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Abstract

All solid-state batteries may be a solution to some of the problems facing conventional
organic electrolytes in Li and Na-ion batteries, but typically conductivities are very
low. Reports of fast lithium conduction in Lii 0 GeP 2S1 2 (LGPS), with conductivity
of 12 mS/cm at room temperature, have shown that Li -diffusion in solid electrolytes
can match or exceed the liquid electrolytes in use today. I report results of ab-initio
calculations on a related system of materials, Nai0 MP 2SI 2 (M = Ge, Si, Sn), which
are predicted to have similar properties to LGPS as candidates for electrolytes in Na-
ion batteries. I also derive methods to estimate the error associated with diffusion
simulations, so that appropriate tradeoffs between computational time and simulation
accuracy can be made. This is a key enabler of a high throughput computational
search for new electrolyte materials.
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Chapter 1

Introduction

Continued improvement of battery technology is required and in many cases the

driving force for development in a wide range of applications, including consumer

electronics, grid load-leveling and storage, and electric vehicles. The function of a

battery is a simple one - energy is stored in a chemical potential difference between an

anode and a cathode. This energy is harnessed by allowing charged ions to equilibrate

across an electrolyte, creating an electrical potential across the electrodes. Recharging

of the battery is accomplished by applying a larger voltage in the opposite direction,

driving the reverse reaction. The simplicity of the battery puts great emphasis on

the materials from which it is made - there are relatively few gains that can be made

to the device besides directly improving component materials.

Battery performance is characterized by two main parameters - energy density

(or specific energy) and rate capability. Energy density is a function of cell voltage

(V) and charge capacity (mAh/g). The achievable discharge rate is determined by

the electronic transport through the electrodes, and the ionic transport through the

cathode and electrolyte. Improvements therefore come through increasing voltage,

charge capacity, or rate capability.

13



1.1 Intercalation batteries

Early battery technologies, such as lead-acid, Ni-Cd, and Zn-MnO 2, involve the con-

version of the electrode structure upon charge and discharge. One of the major

breakthroughs in battery technology was the development of intercalation materials,

which operate via insertion and deinsertion of ions into a host framework, the struc-

ture of which is unchanged through cycling. The composition of the electrolyte is

constant in these systems, as the working ion is shuttled between the two electrodes.

This allows a much smaller amount of electrolyte to be used, as no ions are stored in

the electrolyte. In these batteries, the working ion must diffuse quickly through the

electrode materials, so these batteries are restricted highly mobile ions, such as Li+

and Na+.

1.1.1 Li-ion

Lithium ion batteries, first commercialized by Sony in 1991, make up an enormous

fraction of the cells used in portable electronics today, and are in use in some electronic

cars (e.g. Tesla). They typically operate via reversible intercalation of lithium ions

between a graphite (LixC 6 ) anode and a transition metal oxide (LilxMO 2 ) cathode,

most typically with either cobalt, nickel or manganese (or some combination) as

the transition metal. Another common cathode is LiFePO 4 , which has an olivine

structure. The average charge capacity (180 Wh/kg at 3.8V) is a factor of 5 higher

than lead-acid batteries.

1.1.2 Na-ion

Despite the long history of development of sodium batteries dating to the 1960s,

and their concurrent development with Li-ion, development of Na-ion batteries for

a while stagnated due to their lower voltage and energy density compared with Li.

The push for lower-cost materials has brought them back into relevance. Sodium

occurs naturally with a significantly higher abundance than lithium, and cheaper

redox active elements can be used; In Li-ion cells, the cobalt is a large expense.

14



While phase transformations in many layered Li-ion systems have been observed,

their Na-ion counterparts are significantly more stable[16].

A major difference between the Li-ion and Na-ion systems is the choice of anode.

Sodium doesn't intercalate into graphite, and so other anode materials must be used,

typically hard carbon, or titania[25]. Cathodes materials are similar between Li-ion

and Na-ion systems, though many of the layered oxides that are not stable for Li-ion

do not pose a problem in Na-ion batteries.

1.1.3 Electrolytes

In Li and Na-ion batteries, the choice of electrolyte is very important for device

performance. Because the cell voltage exceeds 1.23V, aqueous electrolytes cannot be

used without significantly reducing the operating voltage. Typically, the electrolyte

is an alkyl carbonate such as ethylene carbonate (EC) or dimethyl carbonate (DMC)

with LiPF6 . These materials are only stable down to 1.5V vs. lithium metal, and

below this a solid-electrolyte-interphase (SEI) layer forms, partially passivating the

surface[20]. They can also be oxidized by the cathodes when delithiated. This is

especially an issue with high-voltage cathodes (e.g. LiNiO 2) and so the use of organic

electrolytes puts an upper limit on the safe operating voltage. Similar problems are

seen in Na-ion batteries.

The reactivity of electrolytes is a safety issue as well as a performance one. Organic

solvents are flammable, and their proximity to an oxidizing agent (the cathode) can

lead to thermal runaway, and in extreme cases fire or explosion. Though with careful

engineering, this danger is effectively mitigated, a number of incidents over the years

have resulted in product recalls[3].

Solid electrolytes have been proposed as a solution for some of these limitations.

A number of such materials have been known since the 1980s, though large activa-

tion energies have limited their use to high temperature systems, or those with very

slow discharge rates. In 2011, Kamaya et al.[13] reported the discovery of a new

Li superionic conductor Li 10 GeP 2S1 2, which achieved a room temperature conduc-

tivity of 12 mS/cm at room temperature. Though exhibiting high diffusivity, the

15



large amount of germanium needed is expensive, and large resistances develop at the

cathode interface.

1.2 Computational modeling

Computational models of materials are able to both aid in the understanding of

existing materials, and to predict the structure and properties of as-yet unsynthesized

novel compounds. Computational techniques have been used to great effect in the

battery field to study electrode materials, and properties such as stability, capacity,

and even safety can be readily calculated[11, 30].

While it has been, in principle, possible to calculate ground state properties of ma-

terials since the development of the Schrodinger equation, this problem has remained

computationally intractable for all but the simplest of systems, due to the many in-

teractions between every electron in the system. Density functional theory (DFT)

provides a method of reducing the problem size such that it can tackle problems at

a size relevant to many more systems, including battery materials. It does this by

avoiding calculating single particle orbitals, and instead treating the electrons as an

electron gas and defining functionals for the electron-electron interaction energy, the

kinetic energy and the exchange energy are defined as functions of its density[7].

Many of the properties relevant to cathode materials are also important for elec-

trolytes. Additionally, it is critical that a solid electrolyte have high ionic conductivity.

The calculation of material kinetics, while a more complex problem than equilibrium

thermodynamics, can also be simulated computationally.

1.2.1 Calculating diffusivity using computational simulation

Depending on the particulars of the system involved, a number of methods are used

to study diffusion computationally. These typically fall into categories of either using

transition state theory and calculating attempt frequencies and activation energies,

or simulating atomic motion explicitly in a molecular dynamics (MD) simulation

and determining self diffusivity from atom trajectories. To combat the difficulties in

16



simulating the long timescales needed to observe diffusion in some systems, a number

of methods for artificially accelerating transition events in MD have been developed.

Transition state theory/NEB

Diffusivity can be determined by calculation and integration of the individual dif-

fusive mechanisms. This method is very similar to the calculation of reaction rates

using transition state theory (TST) in that it involves the calculation of an activa-

tion energy (E) and a kinetic prefactor associated with the attempt frequency and

vibrational frequency. Typically, the nudged elastic band method (NEB) is used to

calculate E,[12]. This method calculates the energy of the transition state by calcu-

lating the energies of a series of images allowed to move perpendicular to the reaction

path. To find the correct saddle point with fewer images, a climbing image can be

used, which is allowed to move towards the saddle point [9]. These methods allow

relatively computationally cheap computation of diffusivity, though a large amount

of information needs to be known about the system a priori. The diffusion path needs

to be initialized with a reasonable guess, and since most cases of diffusion involve va-

cancies or interstitials, the prevalence (and in many cases interaction) of these defects

must be understood.

Molecular dynamics

Molecular dynamics (MD) simulations simulate a material at finite temperature,

tracking the position of atoms over time, calculating diffusivity from the trajectories.

These simulations can be performed given any energy model by integrating Newton's

equations of motion. Energies have been calculated using atomic potentials, either fit

to experimental data, or to ab initio calculations. Due to its importance in hydrogen

fuel cells, a large amount of literature is focused on the calculation of 02- diffusion

in oxides[14, 15, 5]. Calculations on a range of solid electrolytes including argyrodite

Li 6 PS5 X (X = Cl, Br, I) and garnet Li 7 _,La 3(Zr2-M,)O 1 2 (M = Ta, Nb) have been

performed utilizing a soft bond-valence approach[2, 1].

Though coming at a high computational cost, advances in computer power have

17



made simulation with forces directly calculated from DFT practicable for an increas-

ing range of systems. These are typically systems with very high diffusivities, and

include lithium diffusion in Li3N[28], and hydrogen diffusion in a-iron[27].

Accelerated MD/metadynamics

For systems where diffusivity is too slow to measure via an MD simulation (either ab

initio or with an atomic potential), a number of methods have been devised to speed

up sampling of diffusive transitions. These include hyperdynamics [29], which applies

a bias potential to some aspects of the system and adjust the time scale accordingly,

and metadynamics (or conformational flooding)[8], which explores free energy space

by sequentially applying bias potentials to on relevant collective variables to move

out of local minima. A comprehensive review of this class of methods is given by

Dellago et al.[6].

1.3 Outline of this thesis

This thesis is part of ongoing work to find novel solid electrolytes. In this search,

we are primarily concerned with materials with high diffusivity, though they span

many different chemistries. For this reason, ab initio MD is the method of choice,

since it requires no adaptation between chemical systems. The restriction of the

search to high conductivity materials mitigates the downside of this method - its high

computational cost.

Chapter 2 takes an in-depth look at sodium versions of the recently reported LGPS

class of solid electrolytes, while chapter 3 uses a statistical approach to address the

challenge of determining diffusivity from small amounts of MD data to allow a wider

search space with a fixed computational budget.
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Chapter 2

Na1 OMP 2S1 2 (M Ge, Si, Sn) solid

electrolytes

Since the first reports of high Li-ion conductivity in LiiOGeP 2SI 2 (LGPS), there have

been questions of whether similar materials exist. This is due to a few deficiencies

of LGPS: While initially believed to be stable over a wide electrochemical window,

computational studies [21] have shown that it is likely unstable against both the

cathode and vs. lithium metal. Electrolyte reduction in contact with lithium metal

has been observed experimentally[19], and high interfacial resistances at the cathode

have also been observed, though the source of these is still not well understood. The

use of significant amounts of germanium in the material is also an issue do to the

high cost and low availability of the element.

Computational studies, being somewhat chemically agnostic, are a useful tool for

answering these questions, as well as clarifying ambiguous experimental results. We

examined the LiiOiiMP 2X1 2 (M = Ge, Si, Sn, Al; X=O, S, Se) family of materials

isostructural to LGPS to identify promising new electrolytes[22], finding that cation

substitutions can generally yield materials comparable to LGPS.

This chapter examines the feasibility of making the substitution of Na for Li to

form the NaiOMP 2S 12 (NMPS) system, and their suitability for use as electrolytes in

Na-ion batteries.
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Figure 2-1: Structures of LGPS determined from (a) Kamaya et al.[13] and (b) Kuhn

et al.[18]

2.1 The structure of NMPS

The structure of NaioMP 2 S1 2 (NMPS) used for this computational study is derived

from the experimentally determined structure of LGPS. The LGPS structure has

tetragonal symmetry, and consists of (Geo. 5 Po. 5 )S 4 tetrahedra, PS4 tetrahedra, LiS6

octahedra, and LiS4 tetrahedra. The LiS4 tetrahedra are arranged in a 1 dimensional

chain along the c-direction. The crystal structure obtained by Rietveld refinement is

described in two works, the initial report of LGPS from Kamaya et al. [13], and in

the results of single crystal XRD [18]. The structures are shown in figure 2-1. The

main difference between the two is the presence of an additional lithium site (Li4) at

fractional coordinates [0,0,0.25] in the more recent study.

In both LGPS structures, there is a high degree of disorder both on the Li and

P/Ge sites. In order to determine the ground state energy, the lowest energy order-

ing must be found. As an initial approximation, the electrostatic energy was used to

determine the lowest energy orderings, taking the idealized charges from the valence

state, i.e. P5 +, Ge4+ S2-, Li+. The lowest electrostatic energy configurations were

determined using a branch and bound algorithm that has since been incorporated into

20
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Figure 2-2: Lowest DFT energy LGPS structure (P4m2 symmetry)

the pymatgen[23] open source software package. Ten of these low-energy configura-

tions were calculated using DFT to determine the ground state. These calculations

were performed using the Vienna Ab Initio Simulation Package (VASP) [17] using the

projector augmented-wave method[4]. Calculations used the Perdew-Burke-Ernzerhof

generalized-gradient approximation (GGA) to density functional theory (DFT)[26].

All energy calculations were performed with k-point densities of at least 500/natoms

and were spin-polarized. The lowest DFT energy structure, shown in figure 2-2 main-

tains much of the symmetry of the disordered structure, though the ordering of the

P/Ge sites reduces the spacegroup to P4m2. Orderings of the Kamaya structure were

all higher energy due to the lack of the low energy Li4 site.

To determine the correct sodium substituted structures, the low energy electro-

static orderings for the LGPS structure were substituted with Na, and their energies

computed using DFT. Since Li and Na have the same valence state, there is no differ-

ence in the electrostatic orderings between the chemistries. The results of DFT cal-

culations reveal a slight difference between the low energy Li1oMP 2S 12 structures and

the low energy Na 1OMP 2S1 2 structures. In the Li system, all ground state structures

have P4m2 symmetry (figure 2-2). The Na 1OSiP 2S12 and Na 1 oSnP 2S12 structures have

C222 symmetry (figure 2-3a). The latter ordering shows a staggering of the cation
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Figure 2-3: Lowest DFT energy structures of
and (b) NaGePS (P1 symmetry)

(b)

*Na
*Ge
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(a) NaSiPS, NaSnPS (C222 symmetry)

ordering between the c-axis channels, which may be more favorable due to higher

Na-Na repulsion than in the Li structure. In the Nai0 GeP 2S1 2 structure, the lowest

energy ordering was found to have P1 symmetry(figure 2-3b), but followed the trend

of C222 symmetry being lower energy than P4m2 symmetry.

2.2 Phase stability

The most basic criterion for material stability is that there be little to no driving

force for decomposition through phase separation, or by transforming to a lower

energy structure at the same composition. The phase diagram, as well as this driving

force for decomposition, can be determined by computing the lower convex hull of

the structure energies in composition space. The driving force for decomposition is

then the energy above the hull, which is typically referenced on a per atom basis.

Obtaining the stability of the structure requires calculating the energies of all

neighboring phases in the phase diagram to ensure the correct convex hull at the

structure composition. For this analysis, energies of all ICSD structures in the XMPS

22
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chemical system, with X=Li, Na and M=Si, Ge, Sn were calculated, and from these,

all stable Li containing structures were substituted with Na and also calculated.

Additionally, all LixPySz structures compiled by Holzwarth et al.[10] were computed

for both Li and Na.

Similar to our computational results on LGPS [21] and the LMPS system [22],

NGPS is found to be slightly unstable at OK, but with a low energy above hull, so

that it likely becomes entropically stabilized at moderate temperature due to the large

amount of cation disorder. Comparison of the stability of the Li and Na substituted

LGPS is given below in table 2.1.

Table 2.1: Phase equilibria and decomposition energies for X10 MP 2S1 2.

Cation (X) Cation (M) Decomposition products Edecomp
(meV/atom)

Na Si Na 4 SiS 4 + 2 Na 3 PS4  19
Na Ge Na 4GeS4 + 2 Na 3PS4  13
Na Sn Na4SnS 4 + 2 Na 3 PS4  15
Li Si Li 4 SiS 4 + 2 Li 3 PS4  17
Li Ge Li 4GeS4 + 2 Li 3 PS 4  15
Li Sn Li4 SnS4 + 2 Li 3PS 4  13

The difference in the LGPS stability between these data and Ong et al.[22] is due

to the lower energy configuration found using the newer experimentally determined

LGPS structure[18] as the starting structure for electrostatic ordering.

2.3 Cathodic and anodic stability

In addition to stability in isolation, an electrolyte material must retain its stability

when in contact with the battery cathode and anode, which can act as lithium sources

and sinks. To examine phase stability at these extremes, grand potential phase dia-

grams were constructed following the procedure of Ong et al.[24]. From these phase

diagrams, we determine the equilibrium phases at P4Na corresponding to bulk metallic

sodium (anode) and (puNa - 5) eV corresponding to a 5V charged cathode. Results

are summarized in table 2.2.
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Table 2.2: Phase equilibria for Na 1 0 MP 2X1 2 composition at cathode and anode IptNa-

Cation (M) Equilibrium phases at cathode, Equilibrium phases at anode,
0 0

pNa f1Na- 5 eV PNa pNa
Ge GeS 2, P 2S7, S NaGe, Li2 S, Li 3P
Si SiS 2 , P 2S7 , S NaSi, Li 2 S, Li3 P
Sn SnPS3, P 2 S7, S Nai5Sn 4., Li 2S, Li3P

Unsurprisingly, the results are very similar to LMPS. When all of the alkali metal

is removed from the system (at the cathode), the equilibrium phases are identical

between LMPS and NMPS. At the anode, the reaction products are similar to LMPS,

though the Na content in the resulting NaM. phases is lower.

2.4 Diffusivity

The ionic conductivity of an electrolyte is an important measure of its performance,

as it contributes to the rate capability of the overall battery. Low electrolyte conduc-

tivity requires large overpotentials to drive ion migration, which leads both to reduced

energy output and heat generation within the cell. Direct simulation of the conduc-

tivity is difficult due to the system size required, but unnecessary for calculating the

ionic conductivity.

The ionic conductivity is directly dependent on the diffusivity (D) of the mobile

ion, and the two properties are related by the Nernst-Einstein equation:

_DNq
2

kT (2.1)kT

We performed ab initio molecular dynamics (MD) simulations under the Born-Oppenheimer

approximation to determine Na diffusivity in the NMPS system. Under the Born-

Oppenheimer approximation, electronic relaxation is assumed to be much faster than

ionic motion, and the ground state electronic structure is used to calculate forces on

the atomic species. Atom trajectories are then calculated using Newtonian dynamics

with Verlet integration. From the resulting trajectories of the Na-ions relative to the

host structure, the diffusivity is calculated. The AIMD simulations were performed
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Table 2.3: Ionic conductivity of cation-substituted compounds X1OMP 2S12 (X=Li,
Na; M = Si, Sn, P, Al)

Compound Ea (eV) Conductivity (mS/cm)
Na 1oGeP 2S1 2 (P1) 0.234 5.4

Na 1 OGeP 2 S1 2 (C222) 0.244 3.3
Na 1 oSiP 2 S1 2  0.226 5.9
NaioSnP 2SI 2  0.313 0.62
Li1OGeP 2 S1 2  0.21 13
Li 1 OSiP 2 S1 2  0.20 23
Li 1OSnP 2 S12  0.24 6

on a single unit cell of NMPS, with 50 ions (2 formula units). The volume and shape

of the cells were obtained from the fully relaxed cells used for the energy calculations.

The time step of the simulation was chosen to be 2 fs. To reduce the computational

cost of the calculation, forces were calculated using a single k-point. Temperatures

were initialized at 300K, and scaled to the appropriate temperature over 1000 time

steps (2 ps).

At low temperatures, even in superionic conductors, diffusion occurs on a long

timescale relative to ab initio simulations. For materials with conductivity on the

order of 10 mS/cm, each mobile atom experiences a single diffusive jump only every

few hundred ps. Compared to the achievable timescales of ab initio MD (10s to hun-

dreds of ps for small systems), simulation at room temperature is generally infeasible.

For that reason, we perform simulation at elevated temperature, and extrapolate the

conductivity at room temperature using an Arrhenius relation. This extrapolation

assumes no change in the diffusive mechanism between the simulation temperature

and desired operating temperature. For each structure, diffusivities were calculated

at 8 temperatures between 600K and 1300K. For temperatures 1000-1300K, 200 ps

were simulated. At the lower temperatures, simulations were extended to 400 ps to

achieve better convergence. Arrhenius plots of the diffusivity are shown in figure 2-4.

From these results, we calculate the diffusivity and extrapolated room temperature

conductivity for the 4 structures (Table 2.3). For comparison, results from our study

on the similar Li-ion electrolyte system are included[22].
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In general, the diffusivities between the LMPS and NMPS systems are similar,

which is expected given the similarity between the two frameworks. The activation

energy for the Na materials are slightly higher than for their lithium counterparts.

Similar to LMPS, NMPS is relatively unaffected by the choice of cation, though

reveals the same trend of increasing E, across Si, Ge and Sn.

2.5 Conclusions

The NMPS system is in most respects very similar to LMPS. The intrinsic stabilities

are comparable, with ground state structures 15 meV/atom above the hull. Like

LGPS, NGPS and its substitutions are found to be unstable against both the anode

and cathode with very similar decomposition products, though in most cases with

less Na rich anode alloys of Si, Sn and Ge. Somewhat surprisingly, given the size

difference of the mobile ion, even the activation energy for diffusivity is calculated to

be only ~30 meV higher than LMPS for the Si and Ge versions. The extrapolated

conductivities, ranging from 0.6 to 6 mS/cm for the various compositions, are high

enough to rival existing liquid organic electrolytes. The relative order of diffusivity

for the various cation substitutions of LMPS is also replicated in NMPS.
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Chapter 3

Error bounds for diffusivity

calculations

While much of the previous discussion has been on a single class of materials, the

search for a better solid electrolyte must extend beyond this narrow approach. In

a broad search for new materials, it is important to be able to tune the tradeoff

between precision of diffusivity measurements and the scope of material structures and

chemistries. To do so efficiently requires an understanding of the error associated with

the simulation and measurement of diffusivity. Typically, these errors are estimated

by making a large number of observations and invoking the central limit theorem so

that the mean value can be assumed to be normally distributed. A confidence interval

is then constructed from the sample mean and variance.

With a limited computational budget, ideally one would run a simulation for the

minimum amount of time such that a decision can be made on its suitability as

a solid electrolyte, i.e. whether it passes some threshold in its conductivity. This

chapter develops an understanding of the atomistic process of diffusion and the errors

associated with measurements, so that these determinations can be made.
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3.1 Diffusivity from the random walk

At the macroscopic scale, diffusivity is described by Fick's laws, which relate the flux

of atoms to concentration or potential gradients via a simple linear relation:

J = -D-- 6(3.1)
6X

o#6 2q5
= D 6(3.2)

6t 6x2

While useful for describing phenomena at macroscopic scales, this description does

little to elucidate the diffusive mechanisms at work, and is infeasible to model via ab

initio calculations due to the large system size required.

At an atomistic level, self diffusion arises from the random walk behavior of in-

dividual atoms; the fluxes that Fickian diffusion models are due to small biases of

otherwise random trajectories. The relationship between the random walk and the

macroscopic diffusion constant is given by the Einstein-Smoluchowski diffusion rela-

tion

((r - ro) 2 ) = 2dDt (3.3)

where r is the atom displacement, d is the dimensionality of the system, D is the diffu-

sivity, and t is the elapsed time. From an atomic simulation, diffusivity is determined

by measurement of the value of ((r - ro) 2), the mean squared displacement (MSD) of

the diffusing species. While equation (3.3) holds in the long-time and many-particle

limit, it breaks down at short timescales and for small numbers of atoms. The na-

ture of diffusion sites in a crystal discretizes the allowable displacements and causes

deviation from this idealized behavior.

On a discrete lattice, diffusivity can be expressed as a function of the lattice

parameter and jump frequency:

D = (3.4)
2d

where F is the jump frequency, rj is the jump distance, d is the dimensionality of the

system, and f is a correlation factor which is introduced to account for the fact that
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jumps are not entirely random. In some cases, e.g. vacancy mediated diffusion, it is

likely that after an atom has jumped to a neighboring vacancy, it will jump back to

its original position due to the presence of the recently formed vacancy. In this case

the correlation coefficient will have a value between 0 and 1. Similarly (though less

frequently), there can be a tendency of a diffusing atom to continue in the direction

of its most recent jump, and in this case the coefficient will be greater than 1. For

the rest of this analysis, I define a new term rcorrelation , which is the average motion

caused by a single jump, as

rcorrelation = r f 1/2 (3.5)

With this simplification, correlated motion on a lattice with parameter r is very

closely approximated by uncorrelated motion on a lattice with parameter rcorrelation.

Equations (3.4) and (3.3) are related by the expected MSD due to the random

hopping at the limit of large times and large numbers of particles.

Fr 2orrelationt= ((r - ro) 2 ) (3.6)

In the one dimensional case, the net motion of an atom during a simulation is given

by the number of jumps it makes to the right (nr), minus the number it makes to the

left (n1). The jump frequency F is modeled as the product of an attempt frequency

(related to the thermal vibration frequency) and a probability of overcoming an energy

barrier Ea.

F = Ae-Ea/RT (3.7)

Probabilities of observing values of ni and n, are given by a binomial distribution,

given the success probability and the attempt frequency

Pr(ni = k) = ) k(I _ P)tv-k, p = -Ea/RT (3.8)

I make one final assumption to further simplify the derivation of error bounds.

I assume that the jump probability is small, which is justified by the fact that the
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timescale for diffusion is typically much longer than for thermal vibration. This sim-

plifies the binomial distributions to Poisson distributions, and the net displacement

of a single atom in one dimension to a Skellam distribution (the difference between

two Poisson distributions).

/ dDt
r - To = TcorrelationSk(k; p1, P 2 = o )(3.9)

correlation

The Skellam distribution (Sk) typically takes two parameters, p, and P2, which

are the expected number of events in each of the underlying Poisson distributions. For

the case of diffusion, left and right diffusion are equally likely, so p 1 = P2 = p. The

variance of this distribution is P1 + P2 = 2p. These p are a function of diffusivity,

so that the variance of position in equation (3.9) is compatible with the Einstein-

Smoluchowski relation for large t.

3.2 Distribution of measurements of mean squared

displacements

This section discusses the distribution of observed values of the MSD given values

for D and t. This distribution is directly derived from the underlying distribution

of single atom displacement. This is done via a transformation of the distribution

to account for the squaring of the displacement vector, and nob, convolutions of the

distribution to take the mean.

fsquared(k; Pi, P2) = fskellam(k2; P1, P2) (3.10)

k k k
fmsd(k; pi, P2, nobs= fsquared( ) * fsquared( . * fsquared( ) (3.11)

ns nobs nobs

An example of the resulting distributions are given in figure 3-1. It can be seen that

for small numbers of observations the convolution is extremely noisy, but smoothens

as nobs increases. The discrete distributions are compared with the chi-squared dis-

tribution, which would result from starting with a normal, rather than skellam, dis-
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Figure 3-1: Discrete MSD distributions with (a) nobs = 5,ip = 3 (b) nob, = 15,/p = 3

tribution.

Though it is possible to determine the likely values of D given this distribution,

and the exact number of jumps taken by each atom, the non-smooth nature of the

distribution often results in credible intervals that are not continuous. Additionally,

in real simulations it can be difficult or impossible to completely remove the noise

due to random thermal fluctuations of the structure.

3.2.1 Relating the theoretical distribution to simulation ob-

servables

The Skellam distribution is a discrete distribution, though measurements in ab initio

MD simulations are of a continuous quantity - atomic displacement. The discrepancy

stems from the oscillations of atoms around their idealized lattice positions. These

fluctuations are added to the model by the addition of a normally distributed contin-

uous variable to the discrete atomic site motion. This is obtained by a convolution

of the two distributions. Here I use a standard deviation of 0.2, which is typical for

the ab initio MD results at relevant temperatures. Assuming this distribution, the

PDF of the MSD becomes a relatively smooth function after only a few convolutions.
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Figure 3-2: (a) Single skellam variable + noise with p = 1 (b) MSD probability
distribution with nobs = 3, p = 1

Figure 3-2 shows the individual atom displacement distribution as well as the MSD

distribution with the addition of this noise. In these plots, the chi-squared distri-

bution has been scaled to reflect the mean of the squared values, rather than the

sum.

It should be noted that the addition of the noise term causes the MSD distribution

to converge to the chi-squared distribution for both small and large values of A. For

small values of p, the noise term dominates. For large values of /p, the skellam

distribution converges to a normal distribution plus some high frequency noise, which

quickly disappears upon convolution. When p is close to 1, however, the effect of

the excess kurtosis of the Skellam distribution cannot be ignored, and so the MSD

distribution differs significantly from chi-squared.

3.3 A credible interval for MSD

So far, we have determined the distribution of MSD observations with a known value

of Dt, though we need to determine Dt given some value of the MSD. In frequentist

statistics, this is done by determining the confidence interval, but since the MSD
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observations are significantly non-normal one cannot be constructed for the general

case. Analogous to the idea of a confidence interval, in Bayesian statistics the credible

interval defines a region in which the true underlying parameters of the distribution

are likely to be found. Bayesian inference derives a probability distribution (the

posterior probability) from some prior probability, and a likelihood function that is

based on observed event.

P(HIE) =P(EH)P(H) (3.12)
P(E)

Our case of estimating a diffusivity parameter is relatively straightforward. E

is the measured value of the MSD, P(HIE) is the probability distribution for the

true value of Dt, P(H) is some prior distribution, and P(EIH) is the probability of

observing our measurement for MSD, given some true value of the diffusivity (the

likelihood function). The likelihood function is the previously derived distribution of

MSD measurements.

Given any observed MSD data, the posterior probability of the underlying values

of Dt can be calculated. The credible interval is then constructed as the region

between 0.1 and 0.9 on the CDF of this distribution.

3.3.1 Choosing a prior distribution

The last decision required is that of the prior probability distribution. While it is

possible to construct a prior distribution from the diffusivities of known compounds,

it is often desirable to use an uninformed prior, which adds as little information

about the distribution as possible. For the case of diffusion, where we estimating

a parameter on the interval [0, inf), two such uninformed priors are relevant - the

uniform distribution and the log-uniform distribution. We will see that both of these

priors have their own complications, and to be conservative a combination of the two

must be used.
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Log-Uniform distribution

The log uniform distribution seems at first glance to be a perfect choice for a prior.

It is invariant to a number of reparameterisations, and diffusivity values span many

orders of magnitude. This prior distribution gives the same weight to the interval (1,
10) as it does to (le-4, le-3), which is desirable. An issue arises, however, because

the observed values are due to a diffusive term plus a constant noise term. For low

observed MSD, it is possible that the observation is entirely due to noise, and so the

PDF of D becomes constant below some value. With this prior, the lower bound of

the credible interval is 0, as it should be, but the upper bound is also infinitely small.

Uniform distribution

The use of a uniform prior distribution eliminates the issue of undefined bounds on

the credible interval, but does so at the expense of overweighting high diffusivities.

Our intuitive notion that diffusivities are log-normally or log-uniformly distributed

is somewhat valid (the distinction between these isn't of particular importance when

using a log-uniform prior) but the assumption of a uniform prior weights the interval

(0.1,1) with le6 times the weight of (le-7, le-6). This leads to cases where the lower

bound on the credible interval exceeds the observed MSD value (even though the

observed MSD has been increased by the addition of noise).

Reconciliation of these distributions

The use of the log-uniform prior for determining a lower bound on diffusivity mea-

surements and the uniform prior for determining the upper bounds yields an interval

that is numerically stable, and somewhat conservative. For comparison, the 90% up-

per bound of an observation of MSD = 30 with nobs = 4 is 112 with the log-normal

prior, but 200 with the uniform prior. As nobs increases, the difference in priors is

less significant; for nobs = 16, the upper bounds are 51 and 60 respectively.

The credible intervals built from these prior distributions for observed values of

MSD and given rcorrelaton are given in figure 3-3. It should be noted that the width
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Figure 3-3: Bounds as a function of MSD for various nobs: (a) upper bound with
uniform prior (b) lower bound with log-uniform prior

of the credible interval depends both on the number of observations and the amount

of diffusion observed. The number of observations is the number of mobile atoms

observed over independent time intervals, i.e. if a simulation including 5 Li atoms

is run for 200 ps, this can be used as 5 200 ps observations, or split into 10 100ps

observations.

3.4 Comparison of Bayesian credible intervals to

the Frequentist confidence interval

The Bayesian method of determining a credible interval is attractive in that it can be

used for any observed values of MSD. The general non-normality of the data makes

a confidence interval impossible to obtain, except in special circumstances. When

the number of MSD observations is large, the central limit theorem holds and the

mean MSD value can be assumed to be normally distributed. More usefully, since
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individual atomic motion is at long times normally distributed, all that needs to be

calculated is a confidence interval on the variance of this distribution. Since the mean

is known (0), this is given by

___ 2_ < o. 2 < 2_(3.13)

x2 (1 - a/2; k) x2(a/2; k)

It the other extreme, where no diffusive jumps are observed, the distribution

approaches the Poisson distribution. For a poisson distribution with parameter A,

the confidence interval for confidence level a of the poisson distribution is

12 12
2x(a/2; 2k) A x (1 - a/2; 2k + 2) (3.14)

For a 90% upper bound, this is equal to 2.3/k. This corresponds approximately

to the low MSD limit of the Bayesian confidence interval with a uniform prior for

low numbers of observations. As the number of observations increases and the sum

of squared noise terms approaches one, the distributions diverge. For typical ab

initio MD simulations, the number of diffusing atoms is on the order of 10 or 20, so

this divergence isn't an issue. For larger simulations, better error bounds could be

obtained by attenuating this noise.

These limiting cases (figure 3-4) show the compatibility of the two methods. The

advantage of the Bayesian approach is that it can be used with small MSD obser-

vations, while if any diffusion is observed a much longer (approx. 10x) simulation

must be run before one can be confident in the validity of applying the central limit

theorem.

3.5 Summary

This chapter developed a method for generating confidence intervals on data which

is known to be strongly non-normal. At its extremes, the upper bound approaches

bounds of well-studied distributions; for low MSD and low numbers of atoms it ap-

proaches the upper bound on a Poisson parameter, and for large MSD it approaches
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Chi squared distributions for nm = 6

the chi-squared distribution. The confidence intervals produced are applicable to any

MSD observation, a wide range of which are not well described by either a Poisson

process or by normally distributed data. The deviation from the Poisson confidence

interval for low-MSD high-nob, is due to atomic vibrations, and with additional data

processing can be reduced. For typical ab initio MD simulations, however, this is not

necessary.
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