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Abstract

We provide algorithms for efficiently moving and addressing quantum memory
in parallel. These imply that the standard circuit model can be simulated with low
overhead by the more realistic model of a distributed quantum computer. As a result,
the circuit model can be used by algorithm designers without worrying whether the
underlying architecture supports the connectivity of the circuit. In addition, we
apply our results to existing memory intensive quantum algorithms. We present
a parallel quantum search algorithm and improve the time-space trade-off for the
Element Distinctness and Collision Finding problems.

1 Introduction

There is a significant gap between the usual theoretical formulation of quantum algo-
rithms and the way that quantum computers are likely to be implemented. Descriptions
of quantum algorithms are often given in the quantum circuit model in which, for an
N -qubit circuit, there are up to N/2 simultaneous two-qubit gates in any one time-step.
The model allows arbitrary interactions between qubits even though any implementation
is likely to be mostly local in two or three dimensions, with a small number of long-range
connections. This is unlike classical computers, whose algorithms and implementations
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are currently dominated by von Neumann architectures where a small number of cores
share access to a large random access memory (RAM).

On the other hand sometimes the circuit model is also less powerful than we would like.
The concept of RAM or an analogue of the classical parallel RAM model would be useful
for algorithm design. We introduce the quantum parallel RAM model which, in addition
to any step of the circuit model, allows simultaneous queries to a shared quantum RAM.
This allows us to design new quantum algorithms for parallel database searching, and
the Element Distinctness and Collision Finding problems.

We demonstrate that a single idea—reversible sorting networks—can be used to effi-
ciently relate the circuit and parallel RAM models of computation to one that is more
physically realistic. We provide an efficient scheme for implementing a quantum circuit
on a physical device where the possible pairwise qubit iterations are restricted. We then
present a quantum circuit for implementing the quantum parallel RAM model, establish-
ing that quantum computers can efficiently access memory in a parallel and unrestricted
way. Combining these two results means that quantum memory does not need to be in
a single place, but can be distributed amongst many processors.

Our algorithms allow us to relate any quantum algorithm presented in terms of a quan-
tum circuit to a distributed quantum computer in which each processor acts on a few
well-functioning qubits connected to a small number of other memory sites (possibly
via long-range interactions). At the most basic level a ‘memory site’ could be a single
qubit. Thus experiments such as NV centres in diamond, and trapped ions connected
using optical cavities [14, 27, 31], or cavity QED for superconducting qubit networks
[7, 38, 37], could be used to efficiently implement quantum algorithms presented in the
circuit model.

Even in architectures strictly constrained to nearest-neighbour interactions in a constant
number of dimensions, our results provide efficient simulations of the circuit model.
For example, suppose we wish to implement a circuit with many concurrent operations
on a 1D nearest-neighbour machine. One approach would be to use SWAP gates to
bring each pair of qubits together so that the gate can be performed locally. For highly
parallel circuits this would require as many as O(N2) time-steps since there areN/2 gates
involving qubits that could be as far as O(N) qubits apart. Using sorting networks (in
this case the Insertion sort) Hirata et al. show how to perform all N/2 gates in only O(N)
time [21]. This is a special case of our results for the 1D nearest neighbour architecture.
Additionally, we prove that this is the best you can do; a 1D nearest neighbour machine
cannot do better than emulate an arbitrary circuit with a O(N) overhead.

Our work suggests to experimentalists how to begin building architectures for quantum
computers. There is little need to build a quantum computer in which every qubit
has the ability to interact with every other qubit. The addition of only a few long-
range (flying) qubits allows the connectivity of a hypercube. There are efficient sorting
networks over the hypercube (such as the Bitonic sorting network), so the overhead for
emulating arbitrary quantum circuits on such a device is small.
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Implicit in our work is the assumption of full parallelism. In classical computing, this is
generally unrealistic because communication is expensive and storage elements can be
much cheaper than computation elements. It may be that a passive fault-tolerant quan-
tum memory will later be invented which will make storage costs of quantum memory
substantially lower than the costs of performing computation. However, it remains an
open question whether such memories are physically possible in fewer than four spatial
dimensions. Instead, every known scheme for FTQC (fault-tolerant quantum comput-
ing) requires essentially full parallelism, even if the goal is simply to store quantum
information without performing any computations. Thus in this work, we will consider
“space” and “number of computing elements” to be roughly synonymous.

Returning to the more theoretical aspects of our work, the results can be summarized as
relating the following three models of quantum computation presented in Table 1: the
well-known circuit model (Q circuit), quantum parallel RAM (Q PRAM), and a more
realistic distributed quantum computing model (DQC) (also called a quantum multi-
computer by van Meter et al. [35, 36]). We prove that these three models are equivalent
up to polylogarithmic depth overhead, as long as the DQC model is defined with respect
to a sufficiently connected graph, such as the hypercube. See Theorems 2 and 3 and
Corollary 1 for explanations of how the DQC model can simulate the circuit model.
Theorems 4 and 5 give a precise description of how the circuit model can simulate a
machine with quantum parallel RAM.

Model In each time step Limitations/Features

Q circuit Up to N/2 two-qubit gates are per-
formed on arbitrary disjoint pairs
of qubits

No physical implementation since it
requires all qubits to interact. Not
clear how to perform simultaneous
memory look-ups

Q PRAM One step of circuit model or many
simultaneous queries to a shared
RAM

RAM should be locally writeable
(i.e. address i controlled by pro-
cessor i) but globally accessible

DQC N small processors interact in a
fixed low-degree graph (see Tab. 2
for examples)

Can simulate the above two mod-
els. With degree O(logN) the over-
head is O(log2N)

Table 1: Three models of quantum computation.

Theorems 2 and 3 on simulating circuits apply after the quantum error correcting layer
so that the graph, G, in the DQC model consists of logical qubits and gates (layer 4
in ref [22]). The emulation process plays a role similar to the Solvay-Kiteav theorem
[23] for approximating arbitrary single qubit gates given a universal gate set. A general
quantum algorithm in the circuit model may involve arbitrary two-qubit interactions.
We efficiently map these gates to a sequence of logical gates restricted to G.
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Our main result is Theorem 5 for efficiently accessing quantum memory in parallel.
The key primitive we need to implement is the following: Given registers |i1, . . . , iN 〉,
|x1, . . . , xN 〉 and |y1, . . . , yN 〉 with |ij , xj , yj〉 controlled by processor j, we would like to
replace the |yj〉 register with |yj⊕xij〉. In other words, processor j has specified an index
ij and would like to query the x1, . . . , xN string at this position, although this string
is distributed across N processors. We achieve this using sorting networks, which are
methods of sorting N objects via a series of pairwise reorderings of the form “If X < Y
then swap X and Y .” Such networks exist on the N -vertex hypercube using O(log2N)
depth [24] and in many other graphs (see Tab. 2 or ref [2]). We can implement a sorting
network reversibly by saving a bit for each comparison to record whether a swap took
place. We stress that no assumptions are made about the distribution of query indices,
and that the algorithm works equally well if the queries are random or concentrated on
a single node.

Our results apply when the processors are connected via a general graph with a topology-
dependent overhead factor. The key consideration is the required depth of a sorting
network. However, in order to reduce the number of qubits required to save “which path”
information, in some cases it is advantageous for a weakly-connected architectures (such
as a 2-d grid) to first simulate a highly-connected architecture (such as a hypercube).
Doing so would allow a

√
N ×

√
N grid of qubits to simulate the Q PRAM model with

O(
√
N poly logN) depth overhead, which is optimal up to the poly logN factor.

Element Distinctness. An important application of the quantum PRAM model and
the efficient circuit for its implementation (Theorem 5) is to quantum algorithms that use
large amounts of memory. For example, the Element Distinctness problem asks whether
a function f : [N ] → [N ] is one-to-one or has x 6= y such that f(x) = f(y), in which
case output a colliding pair (x, y). By guessing pairs of inputs this can be solved with a
classical computer with space S and time T constrained by ST = O(N2). Observe that
a naive application of Grover’s algorithm [19] fails to achieve any improvement in the
number of queries: there are O(N2) pairs to search, requiring O(N) queries. There is an
elegant quantum algorithm by Ambainis [4] that achieves the optimal query complexity
of O(N2/3). However, it also requires memory N2/3 logN ; i.e. S = Õ(N2/3), where the
tilde notation implies that we have neglected factors polynomial in logN .

When the function, f , is cheap to evaluate, but cannot be reverse-engineered, the best
method of finding a collision is to treat f as a black box. In this case, the same per-
formance as Ambainis’s algorithm can be achieved by a much simpler approach [20].
We divide the N2 search space into N2/S blocks and Grover search each one in time
Õ(

√
N2/S) for a time-space tradeoff of ST 2 = Õ(N2), which includes S = T = Õ(N2/3)

as a special case. Grover and Rudolph pose beating this trade-off as a challenge.

Our main result (Theorem 5) allows us to meet this challenge. We choose a random
set of S inputs x1, . . . , xS to query, and store these along with f(x1), . . . , f(xs) in the
distributed memory using a data structure that permits fast lookups. Next, we use
the S processors to check the remaining N − S inputs for a collision with one of the
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x1, . . . , xS . Using Grover’s algorithm S times in parallel (Theorem 6), this requires time
Õ(

√
N/S). Note that each iteration of Grover requires the use of our algorithm for

making simultaneous queries to a distributed memory.

This will succeed (with constant probability) in finding a collision if one of the colliding
elements was in {x1, . . . , xS}. Since this event happens with probability Ω(S/N) (as long
as a collision exists at all), we can wrap this entire routine in amplitude amplification
to boost the probability to 2/3 by repeating O(

√
N/S) times. The total time is T =

Õ(N/S), and so we have achieved a time-space tradeoff of

ST = Õ(N) .

We stress that due to the efficient circuit for parallel memory look-ups (Theorem 5), the
trade-off applies in the circuit model where space is the number of qubits (or width) and
time is the circuit depth.

Organisation of the paper. The remainder of the paper is organised as follows. In
Section 2, we provide an algorithm for efficiently moving quantum data (Theorem 1) ac-
cording to a classical permutation. Distinct indices are permuted, replacing |x1, . . . , xN 〉
with |xj1 , . . . , xjN 〉. Armed with Theorem 1, we relate the circuit model to the distributed
quantum computing model in Section 3. We prove that given (by an experimentalist)
any layout of qubits grouped into memory sites with connections between fixed pairs of
sites, a device with this layout can implement algorithms presented in the circuit model.
Of course there is a price to pay: the overhead depends on the topology of the processors,
but our algorithm is close to optimal.

In Section 4, we generalise the data-moving algorithm so that the destinations j1, . . . , jN
are quantum data and no longer restricted to form a permutation. This results in an
algorithm (circuit) that can look up multiple memory entries in parallel. In addition,
we prove that this memory look-up algorithm (measured in terms of circuit complex-
ity) is scarcely more expensive than any circuit capable of accurately accessing even a
single entry. Thus, the quantum parallel RAM model can be efficiently simulated using
a distributed quantum computer. We consider, in Section 5, various quantum search
problems in the quantum parallel RAM model. The application of our efficient algo-
rithm for parallel memory access results in several improved quantum algorithms: The
Multi-Grover algorithm for parallel search of an unstructured database; an improved
algorithm for the Element Distinctness problem and an improved algorithm for the Col-
lision Finding problem.

2 Moving Quantum Data

The quantum state stored in a qubit can be moved across a graph, G, using a chain of
SWAP gates. Alternatively, we could apply a teleportation scheme making use of existing
entanglement and classical control [15]. However, if in a single phase of computation, we
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wish to perform a permutation of many or even all of the qubits, this routing problem
is non-trivial.

We consider the problem of moving N pieces of quantum data, initially stored at the
N nodes of G. In this section we provide an algorithm, VN , that performs an arbitrary
permutation of qubits. Our only requirement being that the host graph, G, supports a
sorting network. We make two simplifying assumptions: that the destinations are known
at the outset (as classical information) and that they are all different. In Section 4, we
relax these assumptions and generalise our algorithm.
Definition 1. Given the quantum register |x1, x2, . . . , xN 〉 with |xj〉 located at node j of
the graph G, an algorithm for data moving is a unitary map implementing

VN : |x1, x2, . . . , xN 〉 7→ |xj1 , xj2 , . . . , xjN 〉,

for some permutation (1, . . . , N) 7→ (j1, . . . , jN ). The N data registers x1, . . . , xN each
consist of d qubits.

We now present an efficient algorithm for implementing VN . The result applies to any
connected graph and we give some interesting examples and their respective properties
in Table 2.
Theorem 1. Let G be a connected graph with N nodes each with d-qubit data registers
and Q-qubit ancilla space. Let DG be the depth of a reversible sorting network over G
with N inputs. Then there exists an algorithm for VN , restricted to G, with depth O(DG).

Before proving Theorem 1, we first describe the main subroutine for the data-moving
algorithm and subsequent algorithm for parallel memory access: a classical reversible
sorting network. Both the data-moving and parallel memory access algorithms are in
fact classical reversible circuits. Indeed, the tools we use were developed originally for
classical parallel computing [33, 34, 25]. We were unable to find our Theorems 1 or 5 in
the literature (although [33] is somewhat similar), and we suspect that may be because
quantum computing presents architectural issues that are different to those encountered
in the field of traditional classical parallel computing.

2.1 Sorting over a graph

A sorting network is a network on T wires in which each wire represents one of T
elements and where the only gates are binary comparators. A binary comparator takes
two elements on its input, and it outputs the same two elements but in the correct
order, according to some specified comparison routine. Crucially, a sorting network is
independent of the inputs, the same fixed set of gates correctly sort all inputs.

For any T > 0 there must be a lowest-depth sorting network for sorting T elements
deterministically. More generally, one can say that for any connected graph G of T
vertices, there must exist a lowest-depth sorting network for sorting T elements, all of
whose comparators lie along edges of G. For example, when T = 4 and G is a 4-cycle,
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Graph Valency Sorting network DG

1D Nearest Neighbour 2 Bubble/Insertion sort O(N)

2D Nearest Neighbour 4 Bubble/Insertion sort O(
√
N)

Hypercube O(logN) Bitonic sort [24] O(log2 N)
AKS sort [2] O(logN)∗

Complete graph N Any sorting algorithm O(logN)

Table 2: Comparision of various N node graphs giving the graph valency and examples
of sorting networks over G. The depth of the sorting network, DG , translates into the
cost of running VN via Theorem 1. (∗ includes a large constant c ≈ 6, 1000.)

then the bitonic sorting network fits the graph, and, having six comparators in depth 3,
is optimal (cf. Section 3.1). But for T = 4 and G a graph of three edges in a line, the
bitonic sort is not possible, and a sort involving six comparators in depth 4 turns out to
be optimal for this graph. Examples of sorting networks for popular architectures are
given in Table 2.

To make a sorting network reversible, we add an additional sorting-ancilla bit to each
comparator that is initially set to |0〉. This sorting-ancilla gets flipped to a |1〉 if and
only if the comparator exchanges the order of the two elements input. In more detail,
the comparator first compares the two elements, storing the resulting bit in the sorting-
ancilla; then conditioned on the sorting-ancilla being set, it swaps over the two elements.
These two steps are each clearly reversible in their own right. The sorting-ancillas are
then all retained, to enable ‘unsorting’ later.

A reversible comparator for full lexicographic sort on b-bit objects was constructed by
Thapliyal et al. [32]. Their algorithm is based on the binary tree and is efficient for our
purposes having width O(b) and depth O(log b).

Write s(T ) for the total number of comparators appearing in a given sorting network for
T elements. A sorting operation is written as follows:

ST : |0〉 ⊗
T⊗

k=1

|xk〉 7→ |σ〉 ⊗
T⊗

k=1

|xσ(k)〉. (1)

Here σ ∈ Sym(T ) denotes a permutation that puts the T elements in order, and the first
register (storing σ) actually consists of the s(T ) sorting-ancilla bits that get fed into the
comparators. It is clear from this observation that s(T ) ≥ log2(T !) = Ω(T log T ) for
any valid sorting network, since potentially any element of Sym(T ) might be a uniquely
correct one. If a sorting network has depthD, then it uses a total of O(D·T ) comparators,
and so depth must be D = Ω(log T ) for any valid sorting network.
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Because the sorting subroutine is reversible, it makes sense to run it backwards. When
that happens, the comparators are encountered in reverse order, and each comparator
swaps the order of its inputs according to whether its sorting-ancilla bit is set. That
sorting-ancilla bit is then reversibly cleared (regardless of its value) by ‘uncomputing’
the comparison between the two elements.

2.2 The quantum data-moving algorithm

We now describe the quantum data-moving circuit, VN . It is convenient to break VN into
three basic parts: formatting, sorting, and applying the permutation. The formatting
and sorting both need to be reversed after the permutation has been applied. This can
all be annotated as follows, reading right to left:

VN = F̂ ◦ S−1
2N ◦ P ◦ S2N ◦ F. (2)

We must be careful to ensure that all operations can be performed with the graph locality
restriction and to count the depth and additional ancilla space required by each of these
subroutines (see Section 6). The format and permutation will both be entirely local
operations, so their circuits are already admissible to the processor model. The gates of
the sorting subroutine all belong to comparators of the sorting network over the graph,
G.

1) Initial Formatting The subroutine F can be achieved using Pauli X gates and
SWAP gates with no additional ancillas and in depth 1. It is not really a ‘computation’
at all, rather a rearrangement of the input data into a format amenable for describing
the sorting that will follow.

Let there be 2N ancilla registers, which we call packets. Each packet contains an address
(⌈log2 N⌉ bits), a flag (1 bit), and a data (d bits) register. The initial format moves the
input data out of the input registers and into the packets, ready for sorting:

F : |x1, x2, . . . , xN 〉
N⊗

i=1

|(0, 0, 0)〉2i |(0, 0, 0)〉2i+1 (3)

7→ |0, 0, . . . , 0〉
N⊗

i=1

|(i, a, xi)〉2i |(ji, q, 0)〉2i+1,

where jr 6= js for all r 6= s. The special symbols q and a denote ‘question’ and ‘answer’,
respectively.

One can think of the map F in the following terms. Each processor, i, submits the
‘answer’ packet (i, a, xi), and if the data it would like to obtain is at index ji, it also
submits the ‘question’ packet (ji, q, 0). The flag is used in the sort and unsort steps with
the convention that q < a.
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2) Sorting Sorting was described in Section 2.1. In this context, we want to sort the
2N packets, using a lexicographical ordering that reads only the address then the flag
of each packet. In accordance with Eqn. (1), the subroutine S2N must employ a register
of s(2N) sorting-ancilla bits, mapping as

S2N : |0〉 ⊗
N⊗

i=1

|(i, a, xi)〉2i |(ji, q, 0)〉2i+1 (4)

7→ |σ〉 ⊗
N⊗

i=1

|(i, q, 0)〉2i |(i, a, xi)〉2i+1,

where σ ∈ Sym(2N) is the permutation implied by 2i = σ(2i + 1) and 2i + 1 = σ(2ji),
for i from 1 to N .

The total depth of the circuit for unitary S2N is equal to the depth of the sorting network
multiplied by the depth of a single comparator.

3) Locally SWAP After the sort, we are left with a sequence of packets of the
form

. . . (i− 1, q, 0) (i− 1, a, xi−1) (i, q, 0) (i, a, xi) (i+ 1, q, 0) (i+ 1, a, xi+1) . . . (5)

where the packets are sorted in lexicographical order according to the address and the
flag. This ordering means that each answer is immediately to the right of the corre-
sponding question and, furthermore, both lie on the same node. Without the need for
any auxiliary bits, and in depth 1, SWAP gates can achieve the map

P :
N⊗

i=1

|(i, q, 0)〉2i |(i, a, xi)〉2i+1 7→
N⊗

i=1

|(i, q, xi)〉2i |(i, a, 0)〉2i+1. (6)

An important property of P is that it does not change the address or the flag used in
the sort.

4) Unsorting The sorting network can be run in reverse to return the packets to their
original positions. To achieve the unsort, S−1

2N acts on the sorting-ancilla register and
the packets, mapping

S−1
2N : |σ〉 ⊗

N⊗

i=1

|(i, q, xi)〉2i |(i, a, 0)〉2i+1 (7)

7→ |0〉 ⊗
N⊗

i=1

|(i, a, 0)〉2i |(ji, q, xji)〉2i+1.

Since S−1
2N is the same as the sorting network, but with the order of the gates reversed,

the cost for the unsort step is the same as for step 2.
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5) Final formatting The final step in the algorithm is to write the data back to
the original registers and clear the ancilla space. As with the initial formatting, F , the
subroutine F̂ has depth 1. Acting on the same registers as for its counterpart F , it works
as follows:

F̂ : |0, 0, . . . , 0〉
N⊗

i=1

|(i, a, 0)〉2i |(ji, q, xji)〉2i+1 (8)

7→ |xj1 , xj2 , . . . , xjN 〉
N⊗

i=1

|(0, 0, 0)〉2i |(0, 0, 0)〉2i+1 .

2.3 Low valency graphs

We require O(DG) qubits at each node to record the which-way information of the two
sorting steps in VN . Hence for very low valency graphs where the sorting depth is
large, there is insufficient local space to run the algorithm. For example, in the 1D
nearest neighbour graph we would need each node to have O(N) qubits. However in any
physically relevant architecture, the node size is likely to be much smaller than O(N).
We now explain how to fix this problem.

The sorting step in the VN algorithm involves only the classical information about the
permutation known at the start of the algorithm; it is independent of the data register.
We can classically compute all of the moves required by the sorting network before
running the quantum algorithm. Hence we can replace the reversible comparators (with
their additional storage qubit) by a SWAP gate or no gate as required in that step of
the sort. Since the network remains the same, the depth of the algorithm is O(DG), as
before, but with O(d) qubits per node. This is the approach taken by Hirata et al. who
consider the case of the 1D nearest neighbour graph with one qubit per site [21].

3 Efficient Distributed Quantum computing

The circuit model allows any pair of qubits to be connected by gates and so allows
arbitrarily long-range interactions. This model is very far from any likely implementation
of a quantum computer. We imagine that a small number of long-range interactions could
be possible, but most gates will need to be local. Due to the presumed requirements
of fault-tolerance [1], we expect implementations will allow the concurrent execution of
one- and two-qubit gates with fast classical control

It is well known that if the qubits are laid out in a line and each could only connect
with its nearest neighbours (one either side), then the resulting model of computation
would still be universal because it could emulate any circuit of the more general kind.
The emulation proceeds in a straightforward fashion using SWAP gates to bring qubits
next to each other so that nearest-neighbour gates can be applied. The price to pay
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in this emulation is (in general) an overhead factor of O(W ) for each gate, where W
counts the total width (number of qubits) of the circuit being emulated. For highly
parallel algorithms there are O(W) gates per timestep so the cost of this emulation
scheme is O(W 2). Hirata et al. [21] use a sorting algorithm to emulate all O(W ) gates
simultaneously, resulting in an improved emulation scheme for the 1D nearest neighbour
architecture with cost O(W ).

More generally, we could envisage having memory larger than a single qubit at each ‘site’,
with connectivity more generous than simply being connected each to two neighbours
in a line. Then the overhead depth factor (or emulation factor) of embedding circuit
operations into the underlying hardware could be reduced to something smaller than
O(W ). In this section we demonstrate that reversible sorting networks provide an elegant
way of embedding an arbitrary circuit into physical hardware. Up to logarithmic factors,
the proposed solution is asymptotically optimal. Our scheme is very general and includes
the case of each site being a single qubit.

Consider a quantum circuit of width W , and let there be N quantum processors, each
with its own local memory of Q qubits. Suppose that Q ·N ≥ W and that the processors
are interconnected as the N nodes of a graph G. We say that a circuit respects graph
locality if every two-qubit gate in the circuit has those two qubits lying either in the
same processor’s local memory or in a neighbouring memory with respect to G. In
addition, we require that each gate is assigned to a processor that holds at least one of
its qubits, and each processor can only perform one gate per time-step. Together, these
restrictions on the ordinary circuit model define the distributed quantum computing
model formally.

We examine the best overhead depth factor for arbitrary circuit emulation in the worst
case. Starting with a circuit of W qubits, we wish to emulate it using a circuit that
respects graph locality. We want the overhead depth factor of this emulation to be as
small as possible. That is, we wish to minimise the function

F (G, Q,W ) := max
C

Depth(C ′)

Depth(C)
(9)

where C ′ is a circuit for emulating C subject to the constraints imposed by the host
graph G and the number of qubits at each site, Q. Maximisation is over all circuits
C of width W so F (G, Q,W ) is the worst case cost of emulating arbitrary circuits.
Normally we are concerned with the case W = |G| = N , so that an emulation has one
processor per qubit being emulated, and where Q is large enough to hold ancilla for basic
computations.

In Section 2 we used sorting networks to efficiently move quantum data. We now show
that scheduling tasks on a distributed quantum computer can be regarded as (more or
less) equivalent to the problem of designing sorting networks commensurate with those
topologies. We put these ideas on a firmer footing in the following Theorem.
Theorem 2. Let G be any connected graph on N nodes, and consider the distributed
quantum computing model with graph G and Q = O(logN) qubits per processor. Let
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DG denote the depth of the best algorithm for sorting 2N arbitrary bit strings of length
⌈log2 N⌉+2 over G. Then there exists an algorithm for emulating arbitrary circuits with
depth overhead given by

F (G, Q,N) = O(DG) (10)

Proof : The proof of the Theorem uses our algorithm for VN with data registers of
size d = 1 (cf. §§2.2). The circuit for VN can be directly embedded into the distributed
quantum computer. Hence we show how a circuit of width N can be emulated in terms
of gates that are local (with respect to G) and renditions of VN only.

Each processor is large enough to hold two packets and some ancillas, since Q =
O(logN). Given a general circuit of width N , in each timeslice there will be at most N
gates. The gates are ‘assigned’ one per processor when the timeslice is emulated. When
a processor comes to emulate a gate assigned to it, it will need access to the one or
two qubits of that gate. The emulation of a timeslice therefore requires two calls to the
subroutine VN : without loss of generality, we can assume that the first qubit of a gate
already resides at the processor to which that gate has been assigned; the first call to
VN brings the second qubit of each gate to its processor; the processor implements the
gate locally on the two qubits; the second call to VN restores the second qubit of each
gate to its original home. Null ancilla qubits can be included within each VN operation
in order to make it a permutation.

Every timeslice of the circuit being emulated now additionally requires two calls to VN ,
plus appropriate O(logN)-sized circuitry (per processor) to write and erase the indices
ji used within VN . Overall this costs an overhead depth factor of O(DG).

This completes the proof of Theorem 2.

In Theorem 2, we provided an algorithm for embedding a circuit into a physical host
graph. Our aim was to minimise the depth overhead factor F (G, Q,N) of emulating the
worst case circuit. In the following theorem, we prove that this algorithm is optimal up
to logarithmic factors.
Theorem 3. For a distributed quantum computer with host graph G consisting of N
nodes each with Q qubits, the cost of emulating arbitrary circuits of width O(N logN) is
bounded by

Fmin(G, Q,O(N logN)) = Ω

(
DG

logN log logN

)
. (11)

Proof : The AKS sorting network sorts T elements in O(log T ) comparator depth [2, 29].
Suppose we use this network to sort 2N packets of bit-length ⌈log2N⌉ + 2. Let C be
the (unconstrained) circuit for achieving this, so the width of C is W = O(N logN) and
its depth is O(logN log logN) (cf. Section 6). The cost of emulating C is bounded by
DG since the emulation is a sorting algorithm on the (G, Q)-distributed computer and
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we defined DG to be the depth of the best sorting algorithm. Hence the cost of any
emulation scheme is lower bounded by Ω(DG/ logN log logN), as required.

A lower bound on the cost of implementing an addition circuit on a kD nearest neighbour
graph was found by Choi and Van Meter [13]. Their bound translates into an emulation
cost of

Fmin(G, Q,N) = Ω(N1/k) = Ω(DG)

in the special case of emulating a circuit for addition on a kD nearest neighbour graph.

3.1 The Hypercube architecture

Theorem 2 provides an efficient algorithm for emulating circuits on any graph. We
briefly consider a particularly nice architecture, the hypercube, demonstrating that the
addition of a few flying qubits greatly improves the efficiency of a distributed quantum
computer.

All of the comparators in any given sorting network are identical, and when any T
elements are input to the sorting network, its overall effect should be to output them in
totally sorted order, with certainty. The network can of course be designed completely
independently of the comparator, since the details of what makes one element ‘greater’,
‘less’, or ‘equal’ to another is irrelevant from the perspective of which binary comparisons
are needed to guarantee sorting. Thus for any value of T , one can ask for the lowest
depth sorting network for sorting T elements.

In references [2, 29], it is shown that T elements can be sorted in O(log T ) depth of
comparators, and that a uniform family of sorting networks achieves this. Unfortunately
the constant for Paterson’s simplified version of the AKS sorting network [29] is around
6100 and so not practical for any realistic sizes of T . However, the bitonic sorting network
[24] sorts T = 2t elements in depth 1 + 2 + . . .+ t = t(t+ 1)/2 = O(log2 T ).

The following corollary of Theorem 3 demonstrates a nice balance between the cost of
embedding arbitrary circuits into the graph, the size of the nodes, Q, and the degree,
val(G).
Corollary 1. A distributed quantum computer with N nodes of Q = O(logN) qubits
interconnected using a hypercube architecture has the following properties: the number
of connections per node is val(G) = O(logN), and yet the overhead depth factor is
F (G, Q,N) = O(log2N log logN) for emulating quantum circuits of width N .

Ignoring constants, the AKS graph would be a better graph to use having overhead depth
factor F (G, Q,N) = O(logN log logN). Hence asymptotically, the cost of emulating
the circuit model on a distributed quantum computer with low degree is O(logN).
Alternatively, there are sorting algorithms with an O(logN) complexity but which are
probabilistic and so solve the routing problem on almost all circuits. However, such a
probabilistic approach will not work if we require all permutations to be correctly routed.
This is the case in the next section when we consider parallel memory access.
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4 The cost of accessing quantum memory

In Section 2 we considered moving quantum data according to a permutation known at
compile time. By using the permutation needed to embed a circuit into a host graph, this
approach leads to an efficient algorithm for distributed quantum computing in Section 3.
The algorithm for data moving can be easily modified to perform a permutation that
is stored as quantum data, |j1, . . . , jN 〉. We simply amend the formatting steps of the
algorithm, using SWAP rather than X gates

F : |j1, . . . , jN 〉|x1, x2, . . . , xN 〉
N⊗

i=1

|(0, 0, 0)〉2i |(0, 0, 0)〉2i+1 (12)

7→ |0, 0, . . . , 0〉
N⊗

i=1

|(i, a, xi)〉2i |(ji, q, 0)〉2i+1 .

Such an algorithm would allow us to move data in a superposition over permutations.
In this section, we generalise the idea further to the case where the indices do not
necessarily form a permutation but could be equal. This new algorithm allows efficient
parallel access to quantum memory and leads to the new quantum algorithms presented
in Section 5 .

4.1 The cost of a single look-up

Often when quantum algorithms are quoted in the query model, the concept of an oracle
is used to abstract away those logical unitaries that are intended to make ‘random’ access
to (quantum) memory. We start by examining the idea of accessing memory in more
detail, without using oracles.
Definition 2. A logical unitary for accessing a single piece of data is a map U(1,N) that
implements

U(1,N) : |j〉|y〉|x1, x2, . . . , xN 〉 7→ |j〉|y ⊕ xj〉|x1, x2, . . . , xN 〉, (13)

where ⊕ denotes bitwise addition.

Here we have depicted 2+N registers. The first register (index register) holds an index
large enough to ‘point’ to any one of N data registers; its associated Hilbert space must
be of dimension at least N . The second register is called the target register and holds
the same kind of data as a data register. The other N registers are data registers and
could in principle be of any (equal) size.

We can derive a simple lower bound for the cost of accessing a single piece of memory
based on two simple constraints on any circuit for U(1,N). The memory must hold the
entire database and so within the circuit, there must be a causal chain from every data
register to the target register. This observation has been made before [6], but we give it
here to motivate the cost of our parallel look-up algorithm that follows.
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Theorem 4. In the circuit model, if a circuit implements U(1,N) on N data registers
each consisting of d qubits, then its width is Ω(Nd) and its depth is Ω(logN).

Proof : The width of the circuit must be Ω(Nd) because this is the logical width of
the unitary (the number of input/output qubits). Since any data register could affect
the target register, there must be a causal chain of gates from any data register to the
target register. Each permitted gate touches O(1) registers, so the depth of the longest
chain must be Ω(logN).

There is a sense in which the gates in a typical circuit for U(1,N) can be said to be “not
working very hard” (although this idea is hard to quantify precisely), and this inefficiency
points to the need for a parallel algorithm.

4.2 The cost of parallel look-ups

Definition 3. A logical unitary for accessing N pieces of data is a map U(N,N) that
implements

U(N,N) : |j1, j2, . . . , jN 〉|y1, y2, . . . , yN 〉|x1, x2, . . . , xN 〉 (14)

7→ |j1, j2, . . . , jN 〉|y1 ⊕ xj1 , y2 ⊕ xj2 , . . . , yN ⊕ xjN 〉|x1, x2, . . . , xN 〉.

Here we have depicted N index registers, N target registers, and N data registers,
comprising a total of 3N input registers. As before, the index registers are each made
up of ⌈log2 N⌉ qubits, while the target registers and data registers are each made up of
d qubits.

We define the quantum parallel RAM (Q PRAM) model as the circuit model plus the
ability to access quantum memory in a parallel and unrestricted way. In any one time-
step we can apply up to N/2 two-qubit gates on arbitrary disjoint pairs of qubits in
the first two registers, or we can apply UN,N . Previous version of quantum RAM such
as [17, 18] do not consider parallel access.

In the following theorem we prove that the circuit model can emulate the Q PRAMmodel
with only a logarithmic cost in the width and depth. The input value, yi, to U(N,N) can
be interpreted as the current state of processor i and the output value yi ⊕ xji as the
result of a memory request by this processor to processor ji.
Theorem 5. There is a uniform family of quantum circuits implementing U(N,N) defined
in Eq. (14). This circuit family has width O(N(logN+d)) and depth O(logN log(d logN)),
where d denotes the size of the data registers.

Proof : The algorithm for U(N,N) is presented in Section 4.3. The calculation of the
width and depth can be found in Appendix A.
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Theorems 4 and 5 also tell us that in the circuit model, for parallel memory lookups, we
can achieve a factor N more ‘effect’ for only a small additional ‘effort’. This will be seen
to have radical effects on certain ‘memory-intensive’ algorithms in Section 5.

4.3 The parallel look-up algorithm

We now present the algorithm for accessing memory in parallel, implementing the unitary
U(N,N) defined in Eqn. (14). As with VN , a circuit for U(N,N) depends only on the
parameters N and d. We will generalize the algorithm given for VN to show how U(N,N)

may be efficiently implemented.

The overall structure for U(N,N) is the same as for VN . We first construct packets that
include the original data and a flag to be used in the sorting step. After a sorting
network is applied, we transform the data. Instead of the permutation used in the data
moving algorithm, the transformation to use is composed of cascading, B, copying, C
and uncascading, B−1. Finally, we reverse the sort and map the data back to the original
registers. Accordingly, the parallel look-up algorithm can be written

U(N,N) = F̂ ◦ S−1
2N ◦B−1 ◦ C ◦B ◦ S2N ◦ F. (15)

1) Initial Formatting For the parallel look-up algorithm, we use packets containing
four items. Each packet contains an address and flag as before, but now we have two
data registers of d bits; target-data yi and memory-data xi. The initial formating stage,
F , resembles the same step in Eq. (3) but where packet locations are initially stored as
quantum data,

F : |j1, . . . , jN 〉|y1, . . . , yN 〉|x1, . . . , xN 〉
N⊗

i=1

|(0, 0, 0, 0)〉2i |(0, 0, 0, 0)〉2i+1 (16)

7→ |0, . . . , 0〉|0, . . . , 0〉|0, . . . , 0〉
N⊗

i=1

|(i, a, 0, xi)〉2i |(ji, q, yi, 0)〉2i+1,

The map F moves the data into the packets, where it can be processed by the rest of
the algorithm. The initial formating step is achieved in one time-step.

2) Sorting The sorting step is the same as before: we sort lexicographically reading
only the address and flag of each packet.

S2N : |0〉 ⊗
2N⊗

k=1

|(ik, fk, yk, xk)〉k (17)

7→ |σ〉 ⊗
2N⊗

k=1

|(iσ(k), fσ(k), yσ(k), xσ(k))〉k.
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Note that packets whose flag is |a〉 hold data in their memory-data registers, while
packets whose flag is |q〉 hold ‘target data’ in their target-data registers. At the end of
the sort, we are left with a sequence of the form

. . . (i, q, y∗, 0) . . . (i, q, y∗, 0)(i, a, 0, xi) . . . (18)

where ∗ denotes the various processor that have queried processor i.

3) Cascade The goal of cascade is to send a copy of the data xi into the empty data
registers of packets on the left (cf. (18)). This can be done by performing CNOTs first
to packets at distance 1, then distance 2, 4, 8, etc. The CNOTs operate on the fourth
site of each packet and are controlled to only act if the source and target packet both
have the same value of j. Since there is no way of knowing in advance how far the
data will need to propagate, we need a method that works in all cases. For example,
it could be the case that every processor requests data from a single processor, say
j1 = j2 = . . . = jN = 1.

This can be achieved by dividing the cascade up into n smaller phases, where n =
⌈log2(2N)⌉. Accordingly we write

B = Bn−1 ◦Bn−2 ◦ . . . ◦B1 ◦B0, (19)

where each Bk phase acts on pairs of packets at relative index separation 2k from one
another, more or less in parallel.

To achieve this transformation, each packet will need a fresh ancilla aux-phase register
of ⌈log2 n⌉ bits. This will be used to store a number indicating the phase in which that
packet acquires a copy of the data being cascaded to it. This record makes it much easier
to implement the whole cascade reversibly, and these aux-phases are to be retained until
the cascade is later reversed. Each packet will also need an aux-action bit that persists
only throughout a single phase (recycled from one phase to the next), being set if that
packet receives data during that phase.

Each phase involves many pairs of packets. Phase Bk involves pairs with indices l and
l + 2k, for all l for which l ≥ 0 and l + 2k < 2N . If ⌊2−kl⌋ is even (resp. odd), then
the pair (l, l + 2k) is said to be of even ( resp. odd) parity. The idea is that data can
legitimately cascade from the packet at l + 2k to the one at l if they have the same
address and if the rightmost one presently has data but the leftmost one doesn’t. It is
enough to check that the leftmost one has |q〉 for its flag and |0〉 for its aux-phase, and
that the rightmost one has |a〉 for its flag or something non-zero for its aux-phase. If
that overall condition is met, flip the aux-action bit of the leftmost packet, because it
will be receiving data this phase. It is necessary to set the aux-actions for all the even
parity pairs first, then for all the odd parity pairs, because otherwise the same bits will
be being read by different gates at the same time, and that violates the rules of the
standard circuit model. Note also that the simple act of computing the aux-action bit
may itself require a little extra ancilla scratch space.
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When all the aux-action bits have been correctly set for the present phase, cascade data
leftwards, locally conditioned on those aux-action bits. For example, during phase Bk

when examining packets l and l + 2k, if l has had its aux-action set, then we need to
implement

|(i, q, y′, 0)〉l |0〉phase(l) ⊗ |(i, f, y, x)〉l+2k |p〉phase(l+2k) (20)

7→ |(i, q, y′, x)〉l |k + 1〉phase(l) ⊗ |(i, f, y, x)〉l+2k |p〉phase(l+2k).

(The aux-action for l got set because one of f and p was non-zero.) This should be done
for the even parity pairs first (say), then the odd parity ones.

Finally, the aux-action bits need to be reset. This resetting is a ‘local’ operation, because
during phase Bk, each packet need flip its aux-action if and only if its aux-phase is |k+1〉,
indicating that it was active this phase. Note that the condition for resetting an aux-
action bit is completely different from the condition for setting it in the first place.

The total effect of B will be to load up the aux-phase ancillas and to replace every in-
stance of |(ji, q, yi, 0)〉 with |(ji, q, yi, xji)〉, while preserving every instance of |(i, a, 0, xi)〉.

4) Copying C is a simple depth 1 local operation. Every packet simply CNOTs
the contents of its memory-data into its target-data. This has the effect of map-
ping every |(ji, q, yi, xji)〉 to |(ji, q, yi⊕xji, xji)〉, while every |(i, a, 0, xi)〉 gets mapped
to |(i, a, xi, xi)〉.

5) Reversing the Cascade This map reverses the effect of the cascade, cleaning up
all the aux-phase ancillas, making the packets ready for unsorting.

The total effect of
(
B−1 ◦ C ◦B

)
is to replace every instance of |(ji, q, yi, 0)〉 with |(ji, q, yi⊕

xji , 0)〉, while replacing |(i, a, 0, xi)〉 with |(i, a, xi, xi)〉 for all i. This action does not
change the ordering of the packets, which only depends on the address and flag of each
packet. Therefore the action is compatible with the sorting stages, as required.

6) Unsort The unitary S−1
2N unsorts just as before.

7) Final Formatting The final step is to apply a formatting map, F̂ , which works as
follows,

|0, . . . , 0〉|0, . . . , 0〉|0, . . . , 0〉
N⊗

i=1

|(i, a, xi, xi)〉2i |(ji, q, yi ⊕ xji , 0)〉2i+1 (21)

7→ |j1, . . . , jN 〉|y1 ⊕ xj1 , . . . , yN ⊕ xjN 〉|x1, . . . , xN 〉
N⊗

i=1

|(0, 0, 0, 0)〉2i |(0, 0, 0, 0)〉2i+1 .
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Note that this is a depth 2 map rather than a depth 1 map because each xi appears in
two places, and these need to ‘relocalise’ as well as ‘move’.

5 Revisiting Popular Algorithms

Grover’s quantum search algorithm [19] and the generalization to amplitude amplifi-
cation [8, 9] have the great advantage of being widely applicable. Problems such as
Element Distinctness [11, 4], Collision Finding [10], Triangle Finding [5, 26], 3-SAT [3]
and NP-hard tree search problems [12] all have faster quantum algorithms because they
are able to make use of amplitude amplification. In this section, we revisit Grover’s
quantum search algorithm and the Element Distinctness problem, resolving a challenge
posed by Grover and Rudolph [20].

The theorems presented in this section use the the circuit model so that they can be
easily compared to the existing literature. However, we developed the ideas using the
quantum parallel RAM model and indeed, we borrow some of the terminology in the
theorem proofs.

The results in this section follow from applying our main result (Theorem 5) to existing
quantum algorithms by Grover [19] and Buhrman et al. [11].

5.1 A single quantum search of an unstructured database

Grover’s fast quantum search algorithm [19] is usually presented as solving an oracle
problem: let f : {1, . . . , N} → {0, 1} be a function and suppose we wish to find solutions,
s, such that f(s) = 1. We are given an oracle with the ability to recognise solutions in
the form of a unitary

Uf : |x〉|y〉 7→ |x〉|y ⊕ f(x)〉. (22)

Setting the target register of Uf to the state (|0〉 − |1〉)/
√
2 encodes the value of f(x)

into a phase shift

Uf : |x〉 7→ (−1)f(x)|x〉, (23)

where we have suppressed the target register since it remains unchanged. Grover’s
algorithm then makes Θ(

√
N/M ) calls to Uf and with probability 1−O(M/N) outputs

one of the M possible solutions uniformly at random.

Grover’s algorithm can be applied to search an unstructured database. We construct
the oracle by using the single memory look-up unitary, U(1,N), together with a simple
function that tests whether a database entry is a solution (see Chap. 6.5 in [28]). More
generally, suppose we wish to find solutions to a function whose inputs are not expressed
simply as the numbers from 1 to N , but rather are taken from a database of elements
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X = {xj : j = 1, . . . , N}, where each xj is a bit string of length d. That is, we have
a function α : X → {0, 1}, and we are searching for solutions s ∈ {1, . . . , N} such that
α(xs) = 1. Once the database item xj has been loaded into the computational memory,
the function α is computed using the unitary

Uα : |xj〉|y〉 7→ |xj〉|y ⊕ α(xj)〉. (24)

We consider the case in which the database is held in a quantum state |x1, . . . , xN 〉,
but it could also be a classical database whose indices can be accessed in superposition
[17, 18].

An oracle is constructed by first looking-up a database entry and then testing if this
entry is a solution to the function α. The initial state of the computer is

|j〉|0〉|y〉|x1, . . . , xN 〉 (25)

where the state |j〉 is the index of the database item we will look-up, |0〉 is used to load
the memory and |y〉 is the target register.

First we apply the single memory look-up unitary, U(1,N), (see Definition 2) so that the
computer is in the state

|j〉|xj〉|y〉|x1, . . . , xN 〉, (26)

then calling the function α, using the corresponding unitary Uα, maps the state to

|j〉|xj〉|y ⊕ α(xj)〉|x1, . . . , xN 〉. (27)

Finally we restore the auxiliary state used to load the database item by applying U †

(1,N) =
U(1,N). The final state of the computation is therefore

|j〉|0〉|y ⊕ α(xj)〉|x1, . . . , xN 〉. (28)

Hence the unitary

Oα = U(1,N) ◦ Uα ◦ U(1,N) (29)

can be used as an oracle for Grover’s algorithm. Setting the target register |y〉 = (|0〉 −
|1〉)/

√
2 encodes the value of α(xj) into a phase shift

Oα : |j〉 7→ (−1)α(xj )|j〉. (30)

From Theorem 4, the quantum circuit implementing Grover’s algorithm with Oα as
an oracle requires circuit width Ω(Nd) and depth Ω(

√
N/M (logN + Dα) to find one

solution with high probability. Here Dα is the depth of the circuit for Uα.

In many cases of interest (cf. Section 5.3), we actually want to search over pairs (or more
generally r-tuples) of database elements. We thus generalise the preceding algorithm by
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considering a function α : Xr → {0, 1} that takes as input an r-tuple of database entries.
We wish to find solutions s = (s1, . . . , sr) ∈ {1, . . . , N}r such that α(xs1 , . . . , xsr) = 1.
As with the case r = 1, we construct an oracle Oα for Grover’s algorithm using U(1,N)

and the unitary

Uα : |xj〉|b〉 7→ |xj〉|b⊕ α(xj)〉, (31)

where j = (j1, . . . , jr) ∈ {1, . . . , N}r and xj = (xj1 , . . . , xjr) ∈ Xr. The construction of
the oracle runs just as in the previous case, but with the first register labelled with the
multi-index j, while the second register contains r-tuples of database entries xj. The
initial state is

|j〉|0〉|b〉|x1, . . . , xN 〉. (32)

Applying the single memory-lookup U(1,N) r times, once to each label of the multi-index
and each position in the memory-register, we obtain the state

|j〉|xj〉|b〉|x1, . . . , xN 〉. (33)

Next we call the unitary Uα to arrive at the state

|j〉|xj〉|b⊕ α(xj)〉|x1, . . . , xN 〉 (34)

and finally we uncompute the r memory-lookup steps to obtain

|j〉|0〉|b ⊕ α(xj)〉|x1, . . . , xN 〉. (35)

Setting the target register to (|0〉 − |1〉)/
√
2 we obtain the oracle

Oα : |j〉 7→ (−1)α(xj)|j〉. (36)

The quantum circuit implementing Grover’s algorithm with Oα as an oracle makes
Θ(

√
N r/M) calls to Oα, where M is the number of solutions. From Theorem 4, the

circuit width and depth are Ω(Nd) and Ω(
√
N r/M (r logN +Dα)), respectively.

5.2 Parallel quantum search of an unstructured database

Now that we have an efficient algorithm for performing parallel memory look-ups, we
consider the effect of using the unitary U(N,N) together with (up to) N functions as
oracles for Grover’s algorithm. We show how multiple quantum processors can each run
a Grover search on a single database in parallel. Since the first step of each instance of
Grover’s algorithm is to query the entire database, it may come as a surprise that we do
not encounter (unwanted) interference. It is the efficiency of our parallel memory look-
up algorithm that allows us to interleave the Grover steps with the parallel database
access.
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Suppose we have (up to) N functions that take r database elements as inputs, αi : X
r →

{0, 1}, for i = 1, . . . N . We wish to find solutions si = (s1i , . . . , s
r
i ) ∈ {1, . . . , N}r such

that αi(xs1i
, . . . , xsri ) = 1 for all i = 1, . . . , N . In exact analogy to the previous section,

we assume that we are given circuits for the unitaries

Uαi
: |xj〉|b〉 7→ |xj〉|b⊕ αi(xj)〉, (37)

where again we write j = (j1, . . . , jr) ∈ {1, . . . , N}r and xj = (xj1 , . . . , xjr) ∈ Xr. We
shall assume that the depth and width of the circuits for Uαi

are polynomial functions
of logN, d and r. In effect we are interested in functions that are easy to compute but
we do not know how to invert. Thus, the best method for finding a solution is to treat
the function as a black box. Each node has size d, which is Ω(logN) since it must be
large enough to perform basic operations, hold the database items and perform function
evaluations. Thus we assume that d is a polynomial in logN .

With these assumptions, the following theorem provides an algorithm that finds a solu-
tion for each function αi, using the same size quantum circuit (up to a factor polynomial
in logN and r) required to find only one solution using the unitary U(1,N) as an oracle
(see Section 5.1).

The algorithm can be expressed entirely in terms of the circuit model but we find it
convenient to talk of quantum processors and memory locations. Now that we know the
quantum parallel RAM model can be emulated by the circuit model with a O(logN)
overhead, the algorithm presented below becomes a simple generalisation of Grover’s
algorithm. The number of processors, N , equals the number of items in the database.
Reiterating the arguments of Grover and Rudolph [20], we anticipate that quantum
memory will cost the same as quantum processors.
Theorem 6 (Multi-Grover search algorithm). Using the notation defined above, there
is a quantum algorithm that for each i = 1, . . . , N either returns the solution index
si ∈ {1, . . . , N}r such that αi(xsi) = 1, or, if there is no such solution, returns ‘no
solution’. The algorithm succeeds with probability Θ(1) and can be implemented using a
quantum circuit with width Õ(N) and depth Õ(

√
N r/M).

The value M in the statement of Theorem 6 is the minimum over i ∈ {1, . . . , N} of the
number of solutions si to αi(xsi) = 1. The notation Õ means that we are neglecting a
multiplicative factor that is polynomial in r logN .

Proof : First, the case r = 1. We proceed as with the single Grover search of an
unstructured database, the only subtlety being that we need to organise the Hilbert
space in the correct way. We want to perform N Grover searches over the database so
we need N indices |j1 . . . jN 〉, N memory place holders |0 . . . 0〉 and N target registers
|b1 . . . bN 〉.
It is useful to split the circuit in to N ‘processors’ since we will think of each one as
performing a Grover search over the database. We rearrange the Hilbert space across N
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processors as

|j1, . . . , jN 〉|0, . . . , 0〉|b1, . . . , bN 〉|x1, . . . , xN 〉 ∼=
N⊗

i=1

|ji, 0, bi, xi〉. (38)

Applying the parallel look up algorithm U(N,N), maps the initial state of the computer
to

N⊗

i=1

|ji, xji , bi, xi〉. (39)

We define a circuit for implementing the unitaries Uαi
in parallel as

Uα =

N⊗

i=1

Uαi
, (40)

which acts on all of the target register simultaneously sending the state to

N⊗

i=1

|ji, xji , bi ⊕ αi(xji), xi〉. (41)

Finally, we clear the auxiliary register used to load the memory item using the unitary
U(N,N), so that the final state of the computer is

N⊗

i=1

|ji, 0, bi ⊕ αi(xji), xi〉. (42)

Setting each of the target registers to (|0〉 − |1〉)/
√
2 produces the required oracle using

a circuit with width O(N(d + logN +Wα)) and depth O(logN log(d logN) +Dα) (c.f.
Theorem 5). Here Wα and Dα are the maximum over i ∈ {1, . . . , N} of the widths and
depths of the circuits Uαi

, respectively.

Grover’s algorithm then calls the unitary

U(N,N) ◦ Uα ◦ U(N,N) (43)

O(
√

N/M ) times, where M is the minimum over i ∈ {1 . . . , N} of the number of solu-
tions of αi. Note that if the number of calls varies for different functions αi, we simply
pad-out the oracle calls for the respective αi using the identity. The resulting algorithm
finds a solution for each function αi using a circuit of width O(NWα) = Õ(N) and depth
O(

√
N/M (logN log d+Dα)) = Õ(

√
N/M ).

The case r > 1 is a straight-forward generalisation, replacing the indices ji and memory-
data xji by r-tuples ji and xji , respectively, and replacing each single call of U(N,N) by
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r calls, in direct analogy to the previous section. We obtain a unitary Oα with width
O(N(rd+ r logN +Wα)) and depth O(r logN log(d logN) +Dα).

Grover’s algorithm makes O(
√

N r/M ) calls toOα and the resulting circuit has width

O(N(rd+ r logN +Wα)) = Õ(N)

and depth
O(

√
N r/M (r logN log(d logN) +Dα) = Õ(

√
N r/M ) ,

as required.

If X were highly structured (such as being the numbers 1 to N), it would be straightfor-
ward to perform N Grover searches in parallel, using a circuit of width Õ(N), since we
would not need to store X explicitly. Now, making use of the efficient parallel memory
look-up algorithm to access X, we are able to interlace the steps in the Grover algorithm
with database look-ups. The end result is that we can indeed perform N Grover searches
in parallel regardless of the structuring of X. We now examine the effect of Theorem 5
on other memory intensive quantum algorithms.

5.3 Element Distinctness

In this section, we present a quantum algorithm for the Element Distinctness prob-
lem: given a function f : {0, 1}n → {0, 1}n, determine weather there exist distinct
i, j ∈ {0, 1}n with f(i) = f(j). It is based on the algorithm of Buhrman et al. [11]
but improved by making use of our efficient algorithm for parallel memory look-ups
(Theorem 5).

The size of the problem is parametrised by N = 2n. Let S and T denote the available
memory and time respectively. Classically we can search for a solution to the Ele-
ment Distinctness problem using O(N) function calls provided ST = O(N2). Applying
Grover’s algorithm to this classical search fails to achieve an improvement in the num-
ber of function queries: there are Θ(N2) pairs to search, so Grover’s algorithm requires
Θ(N) queries. Ambainis [4] discovered an elegant quantum algorithm that improves
upon this, having query complexity O(N2/3). In fact Ω(N2/3) queries is also a lower
bound, so Ambainis’s algorithm is known to be optimal from this perspective. However,
Ambainis requires memory proportional to Õ(N2/3); i.e. S = T = Õ(N2/3).

If we think of f as something that is computed by a small (say poly logN size) circuit,
then the same performance as Ambainis’s algorithm can be achieved by a much more
naive approach [20]. We simply divide the N2 search space into N2/S blocks and Grover
search each one in time Õ(

√
N2/S) for a time-space trade-off of ST 2 = Õ(N2), which

includes both Ambainis’s special case S = T = Õ(N2/3) and the naive Grover search
S = O(poly logN), T = Õ(N).
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We now show how to improve on these results in the DQC model answering a challenge
posed by Grover and Rudolph [20]. We are interested in the case where f can be cheaply
evaluated, but not reverse-engineered (so that our best method of finding a collision is
to treat f as a black box).
Theorem 7. Given a poly logN size circuit for computing the function f , we can solve
the Element Distinctness problem in space Õ(S) and time T = Õ(N/S) for any S ≤ N .
This results in the space-time trade-off

ST = Õ(N) .

Proof : First choose a random set of S inputs x1, . . . , xS to query and store these along
with L = {f(x1), . . . , f(xS)} in the distributed memory. That is, processor j stores the
pair (xj , f(xj)). Next, we use the S processors to check the remaining N − S inputs for
a collision with one of the x1, . . . , xS .

Using the AKS sorting network, the S processors can sort L in time O(logN). It is now
easy to check if L contains any pair of elements that are equal, f(xi) = f(xj). If we find
such a pair then output (i, j). Otherwise use the sorted list, L, to construct a function,
gL : {1, . . . , N − S} → {0, 1}, defined by

gL(i) =

{
1 if there exists an element j ∈ {1, . . . , S} such that f(xi) = f(xj)
0 otherwise.

(44)

Now we can split the remaining N − S inputs into S collections of size O(N/S) and
use the Multi-Grover algorithm to perform S parallel searches, each with the function
gL as an oracle. This procedure requires Θ(

√
N/S) calls to gL. The cost of calling the

function gL in parallel is O(log S logN log logN) using a binary search combined with
our algorithm U(S,S) for making simultaneous queries to a distributed memory. Hence

the total depth is Õ(
√

N/S).

We will succeed (with constant probability) in finding a collision if one of the colliding
elements was in {x1, . . . , xS}. Since this event happens with probability Θ(S/N), we
can wrap the entire routine in amplitude amplification to boost the probability to Θ(1)
by repeating Θ(

√
N/S) times. Hence the total runtime is T = Õ (N/S) and so we have

achieved a time-space trade-off of ST = Õ(N).

5.4 Collision Finding problem

Our results also apply to the Collision Finding problem: in which f : [N ] 7→ [N ] is an
efficiently-computable function with the promise of being either 1-1 or 2-1, for which an
ST = O(N2/3) query algorithm is given in [10]. This problem may be solved with

ST = Õ(
√
N)
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either by selecting O(
√
N) random elements and solving Element Distinctness, or by

simply using the algorithm of [10] directly, augmented by using S processors with shared
memory together with our look-up algorithm1. So we perform S Grover searches in
parallel on spaces of size N/S2 instead of a single search on a space of size N/S.

6 Conclusion and discussion

In classical parallel computing, sorting networks provide an elegant solution to the rout-
ing problem and simulation of the parallel RAM model. In this paper, we have demon-
strated that they can be applied to quantum computing too.

The information about the connectivity of a quantum circuit is available before we run
the algorithm (at compile time). Using this classical information we have designed an
efficient scheme for routing quantum packets. The application of this data-moving algo-
rithm is to distributed quantum computing. We provide an efficient way of mapping ar-
bitrary unconstrained circuits to limited circuits respecting the locality of a graph.

Our results already apply to nearest neighbour architectures in the case of a circuit that
is highly parallel. The case of emulating a circuit with many concurrent operations on
a 1D nearest neighbour machine was covered by Hirata et al. [21]. The approach is to
use the Insertion/Bubble sort to perform all of the operations in O(N) time-steps which
compares favorably to performing each gate in turn in O(N2) depth. We put this idea
in a general framework applying to any (connected) graph. Along the way we are able
to prove that up to polylogarithmic factors, this approach is optimal.

We have shown how the addition of a few long-range (or flying) qubits dramatically in-
creases the power of a distributed quantum computer. Using only O(logN) connections
per node enables efficient sorting over the hypercube. A distributed quantum computer
with nodes connected according to the hypercube graph would be able to emulate arbi-
trary quantum circuits with only O(log2 N) overhead. One might expect that a quantum
computer requires O(N) connections per node so that each qubit can potentially inter-
act with any other qubit. Our result demonstrates that this is not the case: for a small
overhead O(logN) connections suffice.

We have presented a new algorithm for accessing quantum memory in parallel. The
algorithm is a modification of the data-moving algorithm used in Sections 2 and 3 but
where the destinations are quantum data and no longer restricted to form a permutation.
The algorithm is extremely efficient; it has an overhead that is scarcely larger than any
algorithm capable of accessing even a single entry from memory. Theorem 5 implies
that N processors can have unrestricted access to a shared quantum memory. It tells us

1Bernstein [6] discusses time/space tradeoffs for a related problem in other computational models,
including a 2-d nearest-neighbour architecture and a variant of the quantum RAM model that he refers
to as “a naive model of communication.” Ref. [6] also uses a distributed sorting algorithm to parallelise
collision finding, which could be seen as a special case of our main result.
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that the quantum parallel RAM and the circuit models are equivalent up to logarithmic
factors.

Finally, we demonstrated that the parallel look-up algorithm can be used to optimize
existing quantum algorithms. We provided an extension of Grover’s algorithm that effi-
ciently performs multiple simultaneous searches over a physical database, and answered
an open problem posed by Grover and Rudolph by demonstrating an improved space-
time trade-off for the Element Distinctness problem. It seems likely that this framework
for efficient communication in parallel quantum computing will be a useful subroutine in
other memory-intensive quantum algorithms, such as triangle finding, or more generally
for frameworks such as learning graphs.
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Proof of Theorem 5

The cost of our parallel look-up algorithm presented in Theorem 5 and Section 4.3 is
specified in terms of the circuit model. A circuit is decomposed (perhaps recursively)
into a series of subroutines. In the circuit model, every subroutine is built out of gates
from a universal gate set (cf. for example, reference [28]). Gates can be implemented
concurrently—that is, within the same timeslice—whenever they act on disjoint sets of
qubits. The cost of a circuit is measured by three parameters:

• depth, the number of timeslices required in the circuit;

• size, the total number of gates in the circuit, and

• width, the total number of qubits (inputs + ancillas) required in the circuit.

These three are all taken to be functions of the logical unitary width, which is the number
of input qubits required for the logical unitary.

In Section 4.3, we provide circuits that implement the logical unitary U(N,N). Here we
count up the total depth and width of the circuit thereby proving Theorem 5.

The total depth of the formatting subroutines is O(1).

The sorting subroutines require comparators that make a lexicographic comparison on
⌈log2 N⌉ + 1 bits, and lexicographic comparison is basically the first part of arithmetic
subtraction (regard the bit-patterns as integers, subtract one from the other reversibly,
read the sign bit of the output). This can be achieved efficiently in depth O(log logN)
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[32]. The other thing a comparator does is to swap elements controlled on a sorting-bit.
The sizes of our elements are O(logN+d), and so the sorting bit needs to be fanned out
(using a binary tree) to ‘copy’ it across O(logN + d) ancillas, before a depth 1 swap can
take place. Therefore the swapping stage of a comparator takes depth O(log(logN+d)),
and so the total comparator has depth O(log logN + log(logN + d)) = O(log(d logN)).
Since there are O(logN) comparators in the AKS sorting network, the total depth of
the sorting stage is O(logN · log(d logN)).

The cascade subroutine has n = O(logN) phases, and as with the comparators used in
sorting, each phase of cascade involves arithmetic (in fact equality testing) on objects
of size O(n), plus controlled copying of objects of size O(d). Therefore a phase has
depth O(log n + log d) = O(log(d logN)) and the total depth of the cascade part is
O(logN · log(d logN)).

The inner subroutine (‘copying’) of the algorithm for U(N,N) has depth O(1) and re-
quires no ancillas. Therefore the total depth of our algorithm for U(N,N) is O(logN ·
log(d logN)).

Counting bits, we see that besides the O(N(logN + d)) input/output bits, we require
O(N(logN + d)) more bits for the packets, O(N logN) sorting-ancilla bits, as well
as O(N(logN + d)) ancilla bits for temporary use while rendering the (lexicographic)
comparators. Furthermore, for cascade each packet needs an aux-phase register and an
aux-action bit (total O(N logN) bits), as well as O((logN + d)) scratch space (e.g. to
compute/reset the aux-action bit) that can be recycled between phases. Hence, the total
circuit width is O(N(logN + d)), which is linear in the width of the logical unitary in
question, and therefore asymptotically optimal.
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