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Abstract: Intelligent biomedical devices implies systems that are able to detect specific
physiological processes in patients so that particular responses can be generated. This
closed-loop capability can have enormous clinical value when we consider the unprecedented
modalities that are beginning to emerge for sensing and stimulating patient physiology. Both
delivering therapy (e.g., deep-brain stimulation, vagus nerve stimulation, etc.) and treating
impairments (e.g., neural prosthesis) requires computational devices that can make clinically
relevant inferences, especially using minimally-intrusive patient signals. The key to such
devices is algorithms that are based on data-driven signal modeling as well as hardware
structures that are specialized to these. This paper discusses the primary application-domain
challenges that must be overcome and analyzes the most promising methods for this that are
emerging. We then look at how these methods are being incorporated in ultra-low-energy
computational platforms and systems. The case study for this is a seizure-detection SoC
that includes instrumentation and computation blocks in support of a system that exploits
patient-specific modeling to achieve accurate performance for chronic detection. The
SoC samples each EEG channel at a rate of 600 Hz and performs processing to derive
signal features on every two second epoch, consuming 9 µJ/epoch/channel. Signal feature
extraction reduces the data rate by a factor of over 40×, permitting wireless communication
from the patient’s head while reducing the total power on the head by 14×.
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1. Introduction

Sensors and stimulators are emerging that are allowing biomedical devices to advance to new
frontiers. Much of this has been initiated by innovations in biologically compliant materials and
technologies, but its relevance has become apparent thanks to clinical work that has led to the conception
of new systems that are beginning to take advantage of the unprecedented modalities that these
technologies offer for delivering therapy and for sensing physiology. Deep-brain stimulation (DBS),
for instance, involves the implantation of a stimulation electrode in targeted locations of brain as well as
the use of a simple control device (similar to a pacemaker) that actuates stimulation. Devices employing
DBS have shown astounding efficacy in some patient towards the treatment of a range of neurological
conditions from Parkinson’s disease to dystonia [1]. Vagus nerve stimulation (VNS), is an alternate
approach that has been used to treat epilepsy patients; it avoids the need for brain surgery by using an
implanted stimulator in the neck that is actuated either using a similar control device or through manual
control by the patient [2]. Similarly, sensors are emerging that are capable of recording extremely rich
physiological signals over long time periods as a part of chronic disease management (i.e., as a long-term
means of managing pathophysiologic patient states). Flexible materials, such as silk [3] and silicone
polydimethylsiloxane (PDMS) [4], that are also histologically promising, provide a substrate both for
electrodes and active electronics; this, for instance, forms the basis for high-resolution, multi-channel
recording systems for bio-potentials that manifest on curvilinear biological surfaces (such as the cortex
of the brain or the surface of cardiac tissue [3,5]).

In order to take advantage of such technologies in intelligent, closed-loop systems, however, we
require the ability to detect specific physiological processes with a high level of accuracy. Identifying
specific, clinically-relevant indicators in bio-potential signals that are available in implantable and
wearable systems currently poses a dominating limitation. As we describe in this paper, the signals
themselves are physiologically complex, and the correlations are both diverse and subject to noise. An
important concern for chronic wearable and implantable systems is also that the computations must be
achieved with very low power consumption; the total power budget for wearable devices, for instance, is
1–10 mW, and that for implantable devices is 10–100 µW. These power levels are derived from the energy
delivery options that are viable from application to application (ranging from primary and chargeable
storage sources (e.g., thin-film batteries) to wireless power transfer), as described in [6]. Ultimately,
the power and/or energy constraints make it essential to carefully consider the algorithmic approach and
the computations required in order to identify opportunities for reducing the complexity or improving
the efficiency.

Understanding the algorithmic approaches is also important when we consider how limited current
clinical decision-support systems are in terms of accuracy. Current bedside hospital monitors, for
instance, employ models that are insufficient for detecting acute events with high specificity [7]. Alarm
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fatigue is thus one of the most prominent problems in intensive care units [8]. Nonetheless, automatic
patient monitoring remains an important aspect for managing the scale of healthcare delivery, even
in the hospital setting. Beyond this, chronic out-patient monitoring (following hospital discharge)
is also emerging as an important mode of healthcare [9]. In the face of limited clinical resources,
it further stresses the importance for accuracy in order to manage the resulting increase in scale
(i.e., false-alarm rates must be low when monitoring large patient populations that can only be accessed
through out-of-hospital response). It also places greater emphasis on the need for low-energy platforms
due to the mobility required in the monitoring devices.

A powerful development in the domain of clinical decision support has been the emergence of
data-driven modeling techniques. These refer to methods of modeling physiological signals based on
observing and analyzing data. This is in contrast to attempts at modeling the underlying processes,
which are exceedingly complex, and therefore tend to yield low-order models. In the remainder of this
paper, we describe why data-driven techniques are a promising means to achieve the accuracy required
in practical chronic biomedical devices. We then describe the computational approaches that can be used
to take advantage of these. Finally, we consider a practical device that attempts to exploit data-driven
modeling. An SoC for chronic seizure detection is described, illustrating the design considerations and
methodologies involved. The SoC employs an architecture that performs local acquisition of patient
electroencephalographs (EEGs), analog-to-digital conversion, and signal feature extraction. Local
feature extraction results in a compressed signal representation for data-driven classification, making
wireless transmission from the scalp viable.

2. The Need for Data-Driven Techniques

Currently, clinical decision support systems rely on algorithms that employ very simple models of the
physiological signals in order to detect the correlations of interest. Often, for instance, the models are
based on pre-determined thresholds of specific signal parameters [10]. These parameters can typically be
extracted through signal processing, and thus low-energy DSP has been the predominant computational
approach in current biomedical devices [11]. In this section, however, we highlight three key challenges
in biomedical detection applications that motivate a change in focus from signal processing, which
involves computations to transform signals, to inference, which involves computations to model and
detect specific signal correlations. This leads to the emphasis on data-driven modeling techniques.

2.1. Detection Challenges in Biomedical Applications

Clinically relevant processes that must be detected in biomedical applications are generally
physiologically complex. The ability to model these, and their manifestations in the signals that are
available through chronic sensing, poses a primary challenge. Thus, the concern, as we try to achieve
higher accuracy, is not just the ability to extract specific signal parameters with high signal-to-noise
ratio, but rather the ability to discriminate the meaning of those parameters. Although the development
of physiology-based models has played an important role in understanding the underlying processes,
their viability in practical detection systems is limited. First, these have typically resulted in low-order
models [12]; this leads to simple threshold rules that yield limited accuracy. Second, even after the
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physiological processes have been modeled, the specific manifestations in the signals must also be
modeled. The primarily signals of interest in low-power chronic biomedical devices are collaterally
representative of the target physiological processes. As an example, neural electrophysiology appears
in scalp electroencephalographs (EEG) after volume conduction through brain tissue and then signal
transduction across the tissue membranes and skull that surround the brain. The physiological sources
thus manifest in the signals through complex coupling mechanisms. Physiology-based models thus face
severe complexities that limit the accuracy that they have been able to provide.

A second challenge is that that signals available through low-power chronic sensing typically
represent the superposition of numerous physiological sources. Thus, the models must be able to reject
these with very high specificity, usually higher than (linear) signal processing affords. In the case of
EEG-based seizure detection, for instance, electrical activity from muscles (i.e., electromyographic
(EMG) activity) is a major concern. As an example, Figure 1 is from the case-study in [13], where
amplitude-integrated EEG (AEEG) is used to monitor a neonatal patient. AEEG is a method of
presenting the EEG over long time periods (using filtering, peak rectification, and semi-logarithmic
compression). Using a threshold-margin-based detection approach, seizure activity was not detected
in the initial period despite observing abnormal symptoms in the patient. The EEG trace, exhibited
the artifact shown below, which was suspected to be EMG activity. In the following periods, the
electrode position was changed, and then a muscle relaxant was administered, suppressing the artifact.
At this point, the AEEG margins indicated electrographic seizure activity, consistent with the clinical
symptoms. In addition to physiological interference sources, mechanical motion artifacts and coupling
of electrical environmental noise are prominent concerns [14]. Although these degrade the performance
of detection algorithms that are based on simplistic rules, data-driven algorithms that explicitly model
artifact-corrupted signals can retain their accuracy and thus mitigate the need for further instrumentation
and/or signal processing to suppress the artifacts [15].

Figure 1. Seizure detection based on amplitude EEG margins. The electromyographic
(EMG) activity in the EEG trace (initially observed) blocked seizure detection until a muscle
relaxant was administered [13].50 50 5025 25 2510 10 105 5 5A-EEG traces:EEG traces:

Muscle relaxantRepositionelectrodes
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The third challenge is that efficient methods for developing and adapting the detection models are
required. This can play a critical role in improving accuracy by allowing patient-specific factors to be
more readily incorporated. The importance of patient-specific factors is seen across applications. In [10],
even very simple adaption of model thresholds based on sparse sampling from a target patient group
shows to yield substantial performance improvement for cardiac monitoring applications. Adaption has
shown to be beneficial even when very rich models are possible. For instance, a great deal of clinical
work has gone into characterizing the typical behavior exhibited in a patient’s EEG during a seizure.
Most importantly, a characteristic frequency range of spectral activity has been identified as a strong
indicator [16]. Figure 2, however, shows two actual EEG bursts from a patient. Although, no clinical
seizure corresponds with the burst in Figure 2a, the electrographic activity has the rhythmic behavior
typically associated with a seizure. On the other hand, Figure 2b corresponds to a clinical seizure, and,
although its rhythmic behavior is consistent with that typically exhibited during seizures, it is more
specific, both in terms of the spectral content and in terms of the spatial EEG channels that are excited.
Thus, modeling the background and seizure characteristics, and doing this on a patient-by-patient basis
improves the accuracy of seizure detection [17]. The ability to efficiently and systematically develop
new models is therefore a key aspect for practical detection systems.

Figure 2. EEG from an epileptic patient showing (a) typical background burst resembling
a seizure and (b) burst corresponding to a clinical seizure, having specific spectral and
spatial characteristics.

Backgroundactivity
(a)

Seizureactivity
(excited channels)

(b)

2.2. Exploiting the Availability of Medical Data

With respect to the challenges faced in biomedical detection applications, two important
developments have recently emerged. The first is the availability of patient data in the healthcare domain,
and the second the advancement of machine-learning techniques for data-analysis. Hospitals today
widely employ data-bases where patient signals recorded from bedside monitors (e.g., EEG, ECG, etc.)
are logged along with observational and/or diagnostic annotations [12,18]. As a result, a large amount
of data is available, corresponding to patients with a broad range of clinical conditions. Practices for
annotating the datasets are also improving, leading to high-quality, clinically-relevant labels are being
directly applied to the signals [18]. A technological advancement of importance is low-power recording
technologies that can provide long-term access to the same physiologically-indicative signals recorded
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by hospital bedside monitors [14]. Through these, biomedical devices can directly take advantage of the
annotated databases without the need for supplementary models to correlate with alternate signals.

Machine-learning techniques provide powerful methods for exploiting the large-scale availability of
patient data. These have particularly advanced thanks to applied work related to physiological data
analysis [19]. More specifically for chronic biomedical devices, the data-modeling and classification
methods (i.e., methods for applying the models) have seen substantial development [20]. The efficiency
with which machine-learning techniques allow the development of quantitative models from large
datasets, means that patient-specific models can be readily developed as patient-specific data becomes
available, and thus a high degree of specificity can be achieved. In [17], for instance, a patient-specific
seizure detector achieves a sensitivity of 93%, a specificity of 0.3 ± 0.7 false alarms per hour, and a
latency of 6.77 ± 3.0 s, compared to 66%, 2.0 ± 5.3 false alarms per hour, and 30.1 ± 15 s for a
patient-generic detector.

The generality of the modeling and classification methods means that they can be applied across a
wide range of biomedical applications. Figure 3 shows the generic structure of machine-learning-based
detection algorithms. The seizure detection application is based on [21], where a sensitivity of 96%,
a specificity of 2 false detections per day, and a latency of 3.0 s is achieved across 24 patients,
and the arrhythmia beat classification application is based on [22], where a sensitivity above 75%
and a false positive rate below 1.5% is achieved. The two primary aspects of the algorithms are
(1) biomarker extraction and (2) biomarker interpretation. Biomarkers correspond to defined parameters
in the signals that are determined to have some correlation with the target physiological patient state. The
precise correlation, however, is determined by constructing a model of the biomarkers by employing a
training dataset. Real-time interpretation of the biomarkers is then achieved by applying that model
using a classifier. The classifier thus requires a training phase; this, however, does not face real-time
detection-throughput constraints and can be performed offline, either once or periodically to track slowly
evolving physiology [23].

By treating the biomarkers as a feature vector, a machine-learning classifier can be used. Various
options for machine-learning-based classification are available, and these offer the possibility to
efficiently scale the models to handle a large number of features with diverse correlations. The
following section focuses on classification approaches that can be applied in biomedical devices.
Biomarkers, however, are closely coupled to the clinical factors, and therefore their precise choice
varies from application to application. For instance, in Figure 3, two applications are considered. For
seizure detection, information is contained in the spectral content of the patient’s electroencephalograph
(EEG), while for cardiac arrhythmia detection information is contained in the waveform morphology
of the patient’s electrocardiograph (ECG); the biomarkers are thus chose accordingly. Even within an
application such as arrhythmia detection, which is associated with a range of cardiovascular conditions,
various biomarkers have been used based on the physiological factors they represent [22]. Finally, the
optimal biomarkers can also be patient dependant; for instance, seizures in some patients have exhibited
notable correlation with cardiac beat-rate in addition to EEG activity. Thus, detection accuracy improves
when beat-rate features (extracted from the ECG) are included [21]. As a result, programmable platforms
that can support a wide range of biomarker extraction processing can play an important role.
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Figure 3. The typical structure of data-driven biomedical detection algorithms consists of
biomarker (feature) extraction followed by biomarker interpretation, which is based on a
generated model. Biomarker extraction Biomarker interpretationEEG, Ch<1>EEG, Ch<N>••• Feature Vector Feature AFeatureB Test Vectore.g., ClassifierSeizureNonseizureEnergy extracted every second with 2sec windown-2 n t (sec)n-2 n t (sec) ω|H| BPF7BPF1• • •Σ Σ ω|H| BPF7BPF1• • •Σ Σ E(BPF1) <1> :E(BPF7)<1>••• •••E(BPF1) <N> :E(BPF7)<N>R-peak

-50ms 100ms150ms 500ms0msS1 S18Pre-RR Post-RR Pre-RR•••S1Post-RRLocal RR-avg.S18Feature Vector Feature AFeatureB Test Vectore.g., ClassifierNormalArrhythmia• • • • • •ECG
Seizure detection:
Arrhythmia detection:

3. Data-Driven Classification Frameworks

Biomedical signals are non-stationary; as mentioned, they reflect the state of numerous dynamic
physiological processes. Thus, an approach based on simply detecting changes in the signal
characteristics is not sufficient. Instead, biomedical devices must overlook physiologic signal changes,
and recognize specific pathophysiologic signal changes that are expressed due to a dynamic disease state
that is of interest. As an example, the EEG trace (over 18 channels) in Figure 4 exhibits a burst at the
2994 s mark corresponding to the start of an epileptic seizure. This is characterized by rhythmic activity
(most prominent on the FP2-F4 and T8-P8 channels). Earlier rhythmic activity, for instance that between
the 2989–2992 marks, is distinct from typical background activity. Nonetheless, it in fact represents a
normal characteristic of sleep EEG (known as a spindle), and should be differentiated by a detection
device.

Biomedical signals can also exhibit a wide range of characteristics within both the physiologic and
pathophysiologic states. For instance, in the physiologic state, EEG exhibits different characteristics
depending on whether an individual is awake or asleep. Similarly, in the pathophysiologic state, the
EEG observed at the onset, middle, and end of a seizure may be very different [24]. Depending
on the application, however, a system may be required to differentiate between the physiologic and
pathophysiologic states, or to discriminate among various sub-states within each of these two states.
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Differentiating between the physiologic and pathophysiologic states of a signal amounts to solving a
binary classification problem. A binary classifier aims to label an observation as a member of one
of two classes in a manner that optimizes a chosen performance objective; for example, this could be
minimization of the misclassification probability. In the seizure onset detection problem, the observation
is an EEG epoch (i.e., some window of time) and the two classes are seizure (Class C1) and non-seizure
(Class C2).

Figure 4. Biomedical signals represent various physiologic (e.g., 2989–2992 s marks)
and pathophysiologic states (e.g., 2994 s mark). Thus, simple detection of signal changes
(i.e., anomaly detection) is insufficient. Seizure onset

The non-seizure class, in actual fact, includes EEG gathered during awake, sleep, and ambulatory
periods. Discriminating among the sub-states of the physiologic and pathophysiologic states amounts to
solving a multi-class classification problem. However, since the most powerful and robust classification
algorithms available are formulated within the setting of binary classification, multi-class classification
problems are often solved using a collection of binary classifiers [25]. As an example, consider
differentiating between K classes using binary classification. One approach, known as one vs. all,
involves combining the outputs of K classifiers, each of which discriminates between a class (e.g., C1)
and the union of the remaining K − 1 classes (e.g., C2 ∪ C3 ∪ . . . CK).

For classification, rather than directly using the observed signal, the signal is represented by
biomarkers that correspond to salient signal properties. This generically reduces the complexity of the
observation without attempting to discriminate the data, and it creates a representation that is appropriate
for the specific task of model-based classification via the formalizations described below. Namely, the
observation is converted into a set of features. The choice of features strongly affects the success of
a binary classifier. Ideally, the distributions of the feature values should be as distinct as possible for
observation belonging to the different classes. Then, by letting a feature be denoted by xi and a vector
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of features by x⃗ = [x1 x2 x3 xk], we can represent a binary classifier as a function that maps a feature
vector x⃗ to Class C1 or C2. More succinctly

F (x⃗) → {C1, C2} (1)

Several techniques exist for determining the mapping function. Below, we discuss the merits of the
generative and discriminative approaches. While the generative approach may provide classification
outputs that indicate class membership and degree of membership, the discriminative approach simply
aims to provide an indication of class membership; this is both sufficient for many of the medical devices
envisioned, and, as described below, it is more viable for model construction based on the data typically
available [26,27].

3.1. Discriminative Approach

Discriminative approaches aim to derive a decision boundary or boundaries that divide the feature
space into regions containing feature vectors from the same class. A powerful algorithm for determining
decision boundaries is the support-vector machine (SVM) algorithm [28]. In its simplest form, the SVM
algorithm determines a decision boundary in the form of a hyper-plane [29]. The hyper-plane is chosen
to maximize the classification margin, which is the geometric distance between the hyper-plane and the
boundary data instances for each class that are observed during training [30]. The chosen boundary cases
are known as the support vectors.

As an example, Figure 5a shows the linear decision boundary separating intra-cranial EEG (IEEG)
seizure feature vectors (circles) from non-seizure feature vectors (crosses). Here, the x and y-axis
features represent the energy in the spectral band 8 ± 8 Hz and 25 ± 11 Hz, respectively. The seizure
feature vectors are distributed into a cluster that lies away from the non-seizure data as well as several
sparse points that lie in close proximity to the non-seizure data. The seizure vectors closest to the
non-seizure vectors are associated with the onset period while those further away are associated with later
stages of the seizure (e.g., the vectors numbered 1–5 are extracted from the first 7 s of a seizure). It can be
seen that the two classes are not well separated by a linear decision boundary, as numerous non-seizures
data points are classified as seizure feature vectors. SVMs, however, allow nonlinear boundaries to be
evoked through a kernel transformation, improving the classifier performance (by, for instance, reducing
misclassification of the non-seizure feature vectors, as shown in Figure 5b).

The mapping function that establishes whether a feature vector falls within the region of the feature
space defined by seizure activity is expressed below for the case of a linear boundary. Here, the vector
W (which is normal to the separating hyper-plane) and the bias term b are parameters determined by the
SVM learning algorithm.

f(x⃗) =

C1, if W T x⃗ + b ≥ 0

C2, if W T x⃗ + b < 0
(2)

A highly flexible nonlinear boundary can be achieved using a radial-basis function kernel, where the
discriminant function takes the form shown in the equation below. The coefficient αi, the support-vectors
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x⃗i, and the bias term b are determined by the SVM learning algorithm based on observed data. The
parameter γ, which controls how tightly the nonlinear boundary circumscribes a class, is user-defined.

f(x⃗) =

C1, if
∑N

i=1 αie
−γ|x⃗−x⃗i|2 + b ≥ 0

C2, if
∑N

i=1 αie
−γ|x⃗−x⃗i|2 + b < 0

(3)

The number of support-vectors N is strongly affected by the complexity of the classification task. As
the similarity between the physiologic and pathophysiologic data increases, more support-vectors may
be needed to define a more complex decision boundary, and the computational cost scales accordingly.

Nonetheless, the SVM algorithm is well suited for biomedical detection tasks because its learning
mechanism focuses on determining a decision boundary by identifying boundary data cases from among
those that are observed for each class. This readily allows the generation of the models. It has also
been shown to perform well in high-dimensionality classification problems [31] and in settings where
one class has a much smaller number of training samples, as is often the case for the pathophysiologic
class [32].

Figure 5. Support-vector machine decision boundaries for intracranial EEG from a
seizure detection application using (a) a linear classification kernel and (b) a radial-basis
function classification kernel (seizure data is represented by circles and non-seizure data is
represented by crosses).

(a) (b)

3.2. Generative Approach

In contrast to discriminative approaches (which focus on boundary data cases), generative approaches
first model the probability distributions of each class and then label an observation as a member of the
class whose model is most likely to have generated an observation [26]. Mathematically, this logic is
represented as follows [33]:
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f(x⃗) =

C1, if P (C1|x⃗) ≥ P (C2|x⃗)

C2, if P (C1|x⃗) < P (C2|x⃗)
(4)

P (Ci|x⃗), which is known as the a posteriori probability, is the probability that the source of the
observation is the class Ci given that we have observed the feature vector x⃗. The a posteriori probability
of a class is typically not known. It can, however, be computed using Bayes’ Rule. Bayes’ Rule
formulates the a posteriori probability in terms of probability functions and densities that can be more
readily estimated from data:

P (Ci|x⃗) =
f(x⃗|Ci)P (Ci)

f(x⃗)
(5)

The prior P (Ci) is the probability that observations originate from the class Ci. The likelihood function
f(x⃗|Ci) describes how likely it is to observe the feature vector x⃗ assuming that the source is the class Ci.
A tractable and flexible choice for f(x⃗|Ci) is a mixture of gaussians:

f(x⃗|Ci) =
K∑

j=1

πjN (x⃗, µj, Λj) =
K∑

j=1

πj

(2π)M/2|Λj|1/2
e−

1
2
(x−µj)

T Λ−1
j (x−µj) (6)

The parameters of the mixture model (number of gaussian densities K and the weight πj , mean
µj , and covariance matrix Λj of each gaussian density) can be estimated using training feature vectors
derived from the class Ci by using the Expectation Maximization (EM) algorithm [34]. As an example,
consider the scalp EEG seizure (circles) and non-seizure (crosses) feature vectors shown in Figure 6a.
These feature vectors were originally 126 dimensional but have been projected onto a 2 dimensional
space through principal components analysis for illustration. Figure 6b shows the likelihood function
for the non-seizure class estimated using the EM algorithm with a mixture of 3 gaussians; notice how
the gaussian mixture facilitates the approximation of the multimodal, non-gaussian distribution of the
non-seizure class. In general, it is important to remember that reliably estimating the parameters of a
gaussian mixture model in the original high-dimensional feature space (which may be necessary in order
to model the relevant physiology) is much more challenging and requires an abundance of data; this
challenge is often referred to as the curse of dimensionality. In the biomedical context, gathering an
abundance of data can be difficult, especially for the pathophysiologic class.

Using the prior and likelihood function we can rewrite the a posteriori probability and mapping
function as follows:

f(x⃗) =

C1, if f(x⃗|C1)P (C1) ≥ f(x⃗|C2)P (C2)

C2, if f(x⃗|C1)P (C1) < f(x⃗|C2)P (C2)
(7)

If the prior probabilities P (Ci) are not known, then the above decision rule can be reduced to
comparing the ratio of the likelihood functions to a threshold λ. The value of λ is determined
experimentally (or analytically if mathematically tractable forms of f(x⃗|Ci) are chosen [33]) using
training data to yield a desired probability of true and false detections:
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f(x⃗) =

C1, if f(x⃗|C1)
f(x⃗|C2)

≥ λ

C2, if f(x⃗|C1)
f(x⃗|C2)

< λ
(8)

From the above decision rule, we can derive a boundary that separates the values of x⃗ where F (x⃗) = C1

from the values of x⃗ where F (x⃗) = C2. As in the case of a discriminative classifier, this decision
boundary can be a line, an open curve, or a closed curve depending on the form of the term f(x⃗|Ci).
Beyond this, however, we can also use the likelihood functions f(x⃗|Ci) to assess an observation’s degree
membership in the class Ci. Unlike a discriminative classifier, which must assign an observation to a
class, a generative classifier can thus use the degree of membership of an observation to implement a
reject option. This can be used to state that an observation is unlikely to belong to either class whenever
values of f(x⃗|Ci) are very small. Such an option can be useful when classifying signals exhibiting
many regimes peripheral to those of concern. This arises in the context of brain-machine interface
applications [35].

Figure 6. (a) 126 dimensional seizure (red) and non-seizure (blue) feature vectors extracted
from Scalp EEG and projected onto a two dimensional space spanned by the first two
principal components; (b) Three gaussian mixture model of the non-seizure likelihood
function (f(x⃗|Cnonseizure)) estimated using the EM algorithm.

(a) (b)

For illustration, Figure 7 shows the decision boundary resulting from applying the above (generative)
decision rule with f(x⃗|Cseizure) modeled using a single gaussian, f(x⃗|Cnonseizure) modeled using a
mixture of 3 gaussians, and λ = 30. A smaller λ would result in a wider boundary that includes more
seizure feature vectors, and potentially, more non-seizure feature vectors. Also shown in Figure 7 is the
boundary resulting from using a discriminative classifier (SVM using radial basis function with γ = 3).
Note how the model assumption of a single guassian for f(x⃗|Cseizure) forces the decision boundary to
be an ellipsoid, while the SVM results in a more curved decision boundary that encloses more seizure
feature vectors. However, when there is confidence that the proposed form of f(x⃗|Ci) describes the data
well, a generative model may outperform a discriminative model [26].

In summary, the discriminative approach can be more readily applied to biomedical applications
characterized by high-dimensional feature vectors and limited training data; this is thanks to the limited
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characterization required of the statistics underlying the data. However, when information about the
statistics is available (thanks to sufficient training data), the generative approach can provide models that
produce accurate results for classification as well as degree of class membership.

Figure 7. Seizure (red) and Non-seizure (blue) feature vectors from Figure 6a separated
using decision boundaries estimated using a generative and discriminative approach. The
decision boundary derived using the generative approach (black) with f(x⃗|Cseizure) modeled
using a single gaussian, f(x⃗|Cnonseizure) modeled using a mixture of 3 gaussians, and
λ = 30. The decision boundary derived using the discriminative approach used a Support
Vector Machine and radial basis kernel with parameter γ = 3.

4. Case Study: Chronic Seizure Detection System

Since data-driven techniques introduce distinct benefits for addressing the challenges mentioned in
Section 2.1, we are motivated to incorporate these in practical biomedical devices. In this context,
system- and application-level considerations for the devices also become important. For instance,
recognizing the energy limitations and obtrusiveness of instrumenting patients with many sensing
channels, SVM-based approaches have been investigated that minimize the number of electrodes from
which continuous recording is required. In the seizure detection system of [36], coarse detection
is thus performed continuously using only 60% (on average) EEG channels; the resulting detector
misses only 7 out of 143 seizures, has a detection latency of 7.0 s, and achieves a false alarm rate of
0.11 per hour (compared to 4 out of 143, 6.0 s, and 0.07 per hour, respectively, for a full 18-channel
system). In addition, low-energy devices that exploit the topology of the analog instrumentation front
end to also directly extract typical biomarkers have been reported for EEG-sensing applications [37] and
ECG sensing applications [38]. Anticipating the need for low-energy classification, studies have also
been pursued investigating simplified classifier implementations that reduce computational complexity
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through the use of approximate models (e.g., employing a reduced set of support vectors for SVM
classification in seizure detection [39]); although this compromises the classification model, limiting
generality and accuracy, it can lead to low-power implementations.

This section describes details of an SoC designed at the circuit and system levels to take advantage
of data-driven modeling for chronic seizure onset detection. The SoC incorporates a low-noise
instrumentation amplifier for EEG acquisition, an ADC, and a feature extraction processor for
SVM-based classification. Each SoC corresponds to one EEG channel, and the number of channels
required ranges from 2–18 depending on the patient. Seizure onset detection can serve to generate
signals to alert the patient and/or caregivers, control automatic data-logging and charting systems, or
actuate therapeutic stimulators in a closed-loop manner (e.g., vagus-nerve stimulators [17]).

The system-level partitioning of the detector is driven by patient safety considerations. Namely, no
cables originating from the patient’s scalp are permitted since these can pose a strangulation hazard in
case the patient convulses during a seizure. Additionally, the battery size and weight on the patient’s
head and neck must be minimal in order to reduce the risk of injury in case the patient loses balance. To
minimize energy consumption on the scalp, the SoC performs EEG acquisition and feature-extraction
processing locally, but leaves the classification computation for a device worn away from the patient’s
head. As described below, local feature extraction plays an important role in reducing the energy of
wireless communication from the head, mitigating the need in this application for further data-rate
reduction through classification; however, the form factor and/or implantation protocols in future systems
can make the integration of classifiers compelling.

4.1. Algorithm and System Design

Clinical studies have determined that seizure onset information is contained in the spectral energy
distribution of a patient’s EEG [16]. The SoC thus extracts biomarkers corresponding to the spectral
energy distribution in seven frequency bins from each EEG channel. The seizure detection algorithm
in Figure 3, summarizes the overall processing employed in the system. The seven features from
each channel are combined to form a total feature vector of up to 126 dimensions (since as many as
18 channels may be used). For continuous seizure detection, each feature vector is classified in
real-time by a pre-trained SVM (utilizing a radial-basis function kernel). The SVM is trained based
on patient-specific data, and this is verified to yield substantial improvement in sensitivity and specificity
compared to patient-generic detectors (testing is based on 536 hours of patient data across 16 patients
from Boston Children’s Hospital [17]).

As mentioned, wireless transmission of information from the scalp sensors is essential to avoid the
presence of cables. Table 1 considers the total power for a full-scale, 18-channel EEG monitoring
system, illustrating the opportunity afforded by local biomarker (feature) extraction as compared to
complete wireless EEG transmission. In the case of wireless EEG, the radio transmitter power dominates
(assuming a low-power Zigbee radio [40]). Local feature extraction, however, reduces the transmission
data-rate by a factor of over forty at the cost of negligible digital computation power. As a result, the
total system power on the scalp is reduced by a factor of fourteen. The remaining radio power is no
longer dominant, and thus further data-rate reduction is not essential. As a result, the classification
computation is left to be performed away from the scalp where the battery size and weight constraints
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are less severe. A direct implementation of the SVM classification kernel on an MSP430 processor
consumes approximately 4 mW.

Table 1. Power comparison showing the benefit of local feature extraction vs. complete
wireless EEG [41]. An 18-channel EEG recording system is assumed, and the aggregate
power over all channels is reported.

No Local Processing Local Feature Extraction
Instrumentation amps 72 µW 72 µW
ADCs (12 b, 600 Hz/ch.) 3 µW 3 µW
Digital Processors - 2.1 µW
Radio (CC2550) 1733 µW 43 µW
-Active: bit-rate × 40 nJ/bit -Active: 43.2 kb/s 1 × 40 nJ/bit -Active: 2 kb/2 s × 40 nJ/bit
-Start-up: 4.8 µW (avg./s) -Start-up: 4.8 µW -Start-up: 4.8 µW/2 s
-Idle mode: 0.46 µW -Idle mode: 0.46 µW -Idle mode: 0.46 µW
Total 1808 µW 120 µW

1 Assumes EEG waveforms are downsampled to 200 Hz (as in typical EEG recording interfaces).

4.2. Low-Noise EEG Acquisition

As shown in Table 1, the power consumption of the instrumentation amplifier is an important concern.
The amplifier employed thus aims to maximize power efficiency by operating at a low supply voltage
(<1 V) and by using a voltage-feedback topology, where a minimum number of noise contributing
devices are required. For a chronic wearable system, robustness to signal interferences (such as
60 Hz environmental coupling, motion artifacts on the electrodes, etc.) are also primary concerns. Since
data-driven modeling affords a high detection specificity with respect to the biomarkers, some degree
of signal interference is tolerated. Nonetheless, stability in the acquisition system is critical so that the
learned correlations remain valid during real-time detection.

Figure 8 summarizes the key instrumentation considerations, which include 1/f and wideband
device noise sources, 60 Hz coupling, interfering electrographic scalp activity (which may be correlated
between recording and reference electrodes), and the electrode offsets. For the electrodes, low-cost
Ag/AgCl electrodes, which are the most common, are presumed. In the equivalent circuit model shown,
signal transduction is dominated by the capacitor (CP ) and the resistor (RS). For on-scalp electrodes,
the worst case value of these can be as low as 50 nF and as high as 2 MΩ, respectively [42]. The input
impedance of the instrumentation amplifier is constrained accordingly (to have much lower capacitance
and much higher resistance). In addition, transduction through CP requires the formation of a charge
double layer at the electrode surface, which causes a low-frequency electrode offset voltage (EOV). The
EOV can be as high as 100 mV, posing the possibility of easily saturating a low-voltage design.

Figure 9 show the architecture and first stage of the instrumentation amplifier. Chopper
stabilization [43] is used to handle low-frequency (1/f ) noise, and input capacitors (CIN ) are used
to passively isolate large electrode offsets from the active portion of the low-voltage amplifier. Several
other implementations of chopper stabilized EEG amplifiers have recently been reported. In [44], input
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capacitors are also used, but chopper modulation is performed before these. This yields very high
common-mode rejection ratio by mitigating the effect of capacitor mismatch [14], but it limits the EOV
tolerable and degrades the amplifier’s input resistance (compromising the ability to handle large electrode
impedances in on-scalp sensing applications). Alternatively, the design in [45] uses current-feedback to
handle EOV while maintaining very high input impedance through the use of input transconductors. The
magnitude of EOV cancelation achievable through active feedback, however, is limited in low supply
voltage designs, and the use of current-feedback transconductors degrades the noise efficiency somewhat.

Figure 8. Instrumentation challenges with EEG sensing.
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Figure 9. The instrumentation amplifier showing (a) the overall architecture and (b) the first
stage low-noise amplifier.
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In the topology of Figure 9b, the voltage-feedback is retained for noise efficiency, but input chopper
modulation is performed after the input capacitors, at the virtual ground node. Although this degrades
the resistance between the op-amp nodes, the input resistance seen by the electrodes remains high since
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feedback ensures that electrodes do not need to cause substantial voltage swing at the virtual ground
node. As shown, however, input offset voltage in the op-amp does cause an offset current (IOS,CHOP )
between its input nodes. To avoid IOS,CHOP saturating the amplifier, the GM − C servo loop is used in
feedback, providing a cancelation current. Further details of the amplifier, including noise analysis, are
provided in [41].

The ADC used to digitize the instrumentation amplifier output is a differential, 12-bit SAR converter
(circuit details are provided in [46]). The resolution was selected based on algorithm performance
from testing (in a manner similar to the feature-extraction parameter analysis described below). It
was determined that detection performance improved up to 10-bits; thus, the 12-bit ADC with
10.6 effective number of bits (ENOB) was employed. The instrumentation amplifier has a bandwidth of
200 Hz (required for generic EEG acquisition). In order to ease the anti-aliasing filtering requirements
in the instrumentation front-end, the ADC samples at 600 Hz, since (as shown in Table 1) its power
consumption is not a dominating concern.

4.3. Feature-extraction Processing

Although the importance of spectral energy biomarkers in the EEG is well established for seizure
onset detection, the precise parameters required for their representation (assuming an SVM classifier)
is not well known. In order to determine this, analysis is pursued to evaluate the performance of the
algorithm over the parameter space. The parameters considered include the dynamic range of the EEG
samples, the precision of the feature-extraction computation, the bin resolution of the spectral energy
distribution, and the frequency response of the spectral analysis filters. Due the data-driven nature of the
detection algorithm employed, its performance over the parameter space depends on the characteristics
of the data. Thus, the analysis is approached by testing the performance using available patient data.
As an example, Figure 10 considers the analysis pertaining to the bin resolution for the spectral energy
distribution. The critical metrics for seizure onset detection include sensitivity, latency, and specificity
(represented by the number of false alarms per hour). As shown, these are determined for bin resolutions
ranging from 2–8, in a 0–20 Hz band (i.e., the band of interest for seizure detection [16]). Based on over
1100 h of data across 30 patients, the results show that the performance improves substantially up to a
resolution of 6 bins. Thus, in the implementation, a bin resolution of seven filters is chosen.

In addition to the performance metrics, Figure 10 also shows the number of support vectors required.
The number of support vectors is representative of the classification model complexity. Although SVM
classification is performed away from the patient’s head, it is worth noting that there is a trade-off
between the quality of the biomarkers and complexity of the classification task. Nonetheless, in the
range of bin resolutions required for sufficient performance, the number of support vectors required does
not change dramatically.

Figure 11 shows the implementation of the feature extraction processor. In order to determine
the precision and frequency response required for the spectral analysis filters, analysis similar to
Figure 10 is performed, evaluating the performance over various filter parameters. Although the input
EEG is sampled at a rate of 600 Hz (as described above), the band of interest for seizure detection is
0–20 Hz. In order to ease the implementation of the filters, the input is first down-sampled by eight
using a decimation filter of order 48. Each of the seven spectral analysis filters then require an order of
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46 to achieve the chosen frequency response. The spectral analysis filters have the following frequency
response: bandwidth of 3 Hz, transition band of 3 Hz, and stop-band attenuation of −25 dB. The filters
are all implemented using a folded-delay line FIR structure.

Figure 10. Analysis (from 1136 h of patient data) to determine the feature-extraction
parameters required in order to accurately classify the data (the analysis for spectral bin
resolution is shown).

00.20.40.60.81 2 4 6 8Sensitivity 00.511.52 2 4 6 8False-alarms/hr 050100150200 2 4 6 8Number of Filters# Support-vectorsω20Hzω20HzNumber of FiltersNumber of Filters 05101520 2 4 6 8Number of FiltersLatency (s)
Figure 11. Implementation of the feature-extraction processor (with parameters determined
from analysis).
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Table 2, shows the final parameters used in the feature-extraction processing, which have been chosen
based on analysis of the algorithm performance with patient data.

4.4. SoC Performance

The SoC is implemented in a 5M2P 180nm CMOS process. Figure 12 shows the die photograph along
with a performance summary. Although the feature extraction processor occupies a large portion of the
die area, its energy is very low, making local feature extraction for communication data-rate reduction
compelling from the perspective of the energy and safety concerns related to the patient’s head and neck.

Figure 13 shows a demonstration of EEG acquisition, digitization, feature extraction, and
classification. A recording electrode at the occipital location (O2) and a reference electrode at the scalp
mid-line indicate a relaxed eyes-closed state in the subject through the appearance of an α-wave in the
EEG. The α-wave corresponds to a 10 Hz rhythm. In the test shown, the subject periodically closes
and opens his eyes to evoke the onset of the α-wave. An SVM has been trained (using 20 s of data) to
detect the subject’s relaxed eyes-closed state. The waveforms show the EEG acquired using the on-chip
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instrumentation amplifier and ADC. The presence of the α-wave is thus annotated. The second waveform
indicates the output of the classifier so that the accuracy and latency of the detector can be characterized.
Over a five minute run, the α-wave is correctly detected with less than 2.5 s of latency.

Table 2. Parameters selected for feature-extraction processing based on analysis of
algorithm performance.

Feature Extraction Parameters Parameter Values
Decimation filter input rate 600 Hz
Decimation filter output rate 75 Hz
Decimation filter BW 150 Hz
Decimation filter input precision 12-bits
Decimation filter output precision 16-bits
Decimation filter order 48
Spectral analysis band 0–20 Hz
Spectral analysis bins 7
Spectral analysis filter BW 3 Hz
Spectral analysis filter pass band 3 Hz
Spectral analysis filter output precision 16-bits
Spectral analysis filter order 46

Figure 12. Performance summary and die photograph of seizure detection SoC.

Supply voltage 1 V

Feature 

Processor

Inst. amp
ADC

2.5mm 2.5mm
Extraction

I-amp LNA power 3.5 µW
I-amp input impedance >700 MΩ

I-amp noise (input referred, 0.5 Hz–100 Hz) 1.3 µVrms
I-amp electrode offset tolerance >1 V
I-amp CMRR >60 dB
ADC resolution 12 b
ADC energy per conversion 250 pJ
ADC max. sampling rate 100 kS/s
ADC INL/DNL 0.68/0.66 LSB
ADC SNDR 65 dB
Digital energy per feature-vector 234 nJ
Feature vector computation rate 0.5 Hz
Total energy per feature-vector 9 µJ

4.5. Low-energy Programmable Processors Through Voltage Scaling

In the SoC described, a dedicated processor is used for biomarker extraction. This leads to very
low energy, motivating the computation vs. communication trade-off of Table 1. As described in
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Section 2.2, however, the optimal choice of biomarkers depends on a wide range of considerations
from application-to-application. Programmable platforms can thus help cover the range of choices
pertaining to biomarker selection and processing. The challenge is that programmability incurs much
higher energy. A generic approach that is valuable for reducing energy is voltage reduction. Voltage
reduction quadratically lowers the active switching energy (CV 2

DD). Although, this degrades circuit
speed, allowing leakage power sources to integrate over a longer period, energy is typically minimized
at voltages near the subthreshold regime, since here the circuit speed begins degrading rapidly [47]. This
is shown, for instance in the case of an MSP430 (implemented in low-power 65 nm CMOS) [48], where
the energy is minimized at a VDD of 0.5 V where an operating frequency of 400 kHz is achieved.

Figure 13. Operation of seizure detection system including EEG acquisition, digitization,
feature extraction, and classification of α-state (wired transmission of the feature vectors is
employed to simplify demonstration of the detection system).
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Since many physiological signals of interest have low-bandwidths (i.e., below 10 kHz) [14]. The
energy savings afforded by aggressive voltage reduction are compelling. The ability to operate circuits
at ultra-low-voltages, however, requires specialized circuit techniques to tolerate the loss of digital noise
margins. Voltage scaling dramatically exacerbates sensitivity to process variation. This is most severe in
memory circuits, such as SRAMs, which are relied on heavily in programmable platforms. Due to the
high number of devices used in large arrays, it is beneficial to use specialized bit-cells (e.g., 8-transistor
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topologies). Although these require more devices than the standard 6-transistor topologies, they achieve
better area efficiency at low voltages, since the wider noise margins enable aggressive device sizing
which would otherwise exacerbate variability to an intolerable level [49]. Logic-gate upsizing to ensure
noise margins in the logic circuits may also be required, and can be achieved using a Monte Carlo
simulation-based modeling and validation methodology [50].

5. Conclusions and Challenges

The emergence of advanced biomedical sensing and stimulation technologies raises the opportunity
for chronic biomedical devices that are clinically compelling. A critical aspect in systems that aim
to take advantage of these, however, is the ability to discern specific physiological processes so that
proper therapy can be automatically delivered or so that clinically relevant states can be continuously
tracked. Interpreting the correlations in the patient signals that are available through chronic sensors is
challenging. Namely, physiological processes, and the mechanisms through which they are exhibited in
the signals, are typically too complex to model accurately. Further, the precise correlations exhibited may
be variable from patient-to-patient, and these must be discriminated with high specificity since numerous
physiological processes simultaneously affect the signals. The ability to efficiently and accurately model
the data is thus critical. Fortunately, thanks to recent clinical practices, databases now exist where patient
signals are annotated with diagnostic information. Additionally, efficient algorithms (from the domain of
machine-learning) have emerged that allow us to exploit such databases to model the clinically-relevant
correlations between the data and the physiological patient states. This paves the way for promising
detection algorithms that can allow chronic biomedical devices to be intelligent.

Incorporating such algorithms in practical devices introduces energy, instrumentation, form-factor,
and computational resource constraints. To demonstrate system design, the case study of an SoC for
a chronic seizure detection system is considered. The SoC incorporates a low-noise instrumentation
amplifier for EEG acquisition, an ADC, and a processor for spectral feature extraction. Analysis,
based on patient data testing, is presented for determining the feature-extraction parameters and the
computational precision required. This leads to a system that is viable for chronic seizure detection;
however, several open challenges remain for future systems. The implementation of low-power
machine-learning classifiers is opposed by the complexity of the classification task. The ability to
efficiently scale the classifier model for the datasets of interest is thus important in order to avoid
compromising the accuracy of a detector [39]. In the case study considered, the power consumption
of classification motivated moving its implementation off the scalp, where the battery size and weight
limitations are the most severe. Additionally, although data-driven modeling provides a high degree
of specificity by training based on previously observed data, physiological changes in the patient can
invalidate the generated model. Although, this is not observed to limit seizure detection applications
(where seizures in a given patient appear to be stereotypical and stable), it can be important in
applications where patient monitoring is required following an acute event to which the physiology
responds by evolving over time [23]. Nonetheless, patient data is one of the most important resources
in modern healthcare. Exploiting it to achieve accurate patient monitoring systems is emerging as
a promising approach. Incorporating these methods in chronic biomedical devices is thus highly
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compelling, since new modalities for delivering therapy and sensing patient signals could make such
devices invaluable for effective healthcare delivery.
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