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Abstract

We derive new estimates of total wealth, the returns on total wealth, and the wealth

effect on consumption. We estimate the prices of aggregate risk from bond yields and

stock returns using a no-arbitrage model. Using these risk prices, we compute total

wealth as the price of a claim to aggregate consumption. We find that U.S. households

have a surprising amount of total wealth, most of it human wealth. This wealth is

much less risky than stock market wealth. Events in long-term bond markets, not

stock markets, drive most total wealth fluctuations. The wealth effect on consumption

is small and varies over time with real interest rates.

JEL codes: E21, G10, G12
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The total wealth portfolio plays a central role in modern asset pricing theory and macroe-

conomics. Total wealth includes real estate, non-corporate businesses, other financial assets,

durable consumption goods, and human wealth. The objective of this paper is to measure

the amount of total wealth, the amount of human wealth, and the returns on each. The

conventional approach to approximating the return on total wealth is to use the return on

an equity index. Our approach is to measure total wealth as the present discounted value of

a claim to aggregate consumption. The discount factor we use is consistent with observed

stock and bond prices. Our preference-free estimation imposes only the household budget

constraint and no-arbitrage conditions on traded assets. According to our estimates, stock

market wealth is only 1% of total wealth while all non-human wealth only 8%. Moreover,

the returns on the vast majority of total wealth differ markedly from equity returns; they

are much lower on average and have low correlation with equity returns. Thus, our results

challenge the conventional approach.

Our main finding is that households in the United States have a surprising amount of

total wealth, $3.5 million per person in 2011 (in 2005 dollars). Of this, 92% is human wealth,

the discounted value of all future U.S. labor income. Our estimation imputes a value of $1

million to an average career spanning 35 years. The high value of total wealth is reflected in

a high average wealth-consumption ratio of 83, much higher than the average equity price-

dividend ratio of 26. Equivalently, the total wealth portfolio earns a much lower risk premium

of 2.38% per year, compared to an equity risk premium of 6.41%. Total wealth returns are

only half as volatile as equity returns. The lower variability in the wealth-consumption ratio

indicates less predictability in total wealth returns. Unlike stocks, most of the variation in

future expected total wealth returns is variation in future expected risk-free rates, and not

variation in future expected excess returns. The correlation between total wealth returns and

stock returns is only 27%, while the correlation with 5-year government bond returns is 94%.

Thus, the destruction and creation of wealth in the U.S. economy are largely disconnected

from events in the stock market and are related to events in the bond markets instead.
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Between 1979 and 1981 when real interest rates rose, $318,000 of per capita wealth was

destroyed. Afterwards, as real yields fell, real per capita wealth increased steadily from

$860,000 in 1981 to $3.5 million in 2011. Total U.S. household wealth was hardly affected

by the spectacular declines in the stock market in 1973-1974, 2000-2001, and 2007-2009.

The main message from these results is that equity is quite different from the total wealth

portfolio.

A simple back-of-the-envelope Gordon growth model calculation helps explain the high

wealth-consumption ratio. The discount rate on the consumption claim is 3.51% per year

(a consumption risk premium of 2.38% plus a risk-free rate of 1.49% minus a Jensen term

of 0.37%) and its cash-flow growth rate is 2.31%. The Gordon growth formula delivers the

estimated mean wealth-consumption ratio: 83 = 1/(.0351− .0231).

In addition to the low volatility of aggregate consumption growth innovations, the reason

that total wealth resembles a real bond is that the value of a claim to aggregate risky

consumption is similar to that of a claim whose cash flows grow deterministically at the

average consumption growth rate. The latter occurs because innovations to current and

future consumption growth carry a small market price of risk according to our calculations.

This is not a foregone conclusion because the market prices of risk are estimated to be

consistent with observed stock and bond prices. The finding that current consumption

growth innovations are assigned a small price is not a complete surprise. That is the equity

premium puzzle. But, we also know that traded asset prices predict future consumption

growth. This opens up the possibility that shocks to future consumption demand a high

risk compensation. A key finding of our work is that this channel is not strong enough to

generate a consumption risk premium that resembles anything like the equity risk premium.

Discounting consumption at a low rate of return implies that the present discounted value

of the stream (total wealth) is high, arguably higher than commonly believed.

Our methodology also produces new estimates of the marginal propensity to consume

out of wealth. We find that the U.S. consumer spent only 0.76 cents out of the last dollar
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of wealth, on average over our sample period. The marginal propensity to consume tracks

interest rates: It peaks in 1981 at 1.4 cents per dollar and bottoms out in 2010 at 0.6 cents

per dollar. The 50% drop in the marginal propensity to consume out of wealth occurred

because the newly created wealth between 1981 and 2010 reflected almost exclusively lower

discount rates rather than higher future consumption growth. We estimate that all variation

in the wealth-consumption ratio is due to variation in discount rates.

A key assumption in the paper is that stock and bond returns span all priced sources of

risk. We verify that our unspanned consumption growth innovations are essentially acyclical

and serially uncorrelated. In addition, we check whether the pricing of consumption inno-

vations that are not spanned by innovations to bond yields or stock returns can overturn

our results. Even if we allow for unspanned priced risk that delivers Sharpe ratios equal to

four times the observed Sharpe ratio on stocks, the consumption risk premium remains 2.5

percentage points below the equity risk premium. In the Online Appendix, we show that our

valuation procedure is appropriate even in an economy with heterogeneous agents who face

uninsurable labor income risk, borrowing constraints, and limited asset market participation.

To derive our wealth estimates, we use a vector auto-regression (VAR) model for the state

variables as in Campbell (1991, 1993, 1996). We combine the estimated state dynamics with

a no-arbitrage model for the stochastic discount factor (SDF). As in Duffie and Kan (1996),

Dai and Singleton (2000), and Ang and Piazzesi (2003), the log SDF is affine in innovations

to the state vector while market prices of aggregate risk are affine in the same state vector.

We estimate the market prices of risk by matching salient features of nominal bond yields,

equity returns and price-dividend ratios, and expected returns on factor-mimicking portfolios,

linear combinations of stock portfolios that have the highest correlations with consumption

and labor income growth. This approach is similar to that in Bekaert, Engstrom, and Xing

(2009), Bekaert, Engstrom, and Grenadier (2010), and Lettau and Wachter (2011), who use

affine models to match features of stocks and bonds. By using precisely-measured stock and

bond price data, our approach avoids using data on housing, durable, and private business
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wealth from the Flow of Funds. These wealth variables are often measured at book values

and with substantial error.

Our approach also avoids making arbitrary assumptions on the expected rate of return

(discount rate) of human wealth, which is unobserved. In earlier work, Campbell (1993),

Shiller (1995), Jagannathan and Wang (1996), and Lettau and Ludvigson (2001a, 2001b) all

make particular, and very different, assumptions on the expected rate of return on human

wealth. In a precursor paper, Lustig and Van Nieuwerburgh (2008) back out human wealth

returns to match properties of consumption data. Bansal, Kiku, Shaliastovich, and Yaron

(2012) emphasize the role of macro-economic volatility in a related exercise. Using market

prices of risk inferred from traded assets, we obtain a new estimate of expected human wealth

returns that fits none of the previously proposed models. We estimate human wealth to be

92% of total wealth. This estimate is consistent with Mayers (1972), who first pointed out

that human capital forms a major part of the aggregate capital stock in advanced economies,

and with Jorgenson and Fraumeni (1989), who also calculate a 90% human wealth share.

Our result is also consistent with the share of human wealth obtained by Palacios (2011) in

a calibrated version of his dynamic general equilibrium production model.

Our results differ from earlier attempts to measure the wealth-consumption ratio and the

return to total wealth. Lettau and Ludvigson (2001a, 2001b) estimate cay, a measure of

the inverse wealth-consumption ratio. Their wealth-consumption ratio has a correlation of

24% with our series. Alvarez and Jermann (2004) do not allow for time-varying risk premia

and measure total wealth returns as a linear combination of equity portfolio returns. They

estimate a smaller consumption risk premium of 0.2%, and hence a much higher average

wealth-consumption ratio.

Our paper connects to the literature that studies the valuation of an asset for which one

only observes the dividend growth and not the price. The retirement and social security

literature studies related questions when it values claims to future labor income (e.g. De

Jong 2008, Geanakoplos and Zeldes 2010, Novy-Marx and Rauh 2011).
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Our paper also contributes to the large literature on measuring the propensity to consume

out of wealth. The seminal work of Modigliani (1971) suggests that a one dollar increase

in wealth leads to a five-percent increase in consumption. Similar estimates appear in text-

books, models used by central banks, and in monetary and fiscal policy debates [see Poterba

(2000) for a survey]. A wealth effect of five cents on the dollar implies a wealth-consumption

ratio that is four times lower than our estimates, or equivalently, a consumption risk premium

as high as the equity risk premium. Our first contribution to this literature is to propose

a wealth effect on consumption that is much smaller than previously thought. Second, we

are the first to provide an estimate consistent with the budget constraint and no-arbitrage

restrictions.1 Third, we find that the dynamics of this wealth effect relate to the bond mar-

ket rather than stock market dynamics. This would explain the modest contraction in total

wealth and aggregate consumption in response to the large stock market wealth destruction

of 1973-1974 (e.g. Hall 2001). Our results are consistent with Bernanke and Gertler’s (2001)

suggestion that inflation-targeting central banks should ignore movements in asset values

that do not influence aggregate demand. We find that traded assets amount to a relatively

small share of total wealth. As a result, their price fluctuations do not affect much consumer

spending, the largest component of aggregate demand.

Finally, our work contributes to the consumption-based asset pricing literature. It offers

a new set of moments to evaluate their empirical performance. Too often, such models

are evaluated on their implications for equity returns. But the models’ primitives are the

preferences and the dynamics of aggregate consumption growth. Moments of returns on the

consumption claim are the most primitive asset pricing moments and should be the most

informative for testing these models. In contrast, the dividend growth dynamics of stocks

can be altered without affecting equilibrium allocations or prices of traded assets other than

stocks; modeling them entails more degrees of freedom. This paper carries out a comparison

1Ludvigson and Steindel (1999) and Lettau and Ludvigson (2004) start from the household budget con-
straint but do not impose the absence of arbitrage, and assume a constant price-dividend ratio on human
wealth.
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of two leading endowment economy models: the external habit model of Campbell and

Cochrane (1999) and the long-run risk model of Bansal and Yaron (2004). Our work also

has implications for production-based asset pricing models. As Kaltenbrunner and Lochstoer

(2010) point out, such models usually generate the prediction that the claim to dividends

is less risky than the claim to consumption. Our results indicate that this is counterfactual

and that stocks are special. Modeling realistic dividend dynamics (by introducing labor

income frictions, operational leverage, or financial leverage) is necessary to reconcile the low

consumption risk premium with the high equity risk premium.

The rest of the paper is organized as follows. Section 1 describes our measurement

approach conceptually. Section 2 shows how we estimate the risk price parameters and

Section 3 describes the results from that estimation. Section 4 investigates what features of

the model are responsible for which results and investigates an annual instead of a quarterly

version of our model. Section 5 studies the economic implications of our measurement

exercise for the cost of consumption risk and the propensity to consume out of wealth. It

also shows that our conclusions remain valid when there is priced unspanned consumption

risk. Section 6 compares the properties of the wealth consumption ratio in the long-run risk

and external habit models to the ones we estimate in the data. Finally, Section 7 concludes.

An Online Appendix describes our data, presents proofs, details the robustness checks, and

shows that our valuation approach remains valid in an incomplete markets model.

1 Measuring theWealth-Consumption Ratio in the Data

Section 1.1 describes the framework for estimating the wealth-consumption ratio and the

return on total wealth. Section 1.2 presents two methodologies to compute the wealth-

consumption ratio.
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1.1 Model

The model consists of a state evolution equation and a stochastic discount factor.

1.1.1 State evolution equation

We assume that the N × 1 vector of state variables follows a Gaussian first-order VAR:

zt = Ψzt−1 + Σ
1
2 εt, (1)

with εt ∼ i.i.d.N (0, I) and Ψ is a N ×N matrix. The vector z is demeaned. The covariance

matrix of the innovations is Σ; the model is homoscedastic. We use a Cholesky decomposition

of the covariance matrix, Σ = Σ
1
2Σ

1
2
′, which has non-zero elements only on and below the

diagonal. We discuss the elements of the state vector in detail below. Among other elements,

the state zt contains real aggregate consumption growth, the nominal short-term interest

rate, and inflation. Denote consumption growth by ∆ct = µc + e′czt, where µc denotes the

unconditional mean consumption growth rate and the N × 1 vector ec is the column of a

N ×N identity matrix that corresponds to the position of ∆c in the state vector. Likewise,

the nominal 1-quarter rate is y$t (1) = y$0(1)+ e′ynzt, where y$0(1) is the unconditional average

and eyn the selector vector. Similarly, πt = π0 + e′πzt is the (log) inflation rate between t− 1

and t. All lowercase letters denote logs. The next section contains details on the estimation

of the VAR and Appendix A describes the data sources and definitions in detail.

1.1.2 Stochastic discount factor

We specify a stochastic discount factor (SDF) familiar from the no-arbitrage term structure

literature, following Ang and Piazzesi (2003). The nominal pricing kernel M$
t+1 = exp(m$

t+1)

is conditionally log-normal:

m$
t+1 = −y$t (1)−

1

2
Λ′

tΛt − Λ′
tεt+1. (2)
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The real pricing kernel is Mt+1 = exp(mt+1) = exp(m$
t+1 + πt+1); it is also conditionally

Gaussian.2 The innovations in the vector εt+1 are associated with a N × 1 market price of

risk vector Λt of the affine form:

Λt = Λ0 + Λ1zt,

The N × 1 vector Λ0 collects the average prices of risk while the N ×N matrix Λ1 governs

the time variation in risk premia.

1.2 The wealth-consumption ratio

We explore two methods to measure the wealth-consumption ratio. The first one uses con-

sumption strips and avoids any approximation while the second approach builds on the

Campbell (1991) approximation of log returns.

1.2.1 Consumption strips

A consumption strip of maturity τ pays realized consumption at period τ , and nothing in the

other periods. Under a no-bubble constraint on total wealth, the wealth-consumption ratio

is the sum of the price-dividend ratios on consumption strips of all horizons (Wachter 2005):

Wt

Ct
= ewct =

∞∑

τ=0

P c
t (τ), (3)

where P c
t (τ) denotes the price of a τ period consumption strip divided by the current con-

sumption. Appendix B proves that the log price-dividend ratio on consumption strips are

affine in the state vector and shows how to compute them recursively.

If consumption growth were unpredictable and its innovations carried a zero risk price,

then consumption strips would be priced like real zero-coupon bonds.3 The consumption

2Note that the consumption-CAPM is a special case of this, where mt+1 = log β − αµc − αηt+1 and ηt+1

denotes the innovation to real consumption growth and α the coefficient of relative risk aversion.
3First, if aggregate consumption growth is unpredictable, i.e., e′

c
Ψ = 0, then innovations to future con-

sumption growth are not priced. Second, if prices of current consumption risk are zero, i.e., e′
c
Σ

1

2Λ1 = 0 and

e′
c
Σ

1

2Λ0 = 0, then innovations to current consumption are not priced.
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strips’ dividend-price ratios would equal yields on real bonds (with the coupon adjusted for

growth µc). In this special case, all variation in the wealth-consumption ratio would be

traced back to the real yield curve.

1.2.2 Total wealth returns

Consumption strips allow for an exact definition of the wealth-consumption ratio, but they

call for the estimation of an infinite sum of bond prices. A second approximate method

delivers both a more practical and elegant definition of the wealth-consumption ratio. In

our empirical work, we check that both methods deliver similar results.

In our exponential-Gaussian setting, the log wealth-consumption ratio is an affine func-

tion of the state variables. To show this result, we start from the aggregate budget constraint:

Wt+1 = Rc
t+1(Wt − Ct). (4)

The beginning-of-period (or cum-dividend) total wealth Wt that is not spent on aggregate

consumption Ct earns a gross return Rc
t+1 and leads to beginning-of-next-period total wealth

Wt+1. The return on a claim to aggregate consumption, the total wealth return, can be

written as:

Rc
t+1 =

Wt+1

Wt − Ct
=

Ct+1

Ct

WCt+1

WCt − 1
.

We use the Campbell (1991) approximation of the log total wealth return rct = log(Rc
t)

around the long-run average log wealth-consumption ratio Ac
0 ≡ E[wt − ct],

4

rct+1 ≃ κc
0 +∆ct+1 + wct+1 − κc

1wct. (5)

The linearization constants κc
0 and κc

1 are non-linear functions of the unconditional mean

4Throughout, variables with a subscript zero denote unconditional averages.
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wealth-consumption ratio Ac
0:

κc
1 =

eA
c
0

eA
c
0 − 1

> 1 and κc
0 = − log

(
eA

c
0 − 1

)
+

eA
c
0

eA
c
0 − 1

Ac
0. (6)

Proposition 1. The log wealth-consumption ratio is approximately a linear function of the

(demeaned) state vector zt:

wct ≃ Ac
0 + Ac′

1 zt,

where the mean log wealth-consumption ratio Ac
0 is a scalar and Ac

1 is the N × 1 vector,

which jointly solve:

0 = κc
0 + (1− κc

1)A
c
0 + µc − y0(1) +

1

2
(ec + Ac

1)
′Σ(ec + Ac

1)− (ec + Ac
1)

′Σ
1
2

(
Λ0 − Σ

1
2
′eπ

)
(7)

0 = (ec + eπ + Ac
1)

′Ψ− κc
1A

c′
1 − e′yn − (ec + eπ + Ac

1)
′Σ

1
2Λ1. (8)

The proof in appendix B conjectures an affine function for the log wealth-consumption

ratio, imposes the Euler equation for the log total wealth return, and solves for the coefficients

of the affine function as verification of the conjecture. The resulting expression for wct is an

approximation only because it relies on the log-linear approximation of returns in equation

(5). This log-linearization is the only approximation in our procedure. Once we estimate

the market prices of risk Λ0 and Λ1 below, equations (7) and (8) allow us to solve for the

mean log wealth-consumption ratio (Ac
0) and its dependence on the state (Ac

1).
5

5Equations (7) and (8) form a system of N +1 non-linear equations in N +1 unknowns. It is a non-linear
system because of equation (6), but is well-behaved and can easily be solved numerically.
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1.2.3 Consumption risk premium

Proposition 1 and the total wealth return definition in (5) jointly imply the following log

total wealth return:

rct+1 = rc0 + [(ec + Ac
1)

′Ψ− κc
1A

c′
1 ] zt + (e′c + Ac′

1 )Σ
1
2 εt+1, (9)

rc0 = κc
0 + (1− κc

1)A
c
0 + µc, (10)

where equation (10) defines the unconditional mean total wealth return rc0. The consumption

risk premium, the expected log return on total wealth in excess of the log real risk-free rate

yt(1) corrected for a Jensen term, follows from the Euler equation Et[Mt+1R
c
t+1] = 1:

Et

[
rc,et+1

]
≡ Et

[
rct+1 − yt(1)

]
+

1

2
Vt[r

c
t+1] = −Covt

[
rct+1, mt+1

]
(11)

= (ec + Ac
1)

′Σ
1
2

(
Λ0 − Σ

1
2
′eπ

)
+ (ec + Ac

1)
′Σ

1
2Λ1zt.

The first term on the last line is the average consumption risk premium. This is a key object

of interest, which measures how risky total wealth is. The second (mean-zero) term governs

the time variation in the consumption risk premium.

1.2.4 Growth conditions

Given the no-bubble constraint, there is an approximate link between the coefficients in

the affine expression of the wealth-consumption ratio and the coefficients of the strip price-

dividend ratios P c
t (τ) = exp(Ac(τ) +Bc(τ)′zt):

exp(Ac
0) ≃

∞∑

τ=0

exp(Ac(τ)) and exp(Ac
1) ≃

∞∑

τ=0

exp(Bc(τ)). (12)

A necessary condition for this first sum to converge and hence produce a finite average

wealth-consumption ratio is that the consumption strip risk premia are positive and large
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enough in the limit (as τ → ∞):

(ec +Bc(∞))′ Σ
1
2

(
Λ0 − Σ

1
2 eπ

)
> µc − y0(1) +

1

2
(ec +Bc(∞))′ Σ (ec +Bc(∞)) .

We refer to this inequality as the growth condition. Because average real consumption growth

µc exceeds the average real short rate y0(1) in the data, the right-hand side of the inequality

is positive. When all the risk prices in Λ0 are zero, this condition is obviously violated. It

implies a lower bound for the consumption risk premium.

1.3 Human wealth

The same way we priced a claim to aggregate consumption, we price a claim to aggregate

labor income. Human wealth is the present value of the latter claim. We impose that the

conditional Euler equation for human wealth returns is satisfied and obtain a log price-

dividend ratio, which is also approximately affine in the state: pdlt = Al
0 + Al

1zt. (See

Proposition 2 in Online Appendix B.1.) By the same token, the conditional risk premium

on the labor income claim is affine in the state vector (see equation B.5 in Online Appendix

B.1).

2 Estimating the Market Prices of Risk

In order to recover the dynamics of the wealth-consumption ratio and of the return on wealth,

we need to estimate the market prices of risk Λ0 and Λ1. This section details our estimation

procedure. Section 2.1 describes the state vector. Section 2.2 lists the additional restrictions

we impose on our framework. Section 2.3 describes the estimation technique.

To implement the model, we need to take a stance on what observables describe the

aggregate dynamics of the economy. The de minimis state vector contains the nominal

short rate, realized inflation, and the cash flow growth dynamics of the two cash flows this

paper sets out to price: consumption and labor income. In this section, we lay out our
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benchmark model, which contains substantially richer state dynamics than contained in

these four variables. The richness stems from a desire to infer the market prices of risk

from a model that accurately prices the bonds of various maturities, the equity market,

and that takes into account some cross-sectional variation across stocks. Section 4 explores

special cases of the benchmark model, with fewer state variables, in order to understand

what elements are crucial for our main findings.

2.1 Benchmark state vector

Our benchmark state vector is:

zt = [CPt, y
$
t (1), πt, y

$
t (20)− y$t (1), pd

m
t , r

m
t , r

fmpc
t , rfmpy

t ,∆ct,∆lt]
′.

The first four elements represent the bond market variables in the state, the next four

represent the stock market variables, the last two variables represent the cash flows. The

state contains in order of appearance: the Cochrane and Piazzesi (2005) factor (CP ), the

nominal short rate (yield on a 3-month Treasury bill), realized inflation, the spread between

the yield on a 5-year Treasury note and a 3-month Treasury bill, the price-dividend ratio

on the CRSP stock market, the real return on the CRSP stock market, the real return on

a factor-mimicking portfolio for consumption growth, the real return on a factor-mimicking

portfolio for labor income growth, real per capita consumption growth, and real per capita

labor income growth. We recall that lower-case letters denote natural logarithms. This

state vector is observed at quarterly frequency from 1952.I until 2011.IV (240 observations).

In a robustness check, we also consider annual data from 1952 to 2011. The Cholesky

decomposition of the residual covariance matrix, Σ = Σ
1
2Σ

1
2
′, allows us to interpret the shock

to each state variable as the sum of the shocks to all the preceding state variables and an

own shock that is orthogonal to all previous shocks. Consumption and labor income growth

are ordered after the bond and stock variables because we use the prices of risk associated
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with the first eight innovations to value the consumption and labor income claims.

The goal of our exercise is to price claims to aggregate consumption and labor income

using as much information as possible from traded assets. Thus, the choice of state variables

is motivated by a desire to capture all important dynamics of bond and stock prices. Many of

the state variables have a long tradition in finance as predictors of stock and bond returns.6

2.1.1 Expected consumption growth

Equally important is a rich specification of the cash flows we want to price: consump-

tion and labor income growth. First, our state vector includes variables like interest rates

(Harvey 1988), the price-dividend ratio, and the slope of the yield curve (Ang, Piazzesi, and

Wei 2006) that have been shown to forecast future consumption growth. The predictability

of future consumption growth by stock and bond prices whose own shocks carry non-zero

prices of risk results in a risk premium to future consumption growth innovations and thus

to create a wedge between the risky and the trend consumption claims. Having richly spec-

ified expected consumption growth dynamics alleviates the concern that the model misses

important (priced) shocks to expected consumption growth. Second, the modest correlation

(29%) of the aggregate stock market portfolio with consumption growth motivates us to use

additional information from the cross-section of stocks to learn more about contemporane-

ous shocks to consumption and labor income claims. We use the 25 size- and value-portfolio

returns to form a consumption growth factor-mimicking portfolio (FMP) and a labor income

growth FMP. The consumption (labor income) growth FMP has a 36% (36%) correlation

with actual consumption. Pricing these FMP well alleviates the concern that our model

misses important shocks to current consumption innovations.

Our state variables zt explain 29% of variation in ∆ct+1. The volatility of annualized

expected consumption growth is 0.49%, more than one-third of the volatility of realized

6For example, Ferson and Harvey (1991) study the yield spread, the short rate, and consumption growth
as predictors of stocks, while Cochrane and Piazzesi (2005) emphasize the importance of the CP factor to
predict bond returns.
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consumption growth, while the first-order autocorrelation of expected consumption growth

is 0.70 in quarterly data. This shows non-trivial consumption growth predictability, in line

with the literature. Figure 1 plots the (annualized) one-quarter-ahead expected consump-

tion growth series implied by our VAR. The shaded areas are NBER recessions. Expected

consumption growth experiences the largest declines during the Great Recession of 2007.IV-

2009.II, the 1953.II-1954.II recession, the 1957.III-1958.II recession, the 1973.IV-1975.I reces-

sion, the double-dip NBER recession from 1980.I to 1982.IV, and somewhat smaller declines

during the less severe 1960.II-1961.I, 1990.III-1991.I, and 2001.I-2001.IV recessions. Hence,

the innovations to expected consumption growth are highly cyclical. That cyclical risk,

alongside the long-run risk in expected consumption growth implied by the VAR, should

be priced in asset markets. Finally, most of the cyclical variation in consumption growth

is captured by traded asset returns. The correlation of unspanned (orthogonal) consump-

tion growth with the NBER dummy is only -0.01 and not statistically different from zero.

Moreover, these unspanned innovations are essentially uncorrelated over time; the first-order

autocorrelation is -0.05.

Figure 1: Consumption growth predictability
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The figure plots (annualized) expected consumption growth at quarterly frequency, as implied by the VAR model: Et [∆ct+1] =
µc + I′cΨzt, where zt is the N-dimensional state vector.
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2.2 Restrictions

With ten state variables and time-varying prices of risk, our model has many parameters.

On the one hand, the richness offers the possibility to accurately describe bond and equity

prices without having to resort to latent state variables. On the other hand, there is the risk

of over-fitting the data. To guard against this risk and to obtain stable estimates, we impose

restrictions on our benchmark estimation.

We start by imposing restrictions on the dynamics of the state variable, that is, in the

companion matrix Ψ. Only the bond market variables – first block of four – govern the

dynamics of the nominal term structure; Ψ11 below is a 4 × 4 matrix of non-zero elements.

For example, this structure allows for the CP factor to predict future bond yields, or for

the short-term yield and inflation to move together. It also imposes that stock returns, the

price-dividend ratio on stocks, or the factor-mimicking portfolio returns do not predict future

yields or bond returns; Ψ12 is a 4 × 4 matrix of zeroes. The second block of Ψ describes

the dynamics of the log price-dividend ratio and log return on the aggregate stock market,

which we assume depends on their own lags, as well as the lagged bond market variables.

The elements Ψ21 and Ψ22 are 2×4 and 2×2 matrices of non-zero elements. This allows for

aggregate stock return predictability by the short rate, the yield spread, inflation, the CP

factor, the price-dividend ratio, and its own lag, all of which have been shown in the empirical

asset pricing literature. The FMP returns in the third block have the same predictability

structure as the aggregate stock return, so that Ψ31 and Ψ32 are 2× 4 and 2× 2 matrices of

non-zero elements. In our benchmark model, consumption and labor income growth do not

predict future bond and stock market variables; Ψ14, Ψ24, and Ψ34 are all matrices of zeroes.

Finally, the VAR structure allows for rich cash flow dynamics: expected consumption growth

depends on the first nine state variables and expected labor income growth depends on all

lagged state variables; Ψ41, Ψ42, and Ψ43 are 2 × 4, 2 × 2, and 2 × 2 matrices of non-zero

elements, and Ψ44 is a 2 × 2 matrix with one zero in the upper-right corner. In sum, our
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benchmark Ψ matrix has the following block-diagonal structure:

Ψ =




Ψ11 0 0 0

Ψ21 Ψ22 0 0

Ψ31 Ψ32 0 0

Ψ41 Ψ42 Ψ43 Ψ44




.

Section 4 also explores various alternative restrictions on Ψ. These do not materially alter

the dynamics of the estimated wealth-consumption ratio. We estimate Ψ by OLS, equation-

by-equation, and we form each innovation as follows zt+1(·) − Ψ(·, :)zt. We compute their

(full rank) covariance matrix Σ.

The zero restrictions on Ψ imply zero restrictions on the corresponding elements of the

market price of risk dynamics in Λ1. For example, the assumption that the stock return and

the price-dividend ratio on the stock market do not predict the bond variables implies that

the market prices of risk for the bond market shocks cannot fluctuate with the stock market

return or the price-dividend ratio. The entries of Λ1 in the first four rows and the fifth and

sixth column must be zero. Likewise, because the last four variables in the VAR do not affect

expected stock and FMP returns, the prices of stock market risk cannot depend on the last

four state variables. Finally, under our assumption that all sources of aggregate uncertainty

are spanned by the innovations to the traded assets (the first eight shocks), the part of the

shocks to consumption growth and labor income growth that is orthogonal to the bond and

stock innovations is not priced. We relax this assumption in section 5.3. Thus, Λ1,41, Λ1,42,

Λ1,43, and Λ1,44 are zero matrices. This leads to the following structure for Λ1:

Λ1 =




Λ1,11 0 0 0

Λ1,21 Λ1,22 0 0

Λ1,31 Λ1,32 0 0

0 0 0 0




.
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We impose corresponding zero restrictions on the mean risk premia in the vector Λ0: Λ0 =

[Λ0,1, Λ0,2, Λ0,3 0]
′, where Λ0,1 is 4× 1, and Λ0,2 and Λ0,3 are 2× 1 vectors.

The matrix Λ1,11 contains the bond risk prices, Λ1,21 and Λ1,22 contain the aggregate stock

risk prices, and Λ1,31 and Λ1,32 contain the risk prices on the FMP of aggregate consumption

and labor income growth. While all zeroes in Ψ lead to zeroes in Λ1 in the corresponding

entries, the converse is not true. That is, not all entries of the matrices Λ1,11, Λ1,21, Λ1,22,

Λ1,31, and Λ1,32 must be non-zero even though the corresponding elements of Ψ all are non-

zero. Whenever we have a choice of which market price of risk parameters to estimate, we

follow a simple rule: we associate non-zero risk prices with traded assets instead of non-

traded variables. In particular, we set the rows corresponding to the prices of CP risk,

inflation risk, and pdm risk equal to zero because these are not traded assets, while the rows

corresponding to the short rate, the yield spread, the stock market return, and the FMP

returns are non-zero. Our final specification has five non-zero elements in Λ0 and 26 in Λ1

(two rows of four and three rows of six). This specification is rich enough for the model to

match the time-series of the traded asset prices that are part of the state vector.

The structure we impose on Ψ and on the market prices of risk is not overly restric-

tive. A Campbell-Shiller decomposition of the wealth-consumption ratio into an expected

future consumption growth component (∆cHt ) and an expected future total wealth returns

component (rHt ), detailed in Appendix B, delivers the following expressions:

∆cHt = e′cΨ(κc
1I −Ψ)−1zt and rHt = [(ec + Ac

1)
′Ψ− κc

1A
c′
1 ] (κ

c
1I −Ψ)−1zt.

Despite the restrictions on Ψ and Λt, both the cash flow component and the discount rate

component depend on all state variables. In the case of ∆cHt , this is because expected

consumption growth depends on all lagged stock and bond variables in the state. In the case

of rHt , there is additional dependence through Ac
1, which itself is a function of the first nine

state variables. The cash flow component does not directly depend on the risk prices (other
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than through κc
1), while the discount rate component depends on all risk prices of stocks and

bonds through Ac
1. This flexibility implies that our model can theoretically accommodate a

large consumption risk premium. This happens when the covariances between consumption

growth and the other aggregate shocks are large and/or when the unconditional risk prices

in Λ0 are sufficiently large. In fact, in our estimation, we choose Λ0 large enough to match

the equity premium. A low estimate of the consumption risk premium and hence a high

wealth-consumption ratio are not a foregone conclusion.

2.3 Estimation

We estimate Λ0 and Λ1 from the moments of bond yields and stock returns. We relegate a

detailed discussion of the estimation strategy to Appendix B. While all moments pin down

all market price of risk estimates jointly, it is useful to organize the discussion as if the

estimation proceeded in four steps. These steps can be interpreted as delivering good initial

guesses from which to start the final estimation.

The model delivers a nominal (and real) term structure where bond yields are affine

functions of the state variables. In a first step, we estimate the risk prices in the bond

market block Λ0,1 and Λ1,11 by matching the time series for the short rate, the slope of the

yield curve, and the CP risk factor. Because of the block diagonal structure, we can estimate

these risk prices separately. In a second step, we estimate the risk prices in the stock market

block Λ0,2, Λ1,21, and Λ1,22 jointly with the bond risk prices, taking the estimates from the

first step as starting values. Here, we impose that the model delivers expected excess stock

returns similar to the VAR. In a third step, we estimate the FMP risk prices in the factor-

mimicking portfolio block Λ0,3, Λ1,31, and Λ1,32 taking as given the bond and stock risk prices.

Again, we impose that the risk premia on the FMP coincide between the VAR and the SDF

model. The stock and bond moments used in the first three steps exactly identify the 5

elements of Λ0 and the 26 elements of Λ1. In other words, given the structure of Ψ, they are

all strictly necessary to match the levels and dynamics of bond yields and stock returns.
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For theoretical as well as for reasons of fit, we impose several additional constraints.

We obtain these constraints from matching additional nominal yields, imposing the present-

value relationship for stocks, imposing a human wealth share between zero and one, and

imposing the growth condition on the consumption claim. To avoid over-parametrization,

we choose not to let these constraints identify additional market price of risk parameters.

We re-estimate all 5 parameters in Λ0 and all 26 parameters in Λ1 in a final fourth step

where we impose the constraints, starting from the third-step estimates. Our final estimates

for the market prices of risk from the last-stage estimation are listed at the end of Appendix

B alongside the VAR parameter estimates. The online Appendix B provides more detail on

the over-identifying restrictions.

3 Estimation Results

We first verify that the model does an adequate job describing the quarterly dynamics of the

bond yields and stock returns. We then study the variations in the total wealth and human

wealth. In the interest of space, we present auxiliary figures in the Appendix.

3.1 Model fit for bonds and stocks

Our model fits the nominal term structure of interest rates reasonably well (Figure B.1).

We match the 3-month yield exactly. For the 5-year yield, which is part of the state vector

through the yield spread, the average pricing error is -1 basis point (bp) per year. The

annualized standard deviation of the pricing error is only 33 bps, and the root mean squared

error (RMSE) is 33 bps. For the other four maturities, the mean annual pricing errors range

from -7 bps to +62 bps, the volatility of the pricing errors range from 33 bps to 58 bps, and

the RMSE from 33 bps to 65 bps.7 While these pricing errors are somewhat higher than the

ones produced by term-structure models, our model has no latent state variables and only

7Note that the largest errors occur on the 20-year yield, which is unavailable between 1986.IV and 1993.II.
The standard deviation and RMSE on the 10-year yield are only half as big as on the 20-year yield.
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two term structure factors (two priced sources of risk that we associate with the second and

fourth shocks). It also captures the level and dynamics of long-term bond yields well, a part

of the term structure rarely investigated, but important for our purposes of evaluation of

a long-duration consumption claim. On the dynamics, the annual volatility of the nominal

yield on the 5-year bond is 1.40% in the data and 1.35% in the model.

The model also does a good job of capturing the bond risk premium dynamics. The

model produces a nice fit between the Cochrane-Piazzesi factor, a measure of the 1-year

nominal bond risk premium, in model and data (see right panel of Figure B.2). The annual

mean pricing error is -15 bps and standard deviation of the pricing error is 70 bps. The 5-

year nominal bond risk premium, defined as the difference between the 5-year yield and the

average expected future short-term yield averaged over the next five years, is also matched

closely by the model (left panel of Figure B.2). The long-term and short-term bond risk

premia have a correlation of 74%. Thus, our model is able to capture the substantial variation

in bond risk premia in the data. This is important because the bond risk premium turns

out to constitute a major part of the consumption risk premium and of the marginal cost of

consumption fluctuations.

The model also manages to capture the dynamics of stock returns quite well. The model

matches the equity risk premium that arises from the VAR structure (bottom panel of Figure

B.3). The average equity risk premium (including Jensen term) is 6.41% per annum in the

data, and 6.41% in the model. Its annual volatility is 3.31% in the data and 3.25% the

model. The model, in which the price-dividend ratio reflects the present discounted value

of future dividends, replicates the price-dividend ratio in the data quarter by quarter (top

panel of Figure B.3).

As in Ang, Bekaert, and Wei (2008), the long-term nominal risk premium on a 5-year

bond is the sum of a real rate risk premium (defined the same way for real bonds as for

nominal bonds) and the inflation risk premium. The right panel of Figure B.4 decomposes

this long-term bond risk premium (solid line) into a real rate risk premium (dashed line)
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and an inflation risk premium (dotted line). The real rate risk premium becomes gradually

more important at longer horizons. The left panel of Figure B.4 decomposes the 5-year yield

into the real 5-year yield (which itself consists of the expected real short rate plus the real

rate risk premium), expected inflation over the next 5-years, and the 5-year inflation risk

premium. The inflationary period in the late 1970s-early 1980s was accompanied by high

inflation expectations and an increase in the inflation risk premium, but also by a substantial

increase in the 5-year real yield.8 Separately identifying real rate risk and inflation risk based

on nominal term structure data alone is challenging.9 We do not have long enough data for

real bond yields, but stocks are real assets that contain information about the term structure

of real rates. They can help with the identification. For example, high long real yields in

the late 1970s-early 1980s lower the price-dividend ratio on the stock market stock, which

indeed was low in the late 1970s-early 1980s (top panel of Figure B.3). High nominal yields

combined with high price-dividend ratios would have suggested low real yields instead.

Average real yields range from 1.49% per year for 1-quarter real bonds to 2.87% per

year for 20-year real bonds. Despite the short history of Treasury Inflation Indexed Bonds,

potential liquidity issues early in the sample, and the dislocation in the TIPS market/rich

pricing of nominal Treasuries (Longstaff, Fleckenstein, and Lustig 2010), it is nevertheless

informative to compare model-implied real bond yields to observed real yields. Despite the

fact that these real yields were not used in estimation, Figure 2 shows that the fit over the

common sample is reasonably good both in terms of levels and dynamics.

Finally, the model matches the expected returns on the consumption and labor income

growth FMP very well (Figure B.6). The annual risk premium on the consumption growth

FMP is 1.08% in the data and model, with volatilities of 1.59% and 1.54%. Likewise, the

8Inflation expectations in our VAR model have a correlation of 76% with inflation expectations from the
Survey of Professional Forecasters (SPF) over the common sample 1981-2011. The 1-quarter ahead inflation
forecast error series for the SPF and the VAR have a correlation of 79%. Realized inflation fell sharply in
the first quarter of 1981. Neither the professional forecasters nor the VAR anticipated this decline, leading
to a high realized real yield. The VAR expectations caught up more quickly than the SPF expectations, but
by the end of 1981, both inflation expectations were identical.

9Many standard term structure models have a likelihood function with two local maxima with respect to
the persistence parameters of expected inflation and the real rate.
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Figure 2: Dynamics of the real term structure of interest rates

1960 1970 1980 1990 2000 2010
−1

0

1

2

3

4

5

6

7

8

Pe
rce

nt p
er y

ear

5−year real yield

1960 1970 1980 1990 2000 2010
0

1

2

3

4

5

6

7

Pe
rce

nt p
er y

ear

20−year real yield

 

 
model
data

The figure plots the observed and model-implied 5-, 7-, 10-, 20-, and 30-year real bond yields. Real yield data are constant
maturity yields on Treasury Inflation Indexed Securities from the Federal Reserve Bank of St.-Louis (FRED II). We use the
longest available sample for each maturity.

risk premium on the labor income growth FMP is 3.48% in data and model, with volatilities

of 2.41% and 2.51%.

To summarize, Table 1 provides a detailed overview of the pricing errors on the assets

used in estimation. Panel A shows the pricing errors on the equity portfolios; Panels B and

C show the pricing errors on nominal bonds. Panel A shows that the volatility and RMSE

of the pricing errors on the equity risk premium are about 15 bps per year; those on the

factor-mimicking portfolio returns are 6 bps and 37 bps. Panel B shows the pricing errors on

nominal bonds that were used in estimation. The 3-month rate is matched perfectly since

it is in the state vector and carries no risk price. The pricing error on the 5-year bond is

only 1 bp on average, with a standard deviation and RMSE of about 33 bps. One- through

four-year yields have RMSEs between 39 bps and 46 bps per year. The 7-year bond has

a RMSE of 35 bps, the 10-year bond one of 37 bps. The largest pricing errors occur on

bonds of 20- and 30-year maturity, around 65 bps. One mitigating factor is that these bonds

have some missing data over our sample period, which makes the comparison of yields in

the model and data somewhat harder to interpret. Another is that there may be liquidity
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effects at the long end of the yield curve that are not captured by our model. Finally, the

RMSE on the CP factor is comparable to that on the 5-year yield once its annual frequency

is taken into account.10

We conclude that our pricing errors are low given that we jointly price bonds and stocks,

use no latent state variables, and include much longer maturity bonds than what is typically

done in the literature.

Table 1: Pricing errors

This table reports the pricing errors on the asset pricing moments used in the estimation, as well as some over-identifying
restrictions. The pricing error time series are computed as the difference between the predicted asset pricing moment by the
model and the observed asset pricing moment in the data. The table reports time-series averages (Mean), standard deviations
(Stdev), and root-mean squared errors (RMSE). Panel A reports pricing errors on the equity market portfolio, the consumption
growth factor-mimicking portfolio (fmpc), and the labor income growth factor-mimicking portfolio (fmpl). It also reports how
well the model matches the price-dividend ratio on the aggregate stock market. Panel B shows nominal bond yield pricing
errors for the bond maturities that were used in estimation. Panel C shows bond yield errors for bond maturities that were not
used in estimation, as well as the Cochrane-Piazzesi (CP ) ratio. All moments are annualized and are multiplied by 100, except
for the price-dividend ratio, which is annualized in levels.

Panel A: Equity Portfolio Returns and PD

Equity Mkt. fmpc fmpl pd ratio

Mean 0.0014 -0.0003 0.0004 -0.1134

Stdev 0.1517 0.0579 0.3662 0.1932

RMSE 0.1514 0.0578 0.3655 0.2237

Panel B: Nominal Bond Yields Used in Estimation

y$(1) y$(4) y$(12) y$(20) y$(40) y$(80)

Mean -0.0000 -0.0698 -0.0446 -0.0094 0.2026 0.6212

Stdev 0.0000 0.4649 0.3859 0.3325 0.3586 0.5761

RMSE 0.0000 0.4652 0.3857 0.3318 0.3719 0.6532

Panel C: CP and Nominal Bond Yields Not Used in Estimation

y$(8) y$(16) y$(28) y$(120) CP

Mean -0.0399 -0.0391 -0.0484 0.0316 -0.1531

Stdev 0.4258 0.3587 0.3537 0.6638 0.7006

RMSE 0.4254 0.3585 0.3535 0.6612 0.7157

3.2 The wealth-consumption ratio

With the estimates for Λ0 and Λ1 in hand, it is straightforward to use Proposition 1 and solve

for Ac
0 and Ac

1 from equations (7)-(8). Table 2 summarizes the key moments of the log wealth-

10The CP factor is constructed from annual returns while the yields are quarterly. To annualize the
volatility of yield pricing errors, we multiply the quarterly pricing errors by 2 =

√
4. To compare the two,

the volatility and RMSE of CP should be divided by a factor of two.
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consumption ratio obtained in quarterly data in column 3. The numbers in parentheses

are small sample bootstrap standard errors, computed using the procedure described in

Appendix B.9.

3.2.1 Comparison to stocks

We can directly compare the moments of the wealth-consumption ratio with those of the

price-dividend ratio on equity. The wc ratio has an annualized volatility of 19% in the data,

considerably lower than the 29% volatility of the pdm ratio. The wc ratio in the data is

a persistent process; its 1-quarter (4-quarter) serial correlation is .97 (.87). This is similar

to the .94 (.77) serial correlation of pdm. The annual volatility of changes in the wealth

consumption ratio is 4.51%, and because of the low volatility of aggregate consumption

growth changes, this translates into a volatility of the total wealth return on the same order

of magnitude (4.59%). The corresponding annual volatility of 9.2% is about half the 17.2%

volatility of stock returns. The change in the wc ratio and the total wealth return have

weak autocorrelation, suggesting that total wealth returns are hard to forecast by their own

lags. The correlation between the (quarterly) total wealth return and consumption growth

is mildly positive (.21).

How risky is total wealth compared to equity? According to our estimation, the con-

sumption risk premium (calculated from equation 11) is 60 bps per quarter or 2.38% per

year. This results in a mean wealth-consumption ratio of 5.81 in logs (Ac
0), or 83 in annual

levels (exp{Ac
0− log(4)}). The consumption risk premium is only one-third as big as the eq-

uity risk premium of 6.41%. Correspondingly, the wealth-consumption ratio is much higher

than the price-dividend ratio on equity: 83 versus 26. A simple back-of-the-envelope Gordon

growth model calculation sheds light on the mean of the wealth-consumption ratio. The

discount rate on the consumption claim is 3.51% per year (a consumption risk premium of

2.38% plus a risk-free rate of 1.49% minus a Jensen term of 0.37%) and its cash-flow growth

rate is 2.31%: 83 = 1/(.0351− .0231). The standard errors on the moments of the wealth-
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consumption ratio and total wealth return are sufficiently small so that the corresponding

moments of the price-dividend ratio or stock returns are outside the 95% confidence inter-

val of the former. The main conclusion of our measurement exercise is that total wealth is

(economically and statistically) significantly less risky than equity.

Table 2: Moments of the wealth-consumption ratio

This table displays unconditional moments of the log wealth-consumption ratio wc, its first difference ∆wc, and the log total
wealth return rc. The table also reports the time-series average of the conditional consumption risk premium, E[Et[r

c,e
t ]],

where rc,e denotes the expected log return on total wealth in excess of the risk-free rate and corrected for a Jensen term. The
last row denotes the share of human wealth in total wealth. The first column reports moments from the long-run risk model
(LRR model), simulated at quarterly frequency. All reported moments are averages and standard deviations (in parentheses)
across the 5,000 simulations of 220 quarters of data. The second column reports the same moments for the external habit model
(EH model). The last two columns report the data at quarterly and annual frequencies respectively. The standard errors are
obtained by bootstrap, as described in Appendix B.9.

Moments LRR Model EH model data data

quarterly quarterly quarterly annual

Std[wc] 2.35% 29.33% 18.57% 24.68%

(0.43) (12.75) (4.30) (7.81)

AC(1)[wc] 0.91 0.93 0.97

(0.03) (0.03) (0.03)

AC(4)[wc] 0.70 0.74 0.87 0.86

(0.10) (0.11) (0.08) (0.21)

Std[∆wc] 0.90% 9.46% 4.51% 12.13%

(0.05) (2.17) (1.16) (3.33)

Std[∆c] 1.43% 0.75% 0.46% 1.24 %

(0.08) (0.04) (0.03) (0.14)

Corr[∆c,∆wc] -0.06 0.90 0.12 0.04

(0.06) (0.03) (0.06) (0.16)

Std[rc] 1.64% 10.26% 4.59% 12.34 %

(0.09) (2.21) (1.16) (3.42)

Corr[rc,∆c] 0.84 0.91 0.21 0.15

(0.02) (0.03) (0.07) (0.15)

E[Et[r
c,e
t ]] 0.40% 2.67% 0.60% 2.34%

(0.01) (1.16) (0.16) (0.88)

E[wc] 5.85 3.86 5.81 4.63

(0.01) (0.17) (0.49) (0.53)

2011 Wealth (in millions) 3.49 3.57

(0.27) (0.52)

Human wealth share 0.92 0.92

(0.03) (0.02)
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3.2.2 Comparison to claim to trend consumption

The claim to trend consumption is the second benchmark for the risky consumption claim.

Table 3 reports the same moments as Table 2 but for a claim to deterministically growing

consumption. We estimate a risk premium on the trend claim of 64 bps per quarter or 2.58%

per annum. The difference with the consumption risk premium is 4 bps per quarter and not

statistically different from zero. Because the claims to risky and to trend consumption differ

only in terms of their consumption cash flow risk, the small difference in risk premia shows

that the market assigns essentially zero compensation to current consumption innovations.

This is the result of two offsetting forces. One the one hand, quarterly consumption inno-

vations are positively correlated to market equity and consumption FMP portfolio shocks,

both of which carry a positive price of risk. This equity exposure adds to the consumption

risk premium. On the other hand, quarterly consumption innovations hedge both shocks to

the level (second orthogonalized shock) and the slope (fourth orthogonalized shock) of the

term structure. Consumption innovations are positively correlated with level innovations,

which carry a negative risk price, and they are negatively correlated with slope shocks, which

carry a positive risk price. Both of these term structure exposures lower the consumption

risk premium. Put differently, the claim to trend consumption has a higher exposure to

interest rate shocks than the claim to risky consumption because of the interest rate hedging

benefits of the latter. Exposure to stock market risk (almost) offsets the lower bond market

risk exposure so that the two claims end up with nearly the same risk premium.

3.2.3 Dividend and high-volatility consumption claim

The different volatility of the consumption and dividend claims cannot account for the dif-

ference between the average consumption and equity risk premium, but it can help to un-

derstand the difference in their dynamics. We price a claim to “high-volatility consumption”

with cash flow growth given by µc+ ae′cΨzt+ ae′cΣ
1
2εt+1, where the scalar a = 5.5 makes the

unconditional variance equal to that of the dividend claim. The annual mean risk premium
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Table 3: Moments of a claim to trend consumption

This table displays unconditional moments for the consumption perpetuity, the claim to deterministically growing aggregate
consumption. We report its log wealth-consumption ratio wctr, its first difference ∆wctr, and the log total wealth return rc,tr.
The last panel reports the time-series average of the conditional consumption risk premium, E[Et[r

c,tr,e
t ]], where rc,tr,e denotes

the expected log return on total wealth in excess of the risk-free rate and corrected for a Jensen term. We report the estimated
moments in the data at quarterly and annual frequencies respectively.

Moments data data

quarterly annual

Std[wctr] 21.32 25.79

AC(1)[wctr] 0.96 ×

AC(4)[wctr] 0.86 0.87

Std[∆wctr] 5.30 11.60

Corr[∆c,∆wctr] 0.06 0.01

Std[rc,tr] 5.31 11.67

Corr[rc,tr,∆c] 0.06 0.02

E[Et[r
c,tr,e
t ]] 0.64 2.05

E[wctr] 5.78 4.92

2011 Wealth (in millions) 3.97 6.05

is 6.41% for the dividend claim but only 1.65% for the high-volatility consumption claim.

In terms of the dynamics of the risk premia, the high-volatility consumption claim has a

correlation of 85% with the standard consumption claim and 83% with the dividend claim.

The latter correlation is higher than the 55% correlation between the equity and the actual

consumption risk premium. Hence, scaling up the volatility of the consumption claim to that

of the dividend claim cannot account for differences in risk premia. If instead, consumption

growth were correlated with price-dividend or market return shocks to the same extent as the

dividend claim, then naturally the consumption risk premium would inherit the properties

of the stock market risk premium.

3.2.4 Wealth creation and destruction

Figure 3 plots the wealth-consumption ratio in levels, alongside NBER recessions (shaded

bars). Its dynamics are to a large extent inversely related to the long real yield dynamics

in Figure 2. For example, the 5-year real yield increases from 3.5% per annum in 1979.I to

6.9% in 1981.III, while the wealth-consumption ratio falls from 68 to 49. This corresponds
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to a loss of $318,000 in real per capita wealth in 2005 dollars, where real per capita wealth

is the product of the wealth-consumption ratio and observed real per capita consumption.

Similarly, the low-frequency decline of the real yield in the 25 years after 1981 corresponds

to a gradual rise in the wealth-consumption ratio. One striking way to see that total wealth

behaves differently from equity is to study it during periods of large stock market declines.

During the bear markets of 1973.III-1974.IV, 2000.I-2002.IV, and 2007.II-2009.I, the change

in U.S. households’ real per capita stock market wealth (including mutual fund holdings)

was -46%, -61%, and -65%, respectively. In contrast, real per capita total wealth changed

by -12%, +23%, and +11%, respectively.11 Over the full sample, the total wealth return has

a correlation of only 27% with the value-weighted real CRSP stock return, while it has a

correlation of 94% with realized one-quarter holding period returns on the 5-year nominal

government bond.12 Likewise, the quarterly consumption risk premium has a correlation

of 55% with the quarterly equity risk premium, lower than the 62% correlation with the

quarterly nominal bond risk premium on a 5-year bond.

To show more formally that the consumption claim behaves like a real bond, we compute

the discount rate that makes the current wealth-consumption ratio equal to the expected

present discounted value of future consumption growth. This is the solid line measured

against the left axis of Figure 4. Similarly, we calculate a time series for the discount rate

on the dividend claim, the dotted line measured against the right axis. For comparison, we

plot the yield on a long-term real bond (50-year) as the dashed line against the right axis.

The correlation between the consumption discount rate and the real yield is 99.95%, whereas

the correlation of the dividend discount rate and the real yield is only 46%. In addition,

the consumption and dividend discount rates only have a correlation of 48%, reinforcing our

11During the Great Recession, total per capita wealth is estimated to have fallen between 2008.II and
2008.IV. In addition to this absolute decline, we argue below that total wealth fell substantially relative to
trend wealth over a multi-year period surrounding the Great Recession. Finally, we note that our model
might understate the total wealth destruction during the Great Recession if flight-to-safety effects made
nominal Treasury yields artificially low.

12A similarly low correlation of 18% is found between total wealth returns and the Flow of Funds’ measure
of the growth rate in real per capita household net worth, a broad measure of financial wealth. The correlation
of the total wealth return with the Flow of Funds’ growth rate of real per capita housing wealth is 4%.
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Figure 3: The log wealth-consumption ratio in the data
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The figure plots exp{wct − log(4)}, where wct is the quarterly log total wealth to total consumption ratio. The log wealth
consumption ratio is given by wct = Ac

0 + (Ac
1)

′zt. The coefficients Ac
0 and Ac

1 satisfy equations (7)-(8).

conclusion that the data suggest a large divergence between the perceived riskiness of a claim

to consumption and a claim to dividends in securities markets.

Figure 4: Discount rates on consumption and dividend claim
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The figure plots the discount rate on a claim to consumption (solid line, measured against the left axis, in percent per year), the
discount rate on a claim to dividend growth (dashed line, measured against the right axis, in percent per year), and the yield
on a real 50-year bond (dotted line, measured against the right axis, in percent per year). The discount rates are the rates that
make the price-dividend ratio equal to the expected present-discounted value of future cash flows, for either the consumption
claim or the dividend claim.
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A second way of showing that the consumption claim is bond-like is to study yields on

consumption strips. We decompose the yield on the period-τ strip into two components.

The first component is the yield on a security that pays a certain cash flow (1 + µc)
τ .

The underlying security is a real perpetuity with a cash flow that grows at a deterministic

consumption growth rate, µc. The second component is the yield on a security that pays off

Cτ/C0 − (1 + µc)
τ ; it captures pure consumption cash flow risk. Appendix B.4 shows that

the log price-dividend ratios on the consumption strips are approximately affine in the state,

and details how to compute the yield on its two components. In our model, consumption

strip yields are mostly comprised of a compensation for variation in real rates (labeled “real

bond yield -µc” in Figure B.5), not consumption cash flow risk (labeled “yccr”). Other than

at short horizons, the consumption cash flow risk security has a yield that is approximately

zero.

3.2.5 Predictability properties

Our analysis so far has focused on unconditional moments of the total wealth return. The

conditional moments of total wealth returns are also very different from those of equity

returns. The familiar Campbell and Shiller (1988) decomposition for the wealth-consumption

ratio shows that the wealth-consumption ratio fluctuates either because it predicts future

consumption growth rates (∆cHt ) or because it predicts future total wealth returns (rHt ):

V [wct] = Cov
[
wct,∆cHt

]
+ Cov

[
wct,−rHt

]
= V

[
∆cHt

]
+ V

[
rHt

]
− 2Cov

[
rHt ,∆cHt

]
.

The second equality suggests an alternative decomposition into the variance of expected

future consumption growth, expected future returns, and their covariance. Finally, it is

straightforward to break up Cov
[
wct, r

H
t

]
into a piece that measures the predictability of

future excess returns, and a piece that measures the covariance of wct with future risk-free

rates. Our no-arbitrage methodology delivers analytical expressions for all variance and
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covariance terms (See Appendix B). Table 4 reports the complete variance decomposition of

the wc and pdm ratios into the three variance terms and the three covariances (top panel)

and into the three covariance terms (bottom panel), under our benchmark calibration.

We draw four main empirical conclusions. First, the mild variability of the wc ratio im-

plies only mild total wealth return predictability. This is in contrast with the high variability

(and predictability) of pdm. Second, 104.9% of the variability in wc is due to covariation

with future total wealth returns, while the remaining -4.9% is due to covariation with future

consumption growth. Hence, the wealth-consumption ratio predicts future returns (discount

rates), not future consumption growth rates (cash flows). Using the second variance decom-

position, the variability of future returns is 111.5%, the variability of future consumption

growth is 1.7% and their covariance is -13.2% of the total variance of wc. This variance

decomposition is similar to the one for equity. Third, 77.5% of the 104.9% covariance with

returns is due to covariance with future risk-free rates, and the remaining 27.4% is due to co-

variance with future excess returns. The wealth-consumption ratio therefore mostly predicts

future variation in interest rates, not in risk premia. The exact opposite holds for equity: the

bulk of the predictability of the pdm ratio for future stock returns is predictability of excess

returns (50.4% out of 66.5%). Fourth, though modest in both cases, variation in expected

future cash-flow growth is more important for the equity claim than for the consumption

claim. In sum, the conditional asset pricing moments also reveal interesting differences be-

tween equity and total wealth. Again, they point to the strong link between the consumption

claim return and interest rates.

3.3 Human wealth returns

Our estimates indicate that the bulk of total wealth is human wealth. The human wealth

share fluctuates between 86% and 99%, with an average of 92% (see last row of Table 2).

Interestingly, Jorgenson and Fraumeni (1989) calculates a similar 90% human wealth share.

The average price-dividend ratios on human wealth is slightly above the one on total wealth
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Table 4: Variance decomposition wealth-consumption ratio

The first column reports the benchmark wc ratio decomposition; all numbers are multiplied by 100. The second column
expresses the numbers of the first column as a percentage of the total variability of the wc ratio. The third and fourth columns
are the decomposition of the pdm ratio in actual values (times 100) and in percent, respectively. For these last two columns, it
is understood that the notation ∆cHt refers to expected future dividend growth rates.

Moments V [wc] V [pdm]

×100 in % ×100 in %

V
[

∆cHt
]

0.06 1.65 1.11 13.63

V
[

rpHt
]

0.71 20.45 3.29 40.33

V
[

rfH
t

]

2.46 71.39 1.93 23.65

−2Cov
[

∆cHt , rpHt
]

−0.20 −5.71 3.05 37.43

−2Cov
[

∆cHt , rfH
t

]

−0.26 −7.47 0.18 2.15

2Cov
[

rpHt , rfH
t

]

0.68 19.69 −1.40 −17.18

Cov
[

∆cHt , wct
]

−0.17 −4.94 2.73 33.41

−Cov
[

rpHt , wct
]

0.95 27.44 4.12 50.45

−Cov
[

rfH
t , wct

]

2.67 77.50 1.32 16.13

(93 vs. 83 in annual levels). The risk premium on human wealth is very similar to the one

for total wealth (2.31 vs. 2.38% per year). The price-dividend ratios and risk premia on

human wealth and total wealth have a 99.87% (99.95%) correlation.

Existing approaches to measuring total wealth make ad hoc assumptions about expected

human wealth returns. Campbell (1996) assumes that expected human wealth returns are

equal to expected returns on financial assets. This is a natural benchmark when financial

wealth is a claim to a constant fraction of aggregate consumption. Shiller (1995) models

a constant discount rate on human wealth. Jagannathan and Wang (1996) assume that

expected returns on human wealth equal the expected labor income growth rate; the resulting

price-dividend ratio on human wealth is constant. The construction of cay in Lettau and

Ludvigson (2001a) makes that same assumption. Our approach avoids having to make

arbitrary assumptions on unobserved human wealth returns.13

Our estimation results indicate that expected excess human wealth returns have an annual

volatility of 2.9%. This is substantially higher than the volatility of expected labor income

growth (0.6%), but lower than that of the expected excess returns on equity (3.3%). Lastly,

13These models can be thought of as special cases of ours, imposing additional restrictions on the market
prices of risk Λ0 and Λ1. Our work rejects these additional assumptions.
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average (real) human wealth returns (3.8%) are much lower than (real) equity returns (7.9%),

but higher than (real) labor income growth (2.3%) and the (real) short rate (1.5%).

How much human wealth do our estimates imply? In real 2005 dollars, total per capita

wealth increased from $0.87 million to $3.49 million between 1952 and 2011. The thick solid

line in the left panel of Figure 5 shows the time series. Of this, $3.2 million was human

wealth in 2011 (dashed line in left panel), while the remainder is non-human wealth (solid

line in right panel). To judge whether this is a reasonable number, we compute the fraction

of human wealth that accrues in the first 35 years.14 In 2011, this implies a human wealth

value of $1.04 million per capita (dashed line in the right panel). This amount is the price of

a 35-year annuity with a cash flow of $38,268 that grows at the average labor income growth

rate of 2.31% and is discounted at the average real rate of return on human wealth of 3.81%.

This model-implied annual income of $38,268 compares to U.S. per capital labor income of

$24,337 at the end of 2011. Another reference point for the “first 35 years” human wealth

number is per capita residential home equity from the Flow of Funds. In 2011, home equity

is a factor 51 smaller than human wealth. Unlike the massive destruction of home equity,

human wealth has grown substantially over the last five years and is the main driver behind

the overall wealth accumulation.15

Finally, we compare non-human wealth, the difference between our estimates for total

and for human wealth, with the Flow of Funds series for household net worth. The latter

is the sum of equity, bonds, housing wealth, durable wealth, private business wealth, and

pension and life insurance wealth minus mortgage and credit card debt. Our non-human

wealth series is on average 3.3 times the Flow of Funds series. This ratio varies over time:

it is 10.1 at the beginning and 1.7 at the end of the sample, and it reaches a low of 0.46

in 1975. We chose not to use the Flow of Funds net worth data in our estimation because

14This fraction is the price of the first 140 quarterly labor income strips divided by the price of all labor
income strips. The labor income strip prices are computed just like the consumption strip prices. On average,
35% of human wealth pertains to the first 35 years.

15The destruction of housing wealth has been linked to a reversal of a financial market liberalization in
credit markets by Favilukis, Ludvigson, and Van Nieuwerburgh (2011). This increased risk premia more
than offsets the large fall in real rates during the Great Recession.
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Figure 5: Real per capita wealth estimates
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The left panel of the figure plots total wealth and human wealth as estimated from the data. The right panel plots their
difference, which we label non-human wealth. It also plots the present discounted value of the first 35 years of labor income.

many of the wealth categories are hard to measure accurately or are valued at book value

(e.g., private business wealth). Arguably, only the equity component for publicly traded

companies is measured precisely, which may explain why the dynamics of the household net

worth series are to a large extent driven by variation in stock prices.16 It is reassuring that

our non-human wealth measure exceeds the net worth series. After all, our series measures

the present discounted value of all future non-labor income. This includes the value of growth

options that will accrue to firms that have not been born yet, the same way human wealth

includes labor income from future generations.

Total stock market wealth of $32,900 per capita in 2011.III represents 0.94% (1.03%) of

our per capita total (human) wealth estimate of $3.5 ($3.2) million. To gauge the plausibility

of these numbers, consider that stock market wealth is 18.6% of total household net worth

according to the Flow of Funds. With a standard capital income share of 30% and no risk

adjustment, this would translate in a 5.3% share of equity in total wealth. Our numbers

16Lettau and Ludvigson (2001a, 2001b) also use Flow of Funds data to measure household financial wealth.
Lettau and Ludvigson’s (2001a) measure −cay falls during the stock market crashes of 1974 and 2000-2002.
It has a correlation of only 0.24 with our wealth-consumption measure.
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are lower because we find that human wealth is substantially less risky than stock market

wealth, requiring labor income cash flows to be discounted substantially less than equity

dividends.

4 Robustness

4.1 Smaller models

The results of our estimation exercise are robust to different specifications of the law of

motion for the state z. Appendix C.1 considers five alternative models that have fewer state

variables than our benchmark exercise and lists the goodness-of-fit for each of these. The

variations are selected to give insight into what drives our main result. For brevity, we

discuss only the main findings here.

The simplest model (labeled Model 2 in the Appendix C.1) has a simplified term structure

and deliberately ignores any equity moments. Despite its simplicity, it generates a reasonably

good fit to the nominal bond yields, and even to the nominal bond risk premium. It implies

a lower consumption risk premium of 2.11% per year (compared to 2.38% in the benchmark)

and thus a higher mean wealth-consumption ratio of 113 (vs. 83). The wealth-consumption

ratios have a correlation of 99% because the term structure fit of the simple model is com-

parable to that of the benchmark model. The marginal cost of consumption fluctuations,

which averages 36.2%, is substantially higher than in the benchmark model (average of -

2.4%), and the two have a time series correlation of only 63%. The reason for the higher cost

of consumption fluctuations is that there is more consumption cash flow risk in this simple

model. Instead of hedging it as in the benchmark model, consumption cash flow risk adds

interest rate exposure, which increases the consumption risk premium, ceteris paribus. The

lower bond risk premium more than offsets the higher consumption risk so that the overall

consumption risk premium ends up lower than in the benchmark. This model illustrates

that the inverse relationship between real rates and the wealth consumption ratio as well as
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the low consumption risk premium and high wealth-consumption ratio are generic features

that arise even in a very simple model. But, because it does not price stock-based moments

(by construction), the question is whether or not the low consumption risk premium is the

result of ignoring important sources of risk when pricing the consumption claim. To dispel

this possibility, we consider both bond- and stock-based moments in our benchmark model.

We consider another simple model (labeled Model 3) that prices aggregate equity mo-

ments well but that has only a one-factor term structure. This model has a much worse fit

for bond yields, but a similar mean consumption risk premium of 2.24% and mean wealth-

consumption ratio of 96. The volatility of the wc ratio is lower at 14% and the time series

correlation with the wc ratio of the benchmark is 93.0%, the lowest among all alternative

models we consider. The consumption risk premium only has a correlation of 67% with that

in the benchmark (68% with Model 2), again the lowest among the alternatives. Clearly

consumption risk premium dynamics are substantially affected by giving up on a reasonably

fitting term structure model.

Combining the two simple models results in a better fit (Model 4) but otherwise similar

results. When we add the CP factor to the state and the estimation (Model 5), results change

meaningfully. In particular, the hedging benefits of consumption cash flows can be traced

back to adding the CP factor. The addition of CP results in a large drop of the consumption

risk premium from 53% in Model 4 to -2% in Model 5, on average. The addition of CP

also forces the model to match the 1-year bond risk premium more closely, at the expense

of the long-term bond risk premia and yields. The 20-year nominal bond yield in Model

5, for example, is 27 bps higher than that in Model 4 without CP, translating into a lower

wealth-consumption ratio. The final model is one without CP but with the factor-mimicking

portfolios. That model looks similar to Model 4, except that there is more consumption cash

flow risk priced and the cost of consumption fluctuations is higher.

In sum, the wealth-consumption dynamics are very similar across models and are largely

driven by the similar dynamics of real yields. Insisting on matching the 1-year bond risk
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premium (the CP factor), leads to consumption that carries a much lower price of risk and

results in higher long-term mean yield estimates. These two effects result in a lower mean

cost of consumption fluctuations, and have offsetting effects on the mean wealth-consumption

ratio. Without the CP factor, our results would indicate a consumption risk premium that

was lower still and a mean wealth-consumption ratio that was higher still, further reinforcing

our conclusions.

4.2 Simpler VAR dynamics

A second set of robustness exercises explores changes to our benchmark results when we

simplify the VAR dynamics. Appendix C.2 explores four different sets of additional zero

restrictions on the matrix Ψ. In particular, we zero out either all non-significant elements of

Ψ, only the non-significant elements in the stock market block, only those in the FMP block,

or only those in the consumption and labor income block. The dynamics of the resulting

wealth-consumption ratios and consumption risk premia are extremely highly correlated

(above 99%) across our benchmark model and these four variations, in large part because

expected consumption growth dynamics and real yield dynamics are so highly correlated.

The cost of consumption fluctuations also have correlations across models above 90% with

the benchmark model. The main difference is in the average wealth-consumption ratio and

risk premia across models rather than in the dynamics. In the last model with the restricted

consumption and labor growth dynamics, we have the lowest mean wealth-consumption ratio

among all models, at 62, and the highest consumption risk premium at 2.94% per year. The

latter remains well below the observed equity risk premium of 6.41%, so that our main

conclusions are unaffected.

In a last robustness exercise (section C.3), we relax the block-diagonal nature of the

Ψ matrix and allow the bond market dynamics in the first four equations of the VAR to

depend on the lagged stock market variables (next four elements). We find qualitatively and

quantitatively similar results to our benchmark case.
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4.3 Annual estimation

We repeat our analysis at annual frequency. The annual exercise is useful because annual

VAR dynamics may be able to capture lower-frequency correlations between consumption

growth and traded asset prices than the quarterly results.17

The model structure and estimation procedure are identical, except that the short rate

is now the one-year constant maturity bond yield. We find that annual consumption growth

has a significantly positive covariance with stock returns (t-stat is 3.15), which contributes

to a better spanning of annual consumption growth risk by the traded assets than in the

quarterly model. Indeed, our state variables in zt explain 50% of variation in annual ∆ct+1,

compared to 29% in our benchmark quarterly exercise.

The main results from the annual estimation, which are listed in the last column of Table

2, are similar to those of the quarterly model. The consumption risk premium is nearly

identical at 2.34% (vs. 2.38%). The mean wealth-consumption ratio is 103 compared to an

annualized number of 83 in the benchmark results. The dynamics of the wealth-consumption

ratio still mirror those of long-term real bond yields. Our main message that the consumption

claim is much less risky than equity remains unaffected. The human wealth share is 92%,

just as in the quarterly benchmark.

The main difference with the quarterly results is a much higher marginal cost of con-

sumption fluctuations. The latter is 34% on average in the annual model compared to the

quarterly model where we found a small negative cost. The high cost arises because the risk

premium of the trend consumption claim is substantially lower than that of the risky claim

(2.05% vs. 2.34%), leading to a much higher mean trend wealth-consumption ratio (Table

3). The difference with the quarterly results can be traced back to differences in annual ver-

sus quarterly consumption dynamics. In annual data, consumption innovations have strong

negative correlation with the level (second orthogonal) shock and a less negative correlation

17While it would be interesting to go back to the Great Depression, the necessary bond yield data are not
available prior to 1953, so that the annual sample spans the same 1952-2011 period as our quarterly sample.
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with the slope (fourth orthogonal) shock. Both exposures increase the consumption risk

premium above that in the quarterly model. Basically, consumption cash flow shocks no

longer hedge interest rate risk but rather contribute to the interest rate risk that is already

present through the discount rate (the same risk the consumption trend is also exposed to).

Despite the mean differences, the dynamics of the cost of consumption fluctuations are sim-

ilar between annual and quarterly models. The annual series also shows a large destruction

of wealth relative to trend during the Great Recession. These dynamics results from similar

interest rate behavior and from similar deviations of consumption from its trend.

5 Cost of Consumption Risk, Wealth Effects, and Non-

Traded Risk

In this section, we explore the economic implications of our measurement exercise. Section

5.1 links the wealth-consumption ratio to the cost of aggregate consumption risk and Section

5.2 links it to the propensity to consume out of wealth. Section 5.3 relaxes the spanning

assumption and proposes bounds on the non-traded consumption risk premium in our model.

5.1 Cost of consumption risk

The computation of the wealth-consumption ratio implies an estimate of the marginal welfare

cost of aggregate consumption growth risk, a central object of interest in this paper. Alvarez

and Jermann (2004) define the marginal cost of consumption uncertainty by how much

consumption the representative agent would be willing to give up at the margin in order

to eliminate some consumption uncertainty.18 Since our approach is preference-free, our

18The literature on the costs of consumption fluctuations starts with Lucas (1987), who defines the total

cost of aggregate consumption risk Ω as the fraction of consumption the consumer is willing to give up in
order to get rid of consumption uncertainty: U

(
(1 + Ω(α))Cactual

)
= U

(
(1− α)Ctrend + αCactual

)
, where

α=0. Alvarez and Jermann (2004) define the marginal cost of business cycles as the derivative of this cost
evaluated at zero, i.e., Ω′(0). While the total cost can only be computed by specifying preferences, the
marginal cost can be backed out directly from traded asset prices.
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marginal cost calculation applies to the entire class of representative agent dynamic asset

pricing models.

Eliminating exposure to aggregate consumption growth risk is achieved by selling a claim

to stochastically growing aggregate consumption and buying a claim to deterministically

growing aggregate consumption. Denote trend consumption by Ctr
t . The marginal cost

of consumption uncertainty, ̟t, is defined as the ratio of the price of a claim to trend

consumption (without cash-flow risk) to the price of a claim to consumption with cash-flow

risk minus one:

̟t =
W tr

t

Wt

− 1 =
WCtr

t

WCt

Ctr
t

Ct

− 1 = ewctrt +ctrt +wct−ct − 1, (13)

where wctr denotes the log price-dividend ratio on the claim to trend consumption, a per-

petuity with cash-flows that grow deterministically at the average real consumption growth

rate, µc. The latter is approximately affine in the state variables: wctrt ≃ Atr
0 + Atr′

1 zt (see

Appendix B for a derivation). The risk premium on a claim to trend consumption is not

zero but it approximately equals the risk premium on the real perpetuity:

Et

[
rtr,et+1

]
≡ Et

[
rtrt+1 − yt(1)

]
+

1

2
Vt[r

tr
t+1] ≃ Atr′

1 Σ
1
2

(
Λ0 − Σ

1
2
′eπ

)
+ Atr′

1 Σ
1
2Λ1zt. (14)

The marginal cost of business cycles is zero, on average, when innovations to current and

future consumption growth jointly carry a zero price of risk, so that wct ≈ wctrt . Even in

the latter case, the marginal cost of consumption fluctuations will fluctuate because realized

consumption is at times above and at times below trend.

Figure 6 shows the cost of consumption fluctuations (̟) in our benchmark model. It

breaks down this cost into the ratio of the wealth-consumption ratios of the trend claim to

that of the risky consumption claim and the ratio of trend consumption to consumption (see

equation 13). The average cost of consumption fluctuations is slightly negative, consistent

with the slightly lower consumption risk premium arising from the hedging properties of
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consumption discussed above.

Figure 6: Cost of consumption fluctuations
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The figure plots the marginal cost of consumption fluctuations ̟t =
W tr

t

Wt

− 1 =
WCtr

t

WCt

Ctr

t

Ct

− 1 against the left axis (solid line).

It also plots the two ratio terms
WCtr

t

WCt

(dotted line) and
Ctr

t

Ct

(dashed line) that constitute ̟t.

More interesting than the mean is the substantial amount of variation in the marginal

cost. At the end of the sample, the cost of consumption fluctuations skyrockets. This

happens because consumption is far below trend and because the ultra-low interest rates

result in a much higher trend WC ratio than risky WC ratio (recall the former’s greater

interest rate sensitivity). In other words, total wealth falls far below trend during the Great

Recession. Thus, relative to trend, our model implies a large wealth destruction during the

Great Recession.
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5.2 Propensity to consume out of wealth

A large literature studies households’ average and marginal propensities to consume out

of wealth. To the best of our knowledge, ours is the first estimator of these propensities

that is consistent with both the budget constraint and no-arbitrage pricing of stock and

bond prices. Specifically, the consumption-wealth ratio evaluated at the sample average

state vector, exp (−Ac
0), is a no-arbitrage estimate of the average propensity to consume out

of total wealth. We also obtain the marginal propensity to consume out of total wealth:

(1+ e′cA
c
1)

−1 exp (− (Ac
0 + Ac′

1 zt)).
19 The dynamics of the marginal cost of consumption fluc-

tuations vary directly with the consumption-wealth ratio.

The average propensity to consume out of total wealth in our benchmark estimation is 1.2

cents for every dollar of wealth (= 1/83). The marginal propensity to consume out of (the

last dollar increase in) total wealth is 0.75 cents. Our estimates for the marginal propensity

are at the low end of the range of numbers in the literature (Poterba 2000).20 In contrast, if

the consumption claim was priced like equity, the average propensity to consume would be

much higher: 3.9 cents (1/26) out of every dollar. Such a number is in the ballpark of the 5

cent estimate that is suggested by Modigliani (1971) and a large literature that follows it.

There is considerable variation in the marginal propensity to consume. It peaks at 1.40

cents per dollar in 1981.IV, when real interest rates peak, and it bottoms out at 0.57 cents

in 2010.IV, when real interest rates bottom out. The 50% decline in the propensity to

consume occurs despite the massive wealth creation over the 1981 to 2010 period. The logic

of the budget constraint imposes that the propensity to consume must drop when expected

total wealth returns drop. The latter are highly correlated with real interest rates, which

19In the literature, the marginal propensity to consume is the slope coefficient a1 in the following regression:
∆ct+1 = a0 + a1∆wt+1 + ǫt+1. From our estimates, we can back out the implied marginal propensity to
consume as follows: a−1

1 = ∂(∆wt+1)/∂(∆ct+1) = ∂(∆wct+1 +∆ct+1)/∂(∆ct+1) = ∂(∆wct+1)/∂(∆ct+1) +
1 = e′

c
Ac

1 + 1. We multiply a1 = (e′
c
Ac

1 + 1)−1 by the consumption-wealth ratio to get an expression of the
marginal propensity to consume out of wealth in levels (cents per dollars).

20In part this is because we consider total wealth, the infinite present discounted value of all future labor
and dividend income. If we were to limit ourselves to a 35-year “career” for labor income, the marginal
propensity to consume would be three times higher at 2.3 cents per last dollar of career human wealth.

45



fall substantially over this period. Our estimated decline is consistent with Ludvigson and

Steindel (1999), who report a large drop in the marginal propensity to consume out of stock

market wealth after 1986.

Time variation in the wealth-consumption ratio implies that the wealth effect decreases

during periods of abnormal total wealth creation, while it increases during periods of ab-

normal total wealth destruction. Previously, Poterba (2000) and others had speculated that

consumers may respond more strongly to wealth destruction than creation. Moreover, macro-

economists have long been puzzled by the dramatic destruction of capital in 1973 and 1974,

inferred from the stock market’s steep decline s (e.g. Hall 2001). Our findings suggest these

events in the stock market only had a minor impact on total U.S. wealth, and are consistent

with Hobijn and Jovanovic’s (2001) account of this episode.

5.3 Non-traded consumption risk

So far we have assumed that all aggregate shocks are spanned by stock and bond prices.

This assumption is satisfied in all structural dynamic asset pricing models that we are aware

of. Even in incomplete markets models, asset prices will reflect changes in the income or

wealth distribution (e.g. Constantinides and Duffie 1996).

In the absence of spanning, it is impossible to conclusively bound the wealth-consumption

ratio, except by writing down a fully specified general equilibrium model. However, it is

possible to put reasonable bounds on the non-traded consumption risk premium in our model.

In particular, we relax our assumption that traded assets span all aggregate shocks by freeing

up the 9th element of Λ0, the risk price of the non-traded consumption growth shock that is

orthogonal to the eight traded asset shocks. Table 5 reports the consumption risk premium

(Column 2), the average wealth-consumption ratio (Column 3), the maximum conditional

Sharpe ratio (Column 4,) and the Sharpe ratio on a one-period ahead consumption strip

(Column 5) for different values of the price of non-traded consumption risk, governed by

the 9th-element of Λ0 (Column 1). This parameter does not affect the prices of any traded
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assets, so this exercise does not change any of the model’s implications for observables.21

The first row in Table 5 reports our benchmark case in which the non-traded consumption

risk is not priced. The consumption risk premium is 2.38% per annum, the maximum Sharpe

ratio is 0.6, and the conditional Sharpe ratio on the one-period ahead consumption strip is .06.

Increasing Λ0(9) increases the consumption risk premium, lowers the wealth-consumption

ratio, and increases the Sharpe ratio on the consumption strip. How far should we increase

Λ0(9)? A first answer is to bound the maximal Sharpe ratio (stdt[mt+1]). Cochrane and

Saa-Requejo (2000) and Alvarez and Jermann (2004) choose a “good deal” bound of one,

which they argue is high because it is twice the 0.5 Sharpe ratio on equities in the data.22

Since we work with quarterly log returns, the Sharpe ratio on equities is only 0.19, and that

same good deal bound of one is more than twice as conservative. This bound is reached

for Λ0(9) around 0.8, and implies a consumption risk premium of 3.91% per annum and an

average wealth-consumption ratio of 36. Even then, the consumption risk premium is still

2.5% short of the equity premium, so that our conclusion that total wealth has different

risk-return characteristics than equity remains valid. In order to match the equity premium

by increasing the price of non-traded consumption risk, we would need an increase in the

maximum Sharpe ratio to twice the good-deal bound or ten times the Sharpe ratio on equity.

This does not seem reasonable for two reasons. First, such non-traded risk would certainly

differ across households and would beg the question of why no market exists to share this risk.

Second, a high risk premium on total consumption would imply a low wealth-consumption

ratio, which in turn would suggest an extremely high marginal cost of business cycles.

A second answer would be to evaluate the Sharpe ratios on the consumption strip return

21Freeing up Λ0(9) also affects the risk premium and price-dividend ratio on human wealth, in quantita-
tively similar ways. We also experimented with freeing up the price of risk on the shock to labor income
growth that is orthogonal to all previous shocks, including the aggregate consumption growth shock. In-
creasing this Λ0(10) has no effect on the consumption risk premium and the wealth-consumption ratio. It
only affects the risk premium on human wealth. Quantitatively, the effects are similar to those presented in
Table 5. The same is true when we simultaneously increase Λ0(9) and Λ0(10).

22In related work, Bernardo and Ledoit (2000) bound the gain-loss ratio, which summarizes the attrac-
tiveness of a zero-price portfolio. It is equivalent to a restriction on admissible pricing kernels, precluding
the existence of arbitrage and approximate arbitrage opportunities.
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in Column 5. When we set Λ0(9) to 0.1, this Sharpe ratio doubles compared to Λ0(9) = 0,

i.e., the implied price of non-traded consumption cash flow risk is much higher than that of

traded consumption cash flow risk on a per unit of risk basis. Allowing the consumption

strip to have the same Sharpe ratio as equity (0.19), would imply a value for Λ0(9) around

0.10. At this value, the consumption risk premium is only about 0.2% per year higher than

in our benchmark case. At Λ0(9) = 0.8, the conditional Sharpe ratio on the consumption

strip is 0.8, four times higher than the Sharpe ratio on equity and 13 times higher than the

Sharpe ratio on the traded consumption strip.

Table 5: Non-traded consumption risk

The first column reports the market price of risk Λ0(9) that is associated with the innovation to consumption growth that
is orthogonal to all innovations to the preceding stock and bond innovations. The second column reports the consumption
risk premium. The third column reports the average wealth/consumption ratio. The fourth column is the maximum Sharpe
ratio computed as

√

Λ′

0Λ0. The last column shows the conditional Sharpe ratio on a one-period ahead consumption strip:
(

e′cΣ
1/2Λ0

)

/
√

e′cΣ
1/2Σ1/2′ec.

Λ0(9) cons. risk premium E[WC] stdt(mt+1) SR on strips

0 2.38% 85 0.58 0.06

0.05 2.48% 78 0.58 0.10

0.10 2.57% 73 0.59 0.15

0.50 3.33% 46 0.77 0.52

0.80 3.91% 36 0.99 0.80

1.00 4.30% 31 1.16 0.98

1.50 5.29% 24 1.61 1.45

2.00 6.30% 19 2.08 1.91

3.00 8.35% 14 3.06 2.84

Finally, Appendix D shows that our methodology for pricing aggregate consumption and

labor income claims remains valid if the data are generated from an economy inhabited by

heterogeneous agents who face idiosyncratic labor income risk, which they cannot perfectly

insure away and who may face binding borrowing or asset market participation constraints.
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6 Structural Models

We end the paper with a short comparison of our results to those implied by leading asset

pricing models.23 We focus on the long-run risk (LRR) model of Bansal and Yaron (2004)

and the external habit (EH) model of Campbell and Cochrane (1999), each of which has

received an enormous amount of attention in the modern asset pricing literature. Just like

in the affine model we estimated, the log wealth-consumption ratio is linear in the state

variables in each of these two models. We do not attempt to formally test the two models,

only to point out their implications for the wealth-consumption ratio.24 Interestingly, they

have quite different implications for the wealth-consumption ratio. We refer the reader to the

NBER working paper version of our work for a detailed derivation of the wealth-consumption

ratios in these two models and a description of our simulations. We present our main findings

in Columns 1 and 2 of Table 2.

The LRR model produces a wc ratio that matches many features of the data. It is high

on average and not very volatile. For the standard calibration of the LRR model, the mean

annual wealth-consumption ratio is 87, very close to our estimate in the data (eA
c,LRR
0 −log(4)).

The high wc ratio corresponds to a low consumption risk premium of 1.6% per year. The

volatility of the wc ratio is low at 2.35% and so is the volatility of the change in the wealth-

consumption ratio. Both are somewhat lower than our estimates. The persistence of the

model’s state variables induces substantial persistence in the wc ratio: its auto-correlation

coefficient is 0.91 (0.70) at the 1-quarter (4-quarter) horizon. The log total wealth return

has a volatility of 1.64% per quarter in the LRR model. Low autocorrelation in ∆wc and

∆c generates low autocorrelation in total wealth returns. Our main conclusion is that, just

as in the data, total wealth is much less risky than equity in the LRR model.

The benchmark EH model has almost the opposite implications for the wealth-consumption

23A comprehensive discussion appears in the NBER working paper version of this paper.
24The LRR and EH models are not nested by our model. Their state displays heteroscedasticity, which

translates into market prices of risk Λt that are affine in the square root of the state. Our model has
conditionally homoscedastic state dynamics and linear market prices of risk, but more shocks and therefore
richer market price of risk dynamics.
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ratio. First, the wc ratio is volatile in the EH model: it has a standard deviation of 29.3%,

which is 27 (11) percentage points higher than in the LRR model (in the data). The wealth-

consumption ratio inherits a high volatility and persistence from the surplus consumption

ratio. The change in the wc ratio has a volatility of 9.46%, much higher than that of

consumption growth. The high volatility of ∆wc ratio translates into a highly volatile to-

tal wealth return (10.26% per quarter). As in the LRR model, the total wealth return is

strongly positively correlated with consumption growth. In the EH model, this happens

because most of the action in the total wealth return comes from changes in the wc ratio.

The latter are highly positively correlated with consumption growth, in contrast with the

LRR model. Most importantly, the consumption risk premium is high because total wealth

is risky; the quarterly consumption risk premium is 267 bps, which translates into 10.7% per

year. The high consumption risk premium implies a low annual mean wealth-consumption

ratio of 12. In the EH model, the properties of total wealth returns are similar to those of

equity returns. The equity risk premium is only 1.2 times higher than the consumption risk

premium and the volatility of the pdm ratio is only 1.2 times higher than the volatility of the

wc ratio. For comparison, in the LRR model, these ratios are 3.5 and 6 and in the data they

are 2.7 and 1.5, respectively. The EH model essentially equates the riskiness of total wealth

and equity, and as a result, it overstates the representative agent’s aversion to consumption

risk.

In contrast to the LRR model, the EH model asserts that all variability in returns arises

from variability in risk premia. Since there is no consumption growth predictability, 100%

of the variability of wc is variability of the discount rate component. The same is true for

stocks. A key strength of the EH model is its ability to generate a lot of variability in

expected equity returns, all of which comes from the discount rate channel. The flip side

is that the same mechanism generates too much variability in expected excess total wealth

returns. Finally, the EH model implies that almost all the covariance with future returns

comes from covariance with future excess returns, not future risk-free rates. In the total
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wealth data, there is evidence for substantial risk-free rate predictability.

In sum, the two leading asset pricing models have very different implications for the

wealth consumption ratio, despite the fact that they both match unconditional equity return

moments. In the LRR model, as in the data, the consumption claim looks more like a bond,

whereas in the EH model it looks more like a stock. The properties of the wealth-consumption

ratio could serve as useful, indeed primitive, asset pricing moments that structural asset

pricing models should aim to match.

7 Conclusion

We develop a new methodology for estimating the wealth-consumption ratio in the data,

based on no-arbitrage conditions that are familiar from the term structure literature. Our

method combines restrictions on stocks and bonds in a novel way, because we are pricing a

claim that a priori has bond-like and stock-like features. We find that a claim to aggregate

consumption is much less risky than a claim to aggregate dividends: the consumption risk

premium is only one-third of the equity risk premium. This suggests that the stand-in

households’ portfolio is much less risky than what one would conclude from studying the

equity component of that portfolio. The consumption claim looks much more like a real

bond than like a stock.
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A Appendix: Data

Our data are quarterly and span the period 1952.I-2011.IV. They are compiled from the

most recent data available. In robustness analysis, we also consider data sampled at annual

frequency for 1952-2011.

A.1 Macroeconomic series

A.1.1 Labor income

Labor income is computed from NIPA Table 2.1 as wage and salary disbursements (line 3)

+ employer contributions for employee pension and insurance funds (line 7) + government

social benefits to persons (line 17) - contributions for government social insurance (line 24) +

employer contributions for government social insurance (line 8) - labor taxes. As in Lettau

and Ludvigson (2001a), labor taxes are defined by imputing a share of personal current

taxes (line 25) to labor income, with the share calculated as the ratio of wage and salary

disbursements to the sum of wage and salary disbursements, proprietors’ income (line 9), and

rental income of persons with capital consumption adjustment (line 12), personal interest

income (line 14) and personal dividend income (line 15). The series is seasonally-adjusted

at annual rates (SAAR), and we divide it by 4. Because the net worth of non-corporate

business and owners’ equity in farm business is part of financial wealth, it cannot also be

part of human wealth. Consequently, labor income excludes proprietors’ income.

A.1.2 Consumption

Non-housing consumption consists of non-housing, non-durable consumption and non-housing

durable consumption. Consumption data are taken from Table 2.3.5. from the Bureau of

Economic Analysis’ National Income and Product Accounts (BEA, NIPA). Non-housing,

non-durable consumption is measured as the sum of non-durable goods (line 6) + services

(line 13) - housing services (line 14).

58



Non-housing durable consumption is unobserved and must be constructed. From the

BEA, we observe durable expenditures. The value of the durables (Flow of Funds, see below)

at the end of two consecutive quarters and the durable expenditures allows us to measure the

implicit depreciation rate that entered in the Flow of Funds’ calculation. We average that

depreciation rate over the sample; it is δ=5.19% per quarter. We apply that depreciation

rate to the value of the durable stock at the beginning of the current period (= measured as

the end of the previous quarter) to get a time-series of this period’s durable consumption.

We use housing services consumption (BEA, NIPA, Table 2.3.5, line 14) as the dividend

stream from housing wealth. The BEA measures rent for renters and imputes a rent for

owners. These series are SAAR, so we divide them by 4 to get quarterly values.

Total consumption is the sum of non-housing non-durable, non-housing durable, and

housing consumption.

A.1.3 Population and deflation

Throughout, we use the disposable personal income deflator from the BEA (Table 2.1, im-

plied by lines 36 and 37), as well as the BEA’s population series (line 38).

A.2 Financial series

A.2.1 Stock market return

We use value-weighted quarterly returns (NYSE, AMEX, and NASDAQ) from CRSP as our

measure of the stock market return. In constructing the dividend-price ratio, we use the

repurchase-yield adjustment advocated by Boudoukh, Michaely, Richardson, and Roberts

(2007). We add the dividends over the current and past three quarters in order to avoid

seasonality in dividend data.
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A.2.2 Additional cross-sectional stock returns

In the formation of the factor-mimicking portfolios, we use the 25 size and value equity

portfolio returns from Kenneth French. We form log real quarterly returns.

A.2.3 Bond yields

We use the nominal yield on a 3-month Treasury bill from Fama (CRSP file) as our measure

of the risk-free rate. We also use the yield spread between a 5-year Treasury note and a 3-

month Treasury bill as a return predictor. The 5-year yield is obtained from the Fama-Bliss

data (CRSP file). The same Fama-Bliss yields of maturities 1, 2, 3, 4, and 5 years are used

to form annual forward rates and to form 1-year excess returns in the Cochrane-Piazzesi

excess bond return regression.

In addition to the -month and 5-year bond yields that enter through the state variables,

we use nominal bond yields at 1-, 3-, 10-, and 20-year maturities as additional moments to

match. For the 1- and 3-year maturities, we use Fama-Bliss data. For the 10- and 20-year

maturities, we use yield data from the Federal Reserve Bank of Saint Louis (FRED II). For

the latter, we construct the spread with the 5-year yield from FRED. The 10- and 20-year

yields we use in estimation are the sum of the 5-year Fama-Bliss yield and the 10-5 and 20-5

yield spread from FRED. This is to adjust for any level differences in the 5-year yield between

the two data sources. The 20-year yield data are missing from 1987.I until 1993.III. The

estimation can handle these missing observations because it minimizes the sum of squared

differences between model-implied and observed yields, where the sum is only taken over

available dates.

In order to plot the average yield curve in Figures C.2 and C.5, and only for this purpose,

we also use the 7-5 year and the 30-5 year spread from FRED II. We add them to the 5-year

yield from Fama-Bliss to form the 7-year and 30-year yield series. Since the 7-year yield

data are missing from 1953.4-1969.6, we use spline interpolation (using the 1-, 2-, 5-, 10-,

and 20-year yields) to fill in the missing data. The 30-year bond yield data are missing
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from 1953.4-1977.1 and from 2002.3-2006.1. We use the 20-year yield in those periods as a

proxy. In the period where the 20-year yield is absent, we use the 30-year yield data in that

period as a proxy. The resulting average 5-year yield is 5.83% per annum (straight from

Fama-Bliss), the average 7-year yield is 6.00%, 10-year yield is 6.15%, 20-year is 6.36%, and

the average 30-year yield is 6.32%.

A.2.4 Cochrane and Piazzesi’s (2005) factor

Cochrane and Piazzesi (2005) show that a linear combination of forward rates is a powerful

predictor of one-year excess bond returns. Following their procedure, we construct 1- through

5-year forward rates from our quarterly nominal yield data, as well as one-year excess returns

on 2- through 5-year nominal bonds. We regress the average of the 2- through 5-year excess

returns on a constant, the 1-year yield, and the 2- through 5-year forward rates. The

regression coefficients display a tent-shaped function, very similar to the one reported in

Cochrane and Piazzesi (2005). The state variable CPt is the fitted value of this regression.

A.2.5 Factor-mimicking portfolios

We regress real per capita consumption growth on a constant and the returns on the 25

size and value portfolios (Fama and French 1992). We then form the FMP return series

as the product of the 25 estimated loadings and the 25 portfolio return time series. In the

estimation, we impose that the FMP weights sum to one and that none of the weights are

greater than one in absolute value. We follow the same procedure for the labor income growth

FMP. The consumption (labor income) growth FMP has a 35.84% (36.01%) correlation with

consumption (labor income) growth. These two FMP returns have a mutual correlation of

71.35%. The FMP returns are lower on average than the stock return (2.34% and 3.94% vs.

6.47% per annum) and are less volatile (7.07% and 14.53% vs. 17.20% volatility per annum).
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B Appendix: No-Arbitrage Model

B.1 Proof of proposition 1

Proof. To find Ac
0 and Ac

1, we need to solve the Euler equation for a claim to aggregate

consumption. This Euler equation can either be thought of as the Euler equation that uses

the nominal log SDF m$
t+1 to price the nominal total wealth return πt+1 + rct+1 or the real

log SDF m$
t+1 + πt+1 to price the real return rct+1:

1 = Et[exp{m$
t+1 + πt+1 + rct+1}]

= Et[exp{−y$t (1)−
1

2
Λ′

tΛt − Λ′
tεt+1 + π0 + e′πzt+1 + µc + e′czt+1 + Ac

0 + Ac′
1 zt+1 + κc

0 − κc
1 (A

c
0 + Ac′

1 zt)}

= exp{−y$0(1) + π0 − e′ynzt −
1

2
Λ′

tΛt + e′πΨzt + κc
0 + (1− κc

1)A
c
0 + µc − κc

1A
c′
1 zt + (e′c + Ac′

1 ) Ψzt} ×

Et

[
exp{−Λ′

tεt+1 + (ec + eπ + Ac
1)

′Σ
1
2 εt+1}

]
.

First, note that because of log-normality of εt+1, the last line equals:

exp

{
1

2

(
Λ′

tΛt + (ec + eπ + Ac
1)

′Σ(ec + eπ + Ac
1)

′ − 2(ec + eπ + Ac
1)

′Σ
1
2Λt

)}
.

Substituting in for the expectation, as well as for the affine expression for Λt, we get:

1 = exp{−y$0(1) + π0 − e′ynzt + κc
0 + (1− κc

1)A
c
0 + µc − κc

1A
c′
1 zt + (ec + eπ + Ac

1)
′Ψzt} ×

exp{1
2
(ec + eπ + Ac

1)
′Σ(ec + eπ + Ac

1)− (ec + eπ + Ac
1)

′Σ
1
2 (Λ0 + Λ1zt)}.

Taking logs on both sides, an collecting the constant terms and the terms in z, we obtain
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the following:

0 = {−y$0(1) + π0 + κc
0 + (1− κc

1)A
c
0 + µc +

1

2
(ec + eπ + Ac

1)
′Σ(ec + eπ + Ac

1)− (ec + eπ + Ac
1)

′Σ
1
2Λ0}+

{−e′yn − κc
1A

c′
1 + (ec + eπ + Ac

1)
′Ψ− (ec + eπ + Ac

1)
′Σ

1
2Λ1}zt.

This equality needs to hold for all zt. This is a system of N+1 equations in N+1 unknowns:

0 = −y$0(1) + π0 + κc
0 + (1− κc

1)A
c
0 + µc +

1

2
(ec + eπ + Ac

1)
′Σ(ec + eπ + Ac

1)

−(ec + eπ + Ac
1)

′Σ
1
2Λ0. (B.1)

0 = (ec + eπ + Ac
1)

′Ψ− κc
1A

c′
1 − e′yn − (ec + eπ + Ac

1)
′Σ

1
2Λ1. (B.2)

The real short yield yt(1), or risk-free rate, satisfies Et[exp{mt+1 + yt(1)}] = 1. Solving

out this Euler equation, we get:

yt(1) = y$t (1)−Et[πt+1]−
1

2
e′πΣeπ + e′πΣ

1
2Λt

= y0(1) +
[
e′yn − e′πΨ+ e′πΣ

1
2Λ1

]
zt. (B.3)

y0(1) ≡ y$0(1)− π0 −
1

2
e′πΣeπ + e′πΣ

1
2Λ0. (B.4)

The real short yield is the nominal short yield minus expected inflation minus a Jensen

adjustment minus the inflation risk premium. Using the expression (B.4) for y0(1) in equation

(B.1) delivers equation (7) in the main text.

Proposition 2. The log price-dividend ratio on human wealth is a linear function of the

(demeaned) state vector zt

pdlt = Al
0 + Al

1zt
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where the following recursions pin down Al
0 and Al

1:

0 = κl
0 + (1− κl

1)A
l
0 + µl − y0(1) +

1

2
(e′∆l + Al′

1)Σ(e∆l + Al
1)− (e′∆l + Al′

1)Σ
1
2

(
Λ0 − Σ

1
2
′eπ

)
,

0 =
(
e∆l + eπ + Al

1

)′
Ψ− κl

1A
l′
1 − e′yn − (e∆l + eπ + Al

1)
′Σ

1
2Λ1.

The proof is identical to the proof of Proposition 1, and obtains by replacing µc by µl

and the selector vector ec by e∆l. The linearization constants κl
0 and κl

1 relate to Al
0 through

the analog of equation (6).

The conditional risk premium on the labor income claim is affine in the state vector and

given by:

Et

[
rl,et+1

]
= (e∆l + Al

1)
′Σ

1
2

(
Λ0 − Σ

1
2
′eπ

)
+ (e∆l + Al

1)
′Σ

1
2Λ1zt.

We use µl to denote unconditional labor income growth and e∆l selects labor income growth

in the VAR.

B.2 Nominal and real term structure

Proposition 3. Nominal bond yields are affine in the state vector:

y$t (τ) = −A$(τ)

τ
− B$(τ)′

τ
zt,

where the coefficients A$(τ) and B$(τ) satisfy the following recursions:

A$(τ + 1) = −y$0(1) + A$(τ) +
1

2

(
B$(τ)

)′
Σ
(
B$(τ)

)
−

(
B$(τ)

)′
Σ

1
2Λ0, (B.5)

(
B$(τ + 1)

)′
=

(
B$(τ)

)′
Ψ− e′yn −

(
B$(τ)

)′
Σ

1
2Λ1, (B.6)

initialized at A$(0) = 0 and B$(0) = 0.

Proof. We conjecture that the t + 1-price of a τ -period bond is exponentially affine in the
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state:

log(P $
t+1(τ)) = A$(τ) +

(
B$(τ)

)′
zt+1

and solve for the coefficients A$(τ+1) and B$(τ+1) in the process of verifying this conjecture

using the Euler equation:

P $
t (τ + 1) = Et[exp{m$

t+1 + log
(
P $
t+1(τ)

)
}]

= Et[exp{−y$t (1)−
1

2
Λ′

tΛt − Λ′
tεt+1 + A$(τ) +

(
B$(τ)

)′
zt+1}]

= exp{−y$0(1)− e′ynzt −
1

2
Λ′

tΛt + A$(τ) +
(
B$(τ)

)′
Ψzt} ×

Et

[
exp{−Λ′

tεt+1 +
(
B$(τ)

)′
Σ

1
2εt+1}

]
.

We use the log-normality of εt+1 and substitute for the affine expression for Λt to get:

P $
t (τ + 1) = exp

{
−y$0(1)− e′ynzt + A$(τ) +

(
B$(τ)

)′
Ψzt +

1

2

(
B$(τ)

)′
Σ
(
B$(τ)

)

−
(
B$(τ)

)′
Σ

1
2 (Λ0 + Λ1zt)

}
.

Taking logs and collecting terms, we obtain a linear equation for log(pt(τ + 1)):

log
(
P $
t (τ + 1)

)
= A$(τ + 1) +

(
B$(τ + 1)

)′
zt,

where A$(τ + 1) satisfies (B.5) and B$(τ + 1) satisfies (B.6). The relationship between log

bond prices and bond yields is given by − log
(
P $
t (τ)

)
/τ = y$t (τ).

Real bond yields, yt(τ), denoted without the $ superscript, are affine as well with coeffi-

cients that follow similar recursions:

A(τ + 1) = −y0(1) + A(τ) +
1

2
(B(τ))′ Σ (B(τ))− (B(τ))′ Σ

1
2

(
Λ0 − Σ

1
2
′eπ

)
, (B.7)

(B(τ + 1))′ = (eπ +B(τ))′ Ψ− e′yn − (eπ +B(τ))′ Σ
1
2Λ1. (B.8)
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For τ = 1, we recover the expression for the risk-free rate in (B.3)-(B.4).

B.3 Dividend strips

We define the return on equity as Rm
t+1 =

Pm
t+1+Dm

t+1

Pm
t

, where Pm
t is the end-of-period price on

the equity market. A log-linearization delivers:

rmt+1 = κm
0 +∆dmt+1 + κm

1 pd
m
t+1 − pdmt . (B.9)

The unconditional mean stock return is rm0 = κm
0 + (κm

1 − 1)Am
0 + µm, where Am

0 = E[pdmt ]

is the unconditional average log price-dividend ratio on equity and µm = E[∆dmt ] is the un-

conditional mean dividend growth rate. The linearization constants κm
0 and κm

1 are different

from the other wealth concepts because the timing of the return is different:

κm
1 =

eA
m
0

eA
m
0 + 1

< 1 and κm
0 = log

(
eA

m
0 + 1

)
− eA

m
0

eA
m
0 + 1

Am
0 . (B.10)

Even though these constants arise from a linearization, we define log dividend growth so that

the return equation holds exactly, given the CRSP series for {rmt , pdmt }. Our state vector

z contains the (demeaned) return on the stock market, rmt+1 − rm0 , and the (demeaned) log

price-dividend ratio pdm − Am
0 . The definition of log equity returns allows us to back out

dividend growth:

∆dmt+1 = µm +
[
(erm − κm

1 epd)
′Ψ+ e′pd

]
zt + (erm − κm

1 epd)
′ Σ

1
2εt+1.

µm = rm0 − κm
0 + Am

0 (1− κm
1 ).

Proposition 4. Log price-dividend ratios on dividend strips are affine in the state vector:

pdt (τ) = Am(τ) +Bm′(τ)zt,
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where the coefficients Am(τ) and Bm(τ) follow recursions:

Am(τ + 1) = Am(τ) + µm − y0(1) +
1

2
(erm − κm

1 epdm +Bc(τ))′ Σ (erm − κm
1 epdm +Bm(τ))

− (erm − κm
1 epdm +Bm(τ))′ Σ

1
2

(
Λ0 − Σ

1
2 eπ

)
, (B.11)

Bm(τ + 1)′ = (erm − κm
1 epdm + eπ +Bm(τ))′ Ψ+ e′pdm − e′yn

− (erm − κm
1 epdm + eπ + Bm(τ))′Σ

1
2Λ1, (B.12)

initialized at Am(0) = 0 and Bm(0) = 0.

Proof. We conjecture that the log t + 1-price of a τ -period strip, scaled by the dividend in

period t + 1, is affine in the state:

pdt+1(τ) = log
(
P d
t+1(τ)

)
= Am(τ) +Bm(τ)′zt+1

and solve for the coefficients Am(τ + 1) and Bm(τ + 1) in the process of verifying this

conjecture using the Euler equation:

P d
t (τ + 1) = Et[exp{m$

t+1 + πt+1 +∆dmt+1 + log
(
pmt+1(τ)

)
}]

= Et[exp{−y$t (1)−
1

2
Λ′

tΛt − Λ′
tεt+1 + π0 + e′πzt+1 +∆dmt+1 + Am(τ) +Bm(τ)′zt+1}]

= exp{−y$0(1)− e′ynzt −
1

2
Λ′

tΛt + π0 + e′πΨzt + µm +
[
(erm − κm

1 epd)
′Ψ+ e′pd

]
zt + Am(τ) +

Bm(τ)′Ψzt} × Et

[
exp{−Λ′

tεt+1 + (erm − κm
1 epd + eπ +Bm(τ))′ Σ

1
2εt+1

]
.

We use the log-normality of εt+1 and substitute for the affine expression for Λt to get:

P d
t (τ + 1) = exp{−y$0(1)− e′ynzt + π0 + µm + Am(τ) +

[
(erm − κm

1 epd + eπ +Bm(τ))′ Ψ+ e′pd
]
zt +

1

2
(erm − κm

1 epd + eπ +Bm(τ))′ Σ (erm − κm
1 epd + eπ +Bm(τ))

− (erm − κm
1 epd + eπ +Bm(τ))′ Σ

1
2 (Λ0 + Λ1zt)}
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Taking logs and collecting terms, we obtain a log-linear expression for pdt (τ + 1):

pdt (τ + 1) = Am(τ + 1) +Bm(τ + 1)′zt,

where:

Am(τ + 1) = Am(τ) + µm − y$0(1) + π0 +
1

2
(erm − κm

1 epd + eπ +Bc(τ))′ Σ (erm − κm
1 epd + eπ +Bm(τ))

− (erm − κm
1 epd + eπ +Bm(τ))′ Σ

1
2Λ0,

Bm(τ + 1)′ = (erm − κm
1 epd + eπ +Bm(τ))′ Ψ+ e′pd − e′yn − (erm − κm

1 epd + eπ +Bm(τ))′ Σ
1
2Λ1.

We recover the recursions in (B.11) and (B.12) after using equation (B.4).

B.4 Consumption strips

Proposition 5. Log price-dividend ratios on consumption strips are affine in the state

vector:

pct(τ) = Ac(τ) +Bc′(τ)zt,

where the coefficients Ac(τ) and Bc(τ) follow recursions:

Ac(τ + 1) = Ac(τ) + µc − y0(1) +
1

2
(ec +Bc(τ))′ Σ (ec +Bc(τ))− (ec +Bc(τ))′ Σ

1
2

(
Λ0 − Σ

1
2 eπ

)
,

Bc(τ + 1)′ = (ec + eπ +Bc(τ))′ Ψ− e′yn − (ec + eπ +Bc(τ))′ Σ
1
2Λ1.

initialized at Ac(0) = 0 and Bc(0) = 0.

The proof is analogous to that of Proposition 4. The proposition implies that Bc(∞)′ =

(ec + eπ +Bc(∞))′ Ψ− e′yn − (ec + eπ +Bc(∞))′ Σ
1
2Λ1.

If we set µc to zero and eliminate ec from the above recursions, then they collapse to

those that govern the coefficients for the log price of real zero coupon bonds in equations

(B.7) and (B.8).
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We can decompose the yield on a τ -period consumption strip from Proposition 5, yct (τ) =

−pct(τ)/τ , into the yield on a τ -period real coupon bond, with coupon adjusted for determin-

istic consumption growth, plus the yield on the consumption cash-flow risk security yccrt (τ):

yct (τ) = (yt(τ)− µc) + yccrt (τ).

The former can be thought of as the period-τ coupon yield on a real perpetuity with cash-

flows that grow at a deterministic rate µc, while the latter captures the cash-flow risk in the

consumption claim. We have that yccrt (τ) = −pccrt (τ)/τ . Since the log price-dividend ratio

of the consumption strips and the log real bond prices are both affine, so is the log price-

dividend ratio of the consumption cash-flow risk security: log pccrt (τ) = Accr(τ) + Bccr(τ)zt.

It is easy to show that its coefficients follow the recursions:

Accr(τ + 1) = Accr(τ) +
1

2
(ec +Bccr(τ))′ Σ (ec +Bccr(τ)) + (ec +Bccr(τ))′ ΣB(τ)

− (ec +Bccr(τ))′ Σ
1
2

(
Λ0 − Σ

1
2 eπ

)
,

Bccr(τ + 1)′ = (ec +Bccr(τ))′ Ψ− (ec +Bccr(τ))′ Σ
1
2Λ1.

B.5 Trend consumption

Proposition 6. The log price-dividend ratio on a claim to trend consumption is approxi-

mately a linear function of the (demeaned) state vector zt

wctrt ≃ Atr
0 + Atr′

1 zt,

where the mean Atr
0 is a scalar and Atr

1 is the N × 1 vector which jointly solve:

0 = κtr
0 + (1− κtr

1 )A
tr
0 + µc − y0(1) +

1

2
(Atr

1 )
′Σ(Atr

1 )− (Atr
1 )

′Σ
1
2

(
Λ0 − Σ

1
2
′eπ

)
(B.13)

0 = (eπ + Ac
1)

′Ψ− κc
1A

tr′
1 − e′yn − (eπ + Atr

1 )
′Σ

1
2Λ1. (B.14)
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The linearization constants κtr
1 and κtr

2 are defined analogously to equation (6). The

derivation is analogous to that of the wealth-consumption ratio and results from setting

ec = 0 in Proposition 1.

B.6 Campbell-Shiller variance decomposition

By iterating forward on the total wealth return equation (5), we can link the log wealth-

consumption ratio at time t to expected future total wealth returns and consumption growth

rates:

wct = κc
0

H∑

j=1

(κc
1)

−j +

H∑

j=1

(κc
1)

−j ∆ct+j −
H∑

j=1

(κc
1)

−j rct+j + (κc
1)

−H wct+H . (B.15)

Because this expression holds both ex-ante and ex-post, one is allowed to add the expectation

sign on the right-hand side. Imposing the transversality condition as H → ∞ kills the last

term, and delivers the familiar Campbell and Shiller (1988) decomposition for the price-

dividend ratio of the consumption claim:

wct =
κc
0

κc
1 − 1

+Et

[
∞∑

j=1

(κc
1)

−j ∆ct+j

]
−Et

[
∞∑

j=1

(κc
1)

−j rt+j

]
=

κc
0

κc
1 − 1

+∆cHt − rHt , (B.16)

where the second equality follows from the definitions:

∆cHt ≡ Et

[
∞∑

j=1

(κc
1)

−j ∆ct+j

]
= e′cΨ(κc

1I −Ψ)−1zt, (B.17)

rHt ≡ Et

[
∞∑

j=1

(κc
1)

−j rt+j

]
= [(ec + Ac

1)
′Ψ− κc

1A
c′
1 ] (κ

c
1I −Ψ)−1zt, (B.18)

where I is the N ×N identity matrix. The first equation for the cash-flow component ∆cHt

follows from the VAR dynamics, while the second equation for the discount rate component

rHt follows from Proposition 1 and the definition of the total wealth return equation (5).

Using expressions (B.18) and (B.17) and the log-linearity of the wealth-consumption
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ratio, we obtain analytical expressions for the following variance and covariance terms:

V [wct] = Ac′
1ΩA

c
1, (B.19)

Cov
[
wct,∆cHt

]
= Ac′

1Ω(κ
c
1I −Ψ′)−1Ψ′ec, (B.20)

Cov
[
wct,−rHt

]
= Ac′

1Ω
[
Ac

1 − (κc
1I −Ψ)−1Ψ′e′c

]
, (B.21)

V
[
∆cHt

]
= e′cΨ(κc

1I −Ψ)−1Ω(κc
1I −Ψ′)−1Ψ′ec, (B.22)

V
[
rHt

]
= [(e′c + Ac′

1 )Ψ− κc
1A

c′
1 ] (κ

c
1I −Ψ)−1Ω(κc

1I −Ψ′)−1 [Ψ′(ec + Ac
1)− κc

1A
c
1] ,(B.23)

Cov
[
rHt ,∆cHt

]
= [(e′c + Ac′

1 )Ψ− κc
1A

c′
1 ] (κ

c
1I −Ψ)−1Ω(κc

1I −Ψ′)−1Ψ′ec. (B.24)

where Ω = E[z′tzt] is the second moment matrix of the state zt.

B.7 Estimation

B.7.1 Block 1: bonds

The first four elements in the state, the Cochrane-Piazzesi factor, the nominal 3-month T-

bill yield, the inflation rate, and the yield spread (5-year T-bond minus the 3-month T-bill

yield), govern the term structure of interest rates. In contrast to most of the term structure

literature, all factors are observable. The price of a τ -period nominal zero-coupon bond

satisfies:

P $
t (τ) = Et

[
em

$
t+1+logP $

t+1(τ−1)
]
.

This defines a recursion with P $
t (0) = 1. The corresponding bond yield is y$t (τ) = − log(P $

t (τ))/τ .

Bond yields in this class of models are an affine function of the state: y$t (τ) = −A$(τ)
τ

−B$(τ)′

τ
zt.

Appendix B.2 formally states and proves this result and provides the recursions for A$(τ)

and B$(τ) in equations (B.5) and (B.6). Given the block-diagonal structure of Λ1 and Ψ,

only the risk prices in Λ0,1 and Λ1,11 affect the yield loadings. That is why, in a first step,

we can estimate the bond block separately from the stock block. We do so by matching the

time series for the short rate, the slope of the yield curve, and the CP risk factor.

71



First, we impose that the model prices the 1-quarter and the 20-quarter nominal bond

correctly. The condition A$(1) = −y$0(1) guarantees that the 1-quarter nominal yield is

priced correctly on average, and the condition B$(1) = −eyn guarantees that the nominal

short rate dynamics are identical to those in the data. The short rate and the yield spread

are in the state, which implies the following expression for the 20-quarter bond yields:

y$t (20) = y$0(20) + (e′yn + e′spr)zt.

Matching the 20-quarter yield implies two sets of parameter restrictions:

−1

20
A$(20) = y$0(20), (B.25)

−1

20

(
B$(20)

)′
= (eyn + espr)

′. (B.26)

Equation (B.25) imposes that the model matches the unconditional expectation of the 5-year

nominal yield y$0(20). This provides one restriction on Λ0; it identifies its second element.

To match the dynamics of the 5-year yield, we need to free up one row in the bond block

of the risk price matrix Λ1,11; we choose to identify the second row in Λ1,11. We impose the

restrictions (B.25) and (B.26) by minimizing the summed square distance between model-

implied and actual yields.

Second, we match the time-series of the CP risk factor (CP0+ e′cpzt) in order to replicate

the dynamics of bond risk premia in the data. We follow the exact same procedure to

construct the CP factor in the model as in the data, using the model-implied yields to

construct forward rates. By matching the mean of the factor in model and data, we can

identify one additional element of Λ0; we choose the fourth element. By matching the

dynamics of the CP factor, we can identify four more elements in Λ1,11, one in each of the

first four columns; we identify the fourth row in Λ1,11. We impose the restriction that the

CP factor is equal in the model and data by minimizing their summed squared distance.

We now have identified two elements (rows) in Λ0,1 (in Λ1,11). The first and third elements
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(rows) in Λ0,1 (in Λ1,11) are zero.

B.7.2 Block 2: stocks

In the second step, we turn to the estimation of the risk price parameters in Λ1,21 and Λ1,22.

We do so by imposing that the model prices excess stock returns correctly; we minimize the

summed squared distance between VAR- and SDF-implied excess returns:

EV AR
t [rm,e

t+1] = rm0 − y0(1) +
1

2
e′rmΣerm +

(
(erm + eπ)

′ Ψ− e′yn
)
zt,

ESDF
t [rm,e

t+1] = e′rmΣ
1
2

(
Λ0 − Σ

1
2
′eπ

)
+ (erm + eπ)

′ Σ
1
2Λ1zt,

where rm0 is the unconditional mean stock return and erm selects the stock return in the VAR.

Matching the unconditional equity risk premium in model and data identifies one additional

element in Λ0; we choose the sixth element (the second element of Λ0,2). Matching the risk

premium dynamics allows us to identify the second row in Λ1,21 (4 elements) and the second

row in Λ1,22 (2 more elements). Choosing to identify the sixth element (row) of Λ0 (Λ1)

instead of the fifth row is an innocuous choice. But it is more natural to associate the prices

of risk with the traded stock return rather than with the non-traded price-dividend ratio.

These six elements in Λ1,21 and Λ1,22 must all be non-zero because expected returns in the

VAR depend on the first six state variables. The first element of Λ0,2 and the first rows of

Λ1,21 and Λ1,22 are zero.

B.7.3 Block 3: factor-mimicking portfolios

In addition, we impose that the risk premia on the FMP coincide between the VAR and

the SDF model. As is the case for the aggregate stock return, this implies one additional
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restriction on Λ0 and N additional restrictions on Λ1:

EV AR
t [rfmp,e

t+1 ] = rfmp
0 − y0(1) +

1

2
e′fmpΣefmp +

(
(efmp + eπ)

′Ψ− e′yn
)
zt,

ESDF
t [rfmp,e

t+1 ] = e′fmpΣ
1
2

(
Λ0 − Σ

1
2
′eπ

)
+ (efmp + eπ)

′Σ
1
2Λ1zt,

where rfmp
0 is the unconditional average FMP return. There are two sets of such restrictions:

one set for the consumption growth and one set for the labor income growth FMP. Matching

average expected FMP returns and their dynamics identifies both elements of Λ0,3. Matching

the risk premium dynamics allows us to identify both rows of in Λ1,31 (4 elements) and Λ1,32

(4 more elements).

B.7.4 Over-identifying restrictions in detail

Additional Nominal Yields We minimize the squared distance between the observed

and model-implied yields on nominal bonds of maturities 1, 3, 10, and 20 years. These

additional restrictions help improve the model’s ability to price distant cash flows. This

is important given that the dynamics of the wealth-consumption ratio will turn out to be

largely driven by the behavior of long yields. We impose several other restrictions that

force the term structure to be well-behaved at long horizons. None of these additional term

structure constraints, however, are binding at the optimum.25

Consumption and Dividend Strips While we imposed that expected excess equity

returns coincide between the VAR and the SDF model, we have not yet imposed that the

return on stocks reflects cash flow risk in the equity market. To do so, we require that

the price-dividend ratio in the model, which is the expected present discounted value of all

25We impose that the average nominal and real yields at maturities 200, 500, 1,000, and 2,500 quarters are
positive, that the average nominal yield is above the average real yield at these same maturities, and that
the nominal and real yield curves flatten out. The last constraint is imposed by penalizing the algorithm for
choosing a 500-200 quarter yield spread that is above 3% per year and a 2,500-500 quarter yield spread that
is above 2% per year. Together, they guarantee that the infinite sums we have to compute are well-behaved.

74



future dividends, matches the price-dividend ratio in the data, period by period.26 Given a

no-bubble-constraint for equities, the sum of the price-dividend ratios on dividend strips of

all horizons equals the price-dividend ratio (Wachter 2005):

Pm
t

Dm
t

= epd
m
t =

∞∑

τ=0

P d
t (τ), (B.27)

where P d
t (τ) denotes the price of a τ period dividend strip divided by the current dividend.

Appendix B.3 formally states and proves that the log price-dividend ratios on dividend strips

is approximately affine in the state vector: log
(
P d
t (τ)

)
= Am(τ)+Bm′(τ)zt. It also provides

the recursions for Am(τ) and Bm(τ). See Bekaert, Engstrom, and Grenadier (2010) for a

similar result. Using (B.27) and the affine structure, we impose the restriction that the

price-dividend ratio in the model equals the one in the data by minimizing their summed

squared distance. Imposing this constraint not only affects the price of equity risk (the sixth

row of Λt) but also the real term structure of interest rates (the second and fourth rows

of Λt). Real yields turn out to play a key role in the valuation of real claims such as the

claim to real dividends (equity) or the claim to real consumption (total wealth). As such,

the price-dividend ratio restriction turns out to be useful in sorting out the decomposition

of the nominal term structure into an inflation component and the real term structure.

We also impose the no-bubble constraint in equation (12) that the wealth-consumption

ratio equals the sum of the consumption strip price-dividend ratios.

26This constraint is not automatically satisfied from the definition of the stock return: rm
t+1 = κm

0 +
∆dmt+1 +κm

1 pdmt+1 − pdmt . The VAR implies a model for expected return and the expected log price-dividend
ratio dynamics, which implies expected dividend growth dynamics through the definition of a return. These
dynamics are different from the ones that would arise if the VAR contained dividend growth and the price-
dividend ratio instead. The reason is that the state vector in the first case contains rt and pdm

t
, while in the

second case it contains ∆dm
t

and pdm
t
. For the two models to have identical implications for expected returns

and expected dividend growth, one would need to include pdmt−1 as an additional state variable. We choose
to include returns instead of dividend growth rates because the resulting properties for expected returns and
expected dividend growth rates are more desirable. For example, the two series have a positive correlation of
20%, a number similar to what Lettau and Ludvigson (2005) estimate. See Ang and Liu (2007),Lettau and
Van Nieuwerburgh (2008), and Binsbergen and Koijen (2010) for an extensive discussion of the present-value
constraint.
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Human Wealth Share We define the labor income share, list, as the ratio of aggregate

labor income to aggregate consumption. It is 0.826 on average in our sample. The human

wealth share is the ratio of human wealth to total wealth; it is a function of the labor income

share and the price-dividend ratios on human and total wealth: hwst = list
epd

l
t−1

ewct−1
. We

impose on the estimation that hwst lies between 0 and 1 at each time t. At the optimum,

this constraint is satisfied.27

B.8 Point estimates

Below, we report the point estimates for the VAR companion matrix Ψ, the Cholesky de-

composition of the covariance matrix Σ.5 (multiplied by 100), and the market price of risk

parameters Λ0 and Λ1 for our benchmark specification. We recall that the market price of risk

parameter matrix Λ1 pre-multiplies the state zt, which has a (non-standardized) covariance

matrix Ω.

Ψ =




0.5429 0.7650 -0.3922 0.9475 0 0 0 0 0 0

-0.0605 0.9893 0.0751 0.4266 0 0 0 0 0 0

-0.0519 0.1669 0.7020 0.1496 0 0 0 0 0 0

0.0734 -0.0752 0.0094 0.4123 0 0 0 0 0 0

0.4109 -0.2856 -2.3795 -3.0151 0.9345 -0.0003 0 0 0 0

0.1036 0.3773 -2.0304 0.9121 -0.0434 0.0992 0 0 0 0

0.0006 0.4722 -1.1454 -0.1641 -0.0086 0.0728 0 0 0 0

0.2124 0.2100 -0.5441 -0.5424 0.0030 0.1258 0 0 0 0

-0.0048 0.1020 -0.0414 0.3583 0.0029 -0.0006 -0.0044 0.0071 0.3708 0

0.0456 -0.0441 -0.0940 -0.1228 0.0032 -0.0063 0.0322 -0.0162 0.5856 -0.1223




27We impose that aggregate labor income grows at the same rate as aggregate consumption (µl = µc).
We rescale the level of consumption to end up with the same average labor income share (after imposing
µl = µc) as in the data (before rescaling).

76



Σ.5 × 100 =




1.2067 0 0 0 0 0 0 0 0 0

-0.0452 0.2198 0 0 0 0 0 0 0 0

-0.0430 0.0468 0.3375 0 0 0 0 0 0 0

0.0368 -0.0947 0.0046 0.0989 0 0 0 0 0 0

1.2434 -0.4005 -0.5932 -0.5909 8.7028 0 0 0 0 0

0.8102 -0.2304 -0.6966 -0.6537 7.4960 3.6770 0 0 0 0

0.5170 -0.1007 0.1218 -0.2464 1.9769 0.7068 2.6517 0 0 0

1.0995 0.2947 0.5349 -0.4281 2.8884 1.2009 3.8412 5.0047 0 0

0.0401 0.0159 0.0038 -0.0269 0.0753 0.0735 0.0858 -0.0015 0.3568 0

0.1141 0.0122 -0.1086 -0.1010 0.0550 -0.0412 0.1328 0.2263 0.3423 0.7007

Λ′
0 =

[
0 -0.3176 0 0.1663 0 0.4447 -0.0132 0.1104 0 0

]

Λ1 =




0 0 0 0 0 0 0 0 0 0

33.5522 -152.4822 80.6774 -294.3807 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

-30.2473 118.4352 -16.4773 167.8749 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

-2.2141 1.1240 -34.9664 44.0152 -1.1080 2.7185 0 0 0 0

-3.4354 -6.0395 -7.3666 -2.7468 -0.0322 1.8921 0 0 0 0

1.4903 12.4732 10.2902 18.1533 0.4822 0.3419 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
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We compute OLS standard errors for the elements of Ψ and report the coefficients with

a t-stat greater than 1.98 in bold. Bootstrap standard errors on the market price of risk

parameters are available upon request. They are derived as part of the method explained in

Appendix B.9.

The implied point estimates for Ac
1 are given by:

Ac
1 =




-0.5191

-25.8220

1.8370

-26.0851

0.0854

-0.0067

-0.0070

0.0113

0.5866

0




while the implied point estimate for the constant is Ac
0 = 5.8082.

B.9 Bootstrap standard errors

We obtain standard errors on the moments of the estimated wealth-consumption ratio by

bootstrap. More precisely, we conduct two bootstrap exercises leading to two sets of standard

errors. In each exercise, we draw with replacement from the VAR innovations εt. We draw

row-by-row in order to preserve the cross-correlation structure between the state innovations

(Step 1). Given the point estimates for Ψ and Σ as well as the mean vector µ, we recursively

reconstruct the state vector (Step 2). We then re-estimate the mean vector, companion

matrix, and innovation covariance matrix (Step 3). With the new state vector and the new

VAR parameters in hand, we re-estimate the market price of risk parameters in Λ0 and
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Figure B.1: Dynamics of the nominal term structure of interest rates
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The figure plots the observed and model-implied 1-, 4-, 12-, 20-, 40-, and 80-quarter nominal bond yields. Note that the 20-year
yield is unavailable between 1986.IV and 1993.II.
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Figure B.2: Nominal bond risk premia
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The left panel plots the 5-year nominal bond risk premium on a 5-year nominal bond in model and data. It is defined as the
difference between the nominal 5-year yield and the expected future 1-quarter yield averaged over the next 5 years. It represents
the return on a strategy that buys and holds a 5-year bond until maturity and finances this purchase by rolling over a 1-quarter
bond for 5 years. The right panel plots the Cochrane-Piazzesi factor in model and data. It is a linear combination of the
one-year nominal yield and 2- through 5-year forward rates. This linear combination is a good predictor of the one-quarter
bond risk premium.

Λ1 (Step 4). Just as in the main estimation, we use 2,500 quarters to approximate the

infinite-horizon sums in the strip price-dividend ratio calculations. We limit the estimation

in Step 4 to 500 function evaluations for computational reasons. In some of the bootstrap

iterations, the optimization in Step 4 does not find a feasible solution. This happens, for

example when no parameter choices keep the human wealth share less than 100% or the

consumption or labor income claim finite. We discard these bootstrap iterations. These new

market price of risk parameters deliver a new wealth-consumption ratio time series (Step 5).

With the bootstrap time series for consumption growth and the wealth-consumption ratio,

we can form all the moments in Table 2. We repeat this procedure 1,000 times and report

the standard deviation across the bootstrap iterations. We conduct two variations on the

above algorithm. Each bootstrap exercise takes about 12 hours to compute on an 8-processor

computer. The more conservative standard errors from the second bootstrap exercise are

the ones reported in Table 2.

In the first exercise, we only consider sampling uncertainty in the last four elements
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Figure B.3: The stock market
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The figure plots the observed and model-implied price-dividend ratio and expected excess return on the overall stock market.
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Figure B.4: Decomposing the 5-year nominal yield
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The left panel decomposes the 5-year yield into the real 5-year yield, expected inflation over the next 5-years, and the inflation
risk premium. The right panel decomposes the average nominal bond risk premium into the average real rate risk premium and
inflation risk premium for maturities ranging from 1 to 120 quarters. The nominal (real) bond risk premium at maturity τ is
defined as the nominal (real) τ -quarter yield minus the average expected future nominal (real) 1-quarter yield over the next τ
quarters. The τ -quarter inflation risk premium, labeled as IRP, is the difference between the τ -quarter nominal and real risk
premia.

Figure B.5: Decomposing the yield on a consumption strip
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The figure decomposes the yield on a consumption strip of maturity τ , which goes from 1 to 1,000 quarters, into a real bond
yield minus deterministic consumption growth on the one hand and the yield on a security that only carries the consumption
cash flow risk on the other hand. See B.4 for a detailed discussion of this decomposition.
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Figure B.6: Factor-mimicking portfolios
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The left panel plots the expected excess return on the consumption growth factor-mimicking portfolio (FMPc). The right panel
plots the expected excess return on the labor income growth factor-mimicking portfolio (FMPl).

of the state: the two factor-mimicking portfolios, consumption growth, and labor income

growth. We assume that all the other variables are observed without error. The idea is

that national account aggregates are measured much less precisely than traded stocks and

bonds. This procedure takes into account sampling uncertainty in consumption growth

and its correlations with yields and with the aggregate stock market. Given our goal of

obtaining standard errors around the moments of the wealth-consumption ratio, this seems

like a natural first exercise. The second column of Table B.1 reports the standard errors

from this bootstrap exercise in parentheses. For completeness, it also reports the mean

across bootstrap iterations.

In a second estimation exercise, we also consider sampling uncertainty in the first six state

variables (yields and stock prices). Redrawing the yields that enter in the state space (the 1-

quarter yield and the 20-1 quarter yield spread) requires also redrawing the additional yields

that are used in estimation (the 4-, 12-, 40-, and 80-quarter yields) and in the formation

of the Cochrane-Piazzesi factor (the 4-, 8-, 12-, and 16-quarter yields). Otherwise, the

bootstrapped time-series for the yields in the state space would be disconnected from the

83



other yields. For this second exercise, we augment the VAR with the following yield spreads:

4-20, 8-20, 12-20, 16-20, 40-20, and 80-20 quarter yield spreads. We let these spreads depend

on their own lag and on the lagged 1-quarter yield. Additional dependence on the lagged 20-1

quarter yield makes little difference. In Step 1, we draw from the yield spreads-augmented

VAR innovations. This allows us to take into account the cross-dependencies between all

the yields in the yield curve. In addition to recursively rebuilding the state variables in

Step 2, we also rebuild the six yield spreads. With the bootstrapped yields, we reconstruct

the forward rates, 1-year excess bond returns, re-estimate the excess bond return regression,

and re-construct the Cochrane-Piazzesi factor. Steps 3 through 5 are the same as in the

first exercise. One additional complication arises because the bootstrapped yields often turn

negative for one or more periods. Since negative nominal yields never happen in the data

and make no economic sense, we discard these bootstrap iterations. We redraw from the

VAR innovations until we have 1,000 bootstrap samples with strictly positive yields at all

maturities. This is akin to a rejection-sampling procedure. One drawback is that there is

an upward bias in the yield curve. The average 1-quarter yield is 0.8% per annum higher

in the bootstrap sample than in the data. This translates in a small downward bias in the

average wealth consumption ratio: the average log wealth-consumption ratio is 0.17 lower

in the bootstrap than in the data. The third column of Table B.1 reports the standard

errors from this bootstrap exercise in parentheses. As expected, the standard errors from

the second bootstrap exercise are somewhat bigger. However, their difference is small.
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Table B.1: Bootstrap standard errors

This table displays bootstrap standard errors on the unconditional moments of the log wealth-consumption ratio wc, its first
difference ∆wc, and the log total wealth return rc. The last but one row reports the time-series average of the conditional
consumption risk premium, E[Et[r

c,e
t ]], where rc,e denotes the expected log return on total wealth in excess of the risk-free

rate and corrected for a Jensen term. The second and third columns report the results from two bootstrap exercises, described
above. The table reports the mean and standard deviation (in parentheses) across 1,000 bootstrap iterations.

Moments Bootstrap 1 Bootstrap 2

Std[wc] 16.26% 15.24%

(3.39) (4.30)

AC(1)[wc] 0.95 0.93

(0.00) (0.03)

AC(4)[wc] 0.83 0.74

(0.01) (0.08)

Std[∆wc] 4.86% 5.07%

(0.98) (1.16)

Std[∆c] 0.44% 0.44%

(0.03) (0.03)

Corr[∆c,∆wc] .02 .12

(0.06) 0.06)

Std[rc] 4.90% 5.16%

(2.21) (1.16)

Corr[rc,∆c] .12 .21

(0.07) (0.07)

E[Et[r
c,e
t ]] .46% 0.53%

(0.11) (0.16)

E[wc] 6.29 5.69

(0.48) (0.49)

2006 Wealth (in millions) 2.65 2.52

(0.32) (0.27)

hws 0.86 0.86

boot std (0.03) (0.03)
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Online Appendix for “The Wealth-Consumption Ratio”

NOT FOR PUBLICATION

C Appendix: Robustness

The results of our estimation exercise are robust to different specifications of the state vector

z and restrictions on the benchmark law of motion for the state z. We compare ten models

to gain insight into what part of the model structure drives which result.

Model 1 is the benchmark model from the paper. It has the ten elements in the VAR

and the companion matrix Ψ, as specified in equation (1) of the paper. Models 2 through 6

simplify the benchmark model, starting from two minimal models, and gradually building up

to the benchmark model. Models 7 through 10 have the same state space as the benchmark

Model 1, but simplify the dynamics of the state space, i.e., Ψ. These variations are selected

to give insight into what drives our main result, as well as to verify the robustness of our

results.

Table C.1 summarizes the goodness-of-fit of all ten models; each column refers to a

model. The first ten rows report the root mean-squared pricing errors (RMSE) on ten key

asset pricing moments the model is trying to fit. We estimate the market price of risk by

minimizing a function of these RMSEs. The last four rows express the goodness fit of the

models, as well as a log difference with the benchmark model. The first comparison is based

on the simple average RMSE (labeled SM). The second comparison is based on a weighted

average RMSE (labeled WM), where the weights reflect the importance of each moment in

the optimization routine. It shows that the benchmark Model 1 has the best fit of all the

models we consider, justifying its label.

We now turn to a detailed discussion of these models and what they teach us about the

wealth-consumption ratio.
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C.1 Simpler models

C.1.1 Model 2

The simplest model we consider, Model 2, only contains the short rate (nominal 1-quarter

bond yield), inflation, the yield spread (20-quarter minus 1-quarter yield), consumption

growth, and labor income growth (in that order). It strips out from the state the CP factor,

the PD ratio on the stock market, the excess return on the stock market, and the factor-

mimicking portfolios for consumption growth and labor income growth (computed from the

cross-section of stocks). Model 2 is the most basic model that still allows us to price the

claims to aggregate consumption and labor income. Inflation is necessary to go from nominal

to real pricing kernels and yields. The term structure with two maturities in the state vector

is quite basic. The model purposely ignores all equity moments.

Consistent with the logic explained in the estimation section of the paper, we estimate

two elements in the constant market price of risk vector Λ0 and the two corresponding rows

(of three elements each) in the matrix Λ1, which governs the time variation in prices of risk.

These are the first and third elements corresponding to the short rate and the yield spread.

This is the minimal structure needed to provide a reasonably good fit to the term structure

of interest rates. The model also does a surprisingly good job at matching the dynamics of

the 5-year nominal bond risk premium and a decent job at matching the dynamics of the CP

factor. Because the CP factor, a linear combination of 1- through 5-year yields, is not in the

state, the model implicitly puts less weight on matching that part of the term structure and

instead pays more attention to matching the long end of the yield curve. This results in a

lower estimate for the 20-year nominal yields than in Model 1 (6.74% in Model 2 vs. 6.85%

in Model 1), bringing it closer to the data (6.23%). The model-implied 20-year real yield is

correspondingly lower (2.49% in Model 2 vs. 2.87% in Model 1). Similarly, the annualized

risk premium (average excess return over a 1-period bond yield) on a (hypothetical) 50-year

real bond is 1.29% in Model 2 vs. 1.84% in Model 1.
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Model 2 clearly illustrates our main conclusion: that the real term structure of interest

rates is the key determinant of the wealth-consumption ratio. The lower long-term real

yields in Model 2 translate into a higher mean wealth-consumption ratio : 113 versus 83

in Model 1. The average consumption risk premium, the excess return on the claim to

aggregate consumption, is 2.11% in Model 2 versus 2.38% in Model 1. While the mean

levels differ, the dynamics of the WC ratio in Model 2 are nearly identical to that in Model

1: their correlation is 99.03% and the volatilities are nearly identical (18.9% versus 18.6%).

The correlation between the consumption risk premia in the two model is 97.6%. The main

reason for the similar dynamics in wealth-consumption ratios and consumption risk premia

is that long-term real yields comove strongly: the 20-year real yields have a time series

correlation of 99.86%.

Offsetting the strong real yield correlation is the fact that the cash flow risk in the

consumption claim (as opposed to the real rate risk) is priced somewhat differently in Model

2 than in Model 1. Because the state vectors differ, expected consumption growth dynamics

differ for Models 1 to 6. And innovations to future consumption growth are priced differently

across models. For example, the yield on a claim to the risky part of aggregate consumption

50 years from now is about zero in Model 1. This implies that the entire yield on the 50-

year consumption strip (trend growth plus risky fluctuations around that trend) equals the

yield on a 50-year coupon bond (with cash flow adjusted for trend consumption growth).

In contrast, the risky 50-year consumption strip has a yield that is 20 basis points above

that on the corresponding real bond in Model 2, implying substantially more cash-flow

risk. The reason for this difference is that real bond yields and yields on the risky part of

the consumption strip are strongly negatively correlated in Model 1 and strongly positively

correlated in Model 2. Hence, the cash flow risk of the consumption claim actually hedges the

real rate risk in Model 1 while the exposures go in the same direction in Model 2. The extra

consumption cash flow risk in Model 2 translates in a higher consumption risk premium,

ceteris paribus. These differences in consumption cash flow risk show up clearly in the form
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of higher costs of consumption fluctuations in Model 2. However, the much lower bond risk

premium more than offsets the higher consumption cash flow risk so that the consumption

risk premium still ends up lower than in the benchmark Model 1.

In summary, Model 2 is simple and generates results that are qualitatively and quanti-

tatively similar to our benchmark results. But, by construction, Model 2 does an awful job

at pricing the stock-based moments. This immediately raises the question of whether the

low consumption risk premium and high wealth-consumption ratio are the result of ignoring

important sources of risk when pricing the consumption claim. To dispel this possibility, we

consider both bond- and stock-based moments in our benchmark model.

C.1.2 Model 3

To understand the role of equity-based moments better, we propose Model 3, which focusses

on fitting the equity return and the price-dividend ratio on the stock market while ignoring

the bond-based moments. The state vector contains the short rate, inflation, the PD ratio

on the stock market, the excess return on the stock market, consumption growth, and labor

income growth (in that order). It strips out from the state the CP factor, the yield spread,

and the factor-mimicking portfolios for consumption growth and labor income growth. This

is the minimal model that enables us to fit the aggregate stock market facts.

We estimate two elements in Λ0 and six elements in Λ1, associated with the short rate

and the excess return on equity (2 in row 1 and 4 in the equity row, consistent with the

structure of full model). Because it implies a one-factor structure for the nominal yield curve,

it does substantially worse than Models 1 and 2 in fitting the term structure of yields of all

maturities, as well as the CP factor; see Table C.1. The model implies an annual 20-year real

yield of 2.66%, a 50-year real bond risk premium of 1.50%, a consumption risk premium of

2.24%, and a mean wealth-consumption ratio of 96. These numbers are in between those of

Model 1 and Model 2. Hence, a model that is substantially less rich on the term structure side

but fits the equity excess return and price-dividend series very well generates qualitatively
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similar conclusions, at least with respect to the mean wealth-consumption ratio and the

associated consumption risk premium.

The dynamics of the wealth-consumption ratio do differ somewhat from those of the

benchmark model. The volatility of the WC ratio is lower at 14% and the time series

correlation with the WC ratio of Model 1 is 93.0%, which is the lowest among all alternative

models we consider. There are episodes in the sample where this results in the WC ratio of

Model 3 going up when the WC ratio of all other models goes down. The reason for the gap

is that, while the long-term real yield is still highly correlated with that in Model 1 (91.7%),

the consumption risk premium is much less so (67.1%). The low correlation between the

consumption risk premium in Models 2 and 3 (68.8%) shows that emphasizing the pricing

of risk in the stock market at the expense of the risk pricing in the bond market makes a

tangible difference. In particular, Model 3 fails completely at capturing the dynamics of the

nominal bond risk premium as described by the CP factor. This has implications for the

cost of consumption fluctuations.

C.1.3 Model 4

Model 4 combines Models 2 and 3. The state vector contains the short rate, inflation, the

yield spread, the PD ratio, the excess return on the stock market, consumption growth, and

labor income growth (in that order). It leaves out the CP factor and the factor-mimicking

portfolios for consumption growth and labor income growth. Model 4 adds a second term

structure factor to Model 3. Alternatively, it adds the aggregate stock market moments to

Model 2. Model 4 generates small bond pricing and stock pricing errors, but to sizeable

pricing errors on CP and the factor-mimicking portfolio returns. Naturally, model 4 fits

better than either Models 2 or 3, but the log difference in simple (weighted) average pricing

errors is still 62% (54%) with the benchmark Model 1. See Table C.1. In terms of the

long-term real yield and bond risk premia, Model 4 is very close to Model 2. In terms of the

consumption risk premium, it is close to Model 3. The mean wealth-consumption ratio is 96
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in Model 4, similar to the 83 average in Model 1. The wealth-consumption ratios in Models

1 and 4 have a correlation of 99.85%.

Like Model 3, Model 4 implies a positive correlation between real bond prices and the

prices on the consumption strip with only cash flow risk; in Model 4 that correlation is higher

still. This results in a substantial risk premium for the consumption strip of about 30 bps at

50-year horizon. The mean cost of consumption fluctuations is 52.9% for Model 4 (compared

to 36.2% for Model 2 and 16.2% for Model 3).

C.1.4 Model 5

In Model 5, we add back the CP factor to the state vector of Model 4. This is the full model,

except without the two factor-mimicking portfolio returns in the state. This model results

in a substantially better fit for the CP factor. In order to fit the CP factor better, the model

focuses more on the 1- to 5-year bond yields and less on the long end of the term structure.

The result is higher model-implied nominal and real long-term bond yields. The 20-year

nominal (real) yield is 7.01% (2.99%), the highest among all models. The 50-year real bond

risk premium is 2.05% per year. The mean wealth-consumption ratio is 69 compared to 96

in Model 4 (and 83 in Model 1). The wealth-consumption ratios in Models 1 and 5 have a

correlation of 99.97%.

Going from Model 4 to Model 5, there is a dramatic change in the consumption cash flow

risk. In Model 5, the prices of strips that pay the risky part of aggregate consumption and

the prices of real bonds are strongly negatively correlated, so that the cash flow part of the

consumption strip hedges the real rate risk in these strips. This lowers the risk premium and

the overall yield on the consumption claim. It is the low consumption cash flow risk that

is responsible for the lower cost of consumption fluctuations in Model 5 (-1.8%), relative

to Model 4 (52.9%). The higher consumption risk premium of 2.67% is therefore solely

attributable to the higher real yields and bond risk premia, not to higher consumption cash

flow risk.
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C.1.5 Model 6

In Model 6, we add back the two factor-mimicking portfolios in the state but leave out the CP

factor. Naturally, this results in a substantially better fit for the factor-mimicking portfolios

at the expense of the fit for the CP factor. The bond pricing is similar to that in Models 2

and 4 with relatively low long-term rates and real bond risk premia, a low consumption risk

premium, and a high mean wealth-consumption ratio (115). The factor-mimicking portfolios

add priced sources of equity risk, which add to the riskiness of the consumption claim. Adding

the factor-mimicking portfolios (going from Model 4 to Model 6) substantially increases the

mean cost of consumption fluctuations from 52.9% in Model 4 to 68.1% in Model 6. Despite

the additional consumption cash flow risk, the overall consumption risk premium is lower in

Model 6 than in Model 4 because the real bond risk premium is lower.

C.1.6 Summary

Figure C.1 shows the wealth-consumption ratio for the benchmark Model 1 and the five sim-

pler (and sequentially more complex) models. They show that the wealth-consumption ratios

are highly correlated across models, with all numbers lying between 91.23% and 99.98%. If

we exclude Model 3, the correlation is never below 98%. The high comovement is largely

driven by the high comovement in the real yield curve across models. For example, the real

20-year yield across all six models varies between 91.68% and 99.97%. Again, the lowest cor-

relation comes from Model 3; all other models have real yield correlations in excess of 99%.

Since all models price the short-term bond perfectly, and because one factor accounts for a

lot of the comovement across bonds of various maturities, that conclusion is not surprising.

The main difference between models, therefore, is in the level rather than the dynamics

of the wealth-consumption ratio. The average varies from 69 in Model 5 to 115 in Model

6. As discussed above, this difference is largely accounted for by differences in the mean

(real) yield curve, which is plotted in Figure C.2. The long-term real yield is highest in

Models 1 and 5, the only two that contain the CP factor. Including the CP factor forces the
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Figure C.1: Wealth-Consumption Ratio, Models 1-6

estimation to focus more on the 1- through 5-year part of the yield curve in order to better

match the 1-year bond risk premium. This leads the estimation to choose a higher long-term

bond yield, and a lower wealth-consumption ratio.

Finally, the mean cost of consumption fluctuations (CCF), and to a lesser degree their

dynamics, differ substantially across models. Figure C.3 plots the CCF for Models 1 through

6. Consumption cash flow risk is priced quite differently in Models 1 and 5 with the CP

factor in the state than in the other models, resulting in much lower CCF than in Models 2,

3, 4, or 6. This difference underscores the importance of including the CP factor, a measure

of the one-year bond risk premium, when it comes to measuring the cost of consumption

fluctuations.

C.2 Changes to state dynamics

A different dimension of the “what drives what” question is the specification of the VAR that

governs the dynamics of the state variables. We study four models, Models 7-10, which have

the same state variables as the benchmark Model 1, but simplified VAR dynamics. Table
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Figure C.2: Average Yield Curve, Models 1-6

Figure C.3: Cost of Consumption Fluctuations, Models 1-6
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C.1 lists the asset pricing errors of these models in its four last columns.

C.2.1 Model 7

In Model 7, we zero out all non-significant elements of the Ψ matrix. This leads to only two

zeros in the 4× 4 bond block. However, the pd ratio only loads on its own lag, and expected

stock returns are only significantly predicted by the lagged pd ratio. The factor-mimicking

portfolio returns depend on the lagged excess stock return, and the FMP for consumption

growth additionally on lagged inflation. The consumption growth rate is predicted signifi-

cantly by the yield spread, the pd ratio, and its own lag. Labor income growth is predicted

only by lagged consumption growth. After imposing these zero restrictions, we re-estimate

the constrained companion matrix.

Despite the substantial changes to the state vector’s dynamics, we find similar results.

The wealth-consumption ratio in Model 7 has a correlation of 99.98% with that in Model

1. The model-implied 20-year real yields are essentially perfectly correlated because the

dynamics of the bond block did not change much. The average long-term real yield and real

bond risk premium are higher, though, which results in a lower mean wealth-consumption

ratio (67 in Model 7 vs. 83 in Model 1) and a higher consumption risk premium (2.74%

vs. 2.38%). Some of the increase in the consumption risk premium is due to a higher

reward for consumption cash flow risk. The reason is that the prices of risky consumption

cash flow strips are less negatively correlated with real bond prices than in the benchmark

model. The higher consumption cash flow risk leads to a cost of consumption fluctuations

that is slightly higher on average (4.0% compared to -2.4% in Model 1). While expected

consumption growth in Model 7 still has a high correlation of 96.3% with that in Model 1,

that small difference is sufficient to lead to noticeable differences in the consumption cash

flow risk premium and the cost of consumption fluctuations.
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C.2.2 Models 8 and 9

In Model 8, we only zero out only the elements in the pd and stock return equation that are

not significant. In Model 9, we zero out only the elements in the factor-mimicking portfolio

return equations that are not significant. In both cases, this leads to very minor changes

to the benchmark results because the term structure implications of Models 1, 8, and 9 are

nearly identical and the expected consumption growth dynamics are identical.

C.2.3 Model 10

In Model 10, we only zero out the elements in the consumption and labor income growth

equations that are not significant. This model is similar to Model 7, which clarifies that the

change in results between Model 1 and 7 is largely due to the changed consumption and

labor income growth dynamics. In Model 10, we have the lowest mean wealth-consumption

ratio among all models, at 62, and the highest consumption risk premium at 2.94% per year.

The cost of consumption fluctuations is 9.9% on average.

C.2.4 Summary

Figure C.4 shows the wealth-consumption ratio for the benchmark Model 1 and the four

simpler models in terms of VAR dynamics, Models 7-10. They show that the wealth-

consumption ratios are highly correlated across models, with all numbers lying between

99.62% and 99.99%. The high comovement is largely driven by the high comovement in

the real yield curve across models and the high correlation in expected consumption growth

dynamics. For example, the real 20-year yield across the five models is nearly perfect.

The main difference between models, therefore, is in the level rather than the dynamics

of the wealth-consumption ratio. The average varies from 62 in Model 10 to 87 in Model

9. As discussed above, this small difference is largely accounted for by small differences in

the mean (real) yield curve, which is plotted in Figure C.5. Despite these differences, the

mean wealth-consumption ratios of all 10 models (ranging from 62 to 115) are all more than
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Figure C.4: Wealth-Consumption ratio Models 1 and 7-10

double the mean price-dividend ratio on stocks, which is 26 in our sample.

The range across all 10 models for the consumption risk premium is between 52 bps

and 74 bps per quarter or between 2.07% for Model 6 and 2.94% for Model 10 per year. It

deserves emphasis that even the highest value, implies a consumption risk premium less than

half as big as the mean equity risk premium of 6.4%. Also, the narrow range of estimates

(87 basis points per year) is testimony to the robustness of our results.

Figure C.6 shows that the cost of consumption fluctuations is much less affected by

zeroing out elements of the VAR dynamics, compared to changing the elements in the state

vector itself.

C.3 Changing bond market dynamics

In a last robustness exercise, we relax the block-diagonal nature of the Ψ matrix and allow

the bond market dynamics in the first four equations of the VAR to depend on the lagged

stock market variables (next four elements). Based on a first-stage equation-by-equation
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Figure C.5: Average yield curve, Models 1 and 7-10

Figure C.6: Cost of consumption fluctuations, Models 1 and 7-10
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Figure C.7: Wealth-Consumption ratio in Models 1 and 11

ordinary least squares estimation, we find that only the price-dividend ratio significantly

predicts future short rates and the yield spread. This leads us to set all other elements in

Ψ12 and Ψ13 to zero. We re-estimate the VAR companion matrix Ψ and innovation covariance

matrix Σ under these restrictions, and verify that these two new elements of Ψ retain their

significance. We then re-estimate the model with these new VAR dynamics, which we label

Model 11. Matching the dynamics of the yield spread requires freeing up one additional

element in Λ1 (the element in row 4, column 5). Close inspection of all results reveals that

Model 11 behaves both qualitatively and quantitatively very similarly to Model 1. Figure

C.7 shows the wealth-consumption ratio for Model 11 and the benchmark Model 1. Thus,

these new dynamics do not alter any of our conclusions.
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Table C.1: Model comparison: root mean squared errors

Model: 1 2 3 4 5 6 7 8 9 10
1-q, yield 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1-y, yield 0.465 0.500 0.495 0.495 0.500 0.575 0.464 0.473 0.467 0.462
3-y, yield 0.386 0.452 0.519 0.417 0.407 0.448 0.385 0.389 0.386 0.384
5-y, yield 0.332 0.382 0.553 0.346 0.338 0.353 0.334 0.332 0.332 0.333
10-y, yield 0.372 0.331 0.641 0.345 0.355 0.344 0.388 0.368 0.374 0.383
20-y, yield 0.653 0.589 0.847 0.628 0.658 0.620 0.700 0.651 0.654 0.687
CP 0.716 1.474 1.745 1.389 0.771 1.424 0.842 0.812 0.764 0.755
PD 0.224 39.141 0.392 0.381 0.235 0.411 0.262 0.244 0.229 0.278
Equity RP 0.151 3.163 0.390 0.222 0.154 0.194 0.146 0.137 0.157 0.177
FMPc RP 0.058 1.154 0.952 0.933 0.611 0.049 0.587 0.006 0.406 0.061
FMPl RP 0.365 1.612 1.738 1.765 1.332 0.486 0.234 0.490 0.552 1.019
SM 0.338 4.436 0.752 0.629 0.487 0.446 0.395 0.355 0.393 0.413
SM (%) − -257.4% -79.9% -62.0% -36.5% -27.6% -15.4% -4.7% -14.9% -19.9%
WM 0.528 5.522 1.125 0.907 0.628 0.806 0.631 0.564 0.581 0.582
WM (%) − -234.8% -75.6% -54.1% -17.4% -42.4% -17.9% -6.6% -9.6% -9.7%

The table reports root mean squared errors (expressed in percent) for six yields, ranging in maturity from 3-months to 20-years, the Cochrane-Piazzesi
factor (a measure of the nominal bond risk premium which is in the same units as a yield), the log price-dividend ratio (same units as yield), and
the equity risk premium on the market portfolio, the consumption growth factor-mimicking portfolio, and the labor income growth factor-mimicking
portfolio. Model 1 is the benchmark model. The row SM reports the simple mean across the 11 RMSEs. The row SM(%) reports the log difference
in SM with Model 1. The row WM reports the weighted mean across the 11 RMSEs. The row WM(%) reports the log difference in WM with Model
1. The weights in the weighted mean reflect the weight each of these moments receives in the minimization problem we are solving to find the market
prices of risk, with one exception. For the calculation of WM we cap the weight on the 20-year yield at 30% while the estimation weights it more
heavily. The weights are held constant across columns.
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D Appendix: Consumption and Labor Income Claims

in Incomplete Markets Models

An important question is whether our methodology for pricing aggregate consumption and

labor income claims remains valid if the data are generated from a world with heterogeneous

agents who face idiosyncratic labor income risk that they cannot perfectly insure away and

who may face binding borrowing or asset market participation constraints. We argue that

our methodology remains valid in such environments, as long as households have access to

at least a savings account. We show here how to compute total and human wealth into

such models. In order to make this point as clearly as possible, we first consider an economy

without aggregate risk, in which a risk-free bond is the sole financial asset. We then generalize

our result by adding aggregate uncertainty and more assets.

D.1 Model without aggregate risk

The first economy we consider is a standard Bewley model. Agents are ex-ante identical,

but ex-post heterogeneous because they are hit by idiosyncratic labor income shocks. In-

complete markets prevents sharing this risk. We consider an economy with a unit measure

of households. Each household lives forever and maximizes its expected utility:

E{
∞∑

t=0

βtu(ct)},

where c and β denote the household’s consumption and subjective time discount factor.

Households receive stochastic labor income ηt ∈ Γ. We assume that the endowment space is

finite and Markovian. We denote by π(η′|η) the transition matrix from state η to state η′.

Π(η) denotes the stationary distribution of η. Since there are many households, the law of

large numbers applies and Π(η) corresponds to the fraction of households with endowment

y.
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We abstract from aggregate uncertainty: the aggregate endowment η̄ is constant over

time. If markets were complete, households would be able to fully insure away their labor

income risk, and their consumption would be constant. Here, we assume that markets are

incomplete. Households have only access to a savings account, with interest rate r. They

can also borrow, up to a limited amount b. The budget and borrowing constraints are:

a′ = η + (1 + r)a− c, (D.1)

a′ ≥ −b, (D.2)

where a and a′ correspond to the household’s wealth today and next period.

We focus on a stationary equilibrium where aggregate quantity and prices are constant

over time. The agent is characterized by a state vector (a, η). To solve for the steady-state

of this economy, we first look at each household’s Bellman equation given the interest rate

r. We then solve for the equilibrium interest rate.

The Bellman equation is:

v(a, η) = Max{u(c) + β
∑

η′

π(η′|η)v(a′, η′)},

subject to the budget and borrowing constraints in equations D.1 and D.2. The borrowing

constraint may bind. Let µ denote the Lagrange multiplier on the borrowing constraint.

The Bellman equation becomes:

v(a, η) = Max{u(η + (1 + r)a− a′) + β
∑

η′

π(η′|η)v(a′, η′) + µ(a′ + b)}.
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The first-order and envelope conditions are thus:

u′(c) = β
∑

η′

π(η′|η)∂v(a
′, η′)

∂a′
+ µ,

∂v(a)

∂a
= u′(c)(1 + r),

µ(a′ + b) = 0.

The Euler equation is:

u′(c) ≥ E{β(1 + r)u′(c′)},

with equality if a′ > −b. This means that, for a given η, if the household holds enough “cash

in hand,” e.g., if η + (1 + r)a is high enough, then the household’s standard Euler equation

is satisfied. On the other hand, if the “cash in hand” is too low, a′ = −b, the Euler equation

is not satisfied and the borrowing constraint depresses current consumption.

Denote by Φ the joint cross-sectional distribution of assets and endowments: Φ(a, η).

The interest rate r is determined using the household’s equilibrium conditions derived above,

along with market clearing conditions on the bond and goods markets:

∫ ∫
c(a, η)Φ(da, dη) =

∫
ηΠ(dη),

∫ ∫
a′(a, η)Φ(da, dη) = 0.

Household’s consumption and savings choices determine next period’s distribution of assets

and endowments Φ′: the policy function a′(a, η) implies a law of motion for Φ. Let the

transition function Q((a, η), (A,Γ)) describe the probability and mass of households in state

(a, η) now that will end up in (a′, η′) ∈ (A,Γ) next period. The law of motion of Φ(a, η) is

thus:

Φ′(A,Γ) =

∫ ∫
Q((a, η), (A,Γ)Φ(da, dη).

We focus on a stationary equilibrium so that Φ′(A,Γ) = Φ(A,Γ) for all (A,Γ). As a result,
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the equilibrium interest rate r depends on the entire cross-sectional distribution of assets and

endowments: r(Φ(A,Γ)). As we have seen, for some agents, the Euler equation is not satisfied

and they are borrowing-constrained. This information is encoded in the aggregate state Φ

and thus impacts the level of the risk-free rate. Borrowing constraints and heterogeneity

matter.

Nevertheless, we can still easily compute total and human wealth in this economy. The

budget constraint holds the key. Starting from at+1 = ηt + (1+ r)at − ct, we iterate in order

to obtain:

at =
∞∑

n=1

(
1

1 + r
)n[ct+n − ηt+n].

To derive this result, we assume that the usual transversality condition (or no-Ponzi condi-

tion) holds: limn→∞( 1
1+r

)nat+n = 0. Note that in our stationary example, the interest rate

is constant. Below, we can generalize our results to economies where the aggregate state Φ

and thus r evolve over time.

Taking expectations on both side of the inter-temporal budget constraint leads to the

definition of total and human wealth:

Total Wealth =

∞∑

n=1

Et[(
1

1 + r
)nct+n],

Human Wealth =
∞∑

n=1

Et[(
1

1 + r
)nηt+n].

Aggregate total wealth and aggregate human wealth are the sums of these objects across

individuals.

Two important points should be noted. First, our definition of total wealth and human

wealth derives from each agent’s budget constraint so that wealth estimates are consistent

with future consumption. Second, even if some agents are borrowing constrained in this

highly incomplete economy, the risk-free rate is the right way to discount future labor income

and consumption streams. Incompleteness gets reflected in the risk-free rate itself (Krueger
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and Lustig 2009).

D.2 Models with aggregate risk

We now generalize this result to an economy with aggregate uncertainty and many assets.

We continue to assume that all agents have access to a savings account. Some agents can

also participate in financial markets and have access to more financial assets. As in our main

estimation, we assume that financial markets span the aggregate sources of risk: there is a

full set of contingent claims whose payoffs span all aggregate states of the world. Agents

continue to face idiosyncratic labor income risk and incomplete markets, and potentially face

both borrowing and participation constraints. We show below that we can define total and

human wealth, using the same methodology as in the Bewley economy above. As before, we

can easily value aggregate total and human wealth, even if agents are heterogenous and face

different constraints. The discount rate is no longer the risk-free interest rate but rather the

economy’s stochastic discount factor. This stochastic discount factor is the same one that

prices tradeable securities, such as stocks and bonds. Hence, market incompleteness and

binding borrowing or participation constraints do not invalidate our approach, they merely

change that stochastic discount factor.

D.2.1 Environment

Let zt ∈ Z be the aggregate state vector. We use zt to denote the history of aggregate state

realizations. Section 1.1 describes the dynamics of the aggregate state zt of this economy,

including the dynamics of aggregate consumption Ct(z
t) and aggregate labor income Lt(z

t).

We consider an economy that is populated by a continuum of heterogeneous agents,

whose labor income is subject to idiosyncratic shocks. The idiosyncratic shocks are denoted

by ℓt ∈ L, and we use ℓt to denote the history of these shocks. The household labor income

process is given by:

ηt(ℓ
t, zt) = η̂t(ℓ

t, zt)Lt(z
t).
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Let Φt(z
t) denote the distribution of household histories ℓt conditional on being in aggregate

node zt. The labor income shares η̂ aggregate to one:

∫
η̂t(ℓ

t, zt)dΦt(z
t) = 1.

D.2.2 Trading in securities markets

A non-zero measure of these households can trade bonds and stocks in securities markets

that open every period. These households are in partition 1. We assume that the returns of

these securities span Z. In other words, the payoff space is RZ×t in each period t. Households

in partition 2 can only trade one-period riskless discount bonds (a cash account). We use Aj

to denote the menu of traded assets for households in segment j ∈ {1, 2}. However, none of

these households can insure directly against idiosyncratic shocks ℓt to their labor income by

selling a claim to their labor income or by trading contingent claims on these idiosyncratic

shocks.

D.2.3 Law of one price

We assume free portfolio formation, at least for some households, and the law of one price.

There exists a unique pricing kernel Πt in the payoff space. Since there is a non-zero measure

of households that trade assets that span zt, it only depends on the aggregate shocks zt.

Formally, this pricing kernel is the projection of any candidate pricing kernel on the space

of traded payoffs X t = RZ×t:

Πt

Πt−1
= proj(Mt|RZ×t).

We let Pt be the arbitrage-free price of an asset with payoffs {Di
t}:

P i
t = Et

∞∑

τ=t

Πτ

Πt

Di
τ , (D.3)

for any non-negative stochastic dividend process Di
t that is measurable w.r.t zt.
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Household Problem We adopted the approach of Cuoco and He (2001). We let agents

trade a full set of Arrow securities (contingent on both aggregate and idiosyncratic shock

histories), but impose measurability restrictions on the positions in these securities.

After collecting their labor income and their payoffs from the Arrow securities, households

buy consumption in spot markets and take Arrow positions at+1(ℓ
t+1, zt+1) in the securities

markets subject to a standard budget constraint:

ct + Et

[
Πt+1

Πt
at(ℓ

t+1, zt+1)

]
+

∑

j∈Aj

P j
t s

j
t+1 ≤ θt,

where s denotes the shares in a security j that is in the trading set of that agent. In the

second term on the left-hand side, the expectations operator arises because we sum across all

states of nature tomorrow and weight the price of each of the corresponding Arrow securities

by the probability of that state arising. Wealth evolves according to:

θt+1 = at(ℓ
t+1, zt+1) + ηt+1 +

∑

j∈Aj

[
P j
t+1 +Dj

t+1

]
sjt ,

subject to a measurability constraint:

at(ℓ
t+1, zt+1) is measurable w.r.t. Aj

t(ℓ
t+1, zt+1), j ∈ {1, 2},

and subject to a generic borrowing or solvency constraint:

at(ℓ
t+1, zt+1) ≥ Bt(ℓ

t, zt).

These measurability constraints limit the dependence of total household financial wealth

on (zt+1, ℓt+1). For example, for those households in partition 2 that only trade a risk-free

bond, A2
t (ℓ

t+1, zt+1) = (ℓt, zt), because their net wealth can only depend on the history of

aggregate and idiosyncratic states up until t. The households in partition 1, who do trade
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in stock and bond markets, can have net wealth that additionally depends on the aggregate

state at time t + 1: A1
t (ℓ

t+1, zt+1) = (ℓt, zt+1).

D.2.4 Pricing of household human wealth

In the absence of arbitrage opportunities, we can eliminate trade in actual securities, and

the budget constraint reduces to:

ct + Et

[
Πt+1

Πt

at(ℓ
t+1, zt+1)

]
≤ at−1(ℓ

t, zt) + ηt.

By forward substitution of at(ℓ
t+1, zt+1) in the budget constraint, and by imposing the

transversality condition on household net wealth:

lim
t→∞

Πtat(ℓ
t, zt) = 0,

it becomes apparent that the expression for financial wealth is :

at−1(ℓ
t, zt) = Et

[
∞∑

τ=t

Πτ

Πt
(cτ (ℓ

τ , zτ )− ητ (ℓ
τ , zτ ))

]

= Et

[
∞∑

τ=t

Πτ

Πt

cτ (ℓ
τ , zτ )

]
−Et

[
∞∑

τ=t

Πτ

Πt

ητ (ℓ
τ , zτ )

]
.

The equation states that non-human wealth (on the left) equals the present discounted value

of consumption (total wealth) minus the present discounted value of labor income (human

wealth). The value of a claim to c − y is uniquely pinned down, because the object on the

left-hand side is traded financial wealth.

D.2.5 Pricing of aggregate human wealth

Let Φ0 denote the measure at time 0 over the history of idiosyncratic shocks. The (shadow)

price of a claim to aggregate labor income at time 0 is given by the aggregation of the
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valuation of the household labor income streams:

∫
E0

[
∞∑

t=0

Πt

Π0

(
ĉt(ℓ

t, zt)Ct(z
t)− η̂t(ℓ

t, zt)Lt(z
t)
)
]
dΦ0

= E0

[
∞∑

t=0

Πt

Π0

∫ (
ĉt(ℓ

t, zt)dΦt(z
t)Ct(z

t)− η̂t(ℓ
t, zt)dΦt(z

t)Lt(z
t)
)
]
,

= E0

[
∞∑

t=0

Πt

Π0
[Ct(z

t)− Lt(z
t)]

]
,

where we have used the fact that the pricing kernel Πt does not depend on the idiosyncratic

shocks, the labor income shares integrate to one
∫
η̂t(ℓ

t, zt)dΦt(z
t) = 1, and the consumption

shares integrate to one
∫
ĉt(ℓ

t, zt)dΦt(z
t) = 1, in which Φt(z

t) is the distribution of household

histories ℓt conditional on being in aggregate node zt.

Under the maintained assumption that the traded assets span aggregate uncertainty,

this implies that aggregate human wealth is the present discounted value of aggregate labor

income and that total wealth is the present discounted value of aggregate consumption, and

that the discounting is done with the projection of the SDF on the space of traded payoff

space. Put differently, the discount factor is the same one that prices tradeable securities,

such as stocks and bonds. This result follows directly from aggregating households’ budget

constraints. The result obtains despite the fact that human wealth is non-tradeable in this

model, and therefore, markets are incomplete.

Since the above argument only relied on iterating forward on the budget constraint,

we did not need to know the exact form of the equilibrium SDF. Chien, Cole, and Lustig

(2011) show that the SDF in this environment depends on the evolution of the wealth

distribution over time. More precisely, for each agent, one needs to keep track of a cumulative

Lagrange multiplier, which changes whenever the measurability constraints or the borrowing

constraints bind. One cross-sectional moment of these cumulative multipliers suffices to

keep track of how the wealth distribution affects asset prices. Because of the law of large

numbers, those moments only depend on the aggregate history zt. Similar aggregation results
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are derived in Constantinides and Duffie (1996) and in the limited commitment models of

Lustig (2007) and Lustig and Van Nieuwerburgh (2007). To sum up, in the presence of

heterogeneous agents who cannot trade idiosyncratic labor income risk, there is an additional

source of aggregate risk that captures the evolution of the wealth distribution. However, asset

prices will fully reflect that source of aggregate risk so that our procedure remains valid in

such a world.

D.2.6 No spanning

If the traded payoffs do not span the aggregate shocks, then the preceding argument still

goes through for the projection of the candidate SDF on the space of traded payoffs:

Π∗
t

Π∗
t−1

= proj (Mt|Xt) .

We can still price the aggregate consumption and labor income claims using Π∗. In this case,

the part of non-traded payoffs that is orthogonal to the traded payoffs, may be priced:

Et

[(
Ct+1 − proj

(
Ct+1|X t+1

))
Π∗

t+1

]
6= 0,

Et

[(
Yt+1 − proj

(
Yt+1|X t+1

))
Π∗

t+1

]
6= 0,

where we assume that X includes a constant so that the residuals are mean zero. In the

main text, we compute good-deal bounds.
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