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Abstract

The face inversion effect has been widely documented as an effect of the uniqueness
of face processing. Using a computational model, we show that the face inversion
effect is a byproduct of expertise with respect to the face object class. In simulations
using HMAX, a hierarchical, shape based model, we show that the magnitude of the
inversion effect is a function of the specificity of the representation. Using many,
sharply tuned units, an "expert" has a large inversion effect. On the other hand, if
fewer, broadly tuned units are used, the expertise is lost, and this "novice" has a small
inversion effect. As the size of the inversion effect is a product of the representation,
not the object class, given the right training we can create experts and novices in
any object class. Using the same representations as with faces, we create experts and
novices for cars. We also measure the feasibility of a view-based model for recognition
of rotated objects using HMAX. Using faces, we show that transfer of learning to novel
views is possible. Given only one training view, the view-based model can recognize
a face at a new orientation via interpolation from the views to which it had been
tuned. Although the model can generalize well to upright faces, inverted faces yield
poor performance because the features change differently under rotation.
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Chapter 1

Introduction

Object recognition is of vital necessity to animals, and face recognition is one of the

most important subsets of object recognition. It has been hypthesized that faces are

special, and the notion of special can be divided into two parts. The first argues that a

specific region of the visual cortex is devoted to faces, while the second posits a unique

computational mechanism inherent in face processing. Prosopagnosia could be the

result of the impairment of a specific region of the brain, giving credence that there

exists a face region within the visual cortex. A large face inversion effect provides the

evidence for a specific mechanism for processing faces. In comparison to recognition

of other classes of visual stimuli, multiple studies have shown that face recognition is

disproportionately impaired by vertical stimulus inversion[3, 4, 30]. Here, we confine

ourselves to addressing the question of whether face processing is special, hence we

investigate the face inversion effect in detail.

1.1 The effect of inversion on recognition memory

for faces

In studying faces, inverted faces are an ideal stimulus for use in experiments. Inverted

faces are equally as complex as their upright counterparts, but subjects have no

experience with them. One of the first to exploit this to try to learn about face
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recognition was Yin[30]. In his experiment, he tested recognition of faces and other

classes of objects that are usually only seen in one orientation, such as houses and

airplanes. Both upright and inverted images were presented. For upright stimuli, faces

had the highest performance, but the inverted faces were the most difficult stimuli to

recognize. He found that inversion affects face recognition disproportionately relative

to the other classes of objects that he tested. Because of the similar complexity of

the different object classes involved, he thought that the large inversion effect was a

sign that faces were different.

In a recognition task involving upright faces, inverted faces, or other objects such

as houses, upright face recognition was found to be most sensitive to the disruption

of the configuration of features[8]. This is known as holistic or configural processing.

Configural features are relationships between features of an object; an example would

be the distance between the eyes, if we make the assumption that the eyes are features.

With face inversion, relationships like "on top of' becomes "underneath", and "left

of' becomes "right of'. Different from the idea of configural information is that of

featural information. Feature based information does not use relationships between

features, but rather analyzes each part of the image individually. No one is sure what

constitutes a facial feature, but one can still think about featural information as the

presence or absence of some of these features. Both configural and featural recognition

systems work in parallel in any discrimination task. Although Yin could not trace the

origins of the large inversion effect, he found a clue from verbal reports of subjects

after their experiments. They reported using two different strategies to remember

the images, the first was to look for a distinguishing feature, and the second to get a

general impression of the whole picture. The former was used for all objects but faces,

while the latter was used only in faces. Despite this, they reported being unable to

use the second strategy for the inverted face. This suggests that faces are recognized

as single complex wholes, without decomposition into separately represented parts[7].

Going against this, there is some evidence that a disproportionate effect of inver-

sion is not found in a face-matching task. Valentine[26] did not find a differential

effect of orientation upon matching faces and houses in a 'mental rotation' procedure

14



using sequential presentation. When thinking about recognition experiments, the role

of perception and the role of memory must be separated. Therefore, it is possible

that the disproportionate effect of inversion only emerges when the task involves rec-

ognizing a face as one stored in memory. Also, Valentine and Bruce[27] examined the

effect of inversion upon recognition of classes of faces which differ in their familiarity -

own- and other-race faces. It was argued that two races of faces will be approximately

equated on all properties except familiarity. Therefore, if the greater familiarity with

recognizing faces causes the disproportionate effect of inversion, recognition of own

race faces should show a larger effect of inversion than recognition of other race-faces.

In fact the opposite interaction was obtained.

Although the disproportionate inversion effect inherent to faces is undeniable, its

cause does not lie in the nature of the face stimulus. Rather, we think that the inver-

sion effect observed with faces is a product of expertise. The magnitude of inversion

effect is a function of the tightness of the tuning to a given object class. People are

very familiar with faces, and we call a group that is familiar with an object class

expert. On the other hand, people are novices with respect to other object classes, as

they are less familiar with those stimuli. The HMAX model is used to synthetically

create different representations for faces that have varying specificity. Using identical

stimuli, we show how these different representations yield differing inversion effects

with faces. To strengthen this point, we show that this result generalizes to other

object classes as well.

1.2 Learning and Generalization

Apart from analyzing the way in which faces are processed and investigating whether

this method is special, we can also use the HMAX model to study learning in the visual

system. A recognition system needs not only recognize a given object in one form,

but under all possible transformations. For example, rotation or facial expression can

change some or all of the features of a face to varying degrees. It is unlikely that a

separate "grandmother cell" for each of these manifestations of the same image exists

15



because of the huge number of necessary cells this would require.

This problem can be solved by creating a network that is capable of learning,

effectively reducing the number of units needed to recognize any one object. We

hypothesize that this network is view-based, meaning that only a small amount of

feature configurations for a given object need to be stored. The memory of any one

face is represented implicitly by a population of faces rotated at different angles[22]. If

such a network were tuned to a set of representative views of some prototype faces, it

could interpolate to recognize test faces presented at a novel orientation. This model

should be able to generalize from a single training view of a face to novel views. Also,

this generalization should be possible for any object class whose members share a

3D structure. We create such a model using HMAX and show that these types of

learning and generalization can occur for upright face stimuli.

16



Chapter 2

Methods

2.1 The HMAX Model

The HMAX model has been described elsewhere[21], and on the WWW[10], but a

description of its structure and functionality will be briefly given here. The input to

the model is a square array of grayscale pixels, and its output is a variable number of

view tuned units(VTUs). The computation is arranged hierarchically, and the levels

from bottom to top are known as Si, C1, S2, C2, and the VTU level.

The Si units are the lowest level, and they receive the image in its raw form. The

S1 units are dense(there is one at every pixel of image), and each is a Gaussian filter,

in particular the second derivative with respect to the horizontal axis of a Gaussian.

These Gaussian filters are square-normalized to one and sum-normalized to zero.

These filters come in sizes varying from 7 x 7 to 29 x 29 squares, in increments of 2

pixels, and at orientations of 0, 45, 90, and 135 degrees. At each pixel, there exists

every type of filter in terms of size and orientation. The output of each of these filters

is the convolution(dot-product) of the filter patch with the fraction of stimulus with

which it overlaps. Thus, these activations have values between -1 and 1, and the

model takes the absolute value to force these responses between 0 and 1.

Moving up the hierarchy, the Si cells feed into the C1 layer. CI cells are divided

into scale bands, and these scale bands reflect which Si cells are fed into any given

C1 cell. The four scale bands are filters of size 7-9, 11-15, 17-21, and 23-29, so a CI

17
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cell in the first scale band only accepts input from S1 filters of size 7 or 9. One C1

cell pools over all S1 cells in its scale band that are in its vicinity, or pooling region.

These pooling regions also change size with scale band, and are 4, 6, 9, and 12,

respectively. Additionally, each C1 cell only pools over S1 cells with filters oriented in

only one direction. The pooling that is done is a maximum operation. For example,

the smallest scale band has S1 filters that are 7 x 7 and the 9 x 9. One specific C1

cell takes the maximum of all S1 cells oriented at 0 degrees in the smallest scale band

in a 4 x 4 square. Thus, for each pooling region within a given scale band, there are

4 C1 cell types. C1 cells are not dense like the S1 layer, and the spacing of the C1

cells is given by the overlap parameter. In our simulations a value of 2 was used,

meaning that half of the S1 units feeding into a C1 unit were also used as input for

the adjacent C1 unit in each direction.

The S2 level is next, and these S2 cells do a combination of C1 cells from a

given scale band. S2 cells group over 4 adjacent, nonoverlapping C1 cells arranged in

a square. In this context, nonoverlapping means these C1 cells all had pooled over

distinct, different S1 cells. There are 256 different types of S2 units in each filter band,

which correspond to the 44 possible arrangements of C1 units. The S2 activations

are computed by finding the distance of the C1 activations from the S2 target, and

then exponentiating the result. We use 1 as the S2 target, so the output of this level

ranges between e- 4 and 1.

These S2 activations are then passed on to the C2 cells. These cells pool over all

of space, and over all scale bands. Each C2 unit pools(takes the maximum) over all

S2 units of a given type. Pooling these S2 cells into one C2 cell thus achieves position

and size invariance. There are 256 of these C2 units as well, one for each S2 filter

type.

C2 units are input to the view-tuned units (VTUs), known as such because they

are tuned to a two-dimensional view of a three-dimensional object. The C2 -+ VTU

connection is the stage of the standard HMAX model where learning occurs, and all

lower units in the standard HMAX model have no learning capabilities. A single

VTU unit is tuned to a stimulus by selecting the activities of some or all of the
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C2 units in response to that stimulus. This vector serves as the center of a 256-

dimensional Gaussian response function. If a test face's C2 activation pattern exactly

matches the C2 activation pattern evoked by the training stimulus, the response

reaches its maximal value, 1. These VTUs form a radial basis function(RBF) network,

a neural network approached by viewing the design as a curve fitting problem in high

dimensional space. Learning is equivalent to finding a multidimensional function that

provides a best fit to the training data. Within this RBF, we can vary the number

of VTUs that we use, the standard deviation of the Gaussian, and the number of C2

afferents fed into the RBF.

The above describes the standard HMAX model; another variation involves chang-

ing the S2 targets to allow for perceptual learning at the S2 level, as motivated by

Serre et al[23]. Standard HMAX has been shown to capture the shape tuning and in-

variance properties from physiological experiments, but fails in natural images. The

low specificity of the hardwired C2 feature set yields units that do not show any

particular tuning for faces versus background. To combat this, a layer of perceptual

learning is added at the S2 level, substituting for the original targets. Specifically,

these new S2 targets are clustered C1 activations, where the C1 cells have been stimu-

lated by a face. Patches of these clustered C2 activations are chosen at random. Some

examples of these learned S2 targets are shown in figure 2-2. With this addition, there

is now learning at two different levels of the HMAX model.

Figure 2-2: More reasonable 5 x 5 S2 targets. Ellipses on top of the filters allow for
better visualization.

20



2.2 Stimuli

For stimuli to be used in the recognition task and as RBF centers for VTU units, we

used grayscale faces that were 128 x 128 pixels. There were 182 distinct faces that

served as VTU units, and an additional 18 faces for stimuli. These 18 faces were mor-

phed with each other. Morphed faces are especially useful for recognition experiments

for one can quantify the similarity between two different faces, and hence the relative

difficulty of the recognition task at hand. The face morphing was implemented using

software developed by Vetter et al[28]. Examples of some face VTU units and some

face morphs are given in figure 2-3.

Figure 2-3: The top line are some examples of faces to which the VTU units are
tuned. The bottom line moves moves along a morphline, where the two prototype
faces are on the outside. For example, the fourth face(the third morph) is a mixture
of 70% of the face on the far left and 30% of the face on the far right.

Cars were used as alternative stimulus to faces, and this morphing software was

developed by Shelton[24]. These stimuli were 128 x 128 pixels as in the face simulation,

but here we had only 13 cars to be used in VTU units. Also, there were 8 prototype

cars, each morphed with every other, yielding 56 distinct car morphs. Some examples

of these can be found in figure 2-4.
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Figure 2-4: Some car stimuli used. The top line are cars used in VTUs, the bottom
moves along a morphline.
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Chapter 3

Face Inversion Effect as a Result of

Expertise in a Shape Based Model

As discussed in chapter 1, faces have been thought of as special due to their dis-

proportionate inversion effect and because of prosopagnosic patients. In a landmark

paper[4], Carey and Diamond sought to show that faces were special, they were not

in a class all their own. They tested out their theory on a different class of objects

than faces, that of dogs. As subjects, they used dog show judges, experts in both the

dog and face object classes. The control group was regular college students, who were

allegedly experts on faces, but not on dogs. For each object class, the experiment

consisted of a training phase, in which subjects were told to remember items, and

a test phase, in which subjects underwent a forced-choice recognition task. Results

from their experiment are given in figure 3-1. The dog experts clearly have a large

inversion effect for faces and dogs, whereas the students only had the large inversion

effect with faces. Subjects having a large inversion effect are known as experts in a

specific object class, whereas subjects showing a small inversion effect are known as

novices. These designations are due to hypotheses regarding the cause of the inversion

effect.

They argued that the large effect of inversion on face recognition is a result of the

major role of relational distinguishing features. They posit that the large inversion

effect is a product of three conditions being met. First, members of the object class
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Figure 3-1: Performance of experts(dog show judges) and novices(college students)
on faces and dogs presented upright and inverted. Novices(S) were given a small set
size on dogs, whereas novices(L) were given the same large set size as were experts.

must share a configuration, or first-order relational properties. Second, observers must

be able to use second-order relational features to individuate members of the given

object class. Second-order relational properties are the relations among elements that

define the shared configuration. In all faces, the first-order configuration is the same;

for example, the nose is always above the lips. People are forced to discriminate

between faces by using second-order properties. On the other hand, houses may have

the garage towards the left or the right of the front door, so first-order properties

are sufficient for discrimination. With this criterion necessary, it is impossible for

landscapes or houses to have a large inversion effect because they can be individuated

via first-order relational properties. Last, subjects must have the expertise to exploit

these second-order features. Because of their familiarity with dogs, their dog show

judges possess expertise on the dog object class. Also, dogs require second-order

relational features for recognition. This explains why there is a large inversion effect

there as given in figure 3-1.
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This argument can account for their observations, but there is a far simpler way

to explain their data. It is unlikely that there is a special mechanism that is used in

face processing. We think that the large inversion effect inherent in face recognition

is purely due to the tuning of the computational units involved in recognition. That

is, the inversion effect is due to the parameter settings in the computation, but the

methodology and architecture that is used is identical. People have more training

and more experience with faces than with any other object class, and consequently in

face recognition many, sharply tuned units are used. With these specific view units,

a large inversion effect is observed.

This effect is displayed quite nicely in figure 3-2. In that figure, activations for

an expert, with many, sharply tuned units are compared to those of a novice with

fewer, broadly tuned units. Looking at the plot on the left, the performance for the
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Figure 3-2: Moving along a morphline for an expert and a novice. This is the activa-
tion of one VTU unit. We start with the face to which the VTU was tuned(resulting
in upright performance=1), then slowly move away from that face.

expert falls off at a far sharper rate than that of the novice. Both expert and novice

are tuned to the same face, but the expert is more tightly tuned. The difference in

activations between the prototype face and one 5 morph units away is much bigger

for the expert than the novice. Thus, in a recognition task, the expert would function

25



better because there is a large difference in the activations of the two faces. On the

other hand, on inverted faces, the expert's activation curve changes such that the

difference in activations between prototype and morph is small. The result is a huge

drop in performance on inverted faces for an expert. The novice behaves differently.

The difference in activations of prototype and morph is almost the same for upright

and inverted faces, yielding a small inversion effect. It is very important to realize that

the responses of these cells are based purely on shape, with no face-specific processing.

Had another stimulus been artificially created possessing the same features as the test

face, the unit would have responded in the same way because of their identical C2

activations.

In our simulations, we test this hypothesis by running simulations using the

HMAX model. We can create experts and novices in recognition of any object class

by varying the parameters of our model accordingly. Thus, even though people are

well tuned to faces(hence, experts) we can create face experts or face novices using

our model. As described above, training using a few, broadly tuned units would

constitute a novice, while training with many, finely tuned units would characterize

an expert. By recognizing faces in these two different ways, we show that the faces

themselves are not what is special in face processing. Rather, it is the way in which

the processing units are tuned to faces that is their special quality. Furthermore, by

running identical tests on another object class we can show that these ideas do not

only apply to faces.

3.1 Simulations

3.1.1 Representation

The HMAX model is described extensively in section 2, but the VTU level is not

explained in full. This is the topmost level as shown in figure 2-1. The low-level

machinery is identical in the expert and novice, but the tuning of cells in the VTU

level differentiates the two.
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Within the VTU level, there are five parameters that we can change to vary the

specificity of the model. The first parameter to look at is the number of VTUs.

Increasing the number of VTUs makes the model more specific, and the number of

VTUs(known as SSCU) can be set to 1, 4, 8, 32, 64, 128, and 182. The subset of

VTUs are picked at random from the 182 total VTUs. To ensure that the VTUs

chosen are representative of the data set, VTUs are chosen randomly 5 times for each

setting of SSCU. Additionally, one can select only the most strongly activated used

VTUs(the nMostAct parameter) for recognition. The value of nMostAct can take

on values of 1, 4, 8, 16, and 32. By increasing nMostAct, the model becomes more

specific as well. Not only are the number of VTUs varied, but the settings within a

given VTU can be changed as well. The two parameters here are the number of most

activated C2 units to be selected as afferents for a VTU(the numAffs parameter), and

the standard deviation of its Gaussian response function(-). In general, specificity

increases when numAffs increases and when a- decreases. NumAffs can assume values

of 20, 80, 160, and 256, while o- can take on values of 0.1, 0.12, 0.14, 0.16, 0.18, 0.20,

0.40, and 0.80. Lastly, the standard deviation of the additive Gaussian noise can be

varied as well. Although this parameter has nothing to do with the initial activations,

it is of crucial importance when calculating Euclidean distances of responses. The

standard deviation of the noise took on values of 0.1, 0.2, and 0.4. As expected, when

noise increases, signal to noise ratio decreases, and hence a given unit will become

less specific.

3.1.2 Constraints using data from fMRI fractions

There are an enormous number of possible settings of our five parameters(see 3.1.1),

and the number of permutations increases even more when we set both an expert and a

novice. Thus, it is necessary to reduce this number by constraining the parameters via

other experiments that explore face inversion. One such experiment was performed by

Kanwisher et al[14], in which they performed functional magnetic resonance imaging

to study the effect of face inversion in the fusiform face area(FFA). Several imaging

studies[12, 13, 17] have demonstrated that the FFA responds selectively to faces,
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compared to a wide variety of other stimulus types. The FFA is analogous to our

expert because of its selectively to upright faces. They find the average activity, or

fMRI fraction, to be 23% higher for upright faces than for inverted ones.

In that light, we ran HMAX on upright and inverted faces, and measured the

average activity over all 182 VTUs. Note that the only parameters that we varied

were number of afferents, noise, and a-. SSCU and nMostAct were meaningless as

we averaged over all VTU units. As in their experiment, we observed the percentage

change in activation for upright and inverted faces. Our "valid" expert settings were

those that produced an fMRI fraction between 15% and 25%. The results of these

simulations are given in 3-3, and from these data, the number of permutations of

expert settings can clearly be reduced.
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Figure 3-3: Adding noise to the fMRI fractions. Adding noise has the potential to
decrease these fMRI fractions by a considerable amount, hence having a better fit to
the values from the Kanwisher experiment. Each line on the graph adds Gaussian
noise with or given in the legend.
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From the data in figure 3-3, we can see that there are a few values within admissible

noise levels(noise = 0.1 or 0.2) that allow for the fMRI fraction to lie between 15%

and 25%. There are four of them, and in triplet form of {noise, -, numAf fs}, they

are {0.1, 0.2, 20}, {0.1, 0.1, 160}, {0.1, 0.4, 160}, and {0.2, 0.4, 160}. Hence, by forcing

the expert to agree with the physiological data in [14], the number of possibilities for

the expert in that 3D parameter space is reduced from 48 to 4. Note that despite

this reduction, in reality there are still many available permutations because the

SSCU and nMostAct parameters are still unconstrained, as they don't affect the

fMRI comparison.

3.1.3 Recognition Paradigm

The VTU units to be used in the recognition task were built by tuning them to 182

prototype faces. Taken together, these VTU units comprise the VTU layer. In the

simulation, 18 prototype faces (different from the original 182 faces) were used. Of

these 18 faces, 10 were used as prototypes and 8 were used for morphing. First, one of

these 10 unmorphed prototype faces served as a training face, and the response of the

VTU layer was recorded. Then we morph the given prototype face with the remaining

8 faces, at all 9 morph levels(the morphpos parameter), and record the response.

Our recognition task tests which is closer(in Euclidean distance) to the original VTU

response-the morphed response or the original response with additive Gaussian noise.

This additive noise slightly corrupts the original activations to the prototype face. If

the noisy, prototype face is closer, recognition occurs, and conversely if the morphed

face is closer recognition fails. The mean percentage correct over all faces at a given

parameter setting is the recognition performance. Faces in both testing and training

phases were either both upright or both inverted, but the VTU units were always

trained on upright faces.

Using this paradigm, performance on upright and inverted faces can be analyzed

for different settings of the six(5 given in section 3.1.1, and morphpos) parameters

which we can vary. In measuring the performance values for the six different pa-

rameters, we can attempt to understand what happens when the recognition units
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change their specificity. In order to keep all recognition tasks at the same difficulty,

morphpos is set to 5, meaning the two faces in the recognition task are always 50%

the same. Thus, as there are 10 prototype faces and 8 faces they are morphed with,

there is a total of 80 trials for any one parameter setting.

3.1.4 One Parameter Changes

Before trying to understand the complexity of the 5 dimensional parameter space of

our model, we must first entertain the simpler idea that changing one parameter can

make the transformation between expert and novice. Perhaps multiple qualities of the

units do not draw the line between experts and novices. Perceptual discrimination,

or perceptual learning, improves with practice. This adjustmust of perception can

be specific to the stimuli presented during training[20], indicating that practice may

alter the response characteristics of cells in the visual cortex. What changes is a

matter of debate, but the two obvious candidates are either the noise level or the

signal strength. In particular, Lu and Dosher[5] argue that internal noise is the only

factor that is altered by learning. As such, the noise level of the expert would be less

than that of the novice because the expert has more training. That would be the only

necessary change to the model presented here. In contrast, a study by Gold[9] tested

the recognition of faces embedded in noise, and observed an increased performance

over several days. Also, they measured the response consistency in the presence of

different amounts of noise, and found it to be independent of magnitude of the noise.

Thus, they argue that noise does not play a role, and it is the signal strength that

changes in perceptual learning.

To address this, we plot the effect of moving one parameter on recognition per-

formance. First, by looking at these plots, we can tell that changing only the noise

parameter cannot change a unit from a novice to an expert. But there's a lot more

here than meets the eye. These data can give us a handle as to the behavior of HMAX

when parameters are changed. Starting with the plot in figure 3-4, these data suggest

that one parameter changes cannot transform an expert into a novice.

Analyzing each parameter closely, one first notices that the performance of both
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Figure 3-4: Here, we start with an expert given by parameters numAffs=160,
noise=0.1, SSCU=182, nMostAct=32, and - = 0.1. Upright performance is the left
bar, inverted is the right bar. This expert's upright performance is 0.9045, while in-
verted performance is 0.5733. This shows what happens to both upright and inverted
performance as we change one parameter. Each row moves a different parameter,
keeping all others constant.

expert and novice decreases as more C2 afferents are added. This corresponds to the

units becoming more specific, for more C2 cells are fed into each VTU unit in this

representation. With this gain in specificity comes a loss in generalization, for the

VTUs are trying to match too closely to the test face, so the performance decreases.

In contrast, moving along the third row, when the number of SSCU's is increased,

it becomes easier to generalize across more units, resulting in a higher performance

for both upright and inverted faces. This same logic works for increasing the number

of nMostAct units along line 4. Also, moving toward the right on line 2 is just

a result of decreasing the signal to noise ratio by increasing the noise, making the

units too unspecific, and consequently decreasing performance. Initially, line 5 looks

paradoxical, but that is just a product of units reaching optimum specificity, then

going past it to yield a decrease in performance. Beginning at the left, the tuning

is very sharp, so moving right the tuning broadens, facilitating better recognition.
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However, when we move right too much, -is too high, making units tuned too loosely,

so any stimulus can produce a high activation, leading to a lower performance. In

figure 3-5 we can see the impossibility of changing a novice to an expert by only

changing one parameter, and the trends follow the same logic as discussed above.

numAffs=20 numAffs=80 numAffs=160 numAffs=256
1 1 1 1

0.5 0.5 0.5 0.5

noise=0. 1 noise=0 2 noise=0.4

0.5 0.5 0.5

SSCU=1 SSCU=4 SSCU=8 SSCU-32 SSCU=64 SSCU=128 SSCU=182
1 1 1 1 1 1 1

0.5 5 .5 ).5 W .5 . ).5

0 - 0 -0 0 0
nMostAct=1 nMostAct=4 nMostAct=8 nMostA =16 nMostAct=32

0.5 0.5 0.5 0.5 0.5

VTUSig=0.1 VTUSig=0.12 VTUSIg=0.14 VTUSig=0.16 VTUSIg=0.18 VTUSig=0.2 VTUSg-0.4 VTUSig=0.8
1 1 1 1 1 1 1 1

0.5 * .5 .5 ).5 1.5 .5 ).5 ).5

0 0 0 0 0 0 0 0

Figure 3-5: This is the same type of plot as is shown in 3-4, except here we start
from a novice. The parameters for the novice are numAffs=20, noise=0.4, SSCU=32,
nMostAct=z16, and a- = 0.16. For this novice the upright performance is 0.7880,
inverted performance is 0.7665.

Another way to understand the effects of moving one parameter is by analyzing

scatter plots of the data. Basically, starting with an expert and novice, now we at-

tempt to create a novice from an expert simply by changing more than one parameter.

This is a generalization of the data in figures 3-4 and 3-5. There, expert and novice

differ by only one parameter, but here the expert and novice can differ by any num-

ber of parameters. Two of the most interesting scatter plot are given here in figure

3-6, and all scatter plots are given in figure A-1. The left plot of figure 3-6 is one

of the many plots in figure A-1 that show that the most important two parameters

are numAffs and or. With those set, and the other three varying, performance always

decreases for upright faces. Notably, performance decreases regardless of the other
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parameters. It is impossible to glean any information about the model from the other

plots where these values are not set, as the points are not constrained to any region

of the parameter space.
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Figure 3-6: Scatter plot of moving to Novice from Expert via moving different pa-
rameters. The expert's parameter settings are numAffs=160, noise=0.1, SSCU=182,
nMostAct=32, a = 0.1. The original expert is marked with a cross, all other per-
mutations are circles. The "S value" in the title of each subplot represents which
variables are kept at the expert setting(set to 1), and which are unconstrained(set
to 0). From least significant to most significant bit, the variables in S are a, SSCU,
nMostAct, numAffs, and noise. The plot on the left constrains a and numAffs to the
expert value, while the plot on the right constrains everything but a.

The subplot on the right side of figure 3-6 shows that when a increases the per-

formance on upright faces increases as well. Having the highest performance possible

on upright faces is obviously favorable, so because a higher o was not naturally se-

lected, other factors are probably at play. In this analysis, analyzing the inverted

performance as well is not necessary since recognition of inverted faces is not a nec-

essary task for primates. A possible explanation is that another force governing the

evolution of the structure and function of the brain is energy efficiency [15, 1, 16].

25% of total body glucose utilization is spent by the brain, and this energy needs

to be spent economically. As such, maximizing the functionality of the visual cortex

while minimizing the brain's enery usage is evolutionarily favorable. Given that, a

10% increase in performance may have been less important than a decrease in the
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energy usage that a lower a provides.

3.1.5 Moving to multiple parameter space

From section 3.1.4 it is evident that in our representation, experts and novices differ

by more than one parameter, so here we investigate the effects of multiple degrees

of freedom. There are many possible experts and novices, so to assuage the number

of combinatorial possibilities, one expert is chosen based on the fMRI data[14] and

the data from Carey and Diamond's Experiment[4]. The expert that we choose is

the same as used in figure 3-4. From this expert, possible novices can be analyzed

from histograms and scatter plots as above, and from these plots we can deduce the

sufficient and necessary qualities required for a novice.

Again, it is a difficult task to probe this parameter space. Our method is to

control one parameter, letting all others range over all possible values. By examining

the trends in these data, it is possible to make inferences as to which parameters are

important as to transform as expert into a novice, and which directions the given

parameters might move as to undergo this transformation. The qualities that we are

looking for in a novice as observed by Carey and Diamond are a small inversion effect,

and performance of the expert being greater than that of the novice on upright faces.

To visualize this in our 5 parameter space, the only restriction that we place is for

performance of expert on upright faces must be higher than that of novice on upright

faces, or in other words perfnovice(upright) < 0.9045.

Displayed here in figures 3-7 and 3-8 are scatter plots of upright and inverted

performance. For each subplot, each cross represents one unit, with upright and

inverted performance on the x and y axes, respectively. For simplicity, units were

separated by upright performance, and only units that have an upright performance

between 75% and 80% are plotted here. The rest of the units and their scatter plots

are displayed in appendix A.2. Because upright performance is restricted in this plot,

all of the crosses lie in a neat vertical pattern. The interesting thing to look at here

is the vertical location and clustering of these hatch marks.

As observed in section 3.1.4, the two key parameters in tuning these units are a
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and numAffs. Where Noise, SSCU, or nMostAct parameters remain constant(figures

A-3, A-4, and A-5, respectively), the distribution of the inverted performance remains

the same. This is not the case with numAffs and o-, as is displayed in figures 3-7 and

3-8. As those two parameters get smaller and larger, respectively, the variance of

the inverted performance decreases. Even more important, with respect to these two

parameters, the inverted performance grows, thus decreasing the inversion effect. It

appears that in order to raise inverted performance while lowering upright perfor-

mance, it is sufficient to do a combination of raising - and lowering numAffs. This is

equivalent to lowering the specificity by decreasing the number and broadening the

tuning of the individual units. Complete plots for all values of upright performance

for numAffs and -are given in appendix A-2 and A-6.
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Figure 3-7: A scatter plot of upright versus inverted performance. As described in
section 3.1.5, the only restriction on the representation for each of the subplots is
that numAffs is fixed. All of these cells have an upright performance between 75%
and 80%.
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Figure 3-8: The same type of scatter plot as in 3-7, except a- is fixed here.
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It is even easier to visualize these trends in terms of inversion effect, as is done in

figures 3-9 and 3-10. The plots depict a histogram of the inversion effect as numAffs

or as a- changes, letting all other parameters run free. Note that the "hump" of these

plots decreases when numAffs in decreased or when - is increased, no matter how the

other parameters are set. The hump of the histogram is equivalent to the clustering of

data points in the previous scatter plot. These shifts in performance suggest that these

two parameters have the power to distinguish an expert and a novice, as the hump

moving towards zero indicates that the inversion effect decreases. Additionally, the

specificity of the model is most strongly affected by these two parameters working

in synergy. As these histograms show, a novice can be created by changing the

parameters to decrease the expert's specificity. For example, in the representation

given by numAffs=20, noise=0.4, SSCU=32, nMostAct=16, and U-=0.16, upright

performance is 78.9%, and novice performance is 76.7%.
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Figure 3-9: A sister plot to figure 3-7, the
of the obtained inversion effect.
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Figure 3-10: As in figure 3-8, a is fixed.
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3.1.6 Using Cars As Stimuli

In addition to the simulations using faces, we also ran identical simulations using cars

as stimuli as an alternative object class. This is to show that the inversion effect

is not inherent to faces, but rather applies to any class of objects. The expertise

effect is a characteristic of the settings of the parameters within the model. It is

not a quantitative effect due to features of a given object class or an object class

dependent computational mechanism. Thus, the observed performance is dependent

on the tuning and hence the parameter settings of the units, not on the type of stimuli.

A description of the cars used is given in section 2. Using these cars as stimuli,

with morphed cars always 50% the same as the original prototype car, we observe

the same trends as with faces. Increasing numAffs, increasing the number of SSCU's,

and increasing the nMostAct parameter increase specificity, while increasing - and

the amount of noise make units less specific. With this in mind, we can construct

an expert, having many, finely tuned units, and a novice, having fewer, widely tuned

units. Of course the actual values compared with faces will be different because this

is a different object class, but the effect turns out to be the same. Setting the param-

eters of an expert unit to numAffs=160, noise=0.2, numSSCU=13, nMostAct=13,

- = 0.1, yields upright and inverted performances of 0.9550 and 0.6957 respectively.

Turning this expert into a novice, numAffs is changed to 20, and -is changed to 0.13.

With these modifications, upright performance is 0.9039, but inverted performance is

0.8914. Again, the decreased sensitivity of the novice enabled it to recognize inverted

faces at a far higher performance level than the highly specific expert. Although

cars and faces differ in their relational features, experts of both object classes share

the same large inversion effect because of the tightly tuned units that they have in

common.

3.1.7 Simulations Using More Realistic Patches

A possible critique of this model is that the features that are used are not realistic.

That is, on the lowest level cells should be tuned to bars[11], but on higher levels there
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probably should be some sort of feature learning involved in the system. Perhaps the

behavior that we observe is an artifact of this unrealistic model that has been used in

the simulations. If this were true, the results obtained could not be compared with

parallel psychophysics experiments. With this in mind, we want to see if the results

obtained using the standard HMAX model also hold for more realistic features, so we

alter the standard HMAX model to support feature learning at the S2 level. As shown

by Serre et al[23], these features increase the sensitivity of the C2 units to faces as

oppose to nonface objects. Consequently, this facilitates face recognition in cluttered

scenes involving myriad nonface distractors, as oppose to the poor performance of

the standard HMAX model. These new S2 targets are described in section 2 and

examples of the new filters are shown in figure 2-2.

The experiments from section 3.1.3 were duplicated using the new S2 targets. The

performance on both upright and inverted faces was comprable to the original data.

Increases and decreases in specificity follow the same trends as outlined in 3.1.4, and

the performance curves have the same shape for both upright and inverted faces. The

shapes of these performance curves are given in appendices B.1 and B.2 for standard

and realistic HMAX, respectively. These data show that the performance on faces is

independent of S2 target type, and that the effect that we observe is not limited to

the feature set of the standard HMAX model.
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Chapter 4

Transfer of Learning Using a

View-Based System

4.1 Background

In the real world, recognition of objects is not limited to two dimensions. Real objects

can be rotated in any direction, and in a recognition task the original, unrotated object

is compared with the same object rotated in an arbitrary fashion. In two dimensions,

individual features can be compared, and on that basis an individual can discriminate

between the two objects. Under three dimensional rotation, an architecture such as

the one given in sections 2 and 3.1.1 fails because individual features are not invariant

under rotation. If an object is rotated, these changing features yield a different

activation pattern than the original object, making any comparison between the two

images meaningless.

Two major schools of thought attempt to compare features that have been rotated,

despite the changes that happen under rotation. The first is that of a structural

representation, where a 3D model of the object in question is built. One example of

this sort of structural representation is Biederman's recognition by components (RBC)

theory[2], which states that any object can be decomposed into small, discrete parts

called geons. Under rotation, the viewer trains on a single view, and mentally rotates

the geons and their relative positions in a recognition task. This predicts viewpoint
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invariant object recognition as long as the object views can be used to obtain a

structural representation. Although this representation may seem appealing, it is

extremely hard to implement this computationally, or even imagine how it might be

done. Biederman's representation is critiqued by Tarr and Bulthoff[25], who find that

Biederman's conditions for viewpoint invariance lack the generality to characterize

a wide range of recognition phenomena. Also, the massive amount of information

involving relative locations of features and the computations involved in rotating

these features is unfeasible.

Instead, Tarr and Bulthoff favor an exemplar-based multiple-views mechanism as

the vital component of recognition. Rather than store all information about a scene,

a sparse scheme that learns from a small set of perspective views is far more efficient.

Note that there is no 3D model of the object, but rather novel views are recognized by

interpolation between a small number of stored views. From this small set of views,

Poggio and Edelman[19] showed that a function can be constructed that can map any

view to a standard view. Using this mechanism, a network constructed in this way

can recognize the training object from any viewpoint. Their paper showed that such

a mapping was theoretically possible, and in 1995, Vetter et al[29] described a view-

based model of object recognition. They outlined an RBF network and described

how the model could be used to learn a face. Soon after, Edelman[6] implemented

an RBF model of this sort and showed that under rotation similar objects yielded

similar activations.

The above studies laid the groundwork for simulations that use a view-based model

for a recognition task involving rotated faces. In chapter 3, we showed that we could

train the network with faces, and recognize novel faces at the same orientation. This

succeeds through a direct comparison of features from the training and test faces.

With rotation, the features are no longer the same in the training and test phases.

When novel views with which the system is not familiar are input, the model is forced

to interpolate from the trained views.

In our simulations we exploit this view-based representation, tuning VTUs to

different views of the same face. We then test the model using faces that are rotated at
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novel views, or at different angles than those used in training. We show that learning

transfers over the shape transformations, indicating that generalization across all

views is possible given only a small number of training views. This type of learning

is crucial in tasks where the face changes slightly, such as in the case of changing

facial expressions. These simulations show that it is unnecessary to store all possible

configurations of a face in order to account for every possible featural change. Rather,

it is sufficient to store a small, representative number of configurations of a given face

from which other, unstored, configurations of features can be extrapolated.

4.2 Simulations

4.2.1 A New Representation

As described in sections 2 and 3.1.1 the representation given in the standard HMAX

model is only useful in comparing features that are shown at the same orientation.

Any hierarchical level of that representation will have very different activations when

stimulated with the same face at varying angles. This is a consequence of individual

features changing under rotation. The activity of a cell that is highly responsive to

a feature oriented at a frontal view will be less active when the stimulus is rotated.

Because the activity varies under rotation, object recognition becomes an impossible

task if this representation is used. It becomes necessary to augment the representation

of the standard HMAX model to respond invariantly under rotation to the same face.

With respect to the HMAX model, implementing this view-based model entails

training VTUs on multiple views of the same object; a detailed explanation follows

below. First, we store the responses of a set of VTUs to a given face rotated at a set

of angles v. Then the responses of these VTUs v to the same face at a set of training

views t is recorded. The parameters of these VTUs can be varied as explained in

section 3.1.1, such as numAffs or a. The matrix A contains these responses, with

entry row i, column j containing the response of VTU vj to training view ti. Then

we solve the matrix inversion problem for Ab = w, given that w = 1. This vector b
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is known as the VIU(view invariant unit) weight vector. This new implementation

calculates VTU responses as before, but now the VTUs that are tuned to the same

face, rotated are multiplied by their corrresponding VIU weight vector. In theory,

this yields an equal response toward all views. This architecture is shown in figure

4-1.

/ 06

-0-0-0

A
S) e( .) T

view-invariant units

view-tuned units

C2 units

S2 units

C1 units

Si units

weighted sum

MAX

Figure 4-1: The HMAX model with a level of view invariant units.

When tuning view invariant units, we must be very careful when setting out pa-

rameters. On the one hand, it is desirable to make o extremely low, while increasing

the number of afferents as much as possible. This yields units that are very specific,

facilitating object recognition and hence increasing performance. When these quan-

tities are moved as to yield a specificity that is high enough to enable recognition,

the matrix A begins to have entries that are close to 0, rendering it almost singular.

Consequently b may have entries that are very large. If b has large entries the goal

of generalizing from the training views to novel views becomes impossible because of
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the erratic entries in this matrix. To counteract that it is necessary to increase the

number of views used for any one VIU. Moving the views closer together makes the

fall-off from 1 on the diagonal of A less steep, and thus b will be better behaved. For

both v and t we used angles of {0, -5, -10, -15, -25, -35, -40, -45}. There were

95 faces that we had for VTUs, resulting in a total of 95 x 8 = 760 VTUs, 95 8 x 1 b

vectors, and 95 VIUs.

4.2.2 Recognition Task and Experiment

An experiment done by Moses et al[18] is a good basis for our recognition experi-

ment. Additionally, we can make predictions based on their results. They explore

the capacity of the human visual system to generalize the recognition of faces to novel

images, and investigate the level at which this generalization occurs. Their approach

compares the recognition performance between rotated faces that are either upright

or inverted. In their experiment, they train the viewer on one of three faces in a set.

They then test the subject on the identity of any of the faces in the set, at varying

angles. They observe that subjects generalize easily for upright faces but not for

inverted ones, meaning performance was high for upright faces regardless of viewing

angle, but when viewing angle changes performance on inverted faces decreased.

These results support the view-based model theory. Using a view-based model,

generalization to novel views for upright faces occurs through interpolation of the

stored views. On the other hand, interpolation is not possible for inverted faces. The

stored, upright faces have too little in common with the inverted test faces for any

logical comparisons to be made. We agree with the view-based representation, so

we simulate an identical experiment in the HMAX model to show that these results

follow given the view-based representation.

For our recognition task, 6 different faces morphed at 9 different degrees were used.

Each of these faces was rotated at angles of {0, -7.5, -15, -22.5, -30, -37.5, -45}.

These provided novel angles and faces on which the VTUs and VIUs had not been

trained. The recognition paradigm is similar to that mentioned in section 3.1.3, but

there are slight differences. We train on a frontal view of a given face. The recognition
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task is a 2-way forced choice between two faces rotated by the same amount. One is

a morphed version of the original test face, and the other is the original itself. An

example of a face rotated at different angles that we use for stimuli is given in 4-2.

As in chapter 3, if the activation of the original, rotated face is closer, recognition is

Figure 4-2: Rotated faces used

correct, and conversely, if the morphed face is closer recognition fails.

The results of this recognition experiment are plotted in figures 4-3 and 4-4. The

performance is that of the 760 VTUs and the 95 VIUs. The first conclusion we

draw involves a comparison of VTU performance with VIU performance. The plots

show that VIU units give a clear advantage over VTU units in both the upright and

inverted case. This shows that the VIU level has a positive influence on recognition.

The low performance of the VTU units on the rotated faces shows that additional

computation besides VTUs is necessary to process rotated faces.

Next, assuming that the brain uses VIU like units for object recognition under

rotation, we can draw a parallel between the performance of VIU units and the

Moses[18] experiment. In comparing the VIUs on upright and inverted faces, we

see a similar result as the one they obtained. As expected, the VIUs, a view-based

network, have high performance on upright faces, but a lower performance on inverted

faces. For upright faces, the VIUs can learn the behavior of features under rotation.

Thus, when it is rotated to a novel view, the VIUs are still capable of recognizing a

given face by interpolating from the known views. Although the VIUs are capable of

generalizing across different views for upright faces, this same sort of generalization

for inverted faces is impossible. The features of an inverted face change differently

under rotation, resulting in very low recognition performance.
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Chapter 5

Discussion

5.1 Are Faces Special?

In chapter 3 we investigated whether faces are special. The model that we used

for simulations was entirely shape based and has no internal understanding of faces.

Rather the model searches for the presence of shapes in the training stimuli. By

changing the parameters of the model, we were able to vary the sensitivity to these

shapes. These changes in sensitivity control the performance of the model on upright

and inverted faces, generating inversion effects of varying magnitudes.

Hence, it's sufficient to vary the parameters to produce a change between novice

and expert. While the parameters change, the computational mechanism remains

the same. Thus, the inversion effect due to experience is a quantitative change in the

representation rather than a qualitative one. In other words, the components and

interconnections of the model do not change, but the strength of the connections and

the number of units at different levels can change. To show that this is not unique

to faces we also ran the same simulations with cars and obtained the same results.

Concisely, faces are no different than any other object class. The reason they were

thought of as special is because of the highly specific units characteristic to faces in

people.
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5.2 Learning and Representation

Chapter 4 is a generalization of the work in chapter 3. In that section, VTUs that

are tuned to prototype faces provide the model with a general idea of the features

normally present in a face. Then the model makes a direct comparison of the features

in the training face to those in the test face. In the best case, if the training and test

faces were the same, the activations would be identical. This is obviously not the

case under rotation, as the features in the face change when a face is rotated.

We showed that a recognition of a face oriented at a novel view is feasible if the

model is tuned to prototype faces rotated at multiple views. Edelman[6] proved that

this aatchitecture could generate similar activations for rotated faces, and this takes

that result further by showing that recognition is possible. Even though the VIUs

have no internal information about the behavior of features at a novel view, they are

able to intimate the similarity of test and training faces. This sort of generalization

probably would not work with objects that have very different 3D structure, such as

landscapes. With that type of object class, the model would not be able to deduce

the featural changes that occur at an untrained view. Using the performance of our

view-based model on upright and inverted faces, we give credence to the hypothesis

of Moses et al[18]. They think that the generalization in face recognition occurs at

a class based level, and at this level upright and inverted faces are members of two

distinct object classes. This is a product of class-level processing, as our VIUs had far

lower performance on inverted faces because of the different ways in which features

of upright and inverted faces change under rotation.

5.3 Future Work

The simulations support our claim that a large face inversion effect is due to ex-

pertise. The next logical step involves duplicating the same type of simulations in

psychophysics experiments. We hope to create experts and novices in a novel object

class by varying the training in this object class between two sets of people. Our

48



simulations predict that we can control the inversion effect for this object class by

varying the amount of training. The low ar and high number of afferents in the ex-

pert translates to a large amount of training. More training produces an increase in

experience and hence tighter tuning, which should result in a large inversion effect.
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Appendix A

Supplemental Figures

A.1 Scatter Plots
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Figure A-i: Scatter plot of moving to novice from expert via moving different pa-
rameters. The expert's parameter settings are numAffs=16O, noise=O.1, SSCU=182,
nMostAct=32, o = 0.1. The original expert is marked with a cross, all other per-
mutations are circles. The x-axis is upright performance, the y-axis the inverted

performance. The "S value" is as in figure 3-6. There are 32 plots here, correspond-

ing to the 2' ways in which S can be set.
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Each row of the plots restricts the scatter plots of the upright performance. That

is, the four rows separate upright performance of the novice to be between 70-75%,

75-80%, 80-85%, and 85-90.45%.
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Figure A-2: Afferents
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A.2 Histograms
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Appendix B

Performance Curves

In each figure, noise is increased as one moves vertically down subplots on values

0.1, 0.2, and 0.4. Within each subplot, the different lines are different settings of

nMostAct, which are given in the legend. Moving along the x-axis varies the number

of afferents. In order to display a digestable number of subplots, we only plot data

for a-=0.1 and o-=0.4.
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B.1 Regular HMAX
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Figure B-1: HMAX on upright faces. Sigma = 0.1
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B.2 HMAX With Realistic Features
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Figure B-7: Realistic HMAX on upright faces. Sigma = 0.1
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Figure B-8: Realistic HMAX on upright faces. Sigma = 0.4
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Figure B-9: Realistic HMAX on inverted faces. Sigma = 0.1
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Figure B-10: Realistic HMAX on inverted faces. Sigma = 0.4
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Figure B-12: Difference of Upright and Inverted Performance of Realistic HMAX on
Faces, Sigma = 0.4
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