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We consider hundreds of thousands of individual economic transactions to ask: how predictable are
consumers in their merchant visitation patterns? Our results suggest that, in the long-run, much of our
seemingly elective activity is actually highly predictable. Notwithstanding a wide range of individual
preferences, shoppers share regularities in how they visit merchant locations over time. Yet while aggregate
behavior is largely predictable, the interleaving of shopping events introduces important stochastic elements
at short time scales. These short- and long-scale patterns suggest a theoretical upper bound on predictability,
and describe the accuracy of a Markov model in predicting a person’s next location. We incorporate
population-level transition probabilities in the predictive models, and find that in many cases these improve
accuracy. While our results point to the elusiveness of precise predictions about where a person will go next,
they suggest the existence, at large time-scales, of regularities across the population.

H
uman economic behavior is curbed by human geography: constraints on mobility determine where we can
go and what we can buy. At the same time, the electiveness of shopping itself drives our movement.
Understanding consumer patterns is important not only for modeling the dynamics of a market, but also

in discovering how past performance predicts future behavior at the individual level. We are concerned less with
predicting how much is spent or what is bought, and rather with where a person will go next.

Economic models of consumption incorporate constraint and choice to varying degrees. In part, shopping is
driven by basic needs and constraints, with demand shaped by price, information and accessibility1,2. At the same
time, it is believed that shoppers will opt for greater variety if possible3, although empirical work finds that
behaviors such as choice aversion4 and brand-loyalty can limit search5–7. How do choice and constraint connect?
Investigations with mobile phone data find that individual trajectories are largely predictable8–11. Yet these models
say little about the motivation for movement. At the same time, models of small-scale decision-making12–15 leave
open the question of how individual heuristics might form large-scale patterns.

Here, we draw on a unique set of individual shopping data, with tens of thousands of individual time series
representing a set of uniquely identified merchant locations, to examine how choice and necessity determine the
predictability of human behavior. Data from a wealth of sensors might be captured at some arbitrary waypoint in
an individual’s daily trajectory, but a store is a destination, and ultimately, a nexus for human social and economic
activity.

We use time series of de-identified credit card accounts from two major financial institutions, one of them
North American and the other European. Each account corresponds to a single individual’s chronologically
ordered time series of purchases over 6–11 months, revealing not only how much money he spends, but how he
allocates his time across multiple merchants. We filter for time series most likely to represent real individuals
rather than cards used by multiple people, or cards representing infrequent or corporate usage. This leaves us with
time series with at least 10 but no more than 50 unique stores per month, as well as at least 50 but no more than
120 purchases per month. The data is further described in the Methods section.

To quantify the predictability of shopping patterns, we compare individuals using two measures will be NEXT.
First, we consider static predictability, using temporally-uncorrelated (TU) entropy to theoretically bound, and a
frequentist model to predict where a person will be. Second, we consider a person’s dynamics, by taking into
account the sequence in which he visits stores. Here we use an estimate of sequence-dependent (SD) entropy to
measure, and a set of Markov Chain models to predict location. Both entropy measures, and predictive model, are
defined fully below.
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Results
At longer time scales, shopping behavior is constrained by some of
the same features that have been seen to govern human mobility
patterns. We find that despite varied individual preferences, shop-
pers are on the whole very similar in their overall statistical patterns,
and return to stores with remarkable regularity: a Zipf ’s law P(r) ,
r2a (with exponent a equal to 0.80 and 1.13 for the North American
and European datasets respectively) describes the frequency with
which a customer visits a store at rank r (where r 5 3 is his third
most-frequented store, for example), independent of the total num-
ber of stores visited in a three-month period, see Figure 1. This holds
true despite cultural differences between the North American and
Europe in consumption patterns and the use of credit cards. While
our main focus is not the defense of any particular functional form or
generative model of visitation patterns, our results support those of
other studies showing the (power law) distribution of human and
animal visitation to a set of sites16–19.

A universal measure of individual predictability would be useful in
quantifying the relative regularity of a shopper. How much informa-
tion is in a shopper’s time series of consecutive stores?

Informational entropy20 is commonly used to characterize the
overall predictability of a system from which we have a time series
of observations. It has also been used to show similarities and differ-
ences across individuals in a population21.

We consider two measures of entropy:

(i) The temporally-uncorrelated (TU) entropy for any individual
i is equal to Sa

TU~{
P

i[Ma
Pa,i log pa,ið Þ where pa,i is the

probability that user a visited location i. Note this measure is
computed using only visitation frequencies, neglecting the spe-
cific ordering of these visits.

(ii) The sequence-dependent (SD) entropy, which incorporates
compressibility of the sequence of stores visited, is calculated
using the Kolmogorov complexity estimate22,23.

We find a narrow distribution of TU and SD entropies across each
population, Figure 2.

Another dataset, using cell phone traces24, also finds a narrow
distribution of entropies. This is not surprising, given the similarity
of the two measures of individual trajectories across space. Yet we
find a striking difference between the credit card and the cell phone
data. In the shopping data, adding the sequence of stores (to obtain
the SD entropy) has only a minor effect of the distribution, suggest-
ing that individual choices are dynamic at the daily or weekly level.
By contrast, cell phone data shows a larger difference. Why does this
discrepancy occur? A possible explanation is that shoppers spread
their visitation patterns more evenly across multiple locations than
do callers. Even though visitation patterns from callers and from
shoppers follow a Zipf ’s law (figure 1), callers are more likely to be
found at a few most visited locations than are shoppers. This is true,
but to a point. Consumers visit their single top location approxi-
mately 13% (North American) and 22% (European) of the time,
while data from callers indicates more frequent visitation to top
location. Yet shoppers’ patterns follow the same Zipf distribu-
tion seen in the cell phone data, and the narrow distribution of

Figure 1 | Probability of visiting a merchant, as a function of merchant visit rank, aggregated across all individuals. Dashed line correspond to power

law fits P(r) , r2a to the initial part of the probability distribution with a 5 1.13 for the European and a 5 0.80 for the North American database.

Figure 2 | Normalized entropy distributions for the North American and European populations. Normalized entropy is computed by dividing the TU

and SD entropies by the logarithm of the number of different merchants visited by a customer. TU entropy distributions are slightly higher for both

populations.
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temporally-uncorrelated entropy indicates that shoppers are rela-
tively homogenous in their behaviors.

An alternative explanation for our observed closeness of tempor-
ally-uncorrelated and sequence-dependent entropy distributions is
the presence of small-scale interleaving and a dependence on tem-
poral measurement. Over the course of a week a shopper might go
first to the supermarket and then the post office, but he could just as
well reverse this order. The ability to compare individuals is thus
limited by the choice of an appropriate level of temporal resolution
(not necessarily the same for each dataset) to sample the time series.
With the large-scale mobility patterns inferred from cell phones, an
individual is unable to change many routines: he drives to the office
after dropping off the kids at school, while vice versa would not be
possible. In the more finite world of merchants and credit card
swipes, there is space for routines to vary slightly over the course
of a day or week.

To test the extent to which the second hypothesis explains the
discrepancy between shoppers and callers, we simulate the effect of
novel orderings by randomizing shopping sequence within a 24-hour
period, for every day in our sample, and find little change in the
measure of SD entropy. In other words, the re-ordering of shops
on a daily basis does little to increase the predictability of shoppers,
likely because the common instances of order swapping (e.g. coffee
before rather than after lunch) are already represented in the data.
We then increase the sorting window from a single day to two days,
to three days, and so forth.

Yet when we sort the order of shops visited over weekly intervals,
thus imposing artificial regularity on shopping sequence, the true
entropy is reduced significantly (figure 3). If we order over a suffi-
ciently long time period, we approach the values seen in mobile
phone data. Thus entropy is a sampling-dependent measure which
changes for an individual across time, depending on the chosen
window. While consumers’ patterns converge to very regular distri-
butions over the long term, at the small scale shoppers are continually
innovating by creating new paths between stores.

In order to measure the predictability of an individual’s sequence
of visits, we train a set of first order Markov chain models. These
models are based on the transition probabilities between different
states, with the order of stores partially summarized in the first-order
transition matrix. It is thus related to the SD entropy measure. We
measure the probability of being at store x at time t 1 1 as Pr(Xt11 5

xjXt 5 xt) and compare the prediction values to the observed values
for each individual. We build several models, varying the range of
training data from 1 to 6 months of data for each individual, and
compare the model output to test data range of 1 to 4 subsequent
months.

We additionally compare the results of the Markov models to the
simplest naive model, in which the expectation is that an individual
will chose his next store based on his distribution of visitation pat-
terns, e.g. he will always go to one of the top two stores he visited most
frequently in the training window (recall that for most people this
store visitation frequency is on average just 20–35%). Since this is a
simply frequentist approach to the next-place prediction problem, it
is strongly related to TU entropy which is computed using the prob-
ability that a consumer visits a set of stores.

Comparing the match between model and observed data, we find
that using additional months of training does not produce signifi-
cantly better results. Moreover, results show some seasonal depend-
ency (summertime and December have lower prediction accuracy,
for example). For fewer than three months of training data, the
frequentist model does significantly better than the Markov model.
This suggests the existence of a slow rate of environmental change or
exploration that would slowly undermine the model’s accuracy.

For each of the two populations, we next test a global Markov
model, in which all consumers’ transition probabilities are aggre-
gated to train the model. We find that such a model produces slightly
better accuracy that either the naive or the individual-based models
(with accuracy < 25–27%) (figure 4). To test the sensitivity of this
result we take ten global Markov models trained with 5% of time
series, selected randomly. We find the standard deviation of the
accuracy on these ten models increases to 3.6% (from 0.3% using
all data), with similar mean accuracy. Thus the global Markov model
depends on the sample of individuals chosen (for example, a city of
connected individuals versus individuals chosen from 100 random
small towns all over the world), but does in some cases add predictive
power.

As previous work has indicated25, mobility patterns can be pre-
dicted with greater accuracy if we consider the traces of individuals
with related behaviors. In our case, even though we have no informa-
tion about the social network of the customers, we can set a relation-
ship between two people by analyzing the shared merchants they
frequent. The global Markov model adds information about the
plausible space of merchants that an individual can reach, by analyz-
ing the transitions of other customers that have visited the same
places, thus assigning a non-zero probability to places that might
next be visited by a customer.

Yet in almost every case, we find that people are in fact less pre-
dictable that a model based exclusively on their past behavior, or even
that of their peers, would predict. In other words, people continue to
innovate in the trajectories they elect between stores, above and
beyond what a simple rate of new store exploration would predict.

Discussion
Colloquially, an unpredictable person can exhibit one of several pat-
terns: he may be hard to pin down, reliably late, or merely spontan-
eous. As a more formal measure for human behavior, however,
information-theoretic entropy conflates several of these notions. A
person who discovers new shops and impulsively swipes his card
presents a different case than the one who routinely distributes his
purchases between his five favorite shops, yet both time series show a
high TU entropy. Similarly, an estimate of the SD entropy can con-
flate a person who has high regularity at one level of resolution (for
example, on a weekly basis) with one who is predictable at another.

As example, take person A, who has the same schedule every week,
going grocery shopping Monday evening and buying gas Friday
morning. The only variation in A’s routine is that he eats lunch at
a different restaurant every day. On the other hand, person B some-

Figure 3 | Sequence-dependent entropy for a number of "artificially
sorted" sequences. For each window size over which the time series is

sorted, we measure the sequence-dependent entropy for the population

and estimate the error of the mean. The horizontal solid line at the top of

the figure indicates the average SD entropy for the original data whereas the

dashed lines depict the band for the error of the mean.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 3 : 1645 | DOI: 10.1038/srep01645 3



times buys groceries on Tuesdays, and sometimes on Sundays, and
sometimes goes two weeks without a trip to the grocer. But every day,
he goes to the local deli for lunch, after which he buys a coffee at the
cafe next door. These individuals are predictable at different time-
scales, but a global measure of entropy might confuse them as equally
routine.

Entropy remains a useful metric for comparisons between indivi-
duals and datasets (such as in the present and cited studies), but
further work is needed to tease out the correlates of predictability
using measures aligned with observed behavior. Because of its
dependence on sampling window and time intervals, we argue for
moving beyond entropy as a measure of universal or even of relative
predictability. As our results suggest, models using entropy to mea-
sure predictability are not appropriate for the small scale, that is, their
individual patterns of consumption.

Shopping is the expression of both choice and necessity: we buy for
fun and for fuel. The element of choice reduces an individual’s pre-
dictability. In examining the solitary footprints that together com-
prise the invisible hand, we find that shopping is a highly predictable
behavior at longer time scales. However, there exists substantial
unpredictability in the sequence of shopping events over short and
long time scales. We show that under certain conditions, even perfect
observation of an individual’s transition probabilities does no better
than the simplistic assumption that he will go where he goes most
often.

Methods
Data. We sample tens of thousands individual accounts from one North American
and one European financial institution. In the first case we represent purchases made
by over 50 million accounts over a 6-month window in 2010–2011; in the second,

4 million accounts in an 11-month window. Data from transactions included
timestamps with down-to-the-second resolution.

We filter each sample to best capture actual shoppers’ accounts, to have
sufficient data to train the Markov models with time series that span the entire time
window, and to exclude corporate or infrequently used cards. We filter for time series
in which the shopper visits at least 10 but no more than 50 unique stores in every
month, and makes at least 50 but no more than 120 purchases per month. We test the
robustness of this filter by comparing to a set of time series with an average of only one
transaction per day (a much less restrictive filter), and find similar distributions of
entropy for both filters.

The median and 25th/75th percentile merchants per customer in the filtered time
series are 64, 46, and 87 in the North American (6 months) and 101, 69 and 131 in the
European (11 months) dataset.

Kolmogorov estimate of true entropy. Kolmogorov entropy is a measure of the
quantity of information needed to compress a given time series by coding its
component subchains. For instance, if a subchain appears several times within the
series, it can be coded with the same symbol. The more repeated subchains exist, the
less information is need to encode the series.

One of the most widely used methods to estimate Kolmogorov entropy is the
Lempel-Ziv algorithm22,23, which measures SD entropy as:

Sa
SD<

log N
L wð Þh i ð1Þ

where ÆL(w)æ is the average over the lengths of the encoded words.
We can apply the algorithm to observed transitions between locations. A person

with a smaller SD entropy is considered more predictable, as he is more constrained to
the same sub-paths in the same order.

We can ignore the specific transition patterns between locations and simple define
the temporal-uncorrelated (TU) entropy as:

Sa
TU ~{

X

i[Ma

pa,i log pa,ið Þ ð2Þ

Note that random messages over a set of sub-cahins should satisfy Sa
SD<Sa

TU with a
large enough length of message. Given the distributions of the temporal-uncorrelated

Figure 4 | Markov model results for different temporal windows in training and test. The solid red line indicates hit percentage for Markov model,

dashed line exhibits accuracy for the naive model and the pointed line indicates results for the Global Markov model.
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and Kolmogorov entropies across a population, we can analyze the predictability of
the mobility patterns by statistically comparing these two measures.

Markov model. Markov chains are used to model temporal stochastic processes,
in which the present state depends only on the previous one(s). Mathematically,
let Xt be a sequence of random variables such that

P Xt~xt Xt{1~xt{1,Xt{2~xt{2,Xt{3~xt{3, . . .jð Þ~P Xt~xt Xt{1jð Þ ð3Þ

then {Xt} is said to be a Markov process of first order. This process is summarized with
transition matrix P 5 (pij) where pij 5 P(Xt 5 xjjXt–1 5 Xi). Markov chains can be
considered an extension of a simple frequentist model in which

P Xt~xt Xt{1~xt{1,Xt{2~xt{2,Xt{3~xt{3j , . . .ð Þ~P Xt~xtð Þ ð4Þ

applied on every observed state.
If the present transaction location depends in some part on the previous one, a 1st

order Markov model would be able to predict the location with greater accuracy than
a simple frequentist model.

Our methods allow us to note two relationships:

. Temporal-uncorrelated entropy and frequentist model: both use P(Xt 5 xt)
without additional information. Temporal-uncorrelated is a good approximation
of the distribution of states, and is thus related to the performance of
the frequentist model.

. Sequence-dependent entropy and Markov model: SD entropy is a single measure of
all sub-chain frequencies, and is thus related to the accuracy of a 1st order Markov
model, which represents the probability of a single set of sub-chains occuring.
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