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Abstract In sequential event prediction, we are given a “sequence database” of past
event sequences to learn from, and we aim to predict the next event within a cur-
rent event sequence. We focus on applications where the set of the past events has
predictive power and not the specific order of those past events. Such applications
arise in recommender systems, equipment maintenance, medical informatics, and
in other domains. Our formalization of sequential event prediction draws on ideas
from supervised ranking. We show how specific choices within this approach lead
to different sequential event prediction problems and algorithms. In recommender
system applications, the observed sequence of events depends on user choices,
which may be influenced by the recommendations, which are themselves tailored
to the user’s choices. This leads to sequential event prediction algorithms involving
a non-convex optimization problem. We apply our approach to an online grocery
store recommender system, email recipient recommendation, and a novel applica-
tion in the health event prediction domain.

Keywords Sequential Event Prediction · Supervised Ranking · Recommender
Systems

1 Introduction

Sequential event prediction refers to a wide class of problems in which a set of
initially hidden events are sequentially revealed. The goal is to use the set of re-
vealed events, but not necessarily their order, to predict the remaining (hidden)
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events in the sequence. We have access to a “sequence database” of past event
sequences that we can use to design the predictions. Predictions for the next event
are updated each time a new event is revealed. There are many examples of se-
quential prediction problems. Medical conditions occur over a timeline, and the
conditions that the patient has experienced in the past can be used to predict
conditions that will come (McCormick et al, 2012). Music recommender systems,
e.g. Pandora, use a set of songs for which the user has revealed his or her prefer-
ence to construct a suitable playlist. The playlist is modified as new preferences
are revealed. Online grocery stores such as Fresh Direct (in NYC) use the cus-
tomer’s current shopping cart to recommend other items. The recommendations
are updated as items are added to the basket. Motivated by this application, “se-
quential event prediction” was formalized by Rudin et al (2011, 2012), who created
a theoretical foundation along with some simple algorithms based on association
rules. In this work, we present optimization-based algorithms for sequential event
prediction. These algorithms are based on the principle of empirical risk minimiza-
tion (ERM). We apply our algorithms to data from three applications: an online
grocery store recommender system, email recipient recommendation, and medical
condition prediction.

Recommender systems are a particularly interesting example of sequential
event prediction because the predictions are expected to influence the sequence
(e.g., Senecal and Nantel, 2004), and any realistic algorithm should take this into
account. For instance, there has recently been work showing that measurements
of user behavior can be used to improve search engine rankings (Agichtein et al,
2006a,b). For an online grocery store recommender system, items are added to
the basket one at a time. The customer may not have an explicit preference for
the order in which items are added, rather he or she may add items in whichever
order is most convenient. In particular, the customer may add items in the order
provided by the recommender system, which means the predictions actually alter
the sequence in which events appear. Our formulation allows for models of user
behavior to be incorporated while we learn the recommender system.

The same formulation used for the online grocery store recommender system
can be directly applied to email recipient recommendation. Given a partial list
of recipients on an email, we wish to predict the remaining recipients. An email
recipient recommendation algorithm can be a very useful tool; an algorithm for
this purpose was recently implemented on a very large scale by Google and is
integrated into the Gmail system used by millions of people (Roth et al, 2010).

Medical condition prediction is a new yet active area of research in data mining
(Davis et al, 2010; McCormick et al, 2012). Accurate predictions of subsequent
patient conditions will allow for better preventative medicine, increased quality of
life, and reduced healthcare costs. Rather than a sequence of single items, the data
comprise a sequence of sets of conditions. Our formulation can handle sequences of
sets, and we apply it to a medical dataset consisting of individual patient histories.

The sequential event prediction problems we consider here are different from
time-series prediction problems, that one might handle with a Markov chain. For
instance, the online grocery store recommender system problem has no intrinsic
order in which groceries should be added to the basket, and in email recipient
recommendation the order of the addresses is likely of little importance. Only
the set of past items are useful for predicting the remaining sequence. Figure
1 gives an illustration of this point using the online grocery store recommender
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Fig. 1 An illustration of the online grocery store recommender system, in which items from
an unordered shopping list are sequentially added to the user’s basket. At each time step, the
set of items in the basket is used to predict future items that will be added.

Fig. 2 An illustration of the medical condition prediction problem, in which collections of
medical conditions occur at various time steps. At each time step, we use past collections of
conditions to predict conditions that will subsequently be presented.

system. For instance, at time t = 2, apples and cherries are in the basket and
are together used to predict what will be added next. The fact that apples were
added before cherries is not necessarily useful. In the medical condition prediction
problem, collections of conditions occur at different time steps, and we use all past
collections of conditions to predict the next collection. Figure 2 shows a sequence
of these collections of conditions as they occur over time. For instance, at time
t = 1, we use the entire collection of conditions {Hypertension, Sore throat, Gastric
Ulcer} to make a prediction about the next collection. At time t = 2, we use the
two collections {Hypertension, Sore Throat, Gastric Ulcer} and {Hypertension,
Influenza} to make a prediction about the following time step. The collections of
conditions occur sequentially in a certain order, however each collection is itself an
unordered set of conditions. For example, it might not be sensible at t = 3 to say
that elevated cholesterol preceded Headache. On the surface, the online grocery
store recommender system and the medical condition prediction problem seem
quite different, but the methodology we develop for both problems derive from a
general formulation which could be adapted to a wide range of other sequential
event prediction problems.

We treat each step of sequential event prediction as a supervised ranking prob-
lem. Given a set of revealed events from the current sequence, our algorithms rank
all other possible events according to their likelihood of being a subsequent event
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in the sequence. The accuracy of our prediction is determined by how far down
the list we need to look in order to find the next item(s) to be added.

Section 2 gives a formal introduction to sequential event prediction and pro-
vides the notation that we will use throughout the paper. Section 3 presents our
ERM-based method for sequential event prediction. In Section 4 we apply the
ERM-based algorithms to email recipient recommendation, in which the sequence
is one of email addresses. In Section 5 we study patient condition prediction, and
the sequences are of sets of medical conditions. The third and final application is
in Section 6, where we apply our methods to an online grocery store recommender
system. In that application we allow the recommendations to influence the order
of the sequence, and provide algorithms for performing ERM. Our approach syn-
thesizes ideas from supervised ranking in machine learning, convex optimization,
and customer behavior modeling to produce flexible and powerful methods that
can be used broadly for sequential event prediction problems.

2 Sequential Event Prediction

We begin by presenting the formal framework and notation of sequential event
prediction problems, and discussing previously developed algorithms for sequential
event prediction based on association rules.

We suppose that we have access to a collection of m sequences, which in our
applications would be m visits from a grocery store customer, m emails, or m

patient histories. The items in the sequence (e.g., grocery items, email addresses,
or medical conditions) come from a library of N items, Z being the set of these
items. Sequence i in the sequence database (e.g., visit i, email i, or patient i)
includes a total of Ti time steps, with items (or sets of items) occuring in the
sequence at time steps t = 1, . . . , Ti. The item (or set of items) added to the
sequence at time t is denoted zi,t. As illustrated in Figure 2, each step in the
sequence may be a set of items and thus we consider zi,t to be a set in general.
In many applications, such as the online grocery store recommender system and
email recipient recommendation, zi,t will contain only one item. The observed part
of the sequence at time t is denoted xi,t = {zi,j}j=1,...,t. The full sequence, xi,Ti

,
is denoted Xi. We denote the collection of m training sequences as Xm

1 .
It is not clear how to adapt standard modeling techniques (e.g., logistic re-

gression) to sequential event prediction problems because they estimate full prob-
abilities rather than partial probabilities. The difficulties in using regression for
sequential event prediction are discussed in detail in Rudin et al (2012), where we
propose algorithms for sequential event prediction based on association rules.

Association rules have the advantage of being able to model the conditional
probabilities directly. In this context, an association rule is a rule “a→ b,” meaning
that itemset a in the sequence implies item b is also in the sequence. We define the
confidence of rule “a→ b” to be the proportion of training sequences with itemset
a that also have item b: Conf(a → b) = P̂(b|a) = #(a and b)

#a . A natural strategy
for using association rules for sequential event prediction is to: 0) Specify a set A
of allowed itemsets. 1) Form all rules with left-hand side a an allowed itemset in
the observed portion of the sequence and right-hand side b a potential future item
in the sequence. 2) For each right-hand side b, find the rule with the maximum
confidence. 3) Rank the right-hand sides (potential future items in the sequence)
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in order of descending confidence, and use this ranked list for predictions. This is
the “max-confidence” algorithm, used throughout the association rule literature
and applied to sequential event prediction by Rudin et al (2012).

In this work, we develop a framework for using ERM techniques in sequen-
tial event prediction. The ERM-based algorithms give increased flexibility over
association rule algorithms by allowing the loss function to be tailored to the re-
quirements of the specific application, and the ERM learning procedure leads to
better predictions.

3 Empirical Risk Minimization for Sequential Event Prediction

We present a general framework for using ERM in sequential event prediction,
and then show how the framework can be specified to specific applications by
presenting email recipient recommendation, the online grocery store recommender
system, and medical condition prediction as case studies.

The core of our ERM-based approach to sequential event prediction is a ranking
model of the relationship between items in the observed part of the sequence and
potential future items. The ranking model is a scoring function f(xi,t, a) that, given
the observed part of the sequence xi,t, scores each item a ∈ Z according to the
predicted likelihood that it is a future item in the sequence. Ideally we would like
f(xi,t, a) to be related to P(a|xi,t), the conditional probability of item a being in
the sequence given that the items in xi,t are in the sequence. The predictions will
be made by ordering the items in descending score, so we need only that f(xi,t, a)
is monotonically related to P(a|xi,t) in order for the predictions to be accurate. We
present here two possible scoring models, which we call the one-stage model and
the ML-constrained model.

3.1 The one-stage model

Our first scoring model relies on a set of real-valued variables {λa,b}a,b to model the
influence that itemset a has on the likelihood that item b will be in the sequence,
for each itemset-item pair that we are willing to consider. We let A be the allowed
set of itemsets, and we introduce a variable λa,b for every a ∈ A and for every
b ∈ Z. We require ∅ ∈ A so that every (partial) sequence contains at least one
itemset from A. If itemset a and item b are likely to be present in the sequence
together, λa,b will be large and positive. Also, λa,b can be negative in order to
model negative correlations between items that are not generally found in the
same sequence. The influences of the itemsets in the observed part of the sequence
are combined linearly to yield the score for a given item. For example, suppose the
observed sequence is xi,t = {a1, a2} and A = ∅∪Z. In other words, A includes the
empty itemset and all itemsets consisting of a single item. Item b is then scored
as f({a1, a2}, b;λ) = λ∅,b + λa1,b + λa2,b. For a general observed sequence xi,t, the
score of item b is:

f(xi,t, b;λ) := λ∅,b +
t∑

j=1

∑
a⊆zi,j
a∈A\∅

λa,b. (1)
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In applications such as medical condition prediction, events in the sequence that
are far in the past may be less influential than recent events. The effect of time
can be incorporated into (1) by inserting a weighting factor before the inner sum
that is inversely proportional to the elapsed time since sequence step j. In some
applications, it may be important to capture nonlinear effects of combinations of
items. Feature variables for those combinations of items, such as λ{a and b},c, allow
the model to express more complex inter-item relationships while maintaining the
computational benefits of a linear model.

We call this the one-stage model because all of the variables λ are fit simulta-
neously in a single optimization problem. The model uses a total of |A|N variables:
λ ∈ R|A|N . A straightforward implementation is to take A as itemsets of size less
than or equal to 1, which is A = ∅ ∪ Z. The itemsets of size 1 give variables
λa,b ∀a, b ∈ Z that describe pairwise influences between items. The empty itemset
gives rise to “base” scores λ∅,b that model the likelihood of choosing item b in
the absence of any information about the sequence. In this implementation, the
number of variables is |A|N = N2 +N .

The dimensionality of the problem can be controlled by limiting the set |A|,
for instance using a maximum itemset size or a minimum support requirement,
where elements of A must be found often enough in the dataset. Alternatively, the
dimensionality of the problem could be reduced by separating items into categories
and using λA,b to model the influence of having any item from category A on item
b. For example, a1 and a2 could represent individual flavors of ice cream, and A

the category “ice cream.” The choice of which itemsets to consider is a feature
selection (or model selection) problem.

3.2 The ML-constrained model

Our second model, the ML-constrained model, reduces the dimensionality by, for
every non-empty itemset a, forcing each λa,b to be proportional to P̂(b|a), the
maximum likelihood (ML) estimate of the conditional probability of having item
b in the sequence given that itemset a is in the sequence. Specifically, we set

λa,b = µaP̂(b|a)

where µa is a free variable that does not depend on b. P̂(b|a) is estimated directly
from the training data, prior to any optimization for model fitting, as described
in Section 2. Then, the ML-constrained model is:

fML(xi,t, b;λ∅,µ) := λ∅,b +
t∑

j=1

∑
a⊆zi,j
a∈A\∅

µaP̂(b|a), (2)

To use this strategy, we first compute the ML estimates of the conditional proba-
bilities. Then the N base scores λ∅,b and the |A| proportionality coefficients µa are
fit during ERM, for an optimization problem on |A| + N variables. Appropriate
restrictions on |A| (for example, itemsets of size less than or equal to 1) lead to an
optimization problem over O(N) variables.
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3.3 The general loss function

We use the training set and the ERM principle to fit vector λ. For the sequence
i at time step t, we define a set of items Li,t ⊂ Z that should be ranked strictly
higher than some other set of items Ki,t ⊂ Z. For instance, Li,t might be the
remaining items in the sequence and Ki,t might be items not in the sequence.
The value of the loss function depends on how much this is violated; specifically,
we lose a point every time an item in Ki,t is ranked above an item in Li,t. We
will subsequently explore different definitions of Li,t and Ki,t appropriate for our
specific applications. The most general loss function, evaluated on the training set
of m sequences, is:

R0-1(f,Xm
1 ;λ) :=

1

m

m∑
i=1

Ti−1∑
t=0

1

Ti

1

|Ki,t|
1

|Li,t|
∑

l∈Li,t

∑
k∈Ki,t

1[f(xi,t,k;λ)≥f(xi,t,l;λ)].

(3)

In our algorithms, we use the exponential loss (used in boosting), a smooth
upper bound on R0-1. Specifically, we use that 1[b≥a] ≤ eb−a, and add an `2-norm
regularization term:

Rexp(f,Xm
1 ;λ) :=

1

m

m∑
i=1

Ti−1∑
t=0

1

Ti

1

|Ki,t|
1

|Li,t|
∑

l∈Li,t

∑
k∈Ki,t

ef(xi,t,k;λ)−f(xi,t,l;λ) + β||λ||22, (4)

where β is a parameter that determines the amount of regularization. Minimizing
the loss function in (4) will produce model parameters λ that make accurate
predictions across the sequence. Although we expressed these loss functions using
f and λ as with the one-stage model, they apply directly to the ML-constrained
model fML and its parameters λ∅ and µ.

3.4 Scalability

In most cases, such as our email recipient recommendation and patient condition
prediction examples, the loss function Rexp in (4) is convex in λ and thus fitting the
scoring model to data requires only convex minimization in |A|N variables for the
one-stage model, or |A|+N variables for the ML-constrained model. There are a
number of efficient algorithms for convex minimization whose scalability has been
addressed (Bertsekas, 1995). Our ERM-based algorithms inherit the scalability of
whichever convex minimization algorithm is used for model fitting, subject to the
dimensionality of the chosen model. Our examples show that the ERM-based algo-
rithms can be applied to real datasets with thousands of sequences and millions of
model variables. In our online grocery store recommendation example, we consider
a situation where the sequence order depends directly on the recommendations. In
this case the loss function is not convex, however we present algorithms based on
convex programming and gradient descent. Variants of gradient descent, particu-
larly stochastic gradient descent, are known to have excellent scalability properties
in large-scale learning problems (Bottou, 2010).
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3.5 Baseline algorithms

In our experiments we compare the performance of our ERM-based algorithms to
two baselines: the max-confidence association rule algorithm described in Section 2
and an item-based collaborative filtering algorithm. We use cosine similarity item-
based collaborative filtering (Sarwar et al, 2001) as a baseline method. Cosine
similarity is intended for a setting in which user i applies a rating Ri,b to item b.
To adapt it to sequential recommendations, we let Ri,b = 1 if sequence i contains
item b, and 0 otherwise. For each item b, we construct the binary “ratings” vector
Rb = [R1,b, . . . , Rm,b] and then compute the cosine similarity between every pair
of items a and b:

sim(a, b) =
Ra ·Rb

||Ra||2||Rb||2
.

For each item b, we define the neighborhood of b, Nbhd(b; k), as the k most similar
items to b. To make a prediction from a partial sequence xi,t, we score each item
b by adding the similarities for all of the observed items in the sequence that are
also in the neighborhood of b, and normalizing:

fsim(xi,t, b; k) :=

∑
a∈

⋃t
j=1 zi,j

⋂
Nbhd(b;k) sim(a, b)∑

a∈Nbhd(b;k) sim(a, b)
. (5)

In Section 7, we discuss in depth why item-based collaborative filtering is not
a natural fit for sequential event prediction problems. Nevertheless, since it is
commonly used for similar problems, we use it as a baseline in our experiments. In
our experiments, we used neighborhood sizes of 20, 40, and all items (Sarwar et al,
2001; Herlocker et al, 1999). Any ties when determining the top k most similar
items were broken randomly.

4 Application 1: Email Recipient Recommendation

In this application we study the sequence in which recipients are added to an email.
Given a partial set of recipients, the goal is to predict the remaining recipients.
In this application, each item in the sequence, zi,t, is a single email address. An
email recipient recommender system knows who the sender of the email is, thus
we initialize the sequence by setting zi,0 as the address of the sender of email i.
We then construct the rest of the sequence using the Ti addresses placed in the
“To:” and “CC:” fields, in the order that they appear in the email.

To apply our ERM-based algorithms to this application, we must specify the
sets Li,t and Ki,t used in the loss function. A natural goal for this problem setting
is, at each time step t, to attempt to rank all of the actual recipients that have
not yet been added higher than all of the non-recipients. This goal is expressed by
taking

Li,t =

Ti⋃
j=t+1

zi,j

Ki,t = Z \
Ti⋃
j=0

zi,j .
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We call this the list loss, as it tries to put the entire set of remaining recipients
at the top of the recommendation list. For notational convenience we define Zi :=⋃Ti

j=0 zi,j to be the complete collection of email addresses in the sequence. The
general loss function in (3) can then be rewritten

Rlist
0-1(f,Xm

1 ;λ) :=

1

m

m∑
i=1

Ti−1∑
t=0

1

Ti(N − Ti)(Ti − t)

Ti∑
l=t+1

∑
k∈Z\Zi

1[f(xi,t,k;λ)≥f(xi,t,zi,l;λ)] (7)

and (4) then becomes:

Rlist
exp(f,Xm

1 ;λ) :=

1

m

m∑
i=1

Ti−1∑
t=0

1

Ti(N − Ti)(Ti − t)

Ti∑
l=t+1

∑
k∈Z\Zi

ef(xi,t,k;λ)−f(xi,t,zi,l;λ) + β||λ||22. (8)

We applied our algorithm to the Enron email dataset, a collection of about
500,000 email messages from about 150 users (http://www.cs.cmu.edu/∼enron/).
We limited our experiments to the “sent” folders of the 6 users who had more than
2000 emails in their “sent” folders and only considered emails with more than 2
recipients, yielding a reduced dataset of 1845 emails with a total of 1200 unique
recipients. The number of recipients per email ranged from 3 to 6.

We evaluated algorithm performance across 10 iterations, each iteration using
randomly selected training and test sets of 500 emails each. For each iteration,
we chose the allowed itemsets (features) A by applying the FP-Growth algorithm
(Borgelt, 2005), a frequent itemset mining algorithm, to the training set. We mined
itemsets of size up to 4, with a minimum support requirement of 3 emails. The
median number of allowed itemsets across the 10 iterations was 625.5 (minimum
562, maximum 649), including the empty set. Thus the median number of variables
in the one-stage model was 750,600 (AN) and the median number of variables in
the ML-constrained model was 1,825.5 (A+N).

We used the training and test sets to evaluate the performance of the one-stage
model, ML-constrained model, max-confidence association rules, and cosine simi-
larity item-based collaborative filtering methods. For our ERM-based algorithms,
we found λ (or, λ∅ and µ for the ML-constrained model) that minimized (8)
on the training set using L-BFGS-B, the limited memory implementation of the
Broyden-Fletcher-Goldfarb-Shanno algorithm (Byrd et al, 1995; Zhu et al, 1997).
We set the amount of `2-norm regularization, β, using 10-fold cross validation on
each training set separately with β = 0, 0.001, 0.01, and 0.1. For both the one-stage
model and the ML-constrained model, for all iterations, β = 0 minimized mean
error over the validation sets and was chosen. The minimum support requirement
when choosing the itemsets serves as a form of regularization, which may be why
`2-norm regularization was not necessary.

In Figure 3 we evaluated performance using the zero-one loss in (7). When
evaluating the test error in Figure 3, we excluded email addresses that were not
encountered in the training set because these recipients were impossible to predict
and resulted in a constant error for all methods. The results show that our ERM-
based algorithms performed very well compared to the baseline algorithms. Cosine
similarity, at all neighborhood sizes, had a tendency to overfit the data, with
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Fig. 3 Training and test errors for email recipient recommendation.

much higher test error than training error. The performance of the ML-constrained
model was very close to that of the one-stage model, despite using many fewer
variables.

We additionally evaluated performance using mean average precision. Mean
average precision is a combination of precision and recall that is frequently used
to evaluate ranking performance in information retrieval (Järvelin and Kekäläinen,
2000; Yue et al, 2007). The average precision of a ranked list is the average of the
precision values computed at each of the relevant items. The average precision
across many ranked lists is averaged to obtain the mean average precision. We
measured average precision at each prediction (that is, each step in the sequence)
and computed mean average precision by averaging over both time steps and
sequences. We followed the procedure of McSherry and Najork (2008) to account
for the presence of ties in the ranked lists. Figure 4 shows the mean average
precision for each of the 10 iterations. Even though our methods were not optimized
to maximize mean average precision, they performed well relative to both max
confidence association rules and cosine similarity item-based collaborative filtering
(shown in the figure only for the “all items” neighborhood, which was the best
performing neighborhood size).

5 Application 2: Patient Condition Prediction

Here we tailor the formulation to patient condition prediction in the context of
data from a large clinical trial. In this trial, patients visited the doctor periodi-
cally and reported all medical conditions for which they were taking medications.
The names of the medical conditions were taken from the Medical Dictionary for
Regulatory Activities (MedDRA). The dataset includes activities such as vitamin
supplementation and flu shots as medical “conditions,” but mainly consists of con-
ditions that are not voluntarily chosen by the patients. We chose to predict both
voluntary and involuntary conditions/activities.
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Fig. 4 Mean average precision for email recipient recommendation. Larger numbers indicate
better performance.

In this application, each event in the sequence is a set of conditions, as op-
posed to the single items in the email recipient recommendation application. The
patient visits are ordered in time, however, each visit itself consists of a set of
symptoms which we treat as unordered. Also, the same condition can occur at
multiple visits throughout the patient history, unlike email recipient recommen-
dation, in which addresses are not repeated in a sequence. Because of this, it is
important to be able to predict condition recurrence. We thus estimate P̂(b|a) used
by the max-confidence association rule algorithm and the ML-constrained model
as the probability of having condition b later in the sequence given that a has been
observed in the sequence. In this application it is not natural to make a prediction
before the patient’s first visit (t = 0), thus we make predictions only at visits
t = 1, . . . , Ti − 1.

Some patients present chronic, pre-existing conditions that were present be-
fore their first visit and persisted after their last visit. Common chronic, pre-
existing conditions include Hypertension (high blood pressure), Hypercholestero-
laemia (high cholesterol), and Asthma. It is possible for a condition to be chronic,
pre-existing in one patient, but not in another. For instance, some patients de-
veloped Hypertension during the study, so Hypertension was not pre-existing in
those patients. We denote the set of chronic, pre-existing conditions for patient i as
Ci ⊆ Z, and place each chronic, pre-existing condition in the set of conditions for
each visit: c ∈ zi,j for all c ∈ Ci, for j = 1, . . . , Ti, and for all i. Chronic, pre-existing
conditions were used to make predictions for subsequent conditions, but we did
not attempt to predict them because predicting the recurrence of a chronic condi-
tion is trivial. We removed chronic, pre-existing conditions from the loss function
by defining z̃i,j = zi,j \ Ci as the set of reported conditions excluding chronic,
pre-existing conditions. We then adapt the framework of (3) and (4) for training
by setting Li,t = z̃i,t+1, the correct, subsequent set of non-trivial conditions, and
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Ki,t = Z \ zi,t+1, all other possible conditions. Then (3) becomes:

Rcond
0−1 (f,Xm

1 ;λ) :=
1

m

m∑
i=1

Ti−1∑
t=1

[
1

(Ti − 1)(N − |zi,t+1|)
×

∑
k∈Z\zi,t+1

∑
l∈z̃i,t+1

1

|z̃i,t+1|
1[f(xi,t,k;λ)≥f(xi,t,l;λ)]

]
. (9)

If at a particular visit the only conditions reported were chronic, pre-existing
conditions, then z̃i,t+1 = ∅ and the inner most sum is simply not evaluated for
that i and t to avoid dividing by zero with |z̃i,t+1|. We further write (4) for this
application as:

Rcond
exp (f,Xm

1 ;λ) :=
1

m

m∑
i=1

Ti−1∑
t=1

[
1

(Ti − 1)(N − |zi,t+1|)
×

∑
k∈Z\zi,t+1

∑
l∈z̃i,t+1

1

|z̃i,t+1|
ef(xi,t,k;λ)−f(xi,t,l;λ)

]
+ β||λ||22.

(10)

We used L-BFGS-B to minimize (10) to fit the one-stage and ML-constrained
models to the medical histories of 2433 patients. Each patient made multiple visits
to the doctor, at an average of 6.4 visits per patient (standard deviation, 3.0). At
each visit, multiple conditions were reported, with an average of 3.2 conditions
per visit (standard deviation, 2.0). We perform patient level predictions, meaning
for each patient we predict the conditions that the patient will experience in the
future. Conditions came from a library of 1864 possible conditions. We took A
as all itemsets of size 1, plus the empty set. Fitting model variables required an
optimization problem on 3,476,360 variables for the one-stage model (N2+N) and
3,728 variables for ML-constrained model (2N).

To illustrate the behavior of our models, and the differences between the one-
stage model and the ML-constrained model, in Figure 5 we show the model in-
fluence variables corresponding to the ten most frequent conditions, fitted to a
randomly selected set of 2190 (= 0.9× 2433) patients and normalized.

The association rule confidence matrix in Figure 5 shows Conf(a→ b) for each
pair of items in row a and column b, which is equivalent to the conditional proba-
bility estimate P̂(b|a). The high confidence values on the diagonal indicate that the
conditional probability of having these conditions in the future given their past
occurence is high. In many instances, but not all, these conditions are chronic,
pre-existing conditions. In addition to the high confidence values along the di-
agonal, the rules with Hypertension and Nutritional support on the right-hand
side have higher confidences, in part because Hypertension and Nutritional sup-
port are the most common conditions. The ML-constrained influence variables,
µaP̂(b|a), are obtained by weighting each row a of the association rule confidence
matrix by µa. However, the main features of the ML-constrained model variables
are different from those of the association rule confidence matrix, and in fact the
ML-constrained variables are similar to those of the one-stage model, λa,b. With
both models, the strength with which the recurrence of a condition is predicted
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Fig. 5 An example of fitted model variables for the ten most frequent conditions in the patient
condition prediction problem, for the one-stage and ML-constrained models, together with the
association rule confidence matrix. This figure illustrates the differences between the fitted
variables of the two models. Row a column b is: Conf(a → b) for association rules; µaP̂(b|a)
for the ML-constrained model; and λa,b for the one-stage model. Abbreviated symptoms are
Nutritional support (Nutr. supp.), Hypercholesterolaemia (HCL), Vitamin supplementation
(Vit. suppl.), Gastroeophageal reflux disease (GERD), Hormone replacement therapy (HRT),
and Hypothyroidism (Hypothyr.).

(the variables on the diagonal) is greatly reduced. This is because in many in-
stances these are chronic, pre-existing conditions, and so they are excluded from
the loss function and the model has no reason to predict them. For both models,
the variables along the top row show that Hypertension most strongly predicts
Hypercholesterolaemia, Prophylaxis, and Headache. Hypercholesterolaemia (high
cholesterol) is correlated with obesity, as is Hypertension, so they often occur to-
gether. Prophylaxis is preventative medicine which in this context almost always
means taking medications, such as aspirin, to preempt heart problems. Hyperten-
sion is a risk factor for heart problems, and so the connection with Prophylaxis is
also relevant. Finally, the frequency of Headaches is also known to increase with
obesity (Bigal et al, 2006). In our dataset, the reasons for Nutritional support are
more varied so it is difficult to interpret the relation between Nutritional support
and Prophylaxis, Headache, and Hypertension.
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Fig. 6 Training and test errors for patient condition prediction.

To evaluate the performance of the ERM-based algorithms, we performed ten
iterations of random sub-sampling with training and test sets each of 500 patients.
We applied the cosine similarity algorithm with varying neighborhood sizes (20, 40,
and all items), the max-confidence association rule algorithm, the one-stage model,
and the ML-constrained model. To set the amount of `2-norm regularization in the
loss function, β, we did 10-fold cross validation on each training set separately with
β = 0.001, 0.005, 0.01, 0.05, and 0.1. We then set β to the value that minimized the
mean error over the validation sets. With one-stage minimization, chosen values
of β ranged from 0.001 to 0.05, with β = 0.005 chosen most frequently. with ML-
constrained minimization β = 0.01 was always chosen. The error on the training
and test sets was evaluated using (9), and boxplots of the results across all 10
iterations are in Figure 6. When evaluating the test error in Figure 6, we excluded
conditions that were not encountered in the training set because these conditions
were impossible to predict and resulted in a constant error for all methods.

Our method, using both models, performed very well compared to the base-
lines, which seem to have had an overfitting problem judging from the difference
between training and test results. The ML-constrained model used far fewer vari-
ables than the one-stage model (about 3000 compared to about 3.5 million) and
generalized well.

6 Application 3: Online Grocery Store Recommender System

In this application a customer comes to the online grocery store with a shopping
list, and sequentially adds the items from his or her shopping list into a shopping
basket. The goal is to, at each time step, make predictions about the other items
the customer wishes to purchase. For the purpose of this paper, the recommender
system is designed to be a tool to assist the customer, i.e., there is no motive to
recommend higher priced items, promote sale items, etc., although these could be
incorporated in an extended version of our formulation. Similar to the email re-
cipient recommendation application, the sequence is of single, non-repeated items.
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The sequence is initialized as an empty basket: zi,0 = ∅. In this application we
assume that the customer’s shopping list (the collection of items that form the
sequence) has no inherent order. Rather, we assume that the order in which the
customer adds items to the basket depends directly on the recommendations made
to the customer.

6.1 Fitting a sequential prediction model to an unordered set

Although the shopping list is unordered, the predictions at each time step depend
on the set of items that have already been added to the basket, and thus depend
indirectly on the order in which items are added to the basket. To fit the model
variables to the training data, we must impose an order for the items to be added
to the basket. Here we allow the predictions to influence the ordering of the items.
Specifically, we assume that the customer prefers convenience, in that the next
item added to the basket is the most highly recommended item on their shopping
list. For convenience, denote the contents of the basket at time t as Zi,t :=

⋃t
j=1 zi,j

and the contents of the shopping list as Zi :=
⋃Ti

j=1 zi,j . We then order the items
according to:

zi,t+1 ∈ argmax
b∈Zi\Zi,t

f(xi,t, b;λ). (11)

It may be that the argmax is not unique, i.e., there is a tie. Here we break ties
randomly to choose the next item. The order in which items are added to the basket
is a function of the model variables λ. When fitting the model variables, we do
not order the items a priori, rather we allow the ordering to change during fitting,
together with the model variables. Our assumption in (11) could be replaced by
an application-specific model of user behavior; (11) is not an accurate assumption
for all applications. On the other hand, a recommender system trained using this
assumption has properties that are useful in real situations, as we discuss below.

We will train the machine learning model to minimize the loss function (4)
with respect to variables λ, using (11). The qualitative effect of (11) is to put
the items that are (conditionally) more likely to be purchased into the basket
sooner, while leaving unlikely items for later. Once these items are in the basket,
they will be used for making the subsequent predictions. Thus the model variables
that generally play the largest role in the learning, and that are most accurately
estimated, correspond to items that are more likely to be purchased.

One could imagine training the model using all permutations of each shopping
list in the training set as an alternative to (11). As another alternative, one could
randomly permute the shopping lists and include only that ordering. Even though
these approaches potentially capture some realistic situations that our ordering
assumption does not, we argue that it is not a good idea to do either of these.
First, the number of possible permutations on even a moderately sized training
set makes it computationally intractable to train using all possible permutations.
Second, if the users do adhere, even loosely, to a behavioral strategy such as our
assumption in (11), the model would be forced to fit many permutations that
would rarely occur, and would treat those rare situations as equally important
to the ones more likely to occur. For example, a randomly permuted shopping
list could place conditionally unlikely items at the beginning of the ordering. This
could actually create bias against the correct recommendations.
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6.2 Specifying the loss function

In this application we use two loss functions. First, we use the list loss that was
defined in (7) and (8) for the email recipient recommendation. This loss function
has the goal of placing all of the items that remain on the shopping list at the
top of the recommendations. In some situations, however, we may not need the
entire shopping list near the top of the recommendations, rather we might need
only that one item from the shopping list is highly ranked. In this way, the loss
associated with a particular basket will depend only on the highest ranked item
that is still on the shopping list. We call this formulation the item loss. Under the
item loss, a perfect prediction would have at least one item on the shopping list
ranked higher than all items that are not on the shopping list:

max
b∈Zi\Zi,t

f(xi,t, b;λ) > f(xi,t, k;λ), for all k ∈ Z \ Zi and for all i and t.

This can be realized using by taking Li,t = arg maxl∈Zi\Zi,t
f(xi,t, l;λ) and Ki,t =

Z \ Zi. The general loss function in (3) then becomes

Ritem
0-1 (f,Xm

1 ;λ) :=
1

m

m∑
i=1

Ti−1∑
t=0

1

Ti(N − Ti)
∑

k∈Z\Zi

1[f(xi,t,k;λ)≥maxl∈Zi\Zi,t
f(xi,t,l;λ)]

(12)
and (4) becomes

Ritem
exp (f,Xm

1 ;λ) :=

1

m

m∑
i=1

Ti−1∑
t=0

1

Ti(N − Ti)
∑

k∈Z\Zi

e
f(xi,t,k;λ)−maxl∈Zi\Zi,t

f(xi,t,l;λ)
+ β||λ||22.

(13)

As an extreme example, suppose the recommendation list has a single item from
the shopping list at the top, and the rest of the shopping list at the bottom. The
list loss would be large, while the item loss would be small or zero. Qualitatively,
item loss forces a form of rank diversity which we will now discuss.

At the first time step t = 0, there is no knowledge of the event sequence so the
same recommendation list will be used for all shopping lists. Let us consider how
this recommendation list might be constructed in order to achieve a low item loss
for the following collection of example shopping lists:

Shopping list 1: onion, garlic, beef, peppers
Shopping list 2: onion, garlic, chicken
Shopping list 3: onion, garlic, fish
Shopping list 4: onion, lemon
Shopping list 5: flour, oil, baking powder
Shopping list 6: flour, sugar, vanilla

In these shopping lists, the three most frequent items are onion, garlic, and flour.
Using item loss, we incur loss for every shopping list that does not contain the
highest ranked item. A greedy strategy to minimize item loss places the most
common item, onion, first on the recommendation list, thus incurring 0 loss for
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shopping lists 1-4. The second place in the recommendation list will not be given to
the second most frequent item (garlic), rather it will be given to the most frequent
item among shopping lists that do not contain onion. This means the second
item on the recommendation list will be flour. With onion ranked first and flour
ranked second, we incur 0 loss on shopping lists 1-4, and the loss is one for each
of shopping lists 5 and 6. The ranks of the remaining items do not matter for this
time step, as these two ingredients have satisfied every shopping list. This greedy
strategy is the same as the greedy strategy for the maximum coverage problem, in
which we are given a collection of sets with some elements in common and choose
k sets to cover as many elements as possible. This algorithm has been used for
rank diversification (see, for instance, Radlinski et al, 2008). This greedy strategy
would be an efficient strategy to minimize item loss if we made a prediction only
at t = 0, however, it might not truly minimize loss, and even if it does happen to
minimize loss at time t = 0, it might not minimize loss over all time steps. In our
experiments, we found that minimizing item loss produced a diverse ranked list
at each time step: It attempts to ensure that an item from each shopping list is
ranked highly, as opposed to simply ranking items based on popularity.

6.3 ERM for the online grocery store recommender system

The model variables λ are chosen to minimize the loss on the training set by min-
imizing the list loss (8) or item loss (13). Using the assumption in (11), the basket
at any time step Zi,t is itself a function of the recommender system, i.e., of λ.
Small changes in λ can change which item has the highest score, thus changing
zi,t+1. Because the predictions at t+ 1 and all future time steps depend on zi,t+1,
this can significantly alter the value of the loss. Depending on λ, different pos-
sibilities for zi,t+1 could change f(xi,t+1, b;λ) by arbitrarily large amounts. This
is why the loss functions in (8) and (13) are, subject to the assumption in (11),
generally discontinuous.

The discontinuities occur at values of λ where there are ties in the ranked list,
that is, where the model is capable of producing multiple orderings. It is when there
are ties that epsilon changes in λ can alter zi,t+1 and thus significantly change all
future predictions. These discontinuities partition the variable space into regions
that correspond to different orderings. Figure 7 is an illustration of how the space
of λ is partitioned by different orderings, with ties between items on the borders.
The loss function is convex over each region and discontinuities occur only at the
region borders. We now show that these regions are convex, which will lead to an
optimization strategy.

Proposition 1 Let Λz∗ be the set of λ ∈ R|A|N in the one-stage model or (λ∅,µ) ∈
R
|A|+N in the ML-constrained model that can produce the specific ordering {z∗i,t}i,t

under the assumption of (11). Then, Λz∗ is a polyhedron.

Proof A particular ordering z∗ is produced when, for each training list i and at
each time step t, the next item in the ordering z∗i,t+1 has the highest score of all of
the items remaining on the shopping list. In other words, to choose z∗i,t+1 before
z∗i,k for all k > t + 1, it must be true that the score of z∗i,t+1 is greater than or
equal to the score of z∗i,k:

f(x∗i,t, z
∗
i,t+1;λ) ≥ f(x∗i,t, z

∗
i,k;λ), ∀k > t+ 1.
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Fig. 7 An illustration of how the model variables can be partitioned into regions that lead
to different orderings of the items in each shopping basket. The borders between regions
correspond to selections of model variables for which the argmax in (11) is not unique, i.e.,
there is a tie. The regions are polyhedral, and the objective function is convex over each region
but discontinuous at the borders.

These constraints in fact define Λz∗ :

Λz∗ :=

{
λ : λ∅,z∗i,t+1

+
t∑

j=1

∑
a⊆z∗i,j
a∈A\∅

λa,z∗i,t+1
≥ λ∅,z∗i,k

+
t∑

j=1

∑
a⊆z∗i,j
a∈A\∅

λa,z∗i,k , (14)

i = 1, . . . ,m, t = 0, . . . , Ti − 2, k = t+ 2, . . . , Ti

}
.

Thus Λz∗ can be defined by a set of
∑m

i=1
1
2 (Ti − 1)Ti linear inequalities and

is a polyhedron. The result holds for the ML-constrained model by replacing λa,b
with µaP̂(b|a). ut

The proposition is true for each ordering z∗ that can be realized, and thus the
whole space can be partitioned into polyhedral regions. When the variables λ (or
equivalently, λ∅ and µ) are constrained to a particular ordering Λz∗ , the list loss
in (8) and the item loss in (13) are convex. We will now describe two optimization
strategies for minimizing (8) and (13) subject to the assumption in (11). For
notational convenience we will describe the algorithms in terms of λ, but the
algorithms can be directly applied to the ML-constrained model.

6.3.1 Convex optimization within regions, simulated annealing between regions

Because Λz∗ is convex for each z∗, it is possible to find the optimal λ within Λz∗

using convex programming. Our goal is to minimize the loss across all possible
orderings z∗, so we need also to explore the space of possible orderings. Our first
approach is to use simulated annealing, as detailed in Algorithm 1, to hop between
the different regions, using convex optimization within each region.

Simulated annealing is an iterative procedure where λ is updated step by step.
Steps that increase the loss are allowed with a probability that depends on a
“temperature” variable. The temperature is decreased throughout the procedure
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so that steps that increase the loss become increasingly improbable. The algorithm
begins with an initial ordering, then the minimizer within that region is found
by convex optimization. Then we use a simulated annealing step to move to a
neighboring ordering, and the process is repeated. There are many “unrealizable”
orderings that can be achieved only by a trivial model in which all of the variables
λ equal the same constant so that the items are tied at every prediction. Thus,
randomly permuting the ordering as is usually done in simulated annealing will
often yield only trivial neighbors. An alternative strategy is to choose a direction
in the variable space (for example, the direction of gradient descent) and to step
in that direction from the current position of λ until the ordering changes. This
new ordering is a realizable neighbor and can be used to continue the simulated
annealing. Additional neighbors can be discovered by stepping in the variable space
in different directions, for instance orthogonal to the gradient. The move to the
new ordering is accepted with a probability that depends on the change in loss
between the optimal solutions for the two orderings, and the temperature variable.
This is done for a fixed number of steps, and finally the output is the best solution
that was encountered during the search.

Algorithm 1: A combination of convex optimization and simulated annealing
for fitting λ under the assumption of (11).

Data: Training set Xm
1 , number of simulated annealing steps TS , annealing schedule

Temp
Result: λbest

Begin with an initial ordering {zi,t}i,t
Form the constraints Λz associated with this ordering (Equation 14)
Solve the convex program λ∗ ∈ argminλ∈Λz

Rexp(f,Xm
1 ;λ) (Equation 8 or 13)

Set λbest = λ∗

for t = 1 to TS do
Find a neighboring ordering {z′i,t}i,t
Form the constraints Λz′ associated with the new ordering
Solve the convex program λ′∗ ∈ argminλ∈Λz′

Rexp(f,Xm
1 ;λ)

Sample a number q uniformly at random from [0, 1]
if exp((Rexp(f,Xm

1 ;λ∗)−Rexp(f,Xm
1 ;λ′∗))/Temp(t)) > q then

Accept this move: λ∗ = λ′∗

if Rexp(f,Xm
1 ;λ∗) < Rexp(f,Xm

1 ;λbest) then
λbest = λ∗

6.3.2 Gradient descent

When N is large, it can be expensive to solve the convex program at each step of
simulated annealing in Algorithm 1, particularly using the one-stage model which
requires |A|N variables. It may be more efficient to use an unconstrained first-
order method such as pure gradient descent. It is likely that a gradient descent
algorithm will cross the discontinuities, and there are no convergence guarantees.
In Algorithm 2, we ensure that the gradient descent terminates by imposing a
limit on the number of steps that increase the loss. We take as our result the best
value that was encountered during the search.
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Algorithm 2: A gradient descent algorithm to fit λ under assumption (11).

Data: Training set Xm
1 , maximum number of steps that increase loss TG, step size γ

Result: λbest

Begin with some initial λ0 and the associated Rexp(f,Xm
1 ;λ0) (Equation 8 or 13)

Set: λbest = λ0

t = 0 (an index for all steps)
l = 0 (an index for steps that increase loss)
while l < TG do

Take a step of gradient descent:
λt+1 = λt − γ 5Rexp(f,Xm

1 ;λt)
if Rexp(f,Xm

1 ;λt+1) < Rexp(f,Xm
1 ;λbest) then

λbest = λt+1

if Rexp(f,Xm
1 ;λt+1) > Rexp(f,Xm

1 ;λt) then
l = l + 1

t = t+ 1

6.4 Experimental results

Our online grocery store recommender system dataset is derived from the publicly
available ICCBR Computer Cooking Contest recipe book (ICCBR, 2011). The
original dataset is 1490 recipes, each of which, among other things, contains a list
of ingredients. We treated the ingredients in each recipe as unordered items on a
shopping list. We limited our experiments to the 250 most frequently occurring
ingredients. This excluded only very rare ingredients that appeared in less than 5
recipes in the dataset, for instance “alligator.” We took the allowed itemsets A as
individual items, plus the empty set. The ML-constrained model thus required an
optimization problem on 500 variables (2N) whereas the one-stage model required
solving an optimization problem on 62,500 variables (N2 +N).

We fit the one-stage model and the ML-constrained model, using both list
loss in (8) and item loss in (13). Training and test sets each of 100 shopping
lists were selected using random sub-sampling without replacement. The models
were evaluated using the zero-one loss in (7) or (12). Training and test sets were
sampled independently for 20 trials to provide a distribution of training and test
losses. The results for Algorithm 1 (convex programming / simulated annealing)
and Algorithm 2 (gradient descent) were very similar. We found that Algorithm
2 scaled better with the dimensionality of the dataset, so we report the results
of Algorithm 2 here. The amount of `2-norm regularization in the loss function,
β, was set using 3-fold cross validation on each training set, separately with β =
0.0001, 0.001, 0.01, 0.1, 1, and 10. We then set β to the value that minimized the
mean error over the validation sets. With list loss and the one-stage model, chosen
values of β ranged from 0.001 to 0.1, with 0.001 chosen most frequently. With list
loss and the ML-constrained model, chosen values of β ranged from 0.01 to 1, with
0.1 chosen most frequently. With item loss and the one-stage model, chosen values
of β ranged from 0.0001 to 0.01, with 0.001 chosen most frequently. With item loss
and the ML-constrained model, chosen values of β ranged from 0.01 to 1, with
0.01 chosen most frequently. The training and test errors across the 20 trials are
shown as boxplots in Figures 8 and 9 for list loss and item loss respectively. As
before, the test errors in Figures 8 and 9 exclude items that were not present in
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Fig. 8 List loss training and test errors for the online grocery store recommender system.

Fig. 9 Item loss training and test errors for the online grocery store recommender system.

the training set, as these items necessarily cannot be well predicted and provided
a constant bias.

The large difference between training and test errors suggests that that there
is some overfitting despite the `2-norm regularization. This is not surprising given
the number of possible items (250) and the number of shopping lists used for
training (100). A larger training set would lead to better generalization (and less
of an observable difference between the methods), although if it were desirable
to fit a model individually to each customer the training data may truly be very
limited. This is related to the “cold start” problem in recommender systems, when
predictions need to be made when data are scarce.

For both loss functions, our method performed well compared to the cosine
similarity and association rule baselines. The one-stage model performed slightly
better than the ML-constrained model, although it does so at a much higher
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computational cost. This is consistent with the results of the other experiments in
this paper, which have shown that the ML-constrained model is able to provide
close to the same performance as the one-stage model.

7 Related Work

This work is related to previous work on recommender systems, medical condition
prediction, time-series modeling and supervised ranking.

There are many different approaches to recommender systems. Adomavicius
and Tuzhilin (2005) give a review of current methods. Shani et al (2005) work with
sequential recommendations using Markov decision processes, which differs from
our approach in that our approach does not assume the Markov property. Collab-
orative filtering methods have been especially common in recommender systems
(see Sarwar et al, 2001, for a review). Some collaborative filtering methods rely on
additional user information such as demographics and are not appropriate for our
setting. Item-based collaborative filtering methods, cosine similarity in particular,
are an extremely popular type of recommender system that are related to our
approach as they consider only relations between various items in the sequence
database (Sarwar et al, 2001; Linden et al, 2003). However, item-based collabora-
tive filtering is generally not appropriate for these sequential prediction problems.
Collaborative filtering algorithms are generally evaluated according to regression
criteria (measuring accuracy in ratings) rather than ranking criteria, and is thus
designed for a completely different type of learning framework. Also, when ap-
plying item-based collaborative filtering using the weighted sum method (Section
3.2.1 in Sarwar et al, 2001), we needed to compute an inner product of the similar-
ities with the “ratings” for all co-rated items. However, for an incomplete basket,
we do not have the ratings for all co-rated items, since there is no natural way to
differentiate between items that have not yet been purchased in this transaction
and items that will not be purchased in this transaction, as both have a “rating”
of 0 at time t. Thus, the only ratings that are available are ratings of “1” indi-
cating that an item is in the basket. In other words, our approach is intrinsically
sequential, whereas it is unnatural to force item-based collaborative filtering into a
sequential framework. Additionally, cosine similarity in particular is a symmetric
measure (sim(a, b) = sim(b, a)) and thus not related to the conditional probability
of b given a. These differences help explain why in our experiments, particularly
email recipient recommendation and patient condition prediction, cosine similar-
ity item-based collaborative filtering was outperformed by our methods, both in
terms of our loss function and average precision.

Medical recommender systems are discussed by Davis et al (2008, 2010). The
output of their system is a ranked list of conditions that are likely to be subse-
quently experienced by a patient, similar to the ranked recommendation lists that
we produce. Their system is based on collaborative filtering rather than bipartite
ranking loss which is the core of our method. Duan et al (2011) develop a clinical
recommender system which uses patient conditions to predict suitable treatment
plans. Much of the work in medical data mining uses explanatory modeling (e.g.,
finding links between conditions), which is fundamentally different from predic-
tive modeling (Shmueli, 2010). Most work in medical condition prediction focuses
on specific diseases or data sets (see Davis et al, 2010, for a literature review).
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Email recipient recommendation has been studied with several approaches, often
incorporating the email content using language models, or finding clusters in the
network of corresponding individuals (Dom et al, 2003; Pal and McCallum, 2006;
Carvalho and Cohen, 2008; Roth et al, 2010).

A large body of research on time series modeling dates back at least to the
1960’s and provides many approaches for sequential prediction problems. Recent
applications to medicine in general and patient level prediction in particular in-
clude Enright et al (2011), Stahl and Johansson (2009), and Hu et al (2010).
Our ML-constrained model was motivated by the mixture transition distribution
developed by Berchtold and Raftery (2002) to model high-order Markov chains.
However, as we discussed earlier, typical time-series approaches focus specifically
on the order of past events whereas in our applications the historical order seems
of peripheral importance.

Our model and fitting procedure derive from previous work on supervised rank-
ing. Many approaches to ranking have been proposed, including methods based
on classification algorithms (Herbrich et al, 1999; Chapelle and Keerthi, 2010;
Joachims, 2002; Freund et al, 2003; Burges et al, 2005), margin maximization (Yan
and Hauptmann, 2006), order statistics (Lebanon and Lafferty, 2002; Clémençon
and Vayatis, 2008), and others (Cao et al, 2007; Rudin, 2009). The loss functions
that we use derive from the bipartite misranking error, and the exponential upper
bound is that used in boosting. Our list loss is in fact exactly the misranking error;
thus minimizing list loss corresponds to maximizing the area under the ROC curve
(Freund et al, 2003). Other loss functions can be substituted as is appropriate for
the problem at hand, for example our item loss is a good fit for problems where
only one relevant item needs to be at the top. Minimizing misranking error does
not imply optimizing other evaluation metrics, such as average precision and dis-
counted cumulative gain as illustrated in Yue et al (2007) and Chang et al (2012).
Our formulation could potentially be adapted to optimize other evaulation met-
rics, as is done in Yue et al (2007) and Chang et al (2012), if these metrics are
the quantity of interest. The theoretical framework underpinning ranking includes
work in statistics, learning theory, and computational complexity (Cohen et al,
1999; Freund et al, 2003; Clémençon et al, 2008; Cossock and Zhang, 2008; Rudin
and Schapire, 2009). Our work is also related to the growing fields of preference
learning and label ranking (Fürnkranz and Hüllermeier, 2003; Hüllermeier et al,
2008; Dekel et al, 2004; Shalev-Shwartz and Singer, 2006).

8 Conclusions

We have presented a supervised ranking framework for sequential event prediction
that can be adapted to fit a wide range of applications. We proposed two ranking
models, and showed how to specify our general loss function to applications in
email recipient recommendation, patient condition prediction, and an online gro-
cery store recommender system. In the online grocery store recommender system
application, we allowed the predictions to alter the sequence of events resulting
in a discontinuous loss function. Using the fact that the variable space can be
partitioned into convex sets over which the loss function is convex, we presented
two algorithms for approximately minimizing the loss. In all of our experiments,
our ERM-based algorithms performed well, better than the max-confidence and
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cosine similarity baselines. Our ML-constrained model in particular provided good
performance while keeping the dimensionality of the optimization problem small.
There are many other applications where the set of past events matters for predict-
ing the future, rather than the order of past events. Our ERM-based methodology
is a direct and practical approach for prediction tasks with this property.
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