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The compartmental models used to study epidemic spreading often assume the same susceptibility for all
individuals, and are therefore, agnostic about the effects that differences in susceptibility can have on
epidemic spreading. Here we show that–for the SIS model–differential susceptibility can make networks
more vulnerable to the spread of diseases when the correlation between a node’s degree and susceptibility are
positive, and less vulnerable when this correlation is negative. Moreover, we show that networks become
more likely to contain a pocket of infection when individuals are more likely to connect with others that have
similar susceptibility (the network is segregated). These results show that the failure to include differential
susceptibility to epidemic models can lead to a systematic over/under estimation of fundamental epidemic
parameters when the structure of the networks is not independent from the susceptibility of the nodes or
when there are correlations between the susceptibility of connected individuals.

T
he contact networks that underlie the spread of diseases, behaviors1 and ideas have heterogeneous topol-
ogies2–4, but also, exhibit heterogeneity in the susceptibility of individuals7–11. In recent years the compart-
mental models used to study the spread of behaviors have been generalized to include the effects of network

topology, but not the effects of both topology and differences in the susceptibility of individuals4,12,13.
Generalizations including the network topology have revealed an intimate connection between the spectral
properties of the contact network, and the basic reproductive number of infectious diseases, showing that for
a network described by an arbitrary degree distribution the basic reproductive number of an infection (R0), is
proportional to the largest eigenvalue of the contact network’s adjacency matrix13. For highly heterogeneous
networks, this eigenvalue is always larger than 1 meaning that network heterogeneity can reduce and even
eliminate the existence of an epidemic threshold.

Our understanding of the role of heterogeneous network topologies in epidemic spreading, however, has not
been matched by a comparable development in our understanding of the role of heterogeneity in the susceptibility
of individuals. Yet, differential susceptibility, defined as the variation in the susceptibility of individuals is as
widespread as network heterogeneity. For example, genetic conditions are known to cause heterogeneous reac-
tions to HIV7,8, H5N1 influenza9, and the Encephalomyocarditis virus10. Differential susceptibility can also be the
result of differences in age as it has been shown in the case of Hantaan Virus in mice11. Other mechanisms leading
to differential susceptibility include previous disease history, obesity, stress, history of drug abuse, physical
trauma or differences in healthcare quality, which could emerge from discriminatory practices or individual
self-selection. The biological prevalence of differential susceptibility, therefore, invites us to ask whether relaxing
the assumptions of homogeneous susceptibility has consequences for the spread of epidemics that are tantamount
to the relaxation of assumptions of homogeneity in the connectivity of the contact network.

The incorporation of differential susceptibility into epidemic models, however, also introduces a new dimen-
sion to epidemic modeling, since there are multiple ways for individuals with differences in susceptibility to be
arranged in a network. For instance, the mixing patterns and segregation of populations14 imply that differential
susceptibility can be structured through non-trivial correlations. Examples here include schools, nursing homes
and hospitals, where children, senior citizens and patients, who can be more susceptible to diseases, spend more
time together. These mixing patterns imply that a complete study of differential susceptibility should consider not
only variations in the susceptibility of individuals, but also the correlations between the susceptibility of indivi-
duals and the positions these occupy in a network.
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Understanding how epidemic spreading is affected by differential
susceptibility can affect a number of policy decisions, since epidemic
models do not only inform the spread of infectious diseases, but also
the spread of behaviors15, such as smoking16; health conditions, such
as obesity1; and digital threats, such as computer and mobile phone
viruses17. Here, however, we show that the failure to consider differ-
ences in the susceptibility of individuals can lead to over- or under-
estimate a network’s vulnerability to epidemic spreading.

In this paper we solve the SIS epidemic model for a contact net-
work with arbitrary network topology and differential susceptibility
and show that its basic reproductive number R0 is proportional to the
maximal eigenvalue of a topology-infection matrix that combines
information on the topology of the network and the susceptibility
of individuals. Using mean-field theory, we look at individual level
correlations between the susceptibility and the degree or connectivity
of individuals and show that positive correlations between suscept-
ibility and degree makes the network more vulnerable to epidemics
(increasing R0), whereas negative correlations make the network less
vulnerable (decrease R0). Finally we look at segregation by studying
the consequences of having individuals connected to other indivi-
duals with similar characteristics and show that segregation signifi-
cantly increases the vulnerability of the network to disease – causing
R0 to increase. To conclude, we illustrate the strong effects of segrega-
tion dynamics on R0 by running a variant of Schelling’s segregation
process19 on a real-world contact network obtained from face-to-face
proximity between students and teachers. This shows then even a
mild level of segregation can drastically increase the critical repro-
ductive number in a network where individuals differ in their
susceptibility.

Results
The basic reproductive number R0 in the SIS model. We begin by
summarizing the main results for the SIS model in heterogeneous
networks without differential susceptibility. This will help us
introduce the methodology and notation that we will use later, and
will also help us compare known results with those obtained for
networks when differential susceptibility is present.

In the SIS model individuals can exist in either of two possible
states: ‘‘healthy’’ or ‘‘infected’’. Healthy individuals are infected when
they come into contact with an infected individual with probability b.
Infected individuals, on the other hand, become once again suscept-
ible with a recovery probability d. When each individual is in contact
with k others, the basic reproductive number of a homogeneous
network takes the form:

Rh
0~

kb

d
ð1Þ

where the superscript h is used to indicate a homogeneous network.
Rh

0 can be interpreted as the average number of new infections that an
infected individual generates during his infective period in a fully
susceptible population. R0 is the quintessential epidemiological para-
meter, since the infection can only spread when an infected indi-
vidual gives rise to one or more new infected (R0 . 1). Because of this,
a central question in epidemiology is under what conditions R0

becomes greater than 1.
In degree heterogeneous networks with no degree-degree correla-

tions and a degree distribution given by P(k) the basic reproductive
number R0 generalizes to3,4

Runc
0 ~

b

d

k2h i
kh i ~Rh

0 1z
sk

kh i

� �2
 !

ð2Þ

where the superscript unc stands for uncorrelated networks, Ækæ is the
average degree of the contact network, Æk2æ is the average of the
degrees squared and sk is the standard deviation of the degree dis-
tribution. Note that when there is no heterogeneity, equation (2)

reduces to equation (1), otherwise Runc
0 wRh

0 since Æk2æ . Ækæ2. In fact,
for highly heterogeneous networks, where the degree distribution
follows a power-law P(k) / k2a with a , 3, sk (and therefore R0)
grows with the network size, implying that the epidemic threshold
vanishes for infinitely large networks (R0 is always larger than 1). It is
worth noting that this result was obtained using the heterogeneous
mean-field (HMF) theory, which neglects both dynamical and topo-
logical correlations. In HMF theory, the actual quenched structure of
the network given by its adjacency matrix Aij is replaced by an
annealed version, in which edges are constantly rewired at a rate
much faster than that of the epidemics, while preserving the degree
distribution P(k)5.

In most real world networks nodes are not connected randomly to
other nodes, and this effect is characterized by what is known as non-
trivial mixing patterns14. In the case of degree heterogeneity these
mixing patterns are captured by the conditional probability P(k9jk)
that a link starting at a node with degree k will end at a node with
degree k9. In this case, the basic reproductive number takes the form12

Rcorr
0 ~

b

d
l1,C ð3Þ

where l1,C is the largest eigenvalue of the degree mixing matrix Ckk9

5 kP(k9jk).
While HMF theory assumes annealed networks, its validity for real

(quenched) networks is limited6. Quenched networks are static,
given by the adjacency matrix A, where aij 5 1 if there is a link
connecting node i to node j and 0 otherwise. A significant improve-
ment over the HMF theory is given by the quenched mean-field
(QMF) theory where it has been shown that the basic reproductive
number takes the form13:

RQMF
0 ~

b

d
l1,A ð4Þ

where l1,A is the largest eigenvalue of the matrix A.

Differential susceptibility. Next, we introduce differential suscep-
tibility by assuming that the susceptibility probability bi is different
for each node i in the network. To further clarity, we consider bi in
terms of the probability that a susceptible individual i gets infected
when in contact with an infected individual.

After taking this consideration into account we proceed by follow-
ing Wang et al.13 and note that for an arbitrary network topology
given by an irreducible non-negative adjacency matrix A 5 [aij]N3N,
the evolution of the SIS model can be written following as:

pi tz1ð Þ~ 1{pi tð Þð Þfi tð Þz 1{dð Þpi tð Þ ð5Þ

where pi(t) is the expected probability that node i will be infected at
time t, and fi(t) is the probability that node i receives the infection
from at least one of its infected neighbors at time t. The probability
fi(t) has the form:

fi tð Þ~1{ P
N

j~1
1{biaijpj tð Þ
� �

: ð6Þ

Equation (5) is a non-linear dynamical system in which the case of no
infection in the network (pi 5 0, i g {1, …, N}) represents a fixed
point of the system that becomes unstable when R0 . 1. To test for
asymptotic stability, we linearize the system (5) around p 5 0 by
removing all higher-order terms of pi(t):

pi tz1ð Þ~ 1{dð Þpi tð Þz
XN

j~1

biaijpj tð Þ~
XN

j~1

mijpj tð Þ: ð7Þ

We note that here we have assumed no differences in the recover-
ability rate of individuals (i.e. delta is constant). Next, we express (7)
in matrix form as:
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p tz1ð Þ~Mp tð Þ ð8Þ

where M 5 [mij], mij 5 biaij 1 Dij(1 2 d) and Dij is the Kronecker
delta. Thus, one gets that the state with no disease is asymptotically
stable if the largest eigenvalue of M, l1,M , 1.

We note that when the origin is asymptotically stable, it is also
globally stable, since

1{pi tð Þð Þfi tð Þƒfi tð Þƒ
XN

j~1

biaijpj tð Þ ð9Þ

where the second inequality follows directly from the Weierstrass
product inequality. Using this, we see that the system satisfies the
inequality

p tð ÞƒMp t{1ð ÞƒMtp 0ð Þ: ð10Þ

Thus, when l1,M , 1, the infection will die out exponentially fast with
a rate determined by l1,M.

Solutions with incomplete information. The connection between
the largest eigenvalue of M (l1,M) and the epidemic threshold
represents a solution of the system that has little practical use in
absence of complete information about the network topology and
the susceptibility of individuals. For the model to be of practical use
we need to estimate l1,M when there is incomplete information about
the topology of the network and/or the distributions of susceptibility
probabilities of individuals. First, we note that the matrix M 5 R 1 (1
2 d)I where R 5 [rij], rij 5 biaij and I is the identity matrix.
Therefore, we can define the threshold at which epidemics begin to
spread through the largest eigenvalue of R and generalize R0 in
equation (4) to:

RQMF
0 ~l1,Rz1{d: ð11Þ

To estimate l1,R when there is incomplete information about the
system, we assume that rij is a random variable following an
arbitrary distribution and use a mean-field approximation rij <
Ærijæ where Ærijæ is the expected value of rij over all possible network
realizations. In a network where the susceptibility bi is assigned
independently of the topology, we have that Ærijjaijæ 5 Æbjaijæ aij 5

Æbæ aij where Æxjyæ is the expected value of x given y. Then we obtain
the basic reproductive number

Rind
0 ~ bh il1,Az1{d: ð12Þ

In the case of uncorrelated networks with heterogeneous degrees, we
relax Ærijæ to the expected number of links between nodes i and j,
which is proportional to the product of the degrees of i and j. Keeping
arbitrary susceptibility probabilities and degrees, we have

rij< rij

� �
~bi

kikj

N kh i : ð13Þ

Since R is an irreducible matrix, the eigenvector v associated with the
maximal eigenvalue l1,R is strictly positive. Additionally, there are no
other positive eigenvectors except positive multiples of v. In this case,
using the positive eigenvector v 5 [vi] with vi 5 kibi, one immediately
obtains the maximal eigenvalue, and therefore the basic reproductive
number

Runc
0 ~

bk2h i
kh i z1{d~

bh i k2h i
kh i z

rsbsk2

kh i z1{d: ð14Þ

where 21 # r # 1 is the Pearson correlation coefficient between the
susceptibility bi and the square of the degree ki of individuals, Æbæ and
Æk2æ are their respective averages, and sb and sk2 are their respective
standard deviations. Looking at equation (14), we point out that even
small correlations between the susceptibility and the degree can lead

to significant over- or underestimation of R0 when the variation in
connectivity, as measured by sk2 , is large compared to the average
connectivity Ækæ, which is the for networks following a heterogeneous
degree distribution.

Networks with non-trivial mixing patterns. We now focus on link
level correlations, where the tendency of individuals to connect to
other individuals with similar characteristics leads to non-trivial
mixing patterns. We note that the same mathematical procedure
can be used for the analysis regardless of whether we have
correlations in susceptibility and constant recovery probability or
vice versa. We consider link level correlations in the degree and
the susceptibility of nodes. Then we approximate rij with Ærijæ, by
using the expected number of links from node with degree ki and
susceptibility bi to node with degree kj and susceptibility bj. The
expected number of links are proportional to the two-point
conditional probability P(k9, b9jk, b):

rij< rij
� �

~
kibiP kj,bjjki,bi

� 	
NP kj,bj

� 	 : ð15Þ

To find the maximal eigenvalue of the matrix R as defined by
equation (15) we need to find a positive vector v 5 [vi] such that

vil1,R~
kibi

N

X
j

P kj,bjjki,bi

� 	
P kj,bj

� 	 vj: ð16Þ

holds for all i. Using some algebraic manipulations, we can rewrite
equation (16):

vil1,R~
kibi

N

X
k0,b0

X
j,kj~k0,bj~b0

P kj,bjjki,bi

� 	
P kj,bj

� 	 vj

2
4

3
5

~
kibi

N

X
k0,b0

P k0,b0jki,bið Þ
P k0,b0ð Þ

X
j,kj~k0,bj~b0

vj

ð17Þ

which holds for every i. Writing
X

j,kj~k0,bj~b0vj~vk0,b0 and sum-

ming these N equations over i where ki 5 k and bi 5 b, we have

vk,bl1,R~
X

i,ki~k,bi~b

kibi

N

X
k0,b0

P k0,b0jki,bið Þ
P k0,b0ð Þ vk0,b0

~kbP k,bð Þ
X
k0,b0

P k0,b0jk,bð Þ
P k0,b0ð Þ vk0,b0

ð18Þ

which holds for every combination of k and b. We can simplify
equation (18) further by writing vk,b~P k,bð Þv̂k,b:

v̂k,bl1,R~
X
k0,b0

kbP k0,b0jk,bð Þv̂k0,b0~l1,Dv̂k,b: ð19Þ

where l1,D is the maximal eigenvalue of the matrix D{k,b}, {k9,b9} 5

kbP(k9, b9jk, b). In other words, the matrices R and D share the same
maximal eigenvalue. So, we will use l1,D as an approximation of the
actual R0 when there is limited information in the network:

R0~l1,Rz1{d<l1,Dz1{d: ð20Þ

Assuming d5j{k, b}j is the number of different combinations of
degree (k) and susceptibility (b) that a node can have in the network,
we have compressed the entire information about the system (net-
work topology and the susceptibilities of nodes) into a coarsened d 3

d matrix. In fact, we can choose d depending on how much informa-
tion we have about the network. For example, we can assign each
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individual to one of 5 degree classes, k 5 1, 2, 4, 8, 16 and to one of 3
susceptibility classes, b 5 blow, bavg, bhigh corresponding to low,
average and high susceptibility respectively. We then only need to
estimate the mixing patterns P(k9, b9jk, b) between the 15 classes of
individuals, as opposed to knowing every entry in the matrix R. The
more classes we have, the more mixing patterns we have to estimate
and the closer l1,D will be to the actual l1,R.

Moreover, if we assume independence between the degree of a
node and its susceptibility, i.e. P(k9, b9jk, b) 5 P(k9jk)P(b9jb) and

choose vk,b~v1
kv2

b where v1~ v1
k


 �
and v2~ v2

b

h i
are the positive

eigenvectors corresponding to the maximal eigenvalues l1,C and
l1,B of the matrices Ckk9 5 kP(k9jk) and Bbb9 5 bP(b9jb) respectively,
we can simplify equation (19):

v1
kv2

bl1,R~
X

k0
kP k0 kjð Þv1

k0

X
b0

bP b0 bjð Þv2
b0~l1,Cl1,Bv1

kv2
b ð21Þ

which gives l1,R 5 l1,Cl1,B and solves the system of equations. Note
that when there is no degree mixing, l1,C 5 Æk2æ / Ækæ. On the other
hand, when there are no mixing patterns in susceptibility, l1,B 5 Æbæ.

Equation (19) allows us to estimate the basic reproductive number
at different granularity depending on how much information we
have about the network topology and the distribution of susceptibil-
ities. However, from the scientific perspective it is still unclear how
the different mixing patterns impact the spread of diseases. To push
our understanding of the effect of differential susceptibility further
we study the effects of segregation in the spread of diseases.

Segregation. Since the contact networks that underlie the spread of a
disease are not only heterogeneous in terms of degree and
susceptibility, but also segregated, we next proceed to solve the
model for the cases where individuals are more likely to connect
with others a similar level of susceptibility. As we will see,
segregation can have an impact in the spreading of a disease that
goes beyond the effects of differential susceptibility.

To understand the effect of segregation, we focus on the case where
the degree of a node is independent of its susceptibility, l1,R 5

l1,Cl1,B, and look respectively, at the limiting cases when there is
no segregation and maximal segregation. Note that in the case of
no segregation P(b9jb) 5 P(b9) and the largest eigenvalue of B is l1,B

5 Æbæ (with eigenvector v, vb 5 b), hence the basic reproductive
number takes the form

R0~ bh il1,Cz1{d: ð22Þ

On the other hand, in the case of maximal segregation, where nodes
only share links with nodes with the same susceptibility, B is diagonal
with b’s as the diagonal elements. In this case, l1,B is equal to the
largest susceptibility in the system bmax. Thus, in the case of maximal
segregation, the basic reproductive number becomes

R0~bmaxl1,Cz1{d: ð23Þ

We note that in this extreme case nodes do not share links outside
their susceptibility class, so the network is made of disconnected
components. Hence, R0 . 1 implies a persistent infection in at least
one of these components. We do want to stress that in general R0 . 1
does not guarantee a macroscopic outbreak in the network, but the
existence of a highly vulnerable pocket, or subgraph, where R0 is
above 1. In this case, the epidemic will be persistent, but will most
likely remain contained.

To obtain general bounds for Rcorr
0 ~l1,Cl1,Bz1{d, we use the

Collatz-Wielandt formula20, which states that the Perron root of a
matrix A is given by r 5 maxvgV f(v), where

f vð Þ~ min
i,vi=0

1
vi

X
j

aijvj and V~ v vj §0 with v=0f g: ð24Þ

Similarly, the min-max version states that r 5 minvgV f(v) where

f vð Þ~ max
i,vi=0

1
vi

X
j

aijvj: ð25Þ

We rewrite the min-max and max-min versions of the Collatz-
Wielandt formula into a form that we will use in the rest of the paper

min
i,vi=0

1
vi

X
j

aijvjƒrƒ max
i,vi=0

1
vi

X
j

aijvj ð26Þ

which holds for all non-negative non-zero vectors v. Assuming the
matrix B is irreducible, the Perron root of B coincides with the largest
eigenvalue l1,B. Thus, using equation (26), we can bound l1,B

min
b,vb=0

b

vb

X
b0

P b0 bjð Þvb0ƒl1,Bƒ max
b,vb=0

b

vb

X
b0

P b0 bjð Þvb0 ð27Þ

where v 5 [vb] can be any non-negative vector. Choosing the vector
v such that vb 5 b in equation (27), we immediately obtain the
bound:

l1,C min
b0

b b0jh iz1{dƒR0ƒl1,C max
b0

b b0jh iz1{d ð28Þ

where Æbjb9æ denotes the average susceptibility of the individuals
connected to an individual with susceptibility b9. These bounds pro-
vide useful information to understand the potential impact of a dis-
ease under limited knowledge about the network topology. We note
that weak segregation limits the variation of Æbjb9æ across the differ-
ent susceptibility classes bounding R0 in a small region around Æbæ.
Strong segregation on the other hand, increases the gap between the
bounds and our uncertainty for R0.

To extend our intuition further we consider a simple network
model with tunable segregation. Here, each node has the same degree
Ækæ and P(b9jb) 5 (1 2 s)/Nb and P(bjb) 5 (1 2 s)/Nb 1 s where Nb

is the number of different susceptibility classes and s g [0, 1] models
the segregation in the network. When s 5 0, P(b9jb) 5 1/Nb 5

P(bjb) and the chances that a node will connect to others is inde-
pendent of the susceptibility b. When, s 5 1, segregation is maximal
(P(bjb) 5 1 and P(b9jb) 5 0) and nodes share links only with others
that have the same susceptibility. In this model, R0 5 l1,Cl1,B 1 1 2 d
5 Ækæ l1,B 1 1 2 d since all nodes have the same degree Ækæ. To derive
bounds for R0 in this segregation model, we note that P(b9jb) 5

(1 2 s)/Nb 1 Dbb9s where Dbb9 is the Kronecker delta. Putting this
into equation (27) we have

l1,Bƒ max
b,vb=0

b 1{sð Þ
Nbvb

X
b0

vb0zsb: ð29Þ

Then choosing vb 5 bP(b) and using the fact that P(b) 5 1/Nb we
have

l1,Bƒ max
b

1{sð Þ bh izsb~ 1{sð Þ bh izsbmax: ð30Þ

On the other hand, the lower bound for l1,B has the form

min
b,vb=0

b 1{sð Þ
Nbvb

X
b0

vb0zsbƒl1,B ð31Þ

where again v 5 [vb] can be any non-negative vector. Note that if
we choose vb 5 1 if b 5 bmax and 0 otherwise, we get the lower
bound

bmax 1{sð Þ
�

Nbzs

 �

ƒl1,B: ð32Þ

Thus, we obtain the bounds for the basic reproductive number:

kh i 1{s
Nb

zs

� �
bmaxz1{dƒR0ƒ kh i 1{sð Þ bh izsbmax½ �z1{d: ð33Þ
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Figure 1 | Impact of segregation on R0. (a) R0 5 l1,B Ækæ 1 1 2 d as a function of the amount of segregation s (solid line) along with the bounds

given by equation (33) (dashed lines) with Nb 5 5 susceptibility classes uniformly spaced between [0.005, 0.025] with Æbæ 5 0.015. Additionally, to

compute an actual value for R0 a degree k 5 25 and d 5 0.5 was assumed. (b) R0 5 l1,R (solid line) and the approximation R0 < l1,D (dashed line) for the

face-to-face proximity school network for different iterations of the segregation process.

Figure 2 | The endemic state for different level of segregations and different susceptibility. (a), (b) and (c) face-to-face proximity school network

with no, mild and high segregation respectively. High susceptibility nodes are colored red. d) The fraction of infected nodes in the endemic state averaged

over 10,000 runs as a function of the susceptibility b1 for the school network with three levels of segregation, along with the critical values of b1 for which

R0 5 l1,R 1 1 2 d 5 1 (inset) denoted as horizontal dashed lines.

www.nature.com/scientificreports
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Fig. 1a shows the basic reproductive number R0 as a function of the
amount of segregation s (solid line) along with the bounds given by
equation (33) (dashed lines). We observe that as the amount of
segregation increases, the network develops a highly susceptible
pocket and R0 tends to Ækæ bmax 1 1 2 d. This increase in vulner-
ability comes from highly susceptible groups of individuals that pro-
vide a stable pocket supporting the infection. The results show that
segregation makes the network of individuals only as strong as its
weakest subgroup. This suggests an immunization strategy that seeks
to identify and target clusters of highly susceptible individuals,
instead of groups of highly susceptible individuals that are connected
to others that are less susceptible.

To illustrate the effects of segregation, we look at a real-world
contact network of face-to-face proximity between students and tea-
chers in a primary school18. Links between A and B denote the
cumulative time spent by A and B in face-to-face proximity, over
one day. For simplicity, we convert this daily network to an
unweighted network by assigning a link between the pair of nodes
that have spent more than 2 minutes of cumulative time in face-to-
face proximity. After discretizing the links, we keep the largest con-
nected component which consists of 225 nodes. We then run a
variation of the Schelling’s segregation process19 where initially each
node is randomly assigned to one of two susceptibility classes. We use
d 5 0.5 and assign high susceptibility nodes bhigh 5 b1 and low
susceptibility nodes with b 5 b1/10, thus having only one parameter
in the network, b1. To segregate this initial network, we assign to each
node i a potential energy jbi 2 Æbæij where Æbæi is the average sus-
ceptibility of i’s neighboring nodes. At each iteration, we swap a
random pair of nodes if this decreases the total potential energy in
the network. With each new iteration, we conserve the distribution of
total susceptibility in the network but increase the level of segrega-
tion. Fig. 1b shows the increase of R0 5 l1,R (solid line) with iterations
of Schelling’s segregation process. The dashed line on the other hand
shows the approximation R0 < l1,D when there is limited informa-
tion in the network. The matrix D is constructed by coarse-graining
the network into 7 degree classes k 5 {1, 2, 4, 8, 16, 32, 64} where each
node is assigned to its nearest degree class and two susceptibility
classes b 5 {b1, b1/10}. It is worth mentioning that we compute
l1,D by estimating only 142 entries of the matrix D, as opposed to
the 2252 entries of the matrix R, which is a significant reduction in the
amount of information we need about the system.

Fig. 2a, 2b and 2c show the primary school network at three
different iterations in the segregation process; no segregation, mild
segregation and high segregation respectively, with high susceptibil-
ity nodes colored red. Fig. 2d shows the average fraction of infected
nodes in the endemic state, r, averaged over 10, 000 simulations, for
different values of b1 for the three networks shown in Fig. 2a, b and c.
As we mentioned earlier, and as can be seen in Fig. 2d, segregation
can change the shape of the epidemic curve and depending on the
network topology, high R0 does not necessarily lead to a high number
of infected nodes in the endemic state. This can happen when there is
extreme segregation and the infection is contained within a small
number of highly susceptibility nodes that have no or little contact to
the rest of the network. In practice, however, we often observe mild
segregation which increases both R0 and the number of infected
nodes in the endemic state. Finally, we compute the critical values
of b1 using equation (11). The inset of Fig. 2d shows r near these
critical values along with the critical values (horizontal dashed lines).

Discussion
In this paper, we extended the SIS model to incorporate heterogen-
eous susceptibility and showed that heterogeneity can significantly
increase the networks’ vulnerability to diseases. For individual level
correlations between the susceptibility and the degree of a node, we
find that approaches using the average susceptibility of the system to
approximate R0 will over- or underestimate the potential spread of

diseases. In other words, when there is variation in susceptibility, the
increase in susceptibility of a few individuals is not necessarily com-
pensated by the decrease in susceptibility of others, since the degrees
and locations of these individuals play an important role. On the other
hand, we found that when nodes with similar characteristics are more
likely to be connected, the vulnerability of the network increases, since
a small group of densely connected high-susceptible individuals can
act as a pocket supporting a persistent infection. Having a formula to
compute R0, however, has little practical use in absence of complete
information about the network topology and the distribution of sus-
ceptibilities. In this case, we provided a method to approximate R0 by
coarse-graining the individual nodes into degree-susceptibility classes
and only estimating the mixing patterns between these classes. Going
forward, it is important that mathematical models of epidemic spread-
ing include the effects of heterogeneous susceptibility to provide more
accurate descriptions of epidemic spreading processes. Otherwise, the
basic reproductive numbers estimated from compartmental models
will be systematically over or underestimated.
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