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A SPACE-TIME PETROV–GALERKIN CERTIFIED REDUCED
BASIS METHOD: APPLICATION TO THE BOUSSINESQ

EQUATIONS∗

MASAYUKI YANO†

Abstract. We present a space-time certified reduced basis method for long-time integration of
parametrized parabolic equations with quadratic nonlinearity which admit an affine decomposition in
parameter but with no restriction on coercivity of the linearized operator. We first consider a finite
element discretization based on discontinuous Galerkin time integration and introduce associated
Petrov–Galerkin space-time trial- and test-space norms that yield optimal and asymptotically mesh
independent stability constants. We then employ an hp Petrov–Galerkin (or minimum residual)
space-time reduced basis approximation. We provide the Brezzi–Rappaz–Raviart a posteriori error
bounds which admit efficient offline-online computational procedures for the three key ingredients:
the dual norm of the residual, an inf-sup lower bound, and the Sobolev embedding constant. The
latter are based, respectively, on a more round-off resistant residual norm evaluation procedure, a
variant of the successive constraint method, and a time-marching implementation of a fixed-point it-
eration of the embedding constant for the discontinuous Galerkin norm. Finally, we apply the method
to a natural convection problem governed by the Boussinesq equations. The result indicates that
the space-time formulation enables rapid and certified characterization of moderate-Grashof-number
flows exhibiting steady periodic responses. However, the space-time reduced basis convergence is
slow, and the Brezzi–Rappaz–Raviart threshold condition is rather restrictive, such that offline effort
will be acceptable only for very few parameters.

Key words. space-time Petrov–Galerkin, parametrized parabolic equations, discontinuous
Galerkin, certified reduced basis, Brezzi–Rappaz–Raviart theory, Boussinesq equations
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1. Introduction. We present a certified reduced basis (CRB) method for long-
time integration of parametrized parabolic partial differential equations (PDEs) with
quadratic nonlinearity which admit an affine decomposition in parameter but with
no restriction on coercivity of the linearized operator.1 Our equations of interest in-
clude, but are not limited to, the unsteady incompressible Navier–Stokes equations
and the Boussinesq equations that exhibit moderate unsteadiness including time-
periodic responses. While reduced basis approximation based on, for example, proper
orthogonal decomposition (POD) readily applies to unsteady equations [12, 13], cer-
tification based on traditional time-marching L2(Ω) error bounds has been shown
to be ineffective when the spatial operator linearized about the solution trajectory
is noncoercive [19, 16]. In particular, the time-marching L2(Ω) error bound—which
is based on the consideration of the worst-case perturbation at each time step and
the propagation of its effect over time—grows exponentially in time for a noncoer-
cive (linearized) spatial operator even if the solution is asymptotically stable (and
steady).

∗Submitted to the journal’s Methods and Algorithms for Scientific Computing section Decem-
ber 20, 2012; accepted for publication (in revised form) November 19, 2013; published electronically
February 20, 2014. This work was supported by OSD/AFOSR/MURI grant FA9550-09-1-0613 and
ONR grant N00014-11-1-0713.

http://www.siam.org/journals/sisc/36-1/90330.html
†Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA

02139 (myano@mit.edu).
1We assume that the first term of the decomposition of the linear term is positive and symmetric;

the precise mathematical form of the assumption is provided in section 2.1.
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SPACE-TIME PETROV–GALERKIN CERTIFIED REDUCED BASIS A233

In order to overcome the limitation of the time-marching L2(Ω) error bound and
enable effective long-time certification of a reduced basis approximation of noncoer-
cive (but asymptotically stable) PDEs, Urban and Patera have recently introduced an
error bound based on a space-time variational formulation [25, 24]. Instead of accu-
mulating the effect of the worst-case perturbation at each time step, the formulation
directly considers the space-time structure of the problem and constructs a space-time
error bound. For spatially noncoercive and asymptotically stable convection-diffusion
equations, the formulation has been shown (empirically) to yield an error bound that
grows linearly, rather than exponentially, with the final time.

More recently, we (Yano, Patera, and Urban) have applied the space-time approx-
imation and error certification technique in a simple nonlinear setting: one-parameter,
one-dimensional Burgers’ equation [28]. The work employed an interpolation-based
reduced basis approximation and the associated Brezzi–Rappaz–Raviart (BRR) er-
ror bound [3] specialized for quadratic nonlinearity (as used by Veroy and Patera
for steady Navier–Stokes [26]). The primary advantage of the formulation in [28] is
its simplicity in many aspects: the Crank–Nicolson in time truth discretization, the
reduced basis approximation (in fact, interpolation), the inf-sup stability bound, and
the sampling procedure.2 The method however has a number of disadvantages: a
(stringent) restriction on the form of the equation—the linearized form must be inde-
pendent of the parameter; the weak stability of the natural space-time norm associated
with the Crank–Nicolson time stepping; the associated poor behavior of the Sobolev
embedding constant (which is required for the BRR error bound); and the nonopti-
mality of the interpolation-based (as oppose to projection-based) reduced-basis ap-
proximation. Nevertheless the simple formulation demonstrated the applicability of
the space-time formulation for Burgers’ equation and significant improvement in the
effectivity of the error bound compared to the time-marching formulation.

The point of departure for the current work is the above work on Burgers’ equa-
tion [28]. Our new formulation improves upon the previous approach in several re-
gards. First, we relax the constraint that the linearized form is independent of the
parameter; specifically, we consider equations whose linear and quadratic spatial oper-
ators admit decompositions that are affine in functions of the parameter. (Again, we
assume that the first term of the decomposition of the linear term is positive and sym-
metric in the sense defined in section 2.1; the diffusion term of the parabolic equation
constitutes this operator.) Second, we employ a new “truth” space-time finite element
discretization based on the discontinuous Galerkin (DG) time stepping [15, 10] and
introduce associated space-time trial and test norms, which yield unity inf-sup and
continuity constants for the heat equation and produce an L4 embedding constant
that is only weakly dependent on the mesh and final time. Third, we employ an
hp Petrov–Galerkin projection-based (or minimum residual) reduced basis approx-
imation [18] instead of the interpolation-based approximation used in the previous
work, facilitating applicability of the method in a multiparameter setting. Fourth, we
use a modified version of the natural-norm successive constraint method [14] in the
space-time context that provides a tighter bound than the original formulation while
maintaining a similar cost for nonlinear equations. Fifth, we present a variant of the
hp-adaptive reduced basis sampling strategy [9] that is particularly suited for nonlin-
ear equations with limited stability. Finally, we apply the new space-time certified
reduced basis formulation to a natural convection problem governed by the unsteady

2Due to its simplicity, in particular from an implementation perspective, certain aspects of the
formulation in [28] may be preferred in some cases.
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A234 MASAYUKI YANO

Boussinesq equations—a system for which the classical time-marching L2(Ω) error
bound produces pessimistic and meaningless error bounds.

We, however, note that the space-time CRB method proposed in this work suffers
from a number of limitations that warrant future work. The first is the disadvantage of
space-time snapshots relative to POD-Greedy approaches in terms of the convergence
of the reduced basis approximation and hence offline effort; future work will consider
how we may incorporate a POD-Greedy approximation into a space-time certification.
The second is the very restrictive (normalized) residual criterion imposed by the BRR
theory, which in turn requires a very accurate reduced basis approximation (“overkill”)
before we can endow the solution with any error certificate; it might be difficult to
address this from a purely computational perspective, but in an estimation or controls
context—one of the target applications of reduced basis methods—data may help to
mitigate the effect. We will observe both of these limitations in our model Boussinesq
equations.

The results nevertheless demonstrate that rigorous long-time a posteriori error
bounds are possible for unsteady and “unstable”3 hydrodynamic and transport sys-
tems. The natural convection system considered in the results section exhibits qualita-
tively different responses as the Grashof number increases: from a Stokes-like smooth
transition at a low Grashof number to a convection-dominated steady-periodic re-
sponse at a high Grashof number. The method is able to rigorously confirm that
these changes in flow regime are not the result of an overly truncated low-order
model, which is a demonstrated danger in a reduced-order approximation of unsteady
flows [7]. With the space-time formulation we achieve a rigorous bound (by avoiding
spurious dynamics), but to achieve this rigor, we do not lose the sharpness.

This paper is organized as follows. Section 2 introduces a space-time variational
and finite element formulation based on DG time-marching and associated space-time
trial and test norms. Section 3 presents our space-time certified reduced basis frame-
work. The section describes the construction of the reduced basis approximation and
the three ingredients of the BRR-based error certification: the dual norm of the resid-
ual, an inf-sup constant lower bound, and a Sobolev embedding constant. Section 4
presents our hp-adaptive reduced basis sampling strategy. Finally, section 5 shows the
result of applying the space-time certified reduced basis method to a laterally heated
natural convection problem.

2. Truth solution.

2.1. Problem description. Let us first recall a few standard spaces that are
used throughout this work [20]. The L2 Hilbert space over a domain Ω ∈ R

d is denoted
by L2(Ω) and is equipped with an inner product (ψ, φ)L2(Ω) ≡

∫
Ω
φ(x)ψ(x)dx and the

induced norm ‖ψ‖L2(Ω) ≡
√
(ψ, ψ)L2(Ω). The space of vector valued L

2(Ω) functions is
denoted by (L2(Ω))m, wherem is the dimension of vectors, and is equipped with an in-
ner product (ξ, η)L2(Ω) ≡

∫
Ω ηj(x)ξj(x)dx =

∑m
j=1(ξj , ηj)L2(Ω) and the induced norm

‖ξ‖L2(Ω) ≡
√
(ξ, ξ)L2(Ω); to avoid notational clutter, we will not explicitly indicate in

the subscript that the inner product (or norm) is taken in the vector sense. The sum-
mation on repeated indices is implied throughout this paper unless stated otherwise;
however, we will employ the explicit summation notation when the limit of summation
is ambiguous. The Lp norm is defined by ‖ψ‖Lp(Ω) ≡ (

∫
Ω
(
∑m

j=1 ψj(x)ψj(x))
p/2dx)1/p.

The H1(Ω) space is equipped with an inner product (ψ, φ)H1(Ω) ≡ (∇ψ,∇φ)L2(Ω)

3In the sense of having a noncoercive (linearized) spatial operator.
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SPACE-TIME PETROV–GALERKIN CERTIFIED REDUCED BASIS A235

and the induced norm ‖ψ‖H1(Ω) ≡
√
(ψ, ψ)H1(Ω). We will also consider the Gelfand

triple (V,H, V ′) and associated duality pairing 〈·, ·〉V ′×V ; we take H = L2(Ω) (or
(L2(Ω))m) throughout this work and appropriately choose V to suit the equation
of interest. The norm of � ∈ V ′ is defined by ‖�‖V ′ ≡ supψ∈V 〈�, ψ〉V ′×V /‖ψ‖V .
The Riesz representation R� ∈ V satisfies ‖R�‖V = ‖�‖V ′ , where the Riesz opera-
tor is defined as R : V ′ → V such that, for each � ∈ V ′, (R�, φ)V = 〈�, φ〉V ′×V ,
∀φ ∈ V .

We now introduce the form of governing equation considered in this work. Let
Ω ⊂ R

d be the spatial domain, I = (0, T ] be the time interval, and D ⊂ R
P be

the parameter domain. We consider parametrized quadratically nonlinear parabolic
equations of the following form: find u ∈ C0(I;H) ∩ L2(I;V ) such that [20, 22]

(u̇, v)H + a(u, v;μ) + c(u, u, v;μ) = f(v;μ) ∀v ∈ V, t ∈ I, μ ∈ D,(2.1)

(u(0), η)H = (h(μ), η)H ∀η ∈ H,(2.2)

where u̇ ≡ ∂u
∂t , h(μ) ∈ H is the initial condition, and, as mentioned above, V is a

Hilbert space appropriately chosen for the particular equation of interest. We as-
sume that the parametrized linear form f(·; ·), bilinear form a(·, ·; ·), trilinear form
c(·, ·, ·; ·), and initial condition h(·) are affine in functions of parameters and admit
decompositions

f(v;μ) =

Qf∑
q=1

Θfq (μ)fq(v),

a(w, v;μ) =

Qa∑
q=0

Θaq(μ)aq(w, v),

c(w, z, v;μ) =

Qc∑
q=1

Θcq(μ)cq(w, z, v),

h(μ) =

Qh∑
q=1

Θhq (μ)hq,

where fq(·), q = 1, . . . , Qf , aq(·, ·), q = 0, . . .Qa, and cq(·, ·, ·), q = 1, . . . , Qc, are
parameter-independent forms, hq ∈ H , q = 1, . . . , Qh, is a parameter-independent
function, and Θfq , Θ

a
q , Θ

c
q, and Θhq are parameter-dependent functions that map from

D to R. We assume that a0(·, ·) is symmetric and positive and defines a natural inner
product and norm for the space V according to

(w, v)V ≡ a0(w, v) and ‖w‖V ≡
√
(w,w)V .

Furthermore, we assume that each of the trilinear forms is symmetric in the first two
arguments

cq(w, z, v) = cq(z, w, v) ∀w, z, v ∈ V, q = 1, . . . , Qc,

and is bounded in the sense that

cq(w, z, v) ≤ Ccq‖w‖L4(Ω)‖z‖L4(Ω)‖v‖V ∀w, z, v ∈ V, q = 1, . . . , Qc,(2.3)
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A236 MASAYUKI YANO

for some constants Ccq , q = 1, . . . , Qc. For the inequality to be meaningful, we
assume that ‖w‖L4(Ω) ≤ ρL4(Ω)-V ‖w‖V ∀w ∈ V , for some Sobolev embedding constant
ρL4(Ω)-V . Note that, for many governing equations of fluid flows, we may associate the
diffusion term (positive and symmetric) with a0(·, ·) and the convection term (written
in a symmetrized form) with c1(·, ·, ·).

2.2. Space-time variational formulation. We now define Bochner spaces
used in our space-time formulation. The L2(I;V ) space is equipped with an in-
ner product (w, v)L2(I;V ) ≡

∫
I(w(t), v(t))V dt and the induced norm ‖w‖L2(I;V ) ≡√

(w,w)L2(I;V ). Its dual, L
2(I;V ′), is equipped with an inner product (w, v)L2(I;V ′) ≡∫

I(Rw(t), Rv(t))V dt and the induced norm ‖w‖L2(I;V ′) ≡
√
(w,w)L2(I;V ′), where

R : V ′ → V is the aforementioned Riesz operator on (V,H, V ′). Finally, the space
H1(I;V ′) is equipped with a (semi-)inner product (w, v)H1(I;V ′) ≡ (ẇ, v̇)L2(I;V ′) and

a (semi)norm ‖w‖H1(I;V ′) ≡
√
(w,w)H1(I;V ′).

In order to treat nonzero initial conditions in a variational manner, we choose
our space-time trial and test spaces following the work of Schwab and Stevenson [22].
The space-time trial space is given by

X = L2(I;V ) ∩H1(I;V ′)

and is equipped with an inner product

(w, v)X ≡ (w, v)H1(I;V ′) + (w, v)L2(I;V ) + (w(T ), v(T ))H(2.4)

and the induced norm ‖w‖X ≡
√
(w,w)X . Note that X is not restricted to functions

that vanish at t = 0. The norm is not the graph norm but includes the control of
the solution at the final time as used by Urban and Patera [25]. Our space-time test
space Y is

Y = L2(I;V )×H

equipped with an inner product

(w, v)Y ≡ (w(1), v(1))L2(I;V ) + (w(2), v(2))H(2.5)

and the induced norm ‖w‖Y =
√
(w,w)Y for w ≡ (w(1), w(2)) and v ≡ (v(1), v(2)).

The second part of the couple, which is in H , is used to enforce the initial condition
in a weak manner.

Our space-time semilinear form G(·, ·;μ) : X × Y → R is given by

G(w, v;μ) = Ṁ(w, v(1)) +A(w, v(1);μ) + C(w,w, v(1);μ) + F(v;μ)
+ (w(0), v(2))H ∀w ∈ X , ∀v ∈ Y,

where the parametrized space-time forms are given by integrating corresponding
space-only forms with respect to time. Each space-time form inherits from its space-
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SPACE-TIME PETROV–GALERKIN CERTIFIED REDUCED BASIS A237

only counterpart the operator decomposition that is affine in functions of parameters:

Ṁ(w, v) =

∫
I

〈ẇ, v〉V ′×V dt,

A(w, v;μ) =
∫
I

a(w, v;μ)dt =

Qa∑
q=0

Θaq(μ)

∫
I

aq(w, v)dt ≡
Qa∑
q=0

Θaq(μ)Aq(w, v),

C(w, z, v;μ) =
∫
I

c(w, z, v;μ)dt =

Qc∑
q=1

Θcq(μ)

∫
I

cq(w, z, v)dt ≡
Qc∑
q=1

Θcq(μ)Cq(w, z, v),

(2.6)

F(v;μ) =
∫
I

−f(v(1);μ)dt+ (−h(μ), v(2))H

=

Qf∑
q=1

Θfq (μ)

∫
I

−fq(v(1))dt+
Qh∑
q=1

Θhq (μ)(−hq, v(2))H ≡
Qf̃∑
q=1

Θfq (μ)Fq(v),(2.7)

where Qf̃ = Qf + Qh; for notational convenience, we group the data terms that
arise from the volume forcing f and the initial condition h into a single space-time
functional F . The space-time trilinear forms Cq(·, ·, ·), q = 1, . . . , Qc, inherit the
symmetry with respect to the first two arguments and the boundedness, i.e.,

Cq(w, z, v) = Cq(z, w, v) ∀w, z ∈ X , ∀v ∈ L2(I;V ), q = 1, . . . , Qc,

Cq(w, z, v) ≤ Ccq‖w‖L4(I;L4(Ω))‖z‖L4(I;L4(Ω))‖v‖L2(I;V ),(2.8)

∀w, z ∈ X , ∀v ∈ L2(I;V ), q = 1, . . . , Qc,

where Ccq , q = 1, . . . , Qc, are the constants in (2.3). The boundedness of the space-
time trilinear form follows from integrating the inequality equation (2.3) in time and
then twice invoking the Cauchy–Schwarz inequality. Note that for the bound to be
useful, we have assumed that ‖w‖L4(I;L4(Ω)) ≤ ρL4-X ‖w‖X ∀w ∈ X , for some Sobolev
embedding constant ρL4-X ; we will later verify this assumption for our discrete spaces.

Our space-time variational formulation yields the following weak statement: find
u(μ) ∈ X such that

G(u(μ), v;μ) = 0 ∀v ∈ Y.

The Fréchet derivative bilinear form associated with G evaluated about z ∈ X is
denoted by ∂G(·, z, ·; ·) and is given by

∂G(w, z, v;μ) = Ṁ(w, v) +A(w, v;μ) + 2C(w, z, v;μ) ;

the linearization of C follows from its symmetry with respect to the first two argu-
ments.

2.3. Finite element discretization. We consider the standard Galerkin dis-
cretization in space and a DG discretization in time [15, 10]. Let us denote our spatial
finite element space by Vh, where the subscript h signifies the characteristic diameter
of elements in the triangulation Th of the domain Ω. The choice of the spatial finite
element is dependent on the particular equation of interest; for example, the standard
linear finite element may be used for Burgers’ equation, whereas the Taylor–Hood
finite element would be better suited for the incompressible Navier–Stokes equations.
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For our temporal discretization, we first partition the interval I ≡ (0, T ] into K
nonoverlapping intervals Ik = (tk−1, tk], k = 1, . . . ,K, delineated by 0 = t0 < t1 <
· · · < tK = T . Our DG temporal finite element space is given by

SΔt = {v ∈ L2(I) : v|Ik ∈ P
p(Ik), k = 1, . . . ,K},

where Pp(Ik) denotes the space of degree-p univariate polynomials on the interval Ik.
Our temporal finite element space is nonconforming and discontinuous in time.

We denote our space-time finite element trial and test spaces by

Xδ = SΔt ⊗ Vh and Yδ = SΔt ⊗ Vh,

respectively. The subscript δ ≡ (Δt, h) signifies that the spaces are dependent on both
the temporal and spatial meshes; we denote the dimension of the space-time finite
element spaces by N , i.e., N ≡ dim(Xδ) = dim(Yδ). Note that unlike its continuous
counterpart, our choice of the Yδ space is not a couple of functions over Ω× I and Ω,
the latter of which is used to enforce the initial condition.

To facilitate the presentation of norms associated with our finite element space,
let us first recall the DG discretization of the temporal evolution bilinear form Ṁ(·, ·).
The DG discretization for the evolution term is given by

Ṁδ(w, v) ≡
K∑
k=1

∫
Ik
〈ẇ, v〉V ′×V dt+

K∑
k=2

(
w(tk−1

+ )− w(tk−1
− ), v(tk−1

+ )
)
H
,

where w(tk+) ≡ limε→0+ w(t
k + ε) and w(tk−) ≡ limε→0+ w(t

k − ε) are based on the
function values in the intervals Ik+1 and Ik, respectively [10].

We equip our space-time finite element test space Yδ with a discrete analog of the
Y inner product (2.5),

(w, v)Yδ
≡ (w, v)L2(I;V ) + (w(t0+), v(t

0
+))H ,

and the induced norm ‖v‖Yδ
≡
√
(v, v)Yδ

. Note that the Yδ inner product is decoupled
in time owing to the time-discontinuous test functions. The trial space Xδ, on the
other hand, is equipped with an inner product

(w, v)Xδ
≡ (Rδw,Rδv)Yδ

+ (w, v)L2(I;V ) + (w(tK− ), w(tK− ))H

+

K∑
k=2

(
w(tk−1

+ )− w(tk−1
− ), v(tk−1

+ )− v(tk−1
− )

)
H
,

where the lifting operator Rδ : Xδ → Yδ satisfies, for each w ∈ Xδ,

(Rδw, v)Yδ
= Ṁδ(w, v) ∀v ∈ Yδ ;(2.9)

the associated induced norm is ‖w‖Xδ
≡
√
(w,w)Xδ

. We choose our lifting operator
in a manner that is consistent with the DG interpretation of the temporal derivative
operator, which includes the jump contribution. In addition, our Xδ norm includes
the extra jump penalty term. As we will see shortly, this choice of the Xδ norm in fact
arises naturally when we consider the DG discretization of the heat equation. The Xδ
inner product is coupled in time through the jump terms in the lifting term and the
penalty term.
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The combination of the DG temporal scheme and spatial finite element discretiza-
tion yields our space-time finite element statement: find uδ(μ) ∈ Xδ such that

Gδ(uδ(μ), v;μ) = 0 ∀v ∈ Yδ,(2.10)

where the discrete semilinear form is give by

Gδ(w, v;μ) ≡ Ṁδ(w, v) +A(w, v;μ) + C(w,w, v;μ) + Fδ(v;μ) + (w(t0+), v(t
0
+))H ;

here, the data term, which includes the initial condition, is given by

Fδ(v;μ) =
∫
I

−f(v;μ)dt+ (−h(μ), v(t0+))H .

The well-posedness of the finite element formulation will be verified a posteriori by
the BRR theory. The Fréchet derivative associated with Gδ evaluated about z ∈ Xδ
is denoted by ∂Gδ and is given by

∂Gδ(w, z, v;μ) ≡ Ṁδ(w, v) +A(w, v;μ) + 2C(w, z, v;μ) + (w(t0+), v(t
0
+))H ,

where we again appeal to the symmetry of C in the first two arguments.
With the above space-time discretization and (discrete) norms, we have the fol-

lowing statement for the heat equation.4

Theorem 2.1. For the heat equation, which is defined by the semilinear form

Gheatδ (w, v) ≡ Ṁδ(w, v) +A0(w, v) + (w(t0+), v(t
0
+)) + Fδ(v),

the inf-sup constant is

βheat ≡ inf
w∈Xδ

sup
v∈Yδ

∂Gheatδ (w, v)

‖w‖Xδ
‖v‖Yδ

= 1,

and the continuity constant is

γheat ≡ sup
w∈Xδ

sup
v∈Yδ

∂Gheatδ (w, v)

‖w‖Xδ
‖v‖Yδ

= 1,

where ∂Gheatδ (w, v) ≡Mδ(w, v) +A0(w, v) + (w(t0+), v(t
0
+))H .

Proof. First, because a0(w, v) = (w, v)V , we have A0(w, v) = (w, v)L2(I;V ). Thus,
our Fréchet derivative bilinear form is given by

∂Gheatδ (w, v) = Ṁδ(w, v) +A0(w, v) + (w(t0+), v(t
0
+))H

= Ṁδ(w, v) + (w, v)L2(I;V ) + (w(t0+), v(t
0
+))H

= Ṁδ(w, v) + (w, v)Yδ
,

where the last equality follows from the definition of the Yδ inner product. Let us
introduce a supremizing operator S : Xδ → Yδ associated with the bilinear form,

(Sw, v)Yδ
= ∂Gheatδ (w, v) ∀w ∈ Xδ, v ∈ Yδ.

4In the context of the Navier–Stokes equations, the “heat equation” corresponds to the Stokes
equations.
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A240 MASAYUKI YANO

Because ∂Gheatδ (w, v) = Ṁδ(w, v) + (w, v)Yδ
, the supremizing operator may be de-

composed as S = SṀ + Id, where

(SṀw, v)Yδ
= Ṁδ(w, v) ∀w ∈ Xδ, v ∈ Yδ.

We recognize SṀ = Rδ, where Rδ is the DG lifting operator defined by (2.9). We
then substitute the definition of the supremizing operator to the expression for the
inf-sup constant and the continuity constant and solve the supremization problem on
Yδ using the Cauchy–Schwarz inequality (which yields vsup = Sw) to obtain

βheat = inf
w∈Xδ

‖Sw‖Yδ

‖w‖Xδ

and γheat = sup
w∈Xδ

‖Sw‖Yδ

‖w‖Xδ

.(2.11)

Using the decomposition for our supremizing operator, S = Rδ + Id, the (square of
the) numerator of (2.11) can be expressed as

‖Sw‖2Yδ
= (Rδw,Rδw)Yδ

+ (w,w)Yδ
+ 2(Rδw,w)Yδ

.

We now appeal to the definition of the lifting operator Rδ, invoke integration by parts
to (the half of) 〈ẇ, w〉V ′×V , and carry out algebraic manipulation to simplify the last
term of the right-hand side:

(Rδw,w)Yδ
= Ṁδ(w,w) =

K∑
k=1

∫
Ik
〈ẇ, w〉V ′×V dt+

K∑
k=2

(
w(tk−1

+ )− w(tk−1
− ), w(tk−1

+ )
)
H

=
1

2

[
−‖w(t0+)‖2H +

K∑
k=2

‖w(tk−1
+ )− w(tk−1

− )‖2H + ‖w(tK− )‖2H

]
.

Thus, the numerator of (2.11) simplifies to

‖Sw‖2Yδ
= (Rδw,Rδw)Yδ

+ (w,w)Yδ
− ‖w(t0+)‖2H

+
K−1∑
k=1

‖w(tk+)− w(tk−)‖2H + ‖w(tK− )‖2H

= (Rδw,Rδw)Yδ
+ (w,w)L2(I;V ) + ‖w(tK− )‖2H +

K−1∑
k=1

‖w(tk+)− w(tk−)‖2H .

This is precisely our definition of the Xδ norm. Thus, we have ‖Sw‖Yδ
/‖w‖Xδ

= 1
∀w ∈ Xδ, which proves the desired results.

Remark 2.2. The above proof shows that our Xδ norm (and inner product), which
is closely related to the graph norm of H1(I;V ′)×L2(I;V ), is in fact the (space-time)
natural norm (and inner product) [23] associated with the DG discretization of the
heat equation with the Yδ test norm. In section 3.5, we will take advantage of this
equivalence to efficiently solve the Xδ-projection problem.

Remark 2.3. Our space-time DG discretization for piecewise constant (p = 0)
temporal approximation space is equivalent to the backward Euler discretization of
the parabolic equation (see, e.g., Eriksson and Johnson [10]). Thus, the space-time
DG finite element formulation and associated space-time norms yield a variational
framework for the backward Euler scheme.
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Let us make a few comments on the computational cost associated with the
solution of the DG-in-time system, (2.10). Due to the time-discontinuous nature
of the DG temporal discretization, (2.10) can be solved one time interval at a time,
starting from I1. Each time step requires the solution of a (p+1)·dim(Vh)-dimensional
nonlinear equation, which is solved using Newton’s method. Note that, to achieve
second-order accuracy using the DG discretization, we must solve a system that is
twice as large as the Crank–Nicolson system at each time step; however, we accept
the additional cost for the L- and algebraic stability of the DG formulation [2].

The use of DG-in-time discretization instead of Crank–Nicolson time stepping—
as considered in the preceding papers [25, 28]—is motivated by its better stability
properties; in particular, the (discrete) L4-Xδ Sobolev embedding constant depends
only weakly on the temporal and spatial meshes, as we will demonstrate in section 3.5.
(Note that the DG discretization also enables arbitrarily high-order discretization
by increasing the polynomial order—the property often noted by its practitioners;
however, our primary interest here is its stability and variational construction, which
facilitate the error analysis.)

3. Space-time certified reduced basis method. Our space-time certified re-
duced basis method is based on the hp reduced basis method of Eftang, Patera, and
Rønquist [9]. In the hp reduced basis method, the parameter space D ⊂ R

P is par-
titioned into Nμ nonoverlapping subdomains Dj , j = 1, . . . , Nμ. For each subdomain
Dj , we associate reduced basis approximation space XNj ,Dj ⊂ Xδ of dimension Nj. In
this section, we construct our space-time reduced basis approximation and associated
error bounds for single partition assuming that the partitions Dj and the trial space
XNj ,Dj have already been constructed. We detail the selection of the partition and
spaces in section 4. In addition, to avoid notational clutter—and as the focus of this
section is approximation and certification for a single partition—we will simply de-
note the trial space associated with the partition of interest by XN instead of XNj,Dj ,
where the subscript N signifies the dimension of the particular reduced basis space.

3.1. Space-time Petrov–Galerkin reduced basis approximation. Because
our space-time semilinear form is noncoercive, the standard Galerkin projection is not
guaranteed to yield a good—or even a stable—approximation. Thus, we employ the
minimum residual formulation of Maday, Patera, and Rovas [18] for our space-time
reduced basis approximation. First, note that the dual norm of the residual may be
expressed as

‖Gδ(wN , · ;μ)‖Y′
δ
= sup

v∈Yδ

Gδ(wN , v;μ)
‖v‖Yδ

= ‖S(wN ;μ)‖Yδ
,

where S(wN ;μ) ∈ Yδ satisfies

(S(wN ;μ), v)Yδ
= Gδ(wN , v;μ) ∀v ∈ Yδ .

Then, given a reduced basis trial space XN ⊂ Xδ, we seek uN (μ) ∈ XN such that

uN (μ) = arg inf
wN∈XN

‖Gδ(wN , · ;μ)‖Y′
δ
= arg inf

wN∈XN

sup
v∈Yδ

Gδ(wN , v;μ)
‖v‖Yδ

= arg inf
wN∈XN

‖S(wN ;μ)‖Yδ
.(3.1)

We remark on the optimality of the approximation in a certain sense.
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Remark 3.1. The minimum residual scheme may be interpreted as a Petrov–
Galerkin projection with the stability-maximizing test space. To see this, note that
the first-order optimality condition associated with the minimization statement equa-
tion (3.1) is

(S(wN ;μ),S ′[wN ](zN ;μ))Yδ
= 0 ∀zN ∈ XN ,(3.2)

where the derivative operator satisfies

(S ′[wN ](zN ;μ), v)Yδ
= ∂Gδ(zN , wN , v;μ) ∀v ∈ Yδ .

Then, by the definition of the supremizing operator, we have

Gδ(uN (μ),S ′[uN (μ)](zN ;μ);μ) = 0 ∀zN ∈ XN ,

or, equivalently, by appealing to the definition of S ′[uN (μ)](zN ;μ),

Gδ(uN (μ), vN ;μ) = 0 ∀vN ∈ YN (XN ;uN (μ), μ),

where

YN (XN ;uN (μ), μ) =

{
v ∈ Yδ : v = arg sup

v′∈Yδ

∂Gδ(w, uN (μ), v′;μ)
‖w‖Xδ

‖v′‖Yδ

, w ∈ XN
}
.

Note that YN (XN ;uN (μ), μ) ⊂ Yδ is the space of the inf-sup supremizers of the
Fréchet derivative bilinear form linearized about uN associated with the space XN .
Consequently, the inf-sup constant of the Petrov–Galerkin reduced basis problem is
bounded below by that of the finite element problem. In particular, the reduced
basis problem is well-posed given the finite element problem is well-posed. (For a
similar stability-guaranteed formulation for the Brezzi inf-sup condition (rather than
the Babuška inf-sup condition used here), see Rozza and Veroy [21].)

We now demonstrate that the solution of (3.1) permits offline-online compu-
tational decomposition. Given a Xδ-orthonormalized set of space-time trial-space
basis functions, {ξk}Nk=1, we wish to find αN (μ) ∈ R

N such that uN (μ) = ξkαNk(μ).
Appealing to the affine decomposition of our semilinear form, we can express our
supremizer S(wN ;μ) as

S(wN ;μ) = χṀ
k αNk +Θaq(μ)χ

Aq

k αNk +Θcq(μ)χ
Cq

kl αNkαNl +Θfq (μ)χ
Fq ,

where the basis functions for the supremizer are the Riesz representations of our
parameter-independent space-time forms:

(χṀ
k , v)Yδ

= Ṁ(ξk, v) ∀v ∈ Yδ, k = 1, . . . , N,

(χ
Aq

k , v)Yδ
= Aq(ξk, v) ∀v ∈ Yδ, k = 1, . . . , N, q = 0, . . . , Qa,

(χ
Cq

kl , v)Yδ
= Cq(ξk, ξl, v) ∀v ∈ Yδ, k, l = 1, . . . , N, q = 1, . . . , Qc,

(χFq , v)Yδ
= Fq(v) ∀v ∈ Yδ, q = 1, . . . , Qf̃ .(3.3)

The supremizer S(wN ;μ) is expressed as a linear combination ofN+QaN+ 1
2Q

cN(N+

1)+Qf̃ parameter-independent basis functions. The (square of the) dual norm of the
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residual is then expressed as

‖S(ξkαk;μ)‖2Yδ

= (χṀ
k , χṀ

i )Yδ
αkαi + 2Θap(μ)(χ

Ṁ
k , χ

Ap

i )Yδ
αkαi + 2Θcp(μ)(χ

Ṁ
k , χ

Cp

ij )Yδ
αkαiαj

+ 2Θfp(μ)(χ
Ṁ
k , χFp)Yδ

αk +Θaq(μ)Θ
a
p(μ)(χ

Aq

k , χ
Ap

k )Yδ
αkαi

+ 2Θaq(μ)Θ
c
p(μ)(χ

Aq

k , χ
Cp

ij )Yδ
αkαiαj + 2Θaq(μ)Θ

f
p(μ)(χ

Aq

k , χFp)Yδ
αk

+Θcq(μ)Θ
c
p(μ)(χ

Cq

kl , χ
Cp

ij )Yδ
αkαlαiαj + 2Θcq(μ)Θ

f
p(μ)(χ

Cq

kl , χ
Fp)Yδ

αkαl

+Θfq (μ)Θ
f
p (μ)(χ

Fq , χFp)Yδ
.(3.4)

Tedious but straightforward differentiation of (3.4) yields the first-order optimality
condition for (3.1), which corresponds to (3.2). The differentiation of the optimality
condition then yields the Hessian, which is used to solve the optimization problem
using Newton’s method.

The offline-online computational procedure is now clear from (3.4). In the offline

stage, we first compute the Riesz representations χM
k , χ

Aq

k , χ
Cq

kl , and χFq in O(N ·
(1 +QaN +QcN2 +Qf̃ )) operations. We then compute the inner products of Riesz
representations that appear in (3.4). In the online stage, we assemble the reduced
basis residual (and the associated derivative and Hessian) using (3.4) in O((Qc)2N4)
operations and solve the nonlinear problem using Newton’s method. In particular,
the online cost is independent of the finite element complexity N , which includes
the number of time steps K (cf. the time-marching POD-based approach of, e.g.,
Haasdonk and Ohlberger [13]).

Remark 3.2. In practice, for many problems we have considered, the standard
Galerkin projection works well. However, the Galerkin formulation is theoretically
less sound, i.e., unproven stability. As the size of the reduced basis system is small—
especially in the space-time and hp context—we prefer the minimum residual (or
Petrov–Galerkin) formulation presented above.

3.2. Brezzi–Rappaz–Raviart error bound. As in our previous work on Burg-
ers’ equation [28], our space-time a posteriori error bound relies on the BRR theory [3].

Theorem 3.3. Let τN (μ) be a normalized residual associated with an approxi-
mation uN (μ) defined by

τN (μ) ≡ 4γ2(μ)

(βLB
N (μ))2

εN(μ),(3.5)

where the continuity constant of the trilinear form, γ(μ), a lower bound of the inf-sup
constant of the linearized form, βLB

N (μ), and the dual norm of the residual, εN (μ),
satisfy, respectively,

C(w, z, v;μ) ≤ γ2(μ)‖w‖Xδ
‖z‖Xδ

‖v‖Yδ
,

βLB
N (μ) ≤ βN ≡ inf

w∈Xδ

sup
v∈Yδ

∂G(w, uN (μ), v;μ)

‖w‖Xδ
‖v‖Yδ

,(3.6)

εN(μ) ≡ ‖G(uN , · ;μ)‖Y′
δ
= sup
v∈Yδ

G(uN (μ), v;μ)

‖v‖Yδ

.(3.7)

Suppose the normalized residual is less than unity:

τN (μ) < 1 .(3.8)
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Then, there exists a unique solution uδ(μ) ∈ B(uN (μ), βLB
N (μ)/(2γ2(μ))) to (2.10),

where B(z, r) ≡ {w ∈ Xδ : ‖w − z‖Xδ
< r}. Moreover, the error in uN (μ) is bounded

by

‖uδ(μ)− uN (μ)‖Xδ
≤ ΔN (μ) ≡ βLB

N (μ)

2γ2(μ)

(
1−

√
1− τN (μ)

)
.(3.9)

Proof. The proof for quadratic nonlinearity is provided in, e.g., Veroy and Pat-
era [26].

Remark 3.4. For a trilinear form (2.7) with the parameter-independent forms
bounded in the sense of (2.8), the continuity constant γ2 is given by

γ2(μ) = ρ2Θcq(μ)C
cq ,

where Ccq , q = 1, . . . , Qc, are the continuity constants in (2.3), and ρ is the space-time
L4-Xδ Sobolev embedding constant defined by

ρ ≡ sup
w∈Xδ

‖w‖L4(I;L4(Ω))

‖w‖Xδ

.(3.10)

It can be shown [17] that, in two dimensions, the space-time L4-Xδ embedding con-
stant is bounded independently of the mesh size δ; however, in three dimensions, the
constant is weakly dependent on the mesh size. We will study the behavior of the
constant and provide associated computational techniques in section 3.5.

Remark 3.5. The condition (3.8) defines a neighborhood of the solution uN(μ)
about which the effect of the quadratic term is rigorously bounded and hence the
linear theory applies. In the limit of εN(μ) → 0, the BRR bound reduces to a more
familiar linear bound: ΔN (μ) → εN (μ)/βLB

N (μ); in addition, for any τN (μ) < 1, the
BRR error bound is bounded from above by ΔN (μ) ≤ 2εN(μ)/β

LB
N (μ).

Remark 3.6. The condition on the normalized residual (3.8) imposes a constraint
on the maximum error level that can be certified using the BRR error bound proce-
dure. Namely, if τN < 1, then

ΔN <
βLB
N (μ)

2γ2(μ)
=

βLB
N (μ)

2ρ2
∑Qc

q=1 Θ
c
q(μ)C

cq
≡ E .(3.11)

In other words, we cannot certify—that is, cannot provide any error bound for—a
low-fidelity reduced basis approximation whose error is greater than E even if we
assume perfect effectivity. This is unlike the linear case, where error bounds may be
constructed for a reduced basis approximation of any fidelity.

The construction of our space-time error bound requires evaluation of the fol-
lowing quantities: (1) the dual norm of the residual defined by (3.7); (2) an inf-sup
lower bound satisfying (3.6); and (3) the Sobolev embedding constant (3.10), which
in turn provides a continuity constant γ. In the following three sections, we detail
evaluation and approximation of these three quantities, with particular emphasis on
offline-online computational decomposition.

3.3. Dual norm of the residual. In section 3.1, we have already developed an
explicit expression for the dual norm of the residual, εN(μ) ≡ ‖Gδ(wN , · ;μ)‖Y′

δ
=

‖S(wN ;μ)‖Yδ
, in (3.4). The standard offline-online computational decomposition ap-

peals directly to (3.4) and evaluates the residual in online complexity independently
of N . However, this procedure is known to suffer from numerical precision issues if
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high accuracy is desired [4]; the precision issue arises because the residual evaluation
relies on cancellation of O(1) inner product pieces. A solution to this problem was
recently proposed by Casenave [5]. Casenave’s idea is based on representing the dual
norm of the residual not as a linear combination of inner product pieces, each of which
is of O(1), but as a linear combination of residuals evaluated at different parameter
points, each of which is of the order of the residual itself. Recently, Casenave, Ern,
and Leliévre have further improved the conditioning and computational efficiency of
the procedure by incorporating the empirical interpolation method (EIM) [1] into
the residual evaluation procedure [6]. We use this latter procedure to enable more
round-off resistant offline-online computational decomposition of the residual dual
norm evaluation.

First, we note that the (square of the) dual norm of the residual, as expressed
in (3.4), can be interpreted as an inner product of two M -vectors, where M is the
number of terms in (3.4): a parameter-independent vector g ∈ R

M whose entries
consist of the inner products of the basis functions for the Riesz representation of

the residual, e.g., (χṀ
k , χṀ

m )Yδ
, and a parameter-dependent vector θ(μ) ∈ R

M whose
entries consist of the affine decomposition weights Θ(μ) and reduced basis coefficients
α(μ). We thus have

ε2N (μ) =
M∑
k=1

gkθk(μ).(3.12)

To reduce the size of the problem, we now apply the EIM procedure to θ : D → R
M

and approximate it as a linear combination

θ(μ) ≈
MEIM∑
j=1

θ(μ∗
j )σj(μ),

where MEIM ≤ M (formally, but MEIM � M in practice) is the number of EIM
interpolation points, and σ(μ) is selected to satisfy the interpolation condition

Pi∗(i)θi∗(i)(μ) =

MEIM∑
j=1

Pi∗(i)θi∗(i)(μ
∗
j )σj(μ), (no sum on i), i = 1, . . . ,MEIM.

(3.13)

Here, {μ∗
j}MEIM

j=1 is a set of EIM parameter interpolation points and {i∗(i)}MEIM

i=1 is a
set of EIM interpolation indices; both sets are chosen in a greedy manner following
the standard EIM procedure; see, e.g., Barrault et al. [1] The variable Pi∗(i) is a
simple preconditioner for the interpolation problem: Pi∗(i) = (supμ∈Ξ θi∗(i)(μ))

−1,
i = 1, . . . ,MEIM. With the EIM approximation, (3.12) becomes

ε2N (μ) ≈ gk
(
θk(μ

∗
j )σj(μ)

)
=
(
gkθk(μ

∗
j )
)
σj(μ) = ε2N(μ

∗
j )σj(μ) .(3.14)

The dual norm of the residual for a particular parameter is expressed as a linear
combination of the dual norm of the residual at selectMEIM EIM interpolation points.

The online-offline computational decomposition of the EIM-based residual-norm
approximation procedure is apparent from the construction. In the offline stage, we
select the EIM interpolation parameters {μ∗

j}MEIM

j=1 and indices {i∗(i)}MEIM

i=1 , construct

(the PLU factors of) the preconditioned EIM interpolation matrix (Pi∗(i)θi∗(i)(μ∗
j ))

MEIM

i,j=1 ,
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and evaluate the residual vector (ε2N (μ∗
j ))

MEIM

j=1 . In the online stage, we compute

(θi∗(i)(μ))
MEIM

i=1 , solve the interpolation condition (3.13) for σ(μ), and evaluate (3.14)
in O(M2

EIM) operations.

3.4. Inf-sup lower bound: A modified successive constraint method
(SCM).

3.4.1. Lower bound formulation. Our objective is to compute a lower bound
for the space-time inf-sup constant

βN (μ) ≡ inf
w∈Xδ

sup
v∈Yδ

∂Gδ(w, uN (μ), v;μ)

‖w‖Xδ
‖v‖Yδ

.(3.15)

The procedure presented here largely follows the natural-norm SCM [14] for linear
stationary equations with a few modifications. First, we apply the method to the
linearized form of a nonlinear equation; this introduces reduced basis coefficients in
the expansion of the linearized form, which in turn requires a particular relationship
between SCM control points and reduced basis snapshot points for an efficient com-
putation. Second, we tighten the bounding boxes associated with the SCM method;
as we will see shortly, the modification, unlike in the linear case, only moderately
increases the cost in the nonlinear case (assuming the reduced basis dimension N is
larger than the number of affine expansion coefficients Qa). Third, we compute all
coefficients in space-time spaces; we propose an effective time-marching-based com-
putational procedure for the coefficients in the following subsection.

By way of preliminaries, we state two important assumptions of our modified
SCM procedure:

• SCM Assumption 1: the SCM anchor point (μ̄) is included in the reduced
basis snapshot points;
• SCM Assumption 2: the SCM control points (MSCM) are included in the
reduced basis snapshot points.

The roles that the anchor point and control points play in the procedure will become
clear shortly. These two assumptions greatly simply the extension of the natural-norm
SCM algorithm to nonlinear equations. Both assumptions are verified by construction
for the sampling algorithm proposed in section 4.

We now present the modified SCM procedure. As in the standard SCM, we first
fix the supremizing operator to be that computed at an SCM anchor point μ̄, i.e.,
Sμ̄ : Xδ → Yδ such that

(Sμ̄w, v)Yδ
= ∂Gδ(w, uN (μ̄), v; μ̄) ∀w ∈ Xδ, v ∈ Yδ .

Note that, by SCM Assumption 1, the SCM anchor point is always included in the
reduced basis snapshots; thus, uN (μ̄) = uδ(μ̄) and the supremizing operator Sμ̄ is
independent of N . Then we construct a lower bound of the inf-sup constant following

βN (μ) ≥ inf
wδ∈Xδ

∂Gδ(w, uN (μ), Sμ̄w;μ)

‖w‖Xδ
‖Sμ̄w‖Yδ

≥
[

inf
w∈Xδ

‖Sμ̄w‖Yδ

‖w‖Xδ

][
inf
w∈Xδ

∂Gδ(w, uN (μ), Sμ̄w;μ)

‖Sμ̄w‖2Yδ

]
≡ βN (μ̄)β̄μ̄N (μ),

where we have identified the term in the first bracket as βN (μ̄) and defined the term
in the second bracket as β̄μ̄N . Note that β̄μ̄N is dependent on N as our Fréchet deriva-
tive bilinear form changes with our reduced basis approximation uN (μ). The goal of
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natural-norm SCM is to construct lower and upper bounds for the second term in a
manner that permits offline-online computational decomposition. We make modifica-
tions to the SCM to improve the tightness of the lower bound.

To facilitate construction of bounds, we first express β̄μ̄N as

β̄μ̄N (μ) ≡ inf
w∈Xδ

∂Gδ(w, uN (μ), Sμ̄w;μ)

‖Sμ̄w‖2Yδ

(3.16)

= inf
w∈Xδ

[
M(w, Sμ̄w) +A0(w, S

μ̄w)

‖Sμ̄w‖2Yδ

+

Qa∑
q=1

Θaq(μ)
Aq(w, Sμ̄w)
‖Sμ̄w‖2Yδ

+

Qc∑
q=1

N∑
k=1

Θcq(μ)αNk(μ)
2Cq(w, ξk , Sμ̄w)
‖Sμ̄w‖2Yδ

]
.

Now we regroup the terms to express the correction factor as a deviation from the
linearization at the anchor point μ̄:

β̄μ̄N (μ) = inf
w∈Xδ

[
∂Gδ(w, u(μ̄), Sμ̄w; μ̄)

‖Sμ̄w‖2Yδ

+

Qa∑
q=1

(Θaq(μ)−Θaq(μ̄))
Aq(w, Sμ̄w)
‖Sμ̄w‖2Yδ

+

Qc∑
q=1

N∑
k=1

(Θcq(μ)αNk(μ)−Θcq(μ̄)αNk(μ̄))
2Cq(w, ξk, Sμ̄w)
‖Sμ̄w‖2Yδ

]

= 1 + inf
w∈Xδ

[
Qa∑
q=1

(Θaq(μ)−Θaq(μ̄))
Aq(w, Sμ̄w)
‖Sμ̄w‖2Yδ

+

Qc∑
q=1

N∑
k=1

(Θcq(μ)αNk(μ)− Θcq(μ̄)αNk(μ̄))
2Cq(w, ξk, Sμ̄w)
‖Sμ̄w‖2Yδ

]
;

note that the reduced basis coefficients αNk, k = 1, . . . , N , enter the expansion as the
coefficients of the trilinear form. The correction factor may then be expressed as

β̄μ̄N (μ) = 1 + inf
z∈ZN

JN (z;μ),

where

JN (z;μ) ≡
Qc∑
q=1

N∑
k=1

(Θcq(μ)αNk(μ)−Θcq(μ̄)αNk(μ̄))zk +

Qa∑
q=1

(Θaq(μ)−Θaq(μ̄))zN+q

(3.17)

and

ZN =

{
z ∈ R

QcN+Qa

: ∃wz ∈ Xδ, z(q−1)N+k =
2Cq(wz , ξk, Sμ̄wz)
‖Sμ̄wz‖2Yδ

, k = 1, . . . , N,

q = 1, . . . , Qc ; zQcN+q =
Aq(wz , Sμ̄wz)
‖Sμ̄wz‖2Yδ

, q = 1, . . . , Qa

}
.
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To compute a lower bound of β̄μ̄N (μ), β̄μ̄,LBN (μ), we construct ZLB
N ⊇ ZN . Towards

this end, we first define a (μ̄-dependent) bounding box Bμ̄N ⊂ R
QcN+Qa

defined by

Bμ̄N,(q−1)N+k =

[
inf
w∈Xδ

2Cq(w, ξk, Sμ̄w)
‖Sμ̄w‖2Yδ

, sup
w∈Xδ

2Cq(w, ξk, Sμ̄w)
‖Sμ̄w‖2Yδ

]
,(3.18)

k = 1, . . . , N, q = 1, . . . , Qc,(3.19)

Bμ̄N,QcN+q =

[
inf
w∈Xδ

Aq(w, Sμ̄w)
‖Sμ̄w‖2Yδ

, sup
w∈Xδ

Aq(w, Sμ̄w)
‖Sμ̄w‖2Yδ

]
, q = 1, . . . , Qa.(3.20)

Clearly, ZN ⊆ Bμ̄N . We define our ZLB
N as

ZLB
N =

{
z ∈ Bμ̄N :

Qc∑
q=1

N∑
k=1

(Θcq(μ
′)αNk(μ′)−Θcq(μ̄)αNk(μ̄))zk(3.21)

+

Qa∑
q=1

(Θaq(μ
′)−Θaq(μ̄))zN+q ≥ inf

z∈ZN

JN (z;μ′) ∀μ′ ∈MSCM

}
,(3.22)

where MSCM ⊂ D is a set of SCM control points. By SCM Assumption 2, our SCM
control point, μ′ ∈ MSCM, is a reduced basis snapshot. This implies that, once the
constraint infz∈ZN JN (z;μ′) = βμ̄N (μ′) − 1 is computed at the k′th reduced basis
sampling point μ′, it need not be updated as N increases because αNk(μk′) = 0,
k = k′ + 1, . . . , N , due to the hierarchical construction of the basis. To evaluate a
lower bound for the inf-sup correction factor, we solve a linear program

β̄μ̄,LBN (μ) = 1 + inf
z∈ZLB

N

JN (z;μ),(3.23)

where JN is the function defined in (3.17). As regards the sharpness of the modified
SCM inf-sup lower bound, we have the following proposition.

Proposition 3.7. Given the same set of SCM control points, the lower bound for
the inf-sup correction factor presented above, β̄μ̄,LBN (μ), is sharper than the original

bound [14], here denoted by β̄μ̄,LB,origN (μ), i.e.,

β̄μ̄N (μ) ≥ β̄μ̄,LBN (μ) ≥ β̄μ̄,LB,origN (μ).(3.24)

Proof. The only difference in the original formulation [14] and the above formu-
lation is the choice of the bounding box. Thus, to prove (3.24), it suffices to show
that

Bμ̄N,k ⊂ B
μ̄,orig
N,k , k = 1, . . . , QcN +Qa.

The original SCM bounding box is given by5

Bμ̄,origN,k =

[
− γk
β(μ̄)

,
γk
β(μ̄)

]
,

where

γk = sup
w∈Xδ

‖Tkw‖Yδ

‖w‖Xδ

,(3.25)

5Originally presented for Galerkin formulation; here generalized for the Petrov–Galerkin formu-
lation.
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and Tk : Xδ → Yδ, k = 1, . . . , QcN +Qa, satisfies

(T(q−1)N+kw, v)Yδ
= 2Cq(w, ξk, v) ∀w ∈ Xδ, v ∈ Yδ, k = 1, . . . , N, q = 1, . . . , Qc,

(TQcN+kw, v)Yδ
= Ak(w, v) ∀w ∈ Xδ, v ∈ Yδ, k = 1, . . . , Qa.

Let us first show that the upper limit of Bμ̄N,k is less than that of Bμ̄,origN,k for k =
QcN + 1, . . . , QcN +Qa:

sup
w∈Xδ

Ak−QcN (w, Sμ̄w)

‖Sμ̄w‖2Yδ

≤ sup
w∈Xδ

|(Tkw, Sμ̄w)Yδ
|

‖Sμ̄w‖2Yδ

≤ sup
w∈Xδ

‖Tkw‖Yδ

‖Sμ̄w‖Yδ

≤ sup
w∈Xδ

‖Tkw‖Yδ

‖w‖Xδ

(
inf
w∈Xδ

‖Sμ̄w‖Yδ

‖w‖Xδ

)−1

=
γk
β(μ̄)

;

we recognize that the final expression is precisely the upper limit of Bμ̄,origN,k . Moreover,

the lower limit of Bμ̄N,k is greater than that of Bμ̄,origN,k because

inf
w∈Xδ

Aq(w, Sμ̄w)
‖Sμ̄w‖2Yδ

≥ − sup
w∈Xδ

|(Tkw, Sμ̄w)Yδ
|

‖Sμ̄w‖2Yδ

≥ − γk
β(μ̄)

.

(The same arguments for the upper and lower bounds follow for k = 1, . . . , QcN .)

Thus, we have Bμ̄N,k ⊂ B
μ̄,orig
N,k , k = 1, . . . , QcN+Qa, which is the desired result.

We remark that the modified SCM improve the sharpness without a significant
increase in the computational cost for nonlinear equations.

Remark 3.8. For linear equations (in which the linearized form is independent
of the reduced basis approximation), the original bounding box construction pro-
cedure [14] is computationally less expensive than the new procedure as the fac-
tors γk defined in (3.25) are independent of the anchor point μ̄; i.e., the γk, k =
QcN + 1, . . . , QcN + Qa (with N = 0), need to be computed only once for all hp-
partitions. However, for equations with quadratic nonlinearity, γk, k = 1, . . . , QcN ,
arising from the linearization of the quadratic term would have to be computed for
each partition separately. Thus, the computational cost of the new procedure is com-
parable to that of the original formulation, while providing a tighter inf-sup lower
bound.

3.4.2. Offline-online procedure. We first compute an upper bound of the
inf-sup correction factor to facilitate the SCM sampling process. The construction
is identical to the original procedure [14]; here we present a brief description for
completeness. An upper bound for the correction factor is constructed by choosing
ZUB
N ⊆ ZN . We simply choose

ZUB
N =

{
z ∈ R

QcN+Qa

: z(q−1)N+k =
Cq(w′, ξk, Sμ̄w′)
‖Sμ̄w′‖2Yδ

, k = 1, . . . , N, q = 1, . . . , Qc;

zQcN+j =
Aj(w′, Sμ̄w′)
‖Sμ̄w′‖2Yδ

, j = 1, . . . , Qa;

w′ = arg inf
w∈X

∂Gδ(w, uN (μ′), Sμ̄w;μ′)
‖Sμ̄w‖2Yδ

, μ′ ∈MSCM

}
.

In other words, z ∈ ZUB
N consists of the forms evaluated about the infimizer at a

given SCM control point. Note that every element in this set must be updated when
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N is increased, i.e., compute the new term arising from the addition of the trilinear
form evaluated about the new linearization point. Our upper bound for the inf-sup
correction factor is the solution of a linear program

β̄μ̄,UB
N (μ) = 1 + inf

z∈ZLB
N

JN (z;μ),(3.26)

where again JN is the function defined in (3.17).
The online-offline computational decomposition is apparent from the construc-

tion. In the offline stage, we compute
• the inf-sup constant at the anchor point μ̄, βN (μ̄);
• the SCM bounding box Bμ̄N ⊂ R

QcN+Qa

defined by (3.20) and (3.19);
• and the SCM correction factors β̄μ̄N (μ′), μ′ ∈ MSCM, defined in (3.16) (for
ZLB
N ) and its infimizers (for ZUB

N ) evaluated at the SCM control points.
In the online stage, we simply solve the linear programs (3.23) and (3.26) to obtain

a lower bound β̄μ̄,LBN (μ) and an upper bound β̄μ̄,UB
N (μ), respectively, for a select μ.

The inf-sup lower and upper bounds are given by βLB
N (μ) = βN (μ̄)β̄μ̄,LBN (μ) and

βUB
N (μ) = βN (μ̄)β̄μ̄,UB

N (μ).
Before concluding this discussion on the construction of the inf-sup lower bound,

let us clarify computations involved in the offline construction of ZLB
N . First, evalua-

tion of the inf-sup constant at the SCM anchor point μ̄, βN (μ̄), requires the minimum
eigenvalue of a generalized symmetric eigenproblem Pw = λQw with

P = G(μ̄)TY−1G(μ̄),(3.27)

Q = X,(3.28)

and setting βN (μ̄) =
√
λmin. Here, the matrices, all of dimension R

N×N , are given by
G(μ̄)ij = ∂G(φj , u(μ̄), φi; μ̄), Yij = (φj , φi)Yδ

, and Xij = (φj , φi)Xδ
. The set {φi}Ni=1

is a space-time finite element basis. Effectively locating the minimum eigenvalue by a
Krylov method requires generation of a Krylov space K(P−1Q). Application of P−1 =
G(μ̄)−1YG(μ̄)−T requires solution of the adjoint problem (G(μ̄)−T ), multiplication
by Y, followed by the solution of the linearized forward problem (G(μ̄)−1); all of these
operations can be performed in a time-marching manner, not requiring fully coupled
space-time solves.

The construction of the bounding boxes Bμ̄N,k, k = 1, . . . , QcN , defined by (3.19)
require the extreme eigenvalues of QcN eigenproblems Pw = λQw with

P = G(μ̄)TY−1Cq(ξk) +Cq(ξk)
TY−1G(μ̄),

Q = G(μ̄)TY−1G(μ̄),(3.29)

where Cq(ξk) = Cq(φj , ξk, φi) and {ξk}Nk=1 is the Xδ-orthonormalized reduced basis
set. The maximum and minimum eigenvalues correspond to the upper and lower
limits, respectively, of the bounding box. Similarly, the bounding boxes Bμ̄N,QcN+k,
k = 1, . . . , Qa defined by (3.20) require extreme eigenvalues of Qa eigenproblems
Pw = λQw with

P =
1

2

[
G(μ̄)TY−1Ak +AT

kY
−1G(μ̄)

]
,

Q = G(μ̄)TY−1G(μ̄),(3.30)

where (Ak)ij = Ak(φj , φi). The extreme eigenvalues for the bounding boxes can
be effectively approximated in a Krylov space K(Q−1P) (assuming the minimum
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eigenvalue is negative and is far from the origin). The application of Q−1 is identical
to the application of P−1 for the inf-sup calculation; the operation permits time
marching.

The evaluation of the correction factor at an SCM control point μ′ ∈ MSCM,
β̄μ̄N (μ′), by (3.16) requires the minimum eigenvalue of Pw = λQw with

P =
1

2

[
G(μ̄)TY−1G(μ′) +G(μ′)Y−1G(μ̄)

]
,

Q = G(μ̄)TY−1G(μ̄).

Effectively locating the minimum eigenvalue requires a Krylov space K(QP−1). Un-
fortunately, the application of P−1 cannot be performed in a time-marching manner in
general. However, the eigenvalue of interest is one of the extreme eigenvalues, thus we
have found that we can seek the eigenvalue in a Krylov space K(Q−1P), which allows
for time-marching computation, and obtain a reasonable (albeit slower) convergence.

3.5. L4-Xδ Sobolev embedding constant. The final piece required for the
evaluation of the BRR error bound is the L4-Xδ space-time Sobolev embedding con-
stant, (3.10). To our knowledge, the embedding constant cannot be evaluated analyti-
cally due to the nonlinearity of the L4 norm. However, a few numerical techniques for
estimating the constant have been devised. Here, we employ the fixed point algorithm
of Deparis [8] in the space-time context. We have found the algorithm converges more
rapidly and reliably than the Newton-homotopy algorithm of Veroy and Patera [26].
For the purpose of relating numerical results to analysis, we restrict ourselves to a
Cartesian-product domain, Ω =

∏d
i=1[0, Li] ⊂ R

d and take V = H1
0 (Ω). However,

the technique used here applies to arbitrary domains, and we expect properties of the
L4-Xδ space-time embedding constant observed for the particular case to be retained
in more general cases.

First, we analyze a closely related linear problem: L2-X embedding. A bound
for the embedding constant can be found analytically using Fourier decomposition in
space and time. (The technique is identical to that used in our previous work [28];
however, the temporal Fourier modes here are different as functions in X do not vanish
at t = 0.) The L2-X constant is bounded by

ρL2-X ≡ sup
w∈X

‖w‖L2(I;L2(Ω))

‖w‖X
≤
(
sup
w∈X

‖w‖2L2(I;L2(Ω))

‖ẇ‖2L2(I;V ′) + ‖w‖2L2(I;V )

)1/2

≤ 1

π

√∏d
i=1 L

−2
i

.

Note that the L2-X embedding constant is bounded independent of the final time T .
We now (computationally) demonstrate that the L2-Xδ embedding constant for

our DG Xδ norm is largely independent of the final time T as well as the discretization
resolution—both in space and time. To compute the embedding constant, we seek the
maximum eigenvalue of a space-time eigenproblem: find (w, λ) ∈ Xδ × R such that
‖w‖Xδ

= 1 and

(w, v)L2(I;L2(Ω)) = λ(w, v)Xδ
∀v ∈ Xδ ;(3.31)

we then evaluate the L2-Xδ embedding constant, ρL2-Xδ
=
√
λmax. Table 3.1(a)

shows the variation in the embedding constant for several combinations of spatial
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Table 3.1

Variation in the L2-Xδ and L4-Xδ space-time Sobolev embedding constant with the space-time
discretization and the final time T . The computation is carried out on the space-time domain
Ω× I ≡ ((0, 4)× (0, 1))× (0, T ] discretized by |Th| P2 conforming finite elements in space and K P

2

DG elements in time. The results in (b) and (d) are obtained on the |Th| = 32 spatial mesh.

(a) L2-Xδ mesh dependence (T = 1)

K |Th| = 32 128 512 2048
4 0.3170 0.3089 0.3064 0.3060
8 0.3170 0.3089 0.3064 0.3060
16 0.3170 0.3089 0.3064 0.3060

(b) L2-Xδ T -dependence

T ρL2-Xδ

0.5 0.3023
1.0 0.3089
2.0 0.3110

(c) L4-Xδ mesh dependence (T = 1)

K |Th| = 32 128 512 2048
4 0.4820 0.4916 0.4947 0.4950
8 0.4850 0.4946 0.5002 0.5009
16 0.4829 0.4929 0.5009 0.5026

(d) L4-Xδ T -dependence

T ρ
0.5 0.4929
1.0 0.4946
2.0 0.4916

and temporal discretizations for the final time T = 1.0. The result suggests that
the embedding constant is only weakly dependent on both the spatial and temporal
discretizations. Table 3.1(b) shows that the embedding constant is also only weakly
dependent on the final time T ; the constant exhibits less than 3% variation as T
varies from 0.5 to 2.0. In particular, the L2-Xδ embedding constant appears to be
bounded by approximately 0.3, which is in good agreement with the (continuous)
L2-X embedding bound of approximately 0.2996 for this space-time domain, Ω× I ≡
((0, 4)× (0, 1))× (0, 1].6 In contrast, the Sobolev embedding constant for a space-time
norm associated with the Crank–Nicolson scheme is (provably) weakly dependent on
the final time T , and the supremizer of the embedding constant is also dependent on
the number of time steps K [28].

We finally (computationally) demonstrate that the L4-Xδ embedding constant is
only weakly dependent on the final time T and the discretization resolution. We em-
ploy the fixed-point algorithm of Deparis [8] to estimate the embedding constant; here
we briefly outline the algorithm. We first define an operator z : Xδ → L4(I;L4(Ω))
given by z(w) = ‖w‖−2

L4(I;L4(Ω))w
2. We then introduce an eigenproblem: for a given

ξ ∈ Xδ, find (w, λ) ∈ Xδ × R such that ‖w‖Xδ
= 1 and∫

I

∫
Ω

z(ξ)wividxdt = λmax(w, v)Xδ
∀v ∈ Xδ;(3.32)

we denote the maximum eigenvalue and the associated eigenfunction, parametrized
by z(ξ), by λmax(z(ξ)) and wmax(z(ξ)), respectively. The L4-Xδ supremizer, ξ∗, is
the fixed point ξ∗ = wmax(z(ξ

∗)) and the embedding constant is ρ =
√
λmax(z(ξ∗)).

We thus have a fixed-point algorithm [8]: initialize ξ0 = 1 and set k = 0; for k ≥ 1,
set ξk = wmax(z(ξ

k−1)) and λk = λmax(z(ξ
k−1)). The computational results in

Tables 3.1(c) and 3.1(d) show that the L4-Xδ embedding constant is only weakly
dependent on the discretization resolution and the final time, exhibiting less than 5%
variation. The behavior implies that the embedding constant needs to be evaluated
for a single final time. (We use ρ = 0.51 for all our later numerical results.)

We make a few comments as regards the computation of the embedding constant.
The computation of the L4-Xδ embedding constant by the fixed-point algorithm of

6Note that that the embedding constants ρL2-X and ρL2-Xδ
are associated with two different

norms, and hence, in general, the upper bound of ρL2-X does not serve as an upper bound of ρL2-Xδ
.
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Deparis [8] requires solution of a multiple eigenproblem of the form (3.32). An effective
solution of the eigenproblem via a Krylov method requires the action of the inverse of
the Xδ operator. (This requirement also applies to the L2-Xδ eigenproblem, (3.31).)
Although the matrix X ∈ R

N×N with Xij = (φj , φi)Xδ
(where {φi}Ni=1 is a space-

time finite element basis) is a block tridiagonal matrix, we can form a block bidiagonal
decomposition of the matrix by using the fact that Xδ is the natural norm associated
with the heat equation (see Remark 2.2). Namely, we have

X = GT
heatY

−1Gheat and X−1 = G−1
heatYG−T

heat,

where Gheat,ij = Ṁδ(φj , φi)+A0(φj , φi)+(φj(t
0
+), φi(t

0
+)). With the decomposition,

the action of X−1 can be computed in a time-marching manner without requiring
a fully coupled space-time solve. Namely, we first perform the backward (adjoint)
solve starting from the final time (G−T

heat), apply Y, and then perform the linearized
forward solve (G−1

heat).

3.6. Output approximation and certification. Let � ∈ X ′
δ be an output

functional of interest. For simplicity we consider a linear output functional in this
work; we refer to Deparis [8] for a treatment of quadratic functional outputs within a
(space-only, not space-time) BRR framework.

For approximation, we appeal to the linearity of the functional and uN (μ) =
ξkαNk(μ) to express the reduced basis output as

�(uN (μ)) = �N (ξk)αNk(μ).

In the offline stage, we compute �N(ξk), k = 1, . . . , N ; in the online stage, we evaluate
the above expression.

For certification, we employ a simple error bound that does not require the so-
lution of the dual problem. Namely, we construct our output error bound according
to

|�(uδ(μ);μ)− �(uN (μ);μ)| = |�(e;μ)| ≤ ‖�( · ;μ)‖X ′
δ
‖e(μ)‖Xδ

≤ ‖�( · ;μ)‖X ′
δ
ΔN (μ) ≡ Δ�

N (μ),

where we recall ‖�( · ;μ)‖X ′
δ
≡ supw∈Xδ

�(w;μ)/‖w‖Xδ
and ‖ΔN (μ)‖ is the Xδ-norm

BRR error bound defined in (3.9).
Remark 3.9. A primal-dual formulation would yield a sharper error bound; for

its application within the BRR formulation, see, e.g., Veroy and Patera [26] and
Deparis [8].

4. hp-adaptive sampling algorithm. We now describe an hp parameter-domain
decomposition and parameter sampling strategy employed in the offline stage. The
algorithm is motivated by the following observations. First, we note that the (modi-
fied) natural norm SCM algorithm, which uses a fixed supremizing operator computed
about the anchor point, provides positive inf-sup lower bounds only in the neighbor-
hood of the anchor point; the bound becomes negative (and hence meaningless) if
the linearized form evaluated at the anchor point is significantly different—due to
the change either directly in the parameter μ or indirectly in the linearization point
uN(μ)—and the supremizing operator becomes ineffective. Second, the number of
terms in the expansion of the linearized form considered in the SCM formulation de-
pends on the dimension of the reduced basis space N ; in order to control the number
of space-time eigenvalue problems in the offline stage and the size of the linear pro-
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gram in the online stage, it is advantageous to reduce the size of each reduced basis
space. Third, the inability of the supremizing operator at an anchor point to produce
a positive inf-sup constant at another parameter point indicates that the dynamics is
in fact sufficiently different at the two parameter points; we thus conjecture that two
different reduced basis spaces are required to efficiently approximate the two different
dynamics. The above observations suggest an application of an hp parameter-domain
decomposition.

We first present our algorithm for the construction of a certified reduced basis
model over a single parameter domain in the neighborhood of the parameter sampling
point μ̄ that serves as the SCM anchor point. The inputs to the algorithm are

• Ξ ∈ [D]Ntrain : a set of Ntrain training points that sufficiently covers D;
• μ̄: parameter “anchor” point;
• Δtol ∈ R

+: error bound tolerance;
• β̄μ̄,LB,tol

N ∈ (0, 1), βgap,tol
N ∈ R

+: threshold parameters.
The role of the threshold parameters will become clear shortly. The outputs of the
algorithm are the following.

• Ξcertified(μ̄) ⊂ Ξ: a training set representation of the certified parameter
region such that Δ(μ) ≤ Δtol ∀μ ∈ Ξcertified(μ̄).
• The (inner products of the) Riesz pieces for the Petrov–Galerkin reduced
basis approximation by (3.4).
• The quantities required for the EIM-based residual dual norm evaluation by
(3.14).
• The SCM pieces: inf-sup constant at the anchor point βN (μ̄) defined by
(3.15); the SCM bounding boxes Bμ̄QcN+q, q = 1, . . . , Qa, defined by (3.20)

and Bμ̄(q−1)N+k, k = 1, . . . , N , q = 1, . . . , Qc, defined by (3.19); SCM control

points MSCM ⊂ Ξ; and the inf-sup correction factors evaluated at the SCM
control points β̄μ̄N (μ), μ ∈MSCM, defined by (3.16).

The algorithm for constructing a certified reduced basis model over a single hp-
partition, from here on denoted as Algorithm 1, is summarized as follows.

1. Set μ1 = μ̄, which serves as the SCM “anchor point”; set N = 1.
2. Obtain the finite element solution uδ(μ̄) by solving (2.10); normalize the

solution and set ξ1 = uδ(μ̄)/‖uδ(μ̄)‖Xδ
.

3. Compute the Riesz pieces and their inner products required for the Petrov–
Galerkin reduced basis approximation.

4. Compute the quantities required for the EIM-based residual dual norm eval-
uation.

5. Compute the inf-sup constant at the anchor point, βN (μ̄).
6. Construct SCM bounding boxes for the bilinear forms Aq(·, ·), Bμ̄Qc+q, q =

1, . . . , Qa, and that for the linearized quadratic form Cq(·, ξ1, ·), Bμ̄q , q =
1, . . . , Qc.

7. Obtain a reduced basis approximation and BRR certification for each μ ∈ Ξ;
record the BRR normalized residual τN (μ), the error bound ΔN (μ), the lower

bound of the inf-sup correction factor β̄μ̄,LBN (μ), and the upper bound of the

inf-sup correction factor β̄μ̄,UB
N (μ) for each μ ∈ Ξ.

8. If max{μ∈Ξ:β̄μ̄,LB
N (μ)>β̄μ̄,LB,tol

N } ΔN (μ) < Δtol, we are done with this subdomain;

set Ξcertified(μ̄) ≡ {μ ∈ Ξ : β̄μ̄,LBN (μ) > β̄μ̄,LB,tolN } and terminate.
9. Within a set of points having the inf-sup lower bound above the tol-

erance (β̄μ̄,LBN ≥ β̄μ̄,LB,tolN ), choose the point with the maximum BRR nor-
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malized residual, i.e., μN+1 = argmaxβ̄μ̄,LB
N (μ)>β̄μ̄,LB,tol

N
τN (μ) (or ΔN (μ) if

maxμ∈Ξ(τN (μ)) < 1 ∀μ ∈ Ξ); increment the size of the reduced basis set,
N ← N + 1.

10. Compute the finite element solution uδ(μN ) and Xδ orthonormalize it with
respect to ξ1, . . . , ξN−1 to generate ξN .

11. Update the Riesz pieces required for the Petrov–Galerkin projection and the
variables required for residual dual norm evaluation.

12. Construct the SCM bounding box for Cq(·, ξN , ·), Bμ̄(q−1)N+N , q = 1, . . . , Qc.

13. If the SCM gap is sufficiently large in the sense that
(β̄μ̄,UB
N−1 (μN ) − β̄μ̄,LBN−1 (μN ))/β̄μ̄,LBN−1 (μN ) > βgap,tol

N , then add μN to the set of

SCM control points (MSCM ← {MSCM, μN}) and compute the associated
correction factor β̄μ̄N (μN ).

14. Update ZUB
N to account for C linearized about ξN .

15. Go to Step 7.
This algorithm constructs a certified reduced basis model in the neighborhood of the
anchor point μ̄. Note that we do not partion the parameter domain a priori: we
initially apply the algorithm to the (full) training set Ξ associated with the (full)
domain D; we then, at the termination of the algorithm, obtain an implicitly defined
subdomain based on the positivity (more precisely, threshold) constraint on the inf-
sup lower bound. As the linearized form (and hence the inf-sup bound) changes with
the number of reduced basis functions, the certified subdomain changes accordingly.
The reduced basis snapshots are chosen in a greedy manner based on the subdomain
definition at each iteration; due to the change in the subdomain with N , a snapshot
computed in the earlier stage could fall outside of the final subdomain.

To construct a set of certified reduced basis models that enable reduced basis
approximation and certification over the entire parameter domain D, we recursively
use Algorithm 1. Namely, the algorithm, referred to as Algorithm 2, is summarized
as follows.

1. Set μ̄1 = centroid(D); set k = 1.
2. Execute Algorithm 1; Set the new working region Ξ← Ξ \ Ξcertified(μ̄k).
3. If Ξ = ∅, terminate.
4. Pick μ̄k+1 = argminμ∈Ξ β

LB
N (μ) with the lowest βLB

N (μ) prediction based on
the SCM approximation over region k; set k ← k + 1.

5. Go to Step 2.
In words, we first pick the centroid of the domain as the SCM anchor point and
construct a reduced basis model which certifies the solution in the neighborhood of the
point, Ξcertified(μ̄1); we then choose the next SCM anchor point to be the point with
the smallest inf-sup lower bound and construct another reduced basis model about
the point. Note that the size of each domain is implicitly defined by the positivity
(more precisely, threshold) constraint on the inf-sup lower bound approximated by
the SCM that uses a fixed supremizing operator; however, as noted in the beginning
of the section, we conjecture that the hp-partioning also facilitates construction of a
more efficient reduced basis approximation for each parameter region.

In the online stage, given a parameter value μ, we evaluate the reduced basis
approximation as follows.

1. Create an ordered set (j1, . . . , jJ ) such that ‖μ− μ̄j1‖�2 , . . . , ‖μ− μ̄jJ ‖�2 is a
nondecreasing sequence. Set k = 1.

2. Use the reduced basis model associated with the subdomain jk (i.e., the
subdomain with the kth nearest anchor point) to obtain uN (μ).
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3. Compute the BRR error bound ΔN (μ):
• if ΔN (μ) ≤ Δtol, terminate;
• if ΔN (μ) > Δtol or βLB

N (μ) ≤ 0 then set k ← k + 1 and go to 2.
In words, we first choose the reduced basis model associated with the nearest anchor
point (in the Euclidean norm7) to compute uN(μ) and ΔN (μ). If the error bound
evaluation fails due to a negative inf-sup lower bound or the error bound is greater
than the desired tolerance, then we choose the reduced basis model associated with
the next nearest anchor point. We repeat the process until the error bound evaluation
succeeds; assuming the offline training set is sufficiently rich, the algorithm identifies
the appropriate subdomain and terminates after a few iterations (typically one).

5. Numerical results.

5.1. Model problem: Laterally heated cavities. We assess the effectiveness
of our space-time certified reduced formulation using a laterally heated cavity flow
governed by the Boussinesq equations. The spatial domain of interest is Ω = [0, 4]×
[0, 1]; the domain is normalized by its height h, and is characterized by the aspect
ratio a = 4. The (normalized) Boussinesq equations in R

2 are given by

∂w1

∂t
+

2∑
j=1

√
Gr
∂wjw1

∂xj
+
√
Gr

∂p

∂x1
−

2∑
j=1

∂2w1

∂xj∂xj
= 0,

∂w2

∂t
+

2∑
j=1

√
Gr
∂wjw2

∂xj
+
√
Gr

∂p

∂x2
−

2∑
j=1

∂2w2

∂xj∂xj
−
√
Grw3 = 0,

∂w3

∂t
+

2∑
j=1

√
Gr
∂wjw3

∂xj
−

2∑
j=1

1

Pr

∂2w3

∂xj∂xj
= 0,

∂w1

∂x1
+
∂w2

∂x2
= 0,

where w1 and w2 are the velocities in the x1 and x2 directions, respectively, w3 is
the temperature, p is the pressure, Gr ≡ qah4gβ/(kν2) is the Grashof number, and
Pr ≡ ν/κ is the Prandtl number. The scales used for time, length, velocity, pressure,
and temperature are h2/ν, h,

√
Grν/h, ρν2/h2, and qah/k, respectively.8 The fluid

properties are viscosity ν, density ρ, conductivity k, thermal diffusivity κ, and thermal
expansion coefficient β. The heat flux along Γ2 is denoted by q, and the gravitational
acceleration is g. The boundary conditions are given by

w1 = w2 = 0 on ∂Ω,

w3 = 0 on Γ1,

∂w3

∂n
= 0 on Γ3 and Γ4,

∂w3

∂n
=

1

a
on Γ2,

where the boundaries are identified in Figure 5.1. The unsteady Boussinesq equations

7A different norm may be employed if a better metric for defining the “closeness” of two param-
eters is known a priori.

8This particular temperature scaling ensures that, for a given Grashof number, the flow behavior
for the fixed-heat-flux case considered in this work is understood loosely in terms of the fixed-
temperature-difference case that has been extensively studied by, for example, Gelfgat, Bar-Yoseph,
and Yarin [11].
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Γ
1

Γ
2

Γ
3

Γ
4

Fig. 5.1. Boundary specification for the laterally heated cavity flow.

are integrated from t = 0 to t = T = 0.5. Because we employ the viscous time scale,
T = 0.5 corresponds to many convective time units in a high Grashof number case.

We take the Grashof number as the parameter of interest and fix the Prandtl
number at Pr = 0.015. In particular, we wish to estimate the change in the velocity
and thermal field as a function of the Grashof number; the pressure is not of interest
in this work. Finally, we choose the space-time average temperature on the right
boundary as our output, i.e.,

�(w) =
1

T |Γ2|

∫
I

∫
Γ2

w3dxdt.(5.1)

We will shortly verify that this is a bounded functional in our space-time setting.

5.2. Variational formulation. To recast the Boussinesq equations in a weak
form, we identify the function space V of the abstract formulation in section 2.1 with
the space of temperature and divergence-free velocity, i.e.,

V ≡
{
((w1, w2), w3) ∈ [H1

0 (Ω)]
2 ×H1(Ω) :

∂w1

∂x1
+
∂w2

∂x2
= 0, w3|ΓD = 0

}
.

In particular, as our interest is in the approximation of the velocity field and the
temperature field—and not the pressure field—we consider formulation in explicitly
divergence-free space. We recast the parametrized Boussinesq equations in a general
form of (2.2) by identifying the spatial forms as follows:

a0(w, v) =

∫
Ω

2∑
j=1

[
∂v1
∂xj

∂w1

∂xj
+
∂v2
∂xj

∂w2

∂xj
+

1

Pr

∂v3
∂xj

∂w3

∂xj

]
dx, Θa0(μ) = 1,

a1(w, v) =

∫
Ω

v2w3dx, Θa1(μ) = −
√
μ1,

c1(w, z, v) = −
1

2

∫
Ω

3∑
i=1

2∑
j=1

∂vi
∂xj

(wizj + ziwj) dx, Θc1(μ) =
√
μ1,

where μ1 = Gr is the Grashof number. Note that Θc1 : D → R enters the continuity
condition of the BRR error bound. The trilinear form is symmetric in the first two
arguments and satisfies the boundedness assumption (2.3) with Cc1 = 1, i.e.,

|c1(w, z, v)| =

∣∣∣∣∣∣12
∫
Ω

3∑
i=1

2∑
j=1

∂vi
∂xj

(wizj + ziwj) dx

∣∣∣∣∣∣ ≤ ‖w‖L4(Ω)‖z‖L4(Ω)‖v‖V ,

D
ow

nl
oa

de
d 

06
/1

6/
14

 to
 1

8.
51

.1
.8

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A258 MASAYUKI YANO

where the L4(Ω) norm for the vector field is as specified in section 2.1. Thus, the above
weak formulation of the Boussinesq equations conforms to the abstract formulation
of section 2.1.

The dual norm of the output functional (5.1) is bounded by

‖�‖2X ′ = sup
w∈Xδ

(
1

T |Γ2|
∫
I

∫
Γ2
w3dxdt

)2
‖w‖2Xδ

≤ sup
w∈Xδ

1
T |Γ2|

∫
I

∫
Γ2
w2

3dxdt

1
Pr

∫
I

∫
Ω
∇w3 · ∇w3dxdt

=
4Pr

T |Γ2|
,

where the inequality follows from ‖w‖2Xδ
≥ ‖w‖2L2(I;V ) ≥

1
Pr‖w3‖2L2(I;H1(Ω)) and the

last equality follows from recognizing the supremizer is w1 = w2 = 0, w3 = x (and
its scalar multiples). For the particular laterally heated flows of interest, the upper
bound of the dual norm evaluates to ‖�‖X ′

δ
≈ 0.3464.

5.3. Finite element discretization. We use P
2-P1 Taylor–Hood elements for

our finite element approximation. Namely, our discrete spatial approximation space
is

Vh ≡
{
w ∈ V : w|κ ∈ [P2(κ)]3, κ ∈ Th;

∫
Ω

∇ · wqdx, ∀q ∈ QN
}
,(5.2)

where QN = {q ∈ Q : q|κ ∈ P
1(κ), κ ∈ Th;

∫
Ω
qdx = 0}. Conceptually, it is straight-

forward to consider the divergence-free space for the evaluation of the finite element
solution and the associated reduced basis pieces: the dual norm of the residual, the inf-
sup constant, and the Sobolev embedding constant. Of course, in practice, we impose
the divergence-free condition using Lagrange multipliers; the computational detail is
summarized in Appendix A. The finite element discretization contains approximately
8,300 spatial degrees of freedom. We employ the P2 discontinuous Galerkin discretiza-
tion for temporal integration with K = 32 time steps. Thus, the total number of
space-time degrees of freedom for our finite element discretization is N ≈ 800,000.

5.4. Results. We assess the ability of our space-time certified reduced basis
formulation to approximate and certify the solution of the laterally heated cavity
flow as the Grashof number is varied from 1 to 150,000. The flow behaviors for the
Grashof numbers of 6,000, 100,000, and 150,000 are depicted in Figure 5.2. For each
case, the figure shows streamlines and isotherms at the final time (t = T ) as well
as the velocity history at (x, y) = (1.25, 0.73). At the Grashof number of 6,000, the
flow exhibits little nonlinear behavior, as is evident from straight and equispaced
isotherms in Figure 5.2(a). At the Grashof number of 100,000, convection plays an
important role in characterizing the flow, as shown in Figure 5.2(b); this is evident
from the characteristic “S” shape in the isotherms. However, the flow reaches steady
state after the initial transient. At the Grashof number of 150,000, the flow exhibits
steady-periodic behavior, as shown in Figure 5.2(c).

For purposes of comparison, we note that the classical time-marching L2(Ω) error
bound [19, 16] is inadequate for the certification of the flow considered in this work.
The parameter that dictates the growth of the time-marching L2(Ω) error bound is
the stability constant9

ω(t) ≡ inf
v∈Vh

a0(v, v) + 2
∑Qa

q=1 aq(v, v;μ) + 4
∑Qc

q=1 cq(v, uδ(t), v;μ)

‖v‖2L2(Ω)

;

it can be shown that, in the limit of Δt → 0 by considering the continuous evolu-

9The constant slightly differs from that in [16] due to the difference in the trilinear forms.
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(a) Gr = 6,000
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(b) Gr = 100,000
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(c) Gr = 150,000

Fig. 5.2. Streamlines at t = T (top left), isotherms at t = T (bottom left), and velocity history
at (x, y) = (1.25, 0.73) (right) for three different values of the Grashof number. The streamlines
correspond to evenly divided stream function values within each figure, and the isotherms are in
increments of 0.05.

tion equation, the time-marching L2(Ω) error bound takes the form ‖e(T )‖2L2(Ω) �
ε2V ′ω−1(− exp(−ωT ) + 1), where ε2V ′ is the L2(I) integral of the dual norm of the
spatial residual.10 The stability constant ω associated with the steady-state solutions

10To simplify the expression for the bound, we consider a case in which the stability factor ω is
invariant in time; however, the analysis readily extends to a nonstationary ω.
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of the Gr = 20,000, 30,000, and 40,000 flows are, respectively, ω ≈ −48, −380, and
−1300; the associated amplification factors for T = 0.5 are ω−1(− exp(−ωT ) + 1) ≈
5 × 108, 1079, and 10284. We observe that even if the residual is small, the classi-
cal time-marching L2(Ω) error bounds would be too pessimistic to be meaningful for
Gr ≥ 30,000; thus, we will not consider the classical time-marching formulation in
this work.

We now study the behavior of the space-time reduced basis approximation and the
associated space-time error bounds. We apply the hp-adaptive sampling algorithm to
the flow of interest. The algorithm parameters are set as follows: the training set Ξ is
a set of 1,000 points equidistributed over D ≡ [1, 150,000]; SCM sampling parameters

are β̄μ̄,LB,tolN = 0.25 and βgap,tol
N = 0.25; and the target error tolerance is Δtol = 0.01.

Figure 5.3 shows the result of applying the space-time certified reduced basis
method to the laterally heated cavity flow. The hp-adaptive reduced basis yields 25
partitions; the reduced basis dimension for each partition varies from three to six, as
shown in Figure 5.3(a), and the total of 125 reduced basis functions span the entire
parameter space. The reduced basis sample points are marked by circles.11 Note that
our space-time formulation requires a large number of finite element offline solves
to cover the parameter domain, as the formulation only generates one reduced basis
snapshot from each offline solve. This is unlike in the POD-Greedy approximation,
in which a large number of spatial snapshots (and hence a large reduced basis space)
may be generated from a single offline solve of the evolution equation.

Figure 5.3(b) shows the behavior of the inf-sup lower bound over the parameter
domain. We observe a rapid decay of the inf-sup lower bound away from each anchor
point, especially in the high Grashof number regime; the decay suggests significant
variations in the space-time dynamics induced by a small change in the parameter.
For this reason, a relatively large number of SCM anchor points (and hence small par-
titions) are used to maintain positive inf-sup lower bounds over the entire parameter
domain.

Figure 5.3(c) shows the variation in the Xδ error bound with the parameter.
Note that while the target Xδ error for the reduced-order model is 0.01, the actual
error bound is driven to a much lower value. This is precisely due to the limitation
noted in Remark 3.6; the BRR error bound cannot certify a low-fidelity reduced
basis approximation that does not meet the residual criterion (3.8). For example, for
the worst case of Gr = 150,000, the constants in (3.11) of Remark 3.6 evaluate to
βLB
N ≈ 0.0121, Θc1 ≈ 387, Cc1 = 1, and ρ = 0.5. This yields the maximum certifiable

error of approximately 6.25×10−5, which is significantly smaller than the target error
of 0.01. Nevertheless, the space-time formulation provides a certified reduced basis
approximation of a high Grashof number (Gr = 150,000) flow that exhibits limited
stability, a marked contrast to the classical time-marching L2(Ω) error bound that
becomes meaningless for a Grashof number over 30,000.

Figure 5.3(d) shows the variation in the time-integrated average temperature on
the right boundary and associated error bound with the Grashof number. As the
convection effect becomes more dominant, the temperature decreases for the constant
heat-flux configuration considered. Note that the output error bound is very tight;
recall that the output error bound is approximately 0.3464 times the Xδ error bound
shown in Figure 5.3(c).

11As noted in section 4, a reduced basis sampling point sometimes falls outside of the final subdo-
main with which it is associated; this is due the change in the subdomain, which is implicitly defined
by the positive (more precisely, threshold) inf-sup constraint, with N .
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Fig. 5.3. Results of applying the space-time certified reduced basis method to the laterally heated
cavity flow. (See the main text for descriptions.)

Last, let us make a few comments regarding the offline and online computational
performance of the certified reduced basis method.12 For the Gr = 150,000 case, the
solution of the finite element discretization with N ≈ 800,000 degrees of freedom re-
quires about 520 seconds. The certified reduced basis method requires, in the online
stage, about 0.016 seconds to generate a reduced basis approximation and an asso-
ciated error bound of less than 10−5 in the Xδ-norm; the rapid computation in the
online stage is due to the space-time formulation whose online cost is independent of
the number of time steps. On the other hand, the space-time formulation requires a
significant computational effort in the offline stage, as the method requires not only a
large number (in this particular case 125) truth solves but also computation of various
space-time eigenproblems that, even with the time-marching procedures described in
section 3.4.2, are still computationally intensive.

6. Conclusions. We considered a certified reduced basis method for long-time
integration of parametrized PDEs with quadratic nonlinearity that exhibit limited

12The research code developed in this work is a hybrid of MATLAB and C (via mex) and is not
optimized for computational performance. However, we believe the relative speedup achieved by the
certified reduced basis method here is indicative of the relative speedup that would be observed in
comparing optimized finite element and reduced basis codes.
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stability (noncoercive). We incorporated several new components into the previous
work on space-time certification [25, 28]: a DG-in-time discretization and the associ-
ated norms that provide favorable stability properties; an hp Petrov–Galerkin reduced
basis approximation that offers guaranteed stability; a variant of the natural norm
SCM with considerations for the nonlinear equation and an associated efficient space-
time computational strategy; and an hp sampling strategy for the nonlinear equation
with limited stability. We applied the method to the unsteady Boussinesq equations
that exhibit qualitatively different responses as the Grashof number increases: from
a Stokes-like smooth transition to a steady-periodic response. We demonstrated that
rigorous long-time a posteriori error bounds are possible for unstable hydrodynamic
systems—systems that could not be certified with the classical time-marching L2(Ω)
error bounds; the method is able to rigorously confirm that changes in flow regime
are not the result of an overly truncated low-order model, which is a demonstrated
danger in a reduced-order approximation of unsteady flows [7].

We have however observed a number of limitations of the space-time formulation;
we now reiterate these points and propose future work. First, the space-time approach
requires a large offline computational effort due to the small dimension of the reduced
basis space constructed from a single truth solve compared to, say, the POD-Greedy
approach; future work will consider incorporation of a POD-Greedy approximation
within the space-time certification framework, in particular, as regards the inf-sup
(lower bound) calculation. Second, the BRR formulation, while providing rigorous
bounds for nonlinear equations, places a very stringent requirement on the size of the
normalized residual; while this limitation might be difficult to mitigate from a purely
computational perspective, we will consider if in particular target applications—for
example an estimation or controls—this effect can be mitigated through the incorpo-
ration of data. Lastly, we note that the substantial offline cost prohibits the treatment
of significant variations in many parameters; however, an interpretation of the space-
time variational formulation [27] provides a framework to demonstrate stability with
respect to (very) small disturbances of potentially high dimensionality (for example,
in initial conditions): the interpretation relies on BRR and the space-time inf-sup
(and the associated computational strategy) introduced in this work.

Appendix A. Computation in divergence-free space. In this appendix, we
present details regarding computation in the divergence-free space approximated by
P
2-P1 Taylor–Hood elements (5.2). As our objective is to illustrate the divergence-free

aspect of the computational procedure, we consider the Stokes equations: find u ∈ X
such that

∂G(u, v) = Ṁδ(u, v) +A(u, v) = F(v) ∀v ∈ Y ;

the extension to the multiparameter Boussinesq equations is straightforward.
Let {χj}nv

j=1 be a (vector valued) P2 spatial basis for the velocity field and {υj}np

j=1

be a P
1 spatial basis for the pressure field. The spatial velocity mass matrix ms ∈

R
nv×nv , the velocity Laplacian matrix a ∈ R

nv×nv , the divergence-free constraint
matrix b ∈ R

nv×np , and the load vector f ∈ R
nv are given by

ms,ij ≡ (χj , χi)L2(Ω), aij ≡ a(χj , χi) =
∫
Ω

∂χi
∂xk

∂χj
∂xk

dx,

bij ≡ b(υj , χi) = −
∫
Ω

∂χi
∂xi

υjdx, f i ≡ f(χi) .
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We then introduce (nv + np)× (nv + np) expanded spatial matrices and a (nv + np)
expanded vector

m̃s ≡
[

m 0
0 0

]
, ã ≡

[
a 0
0 0

]
, b̃ ≡

[
0 b

bT 0

]
, and f̃ =

[
f
0

]
.

Note that ã+ b̃ is the standard saddle-point matrix associated with the steady-state
discretization of the Stokes equations by the Taylor–Hood elements.

Let {σj}nt

j=1, nt ≡ (p+1)K, be a temporal DG basis. The temporal mass matrix

mt ∈ R
nt×nt , the evolution matrix ṁt ∈ R

nt×nt , and the initial condition matrix
mt0 ∈ R

nt×nt are given by

mt,ij ≡
∫
I

σi(t)σj(t)dt,

ṁt,ij ≡
K∑
k=1

∫
Ik
σi(t)

∂σj(t)

∂t
dt+

K−1∑
k=1

σi(tk+)(σ
j(tk+)− σj(tk−)),

mt0,ij ≡ σi(t0+)σj(t0+) .

These matrices may be tensorized to emphasize their block structures; for instance, by
introducing reference elemental basis {ξj}p+1

j=1 , by forming a (p+1)× (p+1) reference

elemental matrixme,ij ≡
∫ 1

0 ξi(t)ξj(t)dt, and by introducing a diagonal scaling matrix
dt = diag(Δt1, . . . ,ΔtK) ∈ R

K , we have mt = dt ⊗me. While we take advantage
of this tensorization in our implementation, for notational simplicity, we will not use
the tensorized form for the presentation here.

We now introduce the “forward” space-time operator associated with the bilinear
form ∂G that acts on the velocity-pressure space

G̃ = ṁt ⊗ m̃s +mt ⊗ ã+mt0 ⊗ m̃s .

The corresponding “inverse” operator that appropriately enforces the divergence-free
constraint is

G̃−1
c = (G̃+mt ⊗ b̃)−1.

Then, the space-time finite element coefficient vector ũ ∈ R
K(p+1)(nv+np) such that

u(t, x) = ũki σ
k(t)χi(x) and p(t, x) = ũknv+iσ

k(t)υi(x) is the solution of

G̃cũ = F̃ ,

where the load vector is given by F̃ = mt⊗f̃ . Note that f̃ (and hence F̃) has zeros for
the entries corresponding to the continuity equation and b̃ (and hence mt⊗ b̃) has the
divergence operator for the entries corresponding to the continuity equation; together,
they enforce the divergence-free constraint. We emphasize that G̃c operates on the
velocity-pressure space (i.e., the velocity-Lagrange-multiplier space) of the dimension
R
K(p+1)(nv+np) and is different from the operator G in sections 3.4.2 and 3.5 that

operates on the divergence-free space; however, the application of G̃−1
c onto a vector

with zeros for the continuity equation produces the result of applying G−1 in the
divergence-free space.
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Similarly, all the action of the Y, Y−1, X, and X−1 operators that appear in
sections 3.4.2 and 3.5 are accomplished by using the following expanded velocity-
pressure matrices:

Ỹ = mt ⊗ ã+mt0 ⊗ m̃s, Ỹ−1
c = (Ỹ +mt ⊗ b̃)−1,

X̃ = G̃T
heatỸ

−1
c G̃heat, X̃−1

c = (G̃heat +mt ⊗ b)−1Ỹ(G̃heat +mt ⊗ b)−T .

For instance, we may express the inf-sup eigenproblem (3.28) using the space-time
expanded matrices: Find (w̃, λ) ∈ R

nv+np × R such that

G̃cỸ
−1
c G̃cw̃ = λX̃w̃ .

The generation of an effective Krylov space for the minimum eigenvalue is accom-
plished by ṽ ← G̃−1

c ỸG̃−T
c X̃ṽ; the resulting Krylov space is clearly divergence free.

(Alternatively, ṽ ← G̃−1
c ỸcG̃

−T
c X̃ṽ can be used. Up to rounding errors, the two ve-

locity spaces are identical; however, the pressure approximations are different (which
does not affect the inf-sup constant in our context).)

Appendix B. List of variables. Table B.1 provides a list of select variables
used in this work and their short descriptions. Not all variables are listed; the list is
limited to those variables that appear across multiple subsections and in particular
those used in the description of the hp-adaptive sampling algorithm in section 4.

Table B.1

List of select variables and their brief descriptions.

Variable Description
G(·, ·; ·), Gδ(·, ·; ·) space-time semilinear form (continuous/discrete)

∂G(·, ·, ·; ·), ∂Gδ(·, ·, ·; ·) space-time linearized form (continuous/discrete)

F(·; ·), A(·, ·; ·), C(·, ·, ·; ·) space-time parametrized linear, bilinear, and trilinear forms

Fq(·), Aq(·, ·), Cq(·, ·, ·) μ-independent space-time forms for affine expansion

Θf
q (·), Θa

q (·), Θc
q(·) μ-dependent functions for affine expansion

Qf , Qa, Qc number of terms in affine expansion

Ξ reduced basis training points

N dimension of the space-time reduced basis space

uδ(μ) finite element approximation

uN (μ) reduced basis approximation

βN (μ) inf-sup constant for ∂Gδ(·, uN (μ), ·;μ)
βLB
N (μ) a lower bound of βN (μ)

β̄μ̄
N (μ) inf-sup constant correction factor about μ̄

β̄μ̄,LB
N (μ), β̄μ̄,UB

N (μ) a lower/upper bound of β̄μ̄
N (μ)

μ̄ SCM anchor point

Bμ̄ SCM bounding box

MSCM SCM control points

ZLB
N , ZUB

N SCM set for evaluation of β̄μ̄,LB
N (μ), β̄μ̄,UB

N (μ)

β̄μ̄,LB,tol
N , βgap,tol

N SCM threshold parameters

εN (μ) residual dual norm

γ(μ) continuity constant for the trilinear form C
ρ L4(I;L4(Ω))-Xδ Sobolev embedding constant

τN (μ) BRR normalized residual

ΔN (μ) error bound

Δtol error bound tolerance
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