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Abstract

In this thesis, an improved optical flow algorithm is presented, as well as a hard-
ware called "Tanh" component. The new approach performs an optimization that
reduces the error at spatial discontinuities, and increases the computational speed
using analog circuit implementation.

Simple simulation of this design is tested using HSPICE. We also build a simulator
for a complicated circuit using C, which focuses more on speed, and less on transient.

For image smoothing and segmentation problems and optical flow problems, a
series of test images are fed to both the resistor network and the so-called "TANH"
network to determine how effective the Tanh network is in image analysis.
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Chapter 1

Introduction

Twenty years have passed since Professor Berthold K.P. Horn and Brian Schunck

published their influential paper[6] on the calculation of optical flow. Since then, a

substantial amount of research has been devoted to finding ways to calculate optical

flow more efficiently and more accurately. Despite volumes of research that have been

published on this topic, the best current approach remains computationally intensive,

because the vector field must be computed pixel by pixel. In the thesis, an analog

resistive network is presented that will increase the processing speed and reduce the

error at discontinuities.

1.1 Optical Flow

We can get much more information from an image sequence than from a single image.

When a camera has motion relative to an object, a change of the brightness pattern

in the image can be observed. This is called optical flow[5]. If we assign a velocity

vector to each point in the image, we can get a motion field[5]. Since optical flow

is a very good approximation of the motion field, optical flow extraction has been

proposed as a preprocessing step for many high level vision algorithms. Knowledge of

the optical flow field can provide the basis for the calculation of important parameters

such as the Time-to-Collision (TTC) and the Focus-to-Expansion (FOE).
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FOE

Computing

optical flow TTC

object CCD resistive network

Figure 1-1: Structure of Computer System

Figure 1-1 shows the structure of a computer vision system. The Charge-Coupled

Device (CCD) grabs the image of objects, converts them into voltage signals, then

feeds them into a resistive network. The resistive network computes the optical flow

as the intermediate result, and provides the input for other applications, such as com-

puting TTC and computing FOE. Our work mainly focuses on the implementation

the resistive network.

1.2 Goal

In this research, two approaches are considered. One is to implement the optical flow

algorithm using an analog resistive network, which can increase speed and save power

significantly. The other is to improve the algorithm, and design a new nonlinear

resistive component, which can reduce the error near the spatial discontinuity, and

simultaneously solve the local minima problem[1].

1.3 Thesis Organization

Algorithm improvement and hardware implementation are presented separately. Chap-

ter 2 will introduce the theoretical framework, the optical flow algorithm and assump-

tion that are used in this thesis. Based on this framework, Chapter 3 describes the

hardware implementation, hardware architecture and the so-called TANH non-linear

10



resistive circuit. Results obtained using software simulation are then presented. Fi-

nally, Chapter 4 closes with conclusions and future work.
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Chapter 2

Theory and Algorithm

2.1 The Optical Flow Problem

"Brightness patterns in the image move as the objects that give rise to them move.

Optical Flow is the apparent motion of the brightness pattern. Ideally the optical

flow will correspond to the motion field." [5]. From this definition, we can see that we

can compute the optical flow field based on the differences in brightness between two

frames of image. Figure 2-1 gives an example of an optical flow field.

In Figure 2-1, the top two images are taken at the beginning of the end of a short

time interval. We can tell that the two donuts are moving toward each other, because

the area of overlap is greater in the second image. In the bottom image, the arrows

show the optical flow field, with the velocity at each point being proportional to the

length of the arrow. We need to pay attention to two things here. The first is that the

optical flow field gives useful information about how those objects are moving. The

second is that some non-zero velocity vectors appear in the static background. This

is happened because in computing optical flow we assume that the velocity varies

smoothly, which is not true at spatial discontinuities. The result is that the velocity

vector dies slowly, which causes in significant error. In this thesis, we are going to

focus on this problem, and look for an effective solution.

There are several methods to compute the optical flow field from given images, one

of which is a gradient-based method. We can assume the lighting condition does not

12



Figure 2-1: Optical Flow Field
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slope:Ex 
At

Figure 2-2: 1-D BCCE Equation

change. If the time interval between two frames of image is very small. Under these

conditions, we can derive the Brightness Constant Constraint Equation (BCCE)[5].

Figure 2-2 shows the 1-D case.

In figure 2-2, u is the velocity along the x direction, Ex is the derivative of bright-

ness in the x direction, Et is the derivative of brightness with respect to time.

After time At, the brightness curve changes from the solid curve to the dashed

curve. There are two ways to calculate the brightness change of a particular point.

(u -At) - (Ex) and -At -Et. Equating these, we obtain

(u -At) - (Ex) = -At -Et (2.1)

or

u - Ex + Et = 0 (2.2)

14



Similarly, we can obtain the equation for the 2-D case[5l,

u.Ex+v.E~y+Et = 0 (2.3)

where u is the velocity in the x direction, v is the velocity in the y direction. This

equation holds for each pixel.

We get one equation with two unknown variables. We need another constraint,

which is a regularization term, to solve it. We can add a rigid body assumption,

because most objects we deal with are rigid body. When objects are rigid bodies,

the motion field varies smoothly across the image. We therefore seek to minimize a

measure of departure from smoothness.

es = ((u2+u ) + (v2+ v2)) dx dy

The integral of square of the magnitude of the gradient of the optical flow. The error

in the brightness constraint equation,

Cc = J J (u -Ex + v - Ey + Et)2 dx dy

should also be small.

Overall, the optical flow problem is to minimize the total error of these two terms.

E ef +A- e, (2.4)

J (u. - E+ v- Ey + E) 2 dx dy + A J ((u + 2 ) + (v2 + V2)) dx dy

((u -Ex + v EY + Et)2 + A (u 2 + + V2± v2))dx dy

Similarly, we can write it in discrete form.

15



E = ef ij + A - es ij

Ex i + v,, - Ey i + Et ij)2 + A(U 2 ij + U2 ij + V2 ij + V2 j

Differentiating the error with respect to uij and vij yields

OE
= 2A(ij - Uig) + 2(uigE ij

OFi
= 2A(v 2i, - UTj) + 2(uigEx ij,

vi1

+ Vij Ey ij + Et i,)Ex i = 0

+ viEy ij + Et 2,)E is = 0

From its Euler-Langrange Equations, we get,

(A + Ex ij)uij + Ex E ,j vij = A-iU, - Ex 2 3Et 

E 2,3Ey ijui, + (A + E2 4,)vij = A7jj - Ey 23Et jj

Where Uj, and Uj are local average of u and v. These equations can be solved with

an iterative scheme[5] as

t'U.l =tt;an
2,3 2,3

n+1 _-n
2,3 2,

E 213. + liEy ij + Et ij F

U,3ijExj + 7jEY 4,j + Et jj
A+ E2 i,+ E2 EY i'j

-nMi'j

_Fn

+- + Y j +1

4
S, + + vj j- 1  + ~± 1

4

From the recursive formula, we can see that when it converges, E EE Zig+ Ej+

16

(2.6)

where

(2.7)

(2.5)

=EE ((Uig
i j



Et i,y = 0, which is exactly the brightness change constraint equation. Then uij = Uij

and vij = vij.

2.2 Previous Work

Solution of optical flow problem has two intrinsic difficulties. Firstly, it is computa-

tionally expensive, because the algorithm involves iterative pixel-wise computation.

Secondly, it introduces the smoothness term, which assumes the motion field varies

smoothly. In Figure 2-1, the error that can result from this assumption is visible in

the spurious background motion vectors.

There are several hardware implementations of optical flow algorithm, such as

Tanner and Mead's Optical Motion Sensor[7], and Alan Stocker's optical computation

circuit [14].

Strictly speaking, Tanner and Mead's chip is not a implementation of the optical

flow algorithm, because they only produce a single unified global velocity instead of

a pixel-wise velocity field. Alan Stocker improved Tanner and Mead's work, but his

approach still suffers from the local minima problem, which we will discuss in Chapter

3.

There is also related research done on the image smooth and segmentation problem

[4][8][10][11][13], such as Professor John Wyatt[1][2][9], Dr. Pietro Perona and Dr. J.

Malik's resistive fuse[12], Dr. John Harris' tiny-tanh resistive element[3].

2.3 Our Work

Our goal was to design an algorithm that reduces error at spatial discontinuities, and

allows large velocity gradients in those areas.

Another important problem in computer vision is the image smoothing and seg-

mentation problem, which mathematically is to minimize the object function,

17



E = (u - e) 2 dxdy+ A - (u2+ u ) dx dy

= F(ule) + S(u)

where u is the smoothed output, e is image input.

The object function of optical flow problem is

E = ff (. -E+ -I-v* EY + E,)2 dx dy + U+ 2) + (v2 + v2)) dx dy

= F(u, vlEx, Ey, Et) + S(u, v)

We can see some similarities between these two functions. They both consist of

two terms, a fidelity term F and a smoothness term S. F is trying to get the best

estimation of some parameter from input, and at the same time, S is smoothing the

estimate[15].

In the recursive algorithm for the optical flow problem, the effect of the regular-

ization term is to smooth the motion field. However in our approach, we want to

preserve the edge features while smoothing out the noise. So I apply the network we

designed to both the image smoothing and segmentation problem, and the optical

flow problem.

A great deal of work has been done to improve the performance of image smooth-

ing algorithms. One approach is to use a different smoothing term. The most common

smoothing term is a quadratic smoothing function, such as f f (z! + z ) dx dy. Dr.

John Harris used an absolute value smoothing function, f f (Iu + Iuy1)dx dy[3]. Pro-

fessor John Wyatt, Dr. Pietro Perona and Dr. J. Malik proposed a concave smoothing

function[1][9][12][15], which is shown in Figure 2-3.

In Figure 2-3, the solid line represents the smoothing function, and the dashed

line is its first order derivative. Wyatt, Perona and Malik also implemented the

smoothing function using a resistive-fuse circuit, which produces very good result in

18



load line

smooth function

derivative

Figure 2-3: Concave Smooth Function

some images.

However, their circuit has local minima problem[1]. The derivative of the concave

smoothing function is the V-I characteristics function of the resistive-fuse element.

The straight line in figure 2-3 is the load line in the physical circuit. It intersects

with the V-I curve more than once. Thus, there are multiple solutions to the object

equation. The circuit may just converge to a local minimum.

What do we expect the behavior of a nonlinear resistor to be? When the input

voltage difference across its two nodes is small, we assume that they are from pixels

corresponding to the same object. In this case, the resistor should act like a normal

resistor, so that it can conduct the filtering work. When the voltage difference is

large, we may conjecture that they are from different objects. The resistor should

cut off communication between these two neighboring nodes. There are at least two

methods to implement this. We can cut off the current completely, as in John Wyatt

and Malik's work, which is known to suffer from local minima[1]. We can also instead

limit their relationship by limiting the current flow.

In Figure 2-4, the dashed line shows the transfer function for an idealized inter-

19
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I idea fu tion

Tanh function

S0 Vth V

Figure 2-4: Ideal Transfer Function of Interconnection

connection component. When the voltage is smaller than Vth, the current increases

linearly, just as in a normal resistor; when the voltage exceeds Vth, the current stops

increasing. The ideal transfer function is not physical implementable, because its first

order derivation at Vth is not continuous. We can use the hyperbolic tangent function

(tanh) to approximate it. It is shown as the solid line in figure 2-4. The Tanh function

is even better, because its first order derivative is always continuous.

Figure 2-5 shows the basic structure of a resistive network in our approach. And

Figure 2-6 shows detail at a node in the grid.

Each node is connected to its four neighbors by four resistive elements. At each

node, a voltage-controlled current source injects current, which is zero when the circuit

settles to its final state.

We now prove that the TANH circuit network will reach the optimal solution for

the optical flow problem when the circuit settles. Similarly, we also prove that it

solves the image smoothing and segmentation problem.

One concept is very important in nonlinear network analysis. That is the Co-

Content of a resistive element[15]. For a resistor with a voltage-controlled constitutive

relation

20



Figure 2-5: Resistive Grid

I i~j
Si.j+1

0i y\ -AAA9----- V

V i,j-1

Figure 2-6: A Node in the Resistive Network

i+1,j
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Sg (v),

the co-content is defined as

J(v) = fo g(v')dv'.

In particular, for a linear resistor, the co-content is simply half of the dissipat-

ed power. Although power and co-content have the same units, they are distinct

in non-linear circuits. According to the Minimum Co-Content Principle[15], while

the minimum power dissipation property fails for circuits with nonlinear resistive

components, the total co-content is minimized instead[15].

If we use the integral of the TANH function as the smoothing term, then the

error function of the optical flow problem becomes

E J J (u.E +v . E + Et)2 ddy

+Af ( tanh(v)dv+ tanh(v)dv

+ tanh(v)dv + tanh(v)dv)dxdy

Its discrete case is

E = EE[(ui,j - Exij + i - Ejj + Eti )2 (2.8)

+ A( tanh(v)dv + tanh( )dv/ fi1, -- vi'j 
fo+ -vi,j+ tanh(v)dv + j tanh(g)dv)]

Differentiating it with respect to uij and vij, we get the Euler-Langrange equations,

22



Et+lJ) + tanh( ',3 - 'U1j) + tanh(uij u7 j+1) (2.9)
i 0A(tanh( 6 6

+ tanh( Ui Ui1)) + 2(uij Ex ij + v, Ey ij + Et i, 3)Ex ij

OE V-j - -vi+1~ v -17 V- Vi -v j+1
= 0 = A(tanh( 6 + )+tanh(vij - v' ) tanh( ' i'+)

ovg6 6

+ tanh( Vij - vij _)) + 2(u, Ex ij + v,, Ey ij + Et i,) E,5

These are transcendental equations, so that we can not get analytical solutions.

But we can design a physical circuit, which will satisfy these equations when they are

in stable state. Let's use the u component as the example.

We can build a resistive grid with TANH components. One node from that grid is

shown in the figure 2-6, the voltage of the central node is uiJ, and its neighbors' voltage

are ui_,j, ui+,,, ui,j-i, ui,j+1. They are all connected by the TANH components,

which satisfy I =A tanh(!). A voltage-controlled current source Iij is connected to

this node. The current it injects is 2(u,jE, ij + vi, Ey i, + Et i,)Ey i,. Each node

satisfies the Euler-Langrange equation, and the co-content of this nonlinear resistive

network is the same as the error function for the optical flow problem. According to

the Minimum Co-content Property, the voltage distribution ui,, and vij at the stable

state minimize the error function. Because the tanh( function is a strictly increasing

convex function, the circuit always settles at the unique optimal point in the stable

state.

2.4 Comparison of Smoothing Terms

Figure 2-7 compares four known smoothing functions. What characteristics should a

good smoothing term have?

(a) When AV is small, it acts similar to a linear resistor, and far from the line

I=kV (in this case, the current will saturate immediately at 0+ and no smoothing

effect at all).

23
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Figure 2-7: Comparison of Four Smoothing Terms

(b) When AV is large, it should be small, in order to preserve the edge features.

Observing Figure 2-7, we can see that the Tanh function is nearly linear for small

Av, so that it has more smoothing effect when Av is small, which we suppose to

correspond to noise, and has less smoothing effect when Av is large, which occurs at

velocity discontinuities. In this sense, integral - tanh function beats both quadratic

function and absolute-value function as the regularization term.

24
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Chapter 3

Hardware Design and Simulation

3.1 Hardware Design

3.1.1 Goal

In our design, the resistive network is actually a grid of resistive components. Resistive

grids are well known as an efficient method of providing local interaction between cells

with minimum requirement in terms of space and interconnection. In this paper, we

will investigate the application of nonlinear resistive networks to vision problems.

Ideally, we would like the resistive components to act like linear resistors for small

potential differences, and cut off when voltage is large. We also desire the circuit to

be compact, since we are going to duplicate it for each pixel, and integrate them into

one single chip. It should also work robustly in case of transistor mismatching. One

of the easiest function of this kind is TANH function. So that we choose TANH as

our solution for this problem.

3.1.2 Previous work

The next step is to implement the nonlinear resistive component. Dr. Carver Mead

designed a saturating resistor[7]. It can be simplified to two transistors and two

voltage sources.

In this design, two NMOS transistors are connected in serial. Two voltage sources

25



vi V2

in1 M1 M2 in2

Figure 3-1: Simplified Mead's Saturating Resistor

V
+

inI M1 M2 in2

Figure 3-2: Simplified TANH circuit

V1 and V2 provide offset voltage with value of a Vgs. When jVini - Vin2 is small,

both MI and M2 are in linear region, they act like linear resistor. When jVj 1 - Vin 2 j

is large - let's assume Vini is larger than Vn2, - MI is in linear region, and M2 is in

saturated region, the current flowing through is limited by M2, and vice versa when

Vin2 is larger than Vin1[91.

3.1.3 Tanh Resistive component

Following a suggestion by Professor Rahul Sarpeshkar, we combine the function of

those two voltage sources into a single source. The voltage-current characteristics

curve of the resulting circuit is a good approximation of the TANH function.

The detail of TANH component is shown in Figure 3-3. V1 bias controls the conduc-

tance of this circuit in the linear region. Higher values of Vbias lower the conductance

of this circuit. Raising Vbias will reduce the current flowing through the left branch,

26
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Figure 3-3: Detail of TANH Circuit
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which will cause the Vgs of the bottom two NMOS to drop. Then the current flowing

through the right part of circuit will decrease also. This causes that all the Vgs on

the right part of the circuit to drop. As the voltage that the upper part of the circuit

provides drops, the conductance of the bottom two horizontal NMOS decreases. We

tried several other designs, but this one has an important virtue. The current flowing

in from one side is always equal to the current flowing out from the other side. We

will not have current leakage or transistor mismatching problem.

3.2 Simulation

We use several methods to simulate our implementation of the algorithm. We use

HSPICE to simulate the TANH resistive component and grids with less than 20

TANH components. For grid including more than 20 TANH resistive components,

we simulate using C/C++ and the transfer function of TANH circuit.

3.2.1 Transfer Function of TANH Circuit

We use HSPICE to simulate the TANH circuit we described in Chapter 3. Figure

3-4 is the HSPICE simulation result of the TANHcircuit transfer function.

In this simulation, we set one side of input to 3.OV, and change the voltage on

the other side from 1.2V ~ 5.OV. We can see that when AV is lower than 0.3V,

current I changes linearly, which is like a normal resistor. When AV is higher than

0.3V, current I starts to increase more slowly with the increase of AV. Furthermore,

after a narrow transient region, the rate of increase drops significantly. The transfer

function looks like a Tanh() function.

Because HSPICE is very slow when simulating a complicated circuit, we use the

transfer function instead of the real circuit in simulations of larger networks. We

sample 50 points from the HSPICE simulation result, and use MATLAB to do second

order interpolation, producing an array of 1000 samples of TANH transfer function.

We use this transfer function in all the simulations later on. We can use the formula
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1(a) = V[n] * (n + I - a) + V[n + 1] * (a - n) (3.1)

n E N, n <a < n + 1

to calculate the current I when the input voltage a is not one of the given samples.

When simulating a nonlinear resistive network, we are faced with two problems,

solving nonlinear circuit, since the TANH circuit has nonlinear transfer function,

and solving sparse matrix, because each component only has connections to a few

neighboring nodes.

3.2.2 Solving Nonlinear Circuit

In order to solve nonlinear equations using a matrix, we need to first linearize those

equations. To linearize, we use the Newton-Raphson algorithm. For a nonlinear

resistor, its current I and voltage V satisfy I = f(V). The Taylor Series Expansion

of this equation about the operating point vo is

i = f(v) =f(vo)+ f '(vo)(v vo)+o(v -vo) 2

We can derive the recursive scheme based on its Taylor Series Expansion,

i + f (v(+ 1)) f (v(')) + f ' (V(')) (V(+ 1) - v() (3.2)

= f '(v('))v(+ 1) + (f ((') - f '(V(/ ))

= f'(v('))v(') + I(v(1 ))

where I(v(M) = f(v(M) -f '(V(1)V(1.

Then we can replace a nonlinear resistor with a normal resistor and a voltage-

controlled current source in parallel (see Figure 3-5).
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Figure 3-5: Transform a Nonlinear Resistor into Linear Components

The value of resistor is the first order derivative of transfer function f '(v(0)), and

the value of current source is f(v(0)) - f '(v()v('), where () is the solution from the

last iteration.

3.2.3 Solving Sparse Matrix

Node A in the resistive grid is connected to four neighbors B, C, D, E with four

nonlinear resistive components. The conductance between node A and its neighbors

are gAB, 9AC, 9AD, 9AE. It is also linked to load or ground with a normal resistor R.

Following Kirchoff's Voltage Law, we get equation:

VA - (YAB + 9AC + 9AD + 9AE +1/R) -

B 9AB - VC 9AC - VD 9AD - E 9AE A (3.3)

We can gather all the equations and write the result in the form

Gnxn * Vnxi = Inxi
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Element gij in G, shows the conductance between node i and node j, V,,xi is the

voltage at the nodes, and nxl represents the current source associated with each

node.

If we have a resistor grid, with N x N nodes, we label each node with integers

1, 2, 3, 4, ... , N x N. Each node in the grid has connection to at most 4 of its neighbors.

So G is a highly sparse matrix, with dimension (N2 x N 2), it has at most five lines

of non-zero elements diagonal. A recursive methods yields an efficient solution to the

sparse matrix, provided we can guarantee convergence. The positive conductance of

those resistive components ensures that the recursive algorithm converges.

We are going to use Gauss-Siedel Recursive methods to solve these equations. If

we divide matrix G into three matrixes, G = D - L - U, the recurrence is

(3.4)

where

U = -

911

922

9nn

0 912

0

91n

92n

913

923

0

--- gn-In

0

0

921

931

9n1

0

932

gn2

0

0

Below is the proof of the convergence.

Lemma A: If matrix Gnxn satisfies Igiij >

Proof:

E jgij, then det(G) > 0.
1<j<n,ioj
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Let's assume det(G) = 0, then there is nonzero solution for equation Gx = 0. We

denote the solution as

x = (x 1, x 2, X 3, ... , n) T and IxkI = max Ixil # 0
1<i<n

From Gx = 0, we get
n

SgkjXi = 0, then,
j=1

n

|gkkxkl = gk3jX
j=1,j4k

| gkJ|x j xi|
j=1,j~k

n

IgkklI < E IgkjI
j~1 ,jAk

the assumption: Igi > E Igij
i/jn

Theorem: If matrix G1 x, satisfies Igiij > E
I<j<n,i#j

its recursive matrix R = (D - L)-U satisfies JAI < 1.

Proof:

, so we know that det(G) 7 0.

Jgjj, all the eigenvalues, A, of

In the equation Gnxn-Vx 1 = Inx1, we know that I gi 0(i = 1,2, ..., n) and IgiiI >

E Igij 1. The recursive matrix for Gauss-Siedel method is R = (D - L)-'U. Its
e<j<niaj
eigenvalues should satisfy

det(AI - R) = det(AI - (D - L)--U)

= det(D - L)- -

(3.5)

det(A(D - L) - U) = 0

that equals to

det(A(D - L) - U) = 0
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Let's denote C = A(D - L) - U =

)gi 912 913

A9 2 1  A9 2 2  92 3

Ag31 Ag 32 A933

'Mini Agn 2

i-1 n
E JAgijl + E
j=1 j=i+1

Igii - Z Icij
j:Ai

from Lemma A, we know det(C) = det(A(D - L) - U) -L 0, Therefore, all A must

satisfy JAI < 1. In our problem, the conductance matrix has the form

[G -R

-R R
(3.6)

g2[0] g3[0]

gl[1] g2[1]

... gl[2]

g4[0] 0

g3[1]

... g4[n - I - N]

g0[2] ... ... ... g3[n - 3] ...

... ... ... g3[n - 2] g2[n - 2] g3[n - 2]

0 ... gO[n - 1] gl[n - 1] g2[n - 1]

0 0

0 0

... ... 1/r 0

... ... 0 1/r

,n=N x N

nxn

Only five lines of non-zero elements appear in the diagonal direction. Each row of the

conductance matrix corresponds to an equation in the form of equation 3.3. Because
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Agnn-1 Agnn

where

1/r

0

0

1/r

nxn

0 0

0 0

93n

Iciij = JAI - Igiij >



all the elements have positive conductance, for matrix G, those elements along the

diagonal are larger than the sum of all other elements in the same row. That is to

say,

IgiiI > E lgikl
1<k<NxN

iAk

Then it fits Theorem B, so that the absolute values of all the eigenvalues of its

recursive matrix (D - L)-'U are less than 1. We know that the recursive method

converges if and only if the absolute value of all the eigenvalues of the matrix are less

than 1. Therefore the Gauss-Siedel method converges for this problem.

For the image segmentation problem, the conductance should satisfy the equation,

G - R Vout Inode(37

-R R Vi n 0
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g2[0] g3

gl[1] g2

... g1

gO[2]

0

1/r 0

0 1/r

0 0

0 0

Vot(o)

Vo0 t(n-1)

Vin(O)

Vin(n1)

[01

[1]

[2]

g3[1]

gO[n - 1]

0

0

... 1/r

... 0

,Inode

g4[0]

g3[n - 2]

0

0

0

1/r

g3[n - 3]

g2[n - 2]

gl[n - 1]

0

g4[n - 1 - N]

g3[n - 2]

g2[n - 1]
?2Xf

nxn

'(0)

(n-i) Ix
2nxI

Then,

G - VoCt - R -Vin = Inode,

G - VoCt = R -Vn + Inode

Solving this equation, we get the Vout for each iteration. We also need to update the

conductance matrix,
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Tanh Component

e e 2  e 3  e 14  e 15  e 16

R

Vi V2  V3  V14  V15  V16

Figure 3-6: Resistor Chain

gl[i] = g3[i - 1] = -f (V0 ut(i) - Vout(i-1) i > 1 (3.8)

gO[i] g4[i - N] -f (IVot(i) - VUt(-1)1);i ;> N

g2[fi] gO[i] + gl[i] + g3[i] + g4[i];

where i f(v) is the transfer function of TANH component, and V0ut is from last

iteration. When the iteration converges, we will have found the solution for this

problem.

3.2.4 Image Segmentation Simulation

1-D Simulation

We start with a 1-D simulation. With 15 TANH components, we build up a chain

with 16 nodes. Figure 3-6 shows the structure of the resistor chain. e is output, and

V is input.

In Figure 3-7, we see how we generate an input signal. We have a step signal,

which is in the range 2.OV 3.OV. It is corrupted by noise r, which satisfies the

distribution r ~ N(O, 0.05)

Figure 3-8 shows the HSPICE simulation of the resistor chain. We can divide the
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Figure 3-7: 1-D Voltage Input
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Comparison of Smoothing Effect (1-D)
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Figure 3-8: Comparison of Smoothing Effect (1-D)

39



TANH Resistor
error 0.0173 0.2077

Table 3.1: 1-D Image Segmentation Error Comparison between Tanh Network and
Resistor Network

input signal into three parts, two relatively flat regions, and one transition region.

We can see that, while smoothing the flat regions, the TANH chain also keeps the

edge feature. A normal resistor chain tends to smooth all the humps, including the

edge.

We use E(Vout - Voriginai)2 as an error criterion, to get the data shown in the

Table 3.1, from which we can see that TANH function reduces error significantly.

2-D Simulation

In 2-D simulation, we use a 64 x 64 input image. Due to the huge computation load for

HSPICE, we use C/C++ language to implement the simplified model for simulation.

Figure 3-9 is the surface plot of 64 x 64 input image. Input image voltage range

is 1.2V - 4.OV.

Figure 3-10 shows the simulation results of image segmentation. When we feed the

same image to one network consisting of Tanh components, and one resistor network,

we get two different results. The top two graphs are the output images, and the

bottom two are graphs a single row of data selected from each image. By comparing

them side by side in Figure 3-11, we can see the different smoothing effects of TANH

component grid and normal resistor grid.

From Figure 3-11, we can see that in the flat region the output signal from the

TANH network is similar to the output signal from the normal resistor network, that

is to say that the TANH network has the same effect as normal resistor in smoothing.

The output signal from the TANH network is similar to the input signal in the edge

region which shows that it keeps the edge feature from the input, as desired.
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Figure 3-9: Image Input (64x64)
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Figure 3-10: Simulation Result of Image Segmentation
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Figure 3-11: Comparison of Smoothing Effect
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3.2.5 Optical Flow Simulation

Preprocess Image

Input images are discrete in time and space. Gradients of the image brightness are

needed for the optical flow algorithm, which requires that the image brightness be

differentiable. Therefore, a smoothing process was applied to the input images to

improve the subsequence derivative estimates. Because there is effectively a built-

in low pass filter in time - the video camera smears the input image sequence and

decreases aliasing, - we are more interested in spatially smoothing the image. The

input image can be pre-smoothed with a Gaussian filter,

S exp[-( + 2c ) (3.9)
f()-v'2r a 2a2 2a2)

where the mean of x and y are both zero, and the standard deviation is a. We can

choose proper o according to our need for the smoothness of the input images. When

using a Gaussian filter to smooth images, the larger the value o is, the larger the

smoothing window will be. The shape of Gaussian filter is shown in the figure 3-12.

Another need for smoothing image is when the displacement between two frame

of images is large. We know that the optical flow algorithm assumes small change of

brightness, so that it more accurate for a smaller displacement. But we can also apply

it to large displacement with the hierarchical scheme. We can first smooth the input

images with a Gaussian filter, then downsample images and get a lower-resolution

image with less motion. After we get the estimation of motion variables, we can

apply them to higher level of estimations, then we can reach the optimal estimation

of large displacement.

Gradient Derivation

The optical flow algorithm involves the computation of spatial and temporal partial

derivatives (Ex, Ey, Et) of the brightness at each pixel in the image. To get the
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Figure 3-12: 2-D Gaussian Filters
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E ij+1,t+1 E i+1,j+1,t+1

E
i+1,j,t+1 Et
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' Eij+,t E i+1,j+1,t

E i'j't E i+1,j,t

Figure 3-13: Pixel Cube Used to Estimate the Three Partial Derivatives

derivative Et, we also need an image pair taken sequentially in time. The partial

derivatives of image brightness are computed with a first order derivative. The first

order difference approximations are

E(i + 1) - E(i)
Ex li,j,k = (3.10)

EyIijk E(j+1) -E(j)
A y

E(k + 1) - E(k)
At

In our approach, we instead get the derivatives as below[5],
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Figure 3-14: Input Images of Optical Flow Simulation

1
Ex(tj,k) = 4- [(E(i+1,j,k) + E(i+1,j+1,k) + E(i+,j,k+1) + E(i+1,j+1,k+1))

- (E ,j,k) + E(i,j+1,k) + E(i,j,k+1) + E(i,j+,k+1))1

1
E (ij k) = 4 [(E(i,j+1,k) + E(i+1,j+1,k) + E(i,j+,k+l) + E(i+1,+1,k+l))

- (E ,j,k) + E(i+1,j,k) + E(i,j,k+1) + E(i+,j,k+l))1

1
Ettik) = 4 [(E(i,j,k+l) + E(i+1,j,k+1) + E(i,j+1,k+1) + E(i+1,j+1,k+1))

- (Eij,k) + E(i+1,j,k) + E(i,j+1,k) + E(i+1,j+1,k))]

(3.11)

where E(i, j, k) corresponds to the brightness of pixel (i, j, k). Here i is in the x

direction, j is in the y direction, k is in the t direction. The three partial derivatives

of image brightness at the center of the cube are estimated from the average of the

four differences along the four parallel edges.

Simulation

Figure 3-14 is a pair of synthesized 64 x 64 input images. The square in the middle

is assumed to be an object, which is moving over a static background. In this pair of
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Flow Algorithm with Tanh Network and

the images, it moves exactly one pixel to the right, which is the positive x direction.

Figure 3-15 is the result of simulating optical flow, using both a Tanh network

and a resistor network. The top two figures are from the resistor network, while the

bottom two from the Tanh network. The right two figures illustrate a single row from

the optical flow fields on the left hand side. We can see that the optical flow field

obtained using a resistor network has a blurred boundary, while Tanh network yields

a relatively clear-cut boundary in optical flow field, which is more consistent with the

real motion field. Also in those static background area where we expect the velocity

to be zero, the resistor network shows much larger velocity distribution.

Comparing the results of the two simulations, we can see that the TANH network

out-performs the resistor network. It yields a clear-cut velocity field boundary and its

velocity distribution drops rapidly at the edge, while the velocity distribution from
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Comparison of Optical Flow Result

0.9-

0.8 -

0.7-

0.6

0.5 -

0.4-

0.3 -

0.2 -

0.1 -

0
0 10 20 30 40 50 60

Figure 3-16: Comparison of Simulation Results from the Tanh Network and the
Resistor Network
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Resistor TANH
error 2.7473 1.8121

Table 3.2: Optical Flow Error Comparison between Tanh Network and Resistor Net-
work

resistor network decreases at a much slower rate.

We use the constant brightness constraint, which is ef = Z(u E. + V. E, + Et)2 ,

as the criterion to evaluate the performance.

As the error shown in the Table 3.2, TANH network can reduce the error by

around 30%.
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Chapter 4

Conclusion

4.1 Summary

In this thesis, we investigated the application of non-linear resistive networks to a

computer vision problem. Our research suggested that a TANH component is useful

in the solution of this problem. We completed a schematic design and simulation of

a circuit composed of TANH elements. It is known that analog circuits have ad-

vantage in both speed, and power consumption, comparing with digital circuit. This

technology makes it possible to realize real-time optical flow computation, which is a

computationally intensive algorithm. After reviewing some of the work of pioneers in

this field, we proposed a TANH component as the basic element for a resistive net-

work, which can both conduct communication between neighbors when their voltage

difference is small, and cut off communication when voltage difference is large. Thus,
it can preserve edge features, while smoothing out noise in non-edge regions.

4.2 Recommendation

From our simulation, we can see that we have obtained a performance improvement

in optical flow computation, however there is still lots of work to do in the future.

For example, looking at the v direction of optical flow simulation result, it does not

have clear-cut edge as good as that in u direction. That is because the Et in this
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area varies more slowly than that in spatially discontinuous area, it is harder to gain

a large voltage difference to cut off the connection along the edge. In my design of

the TANH circuit, the linear region is fixed, which means that the threshold value

of cut off is fixed. If we have a adjustable threshold value, it can be more flexible.

Furthermore, we can combine it with edge detection. We can set the threshold value

at those edges smaller, and larger in interior area. So that we can smooth out interior

noise feature, while keeping edge feature.
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