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Abstract

This dissertation concerns the model reduction of large, linear, time-invariant systems. A
new method called the Dominant Gramian Eigenspaces method, which utilizes low rank
approximations to the exact system gramians, is proposed for such system.

The Cholesky Factor ADI algorithm is developed to generate low rank approximations to
the system gramians. Cholesky Factor ADI requires only matrix-vector products and linear
solves, hence it enables one to take advantage of sparsity or structure in the system matrix.

A connection is made between approximating the dominant eigenspaces of the system
gramians and the generation of various low order Krylov and rational Krylov subspaces.

The Cholesky Factor ADI algorithm is then used in conjunction with the Dominant
Gramian Eigenspaces method in the model reduction of large, linear, time-invariant systems.
It is demonstrated numerically that this approach often produces globally accurate reduced
models, even when the low rank approximations to the system gramians have not converged
to the exact gramians.

In addition, it is shown that, in a model reduction method for symmetric systems based
on moment matching, the problem of choosing moment matching points can be approached
by solving the rational min-max problem associated with CF-ADI parameter selection.

Thesis Supervisor: Jacob K. White
Title: Professor
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Chapter 1

Introduction

1.1 Dissertation outline

This dissertation has two parts. A self-contained part concerns the solution of the Lyapunov
equation whose right hand side has low rank. The other part utilizes the Lyapunov results
in the model reduction of large, linear, time-invariant systems.

A main contribution of this dissertation is the formulation of the Cholesky Factor ADI
algorithm [33], which solves the following Lyapunov equation whose right hand side has low
rank,

AX + XAT = —BBT, AeR™™, X € R™", X\(A) <0, Vi, rank(B) < n. (1.1)

The unknown is the matrix X. The coefficient matrix A is stable, and the right hand side,
—BBT, has rank much lower than n. Such Lyapunov equations occur in the analysis and
model reduction of large, linear, time-invariant systems, where the system size is much larger
than the number of inputs and the number of outputs.

The Cholesky Factor ADI algorithm is a reformulation of the Alternate Direction Implicit
algorithm [2, 57, 58], and gives exactly the same approximation. However, Cholesky Factor
ADI requires only matrix-vector products and linear solves by A, hence it enables one to
take advantage of sparsity or structure in the matrix A. The Cholesky Factor ADI algorithm
can be used to generate a low rank approximation to the solution of (1.1).

A second contribution of this dissertation consists of making the connection between
approximating the dominant eigenspace of the solution to (1.1) and the generation of various

low order Krylov and rational Krylov subspaces.

The second part of this dissertation concerns low rank model reduction methods for
large, linear, time-invariant systems. A low rank model reduction method uses low rank
approximations to the exact system gramians. A new method, the Dominant Gramian
Eigenspaces method, is proposed here. Numerical comparison of the Dominant Gramian



Eigenspaces method is made with another low rank model reduction approach, the Low Rank
Square Root method [41,46]. It is shown that the Dominant Gramian Eigenspaces method
often produces a better reduced model than the Low Rank Square Root method when the
low rank approximations to the system gramians have not converged to the exact gramians.
The Cholesky Factor ADI algorithm can be used to generate low rank approximations to
the system gramians for either low rank model reduction method.

A further contribution of this dissertation is showing that, for symmetric systems, the
problem of picking points where moments are to be matched in a moment matching via ra-
tional Krylov subspaces method can be approached by solving the rational min-max problem
associated with CF—-ADI parameter selection.

This dissertation is organized in the following way.

Chapter 1 covers the basics of linear, time-invariant systems theory, including controlla-
bility, observability, and the system gramians as the solutions to two Lyapunov equations.

Chapter 2 introduces the idea of model reduction via projection. Chapter 3 describes
moment matching via projection onto a rational Krylov subspace. Chapter 4 describes the
Truncated Balanced Realization method of model reduction, which requires exact system
gramians.

Chapter 5 motivates the need to approximate Truncated Balanced Realization by low
rank methods which use only low rank approximations to the system gramians. It is
shown that this is achievable for symmetric systems, but is in general not possible for
non-symmetric systems. For the model reduction of non-symmetric systems, the Domi-
nant Gramian Eigenspaces method is proposed and shown to produce better reduced models
than the existing Low Rank Square Root method.

Chapter 6 characterizes the different bases for the range of the solution to (1.1) as order
n Krylov and rational Krylov subspaces with different starting vectors.

Chapter 7 turns to the solution of (1.1) and provides background on existing approaches.
Chapter 8 develops the Cholesky Factor ADI method.

Chapter 9 motivates the low rank approximation of the solution to (1.1). It is shown
that, various low rank approximations, including Cholesky Factor ADI, consist of finding a
low order Krylov or rational Krylov subspace. These low rank methods, when run to n steps,
yield the range of the solution to (1.1). This chapter includes numerical results on how well
the low rank Cholesky Factor ADI approximation captures the dominant eigenspace of the
exact solution to (1.1).

Chapter 10 uses Cholesky Factor ADI to generate low rank approximate gramians for the
Dominant Gramian Eigenspaces method. It is shown that, for symmetric systems, the prob-
lem of picking points where moments are to be matched in a moment matching via rational
Krylov subspaces method can be approached by solving the rational min-max problem as-
sociated with CF-ADI parameter selection. This chapter also includes numerical results on
the model reduction of symmetric and non-symmetric systems, and on CF-ADI parameter



Figure 1-1: System with a large number of devices to be simulated

selection.
Chapter 11 contains conclusions and future work.

1.2 Motivation

The design of complicated sysitems (figure 1-1) which are composed of a large number of
disparate devices occurs in many engineering applications. In order tc optimize a system
for best performance, one needs to simulate it repeatedly, each time design parameters are
varied. Devices that can belong to a system include circuits, sensors, and micro-machined
devices. The devices couple to one another via inputs and outputs. The input-output
behavior of the devices determines how the overall system performs.

Often, the devices are initially described by mathematical models which are large. This
can happen if the models were generated without the idea in mind that they will be a part
of a much larger system which needs to be repeatedly simulated. \

If a system has a large number of devices, and the devices themseives are described
by large models, simulation of the entire system in figure 1-1 may be unacceptably time-
consuming and expensive. The idea of model reduction is that the large models should be
replaced by smaller models which are amenable to fast and efficient simulation and which
still capture the devices’ input-output behavior to an acceptable accuracy.

Henceforth leaving the large picture of the overall system, the rest of this dissertation
focuses on the mathematical models which describe the devices. Model reduction is the
simplification or reduction of a mathematical model, under the constraint that the input-
output behavior of the device is well approximated over the relevant range of inputs. Usually,
there are also constraints placed upon the reduced model size and the approximation error.

The mathematical model for a device may be a set of discretized integral equations,
semi-discretized PDEs, or simply a large system of ODEs. Often, when a model comes from
discretization, the resulting system of equations can be very large. It is not rare to encounter
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a circuit model of interconnect with O(100,000) elements. It is also not rare for the large
initial model to contain a vast amount of redundant information and to be amenable to
significant reduction in model size with little loss in accuracy.

Of course, with knowledge cf the nature of the physical device a engineer can frequently
reduce the model size by lumping together elements, or removing parts of the problem which
are of little importance in the relevant input range. This is an extremely useful approach
and can produce very good, application-specific, results. However, it is far from automatic,
and, at times, the intuition of the engineer can fail when subtle high order effects come into
play.

This dissertation is not concerned with reduction methods which are specific to a particu-
lar engineering application. Rather, it is concerned with numerical model reduction, meaning
that very little knowledge of the physical device is assumed. The object of the reduction is
the original large numerical model, which is assumed to be sufficiently accurate in modeling
the input-output behavior of the physical device for the relevant range of inputs. It, rather
than the underlying physical device, is the object by which the quality of approximation is
measured. In fact, a reduced model from numerical model reduction frequently does not
have a physical counterpart.

One benefit of numerical model reduction is that for linear, time-invariant systems, there
are theoretical results regarding optimality and approximation error.

This dissertation is restricted to the numerical reduction of models described by linear,
time-invariant systems which have large, sparse or structured, system matrices. Such systems
occur in interconnect modeling, solution of PDEs, and other applications.

1.3 Systems theory

This section contains basic known results on linear, time-invariant systems, some of which
are taken from [4, 19, 50].
A linear, time-invariant system with realization, (A, B, C), is characterized by the equa-

tions,
%9 = Az(t) + Bu(t), (1.2)
y(t) = Cz(t). (1.3)

The vector valued function, z(t) : R — R", gives the state at time ¢, and has n components.
The input u(t) : R — RP, and output y(t) : R — R?, have p and q components, respectively.
The matrices A € R***, B € R**P  C € R?*" are the system matrix, the input coefficient
matrix, and the output coefficient matrix, respectively.

For single-input single-output (SISO) systems, p = 1,4 = 1. Even for multiple-input,
multiple-output (MIMO) systems, p and g are usually both very small compared to n.

11



The components in u(t) and y(t) have physical meaning as the inputs and outputs of
the device being modeled. Often, the components in z(t), as originally discretized, also
have physical meaning, such as being the nodal voltages and branch currents of a circuit.
The matrices B and C describe how the components in z(t) are connected to the device
inputs and outputs. The original matrix A usually comes from discretizing the governing
equations. However, after model reduction, z(t), A, B, and C may not have simple physical
interpretations.

An example of a linear, time-invariant system comes from the semi-discretization of the
1-D diffusion equation,

8f(w,t) _ Ff(w)
8t fw? (14)

where f(w,t) may be the temperature of a metal rod at time ¢ and position w. If (1.4) is
discretized in the space variable w only,

JI,(t) = f(w,-,t), (15)

then it becomes a system of ODEs as in (1.2). The semi-discretized values of f are the
components of the state vector z(t). The system matrix A comes from discretizing the second
order differentiation operator. The boundary condition determines the input. Indicating at
which positions temperature is measured gives the output equation (1.3).

Equation (1.2) is a simple system of linear, time-invariant, non-homogeneous, first order
ODEs. Equation (1.3) is an algebraic equation which produces the output y(t), each of
whose components is a linear combination of the components of the solution z(t) to (1.2).

The solution of (1.2) is,

t
z(t) = eAlt-t)gg 4 f e Bu(v)dy, zo = z(to), (1.6)

to

which gives the output as,

t
y(t) = CeAtt)zy 4 C / 4t Bu(v)dv. (17)
to

1.3.1 Transfer function

The Laplace transform of a function f(¢) in the time domain is the function F(s) in the
frequency domain,

L)) = Fls) = / et f(t)at. (1.8)

0
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By taking the Laplace transforms of the quantities in (1.2-1.3) one obtains,

sX(s) = AX(s)+ BU(s), (1.9)
Y(z) = CX(s), (1.10)

where U(s), Y (s), X(s) are the Laplace transforms of the input u(t), the output y(t), and
the state vector z(t), respectively.
The transfer function G(s) of the system (1.2-1.3) is

G(s) =C(sI — A)™'B. (1.11)
It relates input to output in the Laplace or frequency domain according to,
Y (s) = G(s)U(s). (1.12)

The following definition deals with the equivalence of different realizations in terms of
the transfer function.

Definition 1. A realization (A,B,é’),

d"Zit) = Ai(t) + Bu(t), (1.13)
g(t) = Ci(t), (1.14)

is equivalent to (1.2-1.3) if
G(s)=C(sI — A'B=C(sI - A)"'B = G(s), Vs. (1.15)

A realization (T~AT,T-!B,CT), where T € R"*" is an invertible matrix, is equivalent
to (A, B,C). It corresponds to a change of variable, z(t) = TZ(t), in (1.2-1.3). There are
infinitely many equivalent realizations of the same linear time-invariant system.

1.3.2 Reachability and controllability

This section reviews the basics of controllability.

Definition 2. The state z € R™ can be reached from the state w € R*, and equivalently,
w can be controlled to z, if there exist ty,t,u(t) such that equation (1.6) is satisfied with
To = w and z(t) = z.

Definition 3. A system is controllable if for any pair of states w and z, w can be controlled
to z, or equivalently, z can be reached from w.

13



Proposition 1. The system in (1.2-1.8), because it is linear, is controllable if and only if
every state z can be reached from the zero state [50].

The states that can be reached from zy = 0 are

{z ER" | z=2(t) = /t e’““"’Bu(u)dv} , (1.16)

to

which implies
z € colsp [B, AB,--- ,A"'IB] . (1.17)
The system (1.2-1.3) is controllable if and only if
rank ([B,AB,--- ,A*'B]) =n. (1.18)
Define L'.f,(a, 7) to be the set of square integrable functions u : [0, 7) — RP. The operator

L : L(o,7) — R™ which maps the input u(v) € L%(o,7) to the state z(7) € R* at t =,
with zero initial state, o = z(o) = 0, is given by

L(u) = /T k(v)Tu(v)dy, (1.19)
where
k(v) = BT (eA"("")), (1.20)

Define the inner product on £L2(g,7) as
<u,v >:=/ u(v)Tv(v)dy, (1.21)

and the inner product on R” as
<w,z>=uwlz, (1.22)
then the adjoint operator L* : R* — [,f,(a, 7) of L, which must satisfy,
< Lu,z >=<u,L’z >, (1.23)
is

(L*z)(v) = k(v)z = BT (eA" "))z (1.24)

14



The system (1.2-1.3) is controllable if and only if L is onto, and if and only if LL* is positive

definite [50].
The controllability gramian, W, (o, 7) : R* — R", is defined as

We(o,7)=LL" = /T k(v)Tk(v)dy,

o

- / " A=) BBT ATV gy,
o

It is a Hermitian, positive semidefinite matrix, and

< z,W.(o,7)z >= ||L*z||?, Vz.
The generalized inverse of L, L# : R* — L2(0,7), is

L¥ = L*(LL*)™' = L*W (o, 7).
L#z is the uniquc solution to Lu = z with the smallest norm,

L(L*z) =z, VzeR",
and
IL#z|| < ||lull, Yu:Lu==z, u# L¥z.

Its norm is

IL#2]? = |IL*We(o, 1) '2l? =< 2, We(o,7) 'z >= 2TWe(o,7) 2.

Thus, given any two states z and z the input

u(v) = BTeA " IW (0, 7)Y (2 — eAT9)z)

is the unique input that minimizes |Ju|| among all inputs which take z to z in [0, 7].

1.3.3 Observability

This section reviews the basics of observability.

(1.25)

(1.26)

(1.27)

(1.28)

(1.29)

(1.30)

(1.31)

Definition 4. The states w € R" and z € R" are distinguishable if there erist to,t, u(t)

such that, zo :== w and zo := z in (1.7) result in different y(t)’s.

Definition 5. A system is observable if any two distinct states are distinguishable.

15



Proposition 2. For linear systems, w and z are distinguishable if and only if w — z s
distinguishable from 0, and if and only if the zero input, u(t) = 0, distinguishes them [50].

Proposition 3. The system (1.2-1.8), because it is linear, is observable if and only if the
zero state is the only state which results in the zero output, y(t) = 0, with zero input, u(t) =0

[50].

According to (1.7), the states which result in the zero output, y(t) = 0, with zero input,
u(t) =0, are

{zeR* | Cett-)z =0}, (1.32)
which implies
C
CA
z € ker . . (1.33)
CAn—l

The system (1.2-1.3) is observable if and only if

o
CA
ker . =0, (1.34)
CAn—l
and if and only if
C
CA
rank ) = n. (1.35)
CAr!
Define L : L3(0,7) = R" as,
Lw) = [ kO uO (1.36)
where
k(t) = CeAtt=7, (1.37)

16



Then the adjoint operator L* : R* — L2(o, 7),
(L*z)(t) = CeAtg = CeAlt=o)eAle-T)g, (1.38)

maps z to the output y(t) resulting from the initial state o = eA(°~")z and zero input.
The system (1.2-1.3) is observable if and only if L* is one-to-one, and if and only if LL"
is positive definite. The observability gramian, W,(o,7) : R* — R", is defined as

W,(o,7) = LL* = / ATt T CeAlt-T) gy, (1.39)

o

The adjoint of the pseudo-inverse L#, (L#)* : L2(0,7) = R", is
(L#*)* = W,(o,7) L. (1.40)

It gives the least-squares solution of L*z = y. For each y € L2(0,7), let 2 = W,(0,7)' Ly,
then,

IL'z —yll <ilL’z —yll, z#=. (1.41)
Thus, e4(°~7)z is the initial state that results in an output that is closest to y(t) in the

least-squares sense.

1.4 Gramians and Lyapunov equations

If the particular choices of 0 = —oo0 and 7 = 0 are made, and if the system matrix A is
stable, i.e., all eigenvalues of A are in the open left half plane, the following definitions of the
system controllability gramian P, and the system observability gramian @, can be made,

P .= J[ At BBT ATt gt — W,(—o0,0), (1.42)
0

Q= / At CT Cettdt = W,(—00,0). (1.43)
0
Proposition 4. (See [19]) If Re(X:(A)) < 0,V4%, then

1. P is positive definite if and only if (A, B) is controllable.
2. @ 1is positive definite if and only if (A, C) is observable.

If the system (1.2-1.3) is controllable, hence P is invertible, then the solution of the

17



minimum energy problem,

vy, == (1.44)
where
0

J(u) = / uT (t)u(t)dt, (1.45)
is given by,

Uope(t) = BTe—ATtP—lz’ (1.46)
and the energy of u.p(t) is
Tl = 1P (1.47)

Hence, if z(0) = z lies along one of the eigenvectors of P~! with large eigenvalues, then
z(0) = z can be reached only if a large input energy is used. Eigenvectors of P! with large
eigenvalues are also eigenvectors of P with small eigenvalues, since

P=USUT < P'=Ux" U7, (1.48)

because P is real and symmetric.
If the system is released from z(0) = z, witk u(t) = 0,¢t > 0, then

/0 " T (e)u(t)dt = 7Oz, (1.49)

If £(0) = z lies along one of the eigenvectors of @ with small eigenvalues, then it will have
little effect on the output.

It can be seen that the system gramians P and @ satisfy the following Lyapunov equations
[19],

AP + PAT = —BBT, (1.50)
ATQ + QA =-C"C. (1.51)

The solutions to both are unique if A is stable [19].

If the number of inputs p is much smaller than the number of state components n, then
rank(BBT) = rank(B) < p < n, and the right hand side of (1.50) has low rank. Similarly,
if the number of outputs g is much smaller than n, then the right hand side of (1.51) has
low rank.

18



The gramians P and @ provide information about the controllability and observability
of the system (1.2-1.3) in terms of past inputs (¢ < 0) and future outputs (¢ > 0).

In the rest of this dissertation, eigenvectors of P with large eigenvalues will be referred
to as the dominant controllable modes, and eigenvectors of  with large eigenvalues will be
referred to as the dominant observable modes.

Definition 6. Let Re(\;(A)) < 0,Vi, then the Hankel singular values of the transfer function
G(s) (1.11) are

0:(G(5)) = {M(PQ)}H. (1.52)

Proposition 5. The Hankel singular values of G(s) are also the singular values of the Han-
kel operator, T : L2(0,00) = L2(0, o0),

(Cgv)(t) :=/ CelAt+) By(v)dv. (1.53)
0 :
Proof. [19] To find the singular values of I'g, note that its adjoint is
(Tey)(t) = / BTeATE+NCTy(y)dy. (1.54)
Jo

Suppose o; is a singular value of I'¢, with v the corresponding eigenvector of I';l'¢,

relov = olv, (1.55)
and let
y = Dgv = Cetzy, (1.56)
where
o0
wo=/ e Bu(v)dv, (1.57)
0
then
clev = Tgy, (1.58)
[}
= BTeA™ / eA"vCT Ce™ zody, (1.59)
0
= BTeA"'Qx,, (1.60)
= olv. (1.61)
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Hence
v(t) = BTeA ' Qoo 2. (1.62)

Substituting (1.62) into (1.57) gives

PQzy = o?xy. (1.63)

Therefore,
I'elev = o2v <= PQxy = olx. (1.64)
O

The Hankel operator associated with the system (1.2-1.3) maps past inputs to future
outputs. If the input u(t) = v(—t) for t < 0, then the output for ¢t > 0 is y(t) = (Fev)(t).
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Chapter 2

Model Reduction

2.1 Introduction

The two competing approaches for generating reduced order models of linear, time-invariant
systems have been moment-matching via orthogonalized Krylov-subspace methods ({12, 13,
15,17, 18,21, 22, 28, 29, 31, 37, 38, 40| and Truncated Balanced Realization (TBR) [11, 39, 45,
49,53]. TBR produces a reduced model with good global accuracy and a known frequency
domain L*™-error bound. However, because it requires the solutions to two Lyapunov equa-
tions as well as matrix factorizations and products, TBR is too expensive computationally
to use on large problems. Although moment-matching methods are inexpensive to apply,

they often produce unnecessarily high order models.

2.2 Problem formulation

The linear, time-invariant system with realization (A4, B, C),

‘-iﬁd(t-tl Az(t) + Bu(t),

y(t) = Cz(t),
AGR"XH, B € RﬂXP, CGRQX",

has the transfer function G(s),
G(s) =C(sI — A)"'B, G(s) € CI*P,
which relates input to output in the frequency domain according to,

Y (s) = G(s)U(s)-
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The transfer function G(s) can be written as G(s) = C%%EB, where det(sI — A) is
the determinant of the matrix sI — A, and mc(sI — A) denotes the matrix of cofactors of
sI — A. Thus, G(s) is a ¢ X p matrix whose entries are rational functions in s. The numerator
degree of each rational function is strictly smaller than its denominator degree, because the
degree of each entry in (mc(sI — A))T is at most n — 1 and degree of det(sI — A) is n.

In the simple case of p = ¢ = 1, the system (2.1-2.2) is controllable and observable if
and only if the numerator and denominator of the rational function G(s) have no common
factors, or in other words, G(s) is irreducible.

The problem of model reduction is to find a smaller system,

dzi(t - .

B~ gz + By, (26)

D = Clme), (2.7)
ALeRM* Bl € R¥P, (] e RI*F, (2.8)

such that k, the number of components in z%(t), is muck smaller than n, and the transfer
function of the new system Gj(s),

Gi(s) = Ci(sI — A) "By, G(s) € C™P, Yi(s) = Gr(s)Uk(s), (2.9)

is close to the original transfer function G(s).

If p = g = 1, then Gj(s) is a rational function of degree < k, and the problem of model
reduction can also be viewed as the approximation of a high degree rational function by one
of much lower degree.

2.3 Projection

Almost all model reduction methods are projection methods. An exception may be explicit
moment matching methods, which will not be considered here.

Before proceeding with projection methods, generalized state space form will be briefly
described. This will help to create a more general framework which can include projection
methods whose left and right projection matrices are not bi-orthogonal.

A system given by (2.1-2.2) is in standard state space form. A system in generalized
state space form, with realization (E, A, B, C), is described by the equations,

Ez(t) Az(t) + Bu(t), (2.10)
y(t) = Cz(t), (2.11)
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and has the transfer function
G(s) = C(sE - A)™'B. (2.12)

If E is invertible, (2.10-2.11) can be easily converted to standard state space form.
For generalized state space systems, the reduced system should have the form,

Eay(t) = () + Biu(t), (2.13)
ye(t) = Crzi(t), (2.14)

with the transfer function
Gi(s) = CL(sE} — A};)‘IB,:. (2.15)

A projection method reduces (2.10-2.11) by choosing two k-dim projection spaces, S;, S; C
R™, so that the solution space is projected unto Sz, z} € Ss, and the residual of (2.10-2.11)
is orthogonal to S). A realization of the reduced system satisfies the projection equations,

E* = VTEU,, AF=VTAU, (2.16)
B = vIB, cC*=cu,, (2.17)

where the columns of V, and Uj form bases for S} and S,, respectively,
colsp(Vi) = Sy, Vi € Rk colsp(Uy) = S,, U € R**%. (2.18)

If S; = S,, the projection is orthogonal, otherwise it is oblique. The matrices V}, and Uy
will be referred to as the left projection matrix and the right projection matrix, respectively.
The following proposition shows that the choice of basis for S; and S; is not important.

Proposition 6. If the columns of Vi also form a basis for Sy, and the columns of Uy also
form a basis for S, then the reduced system obtained by projection with Vi and Uy according
to (2.16-2.17), is equivalent to (has the same transfer function as) the reduced model obtained
by projection with V), and Uy.

Proof. This follows from the existence of invertible k& x k matrices, Rxxx and Wiy, such
that

i = VkkaIn (2'19)
Up = UiWixs, (2.20)
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so that

G.(s) = CU(sVTEU, -VTAU,)'VIB (2.21)
= CUWix(sRE. . Vi® EUsWixk — R Ve AUxWini) 'RV B (2.22)

= CU(sVTEU, — VIAU,)'VIB (2.23)

= G.(9). (2.24)

O

Hence, the exact projection matrices are not important, only their column spans are.

Note if VT Uy # Iixk, then the reduced system obtained according to (2.16-2.17) will not
be in standard state space form even if the original system is in standard form. Thus, to
preserve standard space form, the projection matrices V; and U, must be bi-orthogonal.
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Chapter 3

Moment Matching via Krylov
Subspaces

This chapter describes the matching of transfer function moments, and how it is implemented
as projection via Krylov subspaces.

3.1 Transfer function moments

The category of moment matching methods includes all methods which seek to preserve, in

the transfer function of the reduced system G,(s), some coefficients of a series expansion of

the original transfer function G(s). Generalized state-space form (2.10-2.11) will be used.
If G(s) is expanded in powers of s~1, i.e., around the point at infinity,

G(s) = im_,-s“j, (3.1)
i=1
m; = C(EAYE™B = g9 )(t)o, (3:2)

then the coefficients to be preserved are m_j,j = 1,--- ,k. The m_;’s are called the Markov
parameters, and they are the function value and derivatives of g(t), the inverse Laplace
transform of G(s), evaluated at ¢t = 0.

A reduced order model whose transfer function

G.(s) = Zm'_js“j, (3.3)
7=1
mZ; = C.(E7'AY'E'B, = gV V(t)li=o, (3.4)
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preserves a number of the original Markov parameters,

ml;=m_;, j=1,---,k, (3.5)
is called a partial realization.

A partial realization generally results in good approximation to the original transfer
function near s = oo, but may not be accurate at low frequencies.

More often, G(s) is expanded around one or more finite points in the complex plane. In
this case, each series has the form,

G(s) = D my(o:)(s — o), (36)
7i=0

m;(0;) = C((A—o:E)'EY*(0;E— A)'B = ———-G(J‘)(j.f,) ey (3.7)

i = 1,2,---,1. (3.8)

The mj,(0;)’s are called the moments of the transfer function G(s) at o;, which are the
function value and derivatives of G(s) evaluated at o;.
A reduced order model whose transfer function

G.(s) = Y mi(o3)(s —au)¥, (3.9)

Ji=0

(4:)
m;',((T,’) = CT((Ar - UiEr)_lEr)ji(a'iEr - Ar)—lBr = G_r—.(;i')li&

i o= 1,2,---,3, (3.11)

, (3.10)

preserves some moments of the original transfer function G(s) at a number of points 0;,7 =

1,---,%, in the complex plane,
mi(o:) = mj(0:), j=1,--- ki, ,i=1,---1, (3.12)
is called a (multi-point) Padé approximant. The moment zaatching points 0;,i = 1,--- ,1,

can be real, imaginary, or complex.

Padé approximants result in good approximation to the original transfer function in
neighborhoods around the points where moments are matched, but may not be accurate
away from the expansion points.
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3.2 Implementation via Krylov subspaces

The usual implementation of moment matching uses projection via Krylov subspaces (8, 12,
15,18, 40]. They are implicit moment matching methods, because the moments themselves
are never explicitly computed. The choice of Krylov subspace determines where and to what
order moments are matched. The assumption B € R® will be made throughout this section.

Definition 7. The order m Krylov subspace K,,(A, B) of the nxn matric A and the starting
vector B € R™ is the subspace,

Km(A, B) = span{B, AB,--- ,A""'B}. (3.13)

Note dim(K (A, B)) < m.
The following proposition connects projection via Krylov subspaces and the matching of
Markov parameters.

Proposition 7. (See [22]) If
Kw (E'A, E'B) = span {E“B, E'AET'B, ... ,E-IA”“E—lB} C colsp{Us}, (3.14)
and

Kie (E7'A)T,E7'CT) = span {E“CT, (E'A)TECT,. .. ,((E“‘A)T)k_lE“CT} C colsp{Vi},
(3.15)

then,
C(E'AY'E~'B=C,(E'A,Y'E B, (3.16)

forj=1,2,--- kb +k°.

The following proposition connects projection via Krylov subspaces and the matching of
moments at the points oy, - , 07 # 0o.

Proposition 8. (See [21]) If

UICk? ((A—0;E) 'E,(A - 0;E)"'B) C colsp{U4}, (3.17)
i=1
and
UKk (A - 0:E)TET, (A - 0,E)""CT) C colsp{Vi}, (3.18)
=1
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then,

—C{(A-0:E)'EY ' (A-0:E)'B (3.19)

=-C, {(A. - 0:E,)'E,}Y' " (A, - 0:E,)'B,, (3.20)
5i—1 i —1

— 00, | G, (3:21)

for ji = 1,2,--- k® + kf and i = 1,2,--- ,i. Note the inclusion rather than equality in
(3.17-3.18).

When certain processes are used to generate bases for the Krylov subspaces in (3.14-

3.15) and (3.17-3.18), such as the Lanczos or the Arnoldi process, the reduced quantities

r, A¥, B¥ CF in (2.16-2.17) may be obtained as part of the basis generation process, rather
than projected explicitly via (2.16-2.17).

Regardless of how the Krylov subspaces are generated, the following two algorithms are
examples of moment matching methods which use Krylov subspaces, and will be referred
to in chapter 10 for numerical comparison. The systems they reduce are assumed to be in
standard form, E = I,.,. They are not the most general of moment matching via Krylov
subspaces methods. They assume bi-orthogonality of the two projection matrices, and make
(3.17) and (3.18) equalities rather than inclusions. Algorithm 1 uses orthogonal projection,
algorithm 2 uses oblique projection.

Algorithm 1 Moment matching via Krylov subspaces, orthogonal projection
0. Original system, (I,xn, 4, B,C).
1. Find Uy = [ua, - ,us] such that UTU, = I« and

colsp{U,} = Z K. ((A—o:I)™ ', (A= 0:I)'B), (3.22)
i=1

k= ki+-+kn (3.23)
2. Obtain E} = Iixx, A}, Br, Cf such that (2.16-2.17) hold.

Moment matching methods require only matrix-vector products (3.14-3.15) or linear
solves (3.17-3.18), hence they are very efficient. If the linear solves are done iteratively
using a Krylov subspace method such as GMRES, all that is needed is the action of the
system matrix A on a vector, which is advantageous when A is sparse, structured, or given
only as a black box. However, there is no global error bound on the transfer function ap-
proximation error for moment matching methods. The error, G(s) — G"(s), will be small
near points where moments are matched, but there is no guarantee that the error will be
small elsewhere. These methods also may produce unstable reduced models even though
the original system is stable. Further processing is needed to remove the unstable modes.
(12,22, 29] ‘
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Algorithm 2 Moment matching via Krylov subspaces, oblique projection
0. Original system, (I,xn, 4, B, C).
1. Find Uy = [u3,--- ,u], Vi = [v1, -+ , vk such that VTU, = I, and

colsp{Us} = > K (A-a:D)™,(A-o:I)7'B), (3.24)
i=1

colsp{Vi} = Y Kis ((A—al)T,(A—a:l)"7CT), (3.25)
i=1

k= K+k+- + kS = S+ kS +--- + K. (3.26)

2. Obtain E} = Ii ., A}, B}, C such that (2.16-2.17) hold.

A most important question associated with moment matching methods is how to pick
moment matching points {01, - ,0m}, and their orders ky,- - - , k., so that the global ap-
proximation error is small. This problem is not solved. Rather, it is tackled with heuristics
(5, 6, 21], such as picking evenly or logarithmically spaced points on the imaginary or the real
axis, as a function of the frequency range of interest.

In chapter 10, a criterion for picking good moment matching points, when the system
is symmetric, will be given based on approximating the Truncated Balanced Realization
method of model reduction.
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Chapter 4

Truncated Balanced Realization

Truncated Balanced Realization (TBR) [11,39,45] produces a guaranteed stable reduced
model, and has a frequency domain L*-error bound. There is no theoretical result concern-
ing the optimality or near optimality of the TBR reduction in the L norm. However, TBR
in general produces a reduced model with globally accurate frequency response approxima-
tion. This reduced model is usually superior to the models produced by moment matching
methods.

The Square Root method of implementing TBR is proposed in [49,53]. It has better
numerical properties than the implementation in [19]. When referring to ‘the TBR algorithm’
in future chapters, the implementation in algorithm 3 is assumed.

Given a stable system in standard state space form (2.1-2.2), algorithm 3 produces the
order k£ TBR reduction.
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Algorithm 3 Square Root method to calculate the order £ TBR reduction.
1. Find the Cholesky factors ZZ and ZC of the solutions P and Q to (1.50-1.51),

P =2ZB(ZBYT, Q=2°2°)". (4.1)

2. Calculate the singular value decomposition of (Z€)TZ3,

ULS(URT = (2°)T 25, (4.2)
where,
o1 0
UR - [uf uf], UL = [uf u'l;], T=|: .. :]. (43)
0 sre Op
3. If o) > Okyy, let
1
= 0
SB=2ZB[uf, .- Wf] | . i ], (4.4)
0 L
Vr
and
rd L
P Vo1 0
S¢ = z¢ [uf’,--- ,uf] N (4.5)
0 1
or

4. The order k£ Truncated Balanced Realization is given by

A = (S°)TASB, B =(S°)7TB, Ci =cCSE. (4.6)

The controllability and observability gramians of the order k reduced system (A", Bitr, Citr)
are diagonal and equal,

P = Q% = %, = diag(0y,03, ..., 0%). (4.7)
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The resulting transfer function G (s) has L®-error bound,

IG(jw) = G¥" (jw)llz= := sup |G(jw) — G} (jw)ll2 < 20k + Oky2 + ... + 05).  (4.8)

TBR is a projection method with left projection matrix S¢ and right projection matrix
S8, such that (S€)TSB = I, and

colsp(S?) C colsp(Z®), colsp(S€) C colsp(Z°). (4.9)

A merit of the Square Root method is that it relies on the Cholesky factors ZZ and Z€ of
the gramians P and @, rather than the gramians themselves, which has advantages in terms
of numerical stability.

The vast majority of the work involved in algorithm 3 comes from step 1 to obtain ZZ and
ZC€, and step 2, the balancing singular value decomposition. Both steps 1 and 2 are O(n?)
if done exactly, even if the system matrix A is sparse, which makes algorithm 3 impractical
for problems with more than a few hundred components in the state vector. For this reason,
TBR has long been considered too expensive to apply to large problems.
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Chapter 5

Low Rank Approximation to TBR

5.1 Motivation

Even though Truncated Balanced Realization produces a guaranteed stable, globally accurate
reduced model with a L®-error bound, it has been almost entirely abandoned in favor of
Krylov subspace-based moment matching methods for large problems such as the modeling of
complicated interconnect structures [3, 37,40]. The solution of two Lyapunov equations and
the balancing SVD in (4.2) both have complexity O(n?), which is prohibitive for problems
with more than a few hundred components in the state vector.

It is clear that even if the n x n Cholesky factors of the gramians are available, the
complexity of the Square Root method is still prohibitive for large n, due to the SVD of the
n x n matrix (Z¢)TZ?% in step 2.

However, the work in step 2 and the subsequent step of calculating Sg and S¢ will be
dramatically reduced if ZZ and Z€ each have only a few columns, or equivalently, they have
low rank.

This chapter answers the question of whether it is possible to approximate TBR if low
rank approximations to Z2 and Z€ are available. The contention of this dissertation is
that the answer is affirmative for symmetric systems, but not definitive for non-symmetric
systems, although there is numerical evidence that good approximation to TBR is possible
even in the non-symmetric case.

The main goal of this chapter is to present the approaches that can be taken in trying
to approximate TBR, at a cost that is comparable to the popular moment matching meth-
ods. These approaches should only require matrix-vector products and linear solves. Two
approaches are examined and compared. One is the Low Rank Square Root method [41, 46],
the other is the Dominant Gramian Eigenspaces method [34].

The question of how to obtain low rank approximations to Z2 and Z¢ will be answered
in subsequent chapters.
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5.2 Optimal low rank gramian approximation

If X € R**", a symmetric, positive semi-definite matrix, has eigenvalue (singular value)
decomposition,

R 0]
(28 4 0 T
X = [ul’”' yUJ, U1 - 7un] [ulr"' yUS, UJ41,y " 1un] ’
0 o5n
0 On
(5.1)
01220720541 2+20,20, (5-2)
and if oy > 0441, then
(23] 0
X;pt = ['u.l,-- . ,‘U,J] E . 5 ['U-l,’ . 7uJ]T1 (53)
0 oy

is the unique optimal rank J approximation to X in the 2-norm [20].

Clearly || X — X$"|l2 = 04+1, and 04, is the smallest achievable 2-norm error when ap-
proximating X by a rank J matrix. If 05, is not small, then X cannot be well approximated
by a rank J matrix.

Definition 8. Z;"‘ € R™’ is an optimal rank J Cholesky factor of X if
2P IV = X (54)

If Z% has ‘thin’ singular value decomposition,

of ... 0

z7 = s | e )T, (5-5)
0 N a';f

o.;-’f > o> a-;f >0, 'u,:.:f € R?, ’Uff S RJ, (5.6)

(5.7)
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then

X = 2727

e 0 oy 0
= [u:f’... ,ujf] ST [vf’,--' ,v.c’f]T[v;:f,,, ,vjf] Do [u;f’_“ ’ujf
| 0 "5! 0 af,f
(5.8)
(077)? 0
= [uif’ ) u.CI!] . [u‘l:lv Tt ujf]T' (5-9)
L0 (o)

Thus, </ is an eigenvector of X associated with the eigenvalue (a‘:’ )? if and only if it is
a left singular vector of Z9"* associated with the eigenvalue cr,f . Therefore, the eigenvectors
of Xf,”" can be obtained by finding the left singular vectors of Z%", which is inexpensive to
do since Z has only J columns.

A matrix Z; € R**/ is called an approximately optimal rank J Cholesky factor of X, if
7,27 ~ X

This chapter provides analysis on approximating TBR when approximately optimal rank
J Cholesky factors of P and @ are available. Subsequent chapters will address how to obtain
the approximately optimal low rank Cholesky factors.

5.3 Symmetric systems

Approximating TBR for symmetric systems is addressed first.
A symmetric state-space system has the form,
#(t) = Az(t)+ Bu(t), A= AT, (5.10)
y(t) = BTz(t). (5.11)
The system matrix A is symmetric, and the output coefficient matrix is simply the transpose

of the input coefficient matrix.
A certain class of circuit models from modified nodal analysis, which has the form,

Ez(t) = Az(t)+ Bu(t), (5.12)
y(t) = BTz(t), (5.13)

where E and A are symmetric, and E positive definite, can be symmetrized as follows [38].
A symmetric, positive definite square root of F, Ei, can be found. The new state vector
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% is defined as 7 := E3z. Multiplying (5.12) by E~% results in

E"iEiE}i(t) = E i1AE %Eiz(t) + E1Bu(t), (5.14)
y(t) = BTE iEiz(t). (5.15)

Thus, (5.12-5.13) become

i(t) = A#(t)+ Bu(t), A= AT, (5.16)
y(t) = BT&(), (5.17)
A = EiAE"3, B=EiB. (5.18)

TBR for symmetric systems is simpler than for non-symmetric systems. The controlla-
bility gramian is equal to the observability gramian for symmetric systems since equations
(1.50) and (1.51) are the same when A = AT and C = BT. Hence, there is no need for the
balancing SVD in step 2 of algorithm 3.

TBR for symmetric systems simply solves,

AP + PA+ BBT =0, (5.19)

for the single system gramian P(= Q), and finds P’s k dominant eigenvectors,

{ug®™, .-, ul™}, (5.20)

where
P = [ugmm? e ,u;‘gramlzgram([ugram, e v"g:mm])T’ (5-21)
LI = diag(o, -+ ,0n), 012 -2 O > Ok41 2+ - 2 O (5.22)

The left and right projection matrices Uy and Vj, are chosen to be equal, and
U =Vi = [y, - ,ul "] :=UF™™. (5.23)
The system in (5.10-5.11) is reduced according to
A¥ = (U ™TAUT*™, B = (U*™)TB. (5.24)

Because the symmetric system in (5.10-5.11) is already balanced, the k dominant left
singular vectors of an approximately optimal low rank Cholesky factor can simply be used
in place of UJ™*™, to obtain ‘Approximate TBR’, given as algorithm 4.

The k dominant left singular vectors of Z; are easy to find because Z; has only J columns.
If Z; is exactly an optimal rank J Cholesky factor of P, Z;ZT = Pf,”“ , then algorithm 4

36



Algorithm 4 Approximate TBR for Symmetric Systems

1. Compute Z; € R™, 7,27 ~ PP
2. Find Uy, k < J, the matrix of the k dominant left singular vectors of Z;.

3. Reduction: A} = (Ux)TAUx, B = (Uy)TB.
(Using Ui to approximate UJ*™).

produces exactly the order k TBR reduction.

5 * Non-symmetric systems

The controllability and observability gramians of a non-symmetric system will not, in general,
be equal. This section examines how to reduce a system if only approximately optimal low
rank Cholesky factors of P and @ are available.

5.4.1 Low Rank Square Root method

An idea that was proposed in [41] and [46], is to simply replace the exact Cholesky factors
ZB and ZC, (possibly of full or, at least, high rank), in algorithm 3 by low rank Cholesky
factors, Z7, € R**/2 and Z§, € R**’/c. This reduces step 2 of the Square Root method to
the SVD of a small, J¢ x Jg, matrix, which is much less work than the SVD of the fulln xn
exact Cholesky factor product (ZZ)TZC. This idea, the Low Rank Square Root method, is
shown as algorithm 5.

Algorithm 5 Low rank square root method

1. Compute Z§ € R*J=, 28 (22 )T ~ PV,

2. Compute Z§, € R*Je, Z$ (Z§ )T ~ QF,

3. Compute reduced system (A%, B;,C;), k < Jg,Jc, by algorithm 3 using approxi-
mate Cholesky factors Z7 and Z§,.

Even if Z} and Z_?c are optimal rank Jp and Jc Cholesky factors of P and Q, re-
spectively, algor:thm 5 will not, in general, produce a good approximation to TBR unless
Z3 (23T and Z5,(Z5,)T are fairly accurate approximations to the matrices P and Q them-
selves. If Jg, Jo <« n, this cannot happen unless P and @ are themselves close to low rank.
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For example, if
(Z27)"(25,) =0, (5.25)

then algorithm 5 cannot proceed even though the order k¥ TBR reduction via algorithm 3
may be periectly well defined.

The near low rank assumption on the exact gramians P and @ needs to be met for
algorithm 5 to be an efficient and accurate method. Numerical results for the Low Rank
Square Root method will be given in section 5.5.

5.4.2 Dominant Gramian Eigenspaces method

When P and Q are not close to low rank, the Low Rank Square Root method often does
not produce a good reduced model. In this case another approach is needed.

In the TBR reduction, gramians P and @ are balanced so that they have the same
eigendecomposition, namely, along the coordinate axes, in the same order. Then it makes
sense to project the original system onto that single dominant eigenspace of both gramians.

Balancing the gramians requires knowledge of the entire eigenspaces of both gramians.
For the situation when only approximately optimal rank Jg and Jc Cholesky factors of P
and Q are available, and the rest of the eigenspaces are unknown but significant, the following
algorithm is proposed.

The Dominant Gramian Eigenspaces method is an orthogonal projection method, and
its projection space is the column span of the union of a subset of the dominant left singular
vectors Z7 , and a subset of the dominant left singular vectors of Z§, [34].

5.4.3 A Special case

The following theorem gives a condition under which both algorithms 5 and 6 will produce
exactly the order £ TBR reduction.

Theorem 1. If the span of the k most controllable modes is the same as the span of the k

most observable modes, and of > 0P, |, of > of,,, where of,--- ,0P are the singular values
of P in non-increasing order, and o ,--- ,0S are the singular values of Q in non-increasing

order, and if Zﬁ, and Zf';, Jg, Jo, > k, in algorithms 5 and 6 are optimal rank Jg and J¢

Cholesky factors of P and Q, then both algorithms 5 and 6 will produce ezactly the order k
TBR reduction.
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Algorithm 6 Dominant Gramian Eigenspaces method

1. Compute Z%,, Z5 (25 )T ~ P

2. Compute 2§, Z§ (25,)T = QF..

3. Calculate SVD' ZJBB = U"XJBD?BXJB(V-’BBXJB )T, Z Unch -’CXJC(VJCXJC)T'

4. Choose k < Jg, J¢, 2k being the desired reduction order, and let

Ua® =qr ([UL,,(:1: k), U,,XJC( 1:k)]). (5.26)

Note k < m = rank(U%?®) < 2k.

5. Reduce the system:

A7, = (USHTAUZS, By, = (US*)TB, C, = CUZ®, (5.27)
Proof. Let P and @ have SVDs,
P = UBEB)(UB)T, (5.28)
UB = [wf,--- ,uf], of>---20f>08,>--->02>0, (5.29)
Q = U°(E)*(UO)T, (5.30)
U = [f,---,uf], of>---20f>0f,>--->0C>0. (5.31)

Since the span of the £ most controllable modes is the same as the span of the £ most

observable modes,

span{uf,---up} = span{uf,---uf}. (5.32)

Without loss of generality, assume Z2, Z€,

exact Cholesky factors, and Z JB,Z Jo» Ooptimal

rank Jg and Jo Cholesky factors, have the following form,

s 0
Z° =[u?, - ,ug] | .
0 oB
of 0
Z¢ =[f,--- 8] | R
0 oS

o ... 0

Z8 =l B . i, (533)
0 o
o ..

Zf = [ulc7 1u.(I:] RN I (5.34)
0 o§
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Otherwise, they differ from the above forms only by right multiplication by orthogonal
matrices, which will cancel out when defining projection matrices in (4.4) and (4.5).
Because of (5.32),

[of -+ 0] [()T of =0 0
Z8Zs = |: .. Pl ]l [ 2o ], (5:85)
[0 - oS [(O)T 0 --- o8
_ [z o ] [(UE)TUE 0 ] [2,? 0 ] (5.36)
0 2¢,)| o wEoTUE,]|o =2.| '
We 0
= % w,._k] (5.37)

is (k,n — k) block diagonal. The matrices (US)TUE € R**k, (US ,)TUB , € Rr-kxn-k
are both orthogonal. Let Wy = UpyZ VT, and W, _x = U,_+Z,-xV,L,, be singular value

decompositions, then

Uk 0 pI% 0 vT 0
VAV A k : 5.38
CTET 0 Uns [0 ) [0 VT, (5:38)
isa SVD of ZZZp,and 01 > -+ > 0k > 0P0F > 08,081 > 0k41 > -+ + > On.
Therefore, [uf,--- ,uf] in (4.4) has zeros in the last n — k rows,
[urs -+ ug] = [‘g‘ : (5.39)

and the right projection space for TBR is,

colsp((SB)?*) = colsp (ZB [‘g’]) = colsp(ZB(:,1: k)) = span{ul, --- ,uP}.  (5.40)

Similarly, [uf,--- ,uf] in (4.5) has zeros in the last n — k rows,
[uf1 et fuf] = {%k] ) (5"41)

and the left projection space for TBR is,

colsp((S€)*") = celsp (ZC I:[(J)k}) = colsp(Z°(:,1: k)) = span{ufl,--- ,ul}. (5.42)
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The same argument, replacing Z2, Z€ by 2}, Z5_, and n by maz(Jg, Jo), gives the right
and left projection spaces for the Low Rank Square Root method as,

colsp((S®P)'*) = colsp(Z,(:,1: k)) = span{uf,--- ,uf}, (5.43)
and
colsp((S®)™*t) = colsp(Z5,(:,1 : k) = span{ul, -+ ,uf}. (5.44)

Thus, TBR and the Low Rank Square Root method have the same projection spaces.
From (5.26),

COIsp(U::w) = qr ([ulB$ e :ufr u'lca T uf]) (545)
= spcm{uf’, cee ,uf} = span{uf, cen ,ukc}, (5.46)

and m = k. Thus, TBR and the Dominant Gramian Eigenspace method have the same
projection spaces.
Therefore, all three methods produce equivalent reduced systems. O

5.5 Numerical results

This section gives numerical results for algorithms 5 and 6 for non-symmetric systems, when
optimal low rank Cholesky factors are used.

Figures 5-2 and 5-3 show an example of a non-symmetric system which resulted from
the discretization of the transmission line shown in figure 5-1. The non-symmetric system
matrix A is 256 x 256, and the system is single-input single-output.

Figure 5-1: Transmission line.

Figure 5-2 shows the absolute value of the frequency responses, |G(jw)|, of the original
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system and various reduced systems.

In figure 5-2(a), an order 10 reduced model obtained via the Dominant Gramian Eigenspaces
method, ‘Ct5 U Ob5’, is compared to the order 10 reduced model from TBR, ‘TBR-10". The
abbreviation ‘Ct5 U Ob5’ means that the column span of the union of the 5 most control-
lable modes and the 5 most observable modes is used as the projection space. In this case,
the projection space has dimension 10. Optimal rank 5 Cholesky factors of P and @ are
needed to produce the reduced model. It can be seen that the frequency response of reduced
model from the Dominant Gramian Eigenspaces method is aimost indistinguishable from
the frequency response of the order 10 TBR reduced model.

In figure 5-2(b), order 10 and order 20 models obtained from the Low Rank Square Root
method are shown as ‘LR-sqrt-10°, and ‘LR-sqrt-20’. The order 10 model is obtained by
balancing optimal rank 10 Cholesky factors of P and @), the order 20 model by balancing
optimal rank 20 Cholesky factors. The order 10 model from Low Rank Square Root is not
a good approximation. Its system matrix also has many unstable eigenvalues. ‘LR-sqrt-20’
is a better approximation, with similar accuracy as ‘Ct 5 U Ob5’. However, ‘Ct 5 U Ob5’
needs only two rank 5 Cholesky factors, whereas ‘LR-sqrt-20’ needs two rank 20 Cholesky
factors.

Figure 5-2(c) compares ‘Ct 5 U Ob5’ with projection by either the column span of the 10
most controllable modes, ‘Ct-10°, or by the column span of the 10 most observable modes,
’Ob-10". Both ‘Ct-10’ and ‘Ob-10’ only need one rank 10 Cholesky factor. Neither ‘Ct-10’
nor ‘Ob-10’ comes close to capturing the frequency response behavior of the original system
as well as using the union of 5 and 5.

Figures 5-3 shows that the dominant controllable and dominant observable modes are
‘far’ from each other. Figure 5-3(a) plots the projection of the observable modes onto the 10
most controllable modes, [j(u2®)T[u$t, - ,ufh]|l2. All are unit vectors. It can be seen that the
20 most observable modes have very little component in the span of the 10 most controllable
modes, less than 0.01. Figure 5-3(b) shows a similar situation with the projection of the
controllable modes ontc the 10 most observable modes.

When the dominant controllable modes and the dominant observable modes are nearly
orthogonal, and when the remaining eigenspace of either P or @ is not small, the Low Rank
Square Root method does not produce good results. In that case, it is better to use the
Dominant Gramian Eigenspaces method.
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Transmission line, 256 states.
10 ¢ T

- Exact
{ e TBR-10
|- —_Cts5 U Obs .
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w
(a) CTOB close to TBR
o Transmission line, 256 states. x Transmission line, 256 states.
10 . 10 -

(b) CTOB vs LRSQRT (c) CT and OB vs CTOB

Figure 5-2: Low Rank Square Root and Dominant Gramian Eigenspaces methods
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Projection onto 10 dominant controllabe modes
10 ¢ T T T T

@O, |

] 10 20 30 40 50
Observable mode

(a) Projection of u3® on Ufh

o Projection ontc 10 dominant observable modes
10 3 T T T T

— G OR T o0
. —— TG,
1 0'5 A L i
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Controllable mode

)

(b) Projection of u$* on Ug}

Figure 5-3: Mutual projection of dominant controllable and dominant observable modes
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Chapter 6

Lyapunov Solution and Rational
Krylov Subspaces

This chapter contains a main theoretical result of this dissertation, given as theorem 2, which
characterizes the different manifestations of the range of the solution to

AX + XAT = -BBT (6.1)
as order n Krylov and rational Krylov subspaces with different starting vectors.
Proposition 8. Let X be the solution to (6.1), then

Range(X) = span{B, AB,--- ,A"'B} = K,(A, B). (6.2)

Proof. See [50]. O
The definition of a rational Krylov subspace is given below.

Definition 9. An order m rational Krylov subspace KT®(A, z1, Pm-1), A € R**", 2, € R,
Pm-1={P1,"** ,Pm-1}, Pi € R, is the subspace,

m—1
Km(A, z1, Pm-1) := span {zl, (A+pD) 2, (A+p ) A+ o) 2, [J(A +p.-)"21} :
=1
(6.3)
Note that dim(KI%(A, z1, Pm-1) < m.

A main result of this dissertation is theorem 2, which shows the equivalence of an infinite
number of order n Krylov and rational Krylov subspaces based on A and B.
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Theorem 2. Let A be invertible, B € R, and define the subspace L(A, B, p),
P= {' **yP-2,P-1,P0,P1, P2 " }; p;i € R, as

L(A, B,p)
-1
= 3pan{ Tt H(A+piI)—le Tty (A+p—2I)—l(A+p—lI)_le
= (6.4)
(A+p—lI)-le Ba (A+pOI)37
J
A+pDA+pl) B, -, [[(A+nDB, - }
=1
= 3pan{ T 'U—j(p), et ,‘U_z(p), v—l(p)) ‘Uo(p), Ul(p)a ’U2(p), e ,'Uj(p), fe }1
(6.5)
where
j—1 -1
v(p) = B, vi(p) = H(A +p0)B, j >0, v;(p):= H(A +pI)7'B, j <0, (6.6)
=0 i=j
and where all matriz inverses in (6.4) are well-defined. Then Vs, Vp,
Vr = {' **3T-1,T0,T1," }’ Vq = {' **34-1,40,41," " };
L:(A’ B, p) = span{v,(p), vs+l(p)7 ’0,+2(P), Tt 7vs+(ﬂ—1)(p)} (6'7)
= span{B,AB, ---, A""'B} (6.8)
= L(A,v,(r),q). (6.9)

L(A, B) := L(A, B,p) may be written without referring to the shifts.

The proof of theorem 2 needs the following lemmas. The dependence of the v;’s on p will
be suppressed in the proofs unless needed.

Lemma 1. If m > n, then K,,(A, B) = K,.(A, B).

Proof. First, it is shown that if m > n, then A™ !B € K,,_1(4, B). If m > n, there exist
coeficients, ¢y, - -+ ,Cm_1, Dot all zero, such that

coB+ciAB+ -+ cm2A™ 2B + cn1A™'B = 0. (6.10)
Choose 0 < j < m — 1 such that ¢; # 0, and ¢; = 0,Vi > 7, then
A™ VIB 4 4 ¢;A™TVIAIB = 0,=> ¢;A™ ' B = —¢A™ ' /B + -+ + ¢j.1A™2B.

(6.11)
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Hence, A™ !B € K,,-1(A, B). Therefore, if m > n, K,(A, B) = Kn,_1(4, B), and finally,
Kom(A, B) = Km_1(A, B) = - -+ = Kns1(A, B) = Kn(A, B). 0

The order n Krylov subspace is also referred to simply as the Krylov subspace, X,(4, B) :=
K(A, B), without the subscript.

Lemma 2. With the v;’s defined as (6.4),
Y € Spfm{'va, Vs+1y  Ust2, -, 'vs+(n—l)}a (612)

whenever l > s + (n — 1).

Proof. From (6.4), it can be seen that,

vi=(A+pial)vio, Vi, =€ Span{vg-l, A'Ui-l}, (6.13)
and therefore,
spa'n{v,, Vst1y VUst+2, "7, ‘01} = SPan{Us, Avs’ Tty Al-svs} = Kl-s-&-l(A’ vs)' (614)
From lemma 1,
span{v,, Vs+1y Vet2, Tty ’U[} = Kl—a-f-l (A, va)
= Ka(4, US) = span{'v,, Ust1y  Ust2y " »'vs+(n—1)}-
(6.15)
The result follows. O

Lemma 3. With the v;’s defined as (6.4),
v € span{vu Vg1, Us42,° " 'Ua+(n—l)}a (616)

whenever [ < s.

Proof. First show that the lemma is true for ! = s — 1. Equivalently, because of (6.14), show
that

(A + pyrI) v, € span{v,, Av,,--- , A" 'v,}. (6.17)
Shifts can be added in the right hand side of (6.17),

b

span{v,, Av,, -+ , A" 'v,} = span{v,, (A + p,_11)v,, -+ , (A + pai )"0, }, (6.18)
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without affecting its column span. Because {vs—1,¥s," " ,Ust(n-1)} are n + 1 vectors in R",

there exist coefficients, cg, - - - , ¢,, not all zero, such that,
CoVs + CI(A + pa—lI)'va + e+ cn—l(A + pa—lI)n—lvs + C"(A +ps—lI)—lvs = 0:

If ¢, #0, (6.17) is proven.

(6.19)

Otherwise, choose 0 < j < n such that ¢; # 0, and ¢; = 0,Vi < j. Then multiply (6.19)

by (A + p,_1I)~U*Y, to obtain

¢i(A+parD) 710, + Cipa¥s + - + o1 (A + Poi )0, = 0,
=5 ¢j(A + Pacr]) 0y = —Cj410, — - — Caa(A + poa[)* 2,

Thus, (6.17) is proven, and (6.16) holds for i =s - 1. If I <5 -1,

nw € span{'UHh Vg2, vl+n}
C span{viyz,---, Ul+n+1}
C span{vy, -+ ,Vsin-1}-
Line (6.22) follows because each vector vpy1,- -+ , Ui4n is in span{visa, - , Vigns1}-

Proof of theorem 2. Lemmas 2 and 3 show that
L(A, B,p) = span{v,(p), vs+1(P), vss2(P), *Vsr(n-1)(P)}
holds for all s and for all p. (6.8) follows from
span{vo(p), v1(P), -+ ;vn-1(P)} = span{B, AB,--- ,A""'B},
with the choice of s =0, and p = 0. (6.9) follows from

L(A,B,p) = L(A Br)

= span{v,(r), Vg1 (r)r **t y Ust(n-1) (l‘)}
= span{v,(r), Av,(r),--- , A" 1v,(r)}
= L(A,v,(r),q), Vp, Vr, Vaq.

Corollary 1. With the same notation as in theorem 2,

L(A,v,(r),q) = range(X), Vs, Vr, Vq,
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where X 1is the solution to (6.1).

Thecrem 2 and corollary 1 can be taken to mean that to find the range of X, one can
choose any starting vector v, of the form,
J j
Vs(r) ;= B, or u,(r):= H(A +7r,I}B, or w,(r):= H(A +rI)'B, (6.32)

i=1 i=1

for any 7y, -- ,r;, and let the remaining basis vectors {v,,vs41," " , Us4n-1} satisfy
vi=(A4+g_l)v;y, i=s8+1,---,s+n—-1, (6.33)
for any choice of ¢;,- -« , gn-1.

To emphasize the choice of basis, the various manifestations of the space L(A4, B, p) will
be written as L£,,(A, v,(r),qn-1), if its basis representation satisfies (6.33). The vector of
shifts qn—1 = {q1, - ,gn—1} now has only n — 1 numbers.

Since only B and not any other v, is given, if the starting vector is B, v, = B, or powers
of shifts of A multiplied by B, v,(r) = f=1(A + r;I)B, then (6.33) is an efficient way to
compute the basis {v,, - ,Vs4n-1}. If v4(r) = f=l(A +7;1)"'B, and j > n — 1, then it
is more efficient to find the basis in reverse order, and choose ¢n3 = {r1, -+ ,Tn-1} so the
shifts of A cancel out. The final vector is

J
Vgpn—1 = H(A +r0)7'B,ifj>n—1, of Uyyn1 =B, ifj=n—1, (6.34)

=n

and the rest of the basis is calculated according to
via=(A+ri_, )"y, i=s+n-1,---,s+1 (6.35)

If {vy, V541, ,Vstn—1} contains both vectors which are positive powers of shifts of A mul-
tiplied by B, and vectors which are inverse powers of shifts of A multiplied by B, the basis
should be computed in two parts. One starts with B and finds a subset of the basis by
multiplication by shifts of A, and then finds the remaining basis vectors by multiplication
by inverses of shifts of A.

If £,.(A,v,(r),gn-1)’s basis contains only vectors which are positive powers of shifts of
A multiplied by B, £,,(A, v,(r), Ga_1) will be denoted K2*(A, v,(r),qn_1), which is a Krylov
subspace, but with n — 1 shifts. If £,(A,vs(r), {r1,--- ,7n-1}) contains only vectors which
are inverse powers of shifts of A multiplied by B, then it is actually the rational Krylov
subspace, K% (A, v,(P), 9n-1), where gn_1 = {rp_1,-+- ,71}, and p = {r--- ,7;}
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Quite simply, what K2*(A, v,(r),qn—1) means is that the basis {wy,- - ,w,} is obtained
in the following way,

[}

wy = v(r) = H(A +rI)B, 1>0, or wy:=B, [=0, (6.36)
i=1
w; = (A-galwia, i=2,---,n (6.37)

Furthermore, X7%(A, v,(P), n-1) means that the basis {w;,-- ,w,} is obtained thus,

[
wy = v(p)=[[(A+mD'B, 1>0, or w:=B, I=0, (6.38)
i=1

wp = (A - Qi-lI)—lwi—li i= 2a rec N (639)

The following theorem gives a different characterization of K7*(A, (A+p:1)~'B, {p2,--- ,ps})
as the sum of m Krylov subspaces, where m is the number of distinct parameters in the list

{p1,--- ,pn}-

Theorem 3. Let K7 (A, (A+piI)"'B,{p2, - ,ps}) be such that no (A + p:I) is singular,
then

K:Sat(A'l (A +plI)—le {P2, * ,p.l}): (640)

J J
= span {(A ~mI)'B,--- ,H(A —pI)7'B,--- ,H(A - p.-I)"B} . (6.41)
=1 =1

m

= Y span{(A-pD)'B,-- (A= piD)B} (6.42)
=1
= YK, ((A-pd),(A-pI)'B), (6.43)
=1
where 1, + - -+ + m, = n, and each p; appears in {p, -+ ,pa} a total of i, times.
Proof. By partial fraction expansion. O

Theorem 3 will be used in chapter 10 to prove moment matching results.
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Chapter 7

Lyapunov Equations

This chapter describes several existing methods for finding or approximating the solution to
the Lyapunov equation,

AX + XAT = -BBT, \(A) <0,Vi, (7.1)

including the iterative Alternating Direction Implicit (ADI) method [2,57] in some detail.

7.1 Previous methods

The Bartels-Stewart method [1], the Hammarling method [23], and the Alternating Direction
Implicit (ADI) method [2,57,59] described in this chapter are appropriate for Lyapunov
equations with a small, dense matrix A. They require matrix decompositions and have
O(n?®) complexity. Low rank approximations to the solution X were formulated in |25, 27].

7.1.1 Bartels-Stewart method

A well-known, exact method to solve Lyapunov equations is the Bartels-Stewart method
[1]. It first transforms A to real Schur form, and then back solves for the solution of the
transformed Lyapunov equation. The solution X is then obtained by a congruence transfor-
mation. Reducing a general, possibly sparse matrix to real Schur form requires O(n®) work,
as does the congruence transformation to produce X. The flop count for the Bartels-Steward
method calculated in [36] is 15n3.

7.1.2 Hammarling method

The Hammarling method [23] is another exact method which first transforms A to Schur
form. It calculates the Cholesky factor of the solution X rather than X itself. It also has
O(n®) complexity.
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7.1.3 Low rank methods

In [25,27], low rank approximations to the solution to (7.1) were proposed of the form
X ~ Vi XmVE, (7.2)
where the columns of V,, form an orthonormal basis for the block Krylov subspace K,, (4, B),
colsp(Vin) = Km (A, B) = colsp[B, AB, A’B,--- , A" 'B]. (7.3)

The columns of V,, are obtained via the block Arnoldi process with A and B. The matrix
Xn € R™PX™P js obtained by solving a smaller, order mp, matrix equation.
The residual of (7.1) is defined as

Rin(Xm) = A(Vin X VE) + (Via XmV.T)AT + BBT. (7.4)

The smaller Lyapunov equation that needs to be solved to satisfy a Galerkin condition on
the residual R,,(X) was found in both [25] and [27]. In [27] the smaller matrix equation
that needs to be solved to satisfy a minimum residual condition on the residual was also
given.

The block Arnoldi algorithm [60] is given here as algorithm 7.

Algorithm 7 Block Arnoldi algorithm
1. B = @1R: (QR factorization), p; := number of columns of Q; .
FORi=1:m
2a. V; = [Q1,Q2,- -, Qi
A

Ao
2b. Compute _2' = VT AQ.

As
2¢c. Qin1Ain; = AQ; — 2=1 Qi Ar: (QR factorization), p;,; := number of columns of Q;,.
END

Let A,xm € R™P*™P V. € R**™P B, € R™P*P be the quantities obtained via algorithm
7 such that,

B = V.B,, (7.5)
AVm = VmAmxm+Vm+lAm+l,mE3;» (76)
Apxm = VIAV,. (7.7)

Here, A,.xm is a block upper-Hessenberg matrix, the columns of V,, form an orthonormal
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basis for K, (4, B), and E,, is the matrix formed by the last p columns of the mp x mp
identity matrix. If A\i(Amxm) + Aj(Amxm) # O for all i, j, ensuring an unique solution to
(7.9) exists, then

VZRm(Xm)Vm =0 (78)
if and only if X,, satisfies
AmxmXm + XmAL .+ Bo,BT = 0. (7.9)

Equation (7.9) is the order mp Lyapunov equation that needs to be solved to satisfy a
Galerkin condition on R,,(X) [25, 27].
On tne other hand, the Frobenius norm of R,,(X,,) is minimized if X,, satisfies

AT (AmxmXm + XmAL .+ BnBT) + (AmxmXm + XmATL . + BnBT)Apnsm

7.10
+EnAT i mAmiimEnXm + XmEmAn 1 mAmi1mEn = 0. (7.10)

Equation (7.10) is the order mp linear matrix equation that needs to be solved to satisfy a
minimal residual condition on R, (X,,) [27].

7.2 Alternate Direction Implicit Iteration

The Alternate Direction Implicit (ADI) method [2,57-59] is another iterative Lyapunov
equation solver, and is given as algorithm 8. It produces the approximation X%* to the
Lyapunov solution X according to the two step iteration in (7.12-7.13). The parameters
{p1,p2, P2, - - }, Re{p;} < 0, are called the ADI parameters.
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Algorithm 8 Alternate Direction Implicit algorithm
INPUT: A, B.
80. If v = Av,v € R, is not O(n) work, tri-diagonalize A,
a. Find A tri-diagonal, such that A = TAT-1.
b. Set B := TB.
Otherwise, set A := A, B := B.

0. Choose ADI parameters, {p1, -+ ,PJ... }>» Re{pi} < 0, (real or complex conjugate pairs),
according to section 7.2.2 and references, using spectral bounds on A.

1. Initial guess,
Xo = Opxn- (7.11)
FOR j=1,2,---,J
2. Do
(A+pD)X;_y = —BBT - X;4(AT —p;I), (7.12)
(A+p,I)X; = —BBT - )ZJ.T_%(AT —p;I). (7.13)
END

3. If A was tri-diagonalized, recover solution,
X =T X,T7. (7.14)
Otherwise, X3% = X .

OUTPUT: X% ¢ R*xn, X9 X,

Remark 1. In siep 0, the spectral bounds required in section 7.2.2 are easy to find if Ais
tri-diagonal.

To keep the final ADI approximation X§ ""‘ , real, it is assumed that in the parameter list
{p1,p2, - ,pJ,‘,,,,} each parameter is elther real or comes as a part of a complex conjugate
pair. Because A is stable, since A is stable, and Re{p,} < 0 for all , (A +p;I) is non-singular
and solutions to (7.12-7.13) exist for all j. The intermediate matrix X,_% in (7.12-7.13) may
not be symmetric, but X;_; and X; are symmetric.

There are two matrix-matrix products and two matrix-matrix solves at each ADI step
(7.12-7.13). The matrix X;_; and BBT are symmetric and in general full. The first matrix-
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matrix product in (7.12) is the multiplication of (A — p;I) by the full matrix X j—1, the result
of which is then transposed. The first matrix-matrix solve is (A + p;I )Xj_ 1= -BBT -
X;_1(AT — p,I), with the full matrix —BBT — X;_;(AT — p;I) as the right hand side. The
solution }I'j_ 1 is also a matrix. This matrix-matrix solve can be done by solving n linear
systems with the matrix (A+p,I) and the columns of —BBT — X,_;(AT —p;I) as n different
right hand sides.

Thus, in each ADI step (7.12-7.13), (A — p;I) is multiplied by two full matrices, and 2n
linear systems are solved with the matrix (A + p;I).

A general matrix A must be first reduced to a sparse form before proceeding with (7.12-
7.13), to avoid full matrix-matrix products and full matrix-matrix solves, which would require
O(n3) work per iteration [36,58]. If v = Av,v € R, requires O(n) work, then the two
matrix-matrix products in (7.12-7.13) can be done in O(n?) work. The two matrix-matrix
solves in (7.12-7.13) can also be done in O(n?) work, either under the assumption that A
is narrowly banded so that banded LU factorization can be used, or under the assumption
that the solves are done iteratively using only multiplication by A, for example, via a Krylov
subspace method, and that convergence is fast, which will result in an approximate solution
of Az = b,z,b € R* in O(n) work. In either case, solving with 2n right hand sides puts the
total work for doing two matrix-matrix solves at O(n?).

Reducing a full matrix A to tri-diagonal form via a similarity transformation as a pre-
processing step ensures that v — Av,v € R*, has O(n) complexity, and that solving Az =
b,z,b € R, has O(n) complexity. The final approximation X%* is recovered via (7.14).

The flop count for ADI calculated in [36] is

?n:’ + 12Jn?, (7.15)

where J is the total number of ADI iterations. The O(n3) term comes from the tri-
diagonalization of a general matrix A, and the transformation in (7.14) to obtain the final
ADI approximation. If A is already sparse or structured so that the action of A on a vector is
O(n) work, there is no need to reduce A to tri-diagonal form. The ADI step (7.12-7.13) can
be performed with the original matrix A. In either case, the O(Jn?) term in (7.15) comes
from J iterations of (7.12-7.13) with the sparse matrix A. The ADI method is competitive
with the Bartels-Stewart and Hammarling methods which are also O(n®) methods.

If the original matrix A is sparse, then ADI has an advantage over the exact methods,
because it then does not need to reduce A to any special form, and its work requirement
becomes O(Jn?). It is shown in later sections and chapters that frequently J < n, for a
variety of reasons. On the other hand, the Bartels-Stewart and Hammarling methods still
need to reduce a sparse A to Schur form, and so still require O(n®) work to obtain the
solution.

35



7.2.1 ADI error bound

To obtain an error bound on the ADI approximation, it is convenient to consider (7.1) and

(7.11-7.13) as order n? linear systems.

The Kronecker product of two matrices, F' € R™*™ and G € R™?**"2, is defined as

fllG leG flmG

G G --. e
E = FQG = fzf f2? . fz‘

’

fm11G fm12G e fmlan
E € R(m;nl)x(mzna).

The ‘vec’ operation on a matrix X € R™*" is defined as

X(:1)
vec(X) = 5 e R(TBH)XI .
X(:,n)

Clearly,
Y = GXFT <= vec(Y) = (F ® G)vec(X).
It is possible to consider (7.1) as an order n? linear system,

AX + XAT = -BBT,
= (I, ® A)vec(X) + (A® I,)vec(X) = wvec(—BBT),
= (I,® A+ AR I,)vec(X) = wvec(—BBT),

and define H € R* > V ¢ RM**» y e R*, be RV, s

H = (In (03] A), V= (A &® In)v
u = vec(X), b:=vec(—BBT).

Then (7.1) can be written as the order n? linear system,

(H+V)u=hb.

(7.16)

(7.17)

(7.18)

(7.19)

(7.20)
(7.21)
(7.22)

(7.23)
(7.24)

(7.25)

Similarly, without loss of generality, assume A is not pre-processed, A = A, then (7.11-
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7.13) become

U = 0,.2,
(H + ijnz)u._% — (ijnz — V)uj—l + b’
(V + pilpa)u; = (pjl.2 — H)u_% + b,

where (7.28) uses the fact that X; is a symmetric matrix for all j. Hence,

u; =(V +ij,,z)"l(p,-I,,z - H) ((H + ijnz)—l(ijﬂz - V)Uj._l + (H +ijn2)—1b)
+(V + ijnz)—ib.

Define e; := u; — u, then (7.25) and (7.29) imply,
€; = Rjej_l,
where

R; = (V + pjIa) " Y(H — pil2)(H + pila) Y (V — p;13).

= (H R,)

It can be seen that H and V commute,

Thus,

HV = (I, ® AYA® L) =(A® A) = (A® I)(I, ® A) = VH,

J J J
HRJ' _ LH(V +p,-1,,=)'1(V _pj_rn,)] LH(H —pilna)(H +p,-Inz)—l} .
3=1 =1 =1

A bound for the second part of (7.34) is

S (p; — z)
H (p; + )

i=1

J
TI(H = piLa)(H + pjjla)

i=1

< GG > max

Espec(H) ’

2

where G is a matrix of eigenvectors of H and spec(H) the set of H’s eigenvalues,

H =GDG™', D =diag(\, -, ), spec(H)= {Nli=1,---,n?}.
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(7.29)

(7.30)

(7.31)

(7.32)

(7.33)

(7.34)

(7.35)

(7.36)



Since H=I,® A, G := I, ® T is a matrix of H’s eigenvecturs, provided T is a matrix of
A’s eigenvectors. Also, |G|z = |, ® T||2 = ||T||2, and spec(H) = spec(I, ® A) = spec(A}.
A similar argument can be made for the expression in (7.34) containing V.

The error expression in (7.32) can now be written in terms of the qualities from the
original Lyapunov equation (7.1),

llus —ullz < ||T||§!|T—l||§k(l>)2”uo — ulla,

H (pJ - z)

; + )|

If u = vec(X), the 2-norm of u is the Frobenius norm of X. The final form for the ADI
error bound is

(7.37)

k(p) = max
(p) zEspec(A)

X5 — Xllr < IITII§IIT"II§k(p)2IIXo — X|lF,

(p; — (7.38)
k —_ My )
(p) zelj:ec(A) H ; + :B)
where T is a matrix of A’s eigenvectors, and p = {p;, p2,--- ,ps} are the ADI parameters.

7.2.2 ADI parameter selection

Optimal ADI parameters p = {p1,p2, - ,ps} are the solution of the discrete rational min-
max problem [58],

(Pj =)

o0 (7.39)

pi m -P.l AEapec(A)

and are 2 functicn of J.
However, since A’s entire spectrum may nect be easily available, the following continuous

problem is usually posed instead,

J
(pi—=z)
,gl.l-n.m R }:11 (pj + )|’ (7.40)
where
A1{A), -+, A (A) € R. (7.41)

The parameters {p,- - ,ps} will be referred to as optimal if they solve (7.40). They do not
need to be the soluticn to the discrete problem (7.39). The problem of finding optimal and
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near-optimal parameters was investigated in several papers 10, 26, 51, 52, 55].
For example, if A’s eigenvalues are strictly real and contained in the interval [—b, —a],

~b < /\I(A)) tee 1Aﬂ(‘A) <-a< 01 (742)
then the ADI parameters are chosen to be the solution of

(PJ—“’

(p, o) (7.43)

min
P1.P2, \PJ ze[—-b —a]

The solution to (7.43) is known [58] and is given below.

The solution to (7.40) is not known when R is an arbitrary region in the open left half
plane. In [55, 58], ‘approximately optimal’ parameters were reported. [52] gave ‘asymptoti-
cally optimal’ parameters.

The following parameter selection procedure comes from [58].

Define the spectral bounds @, b, and a for the matrix A as,

a= miin(Re{/\)i}), b= m?x(Re{/\)i}), a = tan™! ma.x|IIz:}{/\’\) }}l (7.44)
where Ay, -+ , A, are the eigenvalues of —A. It is assumed that —A’s spectrum lies entirely

inside the ‘elliptic function domain’ determined by a, b, a, as defined in [58]. If this assump-
tion does not hold, one shou'd try to apply a more general parameter selection algorithm.
Let

2
co?f = — (7.45)
S 1G D
2cos’ o _
m 5 b (7.46)

If m < 1, the parameters are complex, and are given in [10,58]. If m > 1, the parameters
are real, and define

U — (7.47)

k= V1-¥2 (7.48)
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Note k' = ¢ if the eigenvalues of A are all real. Define elliptic integrals K and v as,

®
/ e (7.49)
o V1-k2sin’z

K = K(k) F[g-, K], (7.50)

v = Flsin™,/ 3‘727’ K. (7.51)

The number of ADI iterations required to achieve k(p)? < ¢ is

Fli, k]

K 4
J =[5 ~log ;l'], (7.52)
and the ADI parameters are given by
/ab 2j - 1)K .
pi = — __k_'_dn[( J 57 ) ,k], j= 1’2, Ve ,J, (753)

It was noted in [36] that for most problems ADI usually converges in a few iterations with
these parameters.
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Chapter 8

Cholesky-Factor ADI

A major contribution of this dissertation is the development of the Cholesky Factor ADI
(CF-ADI) algorithm [33], which is presented in this chapter. CF-ADI is well-suited to solve
the Lyapunov equation

AX + XAT = ~BBT, BeR™™, rank(B)=p< n, (8.1)

whose right hand side has low rank. The matrix A is assumed to be stable. The right hand
side —~BB7 has low rank compared to the size of A. For simplicity, it is assumed that B
has full column rank. Otherwise, it is a simple matter to replace B by B, where B has full
column rank, and BBT = BBT.

Lyapunov equations of the form (8.1) occur frequently in the analysis of large, linear,
time-invariant systems whose system matrix is stable, and where the number of inputs and
the number of outputs are much smaller than the system size.

For the low rank right hand side probiem (8.1), CF-ADI produces the same approxima-
tion as the ADI method described in chapter 7, but is much more efficient because it iterates
on the Cholesky factor of the ADI approximation rather than the approximation itself.

8.1 Derivation

This section derives the CF-ADI method from the ADI method. For simplicity, all quantities
in algorithm 8 with tildes will be written in this chapter without the tildes.

The complexity of the ADI method is given in (7.15). Frequently, the system matrix A
of a large, linear, time-invariant system is sparse, so that the action of A on a vector requires
only O(n) work. In this case the reduction of A to tri-diagonal form in step 0 of algorithm
8 is not necessary. Because X;_, and Xj_% in (7.12-7.13) are in general full, and the work
of multiplying a sparse matrix by a full matrix, as well as doing a sparse matrix solve with
a full matrix as the right hand side, require O(n?) work, the complexity of ADI is O(Jn?)
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if A is sparse, where J is the total number of ADI iterations. Unfortunately, O(Jn?) is still
unacceptably high for many applications, where n can be on the order of 100, 000.

The fact that there are two matrix-matrix products and two matrix-matrix solves in
(7.12-7.13) is of concern. The need for matrix-matrix operations rather than simply matrix-
vector operations at each ADI step makes algorithm 8 extremely expensive. It is clear that
a more efficient way to represent the full matrix X is needed.

The first step in developing CF-ADI is to combine (7.12) and (7.13) and obtain

X; = —2p;(A+p;1)'BBT(A+p;I)"

+(A+p )" (A-p)X;1(A—p;DT(A+p, ). (8.2)

From (8.2) and the fact that Xy = O, «,, it can be seen that X; is symmetric for all j € Z,
and the rank of X; is at most the sum of the rank of X;_, and the rank of B. Since iteration
begins with the zero matrix initial guess, X; will have rank at most jp, where p is the number
of columns in B. Therefore, X; can be represented as an outer product,

where Z; has jp columns.

Definition 10. A matriz Z is called a Cholesky factor of X € R™™" if it satisfies,
X=22". (8.4)

The matrix Z does not have to be a square matrix nor have lower triangular structure.
Thus, in (8.3) Z; € R**’? is a Cholesky factor of X; € R**".
Replacing X; by Z;Z;T in (7.11-7.13) results in

Zo = Onxp, (8.5)
Z,ZT = —2p,{(A+p;I)'B}{(A+ p;,1)'B}"

8.6
+{(A+pD A -pDZi (A +p ) (A= piD)Zi ) (&)

The left hand side of (8.6) is an outer product, and the right hand side is the sum of two
outer products. Thus, Z; on the left hand side of (8.6) can be obtained simply by combining
the two factors in the two outer products on the right,

Z; = [vV=2p;{(A+p;I) "B}, {(A + p;)"M(A - ;1) Z;1 }]. (8.7)

Thus, the ADI algorithm can be reformulated in terms of the Cholesky factor Z; of Xj.
There is no need to calculate or store X at each iteration, only Z; is needed.
The preliminary form of Cholesky Factor ADI which iterates on the Cholecky factor Z;
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of X is

Zy=+-2p(A+mI)'B, Z,€ R (8.8)
Z; = [V/-2p{(A+p;I)"'B,(A+p;I)"(A - p;I)Z;-1}, Z; € R™P. (8.9)

In this formulation, at each iteration, the previous Cholesky factor Z;_; € R**G~1P peeds
to be modified by muitiplication on the left by (A + p;I) (A — p;I). Thus, the number of
columns which need to be modified at each iteration increases by p.

The implementation in (8.8-8.9) was independently developed in [44].

Here, a further step is taken to keep the number of columns modified at each iteration
constant.

8.2 Rational Krylov subspace formulation

The Jp columns of Z;, the Cholesky factor of the Jth ADI approximation, can be written
out explicitly,

Zy = [SJ\/ —2p;B, S;(T;S;-1)/—2ps-1B, S)T;Ss-1(T1-1Ss-2) \/—2ps-2B,
o SyTy--- S, (T251) Vv —21913] )

(8.10)
where
Si=(A+pl)”', Ti=(A-pl) (8.11)
Note that the S;’s and the T;’s commute,
5:S; = 5;8:, TT; =T,T;, ST; =T;S;, Vi,j. (8.12)
The Cholesky factor Z; then becomes
Zy=[z5, Py-ilzy), Py2(Pyarzy), -+, Pi(P2-- Pyy2j)], (8.13)
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where

2y = (\/ -—2pJ) S;B = /-2p;(A+ pJI)—lB, (8.14)

—2p ) —2p; -1
P = | —————=} ST, = ———((A+pl)"(A- I), 8.15
= (o) Sifis = (A i) (A =) (8.15)

= (—-—-——-—”_:-Z’ 4%) I~ +p)(A+pD)7".  (8.16)

It can be seen that if B only has one column, the columns of Z; span the order J rational
Krylov subspace K(A, z;,{ps-1,-* ,,1}), with starting vector z; = /=2p;(A + pyI)"'B
and the shifts {p;_1,--- ,;m}

Since there is no significance to the order in which the ADI parameters appear, the index
1,---,J in (8.13) can be reversed, to cbtain

Zy;=[zn, Pz, PPz, -+ ,P;_1Pj_5---Pzy], {8.17)

where

a = (V=2m)(A+pnD)™B, (8.18)

P = (—-—V\/__ E;’;‘) [7 = (o1 +p) (A+ paD) 7] (8.19)
The CF-ADI algorithm which comprises of (8.17-8.19) is given as algorithm 9.

It will be justified in section 8.5 that there is no need to tri-diagonalize A as a pre-
processing step, even if A is a full matrix. As in the ADI method, it is assumed that each
parameter in the parameter list {p;,p2,--- ,ps} is either real or comes as a part of a complex
conjugste pair, to ensure that the final approximation X; = Z;Z7 is real. Again, because
A is stable, and Re{p,} < O for all j, (A + p;I) is non-singular for all j.
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Algorithm 9 The Cholesky Factor ADI Algorithm.
INPUT: A, B.

0. Choose ADI parameters, {p1, - ,PJ.... }» Re{p:} < 0, (real or complex conjugate pairs).

Define: P, = (@) [I — (Pi+1 + pi)(A + pisa )Y

2 o= (vV7m) (A+nD) B, (8.20)
e foadi = [ 21 ] ,

FOR j =2,3,: -+, Jmaz
2a.

Z2; = P,-_lzj_l, (821)
2b. If (||z]2 > tol; or ”%LJJT > toly) and (j < Jmaz)
zi = [zl |, (8.22)

Otherwise, J = j — 1, stop.
END
OUTPUT: z</*¥ ¢ CrJp, Z</od(Z5/H)T ¢ Rrxn | XSIoH .= Zz5/o¥(Z2/°%)T ~ X.

Theorem 4. If X%* is obtained by running J steps of algorithm 8, with the ADI parameters
{p1,p2,--- ,ps}, and Zf,! odi s obtained by running J steps of algorithm 9, with the same
parameters, in any order, then

Xod = gcfodi geodhT (8.23)

Proof. From the derivation of CF-ADI, it is clear that (8.23) is true when the order of
the parameters is reversed. The fact that parameter order does not matter at all in either
algorithm is shown by

X; = (A+pI) Y (A+pjaI)”! ((A — piI)(A = pi-aD) Xj-2(A — p, )T (A — p; D)7
(8.24)
— 2(pj + pj-1)(ABBT AT + Pij—lBBT)) (A+ PjI)-T(A +p; )T

Clearly, this expression does not depend on the order of p; and p;_;. Any ordering of
{p1,--- ,ps} can be obtained by exchanging neighboring parameters. 0O
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As a matter of notation, define,
X§ob =z (Z5*)". (8-25)

Both Xf,’ * and Z5/°* will be referred to as the Jth CF-ADI approximation, which one is
meant will be made clear in context. The full matrix Xjf od is usually not explicitly calcu-
lated. It will be used in subsequent sections for convergence analysis purposes only. The
matrix X%, produced by the ADI algorithm, will be referred to as the Jth ADI approxi-
mation.

8.3 Stopping criterion

The stopping criterion ||.X ;f odi _ X ;{ i), < tol? can be implemented as ||z; ||, < tol, since
1Z;2] — Z;1Z]_1ll2 = ll27] ll2 = llzil3. (8-26)

Relative error can also be used, in which case the stopping criterion is ‘—‘Izl:{lll—’lg < tol.

8.4 Parameter selection

The criterion for picking CF-ADI parameters, p = {p1,* - , PJoa. }» is €xactly the same as for
ADI parameters, which is given as (7.40). Section 7.2.2 gives a parameter selection procedure
based on three spectral bounds of A,

a= m;in(Re(/\,-)), b= mia.x(Re(/\,-)), a = tan™! m'ax| Re(%) ly (8.27)
where Ay, -+, A, are the eigenvalues of —A. These three bounds for the matrix A may be

estimated using the power and inverse power iterations, or Gershgorin’s circles.

A numerical comparison of different choices of parameters in the model reduction context
is given in section 10.2.

Power and inverse power iterations can be done at the cost of a few matrix-vector products
and solves. The work to obtain the CF-ADI parameters, W™ will be calculated in the

next section.

8.5 CF-ADI algorithm complexity

The following definition is helpful when B has more than one column.

Definition 11. A p-vector v € R"*? is a matriz that has p columns.
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The final CF-ADI approximation ij e can be obtained from the starting p-vector z;
and J — 1 products of the form P;z;. The cost of applying P; to a vector is essentially that
of a linear matrix-vector solve. The starting p-vector z; is obtained after p matrix-vector
solves with columns of B € R**? as the p right-hand sides (8.20). Each succeeding p-vector
in ij 4 is obtained from the previous p-vector at the cost of p matrix-vector solves (8.21).

Thus, the work per iteration has been reduced from the two matrix-matrix products and
two matrix-matrix solves in (7.11-7.12} of the original ADI method, to p matrix-vector solves
in (8.21). Figure 8-1 illustrates this savings.

2 Multiby A - pl
2 Solves by A +pl solves by A + pl
" - R ek

Figure 8-1: Savings from CF-ADI

As will be shown in later chapters, the Cholesky factor of the Lyapunov solution is
precisely what is needed in model reduction. In general, if Z5/** is available, it is not
necessary to calculate Xf,f adi f,f odi(zef*d\T  Whereas if X3% is available, it is often
necessary to calculate its Cholesky factor in the subsequent model reduction procedure.

When comparing the complexities of the ADI algorithm and the CF-ADI algorithm, the
work to generate X 9% after J steps of the ADI algorithm is compared with the work to
generate Z;f & after J steps of the CF-ADI algorithm.

Table 8.1 summarizes the work of various matrix operations, dependirg on the sparsity

pattern of A, which will be assumed and used to calculate the complexities of both algorithms.

v Av | v (A+pI) 'y | tri-diag(A)
Sparse O(n) O(J,n) O(n?)
Full O(n?) O(J,n?) O(n?)
Tri-diagonal | O(n) O(n)

Table 8.1: Work associated with matrix operations

The multiplication of a vector by a sparse matrix A requires O(n) work. Iterative linear
solve with the matrix A+ p,/ is assumed to be O(J,n) work, from the work of O(J,) matrix-
vector products. This is true when an iterative Krylov-subspace such as GMRES is used to
find (A+p;I)'v. The number J, indicates the speed of convergence of the iterative method.
If A is full, and the same convergence speed is assumed, then calculating (A + p;I)~!v is
O(J,n?). If A is tri-diagonal, calculating (A4 + p;I)~'v is O(n) work.
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Unlike the ADI method, it is not necessary to tri-diagonalize a full matrix as a pre-
processing step in CF-ADI if J, J, < n. Since CF-ADI performs only p matrix-vector solves
per iteration, and a matrix-vector solve requires O(J,n?) work when A is full, J iterations
of CF-ADI with a full matrix has O(JpJ,n?) cost. If p,J, J, < n, O(JpJ,n?) cost is still
better than the O(n?) cost of tri-diagonalization.

Exclusive of the work to obtain the ADI/CF-ADI parameters, J iterations of the ADI
algorithm has O(n® + 4Jn?) cost when A is full and O(J(2 + 2J,)n?) cost when A is sparse.
In contrast, J iterations of CF~ADI has O(JpJ,n?) cost when A is full and O(JpJ,n) cost
when A is sparse.

Since the work to calculate the ADI/CF-ADI parameters after the spectral bounds in
(8.27) have been obtained is negligible, the work to generate ADI/CF-ADI parameters,
Wrera™  consists entirely of the work to calculate the spectral bounds.

Suppose J, iterations of the power method and J;, iterations of the inverse power method
are run to generate the bounds. If A is sparse, WP**™ = Jyn + J,J,n for both ADI and
CF-ADL If A is full, Wrere™ = Jyn? + J;,J,n? for CF-ADI. Since a full matrix A is first
transformed to a tri-diagonal matrix in ADI, the spectral bounds can be obtained from the
tri-diagonal matrix, and W#*™*™ = Jyn + Ji;n for the ADI algorithm.

The complexity comparison between ADI and CF-ADI is shown in table 8.2. The first
term is the work to generate the parameters and the second term is running J iterations in all
entries except ADI/full A, where O(n?) is included for tri-diagenalization and the similarity
transformation to obtain the final ADI solution.

CF-ADI ADI
Sparse (structured) A | O((Jp, + JipJs)n) + O(pJJ,n) | O((Jp + JipJs)n) + O(J(2 + 2J,)n?)
Full A O((Jp + JipJ)n? + O(pJJ,n?) | O(n®) + O(Jpn + Jipn) + O(4Jn?)

Table 8.2: ADI and CF-ADI complexity comparison, J, J;, Jp, Jip < n.

Table 823 gives the complexities as a function of n, p, and J only.

CF-ADI ADI
Sparse (structured) A | O(Jpn) O(Jn?)
Full A O(Jpn?) | O(n?) + O(Jn?)

Table 8.3: ADI and CF-ADI complexity comparison, function: of n,p, J.

Since p, the number of inputs, is by assumption much smaller than n, CF-ADI always
results in an order of magnitude savings when A is sparse.

For many large system, O{n) complexity is considered acceptable, and O(n?) is deemed
too expensive. The work to run CF-ADI on a sparse matrix is O(Jpn). Since p < n,
Jpn < n? if and only if J < n. In other words, the total number of CF-ADI iterations
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should be much smaller than the system size n, for CF-ADI to be practical on large problems.
Thus, it is possible that algorithm 9 will terminate at a small J, before the error criterion
is satisfied, to ensure that the work stays O(n). Thus, X§/** := Z/*¥#(Z5/**)T, under the
assumption that J < n, is necessarily a low rank approximation to the exact solution X.

8.6 Real CF-ADI for complex parameters

The CF-ADI method in algorithm 9 will result in a complex Cholesky factor Z; if there are
complex ADI parameters, although Z;Z7 is guaranteed to be real if the CF—ADI parameters
come in complex conjugate pairs.

A v/ersion of CF-ADI which only uses operations with real numbers is given as algo-
rithm 10. It assumes that the CF-ADI parameters are either real or come in complex
conjugate pairs, and that each complex conjugate pair is represented only once in the list
{p1,p2,p3,--- ,ps}. Thus, each complex number encountered in this list will result in 2p
additional columns, p being the number of columns in B. The counter k& in algorithm 10
indicates that the number of columns in Z; is kp.

The matrices associated with a real parameter p;

Si:=(A+pD)7Y, T,:=(A-pl), (8.28)

are a rational function and a polynomial of degree cne in A. The matrices associated with
the complex parameters p;, p;,

g; = 2Re{—Pi}, T = Ipil2; (8.29)
Q; (A2 —g, A+ 7)Y, R, =(A%*+0;A+ 1), (8.30)

are a rational function and a polynomial of degree two in A.

8.7 Numerical results

This section gives numerical results on the CF-ADI approximation to the solution of (8.1).

The example in figure 8-3 comes from inductance extraction of an on-chip planar square
spiral inductor suspended over a copper plane [30], shown in figure 8-2. The original order
500 system has been symmetrized according to (5.16-5.18). The matrix A is a symmetric
500 x 500 matrix, and the input coefficient matrix B € R™ has only one column.

Because A is symmetric, the eigenvalues of A are real and good CF-ADI parameters
are easy to find. The procedure given in section 7.2.2 was followed. CF-ADI was run to
convergence in this example, which took 20 iterations.

. . . o X xclod
Figure 8-3 shows the relative error in the 2-norm of the CF-ADI approximation, "—-—ﬁ}’”—,——"i ,
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Figure 8-2: Spiral inductor, a symmetric system.

forj=1,---,20. At j = 20, relative error has reached 10~8, which is about the same size as
the error of the optimal rank 11 approximation. The error estimate 1|z;§‘;“'||§ approximates

the actual error || X — X;f ol closely for all j.

8.8 Krylov vectors reuse

If the CF-ADI parameters {p,,--- ,ps} are distinct, then a re-organization of algorithm 9
can result in significant savings in computational cost, when an iterative Krylov subspace
method such as GMRES is used to solve the shifted linear system in (8.21).

This re-organization involves converting the shifted linear system solve in (8.21) with the
right hand side z;_;, to one with the right hand side B. Then each solve in (8.21) can reuse
the Krylov subspace built up during the previous solve.

8.8.1 Shifted linear systems with the same RHS

This section describes how the CF-ADI approximation Z$/** can be produced after J linear
systems solves with the right hand side B, if the CF-ADI parameters {p,,--- ,p,} are
distinct.
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Figure 83: CF-ADI approximation.

The CF-ADI approximation Z5/** can be written out explicitly,

Z** =[/=2p)(A + pI) ' B,
VvV =2p2[I = (p2 + p1)(A +pI) (A +p 1) ' B,

vV =2psI = (ps +psa)(A+ps )71
co I = (p2 + ) (A + pd) WA +pi D) B).

By expanding [[_, (A + p:J)~! into partial fractions,

[Ta+pD™ = SAI—=NA+nD,
i=1

=1 kzi Pk~ Pi
D ?é P2¢"°,#PJ’,

Z5/** becomes

Z5°% = VyMyyDyy,

71

(8.31)

(8.32)

(8.33)

(8.34)



where

vy = [(A +pD)'B, (A+pD)B,--- (A +pJI)-‘B], (8.35)

muy Mz - My

Myy=| 0 ™ T (8.36)

6 0 m:; J
my = 1, (8.37)
my; = — 3 mi_],j(w), (8.38)

=1 P —Di
mji = mj,i—l(%l)a J#4 (8.39)
and
v=-2p 0 - 0
Drs=]| ° i z (8.40)
o o .

The matrices M, and Dy, are determined completely by the parameters {p;,--- ,ps}

and cost very little to compute. Thus, the cost of calculating ij 4 via (8.34) comes almost
entirely from the calculation of V.

It already follows from theorem 3 that colsp(Z5**) = colsp(Vy), but (8.34) makes the
relationship between Z5/°* and V; precise.

8.8.2 Sharing of Krylov vectors

The columns of V; (8.35) can be obtained either exactly, using J LU factorizations, or
approximately, using J iterative linear system solves,

VJ = |:'U],'U2,"’ 1UJ]7 (841)

(A+pl)v;,=B, i=1---J. (8.42)
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If an iterative Krylov subspace method such as GMRES is used, and if none of the solves in
(8.42) is too difficult, the columns of V; can be obtained in a much more efficient way than
doing J separate solves. The solution of shifted systems is discussed in detail in [14].

For simplicity, assume B has only one column, B € R*. GMRES solves the system
Az = B by finding an approximate solution z,, in the m-dim Krylov subspace,

ZTm € Kin(A, 1) := span {'ro, Arg,--- ,A"‘"‘ro} . (8.43)

It chooses 1o = B — Axy. The difficulty of solving a system in (8.42), in other words, the
dimension of the Krylov subspace required to find a satisfactory solution, depends on the
shift p;.

If zero is used as the initial guess for all system solves in (8.42), the Krylov subspace
associated with each system is the same, namely, K,,(A, B), since shifts of A do not affect
the Krylov subspace,

Km(A+pI,B) := span{B,(A+pl)B, - ,(A+pI)"'B}, (8.44)
= span{B,AB,--- A" 'B} := K,.(A, B). (8.45)

Hence, one needs only one set of Krylov vectors for all solves in (8.42), which can be stored
from solve to solve. When a more difficult shift is encountered, one simply adds to the list
of stored Krylov vectors.

What is different for each solve in (8.42) is that the decomposition of a different Hessen-
berg matrix is needed. Let H,, denote the Hessenberg matrix which comes from m steps
of the Arnoldi process with the matrix A, for the system Az = B, then H,, + P ‘Ifgxm is
the Hessenberg matrix associated with the shifted system (A + p;I)z; = B. But if none of
the systems in (8.42) is too difficult, in other words, if they all can be solved in the Krylov
subspace whose dimension is small compared to the size of A, then the cost of decomposing
smail Hessenberg matrices will be low compared to the cost of generating Krylov vectors.
In that case the cost of solving J shifted systems is only marginally higher than the cost of
solving the most difficult one.

Figure 8-4 shows the speed-up in the calculation of the CF-ADI approximation ij adi
that comes from storing the Krylov vectors between solves. The matrix A is 500 x 500 and its
eigenvalues are well-distributed for fast GMRES convergence. The flops required to generate
ij % as a function of J, are plotted. Doing J solves separately and not storing the Krylov
vectors is denoted by +, generating V; by storing Krylov vectors is represented as x, the
total cost of obtaining ij e from V), including the generation of the matrices M, and

D, in (8.34), is shown as o.
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Figure 8-4: Cost of additional solves negligible.

Disregarding the jumps at J = 3 and J = 9 for the moment, it can be seen that when
Krylov vectors are not stored, the cost of generating Zj’ ok orows linearly with J, whereas if
the Krylov vectors are stored, the cost of generating Z;f 4 jncreases very little as J increases.
The cost of generating Zs is only slightly higher than the cost of generating Z3. The jump at
J = 3 occurred because p3 is a more difficult shift, so the solution of (A+p3f)v; = B required
more Krylov vectors than the previous two solves. But after the extra Krylov vectors were
generated, more solves after J = 3 cost very little, until the next difficult shift at J = 9.
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Algorithm 10 Real version of CF-ADI: Z5/°% ¢ R**/p,

e Define, 0; = 2Re{—p;}, 7 = |p:*.

e if p, is real, vy = SlB=(A+p1])_‘B;
z = [V=2pmi]; k=1
¢ elseif p; is complex, ,
N = Q]B = (A2 - U]A + TII) B; Yy = A‘Ul;
Z [V20:vTiv, V201v2) ;. k= 2;

e forit=23,---,J

— if p; is real,

* if p;_; is real, n
Vg1 = SiTiove = (I = (pi-1+p;) (A+pil) )vk;

Z; = [Z.'—h vV —2Pivk+1] ; k=k+1;

* elseif p;_, is complex,
U1 = SRy, = (A +(0ic1 =) I + (rica — pi(0i-y — ) (A +P-‘I)—l) Uk-1;
= v+ ((0ie1 = P) I + (Tic1 = Pi(Gic1 — pi)) (A + pid)7Y) vy

Z; = [Zi—la \/':?P:'vkﬂ] ; k=k+1;

— elseif p; is complex,

* if p;_, is real, i
i = QTioivg = (A - i A+ 1I)" (A= pi1) Vi Vrs2 = Avpyy;

Zi = [Zi—lj V 2aiﬁ:vk+ly \/201’01;4-2] ; k —_ k + 2;
* elseif p;_, is complex, |
V1 = QiR = (I + (i +0i1) A+ (ricy — 1) 1) (A’ — oA+ T,-I)_ )'Uk—l;

Vkiza = Avkyy;

Z; = [Zio1,V20,\/Tivess, V20,042 k=k+2
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Chapter 9

Low Rank Approximation to
Dominant Eigenspace

9.1 Low rank CF-ADI

The work required to run CF-ADI on a sparse matrix A is O(Jpn), where p is the number
of columns in B, and J is the number of CF-ADI! iterations. For many large systems, O(n)
complexity is considered acceptable, and O(n?) is considered too expensive.

Since p < n, Jpn < n? if and only if J « n. Thus, the total number of CF-ADI
iterations should be much smaller than the system size n, for CF-ADI to be practical on
large problems. Therefore, it is possible that algorithm 9 will be terminated at a small
J, before convergence, to ensure that the complexity of algorithm 9 stays O(n). In that
case, X5/*# .= Z/°%(Z5/**)T, J < n, is necessarily a low rank approximation to the exact
solution X.

Since CF~ADI necessarily provides only a low rank approximation to the solutior to
(8.1), this section justifies the usefulness of a low rank approximation to the exact solution.
The first part explains why a low rank matrix can often be a very good approximation to
the exact solution to (8.1). The second part deals with the case when the exact solution
cannot be well approximated by a low rank matrix, in which case CF-ADI provides a good
approximation to an optimal low rank Cholesky factor, which is needed in the low rank
model reduction methods proposed in chapter 5.

The effectiveness of the CF-ADI algorithm in each case is illustrated by numerical ex-
amples.

9.2 Exact solution close to low rank

In [36] it was noted that ADI converges in a few iterations for many problems if good
parameters are chosen, which means that the exact solution in those cases is close to low
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rank, since it can be well approximated by a low rank matrix.

The justification of why the solution to (8.1) is often close to low rank was given in [42]
for symmetric A.
Proposition 10. Let A € R™" be a stable, symmetric matriz with x = k(A) = %’;‘%},
An(A4) < M(A) <0, B € R**? a nonzero matriz, and \i(X), i = 1,--- ,n, the non-increasing
ordered eigenvalues of X, then

+1 2
Apk+1(X) R —1 ©.1)
(X)) T =0 41 .
for 1 < pk <n [42].
g

A smaller x value indicates faster decay. Figure 9-1, also taken from [42], illustrates the
decay bound (9.1). The right hand side of (9.1) is smaller than 0.01 at k = 20, for all
values ranging from 10 to 10°.

Lyapunov Solution Eigenvalue Docay Bound: Symmetric A

| ] x=10
sgalle L
..::.. [ l‘=102
A B o‘-:-. e w=10°
10° e ° -. -..'. . x=10*
® o & @ - S
. w ° " e x=10
L] - ]
4 * - . -.o
210 L] . . ® L 4
- - - .,
» - .- .. L™
> . ° s
., s, .
°
3104 ) “e % S, S
® - . L L4
e * . *s
. - -
[ ® L] ®a '-'
10™* ° L] ’e "o s 9
- . “a “a
- b 4 “s
- . -
] - ®
10 1 - - L -
(/] 10 20 3¢ 40 S0

Figure 9-1: Eigenvalue decay bound, symmetric case

Thus, if x is reasonably small, the exact solution to (8.1) when A is symmetric is a
matrix which has very fast eigenvalue decay. Most of the solution’s eigenvalues are negligible
compared to the few largest ones. In other words, X, which is symmetric, has an eigenvalue
(singular value) decomposition,

oy - 0
X = [ula"' )uﬂ} [ulv"' 7un]T7 (92)
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where oy > - > 05> 05412 - 20,20, 01> 0541, J K n. Therefore,

X = Xf,arge + Xomall (9.3)
op --- 0
X;arge = fug,ee,uwg] | et | [uayee g7, (9-4)
0 --- oy
G e O
Xt o= e ul |5 el (9:5)
0 - On_y

where || X'*%|l, > [|X2™4||;. Hence, the exact solution X is close to low rank, in the
following sense,

IX — X', =050 € 01 = | X2, rank(X7)=J, J<n (9.6)

There is no bound similar te (9.1) for a non-symmetric matrix A, but one also frequently
encounters rapid eigenvalue decay when A is non-symmetric.

Figure 9.2 shows the eigenvalue decay of the solutions to (1.50) and (1.51) when A is
non-symmetric. The matrix A comes from the discretized transmission line example shown
in figure 5-1. It is a 256 x 256 matrix and B has one column. Figure 9.2 shows the rapid decay
of the eigenvalues of P € R?%6%2%  the solution to (1.50), and Q € R256*2%6  the solution
to (1.51). The magnitude of each set of eigenvalues has decayed to 10~° of the magnitude
of the largest eigenvalue by k = 20. Thus, both P € R?6*25 and of Q € R*¢*2% can be
reasonably well approximated by rank 20 matrices.
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Nonsymmetric System/Circuit Mcdel Eigenvaiue Decay
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Figure 9-2: Discretized transmission line, 256 states.

9.3 Dominant eigenspace of the Lyapunov solution

In the case when the solution to (8.1) is not close to low rank as according to (9.6), and
CF-ADI is still run only a small number of steps, a low rank approximation is preduced. In
this case, it is hoped that this low rank approximation will be close to optimal. To simplify
the analysis, in this section assume B has only one column, thus Z;f ok ¢ R**J . Also assume
Zf,f 4 has full column rank.

If the exact solution X to (8.1) has an eigenvalue (singular value) decomposition,

oy - 0

X = [up,---ua) |0 o i [ur,ee ua)T, (9.7)
0 --- o,

o > - 20020, {9-8)
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where the o;’s do not necessarily decay rapidly, X can still be divided into two parts,

X = X!orgc Xmall (9.9)
gy - 0
Xlarye T ey | R R TR T (9.10)
0 -+ oy
oy -- 0
X,’.Tf;" = (s, | P [uggr, e ,u"]:r_ (9.11)
0 - ony

With the assumption that o; > 0,4, X_';"‘" is the unique optimal rank J approximation to
X in the 2-norm [20]. From now on, the optimal 2-norm rank J approximation (assumed
unique) to X will be denoted by X7

If 05,4, is not small, then X cannot be well approximated by a rank J matrix. In that
case, the most one can hope for regarding the rank J CF-ADI approximation, in the 2-norm,
is that it is close to the optimal rank J approximation,

X o . gcfodi gofad)T  xoPt, (9.12)

The matrices X5** and Z5** both have rank J under the assumptions that B has only
one column and Z5/** has full column rank.

In the model reduction context, it is often not important to capture the eigenvalues
of X7 exactly, rather, it is the eigenspace, colsp([ui,--- ,uys]), associated with the large
eigenvalues of X, which is significant.

Thus, it is hoped that

colsp([ucl"d',--- , U f,f“d‘]) ~ colsp([uf”, - -- ,uF’)), (9.13)
where
a"l’pt e O
XP o= [P, 0 | e T (9.14)
0 a_‘;‘"‘
o > ...>d7 >0, (9.15)
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and

o, 0

Xied = QW s s R T, (006)
0 . ajfad'

gSfed > > gfed s (9.17)

are singular value decompositions, with the zero eigenvalues and their associated eigenvectors

excluded.
The eigenvectors {u{f**, ... u*¥} can be obtained by finding the left singular vectors
of Z5/4,

9.4 Dominant eigenspace, rational Krylov subspaces,
CF-ADI

The CF-ADI approximation can be written in the following way,

x§*% = 7 (25) = U Y1, (U5, (9.18)
where
(UHTWUY = 1).s, colsp(U) = colsp(Z). (9.19)

The columns of U/ form a basis for the range of X5/°*. Thus, the CF-ADI approximation

has the same form as the low rank ideas proposed in [25, 27}, and described in section 7.1.3.
In all these low rank methods, X is approximated by a low rank matrix,

X = U,Y;,UT, (9.20)

where the columns of U; form an orthonormal basis for the range of the low rank approxi-
mation. The important difference between the low rank methods in [25,27) and CF-ADI is
the choice of colsp(Uy).

In [25,27], the columns of U; form an orthonormal basis for K, (A4, B),

colsp(Uy) = Ky (A, B) = colsp(B, AB, A*B, --- , A’ ' B). (9.21)

In CF-ADI, the choice is (9.19). The choice in (9.21) is intuitive because of proposition
9. Corollary 2, an immediate consequence of theorem 2 and lemma 3, shows that (9.19) is
intuitive in the same way.
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Corollary 2. If Z:fo% = [z,,--- ,2,] is the nth CF-ADI approzimation, and {p1,--- ,Pn}
is any CF-ADI parameter set for which no (A + p;I) is singular, and B € R", then

colsp(Z:fadi) = K::w(Av (A - pl)—lB7 {p21 te :pn})s (922)
= span ([B,AB,--- ,A"'B]), (9.23)
= range(X), (9.24)

where X 1is the solution to (8.1).

The following two corollaries show what happens when a CF-ADI iterate is a linear
combination of the previous iterates.

Corollary 3. Let Z;’ o — [z, , 2;] be the jth CF-ADI approzimation, and {p,--- ,p;}
be any CF-ADI parameter set for which no (A + p;I) is singular, and B€R*. If z;;, is a

linear combination of {z1,--- , z;}, then z is a linear combination of {z,--- ,z;} whenever
1>j+1.
Proof. See lemma 3. O
Corollary 4. If z;,, at the j + 1th step of the CF-ADI iteration is a linear combination of
the previous iterates, z,,--- ,z;, and B € R", then

Range(X) = span{z, - , }, (0.25)

where X is the solution to (8.1).

Proof. Because

Range(X) = span{B,AB,---,A""'B}, (9.26)
= Span{zlaz%"' 1 25,7 1zn}a (927)

= span{z, z,- -, 2} (9.28)

O

Corollary 4 says that if the j + 1st CF-ADI iterate, z;,, is a linear combination of the
previous columns, then a basis for the range of the exact solution has been found.

If the goal is to find the range of the exact solution X, then iteration can stop when
241 is linear combination of the previous columns, If, however, the goal is to approximate
the exact solution X by Z;f “di(Z;f *®)T then iteration may have to continue, since even if
Z;" “““(Z;f *i)T has the same range as X, they may not be close as matrices.

The range of X can also be characterized in terms of its eigenvectors. Let the eigen-
decomposition of X be as in (9.7), and the eigenvalues ordered so that,

0'12"',20r>0r+1="'=an=0, (929)
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then u,,--- ,u,, the eigenvectors of X associated with nonzero eigenvalues, span the range
of X,

Range(X) = span{u,,--- ,u,}. (9.30)

Theorem 2 in chapter 6 shows that Range(X) = L(A, B, p), and L(A, B, p) can have an
infinite number of characterizations, as Krylov subspaces, as rational Krylov subspaces, and
as their sums.

A few examples of these characterizations appear below,

span {ul) ) ur} = Range(X)) (931)
span{B, AB,--- ,A""'B}, (9-32)
span{A™'B,A"*B,--- ,A"B}, (9.33)
= span{z;:fadi(p)’ z;fadi(p)’ Tt ’Z:fadi(p)}v any {pl’ Tt ,Pn}(9-34)
= ) K. ((A-al),(A-al)'B), (9.35)
i=1
1,+---+m,=mn, any ¢1,"** , G- {9.36)

Therefore, the span of the eigenvectors of X associated with non-zero eigenvalues is the
same as the span of the columns of the nth CF-ADI approximation Z¢f%¥. Similarly, low
rank methods which utilizes (9.32) [25,27], and (9.33), instead of the CF-ADI choice of
(9.34), also find the span of the eigenvectors of X associated with non-zero eigenvalues when
run to full n steps.

Frequently it is not practical to run any of these Krylov subspace-based algorithms to n
steps to find the full range of X. Instead, the measure of success for a low rank method is
how well the partial basis it generates approximates X's dominant eigenvectors.

In other words, if {w,--- ,wy} is the partial basis generated by J steps of a low rank
method, how well does

span{wy, -+ ,wy} = span{uy,--- ,uy}, J<KLn, (9.37)

where u;, - - - ,uy are the dominant eigenvectors of X, in order of decreasing importance? To
avoid ambiguity, the eigenvalue associated with u; is assumed to be strictly larger than the
eigenvalue associated with uy,;.

Several possibilities for {wy,--- ,w,} are

span{w,--- .} = span{B,AB,--- , A’"'B}, (9.38)
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or

span{w,, -+ ,wy} = span{z{**(p), 5**(p),--- , 2/ **(p)}, any {p1,--- ,ps},  (9.39)
or some other set of J vectors from theorem 2. Due to practical considerations, the starting
vec. » w; should not contain too many powers of shifts of A or inverse powers of shifts of A.

Clearly, the answer to the question of which choice of a partial basis approximates
span{u,,--- ,uy} better depends on A, B, J, and the shift parameters. However, since
there is more ‘reedom in picking {w;,--- ,wy} according to (9.39), which amounts to pick-
ing the CF-ADI parameters {p,--- ,ps}, than according to (9.38), one expects to be able
to approximate the span of the first J eigenvectors of X better with CF-ADI, if the CF-ADI
parameters are well chosen.

9.5 Numerical results

This section provides numerical result on how well CF-ADI approximates the dominant
eigenspace of X.

Figure 9-3 shows dominant eigenspace approximation, where the matrices A and B came
from the spiral inductor problem considered in section 8.7. The matrix A is symmetric,
500 % 500, and B has cne column. CF-ADI is run for 20 iterations. The relative error after

IX-XxTed, 10-8
Xz :

Figure 9-3(a) measures the closeness of the 20-dim dominant eigenspaces of X and X
This measure is provided by the concept of principle angles between subspaces [20]. Let S!
and S? be two subspaces, of dimension d; and d,, respectively, and assume d; > d;. Then

20 iterations is
cfadi
20 .

the d, principle angles are defined as 6,,--- ,84,, such that
— T, 2 _ (, I\T, 2 ,
cos(8;) = ulesnll,ﬁflu:n uzésmzﬁcz”:l(u ) ut = (u,) uj, (9.40)
under the constraints that
(WhHTu! =0, @W>)Tu?=0, i=1:j-1. (9.41)

If the columns of U' are an orthonormal basis for S', and the columns of U? an orthonormal
basis for S%, and (U?)TU" has singular value decomposition,

(whHTv? =UuzvT, (9.42)
then

cos(8,) = £(j,J). u) =UU(.j), ul=UV{(,j). (9.43)
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Thus, these two bases, {u],- - ,ug,} and {uf,--- ,u},}, are mutually orthogonal, (u})Tu? =
0,if i # j. And (u!)Tu? = cos(8;) indicates the closeness of u! and u?. If S! = S$2, then
cos(0;)=1,j=1,--- ,dy =d,. If S* L S? then cos(6;) =0, j=1,---,d;. A basis for the
intersection of S! and S? is given by those basis vectors whose principle angle is 0.

range(S') Nrange(S?) = span{uj,---,ul} = span{u?, - -  u?}, (9.44)
1 cos(6y) = --- = cos(8,) > cos{0,.,). (9.45)

Thus, the closeness of two subspaces is measured by how many of their principle angles are
close to 0.

In figure 9-3(a) the cosines of the principle angles between Uzc({“di and U;F* are plotted.
The cosines of 18 of the principle angles are 1, and the cosines of the last two are above
0.85, indicating close match of all dominant eigenvectors. This is not surprising since || X —
X55°®||/11X || is less than 1078,

Because the eigenvectors of X5 associated with the larger eigenvalues are more impor-
tant than the eigenvectors of X&' associated with the smaller (non-zero) eigenvalues in view
of later application to model reduction, as they indicate the more controllable or observable
modes among the top 20, it is worthwhile to see how well each eigenvector of X57' is indi-
vidually matched by U;g ¥ This is measured by the norm of the projection ¢f the exact
dominant eigenvector, u*, onto Ugl*® . The direction u is contained in the column span
of UZl*® if ||(u;”")TU§({ad'“2 = 1. This is a different criterion than the one based on principle
angles, as u;.’pt may not be one of the vectors in the orthogonal basis in (9.43).

As can be seen in figure 9-3(b), and not from figure 9-3(a), ujh’ is better represented

by the vectors in Uf_f({“di than is u{5’. Everything being equal, it is preferable for uP to be
better represented than ugy, because u{f’ is more important in terms of controllability or

observability.
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Figure 9-3: Symmetric matrix, n = 500, 20 CF-ADI iterations, converged

In contrast to figure 9-3, figures 9-4 and 9-5 demonstrate dominant subspace approxima-
tion when CF-ADI is not run to convergence.
Figure 9-4 is the same spiral inductor example as in figure 9-3, but CF-ADI is only run

7 steps. In figure 9-4(a), ||25/*#*|| is small but || X — X;f %), has stagnated. The relative
error %ﬁh is between 1072 and 10~2, whereas the relative error of the optimal rank 7
approximation is 10~5. However it can be seen from figure 9-4(b) that the intersection of the
column span of Ug/ 4 and the column span of U has dimension 6, since the cosines of 6
principles angles are 1. In figure 9-4(c), it can be seen that the top 5 dominant eigenvectors
of X, the 5 most important modes, are contained entirely ir the column span of U-ff i The
norm of the projection of ug* onto Us/** is around 0.9, while that of u is around 0.5.
Thus, dominant eigenspace information about X can emerge, even when CF-ADI has

not converged.
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Figure 9-4: Symmetric matrix, n = 500, 7 CF-ADI iterations, not converged

Figure 9-5 shows another example of running CF-ADI only a small number of steps,
before convergence occurs. It comes from the transmission line example (figure 5-1). The
system matrix A is 256 x 256, and the input matrix B has one column.

Figure 9-5 contains results for the solutions to the two Lyapunov equations (1.50-1.51).
The solution to (1.50) is denoted by P, and the solution to (1.51) is denoted by Q.

Compared to the Lyapunov solution associated with the spiral inductor example, whose
system matrix is symmetric, the two Lyapunov solutions associated with the non-symmetric
matrix A in this example have slower eigenvalue decay. In section 9.2 it is asserted that both
P and @ are close to rank 20 matrices. Since the eigenvalues of a non-symmetric matrix can
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be in an arbitrary region in the open left half plane, the problem of parameter selection is
also more difficult for this example than for the symmetric example. The selection procedure
in [58] was followed and the resulting parameters are complex.

Figure 9-5(a) and 9-5(b) show that the CF-ADI error is not decreasing at all during
15 iterations. The relative error stagnates at 1. However, figure 9-5(c) shows that the
intersection of the span of the 15 dominant eigenvectors of P and the span of the 15 dominant
eigenvectors of the CF-ADI approximation has dimension 10 (almost 11). Similarly, the
intersection of the span of the 15 dominant eigenvectors of () and the span of the 15 dominant
eigenvectors of the CF-ADI approximation has dimension 10.

Figure 9-5(d) provides an interesting picture. Recall that eigenvectors of P or @ as-
sociated with larger eigenvalues are more important than the eigenvectors associated with
smaller eigenvalues. In figure 9-5(d), a lower index indicates a more important eigenvector.
It can be seen that the 5 most important eigenvectors of P (Q) are represented almost coir.-
pletely in span(Ut/**"F(@)). What is interesting is that the 9th and 10th eigenvectors of Q
are also completely represented, even though eigenvectors 7 and 8 are not. The eigenvectors
of P display similar, if not as dramatic, behavior, whereby some middle eigenvectors are not
as well captured as the eigenvectors to their left and right.

This example demonstrates that even if the CF-ADI error is large, some information
about the dominart eigenspace can still emerge, although there may also be missing infor-

mation.
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Chapter 10

Model Reduction via CF-ADI

Chapter 5 addressed the issue of how to utilize low rank approximations to the two system
gramians in a model reduction method, with the goal of approximating the TBR reduced
model. The solution is clear for symmetric systems, and two approaches, the Low Rank
Square Root method and the Dominant Gramian Eigenspaces method, are developed for
non-symmetric systems.

The question of how to obtain low rank approximations tc the system gramians is an-
swered with the development of the CF-ADI method. Other methods of generating low
rank approximations, such as [27], can also be used in this context. In fact, an infinite
variety of low order Krylov and rational Krylov bases can be used to generate low rank
approximations. Any subset containing consecutive elements of the infinite spanning set
{--+.v_j,-++ ,vg,- -+ ,vj,- - } for the subspace L(A, B, p), whose characterization was given
in theorem 2, suffices as a basis for the range of a low rank approximation.

Theoretical and numerical results in chapter 9 support the belief that CF-ADI can pro-
duce good approximately optimal low rank Cholesky factors.

This chapter uses the CF-ADI algorithm to generate the low rank Cholesky factors
needed in the Dominant Gramian Eigenspaces method. Numerical results for symmetric
and non-symmetric systems are given.

For symmetric systems, it is shown that, if the reduced model order equals the CF-ADI
approximation order, Approximate TBR via CF-ADI (algorithm 11) results in a reduced
model which is equivalent to the reduced model produced by a particular moment matching
via rational Krylov subspaces method. Thus, from the point of view of moment matching, the
problem of picking good moment matching points, so that the reduced model approximates
the TBR reduction, can be approached by solving the CF-ADI parameter selection problem
(7.43).

Numerical comparison of several CF~-ADI parameter selection procedures are also made.
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10.1 Symmetric systems

A symmetric state-space system of the form (5.10-5.11) can be reduced according to algo-
rithm 11.

Algorithm 11 Approximate TBR via CF-ADI for symmetric systems
INPUT: A, B.

1. Compute Z, € R™/, Z,Z7 ~ PP, by CF-ADI, algorithm 9.

2. Obtain the order k reduced system (Aj, BL, (B[)T) according to algorithm 4.

10.1.1 Connection to moment matching

Here, for symmetric systems, a connection is established between Approximate TBR via
CF-ADI and the moment matching method given in algorithm 1.

Theorem 5. The reduced model obtained by algorithm 11 using {p;,p2, -+ ,ps} as the CF-
ADI parameters, when the reduced model order k equals the CF-ADI approrimation order
J, is equivalent to the reduced model obtained by algorithm 1, which matches i, moments at
the point —p,, where p, appears i, times in the parameter list {p,,p2,--- ,ps}-

Proof. By theorem 3, algorithm 11 and algorithm 1 produce the same projection spaces,

namely,
COI(U‘JugO’u({Px,"‘ ps})) = span{zy, -z} (10.1)
J
= {(A+p)7'B,--- . J[(A+pD)"} (10.2)
=1
= Y {(A+pD)'B,--- ,(A+pI) B}  (103)
i=1
= YK (A= (-p)D. (A= (-p)D)'B),  (10.4)
i=1
= col(U3* ({~p1,--+,~Ps})) (10.5)
where 1, + - -+ + m, = J, and each p; appears in {p;,--- ,p,s} a total of i, times. Hence the
reduced models are equivalent by theorem 6. 0

In trying to approximate TBR for symmetric systems via algorithm 11 with the parame-
ters {p1,p2, - ,ps}, and k = J, one obtains a reduced system which also matches moments
of the original transfer function at {—p;, —ps,- -+, —ps}, with higher order moments denoted
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by repeating the points. In this case, algorithm 11 can also be thought of as a moment match-
ing method. The advantage of using algorithm 11 for symmetric systems instead of one of
the moment matching algorithms described in chapter 3 is that the solution to the rational
min-max problem on the real interval (7.43) is known, so optimal CF-ADI parameters can
be found.

Thus, even if one starts from the view of matching transfer function moments, the ques-
tion of which moment matching points to pick can be answered by solving the rational
min-max problem (7.40), if the desire is to produce a reduced model which is close to the
TBR reduction.

In addition, Z3 from CF-ADI contains more information than the projection matrix
U, obtained via moment matching. The columns of Uy are simply an orthonormal basis
for the sum of several Krylov subspaces. The singular values of Z give an indication of
approximately how controllable (and observable for symmetric systems) a mode is, and can
be used in error estimation via (4.8).

Algorithm 11, as an approximation to the TBR method, is expected to produce a globally
accurate reduced model.

10.1.2 Numerical results

Algorithm 11 was tested on the spiral inductor example (figure 8-2). The original system is
single-input single-output, of order 500, and has been symmetrized according to (5.16-5.18).

Soirsl inductor, 500 otatoa freq resp error o Spiral inductor, 500 staiee, relative freq resp erro?

(a) Frequency response error (b) Relative error
Figure 10-1: Spiral inductor, order 7 reductions

Figure 10-1 compares four different order 7 reductions of the original system. One is
TBR. The second is moment matching around s = 0, denoted ‘MMO’. The third is moment
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matching at 7 points distributed in the frequency range (as a real interval) [10°, 10'®] with
lcg spacing, denoted ‘MM-log(freq)’. The fourth is algorithm 11, denoted ‘TBRvCfadi’,
where the reduced model order equals the CF-ADI approximation order, J =k = 7.

Figure 10-1(a) shows the magnitudes of the frequency response errors, |G(jw) -G (jw)|,
of the four different approximations, as well as the TBR L*-error bound (4.8).

It can be seen that the TBR reduction has the smallest L*®-error, sup,, |G(jw)—G ¢ (jw)],
and it is below the TBR error bound. The L*-error of ‘TBRvCfadi-7" is half an order of
magnitude larger than TBR’s. Both moment matching reductions’ L*-errors are two orders
of magnitude larger than TBR's.

Figure 10-1(b) shows the relative errors, IIG(J‘]})&(?LSH(W}H’ of the same four order 7 reduc-
tions. Both the TBR and the Approximate TBR via CF-ADI reductions have comparatively
flat relative errors, whereas the two moment matching reductions have regions with very small

error and regions with much larger error.

Of course, the Approximate TBR via CF-ADI reduced model also matches moments at
the negative of the CF-ADI parameters. Thus, one interpretation of the resuits shown in
figure 10-1 is that the negative of the solution to the rational min-max problem on the real
interval (7.43) is a better choice of moment matching points than log spaced peints over the

frequency range [10°, 10'5).

10.2 Numerical comparison: CF-ADI parameters

This section makes numerical comparison of several different selection procedures for the
CF-ADI parameters, or equivalently, moment matching points, in terins of reduced model
accuracy.

Figure 10-2 shows the frequency response errors, |G(jw) — Greq(jw)|, and relative errors,
|G(jw) — Grea(jw)|/|G(jw)|, of seven parameter selection procedures for the spiral inductor
example. One set of procedures chooses the parameters as a function of the frequency range
of interest as a real interval, [wy,, = 10%, Wpmae = 10'3]. The other set chooses the parameters
as a function of A’s eigenvalue range, [Apnin = —7.91 x 10'°, )\ ,; = —1.38 x 107}, which is
also a real interval because A is symmetric. The spacings of the parameters are chosen to be
linear. log, or Chebyshev on either [Wmin. Wmaz}, OF [Amin, Ama:]. In addition, the solution
of the real rational min-max problem (7.43) gives optimal parameters.

In figure 10-2(a), the legend is ordered so that the choices of parameters appear in the or-
der their frequency response errors intersect the left vertical axis. The two Chebyshev choices
have error 1 at low frequencies. Linear spacing on A’s eigenvalue interval also attains highest
error at low frequencies, around 3 x 1072, Linear and log spacing on the frequency interval
have small errors at low frequencies, and attain maximum error in the middle frequency
range, with L>-errors of 10" ' and 10 ?, respectively. The solution to the real min-max
problem (7.43) and log spacing on A’s eigenvalue interval have the smallest L>-errors of all
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the choices, around 3 x 1075, In fact, these two choices picked parameter sets which are very
close to each other.

Figure 10-2(b) shows the relative errors. Log spacing on A’s eigenvalue interval and the
solution to the real min-max problem (7.43) both have flat errors over the entire frequency
range. It can be seen that knowing A’s eigenvalue range helps one to pick good parameters.
Without that knowledge, log spacing on the frequency range seems to work best.
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Figure 10-2: Spiral inductor; shift parameters are important

10.3 Non-symmetric systems

In chapter 5 two low rank reduction methods were proposed, the Low Rank Square Root
method, algorithm 5, and the Dominant Gramian Eigenspaces method, algorithm 6. CF-
ADI can be used to produce low rank Cholesky factors for either method. If the CF-ADI
error in algorithm 9 is small after only a small number of iterations on both (A4, B) and
(AT,CT), then algorithm 5 can be used. In that case, both gramians are close to low rank,
and the CF-ADI approximations to them are fairly accurate. If the CF-ADI error is not
small, then algorithm 6 should be used.

Because in chapter 5 it was shown that the Dominant Gramian Eigenspaces method,
algorithm 6, generally produces a better reduced model than the Low Rank Square Root
method, this section only shows results for using CF-ADI with algorithm 6.

10.3.1 Numerical results

This section uses the discretized transmission line example (figure 5-1) again.
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Algorithm 12 Dominant Gramian Eigenspaces via CF-ADI
INPUT: A, B, C.

1. Compute Z%¥ , ZB (28 )T ~ P, by CF-AD], algorithm 9, applied to (1.50).
2. Compute 2§, 2§ (25 )" =~ QF:, by CF-AD], algorithm 9, applied to (1.51).
3. Choose k < J, 2k being the desired reduction order.

Uctod = gr( [foj(:, 1:k), US,(1:k)])

note: k < m = rank(US®) < 2k

4. Reduce the system:

A, = (US*TAUS®, Bl = (USTB, Cl,=CUS (10.6)

Figure 10-3 shows numerical results obtained using algorithm 12. In figure 10-3(a), the
frequency responses of three different reduced systems are shown. All three are order 10.

‘Ct5 U Ob5’ denotes using the 5 exact dominant controllable modes and the 5 exact
dominant observable modes in steps 1 and 2 of algorithm 12. This reduction was shown to
be indistinguishable from the order 10 TBR reduction in figure 5-2(a). ‘Ct5(15) U Ob5(15)’
denotes running 15 iterations of CF-ADI on (A, B) to obtain ZZ, and 15 iterations of CF-
ADI on (AT,CT7), to obtain Z&, and letting k = 5 in step 3 of algorithm 12. ‘Ct15(15) U
Ob15(15)-TBR-10’ denotes letting k = 15 instead, obtaining an order 30 reduced system,
and then doing TBR on this reduced system to obtain the further reduced system of order
10.

The frequency responses of ‘Ct5 U Ob5’ and ‘Ct5(15) U Ob5(15)’ are close except at the
last two peaks. ‘Ct5 U Ob5’ follows the next to last peak of the exact frequency response and
then flattens out, whereas ‘Ct5(15) U Ob5(15)’ misses the next to last peak and finds the last
one. ‘Ct15(15) U Ob15(15)-TBR-10’ has a peak in between the last two tall peaks. The fact
that ‘Ct15(15) U Obi5(15)-TBR-10’ is not more accurate than ‘Ct5(15) U Ob5(15)’, rather,
it is a bit worse, is surprising, since the projection spaces which produced the intermediate
order 30 reduction contain the projection spaces which produced ‘Ct5(15) U Ob5(15)". The
reason appears to be that the larger projection spaces have made the intermediate order 30
system unstable. [ts system matrix has many eigenvalues with positive real parts.

Figure 10-3(b) adds the frequency response of the reduced system obtained by the mo-



ment matching via orthogonal projection method given as algorithm 1. A total of 30 moment
matching points were chosen in the frequency interval [Wmin = 107%, Wmee = 1072], with log
spacing. ‘MMorth-log(freq)-30’ requires the same order of work as ‘Ct5(15) U Ob5(15)’. It
is an one-sided reduction as only a rational Krylov subspace with A and B is used. There is
no contribution from the output coefficient matrix C.

It can be seen that ‘MMorth-log(freq)-30’ is extremely accurate at frequencies lower than
103, but fails to capture any of the peaks beyond w = 1073, ‘Ct5(15) U Ob5(15)’ clearly
captures the global frequency response behavior much better. It captures all but the next to
last sharp peak. It averages the first tiny peak and small bumps between sharp peaks, which
keeps the L>-error small without having to following every topographical feature exactly
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Figure 10-3: Dominant Gramian Eigenspaces via CF-ADI
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Chapter 11

Conclusions and Future Work

In this dissertation, a low rank model reduction method, the Dominant Gramian Eigenspaces
method, is proposed for the reduction of large, linear, time-invariant systems. This method
utilizes low rank approximations to the exact system gramians.

Numerical comparison of the Dominant Gramian Eigenspaces method is made with an-
other low rank model reduction method, the Low Rank Square Root method [41,46]. It
is shown that the Dominant Gramian Eigenspaces method often produces a better reduced
model than the Low Rank Square Root method, when the low rank approximations to the
system gramians have not converged to the exact gramians.

The system gramians are the solutions to two Lyapunov equations. In theorem 2 the range
of the Lyapunov solution is characterized as order n Krylov and rational Krylov subspaces
with different shifts and starting vectors. A connection is made between approximating the
dominant eigenspace of the solution to the Lyapunov equation and the generation of various
low order Krylov and rational Krylov subspaces.

The Cholesky Factor ADI algorithm is developed to generate a low rank approximation
to the solution to the Lyapunov equation. Cholesky Factor ADI requires only matrix-vector
products and linear solves, hence it enables one to take advantage of sparsity or structure in
the system matrix.

The Cholesky Factor ADI algorithm is then used in conjunction with the Dominant
Gramian Eigenspaces method in the model reduction of large, linear, time-invariant systems.
It is demonstrated by numerical examples that this approach often produces a globally
accurate reduced model, even when the low rank approximations to the system gramians
have not converged to the exact gramians.

Finally, it is shown that, for symmetric systems, approximating Truncated Balanced
Realization is achievable. Approximate TBR via CF-ADI for symmetric systems results in
a reduction which also matches moments at the negative of the CF-ADI parameters, if the
reduced model order is the same as the CF—ADI approximation order. It is shown that, from
the point view of moment matching methods, the problem of picking points where moments
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are to be matched, so that the reduced model is close to the TBR reduced model, can be
approached by solving the rational min-max problem associated with CF-ADI parameter
selection.

There is room for future research both in the area of low rank approximation to the
Lyapunov solution and in low rank model reduction methods.

Further study is needed to characterize the eigenvalue behavior of the solution to the
Lyapunov equation with a non-symmetric A matrix. It would be very useful to determine
the conditions on A and B which will guarantee that the exact solution to the Lyapunov
equation can be well approximated by a low rank matrix. [42] is the only work to the author’s
knowledge that addresses the issue of eigenvalue decay for the Lyapunov solution.

In the area of low rank model reduction methods, work needs to be done to find a
method which genuinely approximates the TBR reduction for non-symmetric systems. Since
the system gramians cannot be balanced without having the exact gramians, it is necessary
to find a way to approximate the order k¥ TBR projection matrices directly by low rank
matrices, without referring to the gramians separately.

Finally, many of the results contained in this dissertation, on the solution of the Lyapunov
equation and on low rank model reduction, can be extended to apply to the linear, time-
varying model reduction problem (7, 54}.
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