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A PARALLEL BUTTERFLY ALGORITHM∗

JACK POULSON† , LAURENT DEMANET‡ , NICHOLAS MAXWELL§ , AND

LEXING YING¶

Abstract. The butterfly algorithm is a fast algorithm which approximately evaluates a dis-
crete analogue of the integral transform

∫
Rd K(x, y)g(y)dy at large numbers of target points when

the kernel, K(x, y), is approximately low-rank when restricted to subdomains satisfying a certain
simple geometric condition. In d dimensions with O(Nd) quasi-uniformly distributed source and
target points, when each appropriate submatrix of K is approximately rank-r, the running time
of the algorithm is at most O(r2Nd logN). A parallelization of the butterfly algorithm is intro-
duced which, assuming a message latency of α and per-process inverse bandwidth of β, executes

in at most O(r2 Nd

p
logN + (βrNd

p
+ α) log p) time using p processes. This parallel algorithm was

then instantiated in the form of the open-source DistButterfly library for the special case where
K(x, y) = exp(iΦ(x, y)), where Φ(x, y) is a black-box, sufficiently smooth, real-valued phase function.
Experiments on Blue Gene/Q demonstrate impressive strong-scaling results for important classes of
phase functions. Using quasi-uniform sources, hyperbolic Radon transforms, and an analogue of a
three-dimensional generalized Radon transform were, respectively, observed to strong-scale from 1-
node/16-cores up to 1024-nodes/16,384-cores with greater than 90% and 82% efficiency, respectively.

Key words. butterfly algorithm, Egorov operator, Radon transform, parallel, Blue Gene/Q
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1. Introduction. The butterfly algorithm [22, 23, 32, 6] provides an efficient
means of (approximately) applying any integral operator

(Kg)(x) =

∫
Y

K(x, y)g(y)dy

whose kernel, K : X × Y → C, satisfies the condition that, given any source box,
B ⊂ Y , and target box, A ⊂ X , such that the product of their diameters is less
than some fixed constant, say, D, the restriction of K to A ×B, henceforth denoted
K|A×B, is approximately low-rank in a pointwise sense. More precisely, there exists
a numerical rank, r(ε), which depends at most polylogarithmically on 1/ε, such that,
for any subdomain A × B satisfying diam(A)diam(B) ≤ D, there exists a rank-r
separable approximation∣∣∣∣∣K(x, y)−

r−1∑
t=0

uAB
t (x)vAB

t (y)

∣∣∣∣∣ ≤ ε ∀x ∈ A, y ∈ B.
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C50 J. POULSON, L. DEMANET, N. MAXWELL, AND L. YING

If the source function, g : Y → C, is lumped into some finite set of points, IY ⊂ Y ,
the low-rank separable representation implies an approximation∣∣∣∣∣fAB(x)−

r−1∑
t=0

uAB
t (x)δAB

t

∣∣∣∣∣ ≤ ε ‖gB‖1 ∀x ∈ A,

where

(1.1) fAB(x) ≡
∑

y∈IY ∩B

K(x, y)g(y), x ∈ A,

represents the potential generated in box A due to the sources in box B, ‖gB‖1 is the
�1 norm of g over its support in B, and each expansion weight, δAB

t , could simply be
chosen as

δAB
t =

∑
y∈IY ∩B

vAB
t (y)g(y).

The first step of the butterfly algorithm is to partition the source domain, Y ,
into a collection of boxes which are sufficiently small such that the product of each
of their diameters with that of the entire target domain, X , is less than or equal
to D. Then, for each box B in this initial partitioning of the source domain, the
expansion weights, {δXB

t }r−1
t=0 , for approximating the potential over X generated by

the sources in B, fXB, can be cheaply computed as δXB
t :=

∑
y∈IY ∩B vXB

t (y)g(y). In

d dimensions, if there are Nd such source boxes, each containing O(1) sources, then
this initialization step only requires O(rNd) work.

Upon completion of the butterfly algorithm, we will have access to a much more
useful set of expansion weights, those of {fAY }A, where each box A is a member of a
sufficiently fine partitioning of the target domain such that the product of its diameter
with that of the entire source domain is bounded by D. Then, given any x ∈ X , there
exists a box A 	 x within which we may cheaply evaluate the approximate solution

f(x) = fAY (x) ≈
r−1∑
t=0

uAY
t (x)δAY

t .

If we are interested in evaluating the solution at Nd target points, then the final
evaluation phase clearly requires O(rNd) work.

The vast majority of the work of the butterfly algorithm lies in the translation of
the expansion weights used to approximate the initial potentials, {fXB}B, into those
which approximate the final potentials, {fAY }A. This transition is accomplished
in log2 N stages, each of which expends at most O(r2Nd) work in order to map
the expansion weights for the Nd interactions between members of a target domain
partition, PX , and a source domain partition, PY , into weights which approximate
the Nd interactions between members of a refined target domain partition, P ′

X , and
a coarsened source domain partition, P ′

Y . In particular, N is typically chosen to
be a power of two such that, after � stages, each dimension of the target domain is
partitioned into 2� equal-sized intervals, and each dimension of the source domain is
likewise partitioned into N/2� intervals. This process is depicted for a simple one-
dimensional (1D) problem, with N = 8, in Figure 1.1, and, from now on, we will
use the notation TX(�) and TY (�) to refer to the sets of subdomains produced by the
partitions for stage �, where the symbol T hints at the fact that these are actually
trees. Note that the root of TX , {X}, is at stage 0, whereas the root of TY , {Y }, is
at stage log2 N .
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PARALLEL BUTTERFLY ALGORITHM C51

�→ �→ �→

Fig. 1.1. The successive partitions of the product space X ×Y during a 1D butterfly algorithm
with N = 8. This figure has an additional matrix-centric interpretation: each rectangle is an
approximately low-rank submatrix of the discrete 1D integral operator.

�→

Fig. 1.2. The fundamental operation in the butterfly algorithm: translating from two potentials
with neighboring source domains and equal target domains into the corresponding potentials with
neighboring target domains but the same combined source domain.

1.1. Merging and splitting. A cursory inspection of Figure 1.1 reveals that
each step of a 1D butterfly algorithm consists of many instances of transforming two
potentials supported over neighboring source boxes and the same target box into two
potentials over the union of the two source boxes but only neighboring halves of the
original target box (see Figure 1.2). The generalization from one to d dimensions is
obvious: 2d neighboring source boxes are merged, and the shared target box is split
into 2d subboxes.

Suppose that we are given a pair of target boxes, say, A and B, and we define
{Bj}j as the set of 2d subboxes of B resulting from cutting each dimension of the
box B into two equal halves. We shall soon see that, if each pair (A,Bj) satisfies
the kernel’s approximate low-rank criterion, then it is possible to compute a linear
transformation which, to some predefined accuracy, maps any set of 2dr weights rep-
resenting potentials {fABj}j into the 2dr weights for the corresponding potentials
after the merge-and-split procedure, say, {fAjB}j, where the 2d subboxes {Aj}j of A
are defined analogously to those of B.

In the case where the source and targets are quasi-uniformly distributed, Nd/2d

such linear transformations need to be applied in each of the log2 N stages of the
algorithm, and so, if the corresponding matrices for these linear transformations
have all been precomputed, the per-process cost of the butterfly algorithm is at most
O(r2Nd logN) operations [23].

1.2. Equivalent sources. The original approach to the butterfly algorithm [22,
23] has an elegant physical interpretation and provides a straightforward construction
of the linear operators which translate weights from one stage to the next. The
primary tool is a (strong) rank-revealing QR (RRQR) factorization [16, 8], which
yields an accurate approximation of a numerically low-rank matrix in terms of linear
combinations of a few of its columns. We will soon see how to manipulate an RRQR
into an interpolative decomposition (ID) [23, 21],

(1.2) K ≈ K̂Ẑ,

where K̂ is a submatrix of r � min(m,n) columns of the m × n matrix K. While
randomized algorithms for building IDs may often be more efficient [31], we will discuss
deterministic RRQR-based constructions for the sake of simplicity.
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C52 J. POULSON, L. DEMANET, N. MAXWELL, AND L. YING

Suppose that we have already computed a (truncated) RRQR decomposition

(1.3) KΠ ≈ Q
(
RL RR

)
,

where Π is a permutation matrix, Q consists of r mutually orthonormal columns, and
RL is an invertible r × r upper-triangular matrix (otherwise a smaller RRQR could
be formed). Then KΠ ≈ K̂

(
I R−1

L RR

)
, where K̂ ≡ QRL is the subset of columns of K

selected during the pivoted QR factorization (the first r columns of KΠ), and

(1.4) Ẑ ≡
(
I R−1

L RR

)
ΠH

is an r×n interpolation matrix such that K ≈ K̂Ẑ, which completes our interpolative
decomposition of K. We note that, although Ẑ is only guaranteed to be computed
stably from a strong RRQR factorization, Businger–Golub pivoting [5] is typically
used in practice in combination with applying the numerical pseudoinverse of RL

rather than R−1
L [21].

The algorithms of [22, 23] exploit the fact that the interpolation matrix, Ẑ, can
be applied to a dense vector of n “sources” in order to produce an approximately
equivalent set of r sources in the sense that, for any vector g ∈ Cn,

(1.5) Kg ≈ K̂(Ẑg) = K̂ĝ.

Or, equivalently, Kg ≈ KĝE, where ĝE is the appropriate extension by zero of ĝ ∈ Cr

into Cn. Ẑ therefore provides a fast mechanism for producing an approximately
equivalent sparse source vector, ĝE, given any (potentially dense) source vector, g.

These sparse (approximately) equivalent sources can then be used as the expan-
sion weights resulting from the low-rank approximation

∣∣∣∣∣K(i, j)−
r−1∑
t=0

K(i, jt)ẑt(j)

∣∣∣∣∣ ≤ ε s(r, n) ∀ i, j,

namely,

∥∥∥Kg − K̂ĝ
∥∥∥
∞

≤ ε s(r, n)‖g‖1,

where K(:, jt) is the tth column of K̂, ẑt is the tth row of Ẑ, ĝ ≡ Ẑg, and s(r, n), which is
bounded by a low-degree polynomial in r and n, is an artifact of RRQR factorizations
yielding suboptimal low-rank decompositions [16].

If the matrix K and vector g were constructed such that K(i, j) = K(xi, yj) and
g(j) = g(yj) for some set of source points {yj}j ⊂ B and target points {xi}i ⊂ A,
then the previous equation becomes

∣∣∣∣∣fAB(xi)−
r−1∑
t=0

K(xi, yjt)ĝ(yjt)

∣∣∣∣∣ ≤ ε s(r, n)‖gB‖1 ∀ i,

where we have emphasized the interpretation of the tth entry of the equivalent source
vector ĝ as a discrete source located at the point yjt , i.e., ĝ(yjt). We will now review
how repeated applications of IDs can yield interpolation matrices which take 2dr
sources from 2d neighboring source boxes and produce (approximately) equivalent
sets of r sources valid over smaller target domains.
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PARALLEL BUTTERFLY ALGORITHM C53

1.3. Translating equivalent sources. We will begin by considering the 1D
case, as it lends itself to a matrix-centric discussion: Let B0 and B1 be two neighboring
source intervals of the same size, let A be a target interval of sufficiently small width,
and let K̂AB0 and K̂AB1 be subsets of columns from K|AB0 and K|AB1 generated from
their interpolative decompositions with interpolation matrices ẐAB0 and ẐAB1 . Then,
for any source vector g, the vector of potentials over target box A generated by the
sources in box Bn can be cheaply approximated as

fABn ≈ K̂ABn ĝABn

(
= K̂ABn ẐABn g|Bn

)
, n = 0, 1.

If we then define B = B0 ∪ B1 and halve the interval A into A0 and A1, then the
products of the widths of each Am with the entire box B is equal to that of A with
each Bn, and so, due to the main assumption of the butterfly algorithm, K|AmB must
also be numerically low-rank.

If we then split each K̂ABn into the two submatrices

K̂ABn →
[
K̂A0Bn

K̂A1Bn

]
,

we can write
(
fA0B

fA1B

)
≈

[
K̂A0B0 K̂A0B1

K̂A1B0 K̂A1B1

](
ĝAB0

ĝAB1

)

and recognize that the two submatrices [K̂AmB0 , K̂AmB1 ], m = 0, 1, consist of subsets
of columns of K|AmB, which implies that they must also have low-rank interpolative
decompositions, say, K̂AmBẐAmB. Thus,

(
fA0B

fA1B

)
≈

[
K̂A0BẐA0B

K̂A1BẐA1B

](
ĝAB0

ĝAB1

)
=

(
K̂A0BĝA0B

K̂A1BĝA1B

)
,

where we have defined the new equivalent sources, ĝAmB, as

ĝAmB ≡ ẐAmB

(
ĝAB0

ĝAB1

)
.

The generalization to d-dimensions should again be clear: 2d sets of IDs should
be stacked together, partitioned, and recompressed in order to form 2d interpolation
matrices of size r × 2dr, say, {ẐAmB}m. These interpolation matrices can then be
used to translate 2d sets of equivalent sources from one stage to the next with at
most O(r2) work. Recall that each of the log2 N stages of the butterfly algorithm
requires O(Nd) such translations, and so, if all necessary IDs have been precomputed,
the equivalent source approach yields an O(r2Nd logN) butterfly algorithm. There
is, of course, an analogous approach based on row-space interpolation, which can be
interpreted as constructing a small set of representative potentials which may then
be cheaply interpolated to evaluate the potential over the entire target box.

Yet another approach would be to replace row/column-space interpolation with
the low-rank approximation implied by a singular value decomposition (SVD) and to
construct the 2dr×2dr linear weight transformation matrices based upon the low-rank
approximations used at successive levels. Since the low-rank approximations produced
by SVDs are generally much tighter than those of rank-revealing factorizations, such
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an approach would potentially allow for lower-rank approximations to result in the
same overall accuracy.1

From now on, we will use the high-level notation that TABn

AmB
is the translation

operator which maps a weight vector from a low-rank decomposition over A × Bn,
wABn , into that of a low-rank decomposition over Am ×B, wAmB. Clearly each merge
and split operation involves a 2d × 2d block matrix of such translation operators.
Please see Algorithm 1 for a demonstration of the sequential algorithm from the point
of view of translation operators, where the low-rank approximation of each block K|AB
is denoted by UABVAB, and we recall that the nodes of the trees active at the beginning
of the �th stage of the algorithm are denoted by TX(�) and TY (�).
Algorithm 1. Sequential butterfly algorithm over a d-dimensional
domain with Nd

source and target points.

A := TX(0), B := TY (0)(
A = {X}, ∪B∈BB = Y, card(B) = Nd

)
// Initialize weights

foreach B ∈ B do
wXB := VXB gB

// Translate weights

for � = 0, . . . , log2 N − 1 do

Ã := children(A), B̃ := parents(B)
foreach (Ã, B̃) ∈ Ã × B̃ do

wÃB̃ := 0

foreach (A,B) ∈ A× B do

{Ac}2
d−1

c=0 := children(A), Bp := parent(B)

foreach c = 0, . . . , 2d − 1 do
wAcBp += TAB

AcBp
wAB

A := Ã, B := B̃(
card(A) = Nd, ∪A∈AA = X, B = {Y }

)
// Final evaluations

foreach A ∈ A do
fAY := UAY wAY

1.4. Avoiding quadratic precomputation. The obvious drawback to ID and
SVD-based approaches is that the precomputation of the O(Nd logN) necessary low-
rank approximations requires at least O(N2d) work with any black-box algorithm,
as the first stage of the butterfly algorithm involves O(Nd) matrices of height Nd.
If we assume additional features of the underlying kernel, we may accelerate these
precomputations [29, 27] or, in some cases, essentially avoid them altogether [6, 32].

We focus on the latter case, where the kernel is assumed to be of the form

(1.6) K(x, y) = eiΦ(x,y),

where Φ : X × Y → R is a sufficiently smooth2 phase function. Due to the assumed

1A small amount of structure in the translation operators is forfeited when switching to an SVD-
based approach: the left-most r × r subblock of the (permuted) r × 2dr translation matrix changes
from the identity to an arbitrary (dense) matrix.

2That is, it is formally (Q,R)-analytic [6, 12].
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smoothness of Φ, it was shown in [6, 12, 19] that the precomputation of IDs can be re-
placed with analytical interpolation of the row or column space of the numerically low-
rank submatrices using tensor-product Chebyshev grids. In particular, in the first half
of the algorithm, while the source boxes are small, interpolation is performed within
the column space, and in the middle of the algorithm, when the target boxes become as
small as the source boxes, the algorithm switches to analytical row-space interpolation.

An added benefit of the tensor-product interpolation is that, if a basis of dimension
q is used in each direction, so that the rank of each approximation is r = qd, the weight
translation cost can be reduced from O(r2) to O(qd+1) = O(r1+1/d). However, we
note that the cost of the middle-switch from column-space to row-space interpolation,
in general, requires O(r2) work for each set of weights. But this cost can also be
reduced to O(r1+1/d) when the phase function, Φ(x, y), also has a tensor-product
structure, e.g., x · y. Finally, performing analytical interpolation allows one to choose
the precise locations of the target points after forming the final expansion weights,
{wAY}A, and so the result is best viewed as a potential field which only requires O(r)
work to evaluate at any given point in the continuous target domain.

2. Parallelization. We now present a parallelization of butterfly algorithms
which is high-level enough to handle both general-purpose [22, 23] and analytical [6]
low-rank interpolation. We will proceed by first justifying our communication cost
model, then stepping through the simplest parallel case, where each box is responsible
for a single interaction at a time, and then demonstrating how the communication
requirements change when less processes are used. We will not discuss the precom-
putation phase in detail, as the factorizations computed at each level need to be
exchanged between processes in the same manner as the weights, but the factoriza-
tions themselves are relatively much more expensive and can each be run sequen-
tially (unless p > Nd). Readers interested in efficient parallel IDs should consult the
communication-avoiding RRQR factorization of [13].

2.1. Communication cost model. All of our analysis makes use of a commonly-
used [15, 28, 7, 3, 13] communication cost model that is as useful as it is simple: each
process is assumed to only be able to simultaneously send and receive a single message
at a time, and, when the message consists of n units of data (e.g., double-precision
floating-point numbers), the time to transmit such a message between any two pro-
cesses is α+βn [17, 2]. The α term represents the time required to send an arbitrarily
small message and is commonly referred to as the message latency, whereas 1/β rep-
resents the number of units of data which can be transmitted per unit of time once
the message has been initiated.

There also exist more sophisticated communication models, such as LogP [10] and
its extension, LogGP [1], but the essential differences are that the former separates
the local software overhead (the “o” in “LogP”) from the network latency and the
latter compensates for very large messages potentially having a different transmission
mechanism. An arguably more important detail left out of the α + βn model is the
issue of network conflicts [28, 7], that is, when multiple messages compete for the
bandwidth available on a single communication link. We will ignore network conflicts
since they greatly complicate our analysis and require the specialization of our cost
model to a particular network topology.

2.2. High-level approach with Nd processes. The proposed parallelization
is easiest to discuss for cases where the number of processes is equal to Nd, the
number of pairwise source and target box interactions represented at each level of
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0 1 2 3 4 5 6 7 �→
1 3 5 7

0 2 4 6

�→

3 7

1 5

2 6

0 4

�→

7
3
5
1
6
2
4
0

Fig. 2.1. The data distribution throughout the execution of a 1D butterfly algorithm with
p = N = 8. Notice that the distribution of the target domain upon output is the same as the input
distribution of the source domain but with the binary process ranks reversed.

the butterfly algorithm. Recall that each of these interactions is represented with r
expansion weights, where r is a small number which should depend polylogarithmically
on the desired accuracy. We will now present a scheme which assigns each process one
set of expansion weights at each stage and has a runtime of O((r2 + βr + α) logN).

Consider the data distribution scheme shown in Figure 2.1 for a 1D butterfly algo-
rithm with both the problem size, N , and number of processes, p, set to eight. In the
beginning of the algorithm (the left-most panel), each process is assigned one source
box and need only expend O(r) work in order to initialize its weights, and, at the end
of the algorithm (the right-most panel), each process can performO(r) flops in order to
evaluate the potential over its target box. Since each stage of the butterfly algorithm
involves linearly transforming 2d sets of weights from one level to the next, e.g., via

(
wA0B

wA1B

)
=

⎡
⎣TAB0

A0B
TAB1

A0B

TAB0

A1B
TAB1

A1B

⎤
⎦(

wAB0

wAB1

)
,

pairs of processes will need to coordinate in order to perform parallel matrix-vector
multiplications of size 2r × 2r. Because each process initially owns only half of the
vector that must be linearly transformed, it is natural to locally compute half of the
linear transformation, for example, TAB0

A0B
wAB0 and TAB0

A1B
wAB0 , and to combine the re-

sults with those computed by the partner process. Furthermore, the output weights
of such a linear transformation should also be distributed, and so only r entries of
data need be exchanged between the two processes, for a cost of α + βr. Since the
cost of the local transformation is at most O(r2), and only O(r) work is required to
sum the received data, the cost of the each stage is at most O(r2 + βr + α).

In the first, second, and third stages of the algorithm, process 0 would, respec-
tively, pair with processes 1, 2, and 4, and its combined communication and compu-
tation cost would be O((r2 + βr + α) logN). Every other process need perform only
the same amount of work and communication, and it can be seen from the right-most
panel of Figure 2.1 that, upon completion, each process will hold an approximation
for the potential generated over a single target box resulting from the entire set of
sources. In fact, the final distribution of the target domain can be seen to be the
same as the initial distribution of the source domain but with the bits of the owning
processes reversed (see Figure 2.2).

The bit-reversal viewpoint is especially useful when discussing the parallel al-
gorithm in higher dimensions, as more bookkeeping is required in order to precisely
describe distribution of the product space of two multidimensional domains. It can be
seen from the 1D case shown in Figure 2.2 that the bitwise rank-reversal is the result
of each stage of the parallel algorithm moving the finest-scale bitwise partition of the
source domain onto the target domain. In order to best visualize the structure of the

D
ow

nl
oa

de
d 

07
/0

1/
14

 to
 1

8.
51

.1
.3

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PARALLEL BUTTERFLY ALGORITHM C57
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Fig. 2.2. An alternative view of the data distributions used during a 1D parallel butterfly
algorithm with p = N = 8 based upon bitwise bisections: processes with their jth bit set to zero are
assigned to the left or upper side of the partition, while processes with the jth bit of their rank set
to one are assigned to the other side.
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Fig. 2.3. The data distributions of the source domain (bottom) and target domain (top) through-
out the execution of a two-dimensional (2D) butterfly algorithm with p = N2 = 64 expressed using
bitwise process rank partitions. Notice that the product space remains evenly distributed throughout
the entire computation.

equivalent process in higher dimensions, it is useful to switch from the matrix-centric
viewpoint used in the 1D example of Figure 2.2 to the dyadic viewpoint of the 2D
example of Figure 2.3.

The main generalization required for the multidimensional algorithm is that,
rather than pairs of processes interacting, 2d processes will need to work together in
order to map 2d sets of weights from one level to the next. Just as in the 1D case, each
process need only receive one of the 2d sets of weights of the result, and the appropri-
ate generalization of each pairwise exchange is a call to MPI_Reduce_scatter_block

over a team of 2d processes, which only requires each process to send d messages and
(2d − 1)r entries of data and to perform (2d − 1)r flops [28]. This communication
pattern is precisely the mechanism in which the bitwise partitions are moved from
the source domain to the target domain: teams of processes owning weights which
neighbor in the source domain cooperate in order to produce the weights needed for
the next level, which neighbor in the target domain.

It is thus easy to see that the per-process cost of the multidimensional parallel
butterfly algorithm is also at most O((r2 + βr + α) logN). When analytical tensor-
product interpolation is used, the local computation required for linearly mapping 2d

sets of weights from one stage to the next can be as low as O(r1+1/d), which clearly
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lowers the parallel complexity to O((r1+1/d + βr + α) logN). However, there is an
additional O(r2) cost for transitioning from column-space to row-space interpolation
in the middle of the algorithm when the phase function does not have tensor-product
structure [6].

2.3. Algorithm for p = Nd processes. In order to give precise pseudocode,
it is useful to codify the bitwise bisections applied to X and Y in terms of two stacks,
DX and DY . Each item in the stack is then uniquely specified by the dimension of
the domain it is being applied to and the bit of the process rank used to determine
which half of the domain it will be moved to. For instance, to initialize the bisection
stack DY for the 2D p = 64 case shown in Figure 2.3, we might run the following
steps.

Algorithm 2. Initialize bisection stacks in d-dimensions with p pro-

cesses.

DX := DY := ∅

for j = 0, . . . , log2 p− 1 do
DY .push((j mod d, (log2 p− 1)− j))

This algorithm effectively cycles through the d dimensions bisecting based upon each
of the log2 p bits of the process ranks, starting with the most significant bit (with
index log2 p− 1).

Once the bisection stacks have been initialized, the data distribution at level � is
defined by sequentially popping the d� bisections off the top of the DY stack and push-
ing them onto the DX stack, which we may express as running DX .push(DY .pop())
d� times. We also make use of the notation DX(q) and DY (q) for the portions of X
and Y which DX and DY , respectively, assign to process q. Finally, given p processes,
we define the bit-masking operator, Mb

a(q), as

(2.1) Mb
a(q) = {n ∈ [0, p) : bitj(n) = bitj(q) ∀j �∈ [a, b)},

so that, as long as 0 ≤ a ≤ b < log2 p, the cardinality ofMb
a(q), denoted card(Mb

a(q)),
is 2b−a. In fact, it can be seen that stage � of the p = Nd parallel butterfly algorithm,
listed as Algorithm 3, requires process q to perform a reduce-scatter summation over

the team of 2d processes denoted by Md(�+1)
d� (q).

2.4. Algorithm for p ≤ Nd processes. We will now generalize the algorithm
of the previous subsection to any case where a power-of-two number of processes less
than or equal to Nd is used and show that the cost is at most

O

(
r2

Nd

p
logN +

(
βr

Nd

p
+ α

)
log p

)
,

where Nd/p is the number of interactions assigned to each process during each stage
of the algorithm. This cost clearly reduces to that of the previous subsection when
p = Nd and to the O(r2Nd logN) cost of the sequential algorithm when p = 1.

Consider the case where p < Nd, such as the 2D example in Figure 2.4, where
p = 16 and N2 = 64. As shown in the bottom-left portion of the figure, each process
is initially assigned a contiguous region of the source domain which contains multiple
source boxes. If p is significantly less than Nd, it can be seen that the first several
stages of the butterfly algorithm will not require any communication, as the linear
transformations which coarsen the source domain (and refine the target domain) will

D
ow

nl
oa

de
d 

07
/0

1/
14

 to
 1

8.
51

.1
.3

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PARALLEL BUTTERFLY ALGORITHM C59

Algorithm 3. Parallel butterfly algorithm with p = Nd
process

from the point of view of process q.

// Initialize bitwise-bisection stacks

DX := DY := ∅

for j = 0, . . . , log2 p− 1 do
DY .push(((j mod d, (log2 p− 1)− j))

(DX(q) = X, ∪qDY (q) = Y )
A := DX(q), B := DY (q)
// Initialize local weights

wXB := VXB gB
// Translate the weights in parallel

for � = 0, . . . , log2(N)− 1 do

{Ac}2
d−1

c=0 := children(A), Bp := parent(B)

foreach c = 0, . . . , 2d − 1 do
wAcBp := TAB

AcBp
wAB

for j = 0, . . . , d− 1 do
DX .push(DY .pop())

A := DX(q), B := DY (q)

wAB := SumScatter({wAcBp}2
d−1

c=0 ,Md(�+1)
d� (q))

(∪qDX(q) = X, DY (q) = Y )
// Final evaluation

fAY := UAY wAY

31 1
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0

0

�→ 31 1

2

0

0

�→ 3

2

0

1

�→

02 2

1

3

3

Fig. 2.4. A 2D parallel butterfly algorithm with Nd = 64 and p = 16. The first stage does
not require any communication, and the remaining �log2d p� = 2 stages each require teams of 2d

processes to coordinate in order to perform Nd/p = 4 simultaneous linear transformations.

take place over sets of source boxes assigned to a single process. More specifically,
when N is a power of two, we may decompose the number of stages of the butterfly
algorithm, log2 N , as

log2 N =

⌊
log2d

Nd

p

⌋
+ �log2d p�,

D
ow

nl
oa

de
d 

07
/0

1/
14

 to
 1

8.
51

.1
.3

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

C60 J. POULSON, L. DEMANET, N. MAXWELL, AND L. YING

where the former term represents the number of stages at the beginning of the butterfly
algorithm which may be executed entirely locally, and the latter represents the number
of stages requiring communication. In the case of Figure 2.4, log2d(N

d/p) = 1, and
only the first stage does not require communication.

It is important to notice that each of the last �log2d p� stages still requires at
most 2d processes to interact, and so the only difference in the communication cost
is that O(rNd/p) entries of data need to be exchanged within the team rather than
just O(r). Note that any power of two number of processes can be used with such
an approach, though, when p is not an integer power of 2d, the first communication
step will involve between 2 and 2d−1 processes, while the remaining stages will involve
teams of 2d processes. Despite these corner cases, the total communication cost can
easily be seen to be O((βr(Nd/p) + α) log p), and the total computation cost is at
most O(r2(Nd/p) logN).

Algorithm 4 gives a precise prescription of these ideas using the bisection stacks
and bit-masking operators defined in the previous subsection. Because each process
can now have multiple source and target boxes assigned to it at each stage of the
algorithm, we denote these sets of boxes as

TX(�)|DX (q) = {A ∈ TX(�) : A ∈ DX(q)} and

TY (�)|DY (q) = {A ∈ TY (�) : A ∈ DY (q)}.

3. Experimental results. As previously mentioned, our performance experi-
ments focus on the class of integral operators whose kernels are of the form of (1.6).
While this may seem overly restrictive, a large class of important transforms falls into
this category, most notably the Fourier transform, where Φ(x, y) = 2πx · y, back-
projection [12], hyperbolic Radon transforms [18], and Egorov operators, which then
provide a means of efficiently applying Fourier integral operators [6]. Due to the
extremely special (and equally delicate) structure of Fourier transforms, a number
of highly-efficient parallel algorithms already exist for both uniform [15, 24, 11] and
nonuniform [25] Fourier transforms, and so we will instead concentrate on more so-
phisticated kernels. We note that the high-level communication pattern and costs of
the parallel 1D FFT mentioned in [15] are closely related to those of our parallel 1D
butterfly algorithm.

Algorithm 4 was instantiated in the new DistButterfly library using black-box,
user-defined phase functions, and the low-rank approximations and translation op-
erators introduced in [6]. The library was written using C++11 in order to template
the implementation over the dimension of the problem, and all interprocess com-
munication was expressed via the message passing interface (MPI). All tests were
performed on the Argonne Leadership Computing facility’s Blue Gene/Q installa-
tion using a port of Clang and IBM’s ESSL 5.1, and kernel evaluations were accel-
erated by batching them together and calling ESSL’s MASS routines, vsin, vcos,
and vsincos. All calculations were performed with (64-bit) double-precision arith-
metic.

The current implementation is written purely with MPI and does not employ
multithreading, and because Blue Gene/Q’s cores require multiple threads in order to
saturate the machine’s floating-point units [30], it was empirically found that launch-
ing four MPI processes for each of the 16 cores on each node resulted in the best
performance. All strong-scaling tests were therefore conducted in the range of 1-
node/16-cores/64-processes and 1024-nodes/16,384-cores/65,536-processes.

D
ow

nl
oa

de
d 

07
/0

1/
14

 to
 1

8.
51

.1
.3

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PARALLEL BUTTERFLY ALGORITHM C61

Algorithm 4. Parallel butterfly algorithm for p ≤ Nd
processes

from the view of process q. p is assumed to be a power of two.

// Initialize bitwise-bisection stacks

DX := DY := ∅

for j = 0, . . . , log2 p− 1 do
DY .push(((j mod d, (log2 p− 1)− j))(

DX(q) = X, ∪qDY (q) = Y, card
(
TY (0)|DY (q)

)
= Nd

p

)
A := TX(0)|DX (q), B := TY (0)|DY (q)

// Initialize local weights

foreach B ∈ B do
wXB := VXB gB

// Translate weights in parallel

s := log2

(
Nd

p mod 2d
)

for � = 0, . . . , log2 N − 1 do

Ã := children(A), B̃ := parents(B)
foreach (Ã, B̃) ∈ Ã × B̃ do

wÃB̃ := 0

foreach (A,B) ∈ A× B do

{Ac}2
d−1

c=0 := children(A), Bp := parent(B)

foreach c = 0, . . . , 2d − 1 do
wAcBp += TAB

AcBp
wAB

if � < �log2d Nd

p � then

A := Ã, B := B̃

else if � = �log2d Nd

p � and s �= 0 then

for j = 0, . . . , s− 1 do
DX .push(DY .pop())

A := TX(�+ 1)|DX (q), B := TY (�+ 1)|DY (q)

{wAB}A∈A,B∈B := SumScatter({wÃB̃}Ã∈Ã,B̃∈B̃,M
d�+s
d� (q))

else
for j = 0, . . . , d− 1 do

DX .push(DY .pop())

A := TX(�+ 1)|DX (q), B := TY (�+ 1)|DY (q)

{wAB}A∈A,B∈B := SumScatter({wÃB̃}Ã∈Ã,B̃∈B̃,M
d�+s
d(�−1)+s(q))(

card
(
TX(log2 N)|DX(q)

)
= Nd

p , ∪qDX(q) = X, DY (q) = Y
)

// Final evaluations

foreach A ∈ A do
fAY := UAY wAY

3.1. Hyperbolic Radon transforms. Our first set of experiments used a
phased function of the form

Φ((x0, x1), (h, p)) = 2πp
√
x2
0 + x2

1h
2,
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Fig. 3.1. A combined strong-scaling and asymptotic complexity test for Algorithm 4 using
analytical interpolation for a 2D hyperbolic Radon transform with numerical ranks of r = 42.
From bottom-left to top-right, the tests involved N2 source and target boxes with N equal to
128, 256, . . . , 32768. Note that four MPI processes were launched per core in order to maximize
performance and that each dashed line corresponds to linear scaling relative to the test using the
smallest possible portion of the machine.

which corresponds to a 2D (or three-dimensional (3D))3 hyperbolic Radon trans-
form [18] and has many applications in seismic imaging. For the strong-scaling tests,
the numerical rank was fixed at r = 42, which corresponds to a tensor product of two
four-point Chebyshev grids for each low-rank interaction.

As can be seen from Figure 3.1, the performance of both theN = 128 andN = 256
problems continued to improve all the way to the p = N2 limits (respectively, 16,384
and 65,536 processes). As expected, the larger problems display the best strong
scaling, and the largest problem which would fit on one node, N = 1024, scaled from
64 to 65,536 processes with roughly 90.5% efficiency.

3.2. 3D generalized Radon analogue. Our second test involves an analogue
of a 3D generalized Radon transform [4] and again has applications in seismic imaging.
As in [6], we use a phase function of the form

Φ(x, p) = π
(
x · p+

√
γ(x, p)2 + κ(x, p)2

)
,

where

γ(x, p) = p0 (2 + sin(2πx0) sin(2πx1)) /3 and

κ(x, p) = p1 (2 + cos(2πx0) cos(2πx1)) /3.

Notice that, if not for the nonlinear square-root term, the phase function would be
equivalent to that of a Fourier transform. The numerical rank was chosen to be r = 53

3This is true if the degrees of freedom in the second and third dimensions are combined [18].
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Fig. 3.2. A combined strong-scaling and asymptotic complexity test for Algorithm 4 using
analytical interpolation for a 3D generalized Radon analogue with numerical rank r = 53. From
bottom-left to top-right, the tests involved N3 source and target boxes with N equal to 16, 32, . . . , 512.
Note that four MPI processes were launched per core in order to maximize performance and that
each dashed line corresponds to linear scaling relative to the test using the smallest possible portion
of the machine.

in order to provide roughly one percent relative error in the supremum norm, and due
to both the increased rank, increased dimension, and more expensive phase function,
the runtimes are significantly higher than those of the previous example for cases with
equivalent numbers of source and target boxes.

Just as in the previous example, the smallest two problem sizes, N = 16 and
N = 32, were observed (see Figure 3.2) to strong scale up to the limit of p = N3

(respectively, 4096 and 32,768) processes. The most interesting problem size is N =
64, which corresponds to the largest problem which was able to fit in the memory of
a single node. The strong scaling efficiency from one to 1024 nodes was observed to
be 82.3% in this case.

4. Conclusions and future work. A high-level parallelization of both general-
purpose and analytical-interpolation based butterfly algorithms was presented, with
the former resulting in a modeled runtime of

O

(
r2

Nd

p
logN +

(
βr

Nd

p
+ α

)
log p

)

for d-dimensional problems with Nd source and target boxes, rank-r approximate
interactions, and p ≤ Nd processes (with message latency, α, and inverse bandwidth,
β). The key insight is that a careful manipulation of bitwise-partitions of the product
space of the source and target domains can both keep the data (weight vectors) and the
computation (weight translations) evenly distributed, and teams of at most 2d need
interact via a reduce-scatter communication pattern at each of the log2(N) stages of
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the algorithm. Algorithm 4 was then implemented in a black-box manner for kernels
of the form K(x, y) = exp(iΦ(x, y)), and strong-scaling of 90.5% and 82.3% efficiency
from one to 1024 nodes of Blue Gene/Q was observed for a 2D hyperbolic Radon
transform and 3D generalized Radon analogue, respectively.

While, to the best of our knowledge, this is the first parallel implementation of
the butterfly algorithm, there is still a significant amount of future work. The most
straightforward of which is to extend the current MPI implementation to exploit the
Nd/p-fold trivial parallelism available for the local weight translations. This could
potentially provide a significant performance improvement on “wide” architectures
such as Blue Gene/Q. Though a significant amount of effort has already been devoted
to improving the architectural efficiency, e.g., via batch evaluations of phase functions,
further improvements are almost certainly waiting.

A more challenging direction involves the well-known fact that the butterfly al-
gorithm can exploit sparse source and target domains [9, 32, 19], and so it would be
worthwhile to extend our parallel algorithm into this regime. Finally, the butterfly
algorithm is closely related to the directional fast multipole method (FMM) [14], which
makes use of low-rank interactions over spatial cones [20] which can be interpreted as
satisfying the butterfly condition in angular coordinates. It would be interesting to
investigate the degree to which our parallelization of the butterfly algorithm carries
over to the directional FMM.

Availability. The distributed-memory implementation of the butterfly algorithm
for kernels of the form exp (iΦ(x, y)), DistButterfly, is available at github.com/

poulson/dist-butterfly under the GPLv3. All experiments in this manuscript
made use of revision f850f1691c. Additionally, parallel implementations of inter-
polative decompositions are now available as part of Elemental [26], which is hosted
at libelemental.org under the new BSD license.
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