The Use of Automatic Identification Technology to Improve
Shipyard Material Handling Processes

by
Chel Stromgren

BS Naval Architecture and Marine Engineering
Webb Institute, 1991

SUBMITTED TO THE DEPARTMENT OF OCEAN ENGINEERING IN PARTIAL
FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE IN OCEAN SYSTEMS MANAGEMENT XIII-B
AT THE
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
September 2000

The Author hereby grants to MIT permission to reproduce
And to distribute publicly paper and electronic

Coples of thi~ Hennin Aansnmant in whanle ar in nart

(I

Signature of Author ——
wrvparunaae Jf Ocean Engineering
Certified by -
Professor Henry S. Marcus
NAVSEA Professor C. ...y « o qeruiccens = anmens coopos « sveny — -p— €Nt of Ocean Engineering
N
Certified by

Professor Nicholas Patrikalakis
Kawasaki Professor of Engineering
Chairman, Departmental Committee on Graduate Studies

BARKER

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

MAR 2 7 2001

LIBRARIES

The Use of Automatic Identification Technology to improve
Shipyard Material Handling Processes

by
Chel Stromgren

_ Submitted to the Department of Ocean Engineering
on September 1, 2000 in Partial Fulfillment of the Requirements for the Degree
of Master of Science in Ocean Systems Management Xiil-B

ABSTRACT

Automatic identification technology has the potential to vastly improve the manner in
which large manufacturing companies, shipyards included, control material and
equipment. Radio frequency identification (RFID) and other similar technologies can
allow a shipyard to more accurately track, locate, and recover material and machinery
within the yard, while at the same time reducing the manpower and costs dedicated to
these tasks. The result of these improvements could allow future naval and commercial
ships to be built more efficiently, with less material related delays, uitimately reducing the
total acquisition cost.

This thesis discusses the application of RFID technology to the material control process
in large shipyards. Possible improvements in material control processes are discussed
in general, and the operations of the Bath Iron Works (BIW) shipyard in Bath, Maine, are
examined in particular. A computer model, simulating the operations at BIW, was
constructed and examined to provide quantitative data on the current practices at the
yard. The model was then modified to simulate the incorporation of RFID technology
into the operations. Results were compared with the baseline model and overall
improvements in operating costs were calculated. This thesis presents those results and
draws conclusions as to the potential benefits that RFID might offer BIW and other
shipyards.

Thesis Advisor: Henry S. Marcus
NAVSEA Professor of Ship Acquisition

Table of Contents

Acknowledgements
Chapter 1: Introduction

Chapter 2: Technology and Functionality

Chapter 3: Potential Applications in the Shipyard Environment

Chapter 4: Description of Modeling Project
Chapter 5: Discrete Event Simulation

Chapter 6: Description of Current Processes
Chapter 7: Description of Proposed RFID Process
Chapter 8: Description of Process Model
Chapter 9: Model Results

Chapter 10: Other Possibie RFID Shipyard Implementation
Chapter 11: Synergy with Shipboard Activities
Chapter 12: Conclusions

References

Exhibits

Appendix 1: Simulation Model Logic

18
22
26
32
37
49
62
65
67
70

71

Acknowledgements

The author wishes to thank the following for their support and contribution in
making this report possible:

Dr. Henry Marcus, MIT
James Baskerville, Bath Iron Works

Brian McQue, Bath iron Works

Chapter 1: Introduction

Automatic identification technology has the potential to significantly improve the
manner in which many businesses operate. The ability to track, locate, and
inventory items quickly and automatically can allow companies to increase the

efficiency of their processes, reducing the effort involved in material control.

Specifically, Radio Frequency Identification (RFiD) technology offers a relatively
low-cost option for many companies to improve their current level of gathering
and using information concerning material movement, location, and distribution.
If properly implemented, this increased use of data has the potential to reduce

overall costs and improve operations.

An excellent example of an industrial operation that has extensive material
tracking and control requirements is a large commercial or military shipyard.
Typically, for a major ship construction, the number of items moving through a
yard during construction is in the millions, varying with the type and size of ship.

This large volume of material requires extensive control and tracking procedures.

Since a large portion of the material and equipment that passes through a
shipyard is of relatively high value, tracking requirements are often stringent,
further increasing the complexity of material control. Additional complications in

material tracking arise from the long lead time required for ordering many

components and the introduction of Just-In-Time (JIT) operations. For some
pieces of equipment that are used in ship construction, the lead-time for ordering
can be on the order of years before final delivery. In many cases, material will
arrive at the shipyard long before it is needed in construction. There are cases
where items may sit in storage in the yard for long periods of time before use.
This situation results not only in large storage volume requirements, but also

increases the chance that material will be misplaced.

in an attempt to improve construction and material-flow efficiency, many large
shipyards are incorporating concepts such as just-in-time (JIT) material handling.
The basic concept is that material is not brought to an assembly site until the
exact time that it is needed, reducing inventory and storage requirements.
Material is often stored at off-site locations and moved in small batches to the
assembly site. Again, the implementation of these concepts increases the

complexity of the material tracking system.

The result of all of these material tracking requirements is that a large amount of
time is currently spent in the execution of these processes. Material is
inventoried either visually or using bar codes at many steps during transfer and
storage. Large databases are used to track material location and movement
requirements. A significant amount of time is spent manually searching for lost

or misplaced items.

The use of RFID in the shipyard has the potential to streamline many of these
material control processes. Automatic identification technology could allow many
of the most time consuming operations, such as inventory and searches to be
performed quickly and automatically, reducing the burden on shipyard personnel.
In addition, by improving the level and quality of information available concerning
material control, overall shipyard performance can be improved. Waiting times
for delinquent material can be reduced, use of available storage space can be

optimized, and losses of material and equipment can be virtually eliminated.

This thesis explores the use of automatic identification technology in the shipyard
environment. As part of this analysis, a material handling operatyion from an
existing shipyard was examined. A replacement process, incorporating RFID
technology, was developed. The existing and proposed processes were
simulated using a computer model. The results were then compared to quantify

potential gains from the use of RFID.

Chapter 2 contains an overview of RFID technology and lists some typical
industrial applications. Chapter 3 presents potential uses and applications of the '
~ technology in shipyards. Chapter 4 introduces the modeling project that was
undertaken to evaluate the potential benefits of RFID in the shipyard. Chapter 5
describes the software used to model the material handling processes. The
current shipyard material handling process is described in detail in Chapter 6.

The proposed replacement process incorporating RFID technology is described

in Chapter 7. A detailed description of the computer model is included in Chapter
8 and a comparison of the results from the simulation models is presented in

Chapter 9.

Some other potential uses of Automatic Identification Technology in shipbuilding,
that were not directly analyzed in this thesis are presented in Chapter 10. In
addition, some potential synergies in the use of RFID between shipbuilding and
on-board activities are presented in Chapter 11. Finally, conclusions concerning

the use of RFID in the shipbuilding process are given in Chapter 12.

Chapter 2: Technology and Functionality

The technology involved in radio frequency identification (RFID) can still be
considered to be in a developmental stage. Although there are many commercial
products available and the technology has been successfully implemented in
many real-world operations, new devices with improved functionality are still
being developed and the overall performance of the technology is likely to

improve in the future.

The basic concepts behind the technology, however, are developed and well
proven. RFID is based on the concept of an autonomous tag, which can be
affixed to some piece of material, and can then transmit data to a remote reader
at some distance away. Information concerning the tag and/or material can be
accessed at the remote reader. The type of information available, the range of
operation of the system, as well as the size and cost, all depend on the type of

RFID technology selected for implementation.

RFID tag technology can be divided into two basic types, active and passive.
Active tags refer to radio frequency transponders powered partly or completely
by a battery. Batteries may be replaceable or sealed within the device. The
devices react to specific, reader produced electromagnetic fields, by delivering a

modulated radio frequency response.

Passive tags are battery-free data carrying devices that react to a specific, reader
produced electromagnetic field, by delivering a modulated radio frequency
response. These tags have no internal power source, deriving the power they

require to respond from the reader/interrogator's electromagnetic field.

Beyond the basic distinction of tag type, RFID technology can vary in the level of
functionality that is provided. The most basic discriminator is in the amount of
data that is contained and transmitted by the tags to the readers. The simplest,
and least expensive, tags are referred to as "license-plate” tags. These devices,
which may be either active or passive, simply transmit a unique identification
number, which is typically pre-set in the factory during manufacturing. These
tags then work in conjunction with some sort of database to store information

about the material to which the tag is attached.

More complex tag systems have the ability to store and transmit data beyond a
simple identification number. With these systems, the user has the ability to save
information on a particular tag and then to read this information remotely. Actual
information about the material in question can be recorded directly on the tag,
eliminating the need to cross reference a database. This can speed up the
identification process and allow a user to work independently of a central

computer system. Typically, this functionality is found only with active tags.

10

Depending on the complexity of the tags and the reading system, RFID can
provide additional functionality in the locating of material. Several types of active
tag/reader combinations have the ability to determine the range that a tag is
being read at. This gives the user the ability to discriminate between tags that
are being read in a large area. Additionally, if multiple fixed readers are being
used, the range finding ability of a tag can allow users to triangulate the exact

location of a tag.

RFID technology has been implemented in many industrial settings in various
configurations using different sets of the functionalities identified above. The

basic types of RFID implementations can be divided in to five distinct categories:

Information/ldentification/Inventory: The most basic usage of an RFID
system is to provide a method for storage and retrieval of information about
material. This type of operation can be used in many instances in an industrial

setting.

Most simply, the technology can be used to identify individual pieces of material
within a system. Workers using hand held scanners can interrogate tags to
identify material and search for particular items. Similarly, tags and readers can
be used for inventory purposes, quickly scanning a large number of items. The

system can also be used to store relevant information about a piece of material.

1"

History, delivery deadlines, or storage requirements could all be stored on a tag

and instantly recalled for use.

Tracking Within Defined Paths: Highly-automated assembly line processes
can use RFID tags to track progress through a system. _In these cases, fixed
readers are positioned throughout a system and automatically scan and record
tag data as it passes. Information is sent to a central computer system which
identifies material and current location. This type of system works well to track

large volumes of material passing through fixed lanes of movement.

High-Volume Sorting: RFID tags can be used to dramatically improve the
performance of high-volume sorting operations. In applications where large
amounts of material are sorted based on some identifying characteristic, RFID
can be used to speed up or automate the process. For example, in laundry
applications where items are processed in large batches and then sorted back
into groups for individual owners, the distribution process can be extremely
laborious, involving manually reading individual labels or nametags. With small
RFID tags attached to the items, the process is greatly improved. Distribution
information can be automatically read and sorting could be largely automated

based on this data.

Location Finding: A more advanced usage of an RFID system is to search for

the location of particular object. There are various methods in which tags can be

12

employed to provide this functionality. Fixed tag readers can be distributed
throughout the system in all storage locations. The readers can then be queried
to search for a particular tag. When a tag is registered, the tag location can be

determined to be within the read area of a particular reader.

More complex RFID tags and readers can actually be used to triangulate a tag's
position in a particular setting. If tags are used that have the ability to determine
range, multiple readers can be used to mathematically triangulate the exact
position of a tag. This function is extremely useful in warehousing situations, in
which large amounts of material are stored in large areas. The triangulation
function is often combined with electronic maps or schematics to visually show

the location of material.

Condition Monitoring: RFID tags have been used in some applications in
combination with remote sensors to monitor the condition of a piece of
equipment. Small sensors that can register variables such as teniperature,
pressure, humidity, etc., can be electronically linked to the RFID tag. When
queried, the tag can then transmit this data to a reader. Operators of the system
can use this information to monitor the condition of the equipment. A system
such as this can also be set-up to automatically report if conditions fall outside a
certain range. This is particularly useful in material control situations in which

environmental conditions are a factor in storage.

13

These five basic types of operation are used in various combinations in different
industrial applications, such as; warehousing, production, service, and traffic
control. For example, in a warehousing situation, several types of RFID
operation might be used to improve efficiency. Fixed scanners could be used at
gates to identify and inventory incoming and outgoing material. Multiple fixed
scanners could be employed within the warehousing area to search for particular
items and triangulate locations. Hand-held scanners could aiso be used by

operators to locally search for and identify material.

The optimal set-up for each application depends heavily on the volume of
material being processed, the amount of manual work required in the present
processes, and the types of activities being performed. Chapter 3 will explore

some of the potential applications of RFID to the shipyard environment.

14

Chapter 3: Potential Applications in the Shipyard Environment

While any of the basic RFID operations may be used on a limited scale in the
shipyard environment, there is potential for wide-spread usage of three types of
RFID operations. Because of the high volume of material being processed, the
large storage requirements, and the strict scheduling of arrivals and delivery
within the yard, automated inventory, location finding, and material flow
monitoring may all be used effectively within a yard to lower material control

costs.

While each of the major shipyards practice their own material movement and
control procedures, the general movement of material is similar at every yard.
Typically, material arrives at a yard via truck, rail, or barge at an incoming
warehousing facility. This facility is sometimes located within the yard itself or
sometimes is an off-site location. As material arrives, it is inventoried, entered
into a material database and tagged with the yard's own tracking information
(most often ID numbers or bar codes). Some material and equipment is then
grouped together based on location of use, system, or required delivery time.
These groupings are generally packaged together in some manner, either on
pallets, or in storage boxes and the groupings and pallet/box number aiso
recorded in a central database. Additional data concerning each part can also be
included in the material database, such as required delivery time and location,

assembly unit to which it belongs, and testing/delivery instructions.

15

Packaged pallets and boxes, as well as large individual items are then
dispatched to various storage locations throughout the yard. Locations are
usually predetermined, based on the site where the items will be needed, when
they are required, and whether items must remain indoors or can stand weather.
Upon delivery of parts to loéations in the yard, all items are inventoried and the

database updated with location.

Most major shipyards have implemented some type of Just-In-Time (JIT) delivery
system for material and equipment within the yard. Under these sort of schemes
material is identified in a database with the location and date that it is needed in
the assembly process. The advantage of JIT is that assembly workers do not
have to go searching for material as it is needed in the construction process;
rather the material is delivered as needed, and on-time. This system also
eliminates the need to store material at the actual assembly site, where space is
typically restricted. The major difficulty with JIT involves the control of material.
Every operation in the construction of the ship has to be carefully scheduled
before hand. All material must be delivered as promised or the entire assembly

process can be thrown off, wasting time and resources.

Within a JIT system, each part or piece of equipment is assigned a delivery time
and location within the database. The equipment stays at its in-yard storage site
until the proscribed delivery time. At that point yard workers locate the material,

based on its identified storage location in the database. Typically, entire pallets

16

or boxes will be loaded with material that has the same delivery time/location.
After the proper pallet/box is located the material is again inventoried. It is then
transferred either to the location where a particular sub-assembly is being built or

to the platten for placement on-board the ship.

When it works correctly, this type of material control system accurately tracks the
location and status of all items in the yard. Storage locations, groupings, and
required delivery data are recorded and stored for all material. However,
because of the manual way in which data is collected, the operations tend to be
time intensive. Multiple manual inventories and part identifications must be
performed. In addition, the manual nature of the system allows for errors to
occur in identification, data entry, and part location. These errors are especially
troublesome because they can lead to large amounts of time involved in

searching for material and in delays in assembly.
In order to help quantify the potential advantages of the use of RFID in the

shipyard, an effort was undertaken to simulate the shipyard processes using a

computer model. This modeling project is described in Chapter 4.

17

Chapter 4: Description of Modeling Project

While the shipyard environment seems like an ideal location to implement RFID
technology, it is difficult to determine the exact improvements that could be
delivered by such a system. While the time spent performing routine events,
such as inventory or delivery, is fairly easy to quantify, time spent on extra
ordinary events, such as searching or waiting for material, is often not recorded
and is more difficult to measure. Additional costs due to lost material and
downstream time lost due to delinquent delivery also adds to the cost of material

control.

In order to try and quantify what the potential gain is to a typical shipyard, it was
decided to perform a computer simulation of yard activities. This simulation
would be completed both with the current material control system and with an
RFID based system. The results would then be compared to quantify the gains

achieved by the new system.

Bath Iron Works (BIW), a private shipyard, located in Bath, Maine, builds
primarily large, complex ships for the U.S. Navy. The shipyard has recently
invested in an internal research project to examine the potential for the use of
RFID on the shipyard. As part of this effort, BIW surveyed available RFID
technology and contracted with a supplier to develop new advanced tags for

testing in the yard. The tags that were developed during this research effort were

18

active tags that had only "license plate" data transfer capability, but which had

the ability to be used for range-finding and triangulation.

BIW agreed to work with MIT to study their current material control practices and
to develop a notional implementation of the RFID technology. The current BIW
processes and the proposed RFID processes would then be modeled at MIT

using a computer simulation to predict gains.

The first step in the modeling process was to survey BIW's current operational
practices. Typical material movement operations were observed over a period of
days. Storage and processing locations were charted, information storage,
retrieval, and transfer, were documented. Typical material volumes and
distributions were observed. The current in-yard processes are described in

Chapter 6 of this document.

After completing the in-yard surveys, the current practices were modeled on the
computer using a tool called ProModel. The operation of this software is
described in Chapter 5. The model developed captured typical material
movements into and through the shipyard. Events such as inventories,
retrievals, and searches were all modeled. Individual times for material
processing were monitored for each item and total processing times calculated
for blocks of material. Loss of material was also simulated and the total number

of items lost calculated.

19

All the of the results from this baseline model were summarized and compared,
when possible, to the actual performance experienced within the yard. Actual
quantitative observations of full-scale performance in terms of man-hours
consumed and items lost are hard to obtain. Results are compared to full-scale
on a mostly qualitative basis. In cases where results did not match, the accuracy
of the modeling or of the input variables was checked and the model was

modified to reflect reality.

As part of this verification effort, a sensitivity analysis was also performed on the
model. In this effort, input variables were systematically varied and the resuilts of
the model monitored. In cases where small changes in input yielded large
changes in output, the accuracy of the variables was double checked. Careful
attention was placed on these variables during subsequent operation of the

model to insure that results would be reasonable.

Once a robust model had been developed and verified against real-life
performance, the model was modified to include the proposed RFID
implementation. The actual RFID proposal developed by BIW and MIT is

described in Chapter 7.

The RFID model was then run with the exact same input variables as were used

in the baseline model. Again, processing times and lost material volume were

monitored. Results were then summarized and compared with the baseline

20

model. Improvements and degradations in key performance parameters were
noted and an overall prediction of improvements due to RFID was made. The

results of the model comparison are presented in Chapter 9.

21

Chapter 5: Discrete Event Simulation

Discrete event simulation is a tool that has recently been used by many
manufacturing companies to analyze and optimize their production processes.
These computer programs allow users to model complex processes on the
computer and to then modify them and experiment in order to optimize overall

performance.

The particular tool used in this study is ProModel, a discrete event program
written and distributed by the ProModel corporation. The software has become
one of the standard programs used by the manufacturing industry to analyze

production processes.

Discrete event simulation tools are extremely effective because they have the
capability to simulate complex systems that involve interactions between multiple
processes. These interactions can often be difficult to analyze manually and are
often counter-intuitive in their operation. Programs such as ProModel analyze
the operation of each individual process (each discrete event) and then predict

the interactions between them and the operation of the overall system.

In building a model, the user is first required to define the overall layout of the

system and is then required to describe the logic of operation for each individual

event. The physical layout of the system is defined, including locations of events,

22

paths of movement, description of material, and identification of personnel
operating the system. Variables are described, such as the rate at which

material enters the system and the down times of particular resources.

In defining the logic for each discrete event, the user must capture the actual
operation of the real-life resources. Factors described in the logic include:
material used during the event, time required to process material, personnel
required to complete the process, man-hours required, the output products of the
process, and the destination of material once complete. Equally important, the
user must describe the logic used in making decisions at each step. How the
following decisions are made must all be carefully defined: the order in which
items are processed, the use of particular workers, the distribution of products,
and the variability in processing. It is the interactions between the logic for each
individual step that the program uses to determine the operation of the overall

system.

Typically, the' first step in creating a process model is to survey the actual
operation of the current system on-site. All the factors that must be used to
define the physical layout and logic description are observed and recorded.
Obviously, in some cases, it can be difficult to obtain exact data on the system-
operation. In these cases, best estimates must be made, based on observation
and experience. Data obtained in this stage concerns the operation of each

individual element of the system.

23

Once the data has been obtained from the actual process, an initial model can be
built. The physical layout and the logic can be programmed into the simulation,
along with the estimates for the variables used in operation. The simulation is

run and results calculated for the overall operation of the system.

Once the initial results are produced and evaluated, they are then compared to
the operation of the complete real-life system. Data is obtained from the actual
system on overall performance and operation. Thé results of the model are
analyzed in comparison to the real-life data to find deviations. Once any
irregularities are found the logic, layout, and variables in the model are analyzed
to determine the source of the errors. This process can be time-consuming and
may require many iterations before the performance of the simulation mode!
corresponds to the real-life system. The process of fine-tuning the model is
extremely important, however. In order to perform analysis of changes to the
system and to optimize operation, the performance of the current processes must

be accurately modeled.

In addition to checking the performance of the simulation to the actual system, a
sensitivity analysis is usually also performed of the simulation model. In this
analysis, input variables to the system are individually varied in small increments
over a reasonable range and the model rerun for each change. The outputs for

each run are analyzed to determine the effect of the changes in the variables on

24

the performance of the overall system. This type of analysis determines which
variables have the greatest impact on performance and if there are certain
ranges in which variables have extreme effects on results. This data helps in the

running of the model and in the future 6ptimization of processes.

Once a robust model is completed, experiments can begin on the simulation.
Changes in layout, manning, variables, and decision logic can be included in the
model and the overall performance calculated. These results can then be
compared to the baseline model to determine the effect on the operation of the

system.

If an optimization of a particular process is to be performed, multiple runs must
be completed with varying modifications to the model. During these runs,
changes to the model must be made in an organized, incremental manner.
Results must then be examined to determine the effect and degree of change to
the model resuits. Additional changes, based on the results can then be made

until an optimal solution is found.

25

Chapter 6: Description of Current Processes

The material control processes used at BIW are similar to the typical shipyard
practices described in Chapter 4. In general, the operations at BIW are relatively
advanced in the level of technology used and information collected during the
material control process. The yard utilizes an extensive material database to
track and store information. In addition, the yard has fully implemented JIT
practices throughout the construction process. In doing so, they have developed
a sophisticated, distributed system for receiving, warehousing, storage, and

distribution of material.

Receiving: All material used for ship construction by BIW is received at one of
two off-site facilities, located a few miles from the yard. All structural material,
steel plate, shapes, etc. is delivered by truck or rail to the Harding Plant. All
other non-structural material and equipment is delivered to the East Brunswick

Fabrication Facility, also located a few miles from the yard.

Upon arrival at the Harding Plant all material is inventoried and tagged with BIW
ID numbers and bar-codes. ID numbers are assigned from a material control
plan developed in advance by planners. The material is then placed in storage at
the off-site facility until needed. Because much of the material is generic, that is,

specific pieces are not assigned to specific uses, but are used as a bulk

26

commodity, the material control procedures are not especially stringent at this

point. Material is sorted by type and size and stored in lots.

The steel fabrication shops are all located within the Harding Plant. Cutting, blast
and coat, and sub-assembly activities are performed directly at the site.
Structural parts are cut from bulk material and coated. Some parts are welded
together into sub-assemblies. Once cut or assembled, all parts are given a
specific identification number, which is assigned from the parts database. Items
are then grouped together based upon the assembly or systém of the ship that
they are part of and based on the time that they are required in the yard.
Groupings are placed together on a pallet or in large metal storage boxes. Part
groupings are pre-determined by planners and specified in a material control
pian. As the parts are grouped together, their ID numbers are recorded and
stored in the material database. The pallets and boxes, as well as large

individual structural items are then ready for shipment to the main yard.

Parts are shipped from the Harding Plant to the main yard in two manners. Most
material is placed on large flat-bed trailers. These trailers are parked, without
cabs, in the facility and loaded as parts are ready. When the trailers are full, they
are driven by cab to the main yard. Some material, which is needed quickly or
has special storage requirements, is place directly on trucks for immediate

transfer to the yard.

27

Non-structural material and equipment arriving at the East Brunswick Facility is
handled with a process similar to that used at Harding. Upon arrival at East
Brunswick, material which is unique (material which is specifically destined for a
particular application) is given a identification number and is bar-coded and
stored. Generic material, such as pipe and fittings, are inventoried, coded, and

stored in bulk.

Material is stored at the facility until needed and then grouped according to
usage. Again, groups are placed on pallets and in metal boxes and the material
groupings recorded in the central database. All material is then delivered to the

main yard by truck.

Delivery to Yard and Storage: Upon arrival at the main yard, al! vehicles, flat-
bed trailers and trucks, pass through the main delivery gate. Vehicles stop at the
gate and the driver must perform a manual inventory of all items on board. The
inventory, at this point, records pallets, boxes, and individually shipped large
items. This inventory is performed manually using bar-code readers hooked to
the main database. Once the inventory has been completed, the trucks and flat-
bed trailers proceed into the yard. Flat-bed trailers are parked, detached from
the cab, and left in the yard. Trucks proceed around the yard, unloadfng pallets,

boxes, and material at various storage locations.

28

Storage locations for all material are predetermined and assigned through the
material database. Planners select material storage locations based on where
material will be used and availability of storage space. Drivers deliver trailers
and material to the pre-planned storage locations. If the location is full, or if the
driver must store material at an alternate location for some other reason, he
records the new location in the material database, so that it can be found at a

later time.

Material on trucks is unioaded directly at the storage sites and the trucks proceed
back out of the yard. Flat-bed trailers are parked and detached from the cabs.
Material is unloaded from the trailers as needed and the trailers remain in the
yard until they are empty. In some cases, if just a few pieces of material remain
on a trailer, the items will be moved to ground storage locations, to free up the

trailer. These moves are also recorded in the database.

Material Recovery: All stored material, except bulk items, are assigned times
and locations that they are needed in the shops or on-board a ship for
construction or installation. This data is recorded, along with the storage
location, in the material database. When the required usage time approaches,
waterfront personnel locate the material and deliver it to the required destination.
In locating an item, a worker will check the database for the assigned location; he

will then proceed to that area and search manually for the particular item. This is

29

done either by visually checking tags or by scanning bar-codes. Once an item or

pallet is found, it is transferred to its destination by truck or by forklift.

Problems: This material control plan functions well and adequately tracks most
material throughout the construction process. However, there are several
inherent problems with the current system that reduce the shipyard's overall
efficiency in handling material. The most significant of these problems is the
large amount of labor that is consumed in identification and inventory of items.
As pallets, boxes, and items are moved, stored, and recovered, |ID numbers must
be manually checked and recorded. Inventories, which take place as material
enters the yard, are extremely time consuming. The result is that yard workers
spend a large deal of time reading tags or bar codes and entering data. In
addition, these processes also have large potential for error. Mistakes in reading

or entering data can lead to errors in the material database.

Another significant problem with the material control system is in the loss or
misplacement of items. This type of loss ¢an occur in many different manners. If
tags are misread and data is mis-entered, improper storage locations can be
recorded in the database. In addition, if drivers forget to record actual storage
location when they cannot place items in the pre-designated location due to
inadequate capacity or misplace items due to simple error, material can no

longer easily be located. Additionally, if material is transferred within the yard, to

30

make space, or to clear off a trailer, often the moves are not recorded in the

database.

In cases where the actual material location is not recorded in the database, the
process of recovering items becomes much more difficult. Waterfront personnel
will proceed to the intended location and begin a search for material. Items at
the location will be checked, looking for the intended item. When it is not found,
workers must then begin searching adjacent areas for the material. Depending
on how far away from the intended location the item actually is and the quantity
of items that must be searched among, the location of the proper material can

take hours or days.

This search for material is troublesome not only because the search takes many
man-hours, but also because, with the JIT process, the material is needed in the
construction process immediately. When material does not arrive on time,

construction work is delayed and man-hours are wasted waiting for material.

In some cases, where material is not found in a reasonable amount of time, the
yard is forced to order replacements, which wastes times and money. In other
cases, yard personnel use identical or similar items as replacements. If these
replacements are not properly recorded, other jobs can be delayed as the

replacement material is later searched for.

31

Chapter 7: Description of Proposed RFID Process

RFID would appear to offer some distinct advantages to BIW because its
functionality directly addresses the problems with the material control system
outlined in the previous chapter. The features that such a system could offer
would be improved speed and accuracy in identification and inventory, as well as

improved capability for location finding.

After surveying the current material control procedures, BIW and MIT worked
together to develop a notional implementation for an RFID system at the
shipyard. This plan was based on the tag technology developed by BIW under
its RFID research project. The tags developed under this effort were active
license plate tags, with long-battery life, that also had capability for range finding
and triangulation. In testing, these tags were demonstrated to have long read
ranges and fast read times. The system also demonstrated an ability to scan a

large number of tags simultaneously within the range of an individual reader.

The tags were built with an internal metal backing plate within the casing. The
tag antenna was then tuned to account for this plate. This tuning allows the tags
to be directly affixed to large metal objects without degradation in performance.
Since the antenna is already tuned to account for metal backing, the presence of

metal behind the tag does not affect the quality of the transmission.

32

The proposed RFID system consists of tags and multiple readers. Tags are
permanently attached to all pallets and metal storage boxes used for material
movement in the yard. In addition, there is a pool of available tags that can be
attached to individual large items for identification. Each tag is coded with a

unique identification number that is transmitted when the tag is scanned.

The reading system for the yard consists of three separate components; portable
readers that can be used by personnel to individually scan items, fixed readers at
yard gates to inventory items as they pass into the yard, and fixed readers on

towers, distributed throughout the yard to triangulate the location of material.

The modified material control plan is essentially similar to the current process,
but the use of the RFID tags has been included to streamline identification and
location. The process begins in the Harding and East Brunswick facilities as
material is prepared for shipment to the main yard. Before items are grouped
and placed on pallets or in boxes, the attached RFID tag is scanned using a
portable reader. Then, as the items are placed on the pallet or box, their bar
codes are scanned and associated with the tag ID. In the material database, all
items are then associated with a particular RFID tag. A complete inventory for

each pallet or box is listed against the ID number.

33

Similarly, large individual items have their part number associated with an RFID
tag number. As the tag is attached to the part, both the tag and the bar codes

are scanned. This data is stored in the material database.

Material is then transported to the yard as in the current system. As the material
passes through the main gate, however, fixed readers query all tags and create
an inventory of all the tags on the truck. The database then determines what
material is associated with those tag numbers and records that material as
having entered the yard. The process happens very quickly as the truck slows
down to enter the yard. the driven no longer has to exit the cab, climb on the

bed, and manually inventory and record the items on-board.

Once in the yard, the driver can then use a hand-held scanner to determine the
parking location for trailers, or the delivery location for pallets, boxes, or
individual items that are to be unloaded. The driver would have the ability to
scan all of the items on a truck and cross reference the database to determine
delivery points. The driver would then be presented with a list of delivery
locations and the items to be distributed at each. Material could then be more

quickly delivered, unloaded and stored.

In recovering items for delivery to shops or to platten, both the fixed readers, the
towers, and the hand-held scanners are used to improve the identification

process. When material is needed for a particular job, the yard worker

responsible for collecting material checks the database. The system identifies all
of the items that will be required. It then cross references all the items to the
pallets or boxes in which they are located, if applicable, and to the RFID tag
number. The system then queries those particular tags via the fixed readers on
towers throughout the yard. The tags are identified and triangulated to determine
the exact position in the yard. This information can then be displayed on an
electronic yard map, showing the worker the storage locations of each item. The
system being developed by BIW can determine the location of an individual tag

to within an accuracy of approximately 10 feet.

As the worker proceeds to each storage location, he can then use a hand-held
scanner to find the actual pallet or box on which the material is located. By
quickly scanning items in the storage area he can find the desired item without

having to inspect each item and manually read labels or bar codes.

This system would eliminate problems due to material being misplaced or lost in
the storage process. Material mistakenly stored in wrong locations or shifted

during the storage period can easily be located and recovered.

The system installed at BIW would also be used to track the progress of certain
material as it moved through the construction process. The tags can be used to
monitor the delivery of equipment and machinery into the yard, to the assembly

sites, and finally onto the ship. Tags affixed to the equipment can be scanned as

35

it is delivered and installed using hand-held scanners. Production control
engineers can then monitor the progress of equipment through the yard and can

make adjustments before material becomes delinquent.

This type of material monitoring gives the construction planners better visibility of
the progress being made in construction and outfitting. By monitoring the
progress of machinery and equipment into units and onto the ship, a picture of
the overall progress can be maintained. In addition, with better visibility of
material movement, the planners are more able to respond to problems and
delays in construction. Alternate plans can be developed in time to forestall

major delays in the construction process.

36

Chapter 8: Description of Process Model

The process model developed by MIT simulates the movement of material and
equipment through the main BIW yard, beginning as it enters the main gate and
ending as it is delivered to the platten or shops for use. The model simulates the
arrival of material by truck, the inventory of incoming items, and the delivery to
storage locations throughout the yard. It then simulates the storage and recovery
of all material, including the misplacement of items and the subsequent searches
by shipyard personnel. Finally, the model simulates the recovery and final

delivery of all items.

The model is run in two separate formats. First, the baseline model is run,
representing the current practices used at BIW. Then, the model is rerun with
some modifications to represent the system after the incorporation of RFID

technology into the process. First, the baseline model will be described.

The model is based on a simplified physical layout of the actual shipyard. Actual
locations of gates, roadways, buildings, and plattens are modeled. Paths of
movement for trucks and personnel are also accurately modeled. Parking
locations for flat-bed trailers in the yard are identified and are similar to what are

used in the BIW yard.

37

The locations of storage areas for material is somewhat simplified. In the actual
shipyard environment over 100 actual storage locations are individually identified
and assigned. To simplify the operation of the model, storage areas have been
grouped into 20 locations, based on their proximity to one another. Adjacent
storage areas have been grouped together. Storage capacity and search times
are all calculated based upon those that would be experienced for the individual
areas, so that the final results of the modeling will not be affected by the

simplification.

A layout of the model is shown in Exhibit 1. In this layout, a representation of the
BIW shipyard is shown in a schematic view. Buildings and areas with major
obstructions are shown as shaded blocks. Ground storage locations and flat-bed
trailer parking locations are indicated on the plan. Areas labeled S1 — S20
represent the designated ground storage locations. Areas labeled F1 — F16
represent the flat-bed parking spots. In order to facilitate on-screen display and
printing, this schematic of the yard has been foreshortened in the transverse
direction. Actual distances between locations and travel times, however, were
calculated using the real dimensions of the yard. The compressed schematic is

for display purposes only and does not affect the results of the model.

There are two distinct processes modeled in this simulation; the delivery of

individual items by truck and the delivery of items by flat-bed trailer. These two

38

processes are linked only by their endpoint, the delivery of items to the

waterfront.

In the first process, items are brought into the yard by truck, they are inventoried
and then delivered to the prescribed storage locations and unloaded. Items
remain at those locations until they are needed. Material is then recovered by

shipyard personnel and delivered to the location where it is needed.

In the second process, items are loaded onto flat-bed trailers, which are driven
into the yard by truck cabs. The items on the trailers are inventoried and the
entire trailer is then driven to a parking location and stored. Items are recovered
directly from the trailer as needed and delivered. When all items have been
removed from the trailer, the cab returns and removes the flat-bed. Occasionally,
a few remaining items will be shifted from the flat-bed trailers to ground storage

to free up the flat-bed and the parking place.

All material in this model is treated as identical commodities. In the actual yard,
material that is processed could include; collections of individual steel pieces
grouped on a pallet, individual or multiple machinery items on a pallet, or large,
individual steel assemblies. However, since each of these types would be
identified by an individual RFID tag and would be recovered and delivered as a
whole, they are treated as a single unit. Loading and unloading times, as well as

storage space required, that are used in the model, are based on an average

39

time for all items, so the physical characteristics of individual items are not

relevant. Therefore, all items are treated as a single type in the model.

All items entering the model are assigned an intended storage location and a
required delivery time for use. These values are assigned from an external
array, which is written by the user. This is similar to how the actual process
operates, when storage locations and times are pre-determined by material
control personnel. Assigned storage location and storage time are stored as
permanent attributes for each entity. This data travels with the entity as it moves

through the system.

In the first process, items are loaded onto another entity, designated as a truck in
the model. A variable number of items are loaded onto each truck before it
enters the yard. The number of items is randomly generated by the program

from a standard distribution of values.

As items are loaded onto the truck, the actual delivery location of each item is
determined by the program. In most cases the actual delivery location is the
same as the assigned delivery location taken from the input array. However, in
cases where the assigned delivery location is already full, the item is given a
different actual delivery location. The alternate location is the next adjacent

storage space that has adequate capacity. In addition, in a certain percentage of

40

cases, an alternate, actual delivery location is assigned at random. This is done

to simulate cases in which a driver drops off items at the wrong storage location.

Once loaded, the truck enters the yard at the main gate. The truck stops and all
items are inventoried at this point. The time taken to complete the inventory is
based upon the number of items on the truck and a statistical distribution of

inventory times.

The truck then proceeds on a set path through the shipyard, passing by all
storage locations. At each location where there is an item or items to be
delivered, the truck stops and unloads the items. The unload time is based on
the number of items and a statistical distribution of unload times. Once all items
have been unloaded from the truck, the vehicle proceeds back to the yard gate

and exits.

All items are unloaded at the actual delivery locations determined by the
program. In order to simulate the search process for misplaced items,
placeholders are used to indicate when the actual delivery location of an item is
different from the assigned delivery location. In these cases, when an item is
unloaded from a truck at the incorrect location, blank placeholders are instantly
delivered to each storage location between the actual location and the assigned

location. Placeholders are assigned a storage time identical to that of the item

41

that they represent. These placeholders are used later, in the recovery process,

to simulate a search for the item.

All items remain in their storage locations until their assigned storage periods are
completed. At that point, a yard worker is called to the storage location to
recover the item. Once at the storage area, the yard worker takes some amount
of time to find and recover the appropriate item. This time is calculated based on
the number of items currently in the storage area and a statistical distribution of

search and recovery times.

In the cases in which the actual and assigned storage locations are not the
same, the recovery procedure is more complex. Before being called to the actual
storage location by an item, the yard worker will first be called to the assigned
location and any intermediate locations by the blank placeholders that were
delivered. The worker proceeds to each of these areas and removes the
placeholder. The time taken- to remove each placeholder simulates the time to
search that area for the specified item and is again based on the number of items
at the location and a statistical distribution of search times. After recovering all of
the placeholders, the yard worker then proceeds to the actual storage location
and recovers the item. Once recovered, items are delivered to the waterfront,

where they exit the system.

42

The second process, simulating delivery on flat-bed trailers, proceeds in a
manner very similar to the first, except that all items in an individual trailer load
are delivered to a single location. As items are loaded onto a flat-bed trailer,
they are again assigned a specified storage location and a specified storage
time. All items in a particular load have the same specified storage location.
Storage times, however, can vary for each item. The number of items in a
particular load is again variable and determined by a standard mathematical

distribution.

The process for determining actual storage locations is similar to that for the first
process. In this case, however, an alternate delivery location is assigned if there
are any items in the assigned delivery location. This indicates that the flat-bed
trailer on which items are delivered and stored is still parked at the storage
location. Therefore, another trailer cannot be delivered to the assigned spot.
The program then finds the nearest empty location and assigns it as the actual
storage location. Again, in a certain number of cases an alternate actual delivery
location is given, even when the assigned location is empty, to simulate the
misplacement of items. In this process, all items on the truckload are given the
same actual storage location, since they are delivered together on a flat-bed

trailer.

After being loaded, the trailer is taken by a truck cab to the main yard gate. Asin

the first process, the truck stops at the gate and all items on-board are

43

inventoried. The truck then proceeds directly to the actual storage location. The
trailer is then disconnected and the cab exits the yard. The delivery time, in this

case, is not dependent on the number of items in the group.

Again, in cases where the actual and assigned delivery locations do not match,
blank placeholders are used to indicate locations that must be searched. In the
flat-bed process, however, since all items in a particular delivery have the same
assigned and actual locations, multiple placeholders are placed at each storage
spot, one for each item on the trailer. These are delivered at the time when the
trailer is disconnected from the cab at the actual storage location. Again,
individual storage times, matching those of the items on the trailer, are assigned

to the blank placeholders.

ltems are recovered from the trailers as their assigned storage periods are
reached. Yard workers are called to the trailer, where they search for the item.
Search times are dependent on the current volume of items on the trailer and on
a statistical distribution of search times. Once the desired item has been

recovered, it is unloaded from the trailer and delivered to the waterfront.

As in the first process, if a trailer has been parked in the wrong location, the yard
worker must first recover all of the blank placeholders before proceeding to the
actual storage area to recover the item. The worker is called by the placeholders

to each location between the assigned and actual locations. The worker

44

searches each area for a period of time based on the number of items in the
location. The worker then removes the placeholder and proceeds to the next

location.

In some cases, determined by a mathematical distribution, when only a few items
remain on a trailer, remaining pieces of material are transferred to a ground
storage location. In this case, the assigned storage location is changed and a
new actual location is assigned, following the procedure described for the truck
delivery process. Once all itéms have been removed from a trailer, a truck cab
returns to the parking location. The trailer is attached and driven back out of the

yard.

For both the truck delivery and flat-bed trailer delivery processes, all processing
times are monitored by the software. During the delivery and recovery
processes, time spent inventorying incoming items, delivering material, searching
storage areas for intended items, searching for lost items, and recovering
material are collected. In addition, the number of misplaced items, the number of
transferred items, and the total number of items passing through the system are
measured. This data is collected by the software and presented to the operator

to examine the overall performance of the system.

After completing the baseline runs, simulating the current operation process, the

model was modified to simulate the implementation of the RFID technology. This

45

step was done in two stages, in order to analyze the benefits of each type of
RFID equipment. By analyzing the implementation in stages, the relative cost
reduction associated with each type of technology could be identified. This
would enable the yard to make better decisions over how to deploy this

technology in the future.

First, the simulation was run with the implementation of fixed scanners at the
gate to perform inventory and hand-held scanners, operated by yard personnel,
to improve area searches and material identification. There were several
modifications that were made to the simulation model to represent the modified
process incorporating this RFID technology. Most of the changes involve the
modification of the statistical time distributions for the events that occur in the
process. Time spent in inventorying incoming items and searching storage areas
for particular items are both reduced. This reduction represents the operator’s
ability to use fixed and hand-held scanners to quickly identify material. In
addition, loading/unloading times for trucks and trailers are also reduced. These
reductions are due to the improved speed with which workers and drivers can

scan material and enter data into the material control system.

The model was then further modified to include the implementation of fixed tower
based scanners and triangulation to locate lost material. The major change in
the RFID model to incorporate the triangulation technology was the elimination of

the blank placeholders that represent the search process for missing items. In

46

this model, items are still misplaced when storage location are full or when a
driver makes an error in delivery. Now, however, because actual storage
locations can be determined before recovery, using the tower-based fixed
readers, yard workers can proceed directly to the actual storage location, without
having to search any intermediate areas. With these changes the model now

simulated the full implementation of the RFID plan developed by BIW and MIT.

Once the changes had been made to the models, both were run using the exact
same input data and conditions as in the baseline case. Exhibit 2 describes the
variables and input parameters used to run each model. The model was run with
a total simulation period of approximately 200 working hours. The entry of 1000

ground storage units and 500 flat-bed storage units was simulated.

During each run, the same time and material factors were monitored and
examined. The two runs were then compared to determine what improvements

were attributable to the introduction of the RFID technology.

It is difficult to estimate the exact percentage of material that is misplaced,
mislabeled, or lost in a given period in the shipyard. In fact, the volume of
misplaced material will actually vary, depending on a number of factors,
including; the workload placed on personnel, the level of urgency that exists on a
given project, and other factors, such as weather, which make identification and

handling more difficult.

47

In order to examine the benefits of RFID implementation over a range of possible
material misplacement rates, multiple runs were completed using the baseline
simulation model. The overall rate of material misplacement is a sum of two
different amounts, the level of material that is accidentally misdelivered by a
driver, and the level of material which is misplaced because the intended location
is full at the time of delivery. The first factor is specified as an input to the model.
The second factor is determined by the software as a result of the simulation. In
order to vary the overall rate of material misplacement, the percentage of
material mishandled by drivers was varied. The input value was iterated until the
desired overall misplacement value was reached. The simulation was run with
an overall rate of 5% to 30%, in increments of 5%. The results of the model runs

are described in Chapter 9.

48

Chapter 9: Model Results

Using a given set of input parameters, each run of the simulation model will
produce somewhat different results, due to the variable nature of some
parameters in the program. Values such as, search times, material
misplacements, and material flow rate, are generated randomly, within defined
parameters, in the simulation. Because of the variable nature of these factors,
the overall results produced by the model can vary somewhat, using a given set
of inputs. To account for this variability in results, multiple model runs were
completed at each increment of material misplacement. Ten separate runs were
performed and data sets for each increment were averaged to produce a typical

set of results.

Muitiple runs were also performed and averaged for the RFID models, using the
same input parameters as in the baseline. For the first RFID model, runs were
completed at the same increments of lost material as for the baseline. For the
second RFID model, in which no material is considered to be lost, only a single

set of data was produced.

Exhibit 3 shows the overall averaged results for the baseline model runs. Data is
presented individually for both material which is stored on flat-bed trucks and for
material that is unloaded into storage areas in the yard. Combined average data

for all material in the yard is also presented.

49

For each type of material, several sets of data are provided. The initial group
shows the overall time spent on various operations in the simulation. The first
row shows the total time spent in the process of conducting the inventories on
items being delivered on truck through the yard gate. The second row shows the
total time spent searching local areas in the delivery of parts. This represents the
time that yard workers spend searching through the actual storage location for
parts, it does not include time spent searching in incorrect locations. That value
is given in the next row, remate searching. This number represents the total time

spent by yard personnel searching for misplaced items in incorrect areas.

The next set of data for each type shows the same data as in the first section, but
averaged for individual items. The first row in the second section shows the
average time spent on inventory per item. The second row shows the average
time spent on local search per item. The third row shows the time spent
searching remote areas averaged for all items in the system. The fourth row

shows the remote search time averaged only for misplaced items.

The last section for each material category details the number of items misplaced
and the average time material took to be delivered. The first row lists the total
number of items of that type that were misplaced in the simulation. This number
is out of 1000 ground storage units and 500 flat-bed storage units, for a total of

1500 units passing through the system in this simulation. The second and third

50

rows both show the average time that elapsed in the simulation between when a
part was requested for delivery and when it was found and delivered to the
proper location for installation. The second row shows the average delivery time
for all units in the system. The third row shows the average delivery time just for

items that had been misplaced.

In looking at the data in Exhibit 3, it can be seen that the level of misplaced
material has a very strong effect on the overall results of the model. Exhibit 4
shows average time spent searching for misplaced items, as a function of
misplacement percentage. This plot shows that the remote search time actually
increases greater than linearly as the misplacement level rises. This is due to a
number of factors in the operation of the yard. As more and more material is
misplaced, yard personnel spend a greater amount of time having to search for
items. As a result, the volume of items in storage locations increases as material
is recovered more slowly. This increased volume further adds to the amount of
time workers spend in the search process. In addition, as search times increase,
storage locations fill up more often. Additional items will be misplaced as they

are put in alternate locations, again compounding the delivery problems.

Another factor that leads to the rapidly increasing search times, is the tendency
for searches to be abandoned and replacement parts improperly taken as
replacements. As search times increase, yard workers will eventually stop

searching for many parts. In these cases, they often simply use another similar

51

part that is stored in the yard. When this happens, the item that is improperly

taken is then missing and must be searched for when requested for delivery.

The same phenomena of compounding errors is apparent in Exhibit 5. This plot
shows the average delivery times for all items and misplaced items as a function
of misplacement percentage. Again the results of the model increase greater
than linearly as the misplacement increases, due the compounding nature of

errors in the process.

Exhibit 6 shows the same data as in Exhibit 3, but for the first RFID simulation,
which incorporates fixed gate scanners and hand-held scanners in the yard.
Exhibit 7 shows the results for the model runs with full RFID implementation:
fixed gate scanners, hand-held scanners in the yard, and fixed, tower-based

scanners for triangulation.

The results of the model show that improvements can be achieved in each area
of time expenditure; inventory, local searching, and remote searching. In
addition, the delivery time to the work site and the total amount of lost material
can be significantly reduced. The gains that are achievable depend on the level
of RFID technology that is implemented and on the original level of misplaced
material. The gains achievable by each level of technology insertion will be

examined.

52

Fixed Gate Scanners & Hand-Held Scanners:

Exhibit 8 shows the total improvements provided by the implementation of the
first level of RFID technology, as predicted by the simulation model. The
incorporation of fixed scanners at the gate and the use of hand-held scanners by
yard personnel to identify material reduces the total amount of time dedicated to
inventory and search operations. Data is presented for each type of material for

both the total 200-hour simulation and averaged for individual items.

The effect on the time spent on inventory is pronounced. Because the process is
now fully automated, the driver is no longer required to complete a manual
inventory as he enters the yard. After fixed scanners have been placed at the
gates, the driver must only slow down, so that the tags on the truck may be
scanned. The total time spent on inventory is reduced from 25 hours in the
baseline simulation to only 1.5 hours in the first RFID simulation. This equates to
a total reduction of 23.5 hours for this simulation, or approximately 0.02 hours per

item.

Much more significant, however, are the time reductions for area searches. The
times for local searching (searching the actual storage area for an item) is
reduced from approximately 210 hours for the baseline case to 40 hours for the
first RFID case. This reduction is due to the ability of yard personnel to quickly
identify material while searching storage areas. Insfead of manually reading

individual tags, a worker can now quickly search muitiple items until the correct

53

tag is identified. The result is that the time per item dedicated to searching is

reduced from 8.5 minutes to only 1.6 minutes.

Similarly, the time dedicated to remote searching can be similarly reduced. Yard
workers with hand-held scanners can more quickly scan areas to determine that
a desired item is not present and move on with the search. The total time
dedicated to remote searching is, of course, heavily dependent on the level of
material that is misplaced. The time expenditure is reduced from 38.2 hours to
15.2 hours for a 5% level of lost material and from 270.0 hours to 109.5 hours for

a 30% level of lost material.

The total manhour reductions for this simulation, provided by the fixed gate
scanners and hand-held scanners, is from 217 hours to 351 hours for the 5% and
30% cases, respectively. This equates to a reduction of between 0.44 and 0.58

hours for every item passing through the shipyard.

Fixed Gate Scanners, Hand-Held Scanners, and Fixed Towers:

Exhibit 9 shows the total improvements obtainable by full implementation of the
proposed RFID technology over the baseline case. In this case, along with the
changes made for the first RFID simulation, fixed, tower-based scanners have
been added to allow for triangulation of tag locations. In this simulation, yard
personnel can instantly determine the location of any piece of material by

querying its RFID tag from the fixed scanners. Locations are provided on

portable displays and the workers can proceed directly to the correct storage
area. No material is considered to be lost, in this case, since all items can be

quickly found, regardless of whether they are stored in the proper location.

No additional time savings are provided in the times dedicated to inventory or
local searching by the fixed RFID towers. These functions must still be

performed using the fixed gate and hand-held scanners.

Additional time savings are provided, however, in the area of remote search
times. By quickly locating lost material, remote searching is eliminated. Total
manhours for remote searching for the 5% case is reduced from 38.2 manhours
for the baseline case and 15.2 hours for the first RFID case, to 0 hours for full
implementation. For the 30% case, the manhours are reduced from 270.0 hours
for the baseline case and 109.5 hours for the first RFID case to 0 hours for the

full implementation.

The total manhours eliminated by the full implementation of RFID technology is
between 232.7 hours for the 5% case and 460.4 hours for the 30% case, over
the baseline. This represents an additional reduction over the first RFID case of

between 15.0 and 109.0 manhours, respectively.

55

Financial Calculations:

Exhibits 10 and 11 show the calculation of the financial benefits that can be
expected from the impiementation of RFID technology. Exhibit 10 converts the
total manhours saved in the material control simulation for each level of RFID
implementation to dollars saved per year in yard operation. Calculations are
presented for savings at each increment of material misplacement. Cost
calculations are performed assuming a 2000 hour man-year and an average
yearly cost to the shipyard for a worker of $70,000. It should be noted that these
cost reductions calculations include only savings attributable to direct reductions
in manhours dedicated to inventory and searching. Additional savings will be
present due to reduced delays on the waterfront and reduction in lost material.

These additional savings will be discussed later in this chapter.

The yearly cost savings resulting from the implementation of fixed gate scanners
and hand-held scanners ranges from $76,008 to $122,985, depending in the
material misplacement rate. The values for the full RFID implementation range
from $81,458 to $161,124 over the baseline. This equates to an additional
savings of between $5,450 and $38,139, attributable to the addition of the tower-

based scanners.

Exhibit 11 shows the calculations for the net present value (NPV) of the savings

from RFID implementation. The NPV is calculated based on an inflation rate of

4%, an internal rate of return for the company of 12%, over a period of 10 years.

56

The NPV value is significant to this analysis because it represents the maximum
amount that should be spent on system implementation in order to produce a net

financial benefit to the yard.

The total annual saving due to implementation of the first level of RFID
technology is between $497,283 and $804,631, for the 5% and 30% cases,
respectively. The savings over the baseline for the full implementations are
$532,940 for the 5% case and $1,054,156 for the 30% case. This equates to an

additional total savings of $35,651 and $249,525 for the tower-based scanners.

Material Misplacement Rate:

Resuits from the simulation exercise have been presented over a fairly wide
range of possible material misplacement rates. This was done because the
actual level of material misplacement in the yard is difficult to measure and can
vary substantially based on current conditions. However, in order to determine
what the actual economic benefits of RFID implementation are, an estimate
should be made as to what material misplacement rate the yard is likely to

experience in actual operation, over a long period of time.
As mentioned in Chapter 8, the total material misplacement rate is a function of

two separate rates; the rate of material misplaced due to full storage locations

and the rate of material misplaced due to driver error. In the simulation, the rate

57

of driver error was controlled as an input, while the rate of full locations was

determined by the software as a result of the simulation.

In running the simulation models, the 5% total material misplacement could be
achieved only by setting the driver error rate to 0%. It can be reasonably
assumed that in actual yard operation the driver error rate will be at least 5%
under normal conditions. This means that in only 1 out of 20 deliveries the
driver would make an error in either inventory, material identification, or material
delivery. A 5% driver error rate results in an overall misplacement rate of 10%.
This is the value that should be used for determining the minimum financial

benefits to the yard.

it is likely, however, that the total average misplacement rate will be somewhat
higher than this though. During times of heavy material flow, low worker
availability, or poor weather, the driver error rate is likely to climb. A realistic
estimate of the average material misplacement rate, over the long-term, is 15% -

20%.

Material Delivery Time:

There are other improvements in material control operations, aside from
reduction in manhours, that result from the implementation of RFID technology.
Another important factor is the reduction in the time that it takes for material to be

delivered to the worksite. Not only does increased delivery time mean that more

58

time is being spent by yard personnel in the search for missing items, but more
importantly, it means that waterfront personnel are being kept waiting and work
on the ship is being delayed. As yard personnel search for lost material, yard
workers are often unable to proceed with construction. The result can be that
many workers are kept idle, future construction schedules can be disrupted, and
final delivery can be delayed. These are all very expensive prospects to the

yard.

While an actual financial analysis of material delays was not performed as part of
this report, by examining the results from the simulation model, some obvious
improvements in this area can be observed. In the baseline case the average
delivery time for all material ranged from 16.50 minutes for the 5% misplacement
case to 40.34 for the 30% case. The numbers were much worse for material that
had been misplaced. The average delivery time for lost items was 40.6 minutes

for the 5% case and 64.0 minutes for the 30%.

in many cases the delivery times for some items are much longer than this.
Exhibit 12 shows the distribution of delivery times for misplaced items in the 15%
misplacement case. it can be seen that delivery times range up to 220 minutes
and that out of the 150 misplaced, 25, or 16%, took over 100 minutes to be

delivered.

59

The implementation of gate scanners and hand-held scanners alone has a major
impact on delivery time. Because Iécal searches can now be conducted faster,
and storage area volumes are lower, delivery times are improved. The average
delivery time for all items is reduced to 11.2 minutes for the 5% case and 26.9
minutes for the 30% case, a reduction of 5.3 and 13.4 minutes respectively. For
misplaced items the delivery time is reduced to 15.95 minutes for the 5% case
and 42.5 minutes for the 30% case. This equates to a reduction of between 21.5

and 24.6 minutes over the baseline.

The fixed tower scanners provide further improvement in delivery time. By
eliminating lost material the delivery time is reduced to 9.0 minutes for all items.
This is a reduction of between 7.5 and 31.3 minutes over the baseline case and

between 2.2 and 27.9 minutes over the first RFID case.

Lost Material:

An additional area in which RFID can contribute to the reduction of shipyard
costs is in decreasing the amount of material that is ultimately lost in the yard.
Inevitably, when items are misplaced in the yard, some material will never be
recovered. As search times become long, yard personnel are likely to either use
a replacement part that is accessible or will reorder the item for future delivery.
in both cases, the shipyard must pay for additional material and will experience

further delays due to unavailable material.

60

The likelihood of an item becoming permanently lost is related to the amount of
time that must be spent in the search process. As search times extend beyond
an hour or two hours, it is likely that workers will abandon the search and use a

substitute item.

Exhibit 13 shows the average number of items that require searches longer than
one, two, and three hours for each increment of material misplacement. At a
15% material misplacement rate, 74 out of the 225 lost items will take longer than
1 hour to recover, 26 items will take longer than 2 hours, and 5 will take longer

than three hours.

Although the exact number of items that will be permanently lost is difficult to
determine, it is obvious from this data that many of these long-period searches
would be abandoned. With the high value of material that passes through the
yard, the costs could be significant. With the full implementation of RFID,
searches take place much more quickly and lost material can virtually be

eliminated.

The total cost savings attributable to both reduction in waiting by waterfront
personnel and elimination of lost material is difficult to determine. However, it is
likely to be at least as great as the savings directly attributable to reduced
manhours in the material control process. These additional potential savings

should be considered when determining the overall economic benefits of RFID.

61

Chapter 10: Other Possible RFID Shipyard Implementation

There are several other options for using RFID to improve shipyard material
control processes that were not included in the initial BIW plan or in the process
simulation. These options were not included either because the type of tag used
at BIW would not support the operation or because the implementation would
require too great a modification to the current system. These functions, however,

do still hold promise for future use.

In a system where RFID tags have the ability to store actual data, rather than just
an ID number, the system could be used improve operation of the JIT material
delivery system and the efficiency of material handling in the yard. The tags
themselves could be programmed with the required delivery time and location of
associated items. The system could then be configured so that tags could
actually call yard workers for pick-up when items needed to be delivered in the
yard. This would eliminate the need for controllers to constantly monitor delivery

times and dispatch workers to collect material.

Data could also be contained on tags concerning the handling, assembly and
testing of material and equipment. Currently, data regarding these subjects is
stored in multiple databases in the yard. In order to examine testing data, yard
personnel must find the ID number of a piece of equipment, must cross reference

the testing data, and then must recall that data from storage. Errors can be

62

made in the recording and recovery of data that lead to mistakes in testing or in
improper installation. By recording data directly on tags, it would be instantly
available to yard personnel when needed, without problems in misidentification of

material.

Handling instructions could also be coded directly onto RFID tags. Special
instructions regarding required moving procedures or environmental conditions,
which might be overlooked, can be programmed on a tag. When queried, the tag
would then give personnel all the information required for proper handling and

storage procedures.

Similarly, it could be possible to increase construction efficiency in a shipyard if
other pertinent construction data was stored directly on RFID tags. Assembly
unit identification, related drawing numbers, or welding requirements could be
stored on tags. This data could then be accessed by workers without having to
~ access central databases or drawings. This could save man-hours and wasted

time in the construction process.

it is also possible that some condition monitoring via RFID could be used in the
shipyard on a small scale to improve material handling. Certain, sensitive pieces
of machinery and equipment require strict environmental controls for storage.
Monitoring devices, connected to RFID could check conditions to ensure that

requirements are being met. If conditions, such as temperature or humidity,

63

exceeded allowable ranges, the tag could be programmed to transmit a warning

to the central database.

While all of these functionalities are possible using existing RFID technology, it
would be necessary to analyze the potential gains to the shipyard before
developing an implementation plan. As with the proposed system at BIW, the
operations of the modified processes would have to be compared with the

existing processes to determine savings in man-hours and material.

Chapter 11: Synergy with Shipboard Activities

The use of RFID technology in the shipyard could have other significant benefits
to the U.S. Navy, aside from just reduction in acquisition cost. There is a
potential for synergy in tag use between activities in the shipyard and activities
performed during the life cycle of the ship that could further reduce the overall

cost of ownership.

RFID has the potential to dramatically improve configuration control on-board
Navy ships. If all equipment was tagged at the shipyard during construction, with
tags that could be read by both shipyard and Navy personnel, the system could
be used to identify material as it was brought on and taken off the ship, creating a
running inventory of equipment. More importantly, the tags could be queried to

create an instant inventory of the present equipment in a particular space.
Often, when repair or refit work is performed, extensive surveys of equipment
and systems must first take place to identify the current condition of the ship. By

using RFID tags this process could be greatly streamlined.

Important data concerning equipment performance and maintenance could also
be stored on RFID tags attached directly to the machinery. This could begin with
results from shipyard testing and could include maintenance instructions and
schedules, spare part identiﬁcétion, and repair history. Presently, this type of

data is stored in a variety of formats and locations, which are often difficult to find

65

and access, if it is stored at all. If this information was stored locally and
accurately, the crew would have a much easier job accessing required data and
would be more likely to perform maintenance and repairs in a correct and timely

fashion.

RFID could also be beneficial on-board ship in improving the control of spares
and stores. Again, if the shipyard was to tag and scan items such as spares and
tools at the initial fit out, and the Navy were to continue to use the same system
during the replenishment and use of these items, then a running inventory of
material could be maintained. Spot inventories could be performed, using
portable scanners in storage spaces and the tags could be used to quickly
search for material on-board ship. It would also be possible to connect the

inventory database to the ordering system to automate material ordering.

The potential for use of RFID on-board ship is extensive. With the vast quantity
of equipment and the large numbers of tasks that must be performed, there is the
need for automated identification. It is important, however, that shipboard RFID
activities be coordinated with those that take-place in the shipyard. The greatest
potential gains occur when the technology is used throughout the life cycle of the
ship. The Navy must ensure that similar technology and processes are used by
all the parties involved in conjunction with a coordinated plan for shipyard and

shipboard use.

66

Chapter 12: Conclusions

The simulation model has shown that the use of RFID technology can provide
improvements to shipyard operations and reductions in construction cost. Time
spent on material control in the processes of inventory, item recovery, and
searching for lost items can all be substantially reduced. In addition, delays in
construction due to delinquent material arrival can be reduced and the loss of

high-value material can be eliminated.

The financial analysis presented in Chapter 9 provides some indication of the
potential benefits that could be provided to shipyards by the incorporation of
RFID technology. If we assume an average material misplacement rate of 15%,
the total NPV of the cost reductions associated with the implementation of gate
scanners and hand held scanners is $604,888. This value assumes a period of
10 years and a discount rate of 12%. The NPV of cost reductions for the full
implementation of RFID is $716,091, an additional savings of $112,073.
Additional cost reductions will be derived from the RFID implementation with the

reduction of delivery times and the elimination of lost material.

The implementation costs for the first level of RFID implementation, gate
scanners and hand-held scanners is likely to be fairly reasonable. The scanners
themselves are not the major expenditure, but rather the acquisition and
instaliation of the tags themselves is likely to drive the total cost. Each pallet and

storage box used in the yard must have a tag permanently affixed. In addition, a

67

large pool of tags, to be used to identify large, individually stored pieces of
equipment, must also be provided. However, since no major infrastructure

changes are required, the total cost could be quite reasonable.

The addition of the fixed tower scanners, however, could be a significant cost.
Depending of the achievable range of the tags, several towers could be required
to cover all possible storage areas. While the cost for the scanners themselves
would not be great, the cost of constructing the towers, or finding alternate

scanner locations, could be large.

Given the relative benefits and costs of each level of RFID implementation, it is
recommended that BIW proceed with the financial analysis of the first level of
RFID implementation. The majority of the time reductions can be obtained with
the simpler installation, and the total acquisition costs should be much less. A
plan for implementation should be developed and the total acquisition costs

determined.

If the total implementation cost of the gate scanners and hand-held scanners is
found to be less than the $605,000 cost savings NVP, then BIW should proceed
with the installation of the equipment. If the implementation cost is somewhat
greater than the $605,000 direct savings, then additional analysis should be

conducted to examine the reduced costs due to reduced waterfront delays and

68

lost material. These factors could make the overall project beneficial, even if the

direct manhour reductions do not justify the capital outiay.

If the project proceeds, careful monitoring of manhour reductions and material
misplacements, using the new system, should be conducted to verify the
benefits. If the technology is found to be effective, then further analysis of the

fixed, towed-based RFID scanners should then be conducted.

In addition, if the first implementation of RFID technology is found to be effective,
further research should then take place concerning other applications of RFID

technology, both in the shipyard and in conjunction with on-board activities.

Other large shipyards, both naval and commercial, could achieve benefits similar
to those predicted for BIW, with the implementation of automatic identification
technology. The analysis in this report shows that complex material control
procedures can by greatly improved using RFID or similar technology. These
improvements should be pursued by all major shipyards in an effort to modernize

procedures and reduce acquisition costs.

69

References:
Dunlap, Gary, “Applied Information Technology For Ship Design, Production and
Lifecycle Support: A Total Systems Approach”, Master’'s Thesis, MIT, 1999.

Bateman, Bowden, Gogg, Harrell, and Mott, System Improvement Using
Simulation, 5" Ed., ProModel Corporation, Orem, Utah, 1997.

ProModel User’s Guide, ProModel Corporation, Orem, Utah, 1999,
ProModel Reference Guide, ProModel Corporation, Orem, Utah, 1999.
BIW Drawing No. 7354, “BIW Site Map’, pp. 211, 07-01-98.

BIW Drawing No. 9200, “East Brunswick Manufacturing Facility Site Map”,
05-28-94.

BIW Drawing No. 2064, “Harding Plant Site Map”, pp. 202, 06-11-83.

70

Exhibits

71

¢l

%

5 Y EE AN

Exhibit 1: Model Layout

Exhibit 2: Variables and Input Parameters
Entries into System:

Ground Storage ltems:
1000 total entries into system
Units per truckioad = (8,1.5) = 8 units per truck with a standard deviation of 1.5 units
122 total truckioads
Period between trucks = (80,15) = 80 minutes with a standard deviation of 15 minutes

Flat-Bed Storage items:
500 total entries into system
Units per flat-bed = (10,2) = 10 units per flat-bed with a standard deviation of 2 units
50 total flat-bed trailers
Period between trucks = (100,20) = 100 minutes with a standard deviation of 20 minutes

Time to Perform Inventory at Gate:

Baseline:
Inventory Time (min) = (2.0, 0.5) + N * (1.0, 0.25)

Fixed Time =2.0 minutes with a standard deviation of 0.5 minutes.
Variable Time = 1.0 minute per item on truck with a standard deviation of 0.25 minutes
N = Number of items on truck

RFID:
Search Time (min) = (0.50, 0.10)

Fixed Time = 0.5 minutes with a standard deviation of 0.1 minutes

Time to Search a Storage Area:

Baseline:
Search Time (min) = (3.0, 1.0) + N * (1.0, 0.5)

Fixed Time =3.0 minutes with a standard deviation of 1.0 minute.
Variable Time = 1.0 minute per item in location with a standard deviation of 0.5 minutes
N = Number of items currently in storage location

RFID:
Search Time (min) = (0.50, 0.10) + N * (0.20, 0.05)

Fixed Time = 0.5 minutes with a standard deviation of 0.1 minutes

Variable Time = 0.2 minute per item in location with a standard deviation of 0.05 minutes
N = Number of items currently in storage location

73

vL

Ground Storage Units:

Flat-Bed Storage Units:

Total Units:

Exhibit 3: Model Results

Baseline
Percent_gge Misplaced ltems

5% 0% 5% 20% 25% 30%

Total Time - Inventory min 995,75 1002.99 90843 1006.28 996.29 994.70

Total Time - Local Searching min 8604.64] 8560.52| 8581.77{ 8552.75] 8612.62] 8611.51

Total Time - Remote Searching min 2157.79] 4322.79] 6168.14] 8136.26] 10661.13] 12688.73

Time per Unit - Inventory min 1.00 1.00 1.00 1.01 1.00 0.99
Time per Unit - Local Search min 8.69 8.56 8.58 8.55 8.61 8.61

Time per Unit - Remote Search min 2.16 4.32 6.17 8.04 10.66 12.69

Time per Misplaced Unit - Remote Search min 43.16 43.23 4112 40.68 42.64 42.30

Units Misplaced 50 100 150 200 250 300

Avg. Time to Delivery - All min 18.84 23.65 29.14 35.85 43.19 50.04

Avg. Time to Delivery - Misplaced Units min 55.03 57.64 62.14 68.08 72.77 77.34

Percentage Misplaced ltems
5% 10% 15% 20% 25% 30%

Total Time - Inventory min 499.01 496.00 501.12 493.61 498.67 498.02

Total Time - Local Searching min 4013.46] 3906.35{ 389227} 3972.34; 3818.11 3832.51

Total Time - Remote Searching min 133.91 464,07 1174701 1873.19] 2482.36] 3526.11

[Time per Unit - Inventory min 1.00 0.99 1.00 0.89 1.00 1.00
Time per Unit - Local Search min 8.03 7.81 7.78 7.94 7.84 7.67

Time per Unit - Remote Search min 0.27 0.93 2.35 3.75 4.96 7.05

Time per Misplaced Unit - Remote Search min 5.36 9.28 15.66 18.73 19.86 23.51

Units Misplaced 25 50 75 100 125 150

Avg. Time to Delivery - All min 11.83 12.34 14,79 15.54 16.04 20.92

Avg. Time to Delivery - Misptaced Units min 11.67 16.59 23.74 26.17 28.15 37.26

___Percentage Misplaced ltems
- 5% 10% 15% 20% 25% 30%

[Total Time - Inventory min 1494.77] 1498.99] 1408.55 1499.90 1494.95 1482.71
Total Time - Local Searching min | 12708.10] 12464.87] 12474.04] 12525.09] 12530.73] 12444.02

Total Time - Remote Searching min 2291.70| 4786.86] 7342.84] 10009.451 13143.49] 16214.84

[Time per Unit - Inventory min 1.00 1.00 1.00 1.00 1.00 1.00
Time per Unit - Local Search min 8.47 8.31 8.32 8.35 8.35 8.30

Time per Unit - Remote Search min 1.53 3.19 4.90 6.67 8.76 10.81

Time per Misplaced Unit - Remote Search min 30.56 31.91 32.63 33.36 35.056 36.03

Units Misplaced 75 150 225 300 375 450

Avg. Time to Delivery - All min 16.50 19.88 24.36 29.08 34.14 40.34
Avg. Time to Delivery - Misplaced Units min 40.57 43.95 49.34 54.11 57.90 63.98

Note: Values for average inventory times and local search times are essentially steady at all levels of material misplacement. Variations occur
in individual data sets due to the standard deviations in process times used in the simutation.

SL

Average Remote Search Time (min)

18000.00

Exhibit 4 - Search Times for Misplaced Items

16000.00

14000.00 -

12000.00 +

10000.00 +—

8000.00 +——=

6000.00 +———

4000.00 +

2000.00

5%

10% 15% 20% 25% 30%
Material Misplacement Rate

9.

Average Delivery Period (min)

Exhibit 5 - Material Delivery Times

45.00

40.00 +

35.00

30.00 A

25.00

20.00

15.00

10.00

5.00

15% 20% 25% 30%
Material Misplacement Rate

L

Ground Storage Units:

Flat-Bed Storage Units:

Total Units:

Exhibit 6: Model Results
Fixed Gate Scanners + Hand-held Scanners

Parcentage Misplaced ltems
5% T0% T 2 2 30%
Tota] Time - Inventory min 6174 €219] 61601 6239 N BT87
Total Time - Local Searching min 1678.27 1652.19 16.§_8.41 1650.88 1662.44| 166222
Total Time - Remote Searching min 863.12 1685.89] 2498.10 319040 4243.13] 5100.87
ime per Unit - Inventory min 0.0 0.06 D06 0.06 506 0.06]
Time per Uni - Local Search min 168 185 56 165 166 1:66]
Time per Unit - Remote Search min 0.88 1.89 2.50 3.18 4.24 510
Time per Misplaced Unit - Remote Search min 17.26 16.86 16.65 15.85 16.97 17.00
Dnits Misplaced 0 100 750 200 250 300]
Avg. Time to Delivery - All min 12.20 15,31 18.86 23.21 27 .96 3240
Avg. Time to Delivery - Misplaced Units min 20.85 24.84 30.29 37.59 4422 51.00
Percentage Misplaced ltems
5% 0% 7 5% %]
Total 1ime - Inventory min "29.04 ~25.76 30.07 29,62 2982 20,08
Total Time - Local Searching min 782,62 761.54 758.93 774.61 764.03 747,34
Total Time - Remots Searching min 49,00 175.68 459.61 748.47 996.09 1466.50
Time per Unit - inventory min 0.08 0. 0.06 0.08 0.06 0.06
Time per Unit - Local Search min 1.57 1.52 1.52 1.55 1.63 1,49
Time per Unit - Remote Search min 0.10 0.35 0.92 1.50 1.99 2.93
Time per Mispiaced Unit - Remote Search min 1.96 3.51 8.13 7.48 7.97 9.78
Units Misplaced 25 50 100 125 150)
[Avg. Time to Delivery - All min 9.05 8.44 11,32 11.89 12,27 18.00
Avg. Time to Delivery - Migplaced Units min 6.15 9.05 14,26 15.85 17.99 25.45]
) Percentage Misplaced ftems
[5% 0% 15'2"% ~T 0% 25% 30%
Total Time - inventory min 91,68 5185 91.97 52.01 5169 91.55
Total Time - Local Searching min 2460.88 241373 2417 .40 242549 2426.47 2409.58
Total Time - Remote Searching min 912.11 1861.57 2867.71 3938.87 5239.22 6567.36
Tme per Unil - inventory min 0.06 0.06 008 0.06 0.06 3.06]
Time per Unit - Local Search min 1.64 1,61 1.61 1,62 1.82 1.61
Time per Unif - Remote Search min 061 124 197 263 3.49 438
Time per Misplaced Unit - Remote Search min 12.16 12.41 13.18 13,13 13.97 14.58
Units Misplaced 78 150 228 300 375 450
Avg. Time to Delivery - All min 11,15 13.38 16.35 19.43 2273 26,93
Avg. Time to Delivery - Misplaced Unils min 15.95 19.58 2485 30.38 35.48 42.48

Note; Values for averags Inventory times and local search times are essentially steady at all levels of material misplacement. Variations occur
In Individual data sets due to the standard deviations in process times used in the simutation.

8.

Exhibit 7: Model Results
Fixed Gate Scanners + Hand-held Scanners + Fixed Towers

Ground Storage Units:
Total Time - inventory min 61.57
Total Time - Local Searching min 1660.99
Total Time - Remote Searching min 0.00
Time per Unit - Inventory min 0.06
Time per Unit - Local Search min 1.66
Time per Unit - Remaote Search min 0.00
Time per Misplaced Unit - Remote Search min nia
Units Misplaced [¥)
Avg. Time to Delivery - All min 8.71
Avg. Time to Delivery - Misplaced Units min n/a

Flat-Bed Storage Units:
Total Time - Inventory min 29.54
Total Time - Local Searching min 783.28
Total Time - Remote Searching min 0.00
Time per Unit - Inventory min 0.08
Time per Unit - Local Search min 1.57
Time per Unit - Remote Search min 0.00
Time per Misplaced Unit - Remote Search min n/a
Units Misplaced 0
Avg. Time to Delivery - All min 7.85
Avg. Time to Delivery - Misplaced Units min n/a

Total Units:

otal Time - inventory min 86.13

Total Time - Local Searching min 2444.27
Total Time - Remote Searching min 0.00
Time per Unit - inventory min 0.06
Time per Unit - Local Search min 1.63
Time per Unit - Remota Search min Q.00
Time per Misplaced Unit - Remote Search min nia
Units Misplaced 0
Avg. Time to Delivery - All min 8.02
Avg. Time to Delivery - Misplaced Units min nla

6L

Exhibit 8: Manhour Reductions
Baseline to Fixed Gate Scanners + Hand-held Scanners

Ground Storage Units: Percentage MisEIaced tems
5% __ 1 10% 15% 20% 25% 30%
[otal Time - Inventory hr 15571 . 1568 15.61 15.73 15.58, 15,55
Total Time - Local Searching hr 118.94 115.12 115.39 115.03 115.84 116.82
Total Time - Remote Searching hr 21.58 43,95 681,17 82.43 106.97 126.46
Total ht 154.08 174.75 192.17 213.18 238.38 257.84
[Time per Unit - inventory hr 0.02 0.02 0.02 0.02 0.02 0.02
Time per Unit - Local Search he 0.12 0.12 0.12 0.12 0.12 0.12
Time per Unit - Remote Search hr 0.02 0.04 0.08 0.08 0.11 0.13
Time per Misplaced Unit - Remote Search hr 0.43 0.44 0.41 0.41 0.43 042
Total hr 0.57 0.60 0.58 0.61 0.65 0.66}
Flat-Bed Storage Units: Percentage Misplaced items
5% 10% 15% 20% 25% 30%
Total Time - Inventory hr 7.82 7.77 7.85 7.79 7.81 7.80
Total Time - Local Searching he 53.85 52.40 52.22 53.30 52.57 51.42
Total Time - Remote Searching hr 1.42 4.81 11.92 18.75 24,77 34,33/
Total hr 63.08 64.97 71.99 79.77 85.15 93,55
Time per Unit - Inventory hr 0.02 0.02 0.02 0.02 0.02 0.02
Time per Unit - Local Search hr 0.11 0.10 0.10 0.11 0.11 0.10
Time per Unit - Remote Search hr 0.00 0.01 0.02 0.04 0.05 0.07]
Time per Mispiaced Unit - Remote Search hr 0.08 0.10 0.16 0.19 0.20 0.23
Total hr 0.17 0.24 0.28 0.33 0.35 0.40/
Total Units: Percentage Misplaced items
5% 10% 15% 20% 25% 30% |
Tolal Time - Inventory hr 23.38 23.45 23.46 23.45 23.39 23.35]
Total Time - Local Searching hr 170.78 167.52 187.61 168.33 168.40 167.24
Total Time - Remote Searching hr 22.99 4875 73.09 101.18 131.74 180.79
Total hr 217.16 238.72 264.18 292.97 323.53 351.38§
Time per Unit - inventory hr 0,02 0.02 0.02 0.02 0.02 0.02)
Time per Unit - Local Search hr 0.11 6.11 0.11 0.11 0.11 0.11
Time per Unit - Remote Search hr 0.02 0.03 0.05 0.07 0.09 0.11
Time per Misptaced Unit - Remote Search hr 0.31 0.33 0.32 0.34 0.35 0.38
Total hr 0.44 0.47 0.49 0.52 0.55 0.58)

Note: Values for averagé inventory times and local search times are essentially steady at all levels of material misplacement. Variations occur
in individual data sets due to the standard deviations in process times used in the simulation.

08

Exhibit 9: Manhour Reductions

Baseline to Fixed Gate Scanners + Hand-held Scanners + Fixed Towers

Ground Storage Units: : Percentage Misplaced tems
_ 5% 10% 5% 20% 25% 30%
Total Time - Inventory hr 15.57 15.69 15.61 15.75 15.58 15.55
Total Time - Local Searching hr 117.23 114.98 115.35 114.86 115.86 115.84
[Total Time - Remole Searching hr 35.96 72.05 102.80 135.60 177.60 211.48
Total nr 168.76 202.71 233.76 266.21 309.12 342.87]
[Time per Unit - Inventory hr 0.02 0.02 0.02 0.02 0.02 0.02
Time per Unit - Local Search hr 0.12 0.11 0.12 0.11 0.12 0.12
Time per Unit - Remote Search hr 0.04 0.07 0.10 0.13 0.18 0.21
Total hr 0.17 0.20 0.23 0.26 0.31 0.34
Flat-Bed Storage Units: Percentage Misplaced Items
5% 0% 5% 20% 25%_ 0% |
Total Time - Inventory hr 7.82 777 7.86 7.73 7.82 7.61
Total Time - Local Searching hr 53.84 52.03 51,82 53.15 52.25 50.82
Total Time - Remote Searching hr 2.23 7.73 19.58 31.22 41.37 58.77
Total hr 63.89 67.54 79.25 92.11 101.44 117.40
Time per Unit - Invertory hr 0.02 0.02 0.02 0.02 0,02 0.02
Time per Unit - Local Gearch hr 0.11 0.10 0.10 0.11 0.10 0.10
Time per Unit - Remote Search hr 0.00 0.02 0.04 0.06 0.08 0.12
Total hr 0.13 0.14 0.18 0.18 0.20 0.23]
Total Units: _ Percentage Misplaced Items _
_ 5% 10% 5% | 20% 25% 30%
Total Time - Inventory nr 23.48 23.55 23.56 23.56 23.48 73.44
Tolal Time - Local Searching hr 171.06 167.01 167.16 168.01 168.11 166.66
Total Time - Remote Searching hr 38.20 79.78 122.38 166.82 219.06 270.25
Total hr 232.74 270.34 313.10 358.40 410.65 460.35
Time per Unit - Inventory hr 0.02 0.02 0.02 0.02 0.02 0.02
Time per Unit - Local Search hr 0.11 0.11 0.11 0.11 0.11 0.11
Time per Unit - Remole Search hr 0.03 .05 0.08 0.1 0.15 0.18
Total hr 0.18 0.18 0.21 0.24 0.27 0.31

Note: Values for average inventory times and local search times are essentially steady at all levels of material misplacement. Variations occur
in individual data sets due to the standard deviations in process times used in the simulation.

I8

Exhibit 10: Cost Reductions

Manhours Reduced for Simulation Period:

Percentage Misplaced ltems

5% 10% 5% 20% 25% 30%
Fixed Gate Scanners + Hand-held Scanners hr 217.16 230.72 264.16 292.97 323.53 351.38
erd Gate Scanners + Hand-held Scanners + Fixed 1owers hr 232.74| 270.34 313.10 358.40 410.65 460.35
Manhours Reduced per Year:
"Percentage Misplaced ltems
5% 10% 15% 20% 25% 30%
F;boed Gate Scanners + Hand-held Scanners hr 2171.65] 2307.25] 2641.66] 2929.68] 325.40| 4513.85
Fixed Galte scanners + Hand-held Scanners + Fixed TOWers hr 2327.36] 2703.39] _ 3131.00] 3584.01 4106.46] 4603.53
Man-Years Reduced per Year:
5ercentage Misplaced ltems
5% 10% 15% 20% 25% 30%
Fixed Gate Scanners + Hand-held Scanners man-y 1.09 1.20 1.32 1.46 1.62 7.76|
Il;ixed Gate Scanners + Hand-heid Scanners + Fixed Towers man-y 1.16 1.35 1.57 179 2.05 2.30
Cost Reduction per Year:
Percentage Misplaced ltems
5% 10% 15% 20% 25% 30%
Fixed Gate Scanners + Hand-held Scanners $ $76,008 $83,904 $92,455 $135,539 $113,236 $122,985]
|Fixed Gate Scanners + Hand-held Scanners + Fixed 10wers $ $81,458 $94,618] $109,585] $125,440 $143,726] $161,124

* - Assumes $70,000/man-year cost to shipyard

Notes:

Calculations do not include cost reductions due to elimination of delays in material arrival at work area
Calculations do not include cost reductions due to elimination of lost material

28

Exhibit 11: Net Present Values of Cost Reductions

Current Cost Reduction per Year:

Percentage Misplaced ltems

5% 10% 15% 20% 25% 30%

Fixed Gate Scanners + Hand-heid Scanners $ $76.008] $83.004] $92,455| $102,589] $113,236] $122,985

Fixed Gate Scanners + Hand-held Scanners + Fixed 1owers $ $81458] $94.618] $100,585| $125,440] $143,726] $161,124

NPV of Cost Reductions:
Percentage Misplaced ltems
5% 0% T5% 20% 25% 30%

Fixed Gate Scanners + Hand-held Scanners § | $407.283| 5548,043| $604.888] $670,863] $740,848] $804,631
Fixed Gate Scanners + Hand-held Scanners + Fixed] owers 51 5532040 $610.050] $716.061] $820,693] $940,329] $1,054,156]

Inflation = 4%
Interna! Rate of Return = 12%
Period of 10 Years

Notes:

Calculations do not include cost reductions due to elimination of delays in materiat arrival at work area
Calculations do not include cost reductions due to elimination of lost material

€8

of Items Delivered

Exhibit 12 - Material Delivery Times

T

50 100 150 200
Delivery Time (min)

250

¥8

Exhibit 13

Long Material Search Periods

Material Misplacement Rate

5% 10% 5% 20% 25% 30%
Recoveries longer than 1 hour 32 51 74 107 167 191
Recoveries longer than 2 hours 9 15 26 32 85 83
Recoveries longer than 3 hours 0 2 5 6 15 26
[Total Misplaced ltems 75] 150] 225] 300 375] 450]

Appendix 1:

Simulation Model Logic

Time Units: Minutes
Distance Units: Feet

o Locations

Name Cap Units Stats Rules Cost

— e

Arrival 10001 Time Series Oldest, ,
incoming 100 1 Time Series Oldest, ,
Hold 20 1 Time Series Oldest, ,

Pickup 20 1 Time Series Oldest, ,
Up1 50 1 Time Series Oldest, ,
Up2 50 1 Time Series Oldest, ,
Up3 50 1 Time Series Oldest, ,
Ups 50 1 Time Series Oldest,
Ups 50 1 Time Series Oldest, ,
Upb 50 1 Time Series Oldest, ,
Up?7 50 1 Time Series Oldest, ,
Up8 50 1 Time Series Oldest, ,
UpR 80 1 Time Series Oldest, ,
Up10 50 1 Time Series Oldest, ,
Up1t 50 1 Time Series Oldest, ,
Upi2 50 1 Time Series Oldest, ,
Upt3 S50 1 Time Series Oldest, ,
Up1i4 S0 1 Time Series Oidest, ,
Upt5 50 1 Time Series Oldest, ,
Up16 50 1 Time Series Oldest, ,
Up1?7 50 1 Time Series Oldest, ,
Up18 50 1 Time Series Oldest, ,
Uptg 50 1 Time Series Oidest, ,
Up20 50 1 Time Series Okdest, ,
Down1 100 1 Time Series Oldest, ,
Down2 100 1 Time Series Oldest, ,
Down3 100 1 Time Series Oldest, ,
Downd 100 1 Time Series Oldest, ,
Down5 100 1 Time Series Oldest, ,
Down8 100 1 Time Series Oldest, ,
Down7 100 1 Time Series Oldest, ,
Down8 100 1 Time Series Oldest, ,
Dowm8 100 1 Time Series Oldest, ,
Down10 100 1 Time Series Oldest, ,
Down11 100 1 Time Series Oidest, ,
Down12 100 1 Time Series Oldest, ,
Down13 100 1 Time Series Oldest, ,
Downi4 100 1 Time Series Oldest, ,
Dowmn15 100 1 Time Series Oldest, ,
Down16 100 1 Time Series Oldest, ,
Down17 100 1 Time Series Oldest, ,
Downi18 100 1 Time Series Oldest,
Downt9 100 1 Time Series Oldest, ,
Down20 100 1 Time Series Oldest, ,
Outgoing 100 1 Time Series Okdest, ,

ArrivalX 400 1 Time Series Oldest, ,
incomingX 100 1 Time Series Oldest, ,

UptX 50 1 Time Series Oldest, ,
Up2X 50 1 Time Series Oldest, ,
Up3X 50 1 Time Series Oldest, ,
UpdX 50 1 Time Series Oldest, ,
UpSX 50 1 Time Series Oldest, ,
UpBX 50 1 Time Series Oldest, ,
Up7X 50 1 Time Series Oldest, ,
Up8X 50 1 Time Series Oldest,,
UpgX 50 1 Time Series Oldest, ,
Up10X 50 1 Time Series Oidest, ,
Up11X 50 1 Time Series Okdest, ,
Up12X 50 1 Time Series Okdest, ,
Up13X 50 1 Time Series Oldest, ,
Up14X 50 1 Time Series Oldest, ,
UptsX 50 1 Time Series Oldest, ,
Up18X 50 1 Time Series Oldest, ,
DowniX 100 1 Time Series Oldest, ,
Down2X 100 1 Time Series Oldest, ,
Down3X 100 1 Time Series Oldest, ,

DowndX 100 1 Time Series Oldest, ,
DownSX 100 1 Time Series Oldest, ,
Down8X 100 1 Time Series Oldest, ,
Down7X 100 1 Time Series Oldest, ,
DownBX 100 1 Time Series Oidest, ,
DowngX 100 1 Time Series Oldest, ,
Down10X 100 1 Time Series Oldest, ,
Downi1X 100 1 Time Series Oldest, ,
Down12X 100 1 Time Series Oldest, ,
Down13X 100 1 Time Series Oldest, ,
Down14X 100 1 Time Series Oldest, ,
Down15X 100 1 Time Series Oldest, ,
Down18X 100 1 Time Series Oldest, ,
GroupiX 100 1 Time Series Oldest, ,
Group2X 100 1 Time Series Oldest, ,
Group3X 100 1 Time Series Oldest, ,
GroupdX 100 1 Time Series Oldest, ,
GroupS5X 100 1 Time Series Oldest, ,
GroupBX 100 1 Time Series Oldest, ,
Group7X 100 1 Time Series Oldest, ,
Group8X 100 1 Time Series Oldest, ,
Group9X 100 1 Time Series Oldest, ,
Group10X 100 1 Time Series Oldest, ,
Group11X 100 1 Time Series Oldest, ,
Group12X 100 1 Time Series Oldest, ,
Group13X 100 1 Time Series Oldest, ,
Group14X 100 1 Time Series Oldest, ,
Group15X 100 1 Time Series Oldest, ,
Group16X 100 1 Time Series Oldest, ,

* Entities *

Name Speed (fpm) Stats Cost

Box_Paliet 880 Time Series
Positive 880 Time Series
Negative 880 Time Series
Truckload 880 Time Series
Box_PalietX 880 Time Series
PositiveX 880 Time Series
NegativeX 880 Time Sernes
TruckicadX 880 Tirne Series
Truck 880 Time Sevies

Path Networks *
Name Type T/S From To Bl Dist/Time Speed Factor
Net1 Passing Speed &DistanceNt N2 Bi 200 1
N2 N3 Bi 200

N3 N4 Bi 35
N4 N5 Bi 75
N5 N6 Bi 75
N4 N7 Bi 75
N7 N8 Bi 75
N8 N9 Bi 50

[QI QY
IR N - -

N7 N0 Bi 5
NS N11 Bi 50
N6 N12 B 50
N3 Ni13 Bi 450
Ni4 Ni5 Bi 50
Ni14 Ni16 Bi 200 1
N17 Ni8 Bi 300 1
N1§ N19 Bi 50 1
Ni17 N20 Bi 50 1
N14 N2t Bi 200 1
N21 N17 Bi 450 1
N21 N2 Bi 250 1
N22 N23 Bi 50 1
N22 N24 Bi 750 1

N24
N25
N24

N26
N29
N30
N31

N33
N34
N35
N35
N34
N33
N32
N31
N30
N29
N42
N13

N47

N49
N50
N51
N52
N52

N57

N57

N81

N72
N73
N74
N75
N76
N26
N85

N85
N41

N39
N38

N25

N27
N28
N29
N30
N31
N32
N33
N34
N35
N14
N13
N36
N37
N38
N39
N40
N41
N43

N51

N57

N714
N73
N74
N75
N76

N78
N79

N8t
N82
N42

N81
N82

N42
N51
NSO
N4g

N47

jecgeRugscgecfeogeieofeifecfoegeJugefoge) g JegoRefoofe Joofofjr g go v e Qoo cgeched

Doz@

jesRucfecRuegecfscforgechechsofe g fecfscfe Ry fugergy gy

jroge o g R

@w

i gecge g g
BB88 8888888833333 388088888888838888833723333488%838388588388

Rl i T e P N it e UL i I SN PN e e G airee T B it

N51 N87 Bi 50 1
N4g N88 Bi 50 1
N37 N48 Bi 50 1
N36 N45 Bi 50 1
N47 N8S Bi 50 1
N44 N9O Bi 50 1
Net2 Passing Speed & Distance N1 N2 Uni 450
N2 N3 Uni 250 1
N3 N4 Uni 250 1
N4 N5 Uni 250 1
NS N8 Uni 300 1
N6 N7 Uni 200 1
N7 N8 Uni 200 1
N8 N9 Uni 200 1
NS N10 Uni 100 1
N10 N11 Uni 100 1
N11 N12 Uni 1200 1
N12 N13 Uni 100 1
N13 N14 Uni 350 1
N14 Ni15 Uni 1050 1
N15 Ni6 Uni 50 1
N16 N17 Uni 600 1
N17 N18 Uni 500 1
N18 N19 Uni 200 1
N19 N20 Uni 650 1
N20 N21 Uni 250 1
N21 N22 Uni 850 1
N22 N1 Uni 200 1
Interfaces hd
Net Node Location
Nett N1t Incoming
N2 IncomingX
N2 Group13X
N2 Group14X
N2 Group15X
N2 Group16X
N2 Group9X
N2 Group10X
N2 Group11X
N2 Group12X
N2 Group5X
N2 GroupBX
N2 Group7X
N2 Group8X
N2 Group1X
N2 Group2X
N2 Group3X
N2 Group4X
N9 Up16X
N© Down18X
N10 Up15X
N10 Down15X
N11 Up14X
N11 Down14X
N12 Up13X
N12 Down13X
NSO Downt
NB9 Down2
N88 Down3
N87 Down4d
N87 Up4
N8s Up3
N89 Up2
N90 Upt
N36 Up1X
N36 Down1X
N37 Up2X
N37 Down2X
N38 Up3X
N38 Down3X

N39
N39
N40

N41
N41

N79
N79
N78
N78
N77
N77
N72
N72
N73
N73
N74
N74
N75
N75
N76
N76

N70
N70
N71
N71
N67
N&7

NE5

N16
Ni6
N23
N23
N27
N27

N28
N1§
N15
N20
N20
N19
N18

N10
N1
N12
N13
N14
N15
N16
N17
N18
N19

N21

Up10

Up11

Upt2
Down12
Up13
Down13
Outgoing
Up17

Up18

Resources

Res Ent
Name Units Stats Search SearchPath Motion Cost
OutOp1 1 ByUnit Closest OldestNet1 Empty: 880 fpm
Home: N43 Full: 880 fpm

QutOp2 1 ByUnit Closest Oldest Net! Empty. 880 fpm
Home: N43 Full: 880 fpm

OutOp3 1 ByUnit Closest Oldest Net1 Empty: 880 fpm
Home: N43 Full: 880 fpm

OutOp4 1 ByUnit Closest Oldest Net1 Empty: 880 fpm
Home: N43 Full: 880 fpm

OutOpS 1 ByUnit Closest OldestNet1 Empty: 880 fpm
Home: N43 Full: 880 fpm

inOpX 1 ByUnit Closest OldestNett Empty: 880 fpm
Home: N2 Fuill: 880 fpom
(Retum)

OutOpX1 1 By Unit Closest Oldest Net1 Empty: 880 fom
Home: N43 Full: 880 fpm

OutOpX2 1 ByUnit Closest OldestNett Empty: 880 fom
Home: N43 Full: 880 fom

OutOpX3 1 ByUnit Closest Oldest Nett Empty: 880 fpm
Home: N43 Full: 880 fom

OutOpX4 1 ByUnit Closest OldestNett Empty: 880 fpm
Home: N43 Full: 830 fpm

OutOpX5 1 ByUnit Closest Oldest Nett Empty: 880 fpom
Home: N43 Full: 880 fpm

Driver 1 ByUnit Closest Oldest Net2 Empty: 880 fpm
Home: N1 Full: 880 fpm

Count 1 By Unit Least Used Oidest Empty: 150 fpom
Full: 150 fpm

CountX 1 ByUnit Least Used Oldest Empty: 150 fpm
Full: 150 fom

* Processing *

Process Routing

Entity Location Operation Bk Output Destination Rule Move Logic

Box_Paliet Arrival WAIT Artime 1 Box_Pallet Incoming FIRST 1

Box_Pallet Incoming GET Count
Xout[X,4} = CLOCK(MIN)
WAIT N(1,0.30)
Xout]X,5] = CLOCK(MIN)
FREE Count
Counter = 1
Select=0
Temp=0
AsdV = AsdA
DesV = DesA
px=X
DO
BEGIN
Select = SearchjAsdV,Counter}
Temp = Select + 1
IF Select > DesV THEN

BEGIN
ROUTE Temp

END

IF Select < DesV THEN
BEGIN

END

ROUTE Temp

Inc Counter

END

UNTIL Select = DesV

ROUTE 1

1 Box_Paliet Hold
2" Negative Down1

FIRST 1

FIRST 1 WAITN = WAITTIME

3’

4

5" Negative

Negative

10" Negative

11* Negative

12* Negative

13* Negative

14" Negative

PUN=PUA

parent = px
INC counter3

FIRST 1 WAITN = WAITTIME
PUN = PUA
parent = px
INC counter3
Down3 FIRST 1 WAITN = WAITTIME
PUN =PUA
parent = px
INC counter3

FIRST 1 WAITN = WAITTIME
PUN =PUA
parent = px
INC counter3
Down5 FIRST 1 WAITN = WAITTIME
PUN =PUA
parent = px
INC counter3

FIRST 1 WAITN = WAITTIME
PUN = PUA
parent = px
INC counter3

FIRST 1 WAITN = WAITTIME
PUN = PUA
parent = px
INC counter3

Down?

FIRST 1 WAITN = WAITTIME
PUN = PUA
=px
INC counter3

FIRST 1 WAITN = WAITTIME
PUN = PUA

Down9

parent =
INC counter3

Downt0 FIRST 1 WAITN = WAITTIME
PUN=PUA

parent =

INC counter3
Downit FIRST 1 WAITN = WAITTIME
PUN = PUA
parent = px
INC counter3

Downt2 FIRST 1 WAITN = WAITTIME
PUN = PUA

parent =
INC counter3

Downt3 FIRST 1 WAITN = WAITTIME
PUN = PUA
parent = px

INC counter3

15* Negative Down14 FIRST 1 WAITN = WAITTIME
PUN =PUA

parent = px
INC counter3

16* Negative Downi1d FIRST 1 WAITN = WAITTIME
PUN = PUA
parent = px
INC counter3

17* Negative Downi6 FIRST 1 WAITN = WAITTIME
PUN = PUA
parent = px
INC counter3

18" Negative Downi17 FIRST 1 WAITN = WAITTIME
PUN = PUA
parent = px
INC counter3

19* Negative Down18 FIRST 1 WAITN = WAITTIME
PUN = PUA

parent = px
INC counter3

20* Negative Down19 FIRST 1 WAITN = WAITTIME
PUN=PUA
parent = px
INC counter3

21* Negative Down20 FIRST 1 WAITN = WAITTIME
PUN = PUA

parent =
INC counter3

Box_Palket Hold 1 Box_Pallet Pickup LOAD1 IF DesA=1THEN
BEGIN

END
IF DesA = 2 THEN
BEGIN

END
iF DesA =3 THEN
BEGIN

END
IF DesA =4 THEN
BEGIN

INC Q1

INC Q2

INC Q3

END
IF DesA =5 THEN
BEGIN

END
IF DesA =68 THEN
BEGIN

INC Q5

INC Q6
END
IF DesA =7 THEN
BEGIN

END
IF DesA = 8 THEN
BEGIN

END
IF DesA =9 THEN
BEGIN

END
IF DesA = 10 THEN
BEGIN

INC Q7

INC Q8

INC Q10
END

IF DesA =11 THEN
BEGIN
INC Q11
END

IF DesA = 12 THEN
BEGIN
INC Q12
END

IF DesA = 13 THEN
BEGIN
INC Q13
END

IF DesA =14 THEN
BEGIN

END
IF DesA =15 THEN
BEGIN

END
IF DesA = 16 THEN

BEGIN
INC Q16
END
IF DesA =17 THEN
BEGIN

INC Q14

INC Q15

INC Q17
END
IF DesA = 18 THEN
BEGIN

END
IF DesA = 19 THEN
BEGIN

INC Q18

INC Q18
END
IF DesA = 20 THEN
BEGIN
INC Q20
END

Box_Pallet Upt Xout{X,6] = CLOCK(MIN)
WAIT WAITTIME
Xout[X,7] = CLOCK(MIN)
1 Box_Pallet Outgoing FIRST 1 searchtime = N(3,1) + N(1,0.5) * C1

IF PUA = 1 THEN
BEGIN
GET OutOp1
Xout{X,8] = CLOCK(MIN})
WAIT searchtime
XoutfX,9} = CLOCK{MIN)
N MOVE WITH OutOp1 THEN FREE
END
IF PUA=2THEN
BEGIN
GET
Xout{X,8] = CLOCK(MIN)
WAIT searchtime
XoutfX,9] = CLOCK(MIN)
END MOVE WITH OutOp2 THEN FREE
N
IF PUA=3 THEN
BEGIN
GET
Xout{X,8] = CLOCK(MIN)
WAIT searchtime
Xout[X,9] = CLOCK(MIN)
MOVE WITH OutOp3 THEN FREE
END
IF PUA=4 THEN
BEGIN
GET OutOp4
XoulfX,8] = CLOCK(MIN)
WAIT searchtime

Xout[X,9] = CLOCK(MIN)

Box_Paliet Up2 Xout[X.6] = CLOCK(MIN)
WAIT WAITTIME
Xout{X,7] = CLOCK(MIN)

MOVE WITH OutOp4 THEN FREE

END
IF PUA =5 THEN
BEGIN
GET OutOp5
XoutfX, 8] = CLOCK(MIN)
WAIT searchtime
XoutfX,9] = CLOCK(MIN)
MOVE WITH OutOp5 THEN FREE
END
DEC C1

1 Box_Pallet Outgoing FIRST 1 searchtime = N(3,1) + N(1,0.5) * C2

Box_Pallet Up3 Xout{X,6] = CLOCK(MIN)
WAIT WAITTIME
Xout[X.7] = CLOCK(MIN)

IF PUA =1 THEN
BEGIN

GET OutOp1

Xout{X,8} = CLOCK(MIN)

WAIT searchtime

Xout{X,9} = CLOCK(MIN)

MOVE WITH OutOpt1 THEN FREE
END
IF PUA = 2 THEN
BEGIN

GET OutOp2

XoutfX,8] = CLOCK{MIN)

WAIT searchtime

XoutX,9] = CLOCK(MIN)

MOVE WITH OutOp2 THEN FREE
END
IFPUA=3THEN
BEGIN

GET OutOp3

Xout[X,8] = CLOCK(MIN)

WAIT searchtime

Xout{X,9] = CLOCK(MIN)

MOVE WITH OutOp3 THEN FREE
END
IFPUA=4 THEN
BEGIN

GET QutOp4

XoutfX,8] = CLOCK(MIN)

WAIT searchtime

XoutfX 9] = CLOCK(MIN)

MOVE WITH OutOp4 THEN FREE
END
IF PUA =5 THEN
BEGIN

GET OutOp5

Xout[X,8] = CLOCK(MIN)

WAIT searchtime

Xout{X,9] = CLOCK(MIN)

MOVE WITH OutOp5 THEN FREE
END
DEC C2

1 Box_Pallet Outgoing FIRST 1 searchtime = N(3,1) + N(1,0.5) * C3

IF PUA = 1 THEN
BEGIN
GET OutOp1
Xout{X,8] = CLOCK(MIN)
WAIT searchtime
Xout{X,9] = CLOCK(MIN)
MOVE WITH OutOp1 THEN FREE
END
IF PUA =2 THEN

BEGIN

GET OutOp2

XoutX,8] = CLOCK(MIN)

WAIT searchtime

Xout{X.9] = CLOCK(MIN)

MOVE WITH OutOp2 THEN FREE
END
IF PUA =3 THEN
BEGIN

GET OutOp3

XoutfX,8] = CLOCK(MIN)

WAIT searchtime

XoulfX,9] = CLOCK(MIN)

MOVE WITH OutOp3 THEN FREE
END
IF PUA =4 THEN
BEGIN

GET OutOp4

XoutfX,8] = CLOCK(MIN)

WAIT searchtime

XoutfX,9] = CLOCK(MIN)

MOVE WITH QutOp4 THEN FREE
END
IF PUA =5 THEN
BEGIN

GET QutOp5

XoutfX,8] = CLOCK(MIN)

WAIT searchtime

Xout[X,8] = CLOCK(MIN)

MOVE WITH OutOp5 THEN FREE
END
DECC3

Box_Paliet Up4 Xout{X.6] = CLOCK(MIN)
WAIT WAITTIME

Xout[X,7] = CLOCK(MIN)
1 Box_Pallst Outgoing FIRST 1 searchtime = N(3,1) + N(1,0.5) * C4

IF PUA =1 THEN
BEGIN
GET QutOpt
XoutfX,8] = CLOCK(MIN)
WAIT searchtime
XoutfX,9] = CLOCK(MIN)
MOVE WITH OutOp1 THEN FREE
END
IF PUA =2 THEN
BEGIN
GET OutOp2
XoutfX,8] = CLOCK(MIN)
WAIT searchiime
XoutfX,9] = CLOCK(MIN)
MOVE WITH OutOp2 THEN FREE
END
IF PUA =3 THEN
BEGIN
GET OutOp3
XoutfX,8] = CLOCK(MIN)
WAIT searchtime
Xout{X,9] = CLOCK(MIN)
END MOVE WITH OutOp3 THEN FREE
N
IF PUA=4 THEN
BEGIN
GET OutOp4
XoutfX,8] = CLOCK(MIN)
WAIT searchtime
XoutfX.9] = CLOCK(MIN)
. MOVE WITH OutOp4 THEN FREE
END
IF PUA =5 THEN
BEGIN
GET OutOpS
XoutfX 8] = CLOCK({MIN)
WAIT searchtime

XoutfX.9] = CLOCK(MIN)

MOVE WITH OutOp5 THEN FREE
END

DECC4

Bax_Pailet Up5 Xout{X,6] = CLOCK(MIN)
WAIT WAITTIME
XoutfX,7] = CLOCK(MIN)
1 Box_Paliet Oulgoing FIRST 1 searchtime = N(3,1) + N(1,0.6) * C5

IF PUA = 1 THEN
BEGIN
GET OutOp1
XoutPX,8] = CLOCK(MIN)
WAIT searchtime
Xout[X,9] = CLOCK(MIN)
MOVE WITH OutOp1 THEN FREE
END
IF PUA =2 THEN
BEGIN
GET OutOp2
Xout[X,8} = CLOCK(MIN)
WAIT searchtime
Xout{X,9] = CLOCK(MIN)
MOVE WITH OutOp2 THEN FREE
END
IF PUA = 3 THEN
BEGIN
GET QutOp3
Xout{X,8] = CLOCK(MIN)
WAIT searchtime
XoutfX,9] = CLOCK(MIN)
MOVE WITH OutOp3 THEN FREE
END
IF PUA =4 THEN
BEGIN
GET OutOp4
XoutfX,8) = CLOCK(MIN)
WAIT searchtime
XoutfX,9] = CLOCK(MIN)
MOVE WITH OutOp4 THEN FREE
END
IF PUA=5THEN
BEGIN
GET OutOp5
Xout{X,8] = CLOCK(MIN)
WAIT searchtime
Xout]X,9} = CLOCK(MIN)
MOVE WITH OutOp5 THEN FREE
END
DECC5
Box_Paliet Ups Xout[X 6] = CLOCK(MIN)
WAIT WAITTIME
XoutfX,7] = CLOCK(MIN)
1 Box_Pallet Outgoing FIRST 1 searchtime = N(3,1) + N(1,0.5) * C6
iF PUA = 1 THEN
BEGIN
GET OutOp1
XoutfX,8] = CLOCK(MIN)
WAIT searchtime
Xout{X,9] = CLOCK(MIN)
MOVE WITH OutOp1 THEN FREE
END
IF PUA =2 THEN
BEGIN
GET OutOp2
Xout{X, 8] = CLOCK(MIN)
WAIT searchtime
Xout[X,8] = CLOCK(MIN)
MOVE WITH OutOp2 THEN FREE
END
IF PUA=3 THEN

BEGIN

GET OutOp3

Xout[X,8] = CLOCK(MIN)

WAIT searchtime

Xout]X,9] = CLOCK(MIN)

MOVE WITH OutOp3 THEN FREE
END
IF PUA =4 THEN
BEGIN

GET OutOp4

XoutfX,8] = CLOCK(MIN)

WAIT searchtime

Xout[X,9] = CLOCK(MIN)

MOVE WITH OutOp4 THEN FREE
END
IF PUA=5THEN
BEGIN

GET

Xoul[X.8] = CLOCK(MIN)

WAIT searchtime

Xout]X,9] = CLOCK(MIN)

MOVE WITH OutOp5 THEN FREE
END
DECC6

Box_Pallet Up7 Xout{X,6] = CLOCK(MIN)
WAIT WAITTIME
XoutfX,7] = CLOCK(MIN)
1 Box_Paliet Outgoing FIRST 1 searchtime = N(3,1) + N(1,05)* C7

IF PUA = 1THEN

BEGIN
GET OutOp1
Xout[X,8] = CLOCK(MIN)
WAIT searchtime

XoutfX,9] = CLOCK(MIN)
MOVE WITH OutOp1 THEN FREE

END
iF PUA =2 THEN
BEGIN
GET OutOp2
Xout[X,8] = CLOCK(MIN)
WAIT searchtime
XoutfX,9] = CLOCK(MIN)
MOVE WITH OutOp2 THEN FREE
END
IF PUA =3 THEN
BEGIN
GET OutOp3
XoutfX,8] = CLOCK(MIN)
WAIT searchtime
XoulfX, 9] = CLOCK(MIN)
MOVE WITH OutOp3 THEN FREE
END
IF PUA=4 THEN
BEGIN
GET OutOp4
Xout[X,8] = CLOCK(MIN)
WAIT searchtime
Xout[X,9] = CLOCK(MIN)
EN MOVE WITH OutOp4 THEN FREE
D
IF PUA=5THEN
BEGIN
GET OutOp5
Xout{X,8] = CLOCK(MIN)
WAIT searchtime
XoutfX 9] = CLOCK(MIN)
MOVE WITH OutOp5 THEN FREE
END
DECC7

Box_Pallet Up8 Xout{X,6] = CLOCK(MIN)
WAIT WAITTIME

XoutfX,7] = CLOCK(MIN)

1 Box_Pallet Outgoing FIRST 1 searchtime = N(3,1) + N(1,0.5) * C8
IF PUA = 1 THEN

BEGIN
GET OutOp1
XoutfX.8] = CLOCK{MIN)
WAIT searchtime

XoutfX 9} = CLOCK(MIN)

N MOVE WITH OutOp1 THEN FREE
D
IF PUA = 2 THEN
BEGIN
GET OutOp2
Xout[X.8] = CLOCK(MIN)
WAIT searchtime
XoutiX,9] = CLOCK{MIN)
MOVE WITH OutOp2 THEN FREE
END
IF PUA = 3 THEN
BEGIN
GET O
Xout{X,8] = CLOCK(MiIN)
WAIT searchtime
XoutfX.9] = CLOCK(MIN)
MOVE WITH OutOp3 THEN FREE
END
IF PUA=4 THEN
BEGIN
GET OutOp4
Xout{X,8] = CLOCK(MIN)
WAIT searchtime
XoutfX 9] = CLOCK(MIN)
N MOVE WITH OutOp4 THEN FREE
END
IF PUA=5THEN
BEGIN
GET OutOp5
XoutiX.8} = CLOCK(MIN)
WAIT searchtime
Xoul[X,9] = CLOCK(MIN)
MOVE WITH OutOp5 THEN FREE
END
DECC8

Box_Paliet Up9 Xou[X 6] = CLOCK(MIN})
WAIT WAITTIME
XoutfX,7] = CLOCK(MIN)
1 Box_Pallet Outgoing FIRST 1 searchtime = N(3,1) + N(1,0.5)* C8

IF PUA = 1 THEN

BEGIN
GET OutOp1
XoutfX.8] = CLOCK(MIN)
WAIT searchtime

XoutfX,9] = CLOCK(MIN)

MOVE WITH OutOp1 THEN FREE
END
IF PUA =2 THEN
BEGIN

GET OutOp2

Xout{X 8} = CLOCK(MIN)

WAIT searchtime

XoutfX,9] = CLOCK(MIN)

MOVE WITH OutOp2 THEN FREE
END
IF PUA =3 THEN
BEGIN

GET OutOp3

Xout[X.8] = CLOCK(MIN)

WAIT searchtime

XoutfX 9] = CLOCK(MIN)

MOVE WITH OutOp3 THEN FREE
END
IF PUA = 4 THEN

BEGIN

GET OutOp4
XoutfX 8] = CLOCK(MIN)
searchtime

WAIT

Xoul{X,9] = CLOCK(MIN)

MOVE WITH OutOp4 THEN FREE
END
IF PUA =5 THEN
BEGIN

GET OutOp5

XoutfX,8] = CLOCK(MIN)

WAIT searchtime

Xout{X,9] = CLOCK(MIN)

MOVE WITH OutOp5 THEN FREE
END
DECCo

Box Patlet Up10 XoulX,6] = CLOCK(MIN)
WAIT WAITTIME
Xout{X,7] = CLOCK(MIN)

1 Box_Pallet Outgoing FIRST 1 searchtime = N(3,1) + N(1,0.5) * C10

IF PUA =1 THEN
BEGIN

GET OutOp1

XoutfX,8] = CLOCK(MIN)

WAIT searchtime

Xout[X.9] = CLOCK(MIN)

MOVE WITH OutOp1 THEN FREE
END
IF PUA =2 THEN
BEGIN

GET OutOp2

Xout{X,8] = CLOCK{MIN)

WAIT searchtime

XoulX,9] = CLOCK(MIN)

MOVE WITH OutOp2 THEN FREE
END
IF PUA = 3 THEN
BEGIN

GET OutOp3

Xout[X,8] = CLOCK(MIN)

WAIT searchtime

XoutDX, 9] = CLOCK(MIN)

MOVE WITH OutOp3 THEN FREE
END
{F PUA = 4 THEN
BEGIN

GET OutOp4

XoutiX,8] = CLOCK(MIN)

WAIT searchtime

Xout[X.9) = CLOCK(MIN)

MOVE WITH OutOp4 THEN FREE
END
IF PUA = 5 THEN
BEGIN

GET OutOp5

Xout[X,8] = CLOCK(MIN)

WAIT searchtime

XoutfX,9) = CLOCK(MIN)

MOVE WITH OutOp5 THEN FREE
END
DEC C10

Bax_Paflet Up11 XoutX,6] = CLOCK(MIN)
WAIT WAITTIME
XoutX,7] = CLOCK(MIN)

1 Box_Pallet Oufgoing FIRST 1 searchtime = N(3,1) + N(1,0.5) * C11

IF PUA =1 THEN

BEGIN
GET OutOp1
XoutfX.8] = CLOCK(MIN)
WAIT searchtime

Xout{X,9] = CLOCK(MIN)

END
IF PUA =
BEGIN

END
IF PUA =
BEGIN

END
IF PUA =
BEGIN

END
IF PUA =
BEGIN

END
DEC C11
Box_Pallet Up12 XoulfX.6} = CLOCK(MIN)

WAIT WAITTIME
Xout{X,7] = CLOCK(MIN)

1 Box_Paflet Outgoing FIRST 1 searchtime = N(3,1) + N(1,0.5) * C12

IFPUA=
BEGIN

END
IFPUA=
BEGIN

END
IF PUA=
BEGIN

END
IF PUA =
BEGIN

END
IF PUA=
BEGIN

MOVE WITH OutOp1 THEN FREE
2 THEN

GET OutOp2

Xout{X,8] = CLOCK(MIN)

WAIT searchtime

XoutfX,9] = CLOCK(MIN)

MOVE WITH QutOp2 THEN FREE

3 THEN

GET OutOp3
XoutfX,8] = CLOCK(MIN)
WAIT searchtime

XoutX,9] = CLOCK(MIN)
MOVE WITH OutOp3 THEN FREE

4 THEN

GET OutOp4

XoutfX,8] = CLOCK(MIN)

WAIT searchtime

Xout{X,9] = CLOCK(MIN)

MOVE WITH OutOp4 THEN FREE

5 THEN

GET OutOp5

Xout{X,8] = CLOCK(MIN)

WAIT searchtime

XoutX,9] = CLOCK(MIN)

MOVE WITH OutOp5 THEN FREE

1 THEN

GET OutOp1t

XoutiX 8] = CLOCK(MIN)

WAIT searchtime

XoufX,9] = CLOCK(MIN)

MOVE WITH OutOp1 THEN FREE

2 THEN

GET OutOp2
XoutfX,8] = CLOCK(MIN)
WAIT searchtime

XoutiX,9] = CLOCK(MIN)
MOVE WITH OutOp2 THEN FREE

3 THEN
GET OutOp3
XoutfX,8] = CLOCK(MIN)
WAIT searchtime
XoutfX,9] = CLOCK(MIN)
MOVE WITH OutOp3 THEN FREE
4 THEN

GET OutOp4
XoutfX,8] = CLOCK(MIN)
WAIT searchtime

XoutfX,9] = CLOCK(MIN)
MOVE WITH OutOp4 THEN FREE

5 THEN

END
DEC C12
Box_Paflet Up13 XoutX6] = CLOCK(MIN)

WAIT WAITTIME
Xout{X,7} = CLOCK(MIN)

GET OutOp5

Xout[X, 8] = CLOCK(MIN)

WAIT searchtime

Xout[X,9] = CLOCK(MIN)

MOVE WITH OutOp5 THEN FREE

1 Bax_Pallet Outgoing FIRST 1 searchtime = N(3,1) + N(1,0.5) * C13

IF PUA =1 THEN
BEGIN

GET OutOp1

XoutfX,8] = CLOCK(MIN)

WAIT searchtime

Xout]X, 8] = CLOCK(MIN)

MOVE WITH OutOp1 THEN FREE
END
IF PUA =2 THEN
BEGIN

GET OutOp2

Xou{X,8) = CLOCK(MIN)

WAIT searchtime

Xout{X.8] = CLOCK(MIN)

MOVE WITH OutOp2 THEN FREE
END
IF PUA =3 THEN
BEGIN

GET OQutOp3

XoutfX,8] = CLOCK(MIN)

WAIT searchtime

Xout[X,8] = CLOCK(MIN)

MOVE WITH OutOp3 THEN FREE
END
IF PUA=4 THEN
BEGIN

GET OutOp4

Xout{X,8] = CLOCK(MIN)

WAIT searchtime

Xout[X,8] = CLOCK(MIN)

MOVE WITH OutOp4 THEN FREE
END
IF PUA=5THEN
BEGIN

GET QutOp5

Xout{X 8] = CLOCK(MIN)

WAIT searchtime

XoutfX 8] = CLOCK(MIN)

MOVE WITH OutOpS THEN FREE
END
DEC C13

Box_Pallet Up14 Xout{X,6] = CLOCK(MIN)
WAIT WAITTIME
Xout[X,7] = CLOCK(MIN)

1 Box_Pallet Outgoing FIRST 1 searchtime = N(3,1) + N(1,0.5)* C14

IF PUA =1 THEN

BEGIN
GET OutOpt
Xout[X,8] = CLOCK(MIN)
WAIT searchtime

Xout[X.8] = CLOCK(MIN)
MOVE WITH OutOp1 THEN FREE

END

IF PUA=2 THEN

BEGIN
GET OutOp2
Xout{X,8] = CL OCK(MIN)
WAIT searchtime

XoutfX,8] = CLOCK(MIN)

Box_Paliet Up15

Xout]X 6] = CLOCK(MIN)

WAIT WAITTIME
XoutX,7] = CLOCK(MIN)

1 Box_Paflet Outgoing FIRST 1 searchtime = N(3,1) + N(1,0.6) * C15

MOVE WITH OutOp2 THEN FREE

END
IF PUA = 3 THEN
BEGIN
GET
Xout{X,8] = CLOCK(MIN)
WAIT searchtime
Xout{X,9] = CLOCK(MIN)
MOVE WITH OutOp3 THEN FREE
END
IF PUA = 4 THEN
BEGIN
GET OutOp4
Xout]X,8] = CLOCK(MIN)
WAIT searchtime
XoutfX,9] = CLOCK(MIN)
MOVE WITH OutOp4 THEN FREE
END
IF PUA=5THEN
BEGIN
GET OutOp5
XoutX,8} = CLOCK(MIN)
WAIT searchtime
XoutfX 8] = CLOCK(MIN)
MOVE WITH OutOp5 THEN FREE
END
DEC C14

IF PUA = 1 THEN
BEGIN
GET OutOp1
XoutfX,8] = CLOCK(MIN)
WAIT searchtime
XoutfX,9] = CLOCK(MIN)
MOVE WITH OutOp1 THEN FREE
END
IF PUA = 2 THEN
BEGIN
GET OutOp2
Xout]X,8] = CLOCK(MIN)
WAIT searchtime
XoutjX,9] = CLOCK(MIN)
MOVE WITH OutOp2 THEN FREE
END
IF PUA = 3 THEN
BEGIN
GET OutOp3
Xout{X,8] = CLOCK(MIN)
WAIT searchtime
XoutiX,9] = CLOCK({MIN)
£ MOVE WITH OutOp3 THEN FREE
ND
IFPUA=4 THEN
BEGIN
GET
XoutiX,8} = CLOCK(MIN)
WAIT searchtime
Xout{X.9] = CLOCK(MIN)
o MOVE WITH OutOp4 THEN FREE
EN
{F PUA =5 THEN
BEGIN
GET OutOp5
Xout{X,8] = CLOCK(MIN)
WAIT searchtime
XoutfX,9] = CLOCK({MIN)
MOVE WITH OutOp5 THEN FREE
END

DEC C15

Box_Pallet Up16 XoufX,6] = CLOCK(MIN)
WAIT WAITTIME
Xout[X.7] = CLOCK(MIN)

1 Box_Pallet Outgoing FIRST 1 searchtime = N(3,1) + N(1,0.5) * C16

Box_Pallet Up17 Xout{X8] = CLOCK(MIN)
WAIT WAITTIME
Xout[X,7] = CLOCK(MIN)

IFPUA =1 THEN
BEGIN

GET OutOp1

XoutfX,8] = CLOCK(MIN)

WAIT searchtime

XoutfX,9] = CLOCK(MIN)

MOVE WITH OutOpt THEN FREE
END
IF PUA = 2 THEN
BEGIN

GET QutOp2

XoutfX.8] = CLOCK(MIN)

WAIT searchtime

XoutfX,9) = CLOCK(MIN)

MOVE WITH OutOp2 THEN FREE
END
IF PUA =3 THEN
BEGIN

GET QutOp3

XoutfX,8] = CLOCK(MIN)

WAIT searchtime

XoutfX,8] = CLOCK(MIN)

MOVE WITH OutOp3 THEN FREE
END
IF PUA = 4 THEN
BEGIN

GET OutOp4

Xout[X.8] = CLOCK(MIN)

WAIT searchtime

XoutfX,9] = CLOCK(MIN)

MOVE WITH OutOp4 THEN FREE
END
IF PUA=5THEN
BEGIN

GET OutOp5

Xout{X 8] = CLOCK(MIN)

WAIT searchtime

XoutfX,9) = CLOCK(MIN)

MOVE WITH OutOp5 THEN FREE
END
DEC C16

1 Box_Pallet Outgoing FIRST 1 searchtime = N(3,1) + N(1,0.5) * C17

IF PUA= 1 THEN
BEGIN
GET OutOp1
Xout[X,8] = CLOCK(MIN)
WAIT searchtime

Xout{X,9] = CLOCK(MIN)
MOVE WITH OutOp1 THEN FREE

END

IF PUA =2 THEN

BEGIN
GET OutOp2
XoutfX,8] = CLOCK(MIN)
WAIT searchtime
XoutfX,9} = CLOCK(MIN)
MOVE WITH OutOp2 THEN FREE

END

IF PUA = 3 THEN

BEGIN
GET OutOp3
Xout(X,8] = CLOCK(MIN)
WAIT searchtime

Xout{X,9} = CLOCK(MIN}

Box_Pallet Up18 XoutiX,5] = CLOCK(MIN)
WAIT WAITTIME
XoutfX.7] = CLOCK(MIN)

MOVE WITH OutOp3 THEN FREE

END
IF PUA = 4 THEN
BEGIN
GET QutOp4
Xout{X,8] = CLOCK(MIN)
WAIT searchtime
XoutfX,9] = CLOCK(MIN)
: MOVE WITH OutOp4 THEN FREE
END
IF PUA =5 THEN
BEGIN
GET OutOp5
Xout{X,8] = CLOCK(MiIN)
WAIT searchiime
Xout[X,9] = CLOCK(NIN)
MOVE WITH OutOpS THEN FREE
END
DEC C17

1 Box_Pallet Outgoing FIRST 1 searchtime = N(3,1) + N(1,0.5) * C18

Box_Pallet Up19 Xout{X,6] = CLOCK(MIN)
WAIT WAITTIME
Xoutfx,7] = CLOCK(MIN)

IF PUA = 1 THEN
BEGIN
GET OutOp1
XoutfX.8] = CLOCK(MIN)
WAIT searchtime
Xout{X,9] = CLOCK(MIN)
MOVE WITH QutOp1 THEN FREE
END
IF PUA =2 THEN
BEGIN
GET OutOp2
Xout[X,8] = CLOCK(MIN)
WAIT searchtime
XoutiX,9] = CLOCK(MIN)
MOVE WITH OutOp2 THEN FREE
END
IF PUA =3 THEN
BEGIN
GET OutOp3
XoutiX,8] = CLOCK({MIN)
WAIT searchtime
Xout{X,9] = CLOCK(MIN)
MOVE WITH OutOp3 THEN FREE
END
IF PUA = 4 THEN
BEGIN
GET OutOp4
Xout{X,8] = CLOCK(MIN)
WAIT searchtime
XoutfX,9] = CLOCK(MIN)
MOVE WITH OutOp4 THEN FREE
END
IFPUA=5THEN
BEGIN
GET OutOp5

XoutfX,8] = CLOCK(MIN)

WAIT searchtime

Xout{X,9] = CLOCK(MIN)

MOVE WITH OutOp5 THEN FREE
END

DEC C18

1 Box_Pallet Outgoing FIRST 1 searchtime = N(3,1) + N(1,0.5) * C19

IF PUA=1THEN
BEGIN

Box_Pallet Up20 Xout[X 6} = CLOCK({MIN)
WAIT WAITTIME

Xout[X,7] = CLOCK(MIN)

GET OutOp1t
Xout{X,8] = CLOCK(MIN)
WAIT searchtime

Xout{X 8] = CLOCK(MIN)
MOVE WITH OutOp1 THEN FREE

END
IF PUA =2 THEN
BEGIN
GET OutOp2
Xout[X.8] = CLOCK(MIN)
WAIT searchtime
Xout{X 9] = CLOCK(MIN)
MOVE WITH OutOp2 THEN FREE
END
IF PUA =3 THEN
BEGIN
GET OutOp3
XoutfX,8] = CLOCK(MIN)
WAIT searchtime
Xout[X,9] = CLOCK(MIN)
MOVE WITH QutOp3 THEN FREE
END
IF PUA =4 THEN
BEGIN
GET QutOp4
Xout{X,8] = CLOCK(MIN)
WAIT searchtime
Xout{X 8] = CLOCK(MIN)
MOVE WITH OutOp4 THEN FREE
END
IF PUA=5THEN
BEGIN
GET OutOp5
Xout[X.8] = CLOCK(MIN)
WAIT searchtime
XoutfX,9] = CLOCK(MIN)
MOVE WITH OutOp5 THEN FREE
END
DEC C19

1 Box_Pallet Outgoing FIRST 1 searchtime = N(3,1) + N(1,0.5) * C20

IF PUA=1THEN
BEGIN
GET OutOp1
XoutfX,8] = CLOCK(MIN)
WAIT searchtime
XoutX,9] = CLOCK(MIN)
MOVE WITH OutOp1 THEN FREE
END
IF PUA = 2 THEN
BEGIN
GET OutOp2
XoutfX,8] = CLOCK(MIN)
WAIT searchtime
Xout[X,9] = CLOCK(MIN)
MOVE WITH OutOp2 THEN FREE
END
IF PUA =3 THEN
BEGIN
GET OutOp3
XoutfX,8] = CLOCK(MIN)
WAIT searchtime
Xout{X 9] = CLOCK(MIN)
MOVE WITH OutOp3 THEN FREE
END
IF PUA =4 THEN
BEGIN
GET OutOp4
Xout[X.8] = CLOCK(MIN)
WAIT searchtime

Xout{X.9] = CLOCK(MIN)

MOVE WITH OutOp4 THEN FREE

END
iIF PUA =5 THEN
BEGIN
GET OulOp5
Xout[X 8} = CLOCK(MIN)
WAIT searchtime
XoutfX.8} = CLOCK(MIN)
MOVE WITH OutOp5 THEN FREE
END
DEC C20
Negstive Downt WAIT WAITN
searchtime = N(3,1) + N(1,0.5) * C1
IF PUN = 1 THEN
BEGIN
GET OutOp
verytemp{parent, 1} = CLOCK(MIN)
WAIT searchtime
verytemplparent,21) = CLOCK(MIN)
FREE OutOp1
END
IF PUN = 2 THEN
BEGIN
GET OutOp2

verytempiparent, 1} = CLOCK(MIN)
WAIT searchtime

verytempiparent,21] = CLOCK(MIN)
FREE OutOp2

END

IF PUN = 3 THEN

BEGIN
GET OutOp3

verytempiparent, 1] = CLOCK(MIN)
WAIT searchtime

verytempiparent,21] = CLOCK(MIN)
FREE OutOp3

END

IF PUN = 4 THEN

BEGIN
GET OutOp4
verytempiparent, 1] = CLOCK({ MIN)
WAIT searchtime
verytemp|parent,21] = CLOCK(MiIN)
FREE OutOp4

END

IF PUN = 5 THEN

BEGIN
GETO

utOpS
verytempiparent, 1} = CLOCK(MIN)
WAIT searchtime

verytempiparent,21] = CLOCK(MIN)
FREE OutOp5
END

1 Negative EXIT FIRST1
Negative Down2 WAIT WAITN
searchtime = N(3,1) + N(1,0.5) * C2

IF PUN =1 THEN

BEGIN
GET OutOpt
verytemp{parent,2] = GLOCK(MIN)
WAIT searchtime
verytemplparent,22) = CLOCK(MIN)
FREE OutOp1

END

IF PUN =2 THEN

BEGIN
GET OutOp2
verytempiparent,2] = CLOCK(MIN)
WAIT searchtime
verytempiparent,22] = CLOCK(MIN)
FREE OutOp2

END

IF PUN = 3 THEN

BEGIN
GET OutOp3
verytempiparent,2] = CLOCK(MIN)
WAIT searchtime
verytemp|parent,22) = CLOCK(MIN)
FREE OutOp3

END
IF PUN = 4 THEN
BEGIN

GETO

utOp4
veryternp{parent,2] = CLOCK(MIN)
T searchtime

WA!
verytempiparent,22] = CLOCK(MIN)
FREE OutOp4
END
IF PUN = 5 THEN
BEGIN
GET OutOp5
verytempiparent,2] = CLOCK(MIN)
WAIT searchtime
verytemp{parent,22] = CLOCK(MIN)
FREE OutOpSs
END

1 Negative EXIT FIRST 1
Negative Down3 WAIT WAITN
searchtime = N(3,1) + N{(1,0.5)* C3

i PUN =1 THEN
BEGIN
GET QutOp1
verytempiparent,3] = CLOCK(MIN)
searchtime

WAIT
verytemplparent, 23] = CLOCK(MIN)
FREE OutOp1

END

IF PUN = 2 THEN

BEGIN
GET OutOp2
verytempiparent,3] = CLOCK(MIN)
WAIT searchtime
verytempiparent, 23] = CLOCK(MIN)
FREE OutOp2

END

IF PUN =3 THEN

BEGIN
GET OutOp3
verytempiparent,3] = CLOCK(MIN)
WAIT gearchtime
verytemplparent, 23] = CLOCK(MIN)
FREE OutOp3

END

IF PUN = 4 THEN

BEGIN
GET QutOp4
verytempiparent, 3] = CLOCK(MIN)
WAIT searchtime
verytempfparent, 23} = CLOCK(MIN)
FREE OutOp4

END

IF PUN = 5 THEN

BEGIN

GET OutOp5
verytemp{parent,3] = CLOCK(MIN)
WAIT searchtime
verytempiparent,23] = CLOCK(MIN)
FREE OutOp5

ND

1 Negative EXIT FIRST 1
Negative Downd WAIT WAITN
searchtime = N(3,1) + N(1,0.5) * C4

{F PUN =1 THEN

BEGIN
GET QutOp1

verytemp|parent, 4] = CLOCK(MIN)
WAIT searchtime
verytempiparent, 24} = CLOCK(MIN)
FREE OutOp1

END

IF PUN =2 THEN

BEGIN
GET QutOp2
verytemp(parent,4] = CLOCK(MIN)
WAIT searchtime
verylemplparent,24] = CLOCK(MIN)
FREE OutOp2

END

IF PUN = 3 THEN

BEGIN
GET OutOp3
verytempiparent 4] = CLOCK(MIN)
WAIT searchtime

verytemplparent,24] = CLOCK(MIN)
FREE OutOp3
END

IF PUN =4 THEN

BEGIN
GET OutOp4
verytempfparent, 4] CLOCK({MIN)
WAIT searchtime
verytemp{parent,24] = CLOCK(MIN)
FREE OutOp4

END

IF PUN = § THEN

BEGIN
GET OutOp5
verytempiparent,4] = CLOCK(MIN)
WAIT searchtime

verytempiparent,24] = CLOCK(MIN)

FREE OutOp5

END

1 Negative EXIT FIRST 1
Negative Down5 WAIT WAITN
searchtime = N(3,1) + N(1,0.5) * C5

IF PUN = 1 THEN

BEGIN
GET OutOp1
verytanp{parent 5] = CLOCK(MIN)
WAIT searchtime

verytemp{parent,25] = CLOCK(MIN)
FREE OutOp1

END

IF PUN = 2 THEN

BEGIN
GET OutOp2
verytemp{parent,5] = CLOCK(MIN)
WAIT searchtime
verytempiparent,25] = CLOCK(MIN)
FREE OutOp2

END
IF PUN =3 THEN
BEGIN

GET OutOp3

verytemp{parent,5] = CLOCK(MIN)
WAIT searchtime
verytempiparent,25] = CLOCK(MIN)

FREE OutOp3
END

IF PUN =4 THEN
BEGIN

GET OutOp4
verytemp[parent,S] CLOCK(MIN)
WAIT searchtime
verytempiparent,25] = CLOCK(MIN)
FREE OutOp4

END

IF PUN = 5 THEN
BEGIN
GET OutOp5
verytemp(parent, 5] = CLOCK(MIN)
WAIT searchtime

verytempiparent, 25} = CLOCK(MIN)
FREE OutOp5
END

1 Negative EXIT FIRST1
Negative Down6 WAIT WAITN
searchtime = N(3,1) + N(1,0.5) * C6

IF PUN = 1 THEN

BEGIN
GET OutOp1
verytempiparent,6) = CLOCK(MIN)
WAIT searchtime
verytempl{parent, 26] = CLOCK{MIN)
FREE OutOp1

END

IF PUN =2 THEN

BEGIN
GET OutOp2
verytemp{parert,6] = CLOCK(MIN)
WAIT searchtime
verytemnpiparent,26] = CLOCK(MIN)
FREE OutOp2

END

IF PUN = 3 THEN

BEGIN
GET OutOp3
verytempiparent, 6] = CLOCK(MIN)
WAIT searchtime
verytempiparent, 26} = CLOCK(MIN)
FREE OutOp3

END

IF PUN =4 THEN

BEGIN
GET OutOp4
verytempiparent,8] = CLOCK(MIN})
WAIT searchtime
verytempiparent, 26] = CLOCK(MIN)
FREE OutOp4

END

IF PUN = 5 THEN

BEGIN
GET OutOp5
verytemp{parent 6] = CLOCK(MIN)
WAIT searchtime
verytemp{parent, 26] = CLOCK(MIN)
FREE OutOp5

END

1 Negative EXIT FIRST 1
Negative Down?7 WAIT WAITN
searchtime = N(3,1) + N(1,05)* C7

IF PUN = 1 THEN

BEGIN
GET OutOp1
verytempiparent, 7} = CLOCK(MIN)
WAIT searchtime

verytempiparent,27] = CLOCK(MIN)
FREE OutOp1
END

IF PUN = 2 THEN
BEGIN
GET OutOp2
verytemplparent, 7] = CLOCK(MIN)
WAIT searchtime
verytermp{parent,27] = CLOCK(MIN)
END FREE OutOp2

{F PUN = 3 THEN
BEGIN

GET OutOp3
verytempiparent, 7} = CLOCK(MIN)
searchtime

WAIT
verytempparent,27] = CLOCK(MIN)
FREE OutOp3

END

IF PUN = 4 THEN

BEGIN
GET OutOp4
verytempiparent, 7] = CLOCK(MIN)
WAIT searchtime
verytempfparent,27] = CLOCK(MIN)
FREE OutOp4

END

IF PUN =5 THEN

BEGIN
GET OutOp5
verytempiparent, 7] = CLOCK(MIN)
WAIT searchtime
verytempiparent,27] = CLOCK(MIN)
FREE OutOp5

END

1 Negative EXIT FIRST1
Negative Down8 WAIT WAITN
searchtime = N(3,1) + N(1,0.5)* C8

{F PUN = 1 THEN

BEGIN
GET OutOp1
verytemp{parent,8] = CLOCK(MIN)
WAIT searchtime
verytempiparent,28} = CLOCK(MIN)
FREE OutOp1

END

IF PUN = 2 THEN

BEGIN
GET OutOp2
verytemp[parem.a} = CLOCK(MIN)
WAIT searchtime
verytempiparent, 28] = CLOCK(MIN)
FREE OutOp2

END

iF PUN = 3 THEN

BEGIN
GET OutOp3
verytemplparent,8] = CLOCK(MIN)
WAIT searchtime

verytempiparent, 28} = CLOCK(MIN)
FREE OutOp3

END

IF PUN = 4 THEN

BEGIN
GET OutOp4
verytempiparent,8] = CLOCK(MIN)
WAIT searchtime
verytempi{parent,28] = CLOCK(MIN)
FREE OutOp4

END

IF PUN =5 THEN

BEGIN
GET OutOp5s
verytemp[parent 8] = CLOCK(MIN)
WAIT searchtime
verytemp{parent, 28] = CLOCK(MIN)
FREE OutOp5

END

1 Negative EXIT FIRST 1
Negative Down9 WAIT WAITN
searchtime = N(3,1) + N(1,0.5) * C9

IF PUN = 1 THEN
BEGIN
GET OutOp1
verytempiparent, 8] = CLOCK(MIN)

WAIT searchtime
verytempfparent,29) = CLOCK(MIN)
FREE OutOp1

END

IF PUN =2 THEN

BEGIN
GET OutOp2
verytempiparent, 8] = CLOCK(MIN)
WAIT searchtime
wverytemp{parent,29] = CLOCK(MIN)
FREE OutOp2

END

IFPUN=3 THEN

BEGIN
GET OutOp3
verytempiparent, 9] = CLOCK(MIN)
WAIT searchtime
verytempiparent,29] = CLOCK(MIN)
FREE OutOp3

END

IF PUN = 4 THEN

BEGIN
GET OutOp4

mrytemp{parent 9] = CLOCK(MIN)
WAIT searchti
verytemp[para'tt 29] = CLOCK(MIN)
FREE OutOp4

END

IF PUN =5 THEN

BEGIN
GET OutOp5
verytemp(parent,9] = CLOCK(MIN)
WAIT searchtime
verytemp{parent,29] = CLOCK(MIN)
FREE OutOp5

END

1 Negative EXIT FIRST 1
Negative Downi0 WAIT WAITN
searchtime = N(3,1) + N(1,0.5) * C10

IF PUN =1 THEN

BEGIN
GET OutOp1
verytempiparent, 10] = CLOCK(MIN)
WAIT searchtime
verytempfparent,30] = CLOCK(MIN)
FREE OutOp1

END

IF PUN = 2 THEN

BEGIN
GET OutOp2
verytempiparent, 10] = CLOCK(MIN)
WAIT searchtime

verytempfparent, 30} = CLOCK(MIN)
ND FREE OutOp2
E

IF PUN = 3 THEN
BEGIN
GET OutOp3

verytempf{parent, 10} = CLOCK(MIN)
WAIT searchtime

verytemp{parent,30] = CLOCK(MIN)
END FREE OutOp3

IF PUN =4 THEN

BEGIN
GET OutOp4

verytempiparent, 10] = CLOCK(MIN)

WAIT searchtime
verytemp{parent,30] = CLOCK(MIN)
FREE OutOp4

END

IF PUN = 5 THEN
BEGIN

GET OutOp$&

verytempiparent, 10] = CLOCK(MIN)
WAIT searchtime
verytemp{parent, 30} = CLOCK(MIN}
FREE OutOp5

END

1 Negative EXIT FIRST1
Negative Down11 WAIT WAITN
searchtime = N(3,1) + N(1,0.5) * C11

IF PUN =1 THEN

BEGIN
GET OutOp1
verytemp{parent, 11} = CLOCK(MIN)
WAIT searchtime
verytempiparent,31] = CLOCK(MIN)
FREE OutOp1

END

IF PUN =2 THEN
BEGIN
GET OutOp2
verytempiparent,11] = CLOCK(MiN)

WAIT searchtime
verytempiparent,31} = CLOCK(MIN)
FREE OutOp2

END

IF PUN = 3 THEN

BEGIN
GET OutOp3
verytempiparent, 11] = CLOCK(MIN)
WAIT searchtime
verytemp|parent, 31} = CLOCK(MIN)
FREE OutOp3

END

IF PUN = 4 THEN

BEGIN
GET OutOp4
verytemp[parent,11] = CLOCK(MIN)
WAIT gsearchtime
verytemp{parent,31] = CLOCK(MIN)
FREE OutOp4

END

IF PUN =5 THEN

BEGIN
GET OutOp5
verytemp[parem 11] = CLOCK(MIN)
WAIT searchtime
verytemp{parent, 31} = CLOCK(MIN}
FREE OutOp5

END

1 EXIT FIRST 1
Negative Down12 WAIT WAITN
searchtime = N(3,1) + N(1,0.5) * C12

IF PUN =1 THEN

BEGIN
GET OutOp1
verytemplparent, 12} = CLOCK(MIN)
WAIT searchtime
verytempiparent,32] = CLOCK(MIN)
FREE OutOp1

END

IF PUN = 2 THEN

BEGIN
GET OutOp2
verytempfparent, 12} = CLOCK(MIN)
WAIT searchtime
verytemplparent, 32} = CLOCK(MIN)

FREE OutOp2
END

IF PUN = 3 THEN

BEGIN
GET OutOp3
verytemp{parent,12] = CLOCK(MIN)
WAIT searchtime

verytempiparent,32] = CLOCK(MIN)
FREE OutOp3
END

IF PUN =4 THEN

BEGIN
GET OutOp4
verytemplparent, 12} = CLOCK(MIN)
WAIT searchtime

verytempiparent,32] = CLOCK(MIN)
FREE OutOp4

END

iF PUN =5 THEN

BEGIN
GET OutOp5
verytempiparent,12] = CLOCK(MIN)
WAIT searchtime
verytemp|parent,32] = CLOCK(MIN)
FREE OutOp5

END

1 Negative EXIT FIRST1
Negative Down13 WAIT WAITN

searchtime = N(3,1) + N(1,0.5) * C13

IF PUN = 1 THEN

BEGIN
GET OutOp1
verytempiparent, 13} = CLOCK(MIN)
WAIT searchtime
verytemp{parent,33] = CLOCK(MIN)
FREE OutOp1

END

IF PUN =2 THEN

BEGIN
GET QutOp2

verytemp{parent, 13} = CLOCK(MIN)
WAIT searchtime

33} = CLOCK(MIN)
FREE OutOp2

END

IF PUN =3 THEN

BEGIN
GET QutOp3
verytempiparent, 13} = CLOCK(MIN)
WAIT searchtime
verytempiparent,33] = CLOCK{MIN)
FREE OutOp3

END

IF PUN = 4 THEN

BEGIN
GET OutOp4
verytemp{parent, 13} = CLOCK{MIN)
WAIT searchtime
verytempiparent,33] = CLOCK(MIN)
FREE QutOp4

END

IF PUN =5 THEN

BEGIN
GET OutOpb
verytempfparent, 13} = CLOCK(MIN)
WAIT searchtime
verytemp{parent,33] = CLOCK(MIN)
FREE OutOp5

END

1 Negative EXIT FIRST 1
Negative Downl14d WAIT WAITN

searchtime = N(3,1) + N(1,0.5) * C14

IF PUN = 1 THEN

BEGIN
GET OutOp1
verytempipatent, 14] = CLOCK(MIN)
WAIT searchtime

verytempiparent,34] = CLOCK(MIN)
FREE OutOp1

END

IF PUN = 2 THEN

BEGIN
GET OutOp2
verytempiparent,14] = CLOCK(MIN)
WAIT searchtime
verytempiparent,34] = CLOCK(MIN)
FREE OutOp2

END

IF PUN = 3 THEN

BEGIN
GET CutOp3
verytempparent, 14) = CLOCK(MIN)
WAIT searchtime
verytompiparent,34] = CLOCK(MIN)

ND FREE OutOp3
E

IF PUN =4 THEN
BEGIN
GET OutOp4

verytemplparent, 14] = CLOCK(MIN)
WAIT searchtime
verytempiparent,34) = CLOCK(MIN}
FREE OutOp4

END

IF PUN =5 THEN

BEGIN
GET OutOps
verytemplparent, 14} = CLOCK(MIN)
WAIT searchtime
verytemp{parent,34] = CLOCK(MIN)

e FREE OutOp5

ND

1 Negatve EXIT FIRST1
Negative Downt5 WAIT WAITN

searchtime = N(3,1) + N(1,0.5) * C15

IF PUN = 1 THEN
BEGIN
GET OutOp1
verytempiparent,15) = CLOCK(MIN)
WAIT searchtime
verytempiparent,35] = CLOCK(MIN)
o FREE OutOp1
EN

IF PUN = 2 THEN

BEGIN
GET OutOp2
verytemp{parent, 15] = CLOCK(MIN)
WAIT searchtime
verytempiparent, 35] = CLOCK(MIN)
FREE OutOp2

END

IF PUN =3 THEN

BEGIN
GET OutOp3
verytempiparent, 15] = CLOCK(MIN)
WAIT searchtime
verytempiparent,35] = CLOCK(MIN)
FREE OutOp3

END

IF PUN = 4 THEN

BEGIN
GET OutOp4

venytempiparent, 15} = GLOCK(MIN})
WAIT searchtime
verytempiparent,35] = CLOCK(MIN)
FREE OutOp4

END

IF PUN =5 THEN
BEGIN
GET OutOp5
\aytempfparent 15] = CLOCK(MIN)
WAIT searchtime
verytemplparent, 35} = CLOCK(MIN)

FREE OutOp5
END

1 Negative EXIT FIRST 1
Negative Down16 WAIT WAITN
searchtime = N(3,1) + N(1,0.5) * C16

IF PUN = 1 THEN

BEGIN
GET OutOp1
verytemp{parent, 16] = CLOCK(MIN}
WAIT searchtime
verytempiparent,36} = CLOCK(MIN)
FREE OutOp1

END

IF PUN = 2 THEN

BEGIN
GET OutOp2
verytempiparent, 16] = CLOCK(MIN)
WAIT searchtime

,36) = CLOCK{MIN)

FREE OutOp2

END

IF PUN = 3 THEN

BEGIN
GET OutOp3

verytemp[parent 16] = CLOCK(MIN)
WAIT searchtime
verytemp{parent,36] = CLOCK(MIN)
FREE OutOp3

END

IF PUN = 4 THEN

BEGIN
GET OutOp4
verytemp{parent,16] = CLOCK(MIN)
WAIT searchtime
veryiempiparent,36] = CLOCK(MIN)
FREE OutOp4

END

IF PUN =5 THEN

BEGIN
GET OutOp5
verytempiparent, 16] = CLOCK(MIN)
WAIT searchtime
verytemp|parent,36] = CLOCK(MIN)
FREE OutOp5

END

1 Negative EXIT FIRST1
Negative Down17 WAIT WAITN
searchtime = N(3,1) + N(1,0.5) * C17

IF PUN = 1 THEN

BEGIN
GET OutOp1
verytemp[parem 17} = CLOCK(MIN)
WAIT searchtime
verytempiparent,37] = CLOCK(MIN)
FREE OutOp1

END

IF PUN = 2 THEN

BEGIN
GET OutOp2
verytempiparent, 17] = CLOCK(MIN)
WAIT searchtime
verytemplparent,37] = CLOCK(MIN)
FREE OutOp2

END

IF PUN =3 THEN

BEGIN
GET OutOp3
verytemp{parent,17] = CLOCK(MIN)
WAIT searchtime
verytemp{parent,37] = CLOCK(MIN)
FREE OutOp3

END

IF PUN =4 THEN

BEGIN
GET OutOp4
verytemp{parent, 17] = CLOCK(MIN)
WAIT searchtime
verytempfparent,37] = CLOCK(MIN;}
FREE OutOp4

END

IF PUN =5 THEN
BEGIN
GET OutOp5
verytempiparent,17] = CLOCK(MIN)
WAIT searchtime
verytemplparent,37] = CLOCK(MIN)
FREE OutOp5
END

1 Negative EXIT FIRST 1

Negative Downi8 WAIT WAITN

searchtime = N(3,1) + N(1,0.5) * C18

IF PUN =1 THEN

BEGIN
GET OutOp1
verytempiparent, 18] = CLOCK(MIN)
WAIT searchtime
verytempiparent,38] = CLOCK(MIN)
FREE OutOp1

END

IF PUN = 2 THEN

BEGIN
GET OutOp2
verytemplparent, 18] = CLOCK(MIN})
WAIT searchtime
verytempiparent,38] = CLOCK(MIN)
FREE OutOp2

END

IF PUN = 3 THEN

BEGIN
GET OutOp3
verytemp|parent, 18] = CLOCK(MIN)
WAIT searchtime

verytemplparent,38] = CLOCK{MIN)
FREE OutOp3
END

IF PUN = 4 THEN

BEGIN
GET OutOp4

verytempiparent, 18] = CLOCK(MIN)
WAIT searchtime

verytemp{parent,38] = CLOCK(MIN)

FREE OutOp4

END

iF PUN =5 THEN

BEGIN
GET OutOp5

verytemp{parent, 18] = CLOCK(MIN)
WAIT searchtime
verytemp{parent,38] = CLOCK(MIN)
FREE QutOp5

END

1 Negatve EXIT FIRST1

Negative Down1g WAIT WAITN

searchtime = N(3,1) + N(1,0.5) * C19

IF PUN =1 THEN

BEGIN
GET OutOp
verytemp[parem 19] = CLOCK(MIN)
WAIT searchtime
verytempiparent,39] = CLOCK(MIN)
FREE OutOp1

END

iIF PUN =2 THEN
BEGIN

GET OutOp2

verytempiparent,19] =

WAIT searchtime

verytemp{parent,

FREE OutOp2
END

IF PUN = 3 THEN
BEGIN
GET OutOp3

verytemplparent, 19} =

WAIT searchtime

,38] =

FREE OutOp3
END
IF PUN = 4 THEN
BEGIN

GET OutOp4

verytemp{parent, 19] =

WAIT searchtime

verytempiparent,39] =

FREE OutOp4
END

IF PUN = 5§ THEN
BEGIN
GET OutOp5

verytempiparent, 10] =

WAIT searchtime

verytempiparent,30] =

FREE OutOp5
END

1 Negative
Negative Down20 WAIT WAITN

39]=

CLOCK(MIN)
CLOCK(MIN)

CLOCK(MIN)
CLOCK(MIN)

CLOCK(MIN)
CLOCK(MIN)

CLOCK(MIN)

CLOCK(MIN)

EXIT FIRST1

searchtime = N(3,1) + N(1,0.5) * C20

IF PUN =1 THEN
BEGIN

GET OutOp1

verytempiparent, 20} =

WAIT searchtime

verytemp(parent,40] =

FREE OutOp1
END
IF PUN =2 THEN
BEGIN

GET

WAIT searchtime

t,40] =

FREE OutOp2
END
IF PUN = 3 THEN
BEGIN

GET OutOp3
verytempparent
WAIT searchtime

verytempiparent,40] =

FREE OutOp3
END
IF PUN =4 THEN
BEGIN

GET OutOp4

verytemplparent, 20} =

WAIT

END
IF PUN = 5 THEN
BEGIN

GET OutOp5

verytemp[parept,zol =

WAIT searchtime

verytempiparent 40} =

FREE OutOp5
END

OutOp2
verytempiparent,20] =

'zo]::

searchtime
verytemp{parent,40] =
FREE OutOp4

CLOCK(MIN)
CLOCK(MIN)

CLOCK(MIN)
CLOCK(MIN)

CLOCK(MIN)
CLOCK(MIN)

CLOCK(MIN)
CLOCK(MIN)

CLOCK(MIN)
CLOCK(MIN)

1

Negative
Box_Pallet Outgoing XoutfX,10] = CLOCK(MIN)
1 Box _Pallet EXIT

Bax_PalietX AmivalX WAIT ArtimeX
XoutXXX,2] = DesAX

EXIT FIRST 1

FIRST 1

INC counter7X 1 Bax_PalletX IncomingX FIRST 1

Box_PalietX incomingX GET CountX

,4] = CLOCK(MIN)

WAIT N(1,0.30)

XoutX[XX,5] = CLOCK(MIN)
CountX

FREE
CounterX = 1
SelectX =0
TempX=0
AsdVX = AsdAX
DesVX = DesAX
pxX = XX

Do

BEGIN

SelectX = SearchX[AsdVX CounterX]

TempX = SelectX + 16

IF SefectX > DesVX THEN
BEGIN
ROUTE TempX
END
IF SelectX < DesVX THEN
BEGIN
ROUTE TempX
END
INC CountterX

END
UNTIL SelectX = DesVX

ROUTE SelectX 1 PositiveX GroupiX FIRST 1 INC C1X

PositiveX
PositiveX
PositiveX
PositiveX
PositiveX
PositiveX
PositiveX
PositiveX
10 PositiveX
11 PositiveX
12 PositiveX
13 PositiveX
14 PositiveX
15 PositiveX
16 PositiveX

QONDUH WM

Group2X
Group3X
Group4X
GroupSX
Group6X
Group7X
Group8X
Group9X
Group10X
Group11X
Group12X
Group13X
Group14X
Group15X
Group16X

17" NegativeX DowniX
PUNX = PUAX

parentX = pxX

INC counter3X

18" NegativeX Down2X FIRST 1 WAITNX = WAITTIMEX
PUNX = PUAX

parentX = pxX

INC counter3X

19* NegativeX Down3X FIRST 1 WAITNX = WAITTIMEX
PUNX = PUAX

parentX = pxX

INC counter3X

20" NegativeX DowndX FIRST 1 WAITNX = WAITTIMEX
PUNX = PUAX

parentX = pxX

INC courterdX

21* NegativeX Down5X FIRST 1 WAITNX = WAITTIMEX
PUNX = PUAX

parentX = pxX

INC countex3X

22* NegativeX DownéX
PUNX = PUAX

parentX = pxX

INC counter3X

23* NegativeX Down7X FIRST 1 WAITNX = WAITTIMEX
PUNX = PUAX

parentX = pxX

FIRST 1 INC C2X
FIRST 1 INC C3X
FIRST 1 INC C4X
FIRST 1 INC C5X
FIRST 1 INC C6X
FIRST 1 INC C7X
FIRST 1 INC C8X
FIRST 1 INC C8X
FIRST 1 INC C10X
FIRST 1 INCC1X
FIRST 1 INC C12X
FIRST 1 INC C13X
FIRST 1 INC C14X
FIRST 1 INC C15X
FIRST 1 INC C16X
FIRST 1 WAITNX = WAITTIMEX

FIRST 1 WAITNX = WAITTIMEX

INC counter3X

24" NegativeX Down8X FIRST 1 WAITNX = WAITTIMEX
PUNX = PUAX
parentX = pxX
INC counter3X

25" NegativeX DownSX FIRST 1 WAITNX = WAITTIMEX
PUNX = PUAX
parentX = pxX
INC counter3X

26* NegativeX Down10X FIRST 1 WAITNX = WAITTIMEX
PUNX = PUAX
parentX = pxX
INC counter3X

27 NegativeX Down11X FIRST 1 WAITNX = WAITTIMEX
PUNX = PUAX
parentX = pxX
INC counter3X

28" NegativeX Downi12X FIRST 1 WAITNX = WAITTIMEX
PUNX = PUAX
parentX = pxX
INC counter3X

29" NegativeX Doamn13X FIRST 1 WAITNX = WAITTIMEX
PUNX = PUAX
parentX =
INC counter3X

30" NegativeX Down14X FIRST 1 WAITNX = WAITTIMEX
PUNX = PUAX
parentX = pxX
INC counter3X

31* NegativeX Down1SX FIRST 1 WAITNX = WAITTIMEX
PUNX = PUAX
parentX = pxX
INC counter3X

32* NegativeX Down16X FIRST 1 WAITNX = WAITTIMEX
PUNX = PUAX
parentX = pxX
INC counter3X

PositiveX UpiX Xout{[XX,6] = CLOCK(MIN)
WAIT WAITTIMEX
XoutXIXX,7} = CLOCK{ MIN)
1 PositiveX Outgoing FIRST 1 searchtimeX = N(3,1) + N(1,0.5) * C1X

IF PUAX =1 THEN

BEGIN

GET OutOpX1

XoutxX[XX,8] = CLOCK(MIN)

WAIT searchtimeX

XoutX[XX,9] = CLOCK(MIN)

MOVE WITH OutOpX1 THEN FREE
END
IF PUAX = 2 THEN
BEGIN

GET OutOpX2

XoutX[XX,8] = CLOCK(MIN)

WAIT searchtimeX

Xoubd@xx.9] = CLOCK(MIN)

MOVE WITH OutOpX2 THEN FREE
END
IF PUAX = 3 THEN
BEGIN

GET OutOpX3

Xoub@XxX,8] = CLOCK(MIN)

WAIT searchtimeX

XoutXPXX,9] = CLOCK({ MIN)

MOVE WITH OutOpX3 THEN FREE
END
IF PUAX =4 THEN
BEGIN

GET OutOpXx4

XoutX[XX,8] = CLOCK(MIN)

WAIT searchtimeX

9} = CLOCK{ MIN)

MOVE WITH OutOpX4 THEN FREE

END

IF PUAX = 5 THEN
BEGIN

END

DEC C1X

PositiveX Up2X XoutX[XX,6] = CLOCK(MIN)
WAIT WAITTIMEX
XoutX[XX,7} = CLOCK(MIN)

GET OutOpX5

XoutXpXX, 8] = CLOCK(MIN)

WAIT searchtimeX

XoutXXX,9] = CLOCK(MIN)

MOVE WITH OutOpX5 THEN FREE

1 PositiveX Outgoing FIRST 1 searchtimeX = N(3,1) + N(1,0.5) * C2X

IF PUAX =

BEGIN

END

IF PUAX =

BEGIN

END

IF PUAX =

BEGIN

END

IF PUAX =

BEGIN

END

IF PUAX =

BEGIN

END

DEC C2X

PositiveX Up3X XoutXIXX 6] = CLOCK(MIN)
WAIT WAITTIMEX
XoubqXX,7} = CLOCK(MIN)

1 THEN

GET OutOpX1

XoutXpXX,8] = CLOCK(MIN)

WAIT searchtimeX

XoutX[XX,9] = CLOCK(MiIN)

MOVE WITH OutOpX1 THEN FREE

2THEN

GET OutOpX2

XoutXXX,8] = CLOCK(MiN)

WAIT searchtimeX

XoutX[XX.8] = CLOCK(MIN)

MOVE WITH OutOpX2 THEN FREE

3 THEN

GET OutOpX3

XoutX[XX,8] = CLOCK(MIN)

WAIT searchtimeX

XoutX[XX,9] = CLOCK(MIN)

MOVE WITH OutOpX3 THEN FREE

4 THEN

GET OutOpx4

XoutX[XX,8} = CLOCK(MIN)

WAIT searchtimeX

XoutX[XX,9] = CLOCK(MIN)

MOVE WITH OutOpX4 THEN FREE

5 THEN

GET OutOpX5

XoutX[XX,8] = CLOCK(MIN)

WAIT searchtimeX

XoutX[XX 8] = CLOCK(MIN)

MOVE WITH OutOpX5 THEN FREE

1 PositiveX Outgoing FIRST 1 searchtimeX = N(3,1) + N(1,0.5) * C3X

IF PUAX =

BEGIN

END

IF PUAX =

BEGIN

1 THEN

GET OutOpX1

XoutX[XX.8] = CLOCK(MIN)

WAIT searchtimeX

XoubqXX,9] = CLOCK(MIN)

MOVE WITH OutOpX1 THEN FREE

2THEN

GET OutopX2

XoutX[XX,8] = CLOCK(MIN)
WAIT searchtimeX
XoutX[XX,9] = CLOCK(MIN)

MOVE WITH OutOpX2 THEN FREE

END
IF PUAX = 3 THEN
BEGIN
GET OutOpX3
XoutXPXX,8] = CLOCK(MIN)
WAIT searchtimeX
XoutXfXX,9} = CLOCK(MIN)
MOVE WITH OutOpX3 THEN FREE
END
IF PUAX = 4 THEN
BEGIN
GET OutOpX4
Xout(XX,8] = CLOCK(MIN)
WAIT searchtimeX
XoutXX,9] = CLOCK(MiN})
MOVE WITH QutOpX4 THEN FREE
END
IF PUAX =5 THEN
BEGIN
GET OutOpX5
XoutXX,8} = CLOCK(MIN)
WAIT searchtimeX
XoubXX,9] = CLOCK(MIN)
MOVE WITH OutOpX5 THEN FREE
END
DECC3X

PositiveX UpdX XoutX[XX,6] = CLOCK(MIN)
WAIT WAITTIMEX
XoubqXX,7] = CLOCK(MIN)
1 PositiveX Outgoing FIRST 1 searchtimeX = N(3,1) + N(1,0.5) * C4X

IF PUAX = 1 THEN
BEGIN

GET OutOpX1

XoutX{XX,8] = CLOCK(MIN)

WAIT searchtimeX

XoutX[XX,9) = CLOCK(MIN)

MOVE WITH OutOpX1 THEN FREE
END
IF PUAX = 2 THEN
BEGIN

GET OutOpX2

XoutX[XX.8] = CLOGK(MIN)

WAIT searchtimeX

XoutXXX 8} = CLOCK(MIN)

MOVE WITH OutOpX2 THEN FREE
END
IF PUAX =3 THEN
BEGIN

GET OutOpX3

XoutXPXX,8] = CLOCK(MIN)

WAIT searchtirneX

Xoubt{XX.8] = CLOCK(MIN)

MOVE WITH OutOpX3 THEN FREE
END
IF PUAX = 4 THEN
BEGIN

GET QutQpX4

XoutX[XX,8] = CLOCK({ MIN)

WAIT searchtimeX

XoutX[XX 9] = CLOCK(MIN)

MOVE WITH OutOpX4 THEN FREE
END
IF PUAX =5 THEN
BEGIN

GET OutOpX5

XoutX[XX 8] = CLOCK(MIN)

WAIT searchtimeX

XoutXPXX 8] = CLOCK(MIN)

MOVE WITH OutOpX5 THEN FREE
END

DEC C4X

PositivaX Up5X XoutX[XX 8] = CLOCK(MIN)
WAIT WAITTIMEX
XoutxDXX, 7} = CLOCK(MIN)

1 PositiveX Outgoing FIRST 1 searchtimeX = N(3,1) + N(1,0.5) * C&X

IF PUAX = 1 THEN
BEGIN
GET OutOpX1
XoutxPXX,8] = CLOCK(MIN)
WAIT searchtimeX
Xoutx[XX,9] = CLOCK(MIN)
MOVE WITH OutOpX1 THEN FREE
END
IF PUAX = 2 THEN
BEGIN
GET OutOpX2
XoutxX[XX,8] = CLOCK(MIN)
WAIT searchtimeX
XoutXXX 8] = CLOCK(MIN)
MOVE WITH OutOpX2 THEN FREE
END
IF PUAX =3 THEN
BEGIN

GET OutOpX3

XoutX[XX,8] = CLOCK(MIN)
WAIT searchtimeX
XoutX{XX,9] = CLOCK(MIN)

ND MOVE WITH OQutOpX3 THEN FREE
E
IF PUAX = 4 THEN
BEGIN
GET OutOpX4
XoutX[XX,8] = CLOCK(MIN)
WAIT searchtimeX
XoutXfXXx,9] = CLOCK(MIN)
EN MOVE WITH OutOpX4 THEN FREE
D
IF PUAX = 5 THEN
BEGIN
GET OutOpX5
XoutX{XX,8] = CLOCK(MIN)
WAIT searchtimeX
XoutX[XX,9] = CLOCK(MIN)
MOVE WITH OutOpX5 THEN FREE
END
DEC C5X

PositiveX UpBX XoutXPO(E] = CLOCK(MIN)
WAIT WAITTIMEX
XoubqXX,7] = CLOCK(MiN)

1 PositveX Outgoing FIRST 1 searchtimeX = N(3,1) + N(1,0.5) * C6X

IF PUAX =1 THEN
BEGIN
GET CutOpX1
XoutX[XX 8] = CLOCK(MIN)
WAIT searchtimeX
XoutX{XX.g] = CLOCK(MIN)
MOVE WITH OutOpX1 THEN FREE
END
IF PUAX =2 THEN
BEGIN
GET OutOpX2
XoutX]XX 8] = CLOCK(MIN)
WAIT searchtimeX
9] = CLOCK(MIN)
MOVE WITH OutOpX2 THEN FREE
END
IF PUAX = 3 THEN
BEGIN
GET QutOpX3
XoutXPOX 8] = CLOCK(MIN)
WAIT searchtimeX

XoutXPXX,9] = CLOCK(MiIN)

MOVE WITH OutOpX3 THEN FREE

END
IF PUAX = 4 THEN
BEGIN
GET OutOpXx4
XoutXXX,8] = CLOCK(MiN}
WAIT searchtimeX
XoutXPXX,9] = CLOCK(MIN)
£ MOVE WITH OutOpX4 THEN FREE
ND
{F PUAX = 5 THEN
BEGIN
GET OutOpX5
XoutX[XX,8) = CLOCK(MiN)
WAIT searchtimeX
XoutXpXX,8] = CLOCK(MIN)
MOVE WITH OutOpXS THEN FREE
END
DEC CeX

PositiveX Up7X Xout{XX.6} = CLOCK(MIN)
WAIT WAITTIMEX
XoutXX,7] = CLOCK(MIN)
1 PositiveX Outgoing FIRST 1 searchtimeX = N(3,1) + N(1,0.5) * C7X

IF PUAX = 1 THEN

BEGIN
GET OutOpX1
XoutX[XX,8] = CLOCK(MIN)
WAIT searchtimeX
Xoub{XX,9] = CLOCK(MIN)
MOVE WITH OutOpX1 THEN FREE
END
IF PUAX = 2 THEN
BEGIN
GET OutOpX2
XoutXJXX,8] = CLOCK(MIN)
WAIT searchtimeX
XoutXXX,9] = CLOCK(MiN)
MOVE WITH OutOpX2 THEN FREE
END
IF PUAX = 3 THEN
BEGIN
GET OutOpX3
XoutX[XX,8] = CLOCK(MIN)
WAIT searchtimeX
XoutX[XX,9] = CLOCK(MIN)
MOVE WITH OutOpX3 THEN FREE
END
IF PUAX = 4 THEN
BEGIN
GET OutOpX4
Xou@XX 8] = CLOCK(MIN}
WAIT searchtimeX
XoutXXX,9] = CLOCK(MIN)
e MOVE WITH OutOpX4 THEN FREE
ND
IF PUAX = 5 THEN
BEGIN
GET OutOpX5
XoutPXX,8] = CLOCK(MIN)
WAIT searchtimeX
XoutX[XX,9] = CLOCK(MiIN)
MOVE WITH QutOpX5 THEN FREE
END
DECC7X

PositiveX Up8X XoutX[XX.6] = CLOCK(MIN)
WAIT WAITTIMEX
XoutX[XX.7] = CLOCK(MIN)
1 PositiveX Outgoing FIRST 1 searchtimeX = N(3,1) + N(1,0.5) * C8X

IF PUAX = 1 THEN
BEGIN

GET OutOpX1
YoutXqXX,8] = CLOCK(MiN)

WAIT searchtimeX

XoutXXX,9] = CLOCK(MIN)

MOVE WITH OutOpX1 THEN FREE
END
IF PUAX =2 THEN
BEGIN

GET OutOpX2

XoutX{(XX,8] = CLOCK(MIN)

WAIT ssarchtimeX

XoutXPXX,91 = CLOCK(MIN)

MOVE WITH OutOpX2 THEN FREE
END
IF PUAX = 3 THEN
BEGIN

GET OutOpX3

XoubXX,8] = CLOCK(MIN)

WAIT searchtimeX

XoutX[XX,9] = CLOCK(MIN)

MOVE WITH OutOpX3 THEN FREE
END
IF PUAX = 4 THEN
BEGIN

GET OutOpX4

Xoutx[XX,8] = CLOCK(MIN)

WAIT searchtimeX

XoutX[XX,9] = CLOCK(MIN)

MOVE WITH OutOpX4 THEN FREE

END
IF PUAX = 5 THEN
BEGIN

GET OutOpX5

XoutXxx,8] = CLOCK(MIN)

WAIT searchtimeX

XoutXXX,9] = CLOCK(MIN)

MOVE WITH OutOpX5 THEN FREE
END
DEC C8X

PositiveX UpoX XoutX[XX.6] = CLOCK(MIN)
WAIT WAITTIMEX
XoutX[XX,7] = CLOCK(MIN)

1 PositveX Outgoing FIRST 1 searchtimeX = N(3,1) + N(1,0.5) * C9X

IF PUAX =1 THEN
BEGIN

GET OutOpX1

XoutX[XX,8] = CLOCK(MIN}

WAIT searchtimeX

XoutXpXX,9] = CLOCK(MIN)
END MOVE WITH OutOpX1 THEN FREE
IF PUAX = 2 THEN
BEGIN

GET OutOpX2

XoutXXX,8] = CLOCK(MIN)

WAIT searchtimeX

XoutqxX,9] = CLOCK(MIN)
END MOVE WITH OutOpX2 THEN FREE
IF PUAX = 3 THEN
BEGIN

GET OutOpX3

XoutXpxXX,8] = CLOCK(MIN)

WAIT searchtimeX

XoutXXX 9] = CLOCK(MIN)

MOVE WITH OutOpX3 THEN FREE
END

IF PUAX =4 THEN

BEGIN

GET OutOpX4

XoutX[XX.8] = CLOCK(MIN)
WAIT searchtimeX
XoutX[XX,9] = CLOCK(MIN)

END

MOVE WITH OutOpX4 THEN FREE

IF PUAX = 5 THEN

BEGIN

END

DEC CoX

PositiveX Up10X XoutX[XX,6] = CLOCK(MIN)
WAIT WAITTIMEX
XoutXpOK,7] = CLOCK(MIN)

1 PositiveX Outgoing FIRST 1 searchtimeX = N(3,1) + N(1,0.5) * C10X

GET OutOpX5

Xoub{XX,8] = CLOCK(MIN}

WAIT searchtimeX

Xout{XX,9] = CLOCK(MIN)

MOVE WITH QutOpX5 THEN FREE

IF PUAX =1 THEN

BEGIN
GET OutOpX1
XoutX{XX,8] = CLOCK(MiN)
WAIT searchtimexX
XoutX[XX,9] = CLOCK(MIN)
MOVE WITH OutOpX1 THEN FREE
END
IF PUAX =2 THEN
BEGIN
GET OutOpX2
XoutX[XX,8] = CLOCK(MIN)
WAIT searchtimeX
XoutXX,9] = CLOCK(MIN)
N MOVE WITH OutOpX2 THEN FREE
END
IF PUAX = 3 THEN
BEGIN
GET OutOpX3
XoutX[XX,8] = CLOCK(MIN)
WAIT searchtimeX
XoutX[XxX,9] = CLOCK(MIN)
MOVE WITH OutOpX3 THEN FREE
END
IF PUAX =4 THEN
BEGIN
GET OutOpX4
XoutX[XX,8] = CLOCK(MIN)
WAIT searchtimeX
XoutX[XX,9) = CLOCK(MiN)
MOVE WITH OutOpX4 THEN FREE
END
IF PUAX =5 THEN
BEGIN
GET OutOpX5
Xout¥[XX,8] = CLOCK(MIN)
WAIT searchtimeX
XoutX[)O(,Q] CLOCK(MIN)
VE WITH OutOpX5 THEN FREE
END
DEC C10X

PositiveX Up11X XoubqXX 6] = CLOCK(MIN)
WAIT WAITTIMEX
XoutX[XX,7] = CLOCK(MIN)

1 PositiveX Outgoing FIRST 1 searchtimeX = N(3,1) + N(1,0.5) * C11X

IF PUAX = 1 THEN

BEGIN

END

GET OutOpX1

XoutX[XX,8] = CLOCK(MIN)

WAIT searchtimeX

XoutX[XX,9] = CLOCK({ MIN)

MOVE WITH OutOpX1 THEN FREE

IF PUAX =2 THEN

BEGIN

GET OutOpX2
Xoubt{pxX,8] = CLOCK(MiN)
WAIT searchtimeX
XoutX]XX,9] = CLOCK(MIN)
- MOVE WITH OutOpX2 THEN FREE
END
IF PUAX = 3 THEN
BEGIN
GET OutOpX3
Xout{XX,8) = CLOCK(MIN)
WAIT searchtimaX
XoutX[XX,9] = CLOCK(MIN)
MOVE WITH OutOpX3 THEN FREE
END
IF PUAX =4 THEN
BEGIN
GET OutOpXx4
XoutXpxXx 8] = CLOCK(MIN)
WAIT searchtimeX
XoutXXXK, 9] = CLOCK(MIN)
MOVE WITH OutOpX4 THEN FREE
END
IF PUAX =5 THEN
BEGIN
GET OutOpX5
XoutX[XXX,8] = CLOCK(MIN)
WAIT searchtimeX
XoutX[XX,9] = CLOCK(MIN)
MOVE WITH OutOpX5 THEN FREE
END
DEC C11X
PositiveX Up12X XoutX[XX,6] = CLOCK(MIN)
WAIT WAITTIMEX

XoutX[XX,7] = CLOCK(MIN)
1 PositiveX Outgoing FIRST 1 searchtimeX = N(3,1) + N(1,0.5) * C12X

IF PUAX = 1 THEN

BEGIN
GET OutOpX1
XoutX[XX,8] = CLOCK({ MIN}
WAIT searchtimeX
XoutX[XX,9] = CLOCK({ MiN)
MOVE WITH OutOpX1 THEN FREE
END
IF PUAX =2 THEN
BEGIN
GET OutOpX2
XoutXPX 8] = CLOCK(MIN)
WAIT searchtimeX
XoutX[XX,9] = CLOCK(MIN)
o MOVE WITH OutOpX2 THEN FREE
EN|
IF PUAX = 3 THEN
BEGIN
GET OutOpX3
XoutXpXX, 8] = CLOCK(MIN)
WAIT searchtimeX
XoutX[XX 9} = CLOCK(MIN)
MOVE WITH OutOpX3 THEN FREE
END
IF PUAX = 4 THEN
BEGIN
GET OutOpx4
XoutX[XX,8] = CLOCK({ MIN)
WAIT searchtimex
XoutJXX 9] = CLOCK(MIN}
MOVE WITH OutOpX4 THEN FREE
END
IF PUAX = 5 THEN
BEGIN
GET OutOpX5
XoutX[XX 8] = CLOCK(MIN)
WAIT searchtimeX

XoutX[XX,9] = CLOCK(MIN)

END

MOVE WITH OutOpX5 THEN FREE

DEC C12X

PositiveX Up13X XoutX{XX 6] = CLOCK(MIN)
WAIT WAITTIMEX
XoutXPXX,7] = CLOCK(MIN)

1 PositiveX Outgoing FIRST 1 searchtimeX = N(3,1) + N(1,0.5) * C13X

IF PUAX = 1 THEN

BEGIN

GET OutOpX1

XoutXIXX,8] = CLOCK(MIN)

WAIT searchtimeX

XoutxX[XX,g} = CLOCK(MIN)

MOVE WITH OutOpX1 THEN FREE
END
IF PUAX = 2 THEN
BEGIN

GET OutOpX2

XoutXpXX, 8] = CLOCK(MIN)

WAIT searchtimeX

XoutX[XX,9] = CLOCK(MiN)

MOVE WITH QutOpX2 THEN FREE
END
IF PUAX = 3 THEN
BEGIN

GET OutOpX3

XoutX[XX,8] = CLOCK(MIN)

WAIT searchtimeX

XoutXjXX,8] = CLOCK(MIN)

MOVE WITH OutOpX3 THEN FREE
END
IF PUAX = 4 THEN
BEGIN

GET OutOpX4

XoutX[XX,8] = CLOCK(MIN)

WAIT searchtimeX

XoutX[XX,9] = CLOCK(MIN)

MOVE WITH OutOpX4 THEN FREE
END
IF PUAX = 5 THEN
BEGIN

GET OutOpX5

Xoutx[XX 8] = CLOCK(MIN)

WAIT searchtimeX

9] = CLOCK(MiN)

MOVE WITH OutOpX5 THEN FREE
END
DEC C13X

PositiveX Up14X XoutX[XX,6] = CLOCK(MIN)
WAIT WAITTIMEX
XoutX[XX,7] = CLOCK(MIN)

1 PositiveX Outgoing FIRST 1 searchtimeX = N(3,1) + N(1,0.5) * C14X

IF PUAX = 1 THEN

BEGIN
GET OutOpX1
XoutXIXX,8] = CLOCK(MIN)
WAIT searchtimeX
XoubqXX,9] = CLOCK(MIN)
END MOVE WITH OutOpX1 THEN FREE
IF PUAX = 2 THEN
BEGIN
GET OutOpX2
XoutX[XX,8] = CLOCK(MIN)
WAIT searchtimeX
Xout{XX.9] = CLOCK(MIN)
END MOVE WITH OutOpX2 THEN FREE

IF PUAX = 3 THEN

BEGIN

GET OutOpX3

XoutxX[xXX,8] = CLOCK(MiN})

WAIT searchtimeX

XoutqXX,9] = CLOCK(MIN)

MOVE WITH OutOpX3 THEN FREE
END
IF PUAX = 4 THEN
BEGIN

GET OutOpX4

XoutX]XX,8] = CLOCK(MIN)

WAIT searchtimeX

Xoub@XX,8] = CLOCK(MIN)

MOVE WITH OutOpX4 THEN FREE
END
IF PUAX =5 THEN
BEGIN

GET OutOpX5

XoutX[XX,8] = CLOCK(MIN)

WAIT searchtimeX

Xoutx[XX.8] = CLOCK(MIN)

MOVE WITH OutOpX5 THEN FREE
END
DEC C14X

PositiveX Up15X XoutX[XX,6] = CLOCK(MIN)
WAIT WAITTIMEX
XoutXXX,7] = CLOCK(MIN)

1 PositiveX OQutgoing FIRST 1 searchtimeX = N(3,1) + N(1,0.5) * C15X

IF PUAX = 1 THEN

BEGIN
GET OutOpX1
XoubXX.8] = CLOCK(MIN)
WAIT searchtimeX
XoutXpXX 9] = CLOCK(MIN)
o MOVE WITH OutOpX1 THEN FREE
ENI
IF PUAX = 2 THEN
BEGIN
GET
XoutX]XX 8] = CLOCK(MIN)
WAIT searchtimeX
XoutxX[XX,9] = CLOCK(MIN)
£ MOVE WITH OutOpX2 THEN FREE
ND
IF PUAX = 3 THEN
BEGIN
GET OutOpX3
XoubXX,8] = CLOCK({ MIN)
WAIT searchtimeX
" XoutXPXX, 8] = CLOCK(MIN)
MOVE WITH OutOpX3 THEN FREE
END
IF PUAX = 4 THEN
BEGIN
GET OutOpX4
XoutX[XX,8] = CLOCK(MIN)
WAIT searchtimeX
XoutXXX,9] = CLOCK(MIN)
MOVE WITH OutOpX4 THEN FREE
END
IF PUAX =5 THEN
BEGIN
GET OutOpX5
XoutX]XX,8] = CLOCK(MIN}
WAIT searchtimeX
XoubXX 9] = CLOCK(MIN)
MOVE WITH OutOpX5 THEN FREE
END
DEC C15X

PositiveX Up16X XoutX[XX 6] = CLOCK(MIN)
WAIT WAITTIMEX
XoutX[XX,7] = CLOCK(MIN)

1 PositiveX Oulgoing FIRST 1 searchtimeX = N(3,1) + N(1,0.5) * C16X
IF PUAX = 1 THEN

BEGIN

GET OutOpX1

XoutX]Xx, 8] = CLOCK(MIN)

WAIT searchtimeX

XoutXPXX,8] = CLOCK(MIN)

MOVE WITH OutOpX1 THEN FREE
END
IF PUAX =2 THEN
BEGIN

GET OutOpX2

XoutXXX 8] = CLOCK({ MIN)

WAIT searchtimeX

XoutXXX,9] = CLOCK(MiIN)

MOVE WITH OutOpX2 THEN FREE
END
IF PUAX = 3 THEN
BEGIN

GET QutOpX3

XoutXPXX. 8] = CLOCK(MIN)

WAIT searchtimeX

XoutX[XX,9] = CLOCK(MIN)

MOVE WITH OutOpX3 THEN FREE
END
IF PUAX =4 THEN
BEGIN

GET OutOpXx4

XoutxXpxX,8] = CLOCK(MIN)

WAIT searchtimeX

XoutX[XX,9] = CLOCK{ MIN)

MOVE WITH OutOpX4 THEN FREE
END
IF PUAX =5 THEN
BEGIN

ET OutOpX5

XoutXpO(,B] CLOCK(MIN)

WAIT searchtimeX

XoutX[XX,9] = CLOCK(MIN)

MOVE WITH OutOpX5 THEN FREE
END
DEC C16X

NegativeX Down1X WAIT WAITNX
searchtimeX = N(3,1) + N(1,0.5) * C1X

IF PUNX =1 THEN

BEGIN
GET OutOpX1
varytempX[parentX, 1] = CLOCK(MIN)
WAIT searchtimeX
veryternpX]parentX,17] = CLOCK(MIN)
FREE OutOpX1

END

IF PUNX = 2 THEN

BEGIN
GET OutOpX2

verytempX[parentX, 1] = CLOCK(MIN)
WAIT searchtimeX

verytempX[parertX, 17] = CLOCK(MIN)

FREE OutOpX2

END

IF PUNX = 3 THEN

BEGIN
GET OutOpX3

verytempXfparentX, 1] = CLOCK(MIN)
WAIT searchtimeX
verytempXparentX,17] = CLOCK(MIN)
FREE QutOpX3

END

IF PUNX =4 THEN
BEGIN
GET OutOpX4
verytempX[parentX, 1] = CLOCK(MiN)

WAIT searchtimeX
empX[parentX,17] = CLOCK(MIN)
FREE OutOpX4

END

IF PUNX = 5 THEN

BEGIN
GET OutOpX5
verytempXparentX, 1} = CLOCK(MIN)
WAIT searchtimeX
verytempX[parentX,17] = CLOCK(MIN)
FREE OutOpX5

END 1 NegativeX EXIT FIRST 1

NegativeX Down2X WAIT WAITNX
searchtimeX = N(3,1) + N(1,0.5) * C2X

{F PUNX = 1 THEN
BEGIN
GET OutOpX1
verytempX]parentX 2} = CLOCK(MiN)
WAIT searchtimeX
verytempX[parentX, 18] = CLOCK(MIN)
FREE OutOpX1
END

IF PUNX = 2 THEN

BEGIN
GET OutOpX2
verytempX[parentX,2] = CLOCK(MIN)
WAIT searchtimeX

empX[parentX, 18] = CLOCK(MIN)

FREE OutOpX2

END

IF PUNX = 3 THEN

BEGIN
GET OutOpX3
verytempX[parentX 2] = CLOCK(MIN)
WAIT searchtimeX
verytempX{parentX, 18] = CLOCK(MIN)
FREE OutOpX3

END
IF PUNX = 4 THEN
BEGIN
GET OutOpX4
verytempX[parentX,2] = CLOCK(MIN})
WAIT searchtimeX
verytempX{parentX, 18] = CLOCK(MIN)
ND FREE OutOpX4
E

IF PUNX = 5 THEN

BEGIN
GET OutOpX5
verytempX[parentX 2] = CLOCK(MIN)
WAIT searchtimeX '

verytempXjparentX,18} = CLOCK(MIN)
FREE OutOpX5
END 1 NegativeX EXIT FIRST 1
NegativeX Down3X WAIT WAITNX
searchtimeX = N(3,1) + N(1,0.5) * C3X

IF PUNX = 1 THEN

BEGIN
GET OutOpX1

empX[parentX,3] = CLOCK(MIN)
WAIT searchtimeX
verytempX[parentX, 19} = CLOCK{ MIN)

FREE OutOpX1

END

IF PUNX =2 THEN

BEGIN
GET OutOpXx2
verytempX(parentX,3] = CLOCK(MIN)
WAIT searchtimeX
verytempX(parentX, 19} = CLOCK(MIN)
FREE OutOpX2

END

IF PUNX = 3 THEN
BEGIN

GET OutOpX3
verytempX{parentX, 3] = CLOCK(MIN)
WAIT searchtimeX
verytempX]parentX, 19} = CLOCK(MIN)
FREE OutOpX3

END

IF PUNX =4 THEN

BEGIN
GET OutOpX4

empX{parentX, 3] = CLOCK(MIN)

WAIT searchtimeX
verytempX[parentX,19] = CLOCK(MIN)
FREE OutOpX4

END

{F PUNX = § THEN

BEGIN
GET OutOpX5
verytempX[parentX,3} = CLOCK(MIN}
WAIT searchtimeX
verytempX[parentX, 19} = CLOCK(MIN)
FREE OutOpX5

END 1 NegativeX EXIT FIRST 1

NegativeX DowndX WAIT WAITNX
searchtimeX = N{3,1) + N(1,0.5) * C4X

IF PUNX =1 THEN

BEGIN
GET OutOpX1
verytempX[parentX 4] = CLOCK(MIN)
WAIT searchtimeX

verytempX{parentX, 20} = CLOCK(MiN)
FREE OutOpX1
END

IF PUNX =2 THEN

BEGIN
GET OutOpX2
verytempX{parentX 4] = CLOCK(MIN)
WAIT searchtimeX
verytempX[parentX,20] = CLOCK(MIN)
FREE OutOpX2

END

IF PUNX =3 THEN
BEGIN
GET OutOpX3
verytempX[parentX 4] = CLOCK(MIN)
WAIT searchtimeX
verytempX[parentX,20] = CLOCK(MIN)
N FREE OutOpX3
END

IF PUNX =4 THEN
BEGIN
GET OutOpX4
4} = CLOCK(MIN)
WAIT

searchtimeX
verytempXparentX,20] = CLOCK(MIN}
END FREE QutOpX4

IF PUNX = 5 THEN

BEGIN
GET OutOpX5
verytempX[parentX 4] = CLOCK(MIN)
WAIT searchtimeX
verytempX{parentX,20] = CLOCK(MIN)

 FREE OutOpXs
END 1 NegatveX EXIT FIRST1

NegativeX Down5X WAIT WAITNX
searchtimeX = N(3,1) + N(1,0.5) * C6X

IF PUNX = 1 THEN

BEGIN
GET OQutOpX1
verytempX]parentX,5] = CLOCK(MIN)
WAIT searchtimeX

verytempXiparentX,21] = CLOCK(MIN)
FREE OutOpX1
END

IF PUNX =2 THEN

BEGIN
GET QutOpX2
verytempX[parentX,5] = CLOCK(MIN)
WAIT searchtimeX
verytempX[parentX,21] = CLOCK(MiN)
FREE OutOpX2

END

IF PUNX = 3 THEN

BEGIN
GET OutOpX3
verytempXparentX 5] = CLOCK(MIN)
WAIT searchtimeX
verytempX[parentX,21] = CLOCK(MIN)
FREE OutOpX3

END

IF PUNX = 4 THEN
BEGIN
GET OutOpX4
verytempX{parentX 5] = CLOCK(MIN)
WAIT searchtimeX
verytempX[parentX,21} = CLOCK(MIN)
FREE OutOpX4
END

IF PUNX = 5 THEN

BEGIN
GET QutOpX5
verytempX[parentX,5] = CLOCK(MIN}
WAIT searchtimeX
verytempX[parentX,21] = CLOCK(MIN)
FREE OutOpX5s

END 1 NegativeX EXIT FIRST 1

NegativeX Down6X WAIT WAITNX
searchtimeX = N(3,1) + N(1,0.5) * C6X

IF PUNX =1 THEN

BEGIN
GET OutOpX1
verytempX[parentX,6] = CLOCK(MIN)
WAIT searchtimeX
verytempXparentX, 22} = CLOCK(MiN)
FREE OutOpX1

END

IF PUNX = 2 THEN

BEGIN
GET OutOpX2
verytempXfparentX,6] = CLOCK(MIN)
WAIT searchtimeX
verytempX[parentX,22] = CLOCK(MiN)
FREE OutOpX2

END

IF PUNX = 3 THEN

BEGIN
GET OutOpX3

verytempX[parentX 6] = CLOCK({ MIN)
WAIT searchtimeX
verytempX[parentX,22] = CLOCK(MiN)
FREE QutOpX3

END

iIF PUNX =4 THEN
BEGIN
GET OutOpX4
verytempX{parentX,6] = CLOCK(MIN)

WAIT searchtimeX
verytempXfparentX,22] = CLOCK(MIN)
FREE QutOpX4

END

IF PUNX = 5 THEN
BEGIN

GET OutOpXs

verytempX[parentX,6] = CLOCK(MiN)
WAIT searchtimeX
22] = CLOCK(MIN)

verytempXparentX,
FREE OutOpXs
END 1 NegativeX EXIT FIRST 1
NegativeX Down7X WAIT WAITNX

searchtimeX = N(3,1) + N(1,0.5) * C7X

IF PUNX =1 THEN

BEGIN
GET OutOpX1

verytempX[parentX,7} = CLOCK(MIN)

WAIT searchtimeX
verytempX{parentX,23] = CLOCK(MIN}
FREE OutOpX1

END

IF PUNX =2 THEN

BEGIN
GET OutOpX2
verytempX[parentX, 7] = CLOCK(MiIN)
WAIT searchtimeX
verytempX[parentX 23] = CLOCK(MIN)
FREE OutOpX2

END

iF PUNX = 3 THEN

BEGIN
GET OutOpX3
verytempX{parentX, 7] = CLOCK(MiIN)
WAIT searchtimeX
verytempX[parentX, 23] = CLOCK(MIN)
FREE OutOpX3

END

IF PUNX =4 THEN

BEGIN
GET OutOpX4
verytempX[parentX,7] = CLOCK(MIN)
WAIT searchtimeX

verytempXparentX,23] = CLOCK(MIN)
FREE OutOpX4

END

IF PUNX =5 THEN

BEGIN
GET OutOpx5
verytempX[parentX, 7} = CLOCK(MIN)
WAIT searchtimeX
verytempX(parentX,23] = CLOCK(MIN)
FREE OutOpX5

END 1 NegativeX EXIT FIRST 1

NegativeX Down8X WAIT WAITNX
searchtimeX = N(3,1) + N(1,0.5) * C8X

IF PUNX =1 THEN

BEGIN
GET OutOpX1
veryternpX[parentX,8] = CLOCK(MIN)
WAIT searchtimeX

verytempX[parentX,24] = CLOCK(MIN)

FREE OutOpX1

END

IF PUNX =2 THEN

BEGIN
GET OutOpXx2
verytempX[parenmtX 8} = CLOCK(MIN)
WAIT searchtimeX

verytempXparentX,24] = CLOCK(MIN)

FREE QutOpX2

END

IF PUNX = 3 THEN

BEGIN
GET OutOpX3
verytempXjparentX 8] = CLOCK(MIN)
WAIT searchtimeX
verytempX[parentX,24] = CLOCK(MIN)
FREE OutOpX3

END

IF PUNX =4 THEN

BEGIN
GET OutOpXx4
verytempX[parentX,8] = CLOCK(MIN}
WAIT searchtimeX
verytempX[parentX,24] = CLOCK(MIN)

FREE OutOpX4

END
IF PUNX =5 THEN

veryternpXparentX,8] = CLOCK(MIN)
WAIT searchtimeX
veryternpXparentX,24] = CLOCK(MIN)
FREE OutOpX5
END 1 NegativeX EXIT FIRST1
NegativeX Down9X WAIT WAITNX
searchtimeX = N(3,1) + N(1,0.5) * CaX

IF PUNX = 1 THEN
BEGIN

GET QutOpX1
verytempX[parentX,9] = CLOCK(MiN)
WAIT searchtimeX
verytempX]parentX,
FREE OutOpX1

END

IF PUNX =2 THEN

BEGIN
GET OutOpX2
verytempX]parentX 9] = CLOCK(MIN)
WAIT searchtimeX
venytempX[parentX,25] = CLOCK(MIN)

ND FREE QutOpX2
E

IF PUNX = 3 THEN
BEGIN
GET QOutOpX3
verytempX[parentX 9] = CLOCK(MIN)
WAIT searchtimeX
verytempX]parentX 25] = CLOCK(MIN)
FREE OutOpX3

25} = CLOCK(MIN)

END

IF PUNX = 4 THEN

BEGIN
GET QutOpX4

verytempX[parentX,9} = CLOCK({ MIN)
WAIT searchtimeX
verytempXparentX,25] = CLOCK(MIN)
FREE OutOpX4

END

IF PUNX = 5 THEN

BEGIN
GET OutOpX5
verytempXparentX,9] = CLOCK(MIN)
WAIT searchtimeX
verytempX[parentX, 25} = CLOCK(MiN)
FREE OutOpX5

END 1 NegativeX EXIT FIRST 1

NegativeX Down10X WAIT WAITNX
searchtimeX = N(3,1) + N(1,0.5) * C10X

IF PUNX = 1 THEN

BEGIN
GET OutOpX1
verytempX[parentX, 10} = CLOCK(MIN)
WAIT searchtimeX
verytempX{parentX,26] = CLOCK{ MIN)
FREE OutOpX1

END

IF PUNX = 2 THEN
BEGIN
GET OutOpX2
verytempX[parentX,10] = CLOCK(MIN)
WAIT searchtimeX
verytempX{parentX, 26] = CLOCK(MiN)
END FREE OutOpX2

IF PUNX = 3 THEN

BEGIN
GET OutOpX3
verytempXparentX, 10} = CLOCK(MIN)
WAIT searchtimeX

verytempX{parentX,26} = CLOCK(MIN)
FREE OutOpX3
END

IF PUNX = 4 THEN
BEGIN
GET OutOpX4
XIparent)UO] CLOCK(MIN)
WAIT searcht;mex
verytempX[parentX,26] = CLOCK(MIN}
FREE OutOpX4
END
IF PUNX =5 THEN
BEGIN
GET OutOpX5
X[parentX 10} = CLOCK({ MIN)

verytemp

WAIT searchtimeX

verytemp, 26] = CLOCK(MIN)
FREE OutOpX5

END 1 NegativeX EXIT FIRST1
NegativeX Down11X WAIT WAITNX
searchtimeX = N(3,1) + N{1,0.5) * C11X

IF PUNX =1 THEN

BEGIN
GET OutOpX1
verytempXJparentX 11] = CLOCK(MIN)
WAIT searchtimeX
verytempX{parentX,27] = CLOCK(MIN)
FREE OutOpX1

END

{F PUNX =2 THEN

BEGIN
GET OutOpX2
verytempX{parentX. 11} = CLOCK(MIN)
WAIT searchtimeX
verytempX{parentX,27] = CLOCK(MiN)
FREE OutOpX2

END

IF PUNX =3 THEN

BEGIN
GET OutOpX3
verytempX[parentX,11] = CLOCK(MIN)
WAIT searchtimeX
verytempX[parentX,27] = CLOCK(MIN)

o FREE OutOpX3
EN

IF PUNX =4 THEN

BEGIN
GET OutOpX4
verytempX{parentX,11] = CLOCK(MIN)
WAIT searchtimeX
verytempXparentX,27] = CLOCK(MIN)
FREE OutOpX4

END

IF PUNX =5 THEN
BEGIN
GET OutOpX5
verytempX{parentX,11] = CLOCK(MiN)
WAIT seachtrmex
verytempX[parentX,27] = CLOCK({ MIN)
FREE QutOpX5
END 1 NegativeX EXIT FIRST 1
NegativeX Down12X WAIT WAITNX
searchtimeX = N(3,1) + N(1,0.5) * C12X

IF PUNX = 1 THEN

BEGIN
GET OutOpX1
verytempX]parentX,12] = CLOCK(MiN})
WAIT searchtimeX
verytempX{parentX,28] = CLOCK(MIN)
FREE OutOpX1

END
IF PUNX = 2 THEN
BEGIN

GET OutOpX2

empX{parentX,12] = CLOCK(MIN)

WAIT searchtimeX
verytempX[parentX,28] = CLOCK(MIN)
FREE OutOpX2

END

IF PUNX = 3 THEN

BEGIN
GET OutOpX3
verytempXparentX, 12] = CLOCK(MIN)
WAIT searchtimeX
verytempX[parentX 28] = CLOCK(MIN)
FREE OutOpX3

END

IF PUNX = 4 THEN

BEGIN
GET OutOpX4

verytempX[parentX,
WAIT searchtimeX
- verytempXparentX,28] = CLOCK(MIN)
FREE OutOpX4
END
IF PUNX = 5 THEN
BEGIN
GET OutOpX5
verytempX{parentX, 12} = CLOCK(MIN)
WAIT searchtimeX
verytempX]parentX,28] = CLOCK(MIN)
FREE OutOpX5
END 1 NegativeX EXIT FIRST 1
NegativeX Down13X WAIT WAITNX
searchtimeX = N(3,1) + N(1,0.5) * C13X

12] = CLOCK(MIN)

IF PUNX = 1 THEN

BEGIN
GET OutOpX1
verytempX[parentX, 13] = CLOCK(MiN)
WAIT searchtimeX
verytempX]parentX,29] = CLOCK(MIN)
FREE OutOpX1

END

IF PUNX =2 THEN

BEGIN
GET OutOpX2
verytempX{parentX, 13} = CLOCK(MIN)
WAIT searchtimeX
verytempXjparentX, 29} = CLOCK(MIN)
FREE OutOpX2

END

iF PUNX = 3 THEN

BEGIN
GET OutOpX3
verytempX[parentX, 13} = CLOCK(MIN)
WAIT searchtimeX
verytempX]parentX, 28] = CLOCK(MIN})
FREE OutOpX3

END

IF PUNX = 4 THEN

BEGIN
GET OutOpX4
verytempX{parentX,13] = CLOCK(MIN)
WAIT searchtimeX

verytempX[parentX,29] = CLOCK(MIN)

FREE OutOpX4

END

IF PUNX = 5 THEN

BEGIN
GET

OutOpX5
verytempXfparentX, 13] = CLOCK(MIN)

WAIT searchtimeX
29] = CLOCK(MIN)
FREE QutOpX5
END 1 NegativeX EXIT FIRST 1
NegativeX DownidX WAIT WAITNX
searchtimeX = N(3,1) + N(1,0.5) * C14X

IF PUNX = 1 THEN

BEGIN
GET OutOpX1
verytempX[parentX, 14} = CLOCK(MIN)
WAIT searchtimeX
verytempX[parentX,30] = CLOCK(MIN)
FREE OutOpX1
END
IF PUNX =2 THEN
BEGIN
GET QutOpx2
verytempX{parentX, 14] = CLOCK(MIN)
WAIT searchtimeX
verytempX{parentX,30] = CLOCK(MIN)
FREE OutOpX2
END

IF PUNX =3 THEN

BEGIN
GET OutOpX3
verytempX{parentX, 14] = CLOCK(MIN)
WAIT searchtimeX
verytempX[parentX,30} = CLOCK(MiN)
FREE OutOpX3

END

IF PUNX =4 THEN

BEGIN
GET OutOpX4
varytempX{parentX, 14] = CLOCK(MIN})
WAIT searchtimeX
verytempX]parentX, 30} = CLOCK(MiN)
FREE OutOpXx4

END

IF PUNX =5 THEN

BEGIN
GET OutOpX5
verytempX{parentX, 14] = CLOCK({ MIN)
WAIT searchtimeX
verytempX{parentX,30] = CLOCK(MIN)
FREE OutOpX5

END 1 NegativeX EXIT FIRST 1

NegativeX Downi15X WAIT WAITNX
searchtimeX = N(3,1) + N(1,0.5) * C15X

IF PUNX =1 THEN
BEGIN

GET OutOpX1
15] = CLOCK({ MIN)
WAIT searchtimeX
verytempX{parentX,31] = CLOCK(MIN)
FREE OutOpX1
END

IF PUNX =2 THEN

BEGIN
GET OutOpX2

verytempX[parentX, 15} = CLOCK(MIN)
WAIT searchtimeX
verytempX{parentX,31] = CLOCK(MIN)
FREE OutOpX2

END

IF PUNX =3 THEN

BEGIN
GET OutOpX3
verytempX[parentX, 15} = CLOCK(MiN)
WAIT searchtimeX
verytempX]parentX,31} = CLOCK(MIN)

EN FREE OutOp)(3

D

IF PUNX = 4 THEN

BEGIN
GET OutOpX4
verytempX{parentX, 15] = CLOCK(MIN)
WAIT searchtimeX
verytempX]parentX,31] = CLOCK(MIN)
FREE OutOpX4

END

IF PUNX = 5 THEN

BEGIN

GET OutOpX5

verytempXiparentX, 15] = CLOCK(MIN)

WAIT searchtimeX
verytempX{parentX,31] = CLOCK(MIN)
FREE OutOpX5

END 1 NegativeX EXIT

NegativeX Down16X WAIT WAITNX

PositiveX
PositiveX
PositiveX
PositiveX
PositiveX
PositiveX
PositiveX
PositiveX
PositiveX
PositiveX
PositiveX
PaositivaX
PositiveX
PositiveX

searchtimeX = N(3,1) + N(1,0.5) * C16X

IF PUNX =1 THEN
BEGIN

GET OutOpX1

FIRST 1

X[parentX, 16] = CLOCK(MiN)

verytemp,
WAIT searchtimeX

veryternpX{parentX,32) = CLOCK({ MiN)

FREE OutOpX1
END
IF PUNX =2 THEN
BEGIN

GET OutOpXx2

WMPMW] CLOCK(MiN)

WAIT searchtimeX

verytempX{parentX,32] = CLOCK(MIN)

FREE OutOpX2
END

IF PUNX =3 THEN
BEGIN
GET

parentX,16] = CLOCK(MiN)

verytempX]
WAIT searchtimeX

X[parentX,32] = CLOCK(MiN)

verytemp.

FREE OutOpX3
END
IF PUNX = 4 THEN
BEGIN

GET OutOpX4

verytempX{parentX, 16] = CLOCK(MiN)

WAIT searchtimeX

empX]parentX,32] = CLOCK(MIN)

venyt

FREE OutOpX4
END
IF PUNX =5 THEN
BEGIN

GET OutOpX5

veryternpX[parentX,16] = CLOCK(MIN)

WAIT searchtimeX

verytempX{parentX,32] = CLOCK(MIN)

FREE QutOpX5
END 1 NegativeX EXIT
Qutgoing XoutX[XX,10] = CLOCK(MIN)

FIRST 1

1 PositiveX EXIT FIRST1

GroupiX gmX = QuantityX{counter5X, 1]
GROUP grpX as TruckloadX

Group2X grpX = QuantityXcounter5X, 1}
GROUP grpX as TruckloadX

Group3X gmpX = QuantityX[courterSX, 1]
GROUP grpX as TruckdoadX

GroupdX grpX = QuantityX[counter5X 1]
GROUP grpX as TruckloadX

Group5X grpX = QuantityX{counter5X,1]
GROUP grpX as TruckioadX

Group6X grmpX = QuantityX[counterSX, 1]
GROUP grpX as TruckloadX

Group7X grpX = QuantityX[counterSX,1]
GROUP grpX as TruckioadX

Group8X gmpX = QuantityX[counterSX, 1}
GROUP grpX as TruckioadX

GroupdX grpX = QuantityXjcountersX, 1]
GROUP grpX as TruckioadX

Group10X grpX = QuantityXcounter5X,1}
GROUP grpX as TruckdoadX

Group11X grpX = QuantityX[counterSX,1}
GROUP gmpX as TrucidoadX

Group12X gmpX = QuantityX[counter5X, 1}
GROUP grpX as TruckloadX

Group13X grpX = QuantityX{counter5X,1}

GROUP grpX as TruckloadX
PositiveX Group14X grpX = QuantityX{counterSX, 1}
GROUP grpX as TrucklcadX
PositiveX Group15X grpX = QuantityX{countersX, 1]
GROUP grpX as TruckloadX
PositiveX Group16X grpX = QuantityX{counter5X,1}

GROUP grpX as Tru

TruckioadX GroupiX
TruckloadX Group2X
TruckicadX Group3X
TruckioadX Group4X
TrucidoadX Group5X
TruckloadX Group6X
TruckicadX Group?X
TruckioadX Group8X
TruckloadX Group9X

TruckloadX Group10X

TruckioadX Groupt1X

TruckicadX Group12X

TruckicadX Group13X

TruckloadX Group14X

TruckloadX Group15X

TruckloadX Group16X

TruckioadX Up1X
TruckioadX Up2X
TruckicadX Up3X
TruckdoadX Up4X
TruckicadX UpSX
TruckicadX Up6X
TruckioadX Up7X
TruckloadX Up8X
TruckloadX UpSX
TruckloadX Up10X
TruckicadX Up11X
TruckloadX Up12X
TruckloadX Up13X
TruckioadX Up14X
TruckioadX Up15X
TruckioadX Up16X
Truck Pickup
BEGIN

holdno = Quantityfunit2,1]

UNGROUP
UNGROUP
UNGROUP
UNGROUP
UNGROUP
UNGROUP
UNGROUP
UNGROUP
UNGROUP
UNGROUP
UNGROUP
UNGROUP
UNGROUP
UNGROUP
UNGROUP
UNGROUP

LOAD holdno

ROUTE
END
ELSE
BEGIN
ROUTE
END

1

2

1 Truck

1
1
1

{F unit2 < 123 THEN

TruckloadX Up1X
TruckdoadX Up2X
TruckioadX Up3X
TruckloadX Up4X
TruckloadX UpSX
TruckloadX Up6X
TruckloadX Up7X
TruckdoadX Up8X
TruckioadX UpeX
TruckicadX Up10X
TruckloadX Up11X
TruckloadX Up12X
TruckioadX Up13X
TruckioadX Up14X
TruckioadX Up15X
TruckloadX Up16X

Up1

FIRST 1 INC counter5X
MOVE WITH InOpX THEN FREE
FIRST 1 INC counterSX
MOVE WITH InOpX THEN FREE
FIRST 1 INC counter5X
MOVE WITH InOpX THEN FREE
FIRST 1 INC counterSX
MOVE WITH InOpX THEN FREE
FIRST 1 INC counter5X
MOVE WITH InOpX THEN FREE
FIRST 1 INC counterSX
MOVE WITH InOpX THEN FREE
FIRST 1 INC counterbX
MOVE WITH InOpX THEN FREE
FIRST 1 INC counterSX
MOVE WITH InOpX THEN FREE
FIRST 1 INC counter5X
MOVE WITH InOpX THEN FREE
FIRST 1 INC counter5X
MOVE WITH InOpX THEN FREE
FIRST 1 INC counterSX
MOVE WITH inOpX THEN FREE
FIRST 1 INC counter5X
MOVE WITH InOpX THEN FREE
FIRST 1 INC counter5X
MOVE WITH InOpX THEN FREE
FIRST 1 INC counterSX
MOVE WITH InOpX THEN FREE
FIRST 1 INC counter5X
MOVE WITH InOpX THEN FREE
FIRST 1 INC counterSX
MOVE WITH InOpX THEN FREE

FIRST 1 INC unit2

MOVE WITH Driver THEN FREE
2 Truck EXIT FIRST 1
Up1 UNLOAD Q1
INC C1, Q1
Up2 UNLOAD Q2
iNC C2, Q2 1 Truck
Up3 UNLOADQ3
INC C3,Q3 1
Upd UNLOAD Q4
INC C4, Q4

Truck

1 Truck Up2 FIRST 1 MOVE WITH Driver THEN FREE

FIRST 1 MOVE WITH Driver THEN FREE

Truck

Truck

Truck Up4 FIRST 1 MOVE WITH Driver THEN FREE

UpS

Truck

1 Truek FIRST 1 MOVE WITH Driver THEN FREE

Truck Up5 UNLOAD QS

INC C5, Q5 1 Truck UpS FIRST1 MOVE WITH Driver THEN FREE
Truck Upé UNLOAD Q6
INC C8, Q6 1 Truck Up7 FIRST 1 MOVE WITH Driver THEN FREE
Truck Up7 UNLOAD Q7
INC C7, Q7 1 Truck Up8 FIRST1 MOVE WITH Driver THEN FREE
Truck Up8 UNLOAD Q8
INC C8, Q8 1 Truck Up9 FIRST 1 MOVE WITH Driver THEN FREE
Truck UpS UNLOAD Q9
INC C9, Q9 1 Truck Up10 FIRST 1 MOVE WITH Driver THEN FREE
Truck Up10 UNLOAD Q10
INCC10,Q10 1 Truck Up13 FIRST 1 MOVE WITH Driver THEN FREE
Truck Up13 UNLOAD Q13
INCC13,Q13 1 Truck Up12 FIRST 1 MOVE WITH Driver THEN FREE
Truck Upi2 UNLOAD Q12
INCC12,Q12 1 Truck Uptt FIRST 1 MOVE WITH Driver THEN FREE
Truck Upt1 UNLOAD Q11
INCC11,Q11 1 Truck Up14 FIRST 1 MOVE WITH Driver THEN FREE
Truck Up14 UNLOAD Q14
INCC14,Q14 1 Truck Up15 FIRST 1 MOVE WITH Driver THEN FREE
Truck Upi5 UNLOAD Q15
INCC15,Q15 1 Truck Up16 FIRST 1 MOVE WITH Driver THEN FREE
Truck Up16 UNLOAD Q16
INCC16,Q16 1 Truck Upi7 FIRST 1 MOVE WITH Driver THEN FREE
Truck Upi7 UNLOAD Q17
INCC17.Q17 1 Truck Upi8 FIRST 1 MOVE WITH Driver THEN FREE
Truck Upi8 UNLOAD Q18
INCC18, Q18 1 Truck Up19 FIRST 1 MOVE WITH Driver THEN FREE
Truck Up19 UNLOAD Q19
INCC19, Q19 1 Truck Up20 FIRST 1 MOVE WITH Driver THEN FREE
Truck Up20 UNLOAD Q20
INCC20,Q20 1 Truck Pickup FIRST1 Q1=0
Q2=0
Q3=0
Q4=0
Q5=0
Q6=0
Q7=0
Q8=0
Qs=0
Q10=0
Q11=0
Q12=0
Q13=0
Q14=0
Q15=0
Q18=0
Q17=0
Q18=0
Q19=0
Q20=0
MOVE WITH Driver THEN FREE
. Arrivals .

Entity Location Qty each First Time Occurrences Frequency Logic

Box_Patiet Arrival 1

0

Box_PalletX AmrivalX 1

1000

0.0t

Quan = Assign[Unit,3]
GQ = Assign{Unit 4]
Artime = Assign[Unit,5]
DesA = Assign{Unit,2)
X = Unit

AsdA = Assign{Unit, 1]

WAITTIME = N(1000,300)
WorkT = WAITTIME
PUA =PU()

Xout[X,1] = AsdA

= DesA

Xout[X.2]
Xout[X.3] = WAITTIME
INC Unit
0.01 AsdAX = AssignX[UnitX 1]

15 400

DesAX = AssignX[UnitX,2]
QuanX = AssigrUnitX 3]
GQX = AssignX[UnitX,3]
AstimeX = AssignX{UnitX,5]
XX = UnitX

WAITTIMEX = N{400,100)
WorkTX = WAITTIMEX

PUAX = PUX()
INC UnitX
Xoubt{PX, 3] = WAITTIMEX
XoutXPXX, 1] = AsdAX
Truck Pickup 1 0 1 1
* Aftributes *
D Type Classification
AsdA Integer Entity
DesA indeger Entity
Quan infeger Entity
GQ Integer Entity
Atime Integer Entity
WAITTIME Real Entity
WAITN Real Entity
AsdAX Integer Entity
DesAX Integer Entity
QuanX Integer Entity
GQxX Integer Entity
ArtimeX Integer Entity
WAITTIMEX Real Entity
WAITNX Read Entity
PUA Integer Entity
PUAX Integer Entity
PUN Integer Entity
PUNX Integer Entity
X Integer Entity
XX integer Entity
parent integer Entity
parentX integer Entity
* Varizbles (giobal) *
1D Type Initial value Stats
AsdV Integer O Time Series
DesV Integer 0 Time Series
Counter Integer © Time Series
Select infeger O Time Series
Temp Integer O Time Series
Unit intfeger 1 Time Series
unitz integer 1 Time Series
C1 Integer O Time Series
C2 integer 0 Time Sevies
Cc3 integer 0 Time Series
Cc4 Integer O Time Series
CS Integer 0O Time Series
C6 Integer 0 Time Series
C7 Integer O Time Series
c8 Integer O Time Series
co integer O Time Series
cio Integer 0O Time Series
ci integer O Time Series
Ci2 integer O Time Series
C13 Integer O Time Series

C14 integer O Time Series
Cc15 Integer O Time Series
c16 integer 0 Time Series
c17 integer O Time Series
Cc18 integer O Time Series
c19 Integer O Time Series
c20 Integer O Time Series
counter2 Integer 1 Time Series
2000 Integer O Time Series
WorkT Real] Time Series
counterd Integer 1 Time Series
counterd Integer 1 Time Series
counter5 Integer 1 Time Series
grp iteger O Time Series
hoidno Integer O Time Series
AsdvVX integer O Time Series
DesVX Integer O Time Series
CounterX integer O Time Series
SelectX Infeger O Time Series
TempX Integer O Time Series
UnitX Integer 1 Time Series
c1X Integer © Time Series
c2X integer O Time Series
C3X integer O Time Series
cax integer 0 Time Series
CsX Integer 0O Time Series
ceX Integer O Time Series
C7X integer © Time Series
(02214 integer O Time Series
cex Integer O Tire Series
C10X Integer O Time Series
C11X Integer O Time Series
C12X Integer © Time Series
C13X integer O Time Series
C14X integer O Time Series
C15X Integer O Time Series
C16X Integer O Time Series
counter2X Integer 1 Time Series
300X Integer O Time Series
WorkTX Real 4] Time Series
counter3X Integer 1 Time Series
counterdX Integer 1 Time Series
counter5X integer 1 Time Series
counter7X integer 1 Time Series
grpx Integer O Time Series
Qs Infeger O Time Series
Q2 Integer O Time Series
Q3 Integer 0 Time Series
Q4 Integer © Time Series
Q5 integer O Time Series
Qb6 integer 0 Time Series
Q7 Integer O Time Series
Q8 Integer O Time Series
Q9 Integer 0O Time Series
Q10 Integer O Time Series
Q1 integer 0 Time Series
Q12 Integer O Time Series
Q13 Integer O Time Series
Q14 Integer O Time Series
Q15 Integer © Time Series
Q18 integer O Time Series
Q17 Integer @ Time Series
Q18 integer 0O Time Series
Q19 Integer 0 Time Series
Q20 Integer 0 Time Series
Searchtime Real 0 Time Series
SearchtimeX Real 0 Time Series
px Integer 0 Time Series

1D Dimensions Type

