. (2010) to generate the filter

initial conditions and the back-projection matrix B. The

model was first integrated forward without assimilation

for a time period equivalent to several years in real-

world time. The mean and the covariance from the run

were used for the initial ensemble mean and the matrix

B, respectively. The starting ensemble members were

generated by adding independent Gaussian random per-

turbations with unit variance to each model variable.

All tested assimilation schemes were implemented

with covariance inflation and covariance localization

using the Gaspari–Cohn fifth-order correlation function

as described byWhitaker andHamill (2002). For a given

length scale, the correlation between two grid points

becomes zero if the distance between those points is

greater than twice of the length scale (Hamill et al.

2001). It is important to notice here that the proposed

adaptive scheme should also increase the spread of the

ensemble because the members that are closest to the

ensemble mean, which contribute the least to the en-

semble spread, are replaced by new members that pre-

sumably account for model and undersampling errors.

There are other EnKF formulations that do not use

multiplicative covariance inflation and/or do not require

covariance inflation (Houtekamer and Mitchell 1998;

Houtekamer et al. 2009; Bocquet 2011).

In the hybrid scheme, the estimated background error

covariance ~P is defined as

~P5 (12 g)P1 gB . (15)

After a series of tests in which g 2 f0, 0.1, 0.2, . . . , 0.9, 1g,
we used g 5 0.1 as it yielded the smallest root-mean-

squared error (RMSE). Assimilation experiments were

carried out in the presence of undersampling and model

errors by using relatively small ensembles with 10

members, and incorrect forcing F 5 6 in the forecast

model, respectively. Note that the forcing term is con-

stant in the Lorenz-96 model and therefore does not

appear in the adjoint model. This means that the adjoint

model is the same for the true and perturbed models.

This partly explains why the new member carried ap-

propriate information about the model dynamics de-

spite the introduction of an important forcing error

in the forecast model. In this study, we considered two

scenarios to test the filters performances: experiments

including only sampling error, and a more general case

including both sampling and model errors. An addi-

tional experiment was also performed under only model

error, similar to Song et al. (2010). The results from this

experiment are consistent with those published in Song

et al. (2010) showing the improved filtering performance

by the adaptive methods (not shown). The proposed

adaptive schemes were also implemented with the en-

semble transform Kalman filter (ETKF) under the same

scenarios as the EnKF and similar improvements to

those reported here were obtained.

Observations were sampled every four time steps

(which is equivalent to 1 day in real-world time) in-

stead of every time step as is typically considered in

assimilation/filtering studies with the L96 model to test

the filters inmore typical and challenging situations when

data are not available every model time step for assimi-

lation. The filters were evaluated under three different

sampling strategies in which the observations were con-

sidered available for all, half, and quarter of the model

variables using constant sampling intervals. Assimilation

experiments were performed over a period of 1115 days

(or 4460 model steps), but only the last 3 years were

considered in the analysis of the results after excluding an

early spinup period of about 20 days. For a given inflation

factor and covariance localization length scale, each filter

run was repeated 10 times, each with randomly drawn

initial ensemble and observational errors, and the aver-

age RMSEs over these 10 runs were reported to reduce

statistical fluctuations. Several longer (more than 100 000

model steps) assimilation runs were also performed to test

the impact of the adaptive schemes on the long behavior of

the EnKF. The resulting RMSEs from these runs are very

close (within 1%) to those obtained with the 3-yr runs.

As discussed in section 2b, the proposed 4D-AEnKF

scheme would only be efficient if the residuals were in-

tegrated backward within the valid period of the tangent

linear model. Below we describe the tangent linear

model validation test and study its behavior.

b. Validation of the tangent linear model assumption

For a given state vector x and a perturbation x0, we
first integrate the two state vectors x and x1 x0 with the

nonlinear model M forward in time, and compute the

difference Dx 5 M(x 1 x0) 2 M(x), which measures

the time evolution of perturbation in the nonlinear sys-

tem. We also integrate the perturbation x0 with the tan-

gent linear model M. Then the difference between the

outputs of these runs, dx 5 Dx 2 Mx0, represents the

nonlinear terms associated with the same perturbation. A

measure of the growth of the nonlinearities during the

integration period can be obtained by taking the ratio r

between the length of dx and Dx:

r5

ffiffiffiffiffiffiffiffiffiffiffiffiffi
dxTdx

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DxTDx

p . (16)

The ratio r is zero if the system is linear. If r is greater

than 1, this indicates that the nonlinear part strongly

affects the perturbation growth.
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Figure 3 plots the ratio r as it results from runs with

three different perturbation sizes x0 5 x/10, x0 5 x/2, and

x0 5 x. A total of 1000 runs were performed with dif-

ferent initialization for each perturbation size to reduce

statistical fluctuations and determine variability, and

these and their mean are plotted in gray and black,

respectively, in Fig. 3. When the size of the perturbation

is relatively small (x0 5 x/10), the mean value of the ratio

r remains less than 0.5 after 18 time integration steps

(about 4.5 days) as can be seen in Fig. 3a. As expected,

the ratio grows faster with larger perturbations, and for

x0 5 x/2, it becomes close to 1 after only 10 time steps

(Fig. 3b). The nonlinear part becomes even more sig-

nificant if the perturbation is of the same size as the state

(Fig. 3c). However, considering the variability, and as-

suming that the residuals are usually smaller than the

states, which is a reasonable assumption for a well-behaved

assimilation system, one can assume that the linear as-

sumption remains valid for at least four time steps (1 day),

which is the observation frequency in our experiments.

Based on these results and unless specified otherwise,

we created the newmember after integrating the residuals

backward with the adjoint model for four time steps.

c. 4D-AEnKF versus EnKF, AEnKF, and 3D-hybrid

1) CASE WITH ONLY SAMPLING ERROR

In the first experiment we study the behavior of the

4D-AEnKF and evaluate its performance against those

of the EnKF, AEnKF, and 3D-hybrid in the presence of

only sampling errors. The filters use the same forecast

model as the truemode, so nomodel errors were included.

The ensemble size was set to 10 and the new member in

the 4D-AEnKF was estimated at the previous analysis

time step after integrating the adjoint model backward

for four time steps. Two different implementations of

the 4D-AEnKF were tested, using or not the observa-

tions at time ti24 in the 4D cost function of (10) of the

4D-AEnKF (i.e., setting ai24 to either 1 or 0). In the fol-

lowing we refer to the 4D-AEnKF that does not include

the previous data at time ti24 as AD-AEnKF.

Hybrid methods generally reduce the sensitivity of

the filter to the inflation factor and error covariance

localization length scale as can be seen from Fig. 4. This

is consistent with our above discussion about the adap-

tive scheme also introduces some sort of inflation to the

background covariance. The minimum RMSE values of

FIG. 3. Ratio between the length of dx and Dx in time, where Dx and dx represent the dif-

ference between two nonlinear trajectories started from x and x1 x0, and the time evolution of

the nonlinear part for x0. Hence, the ratio shows the growth of the nonlinear part with respect to

the growth of the perturbation in time. Three different initial perturbations were chosen for

testing: (a) x0 5 x/10, (b) x0 5 x/2, and (c) x0 5 x. The results are plotted in black lines with

variability computed from 1000 realizations.
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the EnKF and the hybrid methods are generally similar.

In the full observation case, the minimum RMSE of the

EnKF is smaller than the 3D-hybrid and AD-AEnKF,

although their minimum RMSE can be reduced by op-

timizing their parameters g and b, respectively.

When fewer observations are assimilated into the

system, the AD-AEnKF and 4D-AEnKF provide the

lower RMSEs compared to the other filters. They also

reduce the sensitivity of the filters to the tuning pa-

rameters. Interestingly, the rate of the RMSE reduction

by adjoint-based adaptive filters is the greatest when

only a quarter of the variables are observed. This sug-

gests that the model dynamics can enrich the ensemble

by spreading the information in the residual from the

observed variables to the unobserved variables in a dy-

namically consistent manner.

2) GENERAL CASE WITH SAMPLING

AND MODEL ERRORS

In this experiment we study the behavior of the

4D-AEnKF in the presence of both sampling and model

errors. As in the previous experiment, the ensemble size

was set to 10. The model error is introduced by setting

F5 6 in the filters forecast model. The minimumRMSE

of the EnKF was obtained using a larger range of in-

flation factors than those tested in the previous experi-

ment.We therefore extended the range of tested inflation

values.

To reduce the number of experiments and save com-

puting time, we evaluated theRMSEof the filters varying

the inflation factor with different upper values (2, 1.5, and

1.25, respectively) for the all, half, and quarter obser-

vations scenarios. These ranges should be sufficient to

understand the general behavior of the different filters,

including also the minimum RMSE (best performance)

of each filter.

Figure 5 plots the RMSE resulting from the different

filtering schemes with the three observation scenarios as

a function of inflation factor and covariance localization

length scale. All hybrid methods generally improve upon

the performance of the EnKF. In the full observations

case scenario, the EnKFwith a well-tuned inflation factor

and localization length scale can perform as well as the

hybrid schemes. However, the hybrid schemes are more

robust for nonoptimal values of inflation factor and lo-

calization length scale. In all cases, the lowest RMSE

is obtained with the 4D-AEnKF. More tuning of the

weighting factor b is also expected to further improve

the performance of the 4D-AEnKF.

Both AD-AEnKF and 4D-AEnKF have generally

lower RMSE than the AEnKF. The results also suggest

that the proposed adaptive schemes clearly enhance the

robustness of the EnKF, especially in the dense

observation scenarios. In the quarter observation case,

the robustness of the EnKF is not much improved,

though the minimum RMSEs are still obtained with the

4D-AEnKF.More observationmeansmore information

for both faster reduction of ensemble spread and better

estimation of a new member. In all observation scenar-

ios, the adaptive filters also reached theirminimumRMSE

at lower inflation values than the EnKF and the hybrid

EnKF/3D-VAR, and their RMSEs are generally better

than those obtained with the EnKF RMSE with larger

inflation factors. This supports the claim that the new

members also improve the ensemble spread. Overall

and as expected, including the data at ti24 in the gener-

ation of the new member are beneficial for the adaptive

schemes, so that the best performances were obtained

with the 4D-AEnKF.

To analyze the impact of the newly generatedmember

on the distribution of the ensemble of the 4D-AEnKF,

the time evolution of the first model state variable x(1, t)

is shown for the 4D-AEnKF ensemble members over

a 21-day period (between days 70 and 90) in Fig. 6 before

(forecast) and after (analysis) applying the correction

step. Plots are shown for the case where observations of

all model variables were assimilated, localization length

scale 10.95, and inflation factor 1.01. Black dots in Fig. 6a

represent the position of the new members after they

have been integrated from the previous analysis time to

the current time. White dots in Fig. 6b indicate the po-

sitions of the new members. Following the algorithm

of the 4D-AEnKF, white dots in Fig. 6b at day ti24 are

integrated with the L96 model and become the black

dots in Fig. 6a at day ti. The plots show good examples of

how the behavior of the EnKF can be improved by the

new member created using the adjoint model. For in-

stance, at day 76, all ensemble members but the new one

are located around the value 7, while the true state is

close to 10 (Fig. 6a). The new member, which has been

integrated from days 75 to 76, has a value that is close to

the true state. This new member was created one day

earlier (white dot on day 75 in Fig. 6b) such that the

ensemble forecast better represents the distribution of

the forecast state. As a result, the newmember increases

the uncertainty and brings the ensemble and the analysis

ensemble mean at day 76 closer to the true state (Fig.

6b). Another time where improvement is clear is day 79.

The integrated new member is closer to the true state

than the other ensemble members, resulting in a better

analysis. Although the newly created member at day 78

is in fact farther away from the true state at the previous

time, it was generated so as to improve the forecast at

the next filtering step.

The reliability of the filter ensemble can be assessed

using the rank histogram (Hamill and Snyder 2000).
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FIG. 4. RMSE averaged over time and all variables as a function of inflation factor and covariance localization length scale from (a)–(c)

EnKF, (d)–(f) hybrid 3DVAR/EnKF, (g)–(i) AEnKF, (j)–(l) AD-AEnKF, and (m)–(o) 4D-AEnKF.Only sampling error was introduced.

The AD-AEnKF and 4D-AEnKF both run four backward time steps to create a new member, but the AD-AEnKF uses the residual at

time tiwhile the 4D-AEnKF uses the residuals at time ti and ti24. All filters assimilated the observations from the three different strategies.

The RMSE from the filters assimilating (left) all, (middle) half, and (right) quarter of variables. White dots in each panel indicate the

location of minimum RMSE with the value of the minimum shown in the bottom-right corner.
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FIG. 5. As in Fig. 4, but both sampling andmodel errors were introduced. Themaximum values of inflation factors for all, half, and quarter

observations scenarios are 2.0, 1.50, and 1.25, respectively.
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Ideally, the value of a truth has an equal chance to occur in

any of the possible ranks relative to the sorted ensemble

(from low to high). Over many samples, this is reflected

by a flat histogram. Nonuniformity in rank histograms

usually suggests potential problems in the ensemble. For

example, an ensemble with insufficient spread or biased

state will have a rank histogram with higher values at

one or both edges (U shaped) while an ensemble with

excessive spread will have a rank histogram with low

values at the edges (Anderson 1996; Hamill and Snyder

2000).

The rank histograms from the EnKF, hybrid EnKF/

3D-VAR, AEnKF, AD-AEnKF, and 4D-AEnKF are

shown in Fig. 7 for the three different observation sce-

narios and the combination of localization length scale

and inflation factor that yield the best-state estimates for

each filtering scheme. One can first notice that the rank

histograms are generally tilted to the right, probably

associated with the bias in the forecast model used in

assimilation resulting from incorrect (biased) forcing.

For all filters, the slopes of the rank histograms show

a tendency to increase as fewer observations are

assimilated. The rank histogram of the hybrid EnKF/

3D-VAR is not very different from that of the EnKF.

The rank histograms of the EnKF with the adaptive

schemes are flatter. This suggests that the adaptive

schemes reduce the impact of the forcing bias on the

filter ensemble. The more the residuals are integrated

backward and data are included, the less the impact of

the forcing bias is visible. The 4D-AEnKF has small

ensemble variance likely because it constrains the new

ensemble member with more data from the previous

analysis time, and because of the power of the 4D-VAR

scheme in fitting the data (here the residuals). However,

the 4D-AEnKF still provides the best-state estimate in

the experiments in terms of lowest RMSE. The large

bars at the edges of the rank histograms might suggest

occasional existence of ‘‘outliers’’ likely caused by the

large weight carried by the one, and only, member that

we used to represent the null space of the filter ensem-

ble. These should become more consistent with the rest

of the ensemble members after they are integrated with

the model dynamics during the forecast steps, and as

more data become available in time. Sampling of more

FIG. 6. Time evolution of the first model variable x(1, t) between days 70 and 90 in the true

state (red line), the mean of ensemble members or filter’s estimates (black line), and 10 en-

semble members (gray lines), as it results from (a) 4D-AEnKF forecast and (b) 4D-AEnKF

analysis with 1.01 inflation factor and 10.95 error covariance localization length scale. Closed

circles in (a) indicate the positions of the new members that were created one day earlier

[marked as open circles in (b)] before integrating them with the model to the analysis time.
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new members at every analysis cycle should also help,

but this would generally increase computational cost.

d. Sensitivity of 4D-AEnKF to the number
of adjoint steps and B

A set of experiments were performed to study the

impact of the 4D-AEnKF setup on performance. Several

assimilation experiments were run, varying the number of

adjoint backward integration steps of the back-projected

residuals. We also tested different choices of the

stationary background covariance matrices B (used in

the variational 3D-VAR or 4D-VAR components of the

system). To implement this, we computed different ap-

proximations B̂r of the sample covariance matrixB used

in the previous experiment by selecting only the r eigen-

vectors of B associated with the first few largest eigen-

values. These low-rank (r) matrices of the following form:

B̂r 5LrSrL
T
r , (17)

FIG. 7. Rank histograms as calculated from the ensembles of the EnKF, hybrid 3DVAR/EnKF,AEnKF,AD-AEnKF, and 4D-AEnKF for

the three different observation scenarios. Results are shown for the combination of inflation factor and localization length scale (left and right

values printed below each plot) that yield the best-state estimates for each filter. The corresponding RMSEs are also shown in each panel.
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were then used as stationary background covariances

in the filters. In this equation, Lg is the matrix whose

columns are the r eigenvectors associated with the r

largest eigenvalues of B, and Sg is the r 3 r diagonal

matrix with the first r eigenvalues. Of course, the more

eigenvectors selected (or the larger r) the closer B̂r is toB.

For instance, one can see from the spectra of the eigen-

values plotted in Fig. 8 that at least seven eigenvalues are

needed to explain half of the total variance of B.

One can already expect from (13) that the more

backward integration steps are taken the more the new

residual is constrained with dynamics and data, which

should reduce dependence on the stationary back-

ground error covariance B. Thus, one goal of this exer-

cise is to study whether longer backward integrations of

the new member can reduce dependence on the quality

of B. However, as discussed before, this should be only

true for a limited number of backward integration steps

within the range of validity of the linear approximation.

Here we limited the number of backward steps to four to

make sure that the linear assumption holds and the ad-

joint is stable for all new ensemble members, in line with

our discussion in section 3b. More backward steps should

in general improve the performance of the 4D-AEnKF,

but incurs the risk of making the adjoint unstable (Hoteit

et al. 2005) in certain cases. One could monitor the be-

havior of the adjoint to select the ‘‘optimal’’ number of

backward steps for each newly generated member. This

was not done in this experiment for ease of presentation

and discussion of the results. As will be clear from the

next paragraph, the presented results are enough to study

the behavior of the 4D-AEnKFwithmore backward steps.

Figure 9 plots the RMSE as it results from the 4D-

AEnKF as a function of the number of backward time

steps (x coordinate) and the number of eigenvectors that

were used to approximate B̂ (y coordinate) with the three

different observation scenarios. Of course, the RMSE

resulting from zero backward time steps (on the leftmost

side) is the RMSE of the AEnKF. Since very low ranks

give little freedom for the back projection of the re-

siduals, preventing improvement of the ensemble, a full

rank matrix B̂1 «I was used instead of B̂ for the gener-

ation of the newmembers in theAEnKF.With «5 0.001,

results are shown from the combination of localization

length scale and inflation factor that yield the best

overall state estimates with all, half, and quarter obser-

vation cases. These were set as (1.14, 21.91), (1.04, 7.30),

and (1.05, 3.65), respectively. As one can expect, the

RMSE always decreases in all observation scenarios

as the ‘‘approximated’’ B̂ gets closer to B, as the latter

is expected to provide a better representation of the

background covariance than B̂. The RMSE also gener-

ally decreases with more backward integration time

steps (of course only within the range of validity of the

tangent linear assumption). It is also clearly seen in Fig. 9

that more backward integration reduces the sensitivity of

the RMSE to the number of eigenvectors used. This sug-

gests that in general the model dynamics and previous

observations can help compensate for a poorly mod-

eled background covariance matrix B.

4. Discussion

Four-dimensional variational data assimilation (4D-

VAR) and ensembleKalman filters (EnKF) are advanced

data assimilation schemes that are being extensively

used by the ocean and atmospheric community. Each

approach, however, has its own strengths andweaknesses.

FIG. 8. Normalized eigenvalues of the error covariance matrix B from the climatology. Solid

line and dashed line show the normalized eigenvalues and accumulated normalized eigen-

values, respectively.
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The EnKF provides an efficient algorithm to update the

background covariance forward in time by integrating the

prior uncertainty as an ensemble of state vectors. Because

of limitation in computing resources, however, the EnKF

can only integrate small ensembles, meaning that the

prior space of uncertainty is almost certainly too small,

and distorted in amplitudes. Moreover, as the filter pro-

ceeds, this space shrinks and can drift from truth.

There has been strong interest recently in building

hybrid schemes that combine the strengths of each ap-

proach. New methods have been proposed either by

augmenting the EnKF covariance by the stationary

background covarianceB of a variational system (hybrid

EnKF/3D-VAR), or by using the flow-dependent co-

variance matrix of the EnKF as the background matrix

for the 4D-VAR problem (hybrid EnKF/4D-VAR). In

this paper, we proposed a new direction based on the use

of the 4D-VARmethod to transform large residuals left

behind after anEnKF correction step into new ensemble

members along the descent directions, which improve

the fit to observations and diversify the ensemble. In-

deed, 4D-VAR analysis lets the model–data misfit

choose the descent directions used to fit the data. In an

analogy to filtering, each descent direction from an it-

erative fit can then be considered to be a possible adap-

tive ensemble element.

The new approach is based on the adaptive EnKF

(AEnKF), which uses a 3D assimilation (3D-VARorOI)

system and a chosen stationary background covariance to

back project the residuals into new EnKF ensemble

FIG. 9. RMSE averaged over time and all variables as a function of number of backward time steps and number of eigenvectors that

were used to approximate B̂. The 4D-AEnKF is implemented with 10 members, and observations from three different network scenarios

(all variables, every second variable, and every fourth variable) were assimilated at every fourth model time step (or 1 day in real time). A

full rank matrix B̂1 «I was used instead of B̂ for the generation of the new members.
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members. The idea is then to generalize the 3D assimi-

lation system to a 4D-VAR system; hence, it was referred

to as 4D-AEnKF. In contrast with the AEnKF that cre-

ates the new member at the current analysis step, the

4D-AEnKF creates the new member in the past so that

model dynamics and more data can be included in the

estimation process of the new member. The 4D formu-

lation of the AEnKF involves integrating the residuals

backward in time with the adjoint model. This should

reduce the dependence of the AEnKF on the stationary

background covariance matrix and provide more infor-

mation for better estimation of the new member.

The proposed adaptive schemes should be viewed as

a new auxiliary tool that could be used to improve per-

formances when an EnKF is not behaving well because

the filter ensemble does not accurately represent the

prior distribution. In the ideal case, when an EnKF is

behaving well, the residuals are small, and a newly gen-

erated ensemblemember should be close to the ensemble

mean. Therefore, the addition of a new member will not

introduce useful information to the ensemble, but even in

this case, results from different numerical experiments

suggest that the use of the proposed scheme will not de-

grade the performance of an EnKF operating well under

ideal conditions. One could come up with an additional

procedure to check if this happens, by for instance com-

paring the residuals with the observational error. If the

residuals are smaller than the observational error, then

one may judge that the filter ensemble is good enough

and therefore not generate any new members.

The adaptive schemes can be applied to any EnKF

scheme simultaneously with other existing auxiliary

tools such as inflation and localization. They are simple

to implement, but as with the hybrid EnKF-variational

schemes, require the specification of a stationary back-

ground covariance matrix. The 4D version further re-

quires an adjoint model. For implementation, one should

add one OI/3D-VAR step to the 3D version and one

adjoint step to the 4D version, and therefore the pro-

posed schemes should not incur significant extra com-

putational burdenwhen implemented with small systems.

In cases where iterative methods are necessary to solve

the linear problem in (13), the extra computational cost

will depend on the number of iterations needed.

The 4D-AEnKF was tested with the L96 model in the

presence of both sampling andmodel errors. L96 provides

a benchmark setting to test and evaluate the performance

of a new assimilation scheme and the 4D-AEnKF proved

to be successful with this model. In the experiments, for

all tested cases, the adaptive schemes always enhance the

EnKFbehavior and, in general, the 4D-AEnKF improves

upon the performance of the AEnKF. Furthermore, the

backward integration of the residuals enhances the

robustness of the AEnKF and decreases dependence on

the stationary background covariance as long as the

tangent linear assumption is valid. The benefit of the

adaptive scheme is less significant in the case of coarse

observation networks, since there is less available in-

formation for the back projection of the residuals into

the state space. In this case the role of the stationary

background covariance in the back-projection scheme

and the background integration of the residuals with the

adjoint become more important.

The proposed adaptive schemes were found effective

in enhancing the EnKF behavior in our test studies with

the L96 model. This preliminary application was a nec-

essary step before trying realistic applications it provided

encouraging results. We recently tested the scheme with

a quasigeostrophic model and the preliminary results

were encouraging. More work is required to study and

understand the behavior of the proposed schemes with

realistic oceanic and atmospheric data assimilation prob-

lems. We are currently working on implementing and

testing these methods with a realistic ocean model.
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