
Photovoltaic Properties and Size-pH Phase Stability of

Iron Disulfide from Density-Functional Theory

by

Ruoshi Sun

B.S., Materials Science and Engineering, University of Illinois at Urbana-Champaign (2008)

B.S., Mathematics, University of Illinois at Urbana-Champaign (2008)

Submitted to the Department of Materials Science and Engineering
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Materials Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2013

c© Massachusetts Institute of Technology 2013. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Department of Materials Science and Engineering
July 26, 2013

Certified by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Gerbrand Ceder
R. P. Simmons Professor of Materials Science and Engineering

Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Gerbrand Ceder

Chairman, Department Committee on Graduate Students



2



Photovoltaic Properties and Size-pH Phase Stability of Iron
Disulfide from Density-Functional Theory

by
Ruoshi Sun

Submitted to the Department of Materials Science and Engineering
on July 26, 2013, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Materials Science and Engineering

Abstract

Despite its exceptional optical absorptivity, suitable band gap, and earth abundance, the
low open-circuit voltage of pyrite FeS2 has remained the biggest challenge preventing its use
in photovoltaic devices. Two widely-accepted causes are: (i) Fermi level pinning caused by
intrinsic surface states that appear as gap states; (ii) presence of the polymorph marcasite.
Based on density-functional theory (DFT) calculations, (i) the intrinsic (100) surface states
are not gap states but located at the conduction band edge; (ii) epitaxial growth of marcasite
on pyrite is thermodynamically favorable, but its band gap (from Kohn-Sham and ∆-sol
method) is not less than pyrite. It is unlikely that the photovoltaic performance of pyrite is
undermined by intrinsic surface states or marcasite.

The stoichiometry and the ubiquitous observation of unintentional p-type conductivity of
pyrite thin films are investigated via DFT defect computations. Native defects occur in low
concentrations due to high formation energies, implying that pyrite is intrinsically stoichio-
metric. The p-type conductivity can be caused by OS defects under oxidizing conditions.

Band gap engineering of pyrite is studied by alloying with non-rare-earth isovalent ele-
ments via DFT computations. We identify six MS2 candidates that have larger band gaps
than pyrite. Band gap enhancement of pyrite is observed only in the Ru and Os alloyed
systems, but their incorporation into pyrite may be severely limited. All other candidate
alloys exhibit large gap bowing effects due to size and/or electronegativity mismatch.

The effects of particle size and pH on the relative phase stability of pyrite and marcasite
polymorphs are explored. The size effect is incorporated through volume scaling of Wulff
shapes. The pH effect is modeled by generalized, charged surface energies as a result of
ion adsorption from the aqueous environment. Based on joint density-functional theory
calculations, pyrite is unstable in highly acidic conditions due to a negative H+-adsorbed
(110) surface energy, but stabilized for pH & 2. Directions for future work are briefly
discussed.

Thesis Supervisor: Gerbrand Ceder
Title: R. P. Simmons Professor of Materials Science and Engineering
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Chapter 1

Introduction

We waste our lights in vain.

William Shakespeare

A photovoltaic (PV) material is one that can convert light energy into electric energy. Given
the solar spectrum, a PV material must be a semiconductor with a band gap around 1–
2 eV, since much of the absorbed energy is wasted due to thermal relaxation in a small-
gap material, and only a small fraction of the solar spectrum is absorbed by a high-gap
material. A mathematical consideration of the detailed balance between absorption and loss
processes has led to the well-known Shockley-Queisser limit, where a maximum efficiency of
over 30% can, in principle, be obtained for a single-junction material with a 1.4-eV band
gap [1]. Although silicon has a somewhat suboptimal band gap (1.1 eV) and low absorption
coefficient (103 cm−1), it has remained the most favored commercial PV material due to its
abundance, the capability of manufacturing stable and high-purity single crystals on a large
scale (via Czochralski or float-zone methods), and the ease of doping [2].

After decades of device optimization, nowadays commercial Si solar panels have reached
efficiencies around 20%. However, for photovoltaics to become competitive compared to fossil
fuels, the manufacturing cost still needs to be reduced significantly and efficiency should be
maximized. In response to this demand, the rationale of PV research can be divided into two
classes, namely, continued optimization of Si and discovery of new materials. The former is
driven by the motivation of improving the absorption properties of Si, and has led to such
innovations as texturized surfaces and black Si, whereas the latter has led to the design of
“second generation” thin film photovoltaics [e.g., CuInGaSe2 (CIGS) and CdTe] and “third
generation” concepts such as hot carrier cells, intermediate band cells, and multijunction
cells [3].

Motivated by the requirement of scalability and the search for a new material with
potentially better properties than Si, this thesis will focus on the study of pyrite FeS2, the
most abundant sulfide mineral on earth [4].

A second theme of this thesis arises as an attempt to understand the effect of aqueous
environment on the phase stability of a material with competing polymorphs during syn-
thesis. The ability to control the synthesis of the desired phase is of crucial importance in
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the manufacturing industry. We will use the FeS2 polymorphs, pyrite and marcasite, as our
model system.

1.1 Pyrite FeS2 for photovoltaic applications

In many aspects, pyrite is a promising PV material due to its earth-abundance [4], non-
toxic elements, suitable band gap (0.95 eV) [5], and, most importantly, its excellent optical
absorptivity [6]. Although an indirect gap material, its optical absorption coefficient within
the visible light spectrum is on the order of 105 cm−1 [5], outperforming silicon by two
orders of magnitude and even direct gap materials such as GaAs. In a recent cost analysis
for large-scale PV applications, pyrite is ranked number one among all practical or promising
thin-film solar cell materials [7]. However, experiments in the mid-1980s and 1990s show a
persistently low open-circuit voltage (OCV) of around 200 mV, which is the primary factor
that reduces the efficiency of pyrite photoelectrochemical cells to 2% [5]. Thus, it is important
to understand what limits the OCV and how it can be enhanced.

To assess and understand the PV properties of pyrite, we shall investigate the roles of
secondary phases (in particular the polymorph marcasite), intrinsic and extrinsic defects,
and band gap engineering via cation alloying.

1.2 Thermodynamic effects of particle size and pH on

the relative stability of polymorphs

The relative stability of polymorphs under different environments can often be explained
through the effects of the relevant thermodynamic forces. The effect of particle size is well
understood in terms of surface energies and surface-to-bulk ratios [8],

G = gbV + γA, (1.1)

where gb is the bulk Gibbs free energy density, γ is the surface energy, A is the surface
area, and V is the volume of the particle. For instance, the polymorphs of TiO2, ranked in
decreasing order of stability as well as surface energy, are rutile, brookite, and anatase, which
explains the observation that while rutile is the stable phase in the bulk limit, brookite and
anatase are favorable at the nanoscale [8].

Due to the difficulty of the problem, a rigorous and quantitative treatment of γ in aqueous
environments with varying pH has not been achieved. It is obvious that, in the liquid region,
a brute force approach of simulating proton and hydroxyl concentrations spanning 14 orders
of magnitude is not computationally feasible. Likewise, in the solid region, computing total
free energies of single-crystal particles across different length scales is also impossible from
first principles. The solid-liquid interface adds yet another layer of complexity to the picture.
Therefore, as a first approximation, vastly simplifying assumptions must be made, which
will be explicitly stated, in order to improve our understanding of the role of the relevant
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thermodynamic forces in this problem.
We shall address how the combined effects of particle size and pH may alter the stable and

metastable phases using pyrite and marcasite FeS2 as a model system, where the metastable
phase marcasite is known to be stabilized in acidic solutions [9–11].

1.3 Overview of this thesis

The remainder of the thesis is organized as follows. In Chapters 2, 3, and 4, the PV properties
of pyrite are investigated. Specifically, we will examine the roles of intrinsic surface states
and marcasite in Chapter 2. The role of intrinsic defects and oxygen impurities are studied
in Chapter 3, to address whether pyrite is stoichiometric when pure and the cause for its
p-type conductivity. In Chapter 4, we shall look at the feasibility of band gap engineering in
pyrite to see whether its band gap can be enhanced via cation alloying. The general question
of how particle size and pH of the aqueous environment during synthesis affects the relative
stability of polymorphs will then be addressed in Chapter 5, where we shall use the FeS2

polymorphs as a model system. Concluding remarks are finally given in Chapter 6.
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Chapter 2

Electronic structure and relative
stability of pyrite and marcasite

Doubt is not a pleasant condition, but

certainty is absurd.

Voltaire

2.1 Introduction

As mentioned in Chapter 1, its low open-circuit voltage (OCV) has prevented the use of pyrite
as a commercially viable device for PV applications. There have been many proposals in the
literature regarding the cause of the low OCV in pyrite. They can be classified into three main
categories: (i) Intrinsic surface states. Bronold and co-workers have suggested that intrinsic
{100} surface states appear as gap states, thereby pinning the Fermi level [12, 13, 5, 14, 15].
(ii) Presence of marcasite. Wadia and co-workers have suggested that trace amounts of
marcasite, a polymorph of pyrite with a significantly lower band gap, would deteriorate
the photovoltaic performance of pyrite [16, 17]. (iii) Defects. Various research groups have
suggested that electronic states can be introduced into the band gap due to intrinsic defects
such as bulk sulfur vacancies [18, 19] and surface sulfur vacancies [20]. Abd El Halim et al.

have also suggested the possibility of line defects and extrinsic point defects [21]. Oertel et
al. have attributed the poor performance to the limitation of carrier transport by trap states
at grain boundaries [22]. In this study, we mainly focus on the possible role of surface states
(i) and marcasite formation (ii). Our results question these explanations for the low OCV.
The effect of defects (iii) shall be considered in Chapter 3.

In Sec. 2.2, we will first examine the pyrite and marcasite crystal structures, their similar-
ities, and the possibility of marcasite epitaxial growth on pyrite, followed by more detailed
discussions on the different proposed causes for the low OCV of pyrite. First-principles
computational details will be presented in Section 2.3. In Sec. 2.4, we will discuss surface
energies and electronic structure calculations of pyrite, as they are related to the intrinsic
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Figure 2-1: Unit cell of pyrite FeS2. The spheres at fcc sites are Fe atoms. Each Fe atom sits in a
slightly distorted octahedral environment of S atoms, which are located at the octahedral vertices.

surface-state hypothesis (i). In Sec. 2.5, the thermodynamic epitaxial growth condition of
marcasite on pyrite, and the electronic structures of the bulk phases and the pyrite-marcasite
interface will be analyzed to investigate the marcasite hypothesis (ii).

2.2 Background

2.2.1 Pyrite crystal structure

The formula unit of pyrite is FeS2, where the oxidation states of Fe and S are +II and −I,
respectively [23]. The structure belongs to the space group Pa3̄. The conventional unit cell
is shown in Fig. 2-1. (All figures of unit cells and surfaces are generated by vesta [24].) Fe
atoms are located at face-centered cubic (fcc) sites, whereas S atoms form distorted octahedra
around Fe. The positions of all the S atoms can be described by a single Wyckoff parameter,
u. These positions are: ±(u, u, u),±(1

2
+u, u, 1

2
−u),±(u, 1

2
−u, 1

2
+u), and ±(1

2
−u, 1

2
+u, u).

Each S atom is tetrahedrally coordinated by three Fe atoms and one S atom, with which
the S2 dimer is formed [4]. The centers of the S2 dimers form an fcc sublattice that inter-
penetrates the Fe sublattice. Thus, the pyrite structure can be viewed as a slight modification
of the NaCl structure, such that each Cl site is occupied by 〈111〉-oriented S2 dumbbells.

It is well-known from crystal field theory that the energies of transition-metal d orbitals
are non-degenerate within an octahedral environment [25]. Specifically for FeS2, the triply
degenerate dxy, dyz, and dxz states, collectively known as t2g, dominate the valence band
(VB), whereas the doubly degenerate dz2 and dx2−y2 states, collectively known as eg, dominate
the conduction band (CB). Both pyrite and marcasite are low spin (LS) semiconductors
because their t2g levels are fully occupied by the six Fe d electrons [26]. The ligand field
theory of various materials that have the pyrite or marcasite crystal structure is discussed
in Ref. [26].
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Figure 2-2: Unit cell of marcasite FeS2. Black (white) spheres represent Fe (S) atoms. The (101)
plane is highlighted in grey. The octahedra is edge-shared by the S atoms on the (001) faces.

2.2.2 Similarity of pyrite and marcasite crystal structures

Marcasite forms an orthorhombic Pnnm with unit cell shown in Fig. 2-2. Note the octahe-
dral environment around the body-centered Fe atom. By repeating the unit cell, one can see
that the octahedra in marcasite are edge-shared, whereas those in pyrite are corner-shared
(Fig. 2-1). Experimentally, the lattice constant of pyrite is a = 5.416 Å [4]; the lattice
constants of marcasite are a = 4.443 Å, b = 5.425 Å, c = 3.387 Å [27]. Note that the
b-constant and the [101] length (

√
a2 + c2 = 5.587 Å) of marcasite are similar to the pyrite

lattice constant, with lattice mismatches of 0.2% and 3%, respectively. The structural re-
lationship between the different octahedra linkages in pyrite and marcasite is discussed in
Ref. [28]. The pyrite-marcasite structural transformation can be described by a rotation
of Fe–S chains in alternating layers of the (101) marcasite plane, as discussed in Ref. [29].
Indeed, due to their structural similarities, intergrowth/epitaxial growth of marcasite in/on
pyrite has been widely observed [30–32,16]. The thermodynamic conditions for such growth
behavior will be discussed in later sections.

2.2.3 Proposed causes for low OCV of pyrite

Intrinsic surface states

Figure 2-3 shows the (001) surface of pyrite. Of the three possible terminations, only one is
non-polar. [S–Fe–S] patterns repeat along the surface normal direction in Fig. 2-3(a). Polar
surfaces are created from the terminations that yield [S–S–Fe] or [Fe–S–S] as the three layers
nearest to the surface. In the non-polar surface, ending as [S–Fe–S], the coordination number
of a surface Fe atom is 5, being 1 lower than that of a bulk Fe atom. The local coordination
of S around Fe is reduced from octahedral to square pyramidal, as illustrated in Fig. 2-3(b).

The ligand field model developed by Bronold et al. to describe the local electronic struc-
ture is shown schematically in Fig. 2-4 [12]. Bronold et al. estimate the octahedral splitting
energy 10 Dq to be 2 eV based on the centers of mass of the CB and VB density of states
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(DOS), in the electronic structure calculation by Folkerts et al. [33]. Using the splitting en-
ergies of the square pyramidal configuration (dx2−y2 at 9.14 Dq; dz2, dxy at ±0.86 Dq; dxz, dyz
at −4.57 Dq) calculated by Krishnamurthy and Schaap [25], they claim that the dz2 and
dxy states are split off from the eg and t2g states in the CB and VB, respectively, thereby
introducing two gap states a1 and b2 [12]. It should be pointed out that the splitting energies
are greatly influenced by the choice of a free parameter ρ [25]. Without justification, Bronold
et al. implicitly assume ρ = 2 in their model. For this particular choice of ρ, gap states are
centered at 4 Dq (0.8 eV) above the center of mass of the t2g states in the VB and separated
from each other by 1.7 Dq (0.35 eV). They suggest that the Fermi level is pinned by these
states, hence reducing the OCV. As the Bronold model is not free of parameters, we will
examine the claims of gap states by direct ab initio electronic structure calculations.

Presence of marcasite

Phase purity is a critical issue in photovoltaic devices, especially if secondary phases have a
lower band gap than the host material, or if they introduce interfacial states within the band
gap that may lead to Fermi level pinning. For instance, due to its metallic character, trace
amounts of the Fe-deficient pyrrhotite phase (Fe1−xS) are detrimental to the photovoltaic
performance of pyrite [32]. Thomas et al. have shown that there exists a critical S partial
pressure above which growth of pyrrhotite can be avoided [32]. Since pyrrhotite is not
commonly reported to intergrow with pyrite, and the means to prevent its growth have been
developed, the pyrrhotite phase will not be examined in this study.

Another cause for the low OCV of pyrite is attributed to the presence of its poly-
morph, marcasite [16]. Intergrowth of these two phases has been widely reported (see, e.g.,
Refs. [31, 32, 16]). In addition, epitaxial overgrowth of marcasite (101) on pyrite (001) has
been observed from natural samples [30]. While there has been no study on the mechanism
of how marcasite may affect the photovoltaic performance of pyrite, it has been speculated
that the lower gap of marcasite plays a role. There is only one published experimental value
of the band gap of marcasite (0.34 eV), which is much lower than that of pyrite. This value
is obtained using resistivity measurements with the assumption that the carrier mobility is
dominated by lattice scattering [34]. As far as the authors are aware, there are no other
reports on the gap of marcasite and its value has never been verified via a more reliable
and direct method such as optical measurements. Intuitively, one may reason that marca-
site should have a lower gap than pyrite, because marcasite has lower symmetry compared
to pyrite, and hence enhanced crystal-field splitting [35]. Nonetheless, there is no direct,
unambiguous evidence that marcasite has a lower gap than pyrite.

To model the pyrite-marcasite system, one should first understand their relative stability.
From calorimetric measurements, pyrite is the ground-state phase within 5–700 K, and the
marcasite-to-pyrite phase transformation is found to be exothermic [27]. Computationally,
Spagnoli et al. find that the relative phase stability depends on the exchange-correlation func-
tional: while marcasite is the ground state within the local density approximation (LDA)
and the generalized gradient approximation (GGA) within the Perdew-Burke-Ernzerhof for-
mulation (PBE), pyrite is more stable within recently developed GGA functionals such as
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(a)

(b)

Figure 2-3: (a) Side view of the unique, non-polar pyrite (100) surface. Looking along the surface
normal direction (upwards), the atomic layers have the repetitive pattern [S–Fe–S]. Other possible
terminations result in repeating layers of [S–S–Fe] or [Fe–S–S]. In both cases, polar surfaces result.
Hence, this S-terminated surface is the only possible non-polar (100) surface. In (b), note the
octahedral environment around bulk Fe atoms, and the square pyramidal environment around
surface Fe atoms. Black (white) spheres are Fe (S) atoms.
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Figure 2-4: Schematic of the ligand field model developed by Bronold et al. [12]. The CB and VB
are dominated by eg and t2g states, respectively. As a result of symmetry reduction, a1 and b2
states, which correspond to dz2 and dxy states, are introduced within the band gap.

AM05, Wu-Cohen, and PBEsol [17]. There has been no prior computational work on the
thermodynamic stability of epitaxial growth of marcasite on pyrite. Whether interfacial
states are introduced into the pyrite band gap by marcasite is also unknown. All of the
above issues will be addressed in this work.

2.3 Details of first-principles computations

Density-functional theory (DFT) [36,37] calculations with projector augmented wave (PAW)
potentials [38, 39] were performed using the plane-wave code Vienna Ab-initio Simulation
Package (vasp) [40–43]. We used both the local-density approximation (LDA) [44] and
the generalized gradient approximation (GGA) to the exchange-correlation functional. Two
formulations of GGA, namely, Perdew-Burke-Ernzerhof (PBE) [45, 46] and AM05 [47, 48],
were adopted. The spin states of pyrite and marcasite are determined from spin-polarized
DFT calculations [49, 50]. For cases in which the Hubbard U correction within the Liecht-
enstein scheme [51] was applied to GGA calculations, we chose the parameters U = 3 eV
and J = 1 eV that correctly predict the high spin state of Fe under negative pressure, as
discussed in Ref. [52].

The plane wave energy cutoff was 350 eV for all calculations. Within each self-consistency
cycle, the total energy was converged to within 10−6 eV. Forces in ionic relaxations were
converged to within 0.01 eV/Å. Convergence tests with respect to energy cutoff, Monkhorst-
Pack [53] k-point density, supercell size, and vacuum size were performed such that surface
and interfacial energies were converged to within 0.01 J/m2. For bulk reference energies, we
used a k-mesh of 8 × 8 × 8 for pyrite (12-atom unit cell) and 8 × 6 × 10 for marcasite (6-
atom unit cell). Kohn-Sham gaps were computed using a Γ-centered k-mesh of 16× 16× 16
for pyrite and 16 × 12 × 20 for marcasite. Band structures were obtained from subsequent
non-self-consistent calculations with 15 k-points per high-symmetry line. For surface and
interfacial calculations, we used a k-mesh of 4 × 4 × 1. Surface terminations were chosen
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Table 2.1: Slab and vacuum size used to obtain pyrite surface energies. Here we define a unit cell as
the smallest orthorhombic cell whose basal plane is the desired surface. The number of repetitions
of such a cell along the z direction is denoted by N . This should not be confused with the definition
of the number of [S–Fe–S] layers in Sec. 2.5.

Surface N Vacuum size (Å)
(100) 2 6
(110) 2 8
(111) 1 6
(210) 1 8

to generate non-polar supercells, avoiding dipole effects under periodic boundary conditions
(see Ref. [54] for details). Details of the approach used to obtain surface and interfacial
energies converged with respect to slab and vacuum sizes are given in the next subsection.
At convergence, the (100), (110), (111), and (210) pyrite slabs contained 24, 48, 72, and 60
atoms, respectively. Supercells of the pyrite-marcasite interface contained 36 (N = 3) to 120
(N = 10) atoms. (See Sec. 2.5.3 for the definition of N .)

2.3.1 Calculation method for surface and interfacial energies

Surface energies were calculated from the equation

γ = lim
N→∞

EN
slab −NEbulk

2A
, (2.1)

where EN
slab and Ebulk are the total energies of the slab and bulk, respectively, N is the

supercell size, A = ||T1×T2|| is the cross-sectional area of the supercell (Ti is the translation
vector along the i direction, where i = 1, 2, 3 corresponds to x, y, z), and the factor of 2
accounts for the presence of 2 surfaces under periodic boundary conditions. Surface energies
were relaxed and converged to within 0.01 J/m2 with respect to the number of layers and
vacuum size (Table 2.1).

The interfacial energy between two phases α and β can be calculated from

γαβ = lim
Nα,Nβ→∞

E
Nα+Nβ

int −NαE
α
bulk −NβE

β
bulk

2A
, (2.2)

where N denotes the number of layers for each phase. However, due to different cell shapes
and k-point densities, it may be inaccurate to use the bulk energies obtained from unit cell
calculations as reference energies for the supercells. Instead, one can obtain the average bulk
reference energy, Eb, by fitting the total energy of the interface supercell versus the number
of layers with a straight line, in the fashion developed by Fiorentini and Methfessel [55].
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Note that when N = Nα = Nβ ,

E2N
int ≈ 2γαβA +NEbulk. (2.3)

The bulk reference energy Ebulk must be fitted separately for each θ and parity of N . Sub-
stituting the fitted Ebulk into Eq. (2.2), γ can be obtained as a function of N .

We use the Fiorentini-Methfessel method [55] to obtain the interfacial energy between
marcasite and pyrite. The marcasite (101) cell is strained such that a′ ≡

√
a2m + c2m = ap,

bm = ap, and c/a = 1, as discussed in the main text. By inserting a vacuum layer to this cell,
the marcasite (101) surface energy is calculated to be 0.72 J/m2. The corresponding strain
energies within GGA-PBE are given in Table 2.4. The strain energies are on the order of
100 meV/FU, much higher than the relative stability energy between the two phases, which
is on the order of 10 meV/FU, from Table 2.3.

2.4 Intrinsic pyrite (100) surface

We divide our results into two parts. In this section (2.4), we present the surface energies
of pyrite (2.4.1) and electronic densities of states (DOS) for the dominant surface (2.4.2).
We compare our first-principles calculations with the ligand field calculations of Bronold et

al. [12]. In Sec. 2.5, we first show how the bulk, surface, interfacial, and strain energies
of pyrite and marcasite are used in an energy model to predict whether epitaxial growth of
marcasite on pyrite is thermodynamically favorable (Secs. 2.5.2 and 2.5.3). We then examine
the electronic structure at the pyrite-marcasite interface to verify whether marcasite can
undermine the OCV of pyrite (Secs. 2.5.4 and 2.5.5).

2.4.1 Surface energies

The most commonly observed surfaces of pyrite are {100}, {110}, {111}, and {210} [4].
Figures 2-3, 2-5, 2-6, and 2-7 show the corresponding structures. A detailed description
of the structures of these surfaces can be found in Refs. [56–58]. The surface energies are
calculated via Eq. (2.1). For all functionals used, the {100} surface has the lowest energy,
as shown in Table 2.2. Our PBE surface energies agree well with another first-principles
investigation by Hung et al., who used the same exchange-correlation functional [56, 57].
We observe that the surface energies are lowest in PBE, followed by AM05, and largest
in LDA. However, the relative magnitudes are consistent across functionals. The Wulff
shape, i.e., the equilibrium shape of a single crystal, of pyrite is shown in Fig. 2-8. Besides
the dominant {100} surface, only {111} facets are observed. Hence, the minimum-energy
structure of pyrite is the cubo-octahedral structure. Since the relative surface energies are
similar for different functionals, the predicted Wulff shape is independent of the functional
used, despite significant functional dependence of the surface energies themselves.
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Figure 2-5: Side view of pyrite (110) surface. Black (white) spheres are Fe (S) atoms. The surface
is non-polar and S-terminated.

Figure 2-6: Side view of pyrite (111) surface. Black (white) spheres are Fe (S) atoms. The surface
is non-polar and S-terminated.

Table 2.2: Relaxed surface energies (in J/m2) of pyrite FeS2. PBE results are compared with
Refs. [56, 57], where PBE was used. AM05 energies for (111) and (210) surfaces are not available
due to convergence issues.

Surface LDA AM05 PBE Hung et al. [56, 57]
(100) 1.58 1.26 1.04 1.06
(110) 2.38 2.02 1.72 1.68
(111) 2.01 - 1.43 1.40
(210) 2.13 - 1.49 1.50
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Figure 2-7: Side view of pyrite (210) surface. Black (white) spheres are Fe (S) atoms. The surface
is non-polar and S-terminated.

Figure 2-8: Wulff shape of pyrite within GGA-PBE. Surface energies are taken from Table 2.2.
The dominant surface is {100}. {111} facets are also observed. The equilibrium shape is cubo-
octahedral.
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Figure 2-9: GGA-PBE DOS of pyrite (a) bulk; (b) (001) surface. In (a), both the total DOS and
s-p-d decomposed DOS are shown. The CB and VB are dominated by Fe d states. We have verified
that these d states within the CB and VB are eg and t2g, respectively. Due to the presence of a S
p state, the CB tail extends to 0.4 eV above the VB edge. In (b), the DOS of d-orbitals are shown
to identify the character of intrinsic surface states. The intrinsic surface state appears at the CB
edge, not within the band gap, and is characterized to be of dz2 character. However, ligand field
splitting in the VB is not observed and dxy surface states are not found, contrary to the prediction
of Bronold and co-workers [12].

2.4.2 Surface states

As {100} is the dominant surface, we investigate the surface states of this facet. To obtain
the exact character of the surface states, the coordinate frame is rotated into the Fe–S bonds
prior to projection onto partial d states [59]. The DOS of bulk pyrite and the (100) surface
are compared in Fig. 2-9. For bulk pyrite, the Kohn-Sham gap is 0.40 eV within PBE. The
tail in the CB is due to an S p state. The VB and CB are dominated by t2g and eg states,
respectively (not shown), agreeing with ligand field theory [26]. For the (100) surface, we
only observe a pronounced dz2 state that is pulled down from the conduction-band manifold
of eg states, but not inside the gap. The dxy gap state predicted by Bronold et al. [12] is not
seen. We have also performed the same calculation within LDA and AM05. However, gap
states are not found.

Hubbard U correction

One may question whether the intrinsic surface states would become gap states if the band
gap were more accurately calculated, since the Kohn-Sham (KS) gap severely underestimates
the band gap. Hence, it may be desirable to apply a Hubbard U correction, which has
been shown to be successful in transition-metal electronic structure calculations. (See, e.g.,
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Figure 2-10: PBE+U DOS of pyrite (a) bulk; (b) (001) surface. In (a), both the total DOS and
the s-p-d decomposed DOS are shown. The PBE+U gap of bulk pyrite is 1.03 eV. In (b), the DOS
of d-orbitals are shown to identify the character of intrinsic surface states. Similar to Fig. 2-9(b),
a dz2 surface state is found at the CB edge. Gap states are not observed.

Refs. [60] and [61].) However, as the surface states and CB states are of d character, we
expect that the same qualitative results should be obtained within GGA+U . To verify,
we perform PBE+U calculations, following Persson et al. for the choice of U and J . The
effective U = 2 eV is chosen to correctly predict a pressure-induced spin transition [52]. Fe2+

in pyrite has a d6 electronic configuration; pyrite is both expected and observed to be low
spin (LS) [26]. We verify that the LS configuration is the ground state within both PBE and
PBE+U . By applying the Hubbard U correction to pyrite in the LS configuration, the KS
gap is increased to 1 eV, which happens to coincide with the experimental band gap. We
emphasize that the U value is not fitted to the band gap.

Since the conduction band is dominated by d states, we expect it to shift upward with
respect to the VB edge. Moreover, as the intrinsic surface states at the conduction band
minimum (CBM) are also d states, they should move along with the CB. We verify that these
intrinsic surface states are not gap states within PBE+U . As shown in Fig. 2-10, intrinsic
surface states and the CB are shifted by the same amount, as compared to PBE. The dz2
surface states are still located at the CB edge, and no gap states are found.

From the above discussion, we observe several discrepancies between first-principles cal-
culations and the Bronold model [12]. First, the Bronold model predicts two types of intrinsic
surface states; however, only the dz2 surface state is observed within DFT. Within the VB,
the predicted dxy state is not observed to move toward the band edge. The fact that the t2g
states remain fairly degenerate at the symmetry-broken surface suggests that applying the
parameters from the simplified model of Krishnamurthy and Schaap [25] is inadequate to
capture the physics of the electronic structural properties of the pyrite (100) surface. Second,
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the Bronold model predicts that these surface states are gap states, leading to Fermi level
pinning and undermining the photovoltaic performance of pyrite; however, the surface states
are not found within the band gap, regardless of the exchange functional used and whether
or not we apply the Hubbard U correction. Therefore, we conclude that intrinsic surface
states are unlikely to be the cause of the low OCV in pyrite.

2.5 Pyrite and marcasite

2.5.1 Volume dependence of the relative stability of pyrite and
marcasite

From total energy calculations of the bulk phases, we find that the thermodynamic ground
state is marcasite in PBE and PBE+U , but pyrite in LDA and AM05. As shown in Table 2.3,
pyrite is 21.6 meV/FU less stable than marcasite within GGA-PBE, but 8 meV/FU more
stable within LDA and AM05. These results agree with the relative stability reported by
Spagnoli et al. [17], except for the LDA calculation. They report that marcasite is the
ground state within LDA, with a relative energy difference of 31 meV/FU [17]. However,
we find that pyrite is the ground state within LDA. To verify whether the prediction of
the relative phase stability is simply a volume issue, we plot in Fig. 2-11 the PBE energy
difference between pyrite and marcasite as a function of pressure. For pressures larger than
2.8 GPa, pyrite is favored. At this critical pressure, the conventional cell volumes of pyrite
and marcasite are expected to be about 155 and 80 Å3, respectively, which are higher than
the equilibrium volumes within LDA and AM05. Upon further increase in pressure until
P = 4 GPa, the volumes are reduced and the energy difference (−8.6 meV/FU) coincides
with the P = 0 calculations within LDA and AM05. Hence, prediction of the relative
stability can be corrected by decreasing the volume, either by artificially applying a pressure
within PBE, or using LDA/GGA-AM05.

We remark that the lattice constant calculated within GGA-PBE is underestimated com-
pared to experiment, which is unusual. Extrapolation of the experimental lattice constant
of pyrite using its thermal expansion coefficient [62] yields about 5.41 Å at 0 K, which is still
0.2% larger than the PBE lattice constant at zero pressure, and 2% larger than the LDA
lattice constant. Thus, there is a trade-off between the prediction of relative stability and
equilibrium volume. In particular, while the AM05+U (Ueff = 2 eV) lattice constants and
band gap (Table 2.5) show better agreement with the experimental values, the ground-state
phase is predicted to be marcasite. All LDA, PBE, and AM05 calculations presented in the
main text are performed at the equilibrium lattice constant corresponding to the functional
being used.

Our work shows that qualitative trends in the electronic structure are independent of
the functionals considered, and that either LDA, AM05, or HSE06 can be used to predict
the correct bulk ground state phase. At the pyrite-marcasite interface, the DOS plots and
interfacial energies are consistent across functionals. The functional dependence of properties
that have not been studied in this work (e.g., phonon) is unknown. We have made an effort
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Table 2.3: Lattice constants and relative stability of pyrite and marcasite. Within LDA and
AM05, pyrite is the ground state, in agreement with experiment [27]. Within GGA-PBE,
marcasite is the ground state. However, as pressure is increased, the volumes of the two phases
decrease, and pyrite becomes more energetically favorable relative to marcasite. Within HSE06,
pyrite is 5.2 meV/FU more stable than marcasite at the experimental lattice constants.

Pyrite Marcasite

P a V a b c V Ep − Em

(GPa) (Å) (Å3) (Å) (Å) (Å) (Å3) (meV/FU)
Experimenta 5.416 158.9 4.443 5.425 3.387 81.64 −43.4
LDA 0 5.2875 147.82 4.3374 5.2974 3.3201 76.284 −8.4
AM05 0 5.3171 150.33 4.3615 5.3283 3.3415 77.653 −8.8
AM05+U 0 5.3325 151.32 4.3599 5.3323 3.3491 77.859 7.1
PBE 0 5.4029 157.72 4.4382 5.4094 3.3884 81.350 21.6

2 5.3806 155.77 4.4164 5.3882 3.3753 80.321 6.3
4 5.3605 154.03 4.3954 5.3682 3.3624 79.338 −8.6
6 5.3406 152.32 4.3778 5.3491 3.3499 78.446 −23.1
8 5.3212 150.67 4.3598 5.3309 3.3378 77.575 −37.3
10 5.3048 149.29 4.3431 5.3139 3.3265 76.772 −51.1

PBE+U 0 5.4239 159.56 4.4373 5.4209 3.4068 81.949 24.9

a Lattice constants are taken from Ref. [4] (pyrite) and Ref. [27] (marcasite). Enthalpies of formation
at 298.15 K are taken from Ref. [27].

to illustrate that while relative stability and volume depend on the functional, the electronic
properties pertaining to the photovoltaic performance of pyrite do not.

2.5.2 Model for epitaxial growth of marcasite on pyrite

Epitaxial growth of marcasite (101) on pyrite (001) is shown schematically in Fig. 2-12. The
condition for marcasite growth on pyrite to be energetically favorable is

A(γpm + γmv − γpv) +N∆g < 0, (2.4)

where γ is the surface or interfacial energy between marcasite (101) (m), pyrite (001) (p),
and/or vacuum (v), N is the number of layers of marcasite (number of S–Fe–S stacking
motifs along the z direction), ∆g is the magnitude of the free-energy difference per layer,
and A is the cross-sectional area. From this energy balance equation, the critical N can be
calculated for a given set of surface and interfacial energies.

2.5.3 Possibility of marcasite epitaxial growth on pyrite

Different pyrite (100)–marcasite (101) interfaces can be created depending on the orientation
angle θ and the parity of the number of layers. (We use the Fiorentini-Methfessel method [55]
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Figure 2-11: Relative stability of pyrite and marcasite as a function of applied pressure within
GGA-PBE. The cross-over occurs at 2.8 GPa. To reach the same relative stability predicted by
LDA and AM05 (Ep − Em = −8.6 meV/FU), a pressure of 4 GPa is needed.

Figure 2-12: Schematic of marcasite overgrowth on pyrite. Pyrite, marcasite, and vacuum are
labeled as p, m, and v, respectively. By growing marcasite (enclosed in dashed region), the top
bulk layers of pyrite are replaced, resulting in a difference in bulk energy ∆g. Moreover, the pyrite
(001) surface energy γpv is replaced with the marcasite (101) surface energy γmv plus an interfacial
energy between the two phases γpm.
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extended for interfacial energies as presented in Sec. 2.3.1.) We match the two phases such
that [101]m ‖ [100]p, and perform integer multiples of 90◦ rotations of the marcasite phase
relative to the pyrite phase about the normal to the interface (which will henceforth be
referred to as the z direction), to generate four supercells. We denote the rotation angle
as θ. From Fig. 2-3, we see that the pyrite unit cell consists of six monolayers, which can
be subdivided into two distinct groups of S–Fe–S layers. The number of S–Fe–S layers
along the z direction shall be denoted as N . The six monolayers in a marcasite (101)
cell can also be subdivided into two S–Fe–S layers, but they are identical by translational
symmetry because the marcasite (101) cell has twice the volume of the marcasite unit cell.
Therefore, different pyrite-marcasite interfaces result from N even or odd, for a fixed θ.
Figure 2-13 illustrates how the parity of N can generate different pyrite-marcasite interfaces
under periodic boundary conditions. In Fig. 2-13(a), octahedra are edge-shared across both
interfaces within the supercell. Thus we denote the total interfacial energy by γpm = 2γe,
where the subscript e stands for “edge.” In Fig. 2-13(b), octahedra are corner-shared at one
interface and edge-shared at the other. The total interfacial energy is γpm = γe + γc, where
the subscript c stands for “corner.” Calculations are performed for N = 3, 4, . . . , 10.

Figure 2-14 shows that the interfacial energy is indeed dependent on θ and the parity of
N . The 0◦ and 180◦ configurations are the same, so the energies are exactly identical. Also,
notice that the interfacial energy for the 0◦ and 180◦ configurations is constant with respect
to the parity of N , unlike the 90◦ and 270◦ scenarios. The lowest-energy configuration is
achieved when N is even and θ = 270◦, due to the presence of corner-shared octahedra across
the interface. Based on the converged interfacial energies for N even and odd, we obtain that
2γe = 1.12 J/m2 and γe+ γc = −0.48 J/m2, where γe and γc are the edge-shared and corner-
shared interfacial energies, respectively. By solving these equations we get γe = 0.56 J/m2

and γc = −1.04 J/m2.

We remark that the negative interfacial energy is not an artifact, but is due to the
strain energy as a result of imposing interfacial coherency. In the energy-balance equation
[Eq. (2.4)], the strain energy is included in the ∆g term instead:

∆g = gm − gp = [gm(ǫ = ǫep)− gm(ǫ = 0)] + [gm(ǫ = 0)− gp] . (2.5)

Here the energy difference in the first set of brackets is the strain energy for marcasite
epitaxial growth on pyrite; ǫ is the strain in the marcasite phase, and ǫep represents the
epitaxial strain conditions: (i) a′ ≡

√
a2m + c2m = ap, where subscripts m and p denote the

marcasite and pyrite phases, respectively; (ii) bm = ap; (iii) shearing along [1̄01] such that
[101] becomes normal to the (101) plane, which is necessary to satisfy periodic boundary
conditions. Conditions (i) and (ii) impose lattice mismatches of 3% and 0.1%, respectively,
within PBE. (For lattice constants in other functionals, see Sec. 2.5.1.) The third condition
is equivalent to setting the c/a ratio to 1, since the angle between the (101) plane and the

[101] direction is equal to cos−1 (c/a)2−1
(c/a)2+1

. The energy difference in the second set of brackets
is the relative phase stability between pyrite and marcasite. In Sec. 2.5.1, we show that the
ground-state phase is functional- and volume-dependent.

Total energies of pyrite and strained marcasite referenced to the strain-free marcasite
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(a)

(b)

Figure 2-13: Structures of the pyrite (001)-marcasite (101) interface for θ = 270◦ and (a) N = 3;
(b) N = 4. Black (white) spheres are Fe (S) atoms. Pyrite and marcasite phases are labeled by
p and m, respectively, where the interfaces are marked by vertical dotted lines. For clarity, the
supercell (enclosed in black rectangle) is repeated along the [010] (downward) and [001] (rightward)
directions, and octahedra are drawn for Fe atoms in the inner-most layer only. Note the octahedra
are edge-sharing in bulk marcasite but corner-sharing in bulk pyrite. At the interface, the octahedra
are edge-sharing when N is odd (a), but can be corner-sharing when N is even [from left to right,
the second dotted line in (b)], showing that different interfacial energies may result depending
on the parity of N . Consecutive 90◦ rotations of one phase with respect to the other about the
rightward axis can create more variations (not shown). It is verified that the corner-sharing type
interface with θ = 270◦ is the most energetically favorable.
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Table 2.4: Bulk energies (in meV/FU) of pyrite (p) and marcasite (m) referenced to the strain-free
marcasite total energy. Strain energies of marcasite are calculated under epitaxial and periodic
boundary conditions, as discussed in the main text.

Phase Strain LDA PBE PBE+U AM05
p 0 −8.4 21.6 26.7 −8.8
m 0 0 0 0 0
m ǫep 898.3 859.8 865.6 896.7

phase are shown in Table 2.4. The magnitude of the difference in the first set of brackets in
Eq. (2.5) (marcasite strain energy) is much larger than that in the second set (relative phase
stability), for all functionals used. Although different functionals give different predictions
for the ground-state phase [sign of gm(ǫ = 0) − gp], the strain energy required for epitaxial
growth is one order of magnitude higher than the strain-free bulk energy difference [O(100)
compared to O(10) meV/FU]. Substituting the PBE bulk, surface, and interfacial energies
into Eq. (2.4), we find that the thermodynamic condition for marcasite epitaxial growth is
N < 1.5, which means that the critical N is only 1 for the corner-sharing-type interface.
We also find the same result using other functionals, as the marcasite strain energy is much
more significant than the bulk energy difference between strain-free marcasite and pyrite. It
is emphasized that the parity of N determines whether the corner-sharing-type interface is
present in the supercell under periodic boundary conditions. It does not mean that marcasite
can only grow by an even or odd number of layers.

Since the critical N is so small, we cross-validate our prediction via direct computa-
tion of pyrite-marcasite-vacuum supercells, as depicted schematically in Fig. 2-12. As the
pyrite-marcasite system is separated from its periodic image by a layer of vacuum in the
z-direction, there is only one pyrite-marcasite interface here. Calculations are performed for
N = 1, 2, 4, 6, 8 layers of marcasite on top of pyrite, where the interface is of the corner-
sharing type and θ = 270◦ (lowest energy configuration). The total energy (per formula
unit) is shown in Fig. 2-15. In this direct approach, we find a critical N of 2. The dis-
crepancy between the predicted value of one layer may be attributed to additional ionic
relaxation within the marcasite layer to reduce the strain energy, thereby (marginally) en-
hancing growth. With the qualitative consistency between the two approaches, we have
shown that epitaxial growth of marcasite on pyrite is thermodynamically favorable, but only
limited to a few layers, as further growth becomes energetically unfavorable.

Although a trace amount of marcasite is predicted to be present, and is indeed observed
experimentally [32, 16], whether it really affects the photovoltaic performance of pyrite is
a separate issue. Electronic structure calculations of the two phases are presented in the
following subsection.
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2.5.4 Difference in bulk band gaps

Whether the presence of marcasite affects the OCV of pyrite depends on (i) the band gaps
of the two phases, and (ii) the position of interfacial states. Here we discuss the issue of
band gaps (i). Interfacial states (ii) are discussed in Sec. 2.5.5. The PBE band structures
of pyrite and marcasite are compared in Fig. 2-16. The band gaps and critical k-points are
listed in Table 2.5. For pyrite, the CB edge is located at the Γ point. The VB between 0 and
−1.5 eV is very flat, indicating that the states are highly localized, as seen in the DOS in
Fig. 2-9. The VB edge is located along the high symmetry ∆ line, which connects Γ and X’.
However, we note that the direct transition at Γ is only 0.08 eV larger than the indirect gap,
in agreement with the experimental difference (1.03 eV for direct transition versus 0.95 eV
for indirect transition) [5]. For marcasite, the CB edge is located at (0,0.5,0.5), while the
VB edge occurs along the Σ line. Comparing the lowest conduction bands of pyrite and
marcasite at the Γ point, the sharp minimum in pyrite is not seen in marcasite. Based on
the DOS (Fig. 2-9), the character of the band in pyrite is a S p state, whose presence leads
to the CB tail. Such a state is not found in marcasite (Fig. 2-17). Across all functionals
that are used (Table 2.5), the Kohn-Sham gap of marcasite is at least comparable to that of
pyrite, and significantly higher than the estimate for the experimental gap of 0.34 eV [34].

It is well known that first-principles Kohn-Sham (KS) gap in local and semi-local func-
tionals severely underestimates the band gap. Therefore, we have also calculated the band
gaps using two other approaches that have been reported to be more accurate. The hybrid
functional Heyd-Scuseria-Ernzerhof (HSE06) [63–66], which has been shown to produce ac-
curate band gaps for solids, gives 2.8 (2.7) eV for pyrite (marcasite). The ∆-sol method, a
recently developed total-energy method based on dielectric screening [67], gives 1.3 (1.2) eV
for pyrite (marcasite). In both methods, the pyrite and marcasite gaps are almost the same.
In the ∆-sol method, the marcasite gap is predicted to be almost 0.9 eV larger than the
experimental value [34], although the pyrite gap is only slightly (0.3 eV) larger than the
experimental value [5].

2.5.5 Absence of interfacial states within band gap

Apart from the band-gap issue, we also examine the DOS at the pyrite-marcasite interface
constructed from the lowest-energy configuration (corner-sharing interface, θ = 270◦) to see
if interfacial states are present that can pin the Fermi level. The DOS of the N = 10 and
θ = 270◦ pyrite-marcasite interface is shown in Fig. 2-18. Two important observations are
made. First, the band gap of the pyrite-marcasite supercell is the minimum of the pyrite and
marcasite bulk band gaps. It is not smaller than the pyrite gap. Second, no interfacial states
are seen within the band gap. From these results, we conclude that, although marcasite is
present at trace amounts under thermodynamic conditions, its electronic structure does not
undermine the photovoltaic performance of pyrite.
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Figure 2-16: PBE band structure of (a) pyrite and (b) marcasite. Both of them are indirect gap
materials. High symmetry points correspond to those in Ref. [35]. The LDA and AM05 band
structures look very similar and are not shown.
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Figure 2-17: DOS of bulk marcasite within GGA-PBE. Contrary to pyrite, there are no pronounced
tail states at the CB in marcasite.
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Table 2.5: Band gap (in eV) and k-points at VB and CB edges. HSE06 and ∆-sol
gaps are obtained at the experimental lattice constants.

Pyrite Marcasite

Eg VB CB Eg VB CB
LDA 0.22 (0.4375, 0, 0) (0, 0, 0) 0.88 (0.375, 0, 0) (0, 0.5, 0.5)
PBE 0.40 (0.4375, 0, 0) (0, 0, 0) 0.81 (0.4375, 0, 0) (0, 0.5, 0.5)
PBE+U 1.03 (0.4375, 0, 0) (0, 0, 0) 1.18 (0.4375, 0, 0) (0, 0.5, 0.5)
AM05 0.29 (0.4375, 0, 0) (0, 0, 0) 0.88 (0.375, 0, 0) (0, 0.5, 0.5)
AM05+U 0.72 (0.4375, 0, 0) (0, 0, 0) 1.18 (0.375, 0, 0) (0, 0.5, 0.5)
HSE06 2.76 (0.5, 0.5, 0) (0, 0, 0) 2.72 (0.5, 0, 0) (0, 0.5, 0)
∆-sol 1.3 - - 1.2 - -
Experiment 0.95a - - 0.34b - -

a Reference [5].
b Reference [34].
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Figure 2-18: DOS of the lowest energy pyrite(001)-marcasite(101) interface (corner-sharing, θ =
270◦) within GGA-PBE. By comparing to Fig. 2-9, two key observations are made: (i) the band
gap is not reduced; (ii) gap states are not found.
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2.6 Discussion

As mentioned in Sec. 2.2.3, the ligand field model of Bronold et al. involves an unknown
parameter ρ. For Bronold’s choice of ρ = 2, two gap states are predicted within the gap.
However, for ρ = 1, the splitting energy between a1 (dz2) and b2 (dxy) states becomes
5.14 Dq [25], or 1.03 eV, which is larger than the experimental band gap of pyrite. This
implies that whether the intrinsic surface states are gap states or not depends on the choice
of ρ. Our first-principles calculations reveal that the surface states are located near the
band edge or deep within the band, with a splitting energy around 1.2 eV within PBE+U
[Fig. 2-10(b)], resembling more closely the ρ = 1 scenario than the ρ = 2 scenario. Hence,
the conclusion made by Bronold et al. [12] regarding gap states may be unfounded as it is
based on an uncontrolled assumption for ρ.

The absence of gap states in the (100) surface of pyrite is confirmed by another first-
principles study conducted by Cai and Philpott [15]. Although two other first-principles
studies have observed gap states [20,14], their results do not validate the Bronold model. (i)
In the study by Oertzen et al. [20], the origin of gap states is not due to intrinsic surface
states, but is due to an additional half monolayer of S atoms on the otherwise properly
terminated surface. (ii) In the study by Qiu et al. [14], only one type of Fe d gap states
is observed, contrary to the prediction of two types of gap states of dz2 and dxy characters
by Bronold et al. [12]. It should be pointed out that the position of the dz2 surface state is
susceptible to errors in the exchange-correlation functional. Although its relative position
with respect to the VB has a wide range, being from 0.2 eV in LDA to 1 eV in PBE+U ,
we find that it remains within the CB across all functionals. Since the Hubbard U model is
designed to correct for localized d and f states [68], the fact that the localized dz2 intrinsic
surface state is contained above the CBM within PBE+U , as well as the uncorrected LDA,
gives strong evidence that it is not a gap state.

Regardless of the apparent discrepancy among first-principles calculations in the litera-
ture, surface states may not be relevant under experimental conditions, as the pyrite surface
is passivated by adsorbates from the electrolyte. Indeed, the DOS of a passivated pyrite (100)
surface shows the depletion of antibonding surface states. This surface passivation effect has
been observed by calculations using a monolayer of H-, F-, and Cl-adsorbates on pyrite (100).
For example, the PBE DOS of a Cl-adsorbed (100) surface is shown in Fig. 2-19. Compared
to the DOS of the clean pyrite (100) surface [Fig. 2-9(b)], the intrinsic surface states at the
bottom of the CB are no longer observed. Our results suggest that intrinsic surface states
can be passivated. Experimentally, pyrite is often immersed in an aqueous halide (especially
the iodide redox couple) in a photoelectrochemical cell, and surface passivation may occur
spontaneously [5]. Thus, whether intrinsic surface states are gap states may not pertain to
the photovoltaic performance of pyrite at the device level.

From the energy model of marcasite epitaxial growth on pyrite [Eq. (2.4)], with first-
principles total energies as input, we find that marcasite growth on pyrite is thermodynami-
cally limited to one layer. This result is validated by direct computation of pyrite-marcasite-
vacuum supercells, from which an additional layer of growth is stabilized by further ionic
relaxation in the marcasite phase. Qualitatively, our prediction of a few layers of marcasite
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Figure 2-19: DOS of pyrite (100) with Cl-adsorbates. The intrinsic surface state at the CB edge in
Fig. 2-9(b) is depleted due to surface passivation.

growth is verified by the experimental observation of a trace amount of marcasite after 46
hours of XRD measuring time for 100 nm samples, but undetectable for thicker samples [32].
As our interfacial energy is well converged, the critical N is independent of the thickness
of the pyrite substrate at the scale of the experimental sample. The volume percentage of
marcasite in thin 100 nm samples is merely a fraction of 1%. Since our model predicts that
the same amount of marcasite should form on the pyrite surface, the volume fraction of
marcasite is smaller in thicker pyrite samples, eventually dropping below the threshold for
detection.

Although marcasite growth is thermodynamically favorable, the critical question is whether
marcasite affects the OCV of pyrite at all. Based on our calculation results, the marcasite
Kohn-Sham gap is not smaller than the pyrite gap in any of the functionals that we used.
Even though KS gaps of local and semilocal functionals are known to severely underestimate
band gaps, the marcasite KS gaps obtained from different functionals are all larger than the
reported experimental value, which leads us to suspect that the extraction of the marcasite
gap from resistivity measurement [34] may not be an accurate determination of the band gap.
As far as the authors are aware, the 0.34 eV marcasite gap is the only value reported and
cited in the literature. If the marcasite gap is not smaller, but larger than the pyrite gap, as
our result suggests, then its presence does not explain the low OCV of pyrite, contrary to the
claim of Wadia et al. [16]. We call for a more reliable experimental investigation (e.g., optical
measurements) on the marcasite band gap. Moreover, from our interfacial calculations, the
gap of pyrite is not reduced in the pyrite-marcasite system, and no gap states are found
from the DOS (Fig. 2-18). However, we do not rule out the possibility of the formation of
low-energy defect states at the interface. As we have not considered the role of native bulk,
interfacial, or extrinsic defects in this study, further investigation is required to understand
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Figure 2-20: Voltage ratio (v = qVoc/Eg) as a function of xg = Eg/kTs ≈ 1.93Eg, where Ts = 6000 K
is the temperature of the sun, predicted by Shockley-Queisser theory [1].

the cause of the low OCV of pyrite.
The theoretical limit in the OCV of any semiconductor can be calculated from the

Shockley-Queisser equations [1]. The voltage ratio, defined as v = qVoc/Eg, can be ex-
pressed analytically as a function of Eg. We plot v(Eg) in Fig. 2-20. For pyrite, then, the
theoretical OCV is 0.71 eV, which is more than three times the maximum experimental
value of 0.2 eV [5]. In this study, we have established that the low OCV of pyrite cannot
be explained by bulk or intrinsic surface properties. Moreover, the formation of marcasite is
limited and gap states are not observed from electronic structure calculations of the pyrite-
marcasite interface. The low OCV is likely to be caused by effects that we have not yet
considered, e.g., defects.

From our band structure calculation, another important issue that may have been over-
looked is the low hole mobility of pyrite. Based on the curvature of the DFT band edge
[Fig. 2-16(a)], pyrite is predicted to have very heavy holes. The flatness of the VB has
previously been reported. For example, the pyrite band structure calculated by linear com-
bination of atomic orbitals (LCAO) can be found in Ref. [35]; a DFT calculation is presented
in Ref. [20]. Our first-principles prediction that pyrite has low hole mobility is confirmed ex-
perimentally by Oertel et al., who reported µp < 0.1 cm2/(V s) [22]. In light of the strained
silicon technology (see, e.g., Ref. [69] and references therein), one possible way to enhance
the carrier mobility is to intentionally impose strain on pyrite thin films.

2.7 Conclusions

Using first-principles computations, we have shown that two of the widely accepted reasons
for the low open-circuit voltage (OCV) of pyrite photovoltaic devices are questionable. Al-
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though Bronold et al. have correctly predicted that broken symmetry on the pyrite surface
causes intrinsic surface states [12], the character and position are not reproduced within
DFT. Firstly, their predicted dxy state is not observed to move out of the VB, and ligand
field splitting of the VB is not seen. Secondly, no gap states are found. The only surface-
induced state is the dz2 state located at the CB edge, but the dxy state remains within the
VB.

Next, we have examined the claim that marcasite reduces the OCV of pyrite. To in-
vestigate the thermodynamic condition for the epitaxial growth of marcasite on pyrite, we
have derived a parameter-free energy-balance equation [Eq. (2.4)] that involves the bulk,
surface, interfacial, and strain energies of the two phases as input. Although a few layers of
marcasite growth are predicted to be thermodynamically favorable, by examining the DOS
at the pyrite-marcasite interface, no gap states are found. The marcasite gap is at least
comparable to the pyrite gap, and significantly greater than the experimental marcasite gap,
within all functionals used, suggesting that the experimental resistivity measurement of the
marcasite gap [34] may need to be verified by more careful and reliable studies.

Although the direct cause of the low OCV of pyrite photovoltaic devices has not yet been
established, we believe that the effects of intrinsic surface states and marcasite are at best
secondary. The following chapter will be focused on native and extrinsic defects.
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Chapter 3

Intrinsic stoichiometry and
oxygen-induced p-type conductivity of
pyrite

This is the very perfection of a man, to find

out his own imperfections.

St. Augustine

3.1 Introduction

Ever since the first investigation of pyrite FeS2 as a photovoltaic device [70], a number of
challenges have arisen. In this chapter, we focus on the following two open questions that
pertain to native defects and extrinsic impurities. (i) Is pyrite off-stoichiometric or is it a
line compound? According to the work of Birkholz et al., pyrite samples are sulfur deficient
up to 13 at. % [18]. They have suggested that gap states are introduced by sulfur vacancies,
though no experimental or theoretical evidence exists to back up this proposal. By reviewing
the literature, Ellmer and Höpfner have argued that the compositional variation of pyrite
should be within 1 at. %, and that the 13 at. % S-deficiency reported by Birkholz et al. is
likely to be a measurement error [71]. (ii) Why are synthetic thin films ubiquitously p-type,
regardless of the deposition methods and synthesis conditions, although no intentional doping
is performed? (See Ref. [22] and references therein, as well as Refs. [72] and [73].) These
issues are important if pyrite is ever seriously to be considered as a photovoltaic material.

It is well known that defects can greatly affect the electronic properties of semiconductor
devices [74]. Although experiments have alluded to the presence of bulk defects in pyrite [19],
and computational [75] and combined experimental-computational [76] work have investi-
gated pyrite surface defects, there has been no systematic study of the role of bulk defects
within pyrite in the literature. We address the stoichiometry (i) and unintentional p-type
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conductivity (ii) of pyrite via first-principles computation and modeling of native and ex-
trinsic defects. Fe and S vacancies, interstitials, and antisites constitute the native defects.
For extrinsic defects, we focus on oxygen interstitial (Oi) and oxygen-on-sulfur substitution
(OS), because oxygen has the highest impurity concentration [O(1019) cm−3] in both natural
and synthetic samples [5].

In Sec. 3.2 we present the input parameters used in our computations as well as a brief
review of defect modeling. In Sec. 3.3 results for native and oxygen defects are presented,
followed by a discussion in Sec. 3.4. We demonstrate that pyrite is unlikely to be off-
stoichiometric due to the high formation energies of its native defects, and that the p-type
conductivity can be attributed to the high concentration of oxygen incorporation on sulfur
sites.

3.2 Methods

3.2.1 First-principles computations

Density-functional theory (DFT) [36, 37] calculations within the Perdew-Burke-Ernzerhof
(PBE) [45, 46] generalized gradient approximation (GGA) were performed using the plane-
wave code Vienna Ab-initio Simulation Package (vasp) [40–43] with projector augmented
waves (PAW) potentials [38, 39]. Total energies were converged to within 10−7 eV. Charge
neutral point defect formation energies were converged for a supercell size of 2× 2× 2 with
95–97 atoms. Charged defect total energies were also obtained from 2 × 2 × 2 supercells.
All defective supercells were fully relaxed under constant volume with 3× 3 × 3 Γ-centered
Monkhorst-Pack [53] k-points. Forces were converged to within 10−4 eV/Å.

3.2.2 Defect modeling

Definitions

We adopt the notation of Persson et al. [77] regarding defect computations. Definitions and
methodology are briefly summarized as follows. The formation energy of a defect D in charge
state q is

∆HD,q(EF , µα) = ED,q −E0 −
∑

α

nα(µ
0
α +∆µα) + q(Ev + EF )

= ∆H0
D,q(µα) + qEF , (3.1)

where E0 is the total energy of the perfect host, α is the atomic species of the defect, µ0
α

is the reference chemical potential, nα is the number of atoms introduced into (positive) or
removed from (negative) the host, Ev is the eigenvalue of the valence band maximum (VBM),
EF is the Fermi level referenced to the VBM, and ∆H0

D,q is the defect formation energy at
the VBM. We have neglected entropy contributions other than configurational entropy since
they usually do not affect results qualitatively [78].
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It is important to note that the EF in Eq. (3.1) is merely an energy variable bounded by
the position of the band edges. The charge transition level between charge states q and q′

of a defect D occurs when their formation energies are the same:

ǫD,q/q′ =
ED,q − ED,q′

q′ − q
−Ev. (3.2)

The EF in Eq. (3.1) is replaced with ǫD,q/q′ in the derivation.
The concentration of a defect in charge state q is given by

cD,q(EF , µα, T ) = Nsite exp

[
−∆HD,q(EF , µα)

kT

]
, (3.3)

where Nsite is the concentration of possible defect sites, which is determined by the mul-
tiplicity of the defect’s Wyckoff position. The total concentration of a certain defect D is
obtained by a summation over all the charge states:

cD =
∑

q

cD,q. (3.4)

The total charge of the system (Q) is the sum of the defect charge concentration (QD)
and the free carrier concentrations (Qi):

Q(EF ) =
∑

D

∑

q

qcD,q(EF , µα, T )− n+ p

=
∑

D

∑

q

qNsite exp

[
−∆HD,q(EF , µα)

kT

]

−
∫ ∞

Ec

f(E;EF , T )g(E) dE +

∫ Ev

−∞

[1− f(E;EF , T )]g(E) dE, (3.5)

where g(E) is the density of states (DOS) of the host, and Qi = p−n is the hole concentration
(p) in the valence band (VB) minus the electron concentration (n) in the conduction band
(CB).

The expected charge state q∗ of a defect XY is defined as the difference in valence between
X and Y. For example, the expected charge states of FeS and VS are 3+ and 1−, respectively.
Based on the sign of its expected charge state, a defect can be classified as a donor (q∗ > 0)
or an acceptor (q∗ < 0).

Self-consistent solution for Fermi level and defect concentrations

The thermodynamic Fermi level is the EF at which charge neutrality is satisfied, i.e., when
Q = 0 in Eq. (3.5). In solving for the defect concentrations and Fermi level we assume
that defects are equilibrated at the synthesis temperature (Tsyn) and are not modified at
room temperature (Teq) due to low diffusion of defects and slow mass exchange with the
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environment. Only their charge states can re-equilibrate at room temperature. Procedural
details are as follows.

(i) Impose charge neutrality at Tsyn, i.e.,

QD(E
syn
F , Tsyn) +Qi(E

syn
F , Tsyn) = 0. (3.6)

Solving for Esyn
F , the concentration of each defect cD,q is found from Eq. (3.3), and the total

concentration of each defect cD is obtained via Eq. (3.4).

(ii) We assume that the total concentration of each defectD is frozen during re-equilibration
at Teq, i.e.,

cD = cD(E
syn
F , Tsyn) = cD(E

eq
F , Teq). (3.7)

Note that individual cD,q’s are not fixed since charge transitions can occur even at room
temperature.

(iii) Assume charge transition within a defect type D occurs according to Boltzmann
statistics. First, observe from Eqs. (3.1) and (3.3) that one can always express the ratio
between the concentration of D in charge state q and that in some arbitrary reference charge
state q′ as

cD,q

cD,q′
= exp

∆H0
D,q′ −∆H0

D,q

kT
exp

(q′ − q)EF

kT
. (3.8)

We shall denote the prefactor as

AD,q = exp
∆H0

D,q′ −∆H0
D,q

kT
. (3.9)

By the frozen defect assumption (ii) and using Eq. (3.4), we then obtain

cD,q(E
eq
F , Teq) = cD

AD,q exp
−qEeq

F

kTeq

∑

q

AD,q exp
−qEeq

F

kTeq

= cD

exp
−∆HD,q(E

eq
F )

kTeq

∑

q

exp
−∆HD,q(E

eq
F )

kTeq

, (3.10)

which is independent of the reference charge state q′. The above construct allows us to
apportion the total defect concentration cD obtained at Tsyn to the concentrations of its
different charge states cD,q at Teq.

(iv) For these fixed defect concentrations cD, charges are re-equilibrated at Teq, i.e.,

QD(E
eq
F , Teq) +Qi(E

eq
F , Teq) = 0, (3.11)
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where

QD(E
eq
F , Teq) =

∑

D

cD

∑

q

q exp
−∆HD,q(E

eq
F )

kTeq

∑

q

exp
−∆HD,q(E

eq
F )

kTeq

. (3.12)

Thus, having solved for Eeq
F , all defect concentrations are fully determined by Eq. (3.10),

while electron and hole concentrations are given by n(Eeq
F , Teq) and p(Eeq

F , Teq), respectively.
We choose Tsyn = 800 K and Teq = 300 K to simulate synthesis conditions [5].

Reference chemical potentials

The energies of defects that change the stoichiometry of FeS2 are determined by the chemical
potentials of Fe and S in the environment. It is common to evaluate the off-stoichiometric
defects at the limits of chemical potentials under which the compound is stable. In this work
we simply take limits imposed by stability with respect to the elements:

∆µFe ≤ 0, (3.13)

∆µS ≤ 0. (3.14)

Together with the relation of the chemical potentials to the energy of the compounds:

∆µFe + 2∆µS = ∆HFeS2 , (3.15)

the Fe-rich/S-poor and S-rich/Fe-poor limits can be defined.

We investigate oxygen incorporation into the material as a function of the oxygen chemical
potential referenced to the most reduced iron oxide phase to form from FeS2, which is Fe3O4

based on our computations within GGA. Specifically, we define

µ0
O =

1

4
(µFe3O4 − 3µ0

Fe) (3.16)

and investigate the Fermi level (Eeq
F ) and oxygen defect (OS, Oi) concentrations as a function

of ∆µO = µO−µ0
O, where a positive (negative) sign corresponds to more oxidizing (reducing)

conditions. The total oxygen impurity concentration is given by

cO =
∑

D∈{Oi,OS}

∑

q

cD,q. (3.17)

Energy corrections

Three post-DFT corrections are applied. (i) To account for spurious image charge inter-
actions when charged defects are calculated in periodic boundary conditions, we apply the
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first-order Makov-Payne correction [79],

∆EMP
D,q =

q2αM

2ǫa0
, (3.18)

where αM is the Madelung constant, ǫ = 20.6 is the static dielectric constant we obtain within
density-functional perturbation theory (DFPT) [80], and a0 is the GGA lattice constant of
pyrite.

(ii) To correct for the underestimated band gap (Kohn-Sham gap EKS
g = 0.4 eV; see

Chapter 2) versus experimental gap Eexpt
g = 0.95 eV [5]), the conduction band minimum

(CBM) and valence band maximum (VBM) of the host DOS are rigidly shifted such that
∆Ec −∆Ev = ∆Eg = Eexpt

g − EKS
g . We determine ∆Ev = −0.117 eV and ∆Ec = 0.392 eV

using the ∆-sol method, which is based on screening properties of the perfect host [67].
(iii) As a result of (ii), donor (acceptor) levels are assumed to move with the CBM (VBM)

and thus need to be corrected by the corresponding shift in the band edge; specifically [77],

∆Eg
D,q =

{
ze∆Ec if D is a donor
−zh∆Ev if D is an acceptor

, (3.19)

where ze (zh) is the number of donor electrons (acceptor holes) in the CB (VB). In terms of
the expected charge state of a defect D (defined in Sec. 3.2.2), ze = q∗ − q and zh = q − q∗.
It follows from this procedure that the location of shallow charge transition levels are fixed
relative to the appropriate host band edge upon gap correction. (See Ref. [81] for more
discussion.) We remark that formation energies of acceptors are adjusted by q∆Ev through
Eq. (3.1), in addition to the aforementioned correction. The adjustment applies even when
an acceptor D is in its expected charge state q∗, where zh = 0 and ∆Eg

D,q = 0.

3.3 Results

Results on native defects and oxygen incorporation are presented separately. In Sec. 3.3.1,
formation energies of native defects at Fe- and S-rich limits are examined to address whether
pyrite is stoichiometric. In Sec. 3.3.2, the role of oxygen point defects are investigated to
explain the unintentional p-type conductivity of as-deposited pyrite thin films.

3.3.1 Native defects

The defect formation energy at the Fe-rich limit is plotted as a function of EF in Fig. 3-1.
For each defect, the concave lower envelope of the formation energies for each charge state
is drawn to show the lowest-energy charge state along its position within the band gap. The
slope of ∆HD,q is the charge state of D, from Eq. (3.1). Charge transition levels occur at the
intersections between different q’s, as governed by Eq. (3.2). The minimum and maximum
energies on the x-axis correspond to the VBM and the CBM, respectively. The band gap
is corrected to match the experimental gap 0.95 eV, as mentioned in Sec. 3.2.2. Near the
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VB, the lowest-energy defects are Fei and VS, both carrying positive charges. The concept
of defect compensation can be illustrated by the following thought experiment. Suppose
Eeq

F is drawn toward the VB by some extrinsic acceptor X , then p-type doping becomes
increasingly difficult as compensating defects (+) become more and more energetically fa-
vorable. Whether a doping limitation is present depends on the actual formation energy
of the extrinsic acceptor relative to the minimum formation energy of native compensating
defects, which is ∼ 2.5 eV in this case. If the acceptor formation energy is much less than
2.5 eV, then cX,− becomes the dominating term in Eq. (3.5), and the Fermi level is expected
to shift greatly toward the VB to generate a comparable hole concentration p. In that case,
no p-doping limitation would be expected. Likewise, near the CB, the lowest-energy defect
is VFe, whose formation energy is 2.2 eV at the CBM. This suggests that a limitation on
n-doping should be about equally unlikely as that on p-doping. We return to this point in
Sec. 3.4.

Following the procedure delineated in Sec. 3.2.2, a unique solution Eeq
F is found within

the gap and marked as a vertical line. Here Eeq
F = 0.567 eV, which is larger than Eg/2

due to the asymmetry of the DOS at the band edges. [A flat tail is found at the CBM
but not the VBM; there are more states at the VBM than the CBM (see Chapter 2).] The
dominant defects are VS and FeS, with concentrations of O(106) cm−3. The equilibrium
carrier concentrations in the VB and CB are 1.9 × 1012 cm−3 for both holes and electrons,
respectively, indicating intrinsic behavior. From Eq. (3.5), since cD,q ≪ n, p for all D,
the charge neutrality criterion simply becomes n ≈ p, explaining the intrinsic nature of
the material. Since defect concentrations are at most O(106) cm−3, pyrite is essentially
stoichiometric under these chemical conditions.

At the S-rich limit (Fig. 3-2), the lowest-energy defect is VFe, with a total concentration
of 5.4 × 1014 cm−3. The defect formation energy of VS is about 0.8 eV higher than that
in the Fe-rich limit, resulting in negligible concentrations. Compared to VFe, the formation
energies of all other defects in the S-rich limit are at least 1 eV larger; thus, they do not play
an important role.

The degree of off-stoichiometry of pyrite, or any compound, can be directly predicted by
the equilibrium concentration of its native defects. In principle, the off-stoichiometry should
be calculated at the chemical potential reference corresponding to experimental conditions.
Although the exact reference is unknown, the defect energetics and hence the physics of
the system are bounded between the Fe- and S-rich limits. By inspection of Eq. (3.1),
defect formation energies at any allowable chemical potential reference can be obtained
by linear interpolation between the two limits. From our results as presented above, the
concentration of off-stoichiometric defects is at most on the order of 1014 cm−3. Moreover,
we believe that reference chemical potentials at experimental conditions should lean toward
the Fe-rich limit for the following reasons. (i) The unresolved issue is whether pyrite is S
deficient [18,71], which is more likely to occur under Fe-rich conditions than S-rich conditions.
(ii) Fe deficiency due to VFe has not been reported, implying the environment is Fe rich. (iii)
A common method employed to synthesize pyrite is the sulfurization of Fe metal [6], which
corresponds to the Fe-rich limit. At the Fe-rich limit, defect concentrations are merely
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Figure 3-1: Defect formation energy as a function of EF at the Fe-rich limit, where Eeq
F = 0.567 eV.

O(106) cm−3. Therefore, pyrite should be stoichiometric when pure. Even at the S-rich
limit, it would remain essentially stoichiometric, where an Fe deficiency of 10−8 per formula
unit is predicted.

3.3.2 Oxygen as an acceptor

Oxygen is a common species in the environment and often present in many materials, even
if the composition would not indicate so. For example, it forms a detrimental deep state
in AlGaN [78] and occurs in high concentrations in both as-deposited Si [82] and FeS2 [5].
We have investigated the possibility of oxygen incorporation into pyrite under reasonable
oxidation conditions by calculating the formation energies of the oxygen-on-sulfur substi-
tutional point defect (OS) and oxygen interstitial (Oi). Using these energies, and together
with the formation energies of native defects as calculated in Sec. 3.3.1, we solve for the
Fermi level and defect concentrations by the same procedure in Sec. 3.2.2 across a range of
∆µO as defined in Sec. 3.2.2. Results at the Fe-rich limit, for reasons discussed at the end
of Sec. 3.3.1, are presented. Note that, at the S-rich limit, µ0

O can be higher [Eq. (3.16)].
In Fig. 3-3 the Fermi level is plotted as a function of ∆µO. The bottom-most and

topmost energies on the y-axis correspond to the VBM and CBM, respectively. Under highly
reducing conditions at Tsyn = 800 K, the equilibrium Fermi level remains at the intrinsic level
(0.567 eV in Fig. 3-1). At higher oxidation environments and higher temperature the Fermi
level moves toward the VB. A Fermi level below (above) the intrinsic 0.567-eV value indicates
that the system is p-type (n-type). Clearly, under more oxidizing conditions, pyrite becomes
increasingly p-type.

The corresponding total oxygen impurity concentration is shown in Fig. 3-4. The parts-
per-billion (ppb) and parts-per-million (ppm) oxygen concentrations correspond to ∆µO’s of
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Figure 3-2: Defect formation energy as a function of EF at the S-rich limit, where Eeq
F = 0.421 eV.

about −0.3 and 0.1 eV, respectively. For µO < −0.5 eV, oxygen incorporation is negligible
compared to native defect concentrations. The exponential increase in cO as a function
of ∆µO is expected by inspection of Eqs. (3.1) and (3.3). For ∆µO > 1 eV, all sulfur
atoms in pyrite are essentially substituted by oxygen. We find that the experimental oxygen
concentration (∼ 1019 cm−3) is reached for ∆µO ≈ 0.6 eV. The system is examined in detail
at this chemical potential.

In Fig. 3-5 we show the defect formation energies at ∆µO = 0.6 eV. Since the oxygen
chemical potential does not enter into the charge transition levels of native defects [Eq. (3.2)],
the ∆H lines of native defects are not affected by the presence of oxygen. While Oi is highly
unfavorable (formation energy 3.1 eV), OS is the most energetically favorable defect within
the system. The Fermi level is pulled down from the intrinsic value 0.567 to 0.458 eV.
Although the change in the Fermi level induced by oxygen alters ∆HD,q(E

eq
F ) for native

defects, their energies are still too high compared with ∆HOS
(Table 3.1). Hence, the lowering

of the Fermi level is solely caused by OS.

In Figs. 3-3 and 3-4 we also compute the Fermi level and oxygen concentration at Tsyn =
300 K. The Fermi level is not perturbed until ∆µO ≈ 0.7 eV. The onset of the Fermi level
drop at both temperatures in Fig. 3-3 corresponds to the same cO ≈ 1015 cm−3 in Fig. 3-4.

3.4 Discussion

Within the Fe- and S-rich limits, concentrations of native defects are low due to their high for-
mation energies. Intrinsically, pure pyrite is expected to be stoichiometric. Off-stoichiometric
experimental samples may be attributed to the presence of other phases with lower S con-
tent, e.g., pyrrhotite Fe1−xS. Ellmer and Höpfner [71] have calculated the formation energies
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triangles).]Oxygen impurity concentration (cO defined in Eq. (3.17)) as a function of ∆µO
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concentration (1019 cm−3) corresponds to ∆µO = 0.6 eV. The concentration of oxygen
impurities increases exponentially as the environment becomes more oxidizing. For

∆µO > 1 eV, essentially all sulfur sites are occupied by oxygen.
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Table 3.1: Defect formation energies and concentrations of OS under Fe-rich environment and
∆µO = 0.6 eV. It can be verified that

∑
q cD,q(E

eq
F ) =

∑
q cD,q(E

syn
F ), as required by the frozen

defect assumption in Sec. 3.2.2. Energies (concentrations) of other defects are too high (low) and
are not shown.

q ∆H0
D,q (eV) ∆HD,q(E

eq
F ) (eV) cD,q(E

syn
F ) (cm−3) cD,q(E

eq
F ) (cm−3)

2+ 1.19 2.10 2.82× 107 4.49×10−7

1+ 0.78 1.24 8.08× 1013 1.54× 108

0 0.59 0.59 9.65× 1018 1.10× 1019

1− 1.34 0.88 1.39× 1018 1.30× 1014

2− 2.42 1.51 1.67× 1015 4.42× 103

EF
eq

FeS

Fei

VFe

VS

2+ +
0

2+
2-

-
0

-
+

0

Oi+

0
-

OS 0
-

0.0 0.2 0.4 0.6 0.8
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

EF HeVL

D
H

D
,q
He

V
L

Figure 3-5: Defect formation energy as a function of EF at the Fe-rich limit and ∆µO = 0.6 eV,
where Eeq

F = 0.458 eV. Formation energy lines of native defects are identical to those in Fig. 3-1.
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of S and Fe vacancies using the macroscopic cavity model [83]. Although their energies
are systematically lower (1.66 and 2.18 eV, respectively) [71] than our calculations (2.73
and 2.96 eV, respectively), we agree qualitatively that these native defects are energetically
unfavorable and do not cause noticeable off-stoichiometry in FeS2. Our study provides a
first-principles basis for the high formation energy of native defects within the material.

From Fig. 3-2 intrinsic p-type conductivity of pyrite is predicted at the S-rich limit.
The most energetically favorable defect is V−

Fe, with a concentration of 5.2 × 1014 cm−3.
The hole concentration is almost the same (5.5 × 1014 cm−3), as expected by Eq. (3.11).
However, since the experimental condition is expected to be Fe-rich, as discussed in Sec. 3.3.1,
the p-type conductivity should not be attributed to the Fe vacancy. Because oxygen is
experimentally measured to have the highest impurity concentration in both synthetic and
natural samples [5], we have examined the role of oxygen impurities.

The experimental oxygen impurity concentration, O(1019) cm−3, is reached when ∆µO =
0.6 eV. From Table 3.1, the most dominant defects are O0

S (1.1 × 1019 cm−3) and O−
S

(1.30 × 1014 cm−3). Since the oxidation state of S is −1 in pyrite [23], OS is expected
to be an acceptor with charge state q∗ = 1−. The prevalence of the charge-neutral defect
is very unusual, which at first sight may suggest the formation of an anomalous peroxysul-
fide bond [O–S]2−. To investigate the nature of O0

S, we show in Fig. 3-6 the charge density
difference between the supercell with a charge-neutral OS defect and the perfect host, with
an isosurface of ±0.0155 e/Å3. Negative charge is drawn to O from the neighboring S and
Fe atoms. Thus, the oxygen defect is stabilized by partial oxidation of its nearest neighbors,
and there is no anomalous bond formation. Likewise, we have also examined the charge
density difference between supercells with O0

S and O−
S defects (not shown). There is no

difference observed around the OS defect. Instead, negative charge is attracted to each of
the neighboring Fe atoms. Hence, the Fen–OS defect complex is essentially an O2− on a S
site with charge state variability accommodated on the neighboring Fe atoms. By Table 3.1
and Eq. (3.11), then, an effective hole carrier concentration of 1.1× 1019 cm−3 is predicted.
From experimental Hall measurements of pyrite (without intentional doping) conducted by
Willeke et al., the hole concentration is 5×1018 cm−3 [62]. The remarkable agreement in the
hole concentration between our calculation and experiment, together with the high oxygen
impurity concentration [5], gives strong evidence that the p-type conductivity of pyrite is
oxygen-induced.

We draw an analogy between this work and Van de Walle and Neugebauer’s work on
AlGaN, in which they show that unintentional n-type conductivity is not caused by VN,
as its formation energy is too high, but is caused by oxygen contamination [78]. While the
substitutional O atom in AlGaN causes significant lattice relaxation around the impurity [84],
it is essentially located at the S site in pyrite. The presence of OS will undermine device
performance by serving as a Shockley-Read-Hall recombination center. Indeed, since the 0
and 1− charge states are the most energetically favorable defects within the system, the OS
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Figure 3-6: Charge density difference (rendered by vesta [24]) between a supercell with an O0
S

defect and the perfect FeS2 host, viewed in the (111) plane. Positive and negative 0.0155 e/Å3

charge density isosurfaces are drawn in red and green, respectively. The OS defect (red) is located
within a tetrahedral environment of one S (gray) atom and three Fe (brown) atoms. The charge
state of OS is effectively 1− due to charge transfer from its nearest neighbors, as discussed in the
text.
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defect can trap both mobile electrons and holes:

O0
S + e− → O−

S , (3.20)

O−
S + h+ → O0

S. (3.21)

In the electron trapping mechanism [Eq. (3.20)], the electron is not trapped by the O atom,
but by its partially oxidized nearest neighbors within the Fen–OS defect complex, as discussed
earlier.

It is clear from Figs. 3-3 and 3-4 that oxygen incorporation can be reduced by either
lowering the temperature or synthesizing under more reducing environments. For example,
to reduce cO to 1 ppm (∼ 1016 cm−3) at Tsyn = 800 K, ∆µO should be decreased to 0.1 eV.
Since

δ∆µO = kTsyn ln
pO2

p0O2

, (3.22)

the oxygen partial pressure must be reduced by a factor of 1000 with respect to existing
experimental conditions. In the case of as-deposited Si, O contamination occurs on the
order of 1019–1021 cm−3, causing unwanted n-type behavior [82]. Torres et al. have shown
that even a mere reduction of oxygen incorporation by 2 orders of magnitude improves
device performance [82]. We believe that the performance of pyrite photovoltaic devices can
be similarly enhanced by lowering the concentration of oxygen impurities.

Returning to the dopability implication in Sec. 3.3.1, we do not expect any n- or p-doping
limitations. The formation energies of native defects lie well above 0 in all allowable chemical
potential and Fermi level ranges (Figs. 3-1 and 3-2), negating the possibility of Fermi level
pinning by native defects. (Fermi level pinning is the position of the Fermi level at which
the formation energy of a compensating defect becomes 0 [77].) Indeed, pyrite can be doped
n-type by elements such as Co [22, 85] and Ni [85], with carrier concentrations as high
as 1020 cm−3 [22]; intentional p-type doping by P has also been achieved [86]. Since device
measurements are made on pyrite photoelectrochemical cells instead of p-n junctions [5], poor
performance cannot be attributed to a limited dopability. The more plausible bottleneck is
oxygen contamination, which not only behaves as a trap for mobile carriers, but also explains
the ubiquitous observation of unintentional p-type conductivity. Future experiments that
seek to improve device performance may investigate along these lines.

3.5 Conclusions

On the basis of the first-principles modeling of the point defects in pyrite presented in this
work, we find that native defects have high formation energies, and that their equilibrium
concentrations are too low for pure pyrite to be off-stoichiometric. The presence of oxy-
gen impurities leads to a drop in the Fermi level toward the VB. This unintentional p-type
doping effect is more prominent as the environment becomes more oxidizing. At higher
temperatures, the onset of such an effect occurs under more reducing conditions. At the ex-
perimental oxygen impurity concentration, we predict a hole concentration of O(1019) cm−3,
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in agreement with experimental Hall measurements [62]. Therefore, the unintentional p-type
conductivity of synthetic pyrite thin films can be explained via the presence of OS, which
may act as a Shockely-Read-Hall recombination center. To improve device performance, the
current parts-per-thousand oxygen impurity concentration [5] must be significantly reduced.
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Chapter 4

Feasibility of pyrite band gap
engineering

I have not failed. I’ve just found 10,000

ways that won’t work.

Thomas A. Edison

4.1 Introduction

Being almost 0.5 eV less than the optimum band gap (1.4 eV) within Shockley-Queisser
theory [1], the band gap of pyrite FeS2 (Eexpt

g = 0.95 eV; see Ref. [5]) is suboptimal for
single-junction photovoltaic applications, and it is of interest to understand to what extent
this gap can be modified. Following our studies on the bulk, surface, interfacial (Chapter 2),
and point defect properties (Chapter 3) of pyrite, we investigate in this chapter whether the
long-standing problem of its low open-circuit voltage (OCV) can be mediated by band gap
engineering.

It is common practice to tune the electronic properties of semiconductors by alloying
[87, 88]. The idea of alloying pyrite with a higher-gap material to enhance the low OCV is
first mentioned in the work of Altermatt et al., in which the incorporation of Zn is suggested
as a target for future work [89]. Although the band gap of ZnS2 has not been experimentally
determined, it is estimated to be 2.5 eV [35]. Other known isostructural disulfides include
MnS2, CoS2, NiS2, CuS2, RuS2, and OsS2. (See Ref. [5] and references therein.) Among
these materials, MnS2 [5], CoS2, and CuS2 are metallic [90], and NiS2 has a smaller band
gap than pyrite [5], making them of little interest to increase the band gap of pyrite. This
leaves ZnS2, RuS2 (E

expt
g = 1.3 eV; Ref. [5]), and OsS2 (E

expt
g = 2.0 eV; Ref. [5]) as remaining

candidates.

Solid solutions of various isostructural pyrite materials, e.g., (Fe,Co)S2, (Fe,Ni)S2, and
(Fe,Cu)S2, have been synthesized [91,92], though their band gaps have not been evaluated.
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Elements that do not form the pyrite crystal structure with S can, in principle, also be used
as alloying additions to FeS2, although in many cases their enthalpy of mixing is large.

In the remaining sections, we first describe the computational techniques in Sec. 4.2.1,
the analysis framework in Sec. 4.2.2, and the materials screening procedure in Sec. 4.2.3.
Results for alloying pyrite with elements that form (do not form) the pyrite crystal structure
are shown in Sec. 4.3.1 (Sec. 4.3.2). In Sec. 4.4, we discuss our findings and show correlations
between electronegativity difference, size difference, band gap bowing, and miscibility.

4.2 Methods

4.2.1 Computational details

Density-functional theory (DFT) [36, 37] calculations within the Perdew-Burke-Ernzerhof
(PBE) [45, 46] generalized gradient approximation (GGA) were performed using the plane-
wave code Vienna Ab-initio Simulation Package (vasp) [40–43] with projector augmented
wave (PAW) potentials [38,39]. Total energies were converged to within 10−6 and 10−4 eV for
each self-consistent loop and ionic relaxation step, respectively, using an 8×8×8 Monkhorst-
Pack [53] grid of k-points. For each mixture, the calculated equilibrium lattice constant (a0),
the bulk modulus (B), and the pressure derivative of the bulk modulus (B′) were obtained
by fitting the total energy of the relaxed structure at different volumes to the Murnaghan
equation of state (EOS) [93]:

E(V ) = E(V0) +
BV

B′

[
(V0/V )B

′

B′ − 1
+ 1

]
− BV0

B′ − 1
, (4.1)

where V0 is the equilibrium volume.

The band gap was obtained using the ∆-sol method [67] with an 8 × 8 × 8 Γ-centered
mesh of k-points:

Eg =
E(N0 + n) + E(N0 − n)− 2E(N0)

n
, (4.2)

where N0 is the number of valence electrons in the original (Fe,M)S2 unit cell, n = N0/N
∗,

N∗ = 72, and total energies E(N0) and E(N0±n) were calculated at the experimental lattice
constants whenever known, as recommended in Ref. [67]. For mixtures of compounds whose
experimental lattice constant is known for both end members in the pyrite structure, the gap
of the mixture was calculated at the lattice constant linearly interpolated between the end
members. For other mixtures where this information is not available, the calculated lattice
constant was used. It is important to note that we do not use DFT band gaps calculated
with local and semilocal functionals for screening, since they underestimate the band gap.
On the other hand, it has been demonstrated in Ref. [67] that the band gap error in the ∆-sol
method is only O(0.1) eV, on par with results from the hybrid functional HSE06 [63, 64],
but the computational cost of ∆-sol is similar to a typical DFT calculation, making it the
method of choice for high-throughput band gap screening.
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We used 12-atom unit cells in all calculations. Band structures were computed as de-
scribed in Chapter 2.

4.2.2 Analysis framework

We fit the lattice constant, bulk modulus, and band gap of the FexM1−xS2 pseudobinary
mixtures with a quadratic function of the concentration x:

P (x) = (1− x)P (0) + xP (1)− bP x(1 − x), (4.3)

where P is the relevant property and bP is its bowing parameter. The bowing parameters
ba, bB, and bg were obtained by fitting the lattice constant, bulk modulus, and band gap of
FexM1−xS2, for x = 0, 0.25, 0.5, 0.75, 1, respectively. In particular, if ba ≈ 0 then the alloy
obeys Vegard’s rule.

To obtain information on the miscibility of FeS2 with the MS2 alloying compound, the
critical temperature at the top of the miscibility gap (Tc) was estimated as

Tc =
Ω

2kB
, (4.4)

where Ω is the regular solution interaction parameter fitted to the calculated energies of
mixing. Since the mixing enthalpy in the regular solution model is quadratic in concentration,
Ω can also be viewed as the (negative of the) bowing parameter of ∆H(x).

Solutions can often be created in epitaxial conditions. To investigate this possibility, we
used the model of Ipatova et al., who showed that, for a pseudobinary semiconductor film
coherently grown on a lattice-matched substrate, the critical temperature for the spinodal
instability at x = 0.5 is [94]

T ∗
c =

1

2R

{
Ω− (c11 − c12)(c11 + 2c12)

2(c11 + c12)
Vm

[
a(1)− a(0)

a(0.5)

]2}
, (4.5)

where R is the gas constant, Vm is the molar volume, cij’s are elastic constants at x = 0.5 in
Voigt notation, and the a(x)’s are the lattice constants at the corresponding concentrations.
The elastic constants c11 and c12 in Eq. (4.5) were calculated by applying lattice distortions
following Mehl [95]. It can be easily shown that, in cubic systems, the total strain energy
associated with the applied strain

ǫij =




δ 0 0
0 −δ 0
0 0 δ2/(1− δ2)



 (4.6)

takes the form
∆E = (c11 − c12)V δ2 +O(δ4), (4.7)

where ∆E is the total energy referenced to the unstrained system. Total energies were cal-
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culated at δa0 = 0, 0.2, 0.4, 0.6 Å. Using the bulk modulus determined from the Murnaghan
EOS [Eq. (4.1)] and the fact that B = (c11 + 2c12)/3 within linear elasticity, the elastic
constants c11 and c12 were obtained and substituted into Eq. (4.5) to calculate T ∗

c .

4.2.3 Screening procedure

For all known candidate compounds that are isostructural to FeS2, only those that have
a higher experimental gap (Zn, Ru, Os) were studied. Among elements that do not form
the pyrite structure with S, we considered all isovalent metals, transition metals, and semi-
conductor elements up to group IV and period 6 in the periodic table as possible alloying
additions. Non-isovalent materials were not considered since disulfides of cations that are
not 2+ would not be charge compensated, thus moving the Fermi level into the conduction
or valence band of FeS2. Rare-earths were excluded from the screening procedure as their
usage would reduce the potential economic competitiveness of pyrite [7] in large-scale pho-
tovoltaic applications. For each possible alloying element M, the band gap of the disulfide
MS2 in the (hypothetical) pyrite crystal structure was calculated using the ∆-sol method as
described in Sec. 4.2.1. Materials that have a smaller gap were eliminated. The band gaps
and formation energies at x = 0.25, 0.5, 0.75 were calculated for the remaining candidates.

A successful alloying material must meet the following criteria: (i) the band gap bowing
parameter should be small (or negative) to increase the gap with as little alloying element as
possible; (ii) the regular solution interaction parameter should be small to ensure miscibility;
and (iii) the material should not be expensive.

4.3 Results

4.3.1 Elements that form pyrite structure with S: Zn, Ru, Os

The Murnaghan EOS is calculated at each composition (not shown) to give the computed
lattice constant and bulk modulus. Figure 4-1 shows the lattice constant as a function of
composition x. While the lattice parameter mostly obeys Vegard’s law, the bulk modulus
does not interpolate linearly with composition (Fig. 4-2). The bowing parameter bB is on
the order of 10 GPa.

As stressed in Ref. [67], it is important to calculate the band gap at the experimental
lattice parameter rather than the computationally optimized lattice constant. Since the ex-
perimental lattice constants at intermediate compositions for these (Fe,M)S2 systems are
unknown, they must be interpolated from the end members. Based on the finding that the
bowing parameter ba is negligible [O(0.01) Å; Fig. 4-1], we simply perform a linear inter-
polation between the experimental lattice constant for intermediate values of x (Table 4.1).
The calculated band gaps of (Fe,M)S2 are shown in Fig. 4-3 for M=Zn, Ru, Os. For Zn
alloying, there is a considerable amount of band bowing (bg = 3.3 eV), making it ineffective
to increase the gap of FeS2. Ru and Os seem to be favorable alloying additions, as the band
gap increases monotonically with the solute concentration.
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Figure 4-1: PBE lattice constant of FexM1−xS2 as a function of x. The bowing parameters for
M=Zn, Ru, and Os are ba = 0.0677, −0.0382, and −0.0601 Å, respectively.

In Fig. 4-4, we show the miscibility of these systems by plotting the enthalpy of mixing
(∆H) as a function of concentration. The fitted regular solution interaction parameter is
851, 222, and 231 meV/FU for Zn, Ru, and Os, respectively. Using Eq. (4.4), the critical
temperature at the top of the miscibility gap is estimated to be 4940, 1290, and 1340 K,
respectively (Table 4.2), which is well above the melting temperature of pyrite (Tm = 1016 K;
see Ref. [5]). The elastic constants calculated at x = 0.5 and the critical temperature of the
spinodal instability are also given in Table 4.2.

Our results indicate that all three elements, Zn, Ru, and Os, may be difficult to incor-
porate in FeS2. A similar problem has been identified when trying to design (Fe,Mn)S2

mixtures in order to control the low-to-high spin transition [52].

4.3.2 Elements that do not form pyrite structures with S

In principle, alloying elements obviously do not have to form the pyrite structure in their
binary with S in order to be effective at increasing the gap of FeS2. However, such potential
alloying elements are less likely to be miscible. This can be observed by considering the total
enthalpy of the mixing reaction,

∆H = ΩxFexM + xM∆Hp′→pyrite, (4.8)

which besides the regular-solution-like term now also contains a positive promotion energy
to bring the M sulfide from its ground state phase p′ to the pyrite structure. While we do
not calculate ∆Hp′→pyrite for these elements, we find that the regular solution enthalpy alone
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Figure 4-2: Bulk modulus of FexM1−xS2 as a function of x. The bowing parameters for M=Zn,
Ru, and Os are bB = 31.4, 13.6, and 24.0 GPa, respectively.

0.5

1

1.5

2

2.5

0 0.2 0.4 0.6 0.8 1

E
g

(

e

V

)

x

Zn

Ru

Os
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Table 4.1: Lattice constants (a0 as calculated within PBE; in Å), bulk modulus (B in GPa),
pressure derivative of the bulk modulus (B′), and ∆-sol fundamental gap (Eg in eV) of FexM1−xS2.
Experimental values are given in brackets whenever available. The x = 1 data set refers to FeS2. B
and B′ are given at the calculated lattice parameter, while Eg is calculated at the lattice parameter
that is linearly interpolated between the experimental lattice parameter of the end members.

M x a0 B B′ Eg

- 1 5.405 (5.416)a 156.9 5.47 1.4 (0.95)b

Zn 0.75 5.540 129.1 4.83 1.0
0.5 5.686 105.9 4.66 1.0
0.25 5.843 85.3 2.32 1.2
0 6.002 (5.954)c 69.8 5.04 2.1 (2.5)d

Ru 0.75 5.476 158.3 4.93 1.4
0.5 5.542 161.4 5.21 1.5
0.25 5.603 166.6 4.79 1.6
0 5.660 (5.611)e 172.9 4.94 1.8 (1.3)b

Os 0.75 5.482 161.5 4.92 1.4
0.5 5.550 168.7 5.17 1.5
0.25 5.612 179.9 4.61 1.6
0 5.666 (5.619)f 193.1 4.96 1.8 (2.0)b

a Ref. [4].
b Ref. [5].
c Ref. [92].
d Ref. [35] (estimate).
e Ref. [96].
f Ref. [97].

Table 4.2: Elastic constants (in GPa) and critical temperatures [Tc and T ∗
c obtained from Eqs. (4.4)

and (4.5), respectively; in K] of Fe0.5M0.5S2.

M c11 c12 Tc T ∗
c

Zn 199.8 59.0 4940 3350
Ru 401.0 41.5 1290 648
Os 430.7 37.7 1340 615
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Figure 4-4: Mixing enthalpy of FexM1−xS2 as a function of x. The bowing parameters for M=Zn,
Ru, and Os are Ω = 851, 222, and 231 meV/FU, respectively.

is already quite limiting for mixing these elements into pyrite.
We obtain the ∆-sol band gap at the PBE lattice constant (Table 4.4) for each M in the

hypothetical MS2 pyrite crystal structure, since the experimental lattice constants for these
structures are unknown. Results are listed in Table 4.3 in ascending order of the atomic
number of M. Hypothetical semiconductor compounds whose band gap is higher than that
of FeS2 include the group II elements—Be, Mg, Ca, Sr, and Ba—as well as the transition
metal Cd. For these six potential candidates, we investigate the band gap bowing parameter
and whether they are miscible with FeS2.

Figure 4-5 shows the band gap bowing effect of alloying pyrite with the six candidates. We
observe an increasing trend in the bowing parameter down the group II elements, ranging
from 3.1 eV in (Fe,Be)S2 to 6.8 eV in (Fe,Ba)S2. Due to the large bowing effect, band
gaps at intermediate compositions are considerably smaller than FeS2. In Fig. 4-6, the
mixing enthalpy exhibits a similar trend such that the (Fe,M)S2 system becomes increasingly
immiscible as M goes down group II. The interaction parameter for Be already translates to a
critical temperature of 2740 K [Eq. (4.4)]. Therefore, these materials are unlikely candidates
to increase the band gap of pyrite.

4.4 Discussion

We have evaluated the potential of a large number of alloying elements to increase the band
gap of FeS2. In addition to the known higher-gap pyrites—ZnS2, RuS2, and OsS2—we also
find the group II elements and Cd have larger ∆-sol gaps in the pyrite structure than FeS2
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Table 4.3: ∆-sol fundamental gaps for elements that do not form the pyrite structure with S (Eg

in eV). The potential candidates are the group II elements (Be, Mg, Ca, Sr, Ba) and Cd.

M Eg M Eg M Eg M Eg

Be 2.02 Ga 0.20 Rh 0.25 Ta 0.15
Mg 2.50 Ge 0.94 Pd 0.27 W 0.14
Si 0.48 Sr 2.30 Ag 0.28 Re 0.15
Ca 2.46 Y −0.63 Cd 1.68 Ir −0.09
Sc −0.57 Zr 0.87 In −1.09 Pt 0.24
Ti 0.26 Nb 0.20 Sn 0.93 Au 0.31
V 0.14 Mo 0.15 Ba 2.07 Hg 0.59
Cr 0.12 Tc 0.13 Hf 1.14 Pb 1.33

Table 4.4: Lattice constant (a0 in Å), bulk modulus (B in GPa), pressure derivative of the bulk
modulus (B′), and band gap (Eg in eV) of FexM1−xS2 for candidates M that do not form the pyrite
structure with S. The x = 1 data set refers to FeS2.

M x a0 B B′ Eg

- 1 5.405 156.9 5.47 1.4
Be 0.75 5.443 134.9 4.50 1.0

0.5 5.480 116.2 4.32 1.0
0.25 5.514 100.5 4.42 1.1
0 5.543 88.1 4.10 2.0

Mg 0.75 5.572 123.3 4.39 0.89
0.5 5.752 97.5 4.60 0.91
0.25 5.940 77.2 4.57 1.1
0 6.133 59.9 4.57 2.5

Ca 0.75 5.692 113.8 4.98 0.55
0.5 6.005 83.2 4.92 0.53
0.25 6.333 60.5 4.75 0.97
0 6.678 44.4 4.32 2.5

Sr 0.75 5.761 106.8 4.55 0.24
0.5 6.158 75.4 5.29 0.31
0.25 6.580 52.1 4.22 0.75
0 7.020 37.6 4.53 2.3

Cd 0.75 5.634 123.6 5.23 0.61
0.5 5.879 96.4 4.48 0.61
0.25 6.139 74.3 4.81 0.79
0 6.412 57.1 4.57 1.7

Ba 0.75 5.827 101.7 4.54 0.04
0.5 6.321 67.4 5.36 0.23
0.25 6.851 44.1 5.26 0.57
0 7.403 31.8 4.36 2.1
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(Table 4.3). The lattice constants of all these candidate systems closely follow Vegard’s law
(Tables 4.1 and 4.4). While small gap bowing (bg ≈ 0.4 eV) and band gap enhancement
are observed for Ru and Os, large gap bowing is observed in other systems, ranging from
3.1 eV in Be to 6.8 eV in Ba, resulting in a decrease in the band gap of FeS2 at intermediate
alloying concentrations (Figs. 4-3 and 4-5). In all candidate systems considered, the mixing
enthalpy ∆H is the most limiting quantity, as it inhibits alloying into FeS2 (Figs. 4-4 and
4-6). Even within the most miscible systems, (Fe,Ru)S2 and (Fe,Os)S2, the regular solution
critical temperature is around 1300 K, substantially higher than the melting point of FeS2

(Table 4.2). The problem is further compounded by the fact that the large positive ∆H
correlates to large band gap bowing (compare Figs. 4-3 and 4-4; Figs. 4-5 and 4-6), making
all elements that have larger gaps in the (hypothetical) pyrite structure examined in this
study ineffective to increase the band gap of pyrite.

The correlation between band gap bowing and miscibility can be traced to differences
in ionic radius and electronegativity between the solvent and solute. We shall denote the
differences as ∆r = rM − rFe and ∆χ = χM − χFe, respectively. In Table 4.5, we list the
calculated band gap bowing parameter and interaction parameter of all examined candidate
systems together with their experimental Shannon ionic radius [98] (low spin 2+ charge
state in octahedral configuration; see Chapter 2) and electronegativity [99]. As illustrated
in Fig. 4-7, we observe that the interaction parameter increases with both ∆χ and ∆r,
indicating the (Fe,M)S2 system is less miscible for larger differences in electronegativity or
size.

On the other hand, for elements that have been successfully incorporated into pyrite,
namely, the transition metals Co, Ni, and Cu (Sec. 4.1) [91,92], the corresponding Shannon
ionic radius is 0.65, 0.69, and 0.73 Å [98], and the electronegativity is 1.88, 1.91, and 1.90 [99].
The differences compared to Fe are ∆r = 0.04, 0.08, and 0.12 Å, and ∆χ = 0.05, 0.08, and
0.07, respectively, for Co, Ni, and Cu. Therefore, Co is expected to be the most soluble
element within pyrite. Indeed, it has been experimentally demonstrated that Co forms a
solid solution with pyrite at all compositions [91]. FexNi1−xS2 has also been synthesized for
0.4 ≤ x ≤ 0.6, showing substantial solubility [92]. As for Cu, although its electronegativity
is similar to that of Fe, the ionic radius difference is 0.12 Å, comparable to Mg and Zn
(Table 4.5). A limited solubility is exhibited in FexCu1−xS2, where compositions of only
0.16 ≤ x ≤ 0.27 are achieved [92]. Despite their different degrees of solubility, the Co, Ni,
and Cu disulfides have lower band gaps [5], and are not suitable for the band gap enhancement
of pyrite, as pointed out in Sec. 4.1. The next element in the transition metal series, Zn,
has a comparable size difference to Cu (∆r = 0.13 Å) and a larger estimated band gap
(2.5 eV; Ref. [35]) that is verified computationally (2.1 eV; Table 4.1). However, in this case,
its electronegativity difference of 0.18 makes ZnS2 highly immiscible with FeS2 and causes
a large band gap bowing as shown in Fig. 4-3. Based on our results, we question whether
Zn can really be effective in increasing the band gap and OCV of pyrite, as proposed by
Altermatt et al. [89]. [Note that natural impurities typically occur below O(1019) cm−3 in
pyrite; see Refs. [5] and Chapter 3.] The strong positive correlations between miscibility and
differences in ionic radius and electronegativity observed in this study may serve as general
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Table 4.5: Shannon ionic radius [98] (r) and electronegativity [99] (χ) of M, and band gap bowing
parameter (bg) and interaction parameter (Ω) of (Fe,M)S2. Data for Fe are shown in the first row.
The ionic radii of Ru2+ and Os2+ are not available.

M r (Å) χ bg (eV) Ω (meV/FU)
- 0.61 1.83 - -
Be 0.45 1.57 3.1 473
Mg 0.72 1.31 4.5 1360
Ca 1.00 1.00 5.9 2790
Zn 0.74 1.65 3.3 851
Sr 1.18 0.95 6.6 3710
Ru - 2.2 0.44 222
Cd 0.95 1.69 4.1 1800
Ba 1.35 0.89 6.8 4640
Os - 2.2 0.41 231

guiding rules in materials design for band gap engineering in other systems.

We remark on the improvement of calculated band gaps using the ∆-sol method. The
GGA band structures of ZnS2, RuS2, and OsS2 are shown in Fig. 4-8. (See Chapter 2 for the
band structure of FeS2.) Going down the Fe column in the periodic table (Fe, Ru, Os), the
experimental band gap increases monotonically from 0.95, 1.3, to 2.0 eV. The Kohn-Sham
gap [ǫCBM − ǫVBM, which is the difference in eigenvalues at the conduction band minimum
(CBM) and valence band maximum (VBM)] down the group is, respectively, 0.4, 0.4, and
−0.07 eV, which corresponds to an increasingly severe underestimation of 0.55 (−58%), 0.9
(−69%), and 2 eV (−100%), as listed in Table 4.1. This trend is in direct contradiction
to the common belief that relative Kohn-Sham gaps within a chemically similar family of
materials should be in reasonable agreement with experiment. On the other hand, the ∆-
sol method yields band gaps of 1.4 (+47%), 1.8 (+38%), and 1.8 eV (−10%), respectively,
showing substantial improvement in both the accuracy and the qualitative trend.

Due to the significant discrepancy between the Kohn-Sham gap and the experimental gap,
an ad hoc correction is usually made such that the band gaps of the end members are fixed
at their experimental gaps, and the gaps at intermediate compositions are adjusted by linear
interpolation of the gap errors at x = 0 and x = 1. This GGA band gap correction scheme
can be found in, e.g., Ref. [100]. One may question whether the implementation of such an
interpolation scheme would affect our results, since the pyrite band gap is calculated to be
1.4 eV within the ∆-sol method, which is 0.45 eV higher than the experimental value [5],
and a downward shift at x = 1 in Fig. 4-5 would seem to make the candidate systems more
effective. However, we do not show such corrections in this study for three reasons: (i) The
band gap bowing parameter is obtained by fitting the calculated band gaps to a quadratic
function, and it is independent of a linear correction term. (ii) The band gap at x = 0.5
is significantly smaller than that of both end members for most of the materials examined
here, yielding a substantial bowing parameter. Since the bowing parameter [O(1) eV] is much
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their Shannon ionic radii in the 2+ state are not available.
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Figure 4-8: Band structure of (a) ZnS2; (b) RuS2; and (c) OsS2.

larger than the mean error in the ∆-sol gap [O(0.1) eV] [67], the band gap would decrease
with solute concentration near the FeS2 end member regardless of whether the correction
is applied. Thus, the conclusion of whether a candidate is feasible would remain the same
even if the correction scheme were to be adopted. (iii) The experimental band gaps for the
nonisostructural candidates in the pyrite structure are unknown. It would be inconsistent
to use experimental gaps at one end (Fe limit) and computed gaps at the other (M limit).

Only ordered structures have been used in our calculations. Due to the fact that the cation
sites form a face-centered cubic sublattice (Chapter 2), there is only one unique configuration
at x = 0.25, 0.5, and 0.75 for the unit cell. One may wonder if random cation arrangements
would give substantially different results. Special quasirandom structures (SQS) are com-
monly used to simulate the structure of a random alloy using a small supercell (typically
2× 2× 2) whose correlation function closely approximates that of an ideal random alloy for
a given concentration [101]. We have tested the case of (Fe,Zn)S2, using the initial structure
generated by von Pezold et al. [102] within the Alloy Theoretic Automated Toolkit (atat)
code [103]. The ionically-relaxed mixing enthalpy obtained from the SQS approach is even
higher than that obtained from the unit cell approach. Given that the mixing enthalpy ∆H
obtained from the latter is already highly limiting for all systems, we have not carried out
further investigations on the configurational effects using the SQS approach. For the same
reason, the ∆Hp′→pyrite term in Eq. (4.8) has not been evaluated. We do recommend that,
however, if a successful candidate were identified from the screening procedure, then more
detailed analyses of the phase stability and ordering effects should be performed.

While our results offer a pessimistic perspective on the likelihood of increasing the band
gap of FeS2, it is important to note that there are some possibilities that we have not
considered:

(i) Anion mixing. Isovalent alternatives for the anion are very limited. FeSe2 and FeTe2
crystallize in the marcasite phase and are nonisostructural to pyrite [104]. The experimental
band gap of the diselenide varies from 0.5 to 1 eV [104, 105], and that of the ditelluride is
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even smaller [104], which is undesirable.
(ii) Mixing in both sites. Isostructural diselenides and ditellurides include the compounds

of such elements as Mn, Ru, Os, and Co [5]. The (Fe,M)(S,A)2 class of materials, where M
is one of the above transition metals and A=Se or Te, has not been studied. Unfortunately,
the toxicity and scarcity of these chalcogens would make them unfavorable for large-scale
photovoltaic applications.

(iii) Mixtures of alloying cations of the form (Fe,M,N)S2. Here the combined aliovalent
alloying elements M and N should average to a 2+ charge. However, it is likely that a large
addition of such elements will lead to the formation of intermediate compounds due to the
effective electrostatic interaction between cations of different charge [106].

Finally, it has also been amply demonstrated that high supersaturation of alloying ele-
ments can be achieved in materials with far-from-equilibrium techniques such as pulsed-laser
melting [107]. In these situations the spinodal instability will play a key role in the reliability
and durability of the synthesized product.

4.5 Conclusions

The feasibility of alloying pyrite FeS2 to enhance its band gap is investigated from first-
principles. Among the isostructural candidates (Zn, Ru, Os), band gap enhancement is
observed for Ru and Os, but they are expected to exhibit poor miscibility. Using a mate-
rials screening procedure, we identify six nonisostructural candidates, namely, the group II
elements (Be, Mg, Ca, Sr, Ba) and Cd, that have larger band gaps in the pyrite structure
compared to FeS2. Large band gap bowing effects are found in these systems, making them
ineffective to enhance the band gap of pyrite. We also observe positive correlations between
immiscibility and differences in the ionic radius and electronegativity.
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Chapter 5

Size-pH effects on the relative
stability of FeS2 polymorphs

The beginning of knowledge is the discovery

of something we do not understand.

Frank Herbert

5.1 Introduction

As already introduced in Chapter 1, the effect of nanoparticle size on the stability of poly-
morphs is well understood in terms of surface energies and surface-to-bulk ratios [8],

G = gbV + γA, (5.1)

where gb is the bulk Gibbs free energy density, γ is the surface energy, A is the surface area,
and V is the volume of the particle. On the other hand, for aqueous environments, Finnegan
et al. have used a modified surface energy term in the free energy

G = gbV + (γ + σφ)A, (5.2)

where σ is the surface charge density and φ is the electrostatic potential difference between
the solid and liquid phases, to explain the relative stability of TiO2 polymorphs [108] under
different pH conditions. While σ could be measured from potentiometric titration, from
which φ could be inferred via the Gouy-Chapman equation, γ was not measured as a function
of pH in their work. From the computational aspects, Barnard and Curtiss have been able to
predict TiO2 particle morphology by considering the energies of adsorbed surfaces that are
representative of acidic or basic conditions [109]. More recently, it has been shown that the
effect of pH can be quantitatively modeled via adsorbate chemical potentials to predict the
morphology of LiFePO4 particles [110, 111]. However, a direct computational verification of
Eq. (5.2) has not been demonstrated for the prediction of the relative stability of polymorphs.
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In this chapter we shall address how the combined effects of particle size and pH may alter
the relative stability of pyrite and marcasite FeS2, where the metastable phase marcasite is
known to be stabilized in acidic solutions [9–11]. The rest of the section is organized as
follows. (i) We shall first examine the size effect via computed pristine surface energies of
pyrite and marcasite. Due to the lower surface energy of marcasite, we verify that marcasite
is the stable phase at the nanoscale. (ii) Adsorbed surface energies are computed to model
the morphology and phase stability as a function of pH, using the neutral-particle framework
developed in Refs. [110, 111]. (iii) A direct computation of Eq. (5.2) is presented using the
joint density functional theory (JDFT) approach [112, 113]. Charged particles are modeled
by charged slabs that are balanced with a countercharge in the implicit aqueous medium
within the jdftx code [114–116].

5.2 Size dependence

In this section we first examine the role of pristine surface energies on the phase stability of
polymorphs.

5.2.1 Theoretical framework

The γ in Eqs. (5.1) and (5.2), called the surface grand potential, is formally a Legendre
transform of the free energy with respect to µn.

Definition. The surface energy is defined as

γ(T, P, {µi}) =
1

2S

[
G(T, P, {ni})−

∑

i∈A

niµi(T, ai)

]
,

where S is the cross-sectional area of the slab and A is the set of all atoms (including any
adsorbates) in the solid phase.

In practice, entropic and pressure effects are neglected, and the Gibbs free energy G is
approximated by the total energy E, providing a more convenient means of computation:

γ ≈ 1

2S

(
E −

∑

i∈A

niµi

)
. (5.3)

From this definition, we can rewrite the pristine surface energy in terms of total energies.

Corollary 5.1. Given a reference bulk total energy E0 (for the same system size as the
surface), the pristine surface energy is

γ0 =
E −E0

2S
.
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Proof. Since the surface is pristine, A represents all atomic species of the bulk, which leads
to ∑

i∈A

niµi = E0.

Given a set of surface energies
{
γhkl
0

}
, the Wulff shape W of a single crystal particle can

be constructed. At a given volume V , we define the effective radius as

reff =

(
3V

4π

) 1
3

. (5.4)

We assume
{
γhkl
0

}
is independent of reff . The total free energy of a single crystal particle is

G = gbV +
∑

(hkl)∈W

γhkl
0 Ahkl, (5.5)

where gb is the bulk free energy normalized by volume, and the summation is over all facets
in the Wulff shape W.

5.2.2 Computational details

Density functional theory (DFT) [36, 37] calculations within the Perdew-Burke-Ernzerhof
(PBE) [45, 46] generalized gradient approximation (GGA) were performed using the plane-
wave code Vienna Ab-initio Simulation Package (vasp) [40–43] with projector augmented
wave (PAW) potentials [38, 39]. Energy convergence, surface energy calculation method,
and Monkhorst-Pack [53] k-point selection criteria were similar to those already described
in detail in Chapter 2.

We have only considered the low-index surfaces of pyrite [(100), (110), (111), and (210)]
and marcasite [(100), (010), (001), (110), (101), and (011)].

5.2.3 Results

The pristine surface energies are shown in Table 5.1. From these energies, the Wulff shapes
of pyrite and marcasite are constructed in Fig. 5-1. By computing the difference in total
free energy [defined in Eq. (5.5)] between pyrite and marcasite, the size effect on the relative
stability of pyrite and marcasite is shown in Fig. 5-2, where the energy difference in taken
with respect to pyrite (∆G = Gm − Gp). Due to its lower surface energy [0.78 J/m2 for
(101)], marcasite is the stable phase at the nanoscale. [We remark that the marcasite (101)
surface is the one that has the least lattice mismatch with the pyrite (100) surface, and that
the interface between these two phases has been studied in Chapter 2.] It is predicted that
pyrite becomes the ground state phase beyond a critical particle radius of 2-3 nm.
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Table 5.1: Pyrite and marcasite low-index pristine surface energies. Marcasite has lower surface
energy than pyrite.

Phase (hkl) γ0 (J/m2)
Pyrite (100) 1.04

(110) 1.72
(111) 1.43
(210) 1.48

Marcasite (100) 1.72
(010) 1.18
(001) 1.35
(110) 1.31
(101) 0.78
(011) 1.39

Figure 5-1: Wulff shapes of pyrite (left) and marcasite (right) obtained from pristine surface ener-
gies.
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Figure 5-2: Relative stability of pyrite and marcasite as a function of particle size. The energy
difference is taken with respect to pyrite.
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5.3 pH dependence for charge-neutral particles

In this section we incorporate the effect of pH through the neutral-particle framework de-
veloped by Refs. [110, 111]. We provide an equivalent derivation in terms of pH instead of
µO.

5.3.1 Theoretical framework

To model the effect of pH, four adsorbate species (O, OH, H2O, H) are considered for each
facet. The formation energy of water is

∆Gf
H2O

= µ0
H2O

− µ0
H2

− µ0
O. (5.6)

The oxygen reference chemical potential (µ0
O = −4.57 eV/O) is fitted to experimental for-

mation energies of transition metal oxides [61]. The hydrogen reference chemical poten-
tial (µ0

H = −3.73 eV/H) is fitted to reproduce the experimental formation energy of water
(∆Gf

H2O
= −2.46 eV/H2O). We shall express the surface energy as a function of pH for each

adsorbate, that is,

γ(pH) =
1

2S

[
E −

∑

i

niµi(pH)

]
. (5.7)

(i) H-capped surface. Using the standard hydrogen electrode, µ0
H+ = µ0

H. Therefore,

µH+ = µ0
H+ + kT ln aH+

= µ0
H − kT ln(10)pH (5.8)

and

γH =
1

2S

{
E −E0 − nH

[
µ0
H − kT ln(10)pH

]}
. (5.9)

(ii) H2O-capped surface. Setting µH2O = µ0
H2O

, we have

µH2O = ∆Gf
H2O

+ µ0
H2

+ µ0
O (5.10)

and

γH2O =
1

2S

[
E −E0 − nH2O

(
∆Gf

H2O
+ µ0

H2
+ µ0

O

)]
, (5.11)

which is independent of pH.
(iii) OH-capped surface. Based on the fact that the proton and hydroxyl chemical po-

tentials are coupled, the relation

µOH− = µH2O − µH+ (5.12)

gives

γOH =
1

2S

{
E −E0 − nOH

[
∆Gf

H2O
+ µ0

H + µ0
O + kT ln(10)pH

]}
. (5.13)
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A proof of Eq. (5.12) is given in Corollary 5.3.
(iv) O-capped surface. Similarly, we write

µO2− = µH2O − 2µH+ (5.14)

to obtain

γO =
1

2S

{
E − E0 − nO

[
∆Gf

H2O
+ µ0

O + 2kT ln(10)pH
]}

. (5.15)

5.3.2 Computational details

All slab calculations were kept charge neutral. An adsorbed surface was modeled with full
coverage of one monolayer of H, H2O, OH, or O species. Initial adsorption sites for O-
containing species were chosen above the cation Fe, forming an Fe—O bond. For H, both
Fe and S adsorption sites were computed on the pyrite (100) surface. We found that the
Fe adsorption site was more energetically favorable for the neutral H adsorption process.
Therefore, the Fe site was chosen for H-adsorption on all the other surfaces. The surfaces
were allowed to relax.

5.3.3 Results

The surface energy diagrams of pyrite and marcasite are shown in Figs. 5-3 and 5-4, respec-
tively. These diagrams are analogous to the semiconductor point defect formation energy
diagrams (see Chapter 3) in the following ways. (i) Each surface energy line is obtained from
a single computation. (ii) The slope is proportional to the charge state of the species. (iii)
The most stable adsorbate species is indicated by the lower envelope of the lines. (iv) Kinks
in the lower envelope represent critical pH values at which the adsorption of one species
transitions into another.

It is observed that the proton-adsorbed surfaces in pyrite are almost never energetically
favorable within the entire [0, 14] pH range. The H2O-adsorbed surface has the lowest surface
energy under highly acidic conditions and transitions into either OH- or O-adsorbed as pH
increases. The similar phenomenon is observed for marcasite, except that H-adsorption is
favorable below pH ∼ 2 for (110) and (011), and that O-adsorption on (110) has the lowest
surface energy even under mildly acidic conditions, which is unusual. Notice that, at a given
pH, it is possible that different adsorbates are favored on different facets of the Wulff shape.

Using this set of surface energies, the Wulff shapes can be constructed as a function of
pH, where a few snapshots are shown in Fig. 5-5. We can now write the total free energy
difference between pyrite and marcasite as a function of both pH and r:

∆G(pH, r) = ∆gbV (r) +
∑

(hkl)∈Wα

[
min

i
γ
α(hkl)
i (pH)

]
Aα(hkl)(r)

−
∑

(hkl)∈Wβ

[
min

i
γ
β(hkl)
i (pH)

]
Aβ(hkl)(r). (5.16)
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Figure 5-3: Surface energy versus pH diagram of pyrite.

The size-pH phase diagram for FeS2 polymorphs is drawn in Fig. 5-6. Compared to
the pristine surface case, the critical size transition from marcasite to pyrite remains at
the nanoscale because the surface energies are of the same order of magnitude. While
the prediction that pyrite is stable under basic conditions is qualitatively correct, the pH
transition of 12 does not agree well with the empirical observation of 5 or 6 [10, 11]. The
discrepancy may be caused by the unphysical assumption that particles remain charge neutral
irrespective of the pH in the aqueous environment. This limitation will be addressed in
the next section. Furthermore, we have neglected chemical reactions on the surface that
may result in off-stoichiometry, possibility of co-adsorption, effects of other aqueous ionic
species, as well as energetic contributions from the corners and edges of nanoparticles. Such
complications are unfortunately beyond the scope of this thesis and will be left as future
work.

5.4 Charged particles

Due to the inadequacy of the charge-neutral framework, we now consider the thermodynam-
ics of charged particles in solution. Here we allow the possibility that an adsorbed surface
can become charged as a result of chemisorption of ions from the aqueous environment. A
generalized surface energy for charged slabs is derived and applied to the study of FeS2

polymorphs.
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Figure 5-4: Surface energy versus pH diagram of marcasite.
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Figure 5-5: Wulff shape of pyrite (top) and marcasite (bottom). The pH is 1, 4, 7, 10, and 13 from
left to right.
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Figure 5-6: Size-pH phase diagram for FeS2 polymorphs pyrite and marcasite. The energy difference
is taken with respect to pyrite.
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5.4.1 The electrochemical potential µ

Definition. For a (possibly charged) species i in phase α, the electrochemical potential is
defined as [117]

µα
i = µα

i + zieφ
α

= µ0α
i + kT ln aαi + zieφ

α,

where µi is the chemical potential, zi is the charge of i, φ is the inner potential, and ai is the
activity.

Some simple properties of µ are given below.

Lemma 5.2. (i) For uncharged species, µi = µi. (ii) For a pure phase at unit activity,
µi = µ0

i + zieφ. (iii) Equilibrium of species i between phases α and β holds when µα
i = µβ

i .

Proof. (i) An uncharged species i has zi = 0. By definition, µi = µi. (ii) Setting ai = 1, we
obtain µi = µ0

i + zieφ. (iii) This is obvious by starting from ∆G = 0 and holding all other
thermodynamic forces constant.

We can now give a proof of Eq. (5.12).

Corollary 5.3. The chemical potentials of protons and hydroxyls are coupled by the relation

µH2O = µH+ + µOH−.

Proof. Consider the equilibrium condition:

H2O ⇋ H+ +OH−.

Since H2O is a neutral species, by (i) of Lemma 5.2, µH2O = µH2O. At equilibrium [(iii) of
Lemma 5.2],

µH2O = µH+ + µOH−.

By definition of µ,

µH+ + µOH− = µH+ + eφ+ µOH− − eφ

= µH+ + µOH−.

5.4.2 The electrochemical surface energy γ

Consider the adsorption process of a charged species on a particle M in solution. We shall
use proton adsorption in the following derivations, without loss of generality:

M + H+ → MH+. (5.17)
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The reaction energy is

∆Grxn = µs
MH+ − µs

M − µl
H+

= µMH+ + eφs − µM −
[
µ0
H − kT ln(10)pH + eφl

]

= µMH+ − µM −
[
µ0
H − kT ln(10)pH

]
+ e(φs − φl), (5.18)

where superscripts s and l indicate solid and liquid phases, respectively. The first three
terms are a collection of chemical potentials, which by Eq. (5.3) can be written as 2Sγ̃ for
some form of γ̃ (details in next section).

Definition. The electrochemical surface energy is defined as γ = ∆Grxn/2S.

Using the above definition and rewriting φ = φs − φl, we obtain

γ = γ̃ + σφ. (5.19)

Although the pH effect can be incorporated in the same way as presented in Sec. 5.3, one
should notice that here γ̃ is dependent on the charge of the slab. The surface charge density
σ induces a potential difference of φ between the solid and liquid phases. These charge-
dependent quantities are difficult to obtain from vacuum-slab computations due to spurious
image charge interactions and the absence of a liquid medium. Recently, however, it has been
shown that by including the aqueous region as a dielectric medium with a countercharge,
these quantities can be reliably computed within joint density functional theory (JDFT; see
Sec. 5.5.1), yielding potentials of zero charge that agree very well with experiment, without
ad hoc energy corrections [113]. Thus, by obtaining electrochemical surface energies through
Eq. (5.19), we can reconstruct a size-pH phase diagram for charged particles that would
allow for the prediction of the relative stability of polymorphs:

∆G(pH, r) = ∆gbV (r) +
∑

(hkl)∈Wα

[
min

i
γ
α(hkl)
i (pH)

]
Aα(hkl)(r)

−
∑

(hkl)∈Wβ

[
min

i
γ
β(hkl)
i (pH)

]
Aβ(hkl)(r), (5.20)

which compared to Eq. (5.16) we have only replaced the vacuum surface energy γ with the
electrochemical surface energy γ.

5.4.3 A theorem on γ

To understand how one can compute the electrochemical surface energy γ, the nature of γ̃
in Eq. (5.19) must be first elucidated by revisiting

∆Grxn = µMH+ − µM −
[
µ0
H − kT ln(10)pH

]
+ eφ. (5.21)
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We expand the first term into several energy differences:

µMH+ = µ
s/v
MH +

(
µ
s/l
MH − µ

s/v
MH

)
+
(
µ
s/l
MH+ − µ

s/l
MH

)
, (5.22)

where superscripts indicate the type of interface (solid s, liquid l, or vacuum v) present in the
supercell. In doing so, the first term, together with the pH-dependent adsorbate chemical
potential, is written as γi0 after normalization by the surface area, i.e., in the case of proton
adsorption,

γH0 =
1

2S

{
µ
s/v
MH − µM −

[
µ0
H − kT ln(10)pH

]}
. (5.23)

These energies have been calculated in the previous section on neutral particles.

The normalized energy difference in the first bracketed term of Eq. (5.22) is the surface
solvation energy, written as γi0,solv. (The reference energy of the liquid region has already
been taken into account in the jdftx code.) Therefore,

γH0,solv =
1

2S

(
µ
s/l
MH − µ

s/v
MH

)
. (5.24)

In the second bracketed term of Eq. (5.22), we shall simply label the two total energies
as Ξ and F , respectively. The energies cannot be directly compared because Ξ is obtained at
constant electron chemical potential µe, while F is obtained at constant number of electrons
ne. Instead, comparison of the neutral (µ0;n0) and the charged (µ1;n1) systems can be
achieved by performing a Legendre transform with respect to µene, i.e.,

γi0/± =
1

2S
[Ξ(µ1)− Ξ(µ0) + n0δµ]

=
1

2S
{Ξ(µ1)− [F (n0)− n0µ0] + n0δµ}

=
1

2S
{Ξ(µ1)− [F (n0)− n0µ1]} , (5.25)

where a work done of n0δµ is initially applied to the neutral system to bring the chemical
potential from µ0 to µ1. The physical interpretation of γi0/± is the ionization energy of the
surface. The concept is illustrated in Fig. 5-7. The potential difference between the solid and
liquid phases is equal to δµ, since the potential of the liquid is set to 0. Using typical lattice
constants and atomic densities, a slab with full-coverage of charged adsorbate species yields
surface charge densities on the order of σmax ∼ 1 C/m2. (It also corresponds to an unrealistic
potential difference on the order of 10 V.) However, experimentally measured charge densities
are one order of magnitude lower, which may be due to partial coverage or partial charge
transfer into the bulk as a result of energetically unfavorable coulombic repulsion on the
surface. For instance, Bonnett and Marzari have calculated that a proton adsorbed onto
Pt(111) and Pt(100) only carries a charge of 0.09+ and 0.02+, respectively [118]. Therefore,
Ξ(µ1) is computed such that the resulting charge is only a fraction of the maximally-charged
case, i.e., δn/2S = −ησmax, where η is chosen to be 0.1. The issues of partial coverage and
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partial charges are left for future work.

Figure 5-7: Schematic of the differences between F , Ξ, n, and µ, and their relationship to γi0/± ,
σ, and φ. Legendre transform of F (n0) and F (n1) gives the quantities Ξ(µ0) and Ξ(µ1). The
cross-sectional area is given by S.

We now arrive at the following theorem, where the derivation has already been shown.

Theorem 5.4. The electrochemical surface energy (with adsorbate species i) can be ex-
pressed in terms of the aforementioned surface energies:

γi = γi0 + γi0,solv + γi0/± + σφ. (5.26)

This equation represents, physically, the creation of a surface (γi0), its solvation in water
(γi0,solv), and ionization of the surface (γi0/±), inducing a potential difference between the solid
and liquid phases (σφ). The third and fourth terms arise due to charge, and are irrelevant
for neutral systems such as in the case of H2O adsorption. Without loss of generality, the
same procedure can be done for other charged adsorbate species OH− and O2−. Notice that
Eq. (5.26) can also be derived by generalizing the definition of surface energy in Eq. (5.3)—
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replace the chemical potentials with electrochemical potentials, i.e.,

γ =
1

2S

(
Ξ−

∑

i∈A

niµi

)
. (5.27)

We verify that γ is indeed a generalization of γ such that the latter is recovered for a neutral
surface.

Corollary 5.5. If A is neutral, then γ = γ.

Proof. First note that for a neutral bulk, Ξ is just the total energy E. Then, by definition
of µ,

γ =
1

2S

[
E −

∑

i∈A

ni(µi + zieφ
s)

]

=
1

2S

(
E −

∑

i∈A

niµi

)
− eφs

2S

∑

i∈A

nizi.

Since A is neutral,
∑

i∈A nizi = 0, and, thus, we obtain

γ =
1

2S

(
E −

∑

i∈A

niµi

)
= γ.

The result holds regardless of the presence of adsorbates.

We remark that, for clean surfaces without adsorbates, Eq. (5.26) still holds such that

γ = γ0 + γS + γI + σφ, (5.28)

where γ0, γS, and γI are the pristine, solvation, and ionization surface energies, respectively.
In this case, however, γ cannot be readily expressed as a function of pH.

5.5 Computational method

5.5.1 Joint density functional theory

Here the essence of joint density-functional theory (JDFT) is presented. Details can be found
in Refs. [112, 113, 119]. The hamiltonian of a solid-liquid system can be expressed as

HJDFT[n, {Nα}] = HDFT[n] +Hl[{Nα}] +Hs−l[n, {Nα}], (5.29)

where n(r) is the electron density of the solid, {Nα(r)} is the density of the nuclei of the
atomic species in the environment, HDFT is the hamiltonian of the solid within DFT, Hl
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is the hamiltonian of the liquid, and Hs−l is the hamiltonian for the solid-liquid coupling.
This expression is exact in theory, but each term needs to be approximated in practice. The
solid is approximated by HKS, the standard Kohn-Sham density functional. Liquid effects
are treated by a polarizable continuum model (PCM). It is assumed that the coupling term
between the explicit solute and solvent environment is purely electrostatic. The last two
functionals are approximated to be

Hdiel = Hl +Hs−l

= Hǫ[s, ǫ] +Hκ[s, η] +

∫∫
dr dr′

ρl(r
′)

|r− r′|

(
ρs(r) +

ρl(r)

2

)
+Hcav[s], (5.30)

where ρs(r) = n(r) − N(r) is the total charge density of the solid with both electron and
nuclei contributions, Hǫ and Hκ describe the internal energies of the dielectric response
of neutral molecules and ions, respectively. The last term includes all other effects (e.g.,
cavitation) of the fluid, and is assumed to take the form of

Hcav[s] = τ

∫
dr |∇s|, (5.31)

where τ is an effective tension. The cavity shape function, s, is defined by the electron
density n(r) via

s(n(r)) =
1

2
erfc

ln(n(r)/nc)

σ
√
2

. (5.32)

The transition electron density nc, transition width σ, and tension τ are fitted to solvation
energies of selected molecules from quantum chemistry calculations. The local density of the
solvent is thus Nl(r) = Nbs(n(r)), where Nb is the bulk density (molecules per volume). The
dielectric constant and inverse Debye screening length are defined in terms of Nl(r):

ǫ(r) = 1 +
Nl(r)

Nb
(ǫb − 1), (5.33)

κ(r) = κ2
b

Nl(r)

Nb
. (5.34)

It can be shown that, within the linear PCM approximation,

Hdiel =

∫
dr

{
φ(r)ρs(r)−

ǫ(r)

8π
|∇φ(r)|2 − ǫbκ

2(r)

8π
[φ(r)]2

}
. (5.35)

The total energy is minimized by solving the modified Poisson equation

∇ · [ǫ(r)∇φ(r)]− ǫbκ
2(r)φ(r) = −4π[n(r)−N(r)] (5.36)

together with the standard Kohn-Sham equations self-consistently.

The reader is referred to Ref. [119] for full derivations.
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5.5.2 Computational details

We employ the Fritz-Haber-Institute pseudopotentials [120] for all jdftx calculations. A
liquid region of at least 20 Å is used in solid-liquid calculations, with the liquid bulk dielectric
constant fixed at ǫ = 80, following Ref. [113].

For each adsorbate i, γi0 is obtained by surface ionic relaxation within vasp, whereas
γi0,solv, γi0/±, and σφ are calculated within jdftx, all at the jdftx lattice constants. This is
necessary because the oxygen reference chemical potential is obtained from a fit to formation
energies of transition metal oxides within vasp [61], and hence the energy comparisons with
respect to the adsorbate chemical potentials are only meaningful within vasp.

Adsorbate sites are chosen in a similar fashion as described in Sec. 5.3.2, except protons
are initialized on S sites rather than Fe sites, since it is expected that the charge repulsion
between the Fe cation and protons is unfavorable.

To obtain electrochemical surface energies, the following procedure is used. (i) Compute
lattice constants within jdftx using Murnaghan equation of state (e.g., a in cubic pyrite)
or sequential refinement of volume mesh (e.g., a, b, c in orthorhombic marcasite). Generate
pristine surfaces at jdftx lattice constants. (ii) Perform adsorbed surface ionic relaxation
within vasp at jdftx lattice constants. (iii) Using the relaxed geometry, compute the solid-
vacuum system in jdftx and store the wavefunction and charge density. (iv) Compute
neutral solid-liquid system starting from the wavefunction and charge density obtained from
the previous step. (v) Compute charged solid-liquid system at constant electron chemical
potential.

The accuracy of solid-liquid potential differences has been verified by capturing features in
the Gouy-Chapman-Stern model and agreement with experiment in potential of zero charge
calculations for various metal slabs [113]. The accuracy of charged-slab computations has
been assessed by the excellent agreement in the double-layer capacitance, which is obtained
from the slope of surface charge density versus applied voltage, between computation and
experiment [113].

5.6 Results

5.6.1 Bulk and pristine surface calculations

JDFT lattice constants are obtained from constant volume computations with relaxation of
all internal coordinates (Table 5.2). Compared to experiment, lattice constants are over-
estimated within jdftx, unlike the underestimation within vasp, even though the PBE
exchange-correlation functional is used in both cases. This is attributed to the differ-
ent pseudopotentials. Pyrite is the stable phase within jdftx, in agreement with exper-
iment. However, one should notice that the calculated energy difference of −1.6 meV/FU
between the two phases is very small, and that the experimental value has large uncertainty
(−43.4± 30.7 meV/FU).

Since the structural parameters within jdftx are sufficiently different from those within
vasp, the clean and adsorbed surfaces are created at the jdftx lattice constants. Despite
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Table 5.2: Comparison of lattice constants (in Å), pristine surface energies (in J/m2), and relative
stability (in meV/FU) of pyrite and marcasite between vasp and jdftx computations.

vasp jdftx Expt.a

Pyrite a 5.403 5.529 5.416
γ(100) 1.04 0.99
γ(110) 1.72 1.68
γ(111) 1.43 1.67
γ(210) 1.48 1.55

Marcasite a, b, c 4.438, 5.409, 3.388 4.4508, 5.519, 3.482 4.443, 5.425, 3.387
γ(100) 1.72 1.86
γ(010) 1.18 1.13
γ(001) 1.35 1.31
γ(110) 1.31 1.48
γ(101) 0.78 0.85
γ(011) 1.39 1.56

Relative stability gp − gm 21.6 −1.6 −43.4± 30.7

a Lattice constants are taken from Ref. [4] (pyrite) and Ref. [27] (marcasite). Experimental enthalpies of
formation at 298.15 K are taken from Ref. [27].

the discrepancy in lattice constants (within ∼ 2%), pristine surface energies obtained from
both codes are still in good agreement (within ∼ 10%).

5.6.2 Charged surface calculations

For each low-index surface and adsorbate, the four constituent surface energy terms of γ
are listed in Table 5.3. As mentioned in Sec. 5.4.3, the charge carried by each adsorbate
is only a fraction η = 0.1 of its full charge. The first term, except in the cases of H+-
adsorption (due to different adsorption sites, see Sec. 5.5.2), agrees well with the charge-
neutral calculation in vasp as presented in Sec. 5.3.3. The second term, the solvation
energy of the neutral surface, is always negative since unpaired electrons are screened by
the dielectric medium. Its magnitude varies between 30 mJ/m2 for O2−-adsorbed marcasite
(011) to 1.6 J/m2 for H+-adsorbed pyrite (110). The third and fourth terms are irrelevant
for the neutral H2O-adsorbed surfaces, but are also unavailable for a few others, namely, the
H+-adsorbed marcasite (001), (110), and (011) surfaces. In these calculations, the surface
remains charge-neutral within any reasonable potential difference between the solid and
liquid phases.

Furthermore, for H+-adsorbed pyrite (210), marcasite (100), and (010), as well as O2−-
adsorbed marcasite (010), an unusually large magnitude in the surface ionization energy
γi0/± is found. For instance, at a modest potential of 0.4 V, the maximally-charged case
(η = 1) is attained for H+-adsorbed pyrite (210). The behavior of these 4 cases are not
well-understood and require further investigation. They have been excluded from γ and the
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subsequent surface energy diagrams.

As defined in Eq. (5.26), the electrochemical surface energy γ is the sum of the 4 energies
in Table 5.3. Surface energy diagrams of pyrite and marcasite are plotted in Figs. 5-8 and
5-9, respectively. Unlike the neutral-particle scheme, here we find that H+ adsorption is
energetically favorable on half of the surfaces considered, and that O2− adsorption is almost
never favorable [except on pyrite (210) for pH & 8 and marcasite (110) for pH & 6].
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Figure 5-8: Pyrite (100), (110), (111), and (210) surface energy γ versus pH.

5.7 Discussion

By comparing Figs. 5-8 and 5-9 the phase stability of pyrite and marcasite is predicted.
Notice that the surface energy of H+-adsorbed pyrite (110) becomes negative for pH .

2. Mathematically, this indicates that the particle would form infinitesimal (110) facets,
which physically means that it is unstable. This situation is analogous to point defect
formation energy calculations such that a negative formation energy prevents the Fermi level
from reaching that position (see Chapter 3), otherwise the bulk host would be completely
comprised of such defects. Therefore, for pH . 2, it is predicted that marcasite is the stable
phase.

On the other hand, for pH & 2, the pyrite (110) surface energy remains smaller than
all marcasite surface energies, which means that pyrite is the stable phase for the entire
pH range of 2 to 14. Moreover, since the marcasite surface energy is always higher than
pyrite, the relative phase stability is size-independent. The implication for the synthesis of
marcasite is that, as marcasite grows under acidic conditions, there is no driving force for
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Table 5.3: Pyrite and marcasite surface energies (in J/m2) with adsorbates H+, H2O, OH−, and
O2−. Dashes indicate that no data are available. Numbers in brackets require further investigation
and are not included in the surface energy diagrams.

Phase (hkl) i γi0(pH = 0) γi0,solv γi0/± σφ

Pyrite (100) H+ 1.898 −0.772 −0.036 0.083
H2O 0.540 −0.141 – –
OH− 1.352 −0.078 −0.037 0.072
O2− 2.818 −0.082 −0.156 0.302

(110) H+ 1.531 −1.573 −0.006 0.009
H2O 1.213 −0.988 – –
OH− 1.551 −0.170 −0.017 0.033
O2− 2.352 −0.077 −0.072 0.152

(111) H+ 1.407 −1.259 – –
H2O 1.397 −0.151 – –
OH− 2.996 −0.097 −0.057 0.115
O2− 3.078 −0.055 −0.226 0.432

(210) H+ 2.070 −0.878 (−1.661) (0.188)
H2O 1.341 −0.855 – –
OH− 1.697 −0.974 −0.006 0.011
O2− 1.930 −1.029 −0.028 0.062

Marcasite (100) H+ 1.694 −0.093 (−4.128) (0.322)
H2O 1.204 −0.189 – –
OH− 1.621 −0.183 −0.025 0.050
O2− 2.620 −0.056 −0.096 0.187

(010) H+ 1.618 −0.059 (−4.496) (0.439)
H2O 0.937 −0.229 – –
OH− 1.483 −0.194 −0.034 0.068
O2− 2.894 −0.056 (1.755) (0.839)

(001) H+ 1.910 −1.292 – –
H2O 1.213 −0.309 – –
OH− 1.623 −0.170 −0.011 0.022
O2− 2.039 −0.098 −0.043 0.084

(110) H+ 1.311 −0.993 – –
H2O 1.230 −0.130 – –
OH− 1.280 −0.156 −0.017 0.034
O2− 1.277 −0.042 −0.061 0.119

(101) H+ 1.919 −0.043 −0.020 0.042
H2O 0.552 −0.172 – –
OH− 1.571 −0.202 −0.037 0.074
O2− 3.110 −0.077 −0.140 0.273

(011) H+ 1.330 −0.850 – –
H2O 1.263 −0.132 – –
OH− 2.514 −0.139 −0.045 0.093
O2− 2.768 −0.031 −0.154 0.298
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Figure 5-9: Marcasite (100), (010), (001), (110), (101), and (011) surface energy γ versus pH.

the marcasite-to-pyrite phase transformation to occur, and marcasite remains the thermody-
namically stable phase. This may explain the experimental observation of large, well-defined
euhedral marcasite crystals synthesized under acidic conditions [11]. The observation of
small, anhedral pyrite crystals around the phase-transition pH [11] may be attributed to the
low (110) surface energy and possible reactions that may form aggregates of off-stoichiometric
surfaces.

Based on the energy contributions in Table 5.3, we see that the first two terms in
Eq. (5.26) contribute the most to the electrochemical surface energy, whereas the last two
terms partially compensate for each other and have little effect on γ. We have also assumed
that any given surface is always fully covered by some adsorbate. The slope of the surface
energy line is determined by the coverage and the y-intercept is affected by partial charge
fraction η of the species through Ξ. As seen from the pyrite (110) surface energy diagram
(Fig. 5-8), the exact point at which γ crosses 0 is highly sensitive to the slope and intercept
of the line, which in the present case determines the phase-transition pH. Therefore, we
can only conclude that the pH transition is around 2 (and likely greater than 2 due to the
smoothing effect of partial coverage). While the phase-transition pH is, in principle, repre-
sented by a single value in our framework, the transition region observed experimentally is
not as sharply defined, but ranging from 4 to 6 in Ref. [11] and 2 to 5 in Ref. [10]. Within this
range, an increasing percentage of marcasite is formed, together with pyrite, as pH decreases.
The issues of partial coverage and partial charge have been recently addressed in the work of
Bonnet and Marzari [118], which is also not free of parameters. A more accurate description
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of charged surfaces and, hence, the relative stability of polymorphs in aqueous environment
may be achieved by the addition of a more rigorous treatment of partial coverage and partial
charge into our method presented here.

5.8 Future work

In this section we present some possible continuations of the work to address the limitations
and remaining questions. From the computational perspective, the nonlinear fluid response
within JDFT has been developed. On the theoretical modeling side, the issues of partial
charge transfer and partial coverage still need to be more rigorously investigated.

5.8.1 Nonlinear PCM

Recently, Gunceler et al. have shown that the linear PCM overestimates the electrostatic
interaction between ionic compounds and liquid water, leading to the development of a
nonlinear PCM within JDFT [119]. To illustrate the difference between the linear and
nonlinear response, the fluid shape function is drawn in Fig. 5-10 at s(n) = 1/2 [i.e., n = nc

in Eq. (5.32)], which represents the transition boundary between the solid and liquid regions.
Compared to the nonlinear PCM, the liquid in the linear PCM penetrates deeper into the
solid, although it does not overlap with the core of the atomic nucleus. This is caused by
a lack of saturation effects in the linear model specifically for ionic compounds, where the
local electrostatic potential can be much larger than other materials such as metals and
molecules [119]. The solvation energy (Table 5.4) calculated from the nonlinear model can
be an order of magnitude smaller than that calculated from the linear model.

Figure 5-10: Fluid shape at the pyrite (100)/liquid interface. Brown, yellow, and white spheres
represent Fe, S, and H atoms, respectively. Isosurfaces are drawn at a liquid density of half the
bulk-liquid maximum, within the linear (green) and nonlinear (purple) PCM’s.
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Table 5.4: Pyrite and marcasite surface solvation energies (in J/m2) with adsorbates H+, H2O,
OH−, and O2− within the linear PCM in Ref. [113], reparametrized linear PCM, and nonlinear
PCM in Ref. [119].

Phase (hkl) i γi0,solv
Linear [113] Linear [119] Nonlinear [119]

Pyrite (100) H+ −0.772 −0.327 −0.029
H2O −0.141 −0.052 −0.057
OH− −0.078 −0.025 −0.027
O2− −0.082 −0.033 −0.034

(110) H+ −1.573 −0.848 −0.085
H2O −0.988 −0.261 −0.123
OH− −0.170 −0.081 −0.082
O2− −0.077 −0.022 −0.026

(111) H+ −1.259 −0.027 −0.033
H2O −0.151 −0.070 −0.074
OH− −0.097 −0.043 −0.041
O2− −0.055 −0.014 −0.017

(210) H+ −0.878 −0.525 −0.078
H2O −0.855 −0.506 −0.058
OH− −0.974 −0.569 −0.093
O2− −1.029 −0.618 −0.063

Marcasite (100) H+ −0.093 −0.031 −0.032
H2O −0.189 −0.075 −0.077
OH− −0.183 −0.092 −0.099
O2− −0.056 −0.016 −0.018

(010) H+ −0.059 −0.013 −0.015
H2O −0.229 −0.099 −0.114
OH− −0.194 −0.098 −0.102
O2− −0.056 −0.017 −0.017

(001) H+ −1.292 −0.028 −0.034
H2O −0.309 −0.158 −0.164
OH− −0.170 −0.087 −0.084
O2− −0.098 −0.031 −0.035

(110) H+ −0.993 −0.462 −0.030
H2O −0.130 −0.042 −0.040
OH− −0.156 −0.076 −0.069
O2− −0.042 −0.011 −0.013

(101) H+ −0.043 −0.009 −0.010
H2O −0.172 −0.069 −0.072
OH− −0.202 −0.101 −0.106
O2− −0.077 −0.027 −0.028

(011) H+ −0.850 −0.507 −0.039
H2O −0.132 −0.058 −0.060
OH− −0.139 −0.059 −0.063
O2− −0.031 −0.001 −0.000
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5.8.2 Partial charge transfer and partial coverage

Comparing with experimental surface charge densities reveals that, for instance, full coverage
of protons on a surface results in a σmax that is an order of magnitude higher than the
measured values. This can be explained by the possibility of (i) coadsorption, where surface
charge is partially compensated by adsorption of oppositely-charged species; (ii) partial
oxidation or reduction of the host atoms, where in the case of proton adsorption on pyrite
an Fe2+ ion may become Fe3+; and (iii) partial coverage, where otherwise the electrostatic
repulsion of a full coverage of like charges would likely be very energetically unfavorable.

To simplify the complexity, we assume a representative partial charge density, e.g., for
proton adsorption,

M + H+ + λe− → MH(1−λ)+, (5.37)

where λ is the electrosorption valency [118]. The reaction energy is

∆Grxn = µMH(1−λ)+ + (1− λ)eφs − µM −
[
µ0
H − kT ln(10)pH + eφl

]
− λEF , (5.38)

where the electrochemical potential of electrons is the Fermi energy EF . This gives an
electrochemical surface energy of

γi(λ) = γi0 + γi0,solv + γi0/± + σφ− λ(eφl + EF )

2S
, (5.39)

where σ = (1 − λ)σmax. In principle, one can then seek for the λ0 that minimizes γi(λ),
which requires that

∂γi(λ)

∂λ
=

∂γi0/±

∂λ
+

∂σφ

∂λ
− eφl

2S
− 1

2S

∂λEF

∂λ
= 0. (5.40)

In the case of partial coverage, i.e., θ < 1, the electrochemical surface energy becomes a
function of both λ and θ, and we seek a solution for Dγ(λ, θ) = 0 with a positive-definite
Hessian Hγ.

5.9 Conclusions

Using a semi-empirical thermodynamics formalism and joint density functional theory com-
putations, we have investigated the relative stability of the FeS2 polymorphs, pyrite and
marcasite, in aqueous environments. The theory of electrochemical surface energy is pre-
sented. We find qualitative agreement with experiment that marcasite (pyrite) formation
is thermodynamically favorable under acidic (basic) conditions. Within the linear PCM in
JDFT, for pH . 2, pyrite becomes unstable because the H+-adsorbed pyrite (110) surface
energy becomes negative; for pH & 2, pyrite has lower surface energy than marcasite. There-
fore, marcasite is predicted to be thermodynamically favorable under highly acidic conditions
for all particle sizes. Possible extensions of the theory to partial coverage and partial charge
are considered in brief.
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Chapter 6

Concluding remarks

The outcome of any serious research can

only be to make two questions grow where

only one grew before.

Thorstein Veblen

We have studied the photovoltaic and thermodynamic properties of the FeS2 polymorphs,
pyrite and marcasite. In this final chapter, we state the important findings and impact of
our work.

As presented in Chapter 2, we have questioned the role of marcasite in the low OCV of
pyrite, based on our calculations that the band gap of marcasite is not smaller than that
of pyrite [121]. To date, although the band gap of marcasite has not been directly verified
from experiment, Seefeld et al. are able to synthesize mixed-phase pyrite/marcasite samples
with 50 vol. % marcasite [122]. Compared to phase-pure pyrite samples, the presence of
such a significant amount of marcasite gives very similar absorption coefficient and band
gap, suggesting that the marcasite band gap is at least as big as the pyrite band gap,
which confirms our theoretical predictions. To explain the low OCV of pyrite, surface off-
stoichiometry [123, 124] and defects caused by marcasite [122] have been proposed, and we
await further experimental evidence.

To explain the ubiquitous p-type conductivity of pyrite, we have proposed in Chapter 3
a mechanism involving oxygen-on-sulfur substitution [125]. Recent experiments once again
produce p-type thin films with high impurity levels of oxygen [O(1019) cm−3], but among
many other contaminants [126], and thus the effect of a single defect cannot be determined.
Nonetheless, following the defect energy calculations of Yu et al. [123] and our own re-
sults [125], it has become clearer that pyrite FeS2 is indeed a line compound, and that the
observation of off-stoichiometric samples should be attributed to the presence of S-deficient
phases instead of S vacancies [123].

In Chapter 4, we have found that, unfortunately, the band gap of pyrite cannot be
effectively tuned via cation doping due to large electronegativity or size mismatch [127]. The
candidate Zn is further studied by Hu et al. computationally, where although a modest 0.1-
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eV band gap increase can be achieved with 6% doping, its incorporation is not energetically
favorable [128]. The authors also claim that oxygen doping can enhance the band gap and
absorptivity of pyrite. However, the hypothetical compound is not phase stable, and whether
oxygen inclusion is desirable for transport properties remains questionable.

We remark that the highest efficiency pyrite solar cell ever made is a photoelectrochemical
device [5]. The performance of such a device depends not only on the bulk properties of the
photovoltaic material, but also on the band alignment of the material with the specific
redox couple that is present in the aqueous region. It may be possible that, while the
iodide/triiodide redox couple is the most optimal for pyrite [5], the band alignment at the
pyrite/solution interface may simply be non-ideal to obtain a larger OCV than the current
record of 0.2 V. Given that pyrite can be readily doped n- and p-type, future research
direction should move toward making solid-state p-n junctions (either pyrite homojunction
or, due to the low hole mobility, heterojunction) and improving sample qualities.

Finally, in Chapter 5, we have presented a framework for computing charged surface
energies within joint density functional theory to predict polymorph stability in aqueous en-
vironment, using the FeS2 polymorphs, pyrite and marcasite, as a model system. Our results
are in relatively good agreement with experimental observations such that the metastable
marcasite phase becomes the ground state in acidic conditions. To obtain a more accurate
description and understanding of the electrochemical interface and energetics, one will need
to investigate the possible effects of coadsorption, partial coverage of adsorbates, partial
charge transfer, and adsorbates other than H+, H2O, OH−, and O2− that may play a role in
surface reactions leading to off-stoichiometric surfaces. (See Sec. 5.8 for a brief discussion.)
The effect of electrode potential can be readily incorporated, and, using empirical solvation
energies for ions (as demonstrated in Refs. [110,111]), Pourbaix diagrams can be constructed
for all inorganic crystalline materials, which will allow for an unprecedented prediction of
phase stability as a function of particle size, pH, and electrode potential.
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[59] V. Eyert, K.-H. Höck, S. Fiechter, and H. Tributsch. Electronic structure of FeS2: The
crucial role of electron-lattice interaction. Phys. Rev. B, 57(11):6350–6359, Mar 1998.

[60] Heather J. Kulik, Matteo Cococcioni, Damian A. Scherlis, and Nicola Marzari. Density
functional theory in transition-metal chemistry: A self-consistent Hubbard U approach.
Phys. Rev. Lett., 97(10):103001, Sep 2006.

[61] Lei Wang, Thomas Maxisch, and Gerbrand Ceder. Oxidation energies of transition
metal oxides within the GGA+U framework. Phys. Rev. B, 73(19):195107, May 2006.

[62] G. Willeke, R. Dasbach, B. Sailer, and E. Bucher. Thin pyrite (FeS2) films prepared
by magnetron sputtering. Thin Solid Films, 213(2):271 – 276, 1992.

[63] Jochen Heyd, Gustavo E. Scuseria, and Matthias Ernzerhof. Hybrid functionals based
on a screened coulomb potential. J. Chem. Phys., 118(18):8207–8215, 2003.

[64] Jochen Heyd, Gustavo E. Scuseria, and Matthias Ernzerhof. Erratum: “Hybrid func-
tionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)]. J.
Chem. Phys., 124(21):219906, 2006.

[65] J. Paier, M. Marsman, K. Hummer, G. Kresse, I. C. Gerber, and J. G. Angyan.
Screened hybrid density functionals applied to solids. J. Chem. Phys., 124(15):154709,
2006.

[66] J. Paier, M. Marsman, K. Hummer, G. Kresse, I. C. Gerber, and J. G. Angyan.
Erratum: “Screened hybrid density functionals applied to solids” [J. Chem. Phys. 124,
154709 (2006)]. J. Chem. Phys., 125(24):249901, 2006.

[67] M. K. Y. Chan and G. Ceder. Efficient band gap prediction for solids. Phys. Rev.

Lett., 105(19):196403, Nov 2010.

109



[68] V. I. Anisimov, F. Aryasetiawan, and A. I. Lichtenstein. First-principles calculations
of the electronic structure and spectra of strongly correlated systems: the lda + u
method. J. Phys.: Condens. Matter, 9(4):767, 1997.

[69] Y. Sun, S. E. Thompson, and T. Nishida. Physics of strain effects in semiconductors
and metal-oxide-semiconductor field-effect transistors. J. Appl. Phys., 101(10):104503,
2007.

[70] W. Jaegermann and H. Tributsch. Photoelectrochemical reactions of FeS2 (pyrite)
with H2O and reducing agents. J. Appl. Electrochem., 13(6):743–750, 1983.
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N. Môri, and S. Suga. Resonant photoemission study of pyrite-type NiS2, CoS2 and
FeS2. Phys. Rev. B, 54:16329–16332, Dec 1996.

[91] R. J. Bouchard. The preparation of pyrite solid solutions of the type FexCo1−xS2,
CoxNi1−xS2, and CuxNi1−xS2. Mater. Res. Bull., 3(7):563 – 570, 1968.

[92] T. A. Bither, P. C. Donohue, W. H. Cloud, P. E. Bierstedt, and H. S. Young. Mixed-
cation transition metal pyrite dichalcogenides—High pressure synthesis and properties.
J. Solid State Chem., 1(3-4):526 – 533, 1970.

[93] F. D. Murnaghan. The compressibility of media under extreme pressures. P. Natl.

Acad. Sci. USA, 30(9):244, 1944.

[94] I. P. Ipatova, V. G. Malyshkin, and V. A. Shchukin. On spinodal decomposition in
elastically anisotropic epitaxial films of III-V semiconductor alloys. J. Appl. Phys.,
74(12):7198–7210, 1993.

111



[95] M. J. Mehl. Pressure dependence of the elastic moduli in aluminum-rich Al-Li com-
pounds. Phys. Rev. B, 47(5):2493–2500, Feb 1993.

[96] H. D. Lutz, B. Muller, T. Schmidt, and T. Stingl. Structure refinement of pyrite-type
ruthenium disulfide, RuS2, and ruthenium diselenide, RuSe2. Acta Crystallogr. C,
46(11):2003–2005, 1990.

[97] T. Stingl, B. Mueller, and HD Lutz. Crystal structure refinement of osmium (II)
disulfide, OsS2. Z. Kristallogr., 202(1-2):161–162, 1992.

[98] R. D. Shannon. Revised effective ionic radii and systematic studies of interatomic
distances in halides and chalcogenides. Acta Crystallogr. A, 32(5):751–767, Sep 1976.

[99] A. L. Allred. Electronegativity values from thermochemical data. J. Inorg. Nucl.

Chem., 17(3-4):215 – 221, 1961.

[100] Shiyou Chen, X. G. Gong, and Su-Huai Wei. Band-structure anomalies of the chal-
copyrite semiconductors CuGaX2 versus AgGaX2 (X = S and Se) and their alloys.
Phys. Rev. B, 75:205209, May 2007.

[101] Alex Zunger, S.-H. Wei, L. G. Ferreira, and James E. Bernard. Special quasirandom
structures. Phys. Rev. Lett., 65:353–356, Jul 1990.

[102] Johann von Pezold, Alexey Dick, Martin Friák, and Jörg Neugebauer. Generation and
performance of special quasirandom structures for studying the elastic properties of
random alloys: Application to Al-Ti. Phys. Rev. B, 81:094203, Mar 2010.

[103] A. van de Walle, M. Asta, and G. Ceder. The alloy theoretic automated toolkit: A
user guide. Calphad, 26(4):539 – 553, 2002.

[104] Takashi Harada. Transport Properties of Iron Dichalcogenides FeX2 (X=S, Se and Te).
J. Phys. Soc. Jpn., 67(4):1352–1358, 1998.

[105] Han Kwon, S. Thanikaikarasan, Thaiyan Mahalingam, Kyung Park, C. Sanjeeviraja,
and Yong Kim. Characterization of electrosynthesized iron diselenide thin films. J.

Mater. Sci.-Mater. El., 19:1086–1091, 2008.

[106] G. Ceder, G. D. Garbulsky, and P. D. Tepesch. Convergent real-space cluster expansion
for configurational disorder in ionic systems. Phys. Rev. B, 51:11257–11261, May 1995.

[107] Meng-Ju Sher, Mark T. Winkler, and Eric Mazur. Pulsed-laser hyperdoping and
surface texturing for photovoltaics. MRS Bull., 36(06):439–445, 2011.

[108] Michael P. Finnegan, Hengzhong Zhang, and Jillian F. Banfield. Phase stability and
transformation in titania nanoparticles in aqueous solutions dominated by surface en-
ergy. J. Phys. Chem. C, 111(5):1962–1968, 2007.

112



[109] A. S. Barnard and L. A. Curtiss. Prediction of TiO2 nanoparticle phase and shape
transitions controlled by surface chemistry. Nano Letters, 5(7):1261–1266, 2005.

[110] L. Wang. First-principles modeling of thermal stability and morphology control of cath-

ode materials in Li-ion batteries. PhD thesis, Massachusetts Institute of Technology,
Feb 2010.

[111] Kristin A. Persson, Bryn Waldwick, Predrag Lazic, and Gerbrand Ceder. Prediction of
solid-aqueous equilibria: Scheme to combine first-principles calculations of solids with
experimental aqueous states. Phys. Rev. B, 85:235438, Jun 2012.

[112] S. A. Petrosyan, A. A. Rigos, and T. A. Arias. Joint density-functional theory: Ab
initio study of Cr2O3 surface chemistry in solution. J. Phys. Chem. B, 109(32):15436–
15444, 2005.

[113] Kendra Letchworth-Weaver and T. A. Arias. Joint density functional theory of the
electrode-electrolyte interface: Application to fixed electrode potentials, interfacial
capacitances, and potentials of zero charge. Phys. Rev. B, 86:075140, Aug 2012.

[114] T. A. Arias, M. C. Payne, and J. D. Joannopoulos. Ab initio molecular dynamics:
Analytically continued energy functionals and insights into iterative solutions. Phys.

Rev. Lett., 69:1077–1080, Aug 1992.

[115] Sohrab Ismail-Beigi and T.A. Arias. New algebraic formulation of density functional
calculation. Comput. Phys. Comm., 128(1-2):1 – 45, 2000.

[116] R. Sundararaman, K. Letchworth-Weaver, and T.A. Arias. JDFTx, available from
http://jdftx.sourceforge.net, 2012.

[117] A.J. Bard and L.R. Faulkner. Electrochemical Methods: Fundamentals and Applica-

tions. John Wiley & Sons, New Jersey, second edition, 2001.
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Epilogue

On August 27, 2012, our group went for a boat ride. Netted trampolines were extended
beyond the boat. I sat at the very front.

“You’re gonna get wet,” my advisor warned. He was right, as usual. I spent the rest of
the day drying myself.

But that was what made the trip memorable to me.

115


	List of Figures
	List of Tables
	Introduction
	Pyrite FeS2 for photovoltaic applications
	Thermodynamic effects of particle size and pH on the relative stability of polymorphs
	Overview of this thesis

	Electronic structure and relative stability of pyrite and marcasite
	Introduction
	Background
	Pyrite crystal structure
	Similarity of pyrite and marcasite crystal structures
	Proposed causes for low OCV of pyrite

	Details of first-principles computations
	Calculation method for surface and interfacial energies

	Intrinsic pyrite (100) surface
	Surface energies
	Surface states

	Pyrite and marcasite
	Volume dependence of the relative stability of pyrite and marcasite
	Model for epitaxial growth of marcasite on pyrite
	Possibility of marcasite epitaxial growth on pyrite
	Difference in bulk band gaps
	Absence of interfacial states within band gap

	Discussion
	Conclusions

	Intrinsic stoichiometry and oxygen-induced p-type conductivity of pyrite
	Introduction
	Methods
	First-principles computations
	Defect modeling

	Results
	Native defects
	Oxygen as an acceptor

	Discussion
	Conclusions

	Feasibility of pyrite band gap engineering
	Introduction
	Methods
	Computational details
	Analysis framework
	Screening procedure

	Results
	Elements that form pyrite structure with S: Zn, Ru, Os
	Elements that do not form pyrite structures with S

	Discussion
	Conclusions

	Size-pH effects on the relative stability of FeS2 polymorphs
	Introduction
	Size dependence
	Theoretical framework
	Computational details
	Results

	pH dependence for charge-neutral particles
	Theoretical framework
	Computational details
	Results

	Charged particles
	The electrochemical potential 
	The electrochemical surface energy 
	A theorem on 

	Computational method
	Joint density functional theory
	Computational details

	Results
	Bulk and pristine surface calculations
	Charged surface calculations

	Discussion
	Future work
	Nonlinear PCM
	Partial charge transfer and partial coverage

	Conclusions

	Concluding remarks
	Bibliography
	Epilogue

