MIT
Libraries | D>pace@MIT

MIT Open Access Articles

Weyl points and line nodes in gyroid photonic crystals

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Lu, Ling, Liang Fu, John D. Joannopoulos, and Marin Soljaci¢. "Weyl points and line
nodes in gyroid photonic crystals.” Nature Photonics 7 (2013), p.294-299.

As Published: http://dx.doi.org/10.1038/nphoton.2013.42

Publisher: Nature Publishing Group

Persistent URL: http://hdl.handle.net/1721.1/88479

Version: Original manuscript: author’s manuscript prior to formal peer review

Terms of Use: Article is made available in accordance with the publisher’s policy and may be
subject to US copyright law. Please refer to the publisher's site for terms of use.

I I I .
I I Massachusetts Institute of Technology


https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/88479

arxXiv:1207.0478v1 [cond-mat.mes-hall] 2 Jul 2012

Weyl points and line nodes in gapless gyroid photonic crysta

Ling Lu, Liang Fu, John D. Joannopoulos and Marin Soljaci¢
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
(Dated: July 3, 2012)

Weyl points and line nodes are three-dimensional lineantpaind line-degeneracies between two bands. In
contrast to Dirac points, which are their two-dimensionadlagues, Weyl points are stable in the momentum
space and the associated surface states are predicted apdbegically non-trivial. However, Weyl points
are yet to be discovered in nature. Here, we report photaystals, based on the double-gyroid structures,
exhibiting frequency-isolated Weyl points with intricaibase diagrams. The surface states associated with the
non-zero Chern numbers are demonstrated. Line nodes ardoalsd in similar geometries; the associated
surface states are shown to be flat bands. Our results arié/regoerimentally realizable at both microwave
and optical frequencies.

Two-dimensional (2D) electrons and photons at the eneressary condition for the existence of Weyl points. Since all
gies and frequencies of Dirac points exhibit extraordinarythree Pauli matrices are used in the Hamiltonian, one has no
features|[1-5]. As the best example, almost all the remarkpossibility of constructing a term that can open a gap in this
able properties of graphene are tied to the massless Dirawo-band-degeneracy of 3D periodic systems, thereby ngakin
fermions at its Fermi level [6, 7]. Topologically/[8], Dirac a single Weyl point absolutely robust to perturbations. The
cones are not only the critical points for 2D phase transi-only way to eliminate and create Weyl points is through pair-
tions but also the unique surface manifestation of a topologannihilations and pair-generations of Weyl points of opjgos
ically gapped 3D bulk. In a similar way, it is expected that chiralities, which typically requires a strong perturbati
if a material could be found that exhibits a 3D linear dis- Our starting point for obtaining Weyl points is a PhC whose
persion relation, it would also display a wide range of inter bandstructure exhibits a three-fold degeneracy(quadreil
esting physics phenomena. The associated 3D linear pointhree directions) at the BZ centeF)(in an otherwise com-
degeneracies are called “Weyl points”. In the past yearplete bandgap. This pseudo-gap system was reported in a DG
there have been a few studies of Weyl fermions in electronphC [18], whose real space structure is shown in Fig. 1
ics [9+14]. The associated Fermi-arc surface states, gmant When the air-sphere is not introduced, its gapless barwstru
Hall-effect [15], novel transport properties [16] and thee r ture is plotted in Fig.[8]33]. As shown below, applying
alization of the Adler-Bell-Jackiw anomaly [17] are also ex different perturbations to this structure will lead us toCBh
pected. However, no observation of Weyl points has been rewith frequency-isolated linear point and line degenersiie.
ported. Here, we present a theoretical discovery and @eltail Weyl points and line nodes).
numerical investigation of frequency-isolated Weyl psiimt A DG PhC consists of two single gyroids (SG)
perturbed double-gyroid(DG) photonic crystals(PhCsnalo i 5 pody-centered-cubic(bee) lattice.  An SG surface
with their complete phase diagrams and their topologieallyis 5 pi-continuous triply-periodic minimal surface de-
protected surface states. PhCs containing frequencgtesdl fineq by g(r) = sin(2mx) cos2my) + sin(2my) cog2mz) +
linear line-degeneracies, known as “line nodes”, and ttegir sin(2rz) cog2rx) [19]. The red gyroid in Fig[A is defined
band surface states are also presented. Unlike the proposgg filing the inner space of the isosurfagé() > 1.1) to be
Weyl ppints in elec_tronic _systen_1 thus fgr, our predictioms i high refractive-index material(g = n = 4) and air otherwise;
photonics are readily realizable in experiments. magnetic permeabilitys is unity everywhere. (This setting

Before proceeding, we first point out one intriguing distinc corresponds to Germanium and air at optical frequencies.)
tion between the 2D Dirac points and the 3D Weyl points.The blue gyroid is the inversion pair of the red gyroid with
2D Dirac cones are not robust; they are only protected byespect to the origin; the two gyroids do not overlap in space
the product of time-reversal-symmetry(T) and parity(Pein ~ The bandstructures of both SG PhC and DG PhC are plotted in
sion). In 2D, Dirac cone effective Hamiltonian takes thevior Fig. [Za by orange and blue colors respectively. The SG PhC
of H(K) = VxkxOx + Vzk,05; this form is protected by PT (prod- has a 32% complete bandgap between tHeaid 39 bands
uct of P and T) which requirgd (k) to be real. Thus, one can from 0.42 to 0.58 in normalized frequenciesi|[18]. The space
open a gap in this dispersion relation upon introducing a pergroup of the SG i$4:32 (No. 214)/[20, 21]; the DG structure
twrbati tional tas, — 0 —i that is i . ~ belongs tola3d (No. 230), which is a direct-product group
urbation proportional twy = { 5 ¢ atis imaginary, 14,32 and inversion. Both of the space groups are non-
for example, even an infinitesimal perturbation that breaksymmorphic and have three-dimensional representati@js [2
just P or just T will open a gap. In contrast, 3D Weyl points This explains the three-fold degeneracy in the DG PhC band-
are topologically protected gapless dispersions robusinay  structure, among'8, 4™ and 8" bands at the center of the BZ
any perturbation. In 3D, Weyl point dispersions are governedI’), highlighted with green ellipses in FigJa2 The P and
by the Weyl HamiltoniarH (k) = vykxox + Wky oy + V2K, 0; 2"d hands are almost degenerate; so are heard 4" bands:
the oy term can exist only when PT is broken: this is a nec-they concave down and touch th® Hand which concaves
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wise complete frequency gap. It is worth pointing out that
this bandstructure, although not exhibiting Weyl poirngsin-
teresting in itself in analogy to the line-node semimefagy [

We show its flat surface dispersions towards the end of this
paper.

In what follows, we break the PT symmetry to obtain Weyl
points of photons for the first time. We start with the struc-
ture from Fig[ . First, we break P while preserving T. Since
T maps a Weyl point at to —k with the same chirality, there
must exist at least two other Wey! points, both of opposite ch
rality, to neutralize the whole system. So the minimal num-
ber of Weyl points in this case has to be four. We break P
by placing only one air sphere on one of the gyroids (but not
the other) a(3, -3, 3)a[34], as illustrated in Fig1H). Un-
der this pure P-breaking perturbation[35], two pairs of Wey
points, shown in Fig[}2 emerge alond’-N andl'-H direc-
tions. The fact that all the Weyl points appear along high-
symmetry lines significantly simplifies the analysis. Thame
no other states in the vicinity of the Weyl points’ frequessi

Second, DC magnetic fieldB), along different directions,
are applied to the original DG PhC structure in Flga &
break the T while preserving P. We assume the high-index gy-
roid material is gyroelectric and use a generic model [24] to
describe its magnetic response. Wigeis alongZ, we assume
the permittivity tensor takes the form of

en(|Bl) iewx(Bl) O

. . g(|Bl) = | —iew2(|B]) €u(|B[) O 6y
FIG. 1: Real-space unit cell and reciprocal-space BZ of the 3D 0 0 €
DG PhC. a Real space geometry in a bcc unit cell whake=

(-1,1,1)5, @ =(1,-1,1)§ andag = (1,1,-1)5. The two identi-  where dete(|B|)) = (¢2,(|B|) — £%,(|B|))€ = £5; this constant

‘(3""' gzgorfafgr‘f;;“raseogzdi r?\?g‘lrsk?gjr? C:ill’zr(s)faerZChf:gC?[I’:S:'\?v(iltt;Jd:e):s determinant condition ensures the dispersions as a whole do

n= ; . . i

to the origin(0). An a)i/r sphere (a = 8.13) located at},—3.3)a not move much in frequency with the exteral BCfields.

breaks the inversion symmetry of the systedm.The BZ of the bcc The dimensionless gﬁegtlve magnetic f'eld_ Inte.nSIty is de-

lattice. Weyl points and linear line-degeneracies of itigesion in ~ fined as|B| = &1»/¢ in this paper. WherB field is along

this letter always lie in the green plane through the originC-Nis  other directions, the correspondiagensor can be obtained

along[10] andrl-H is along[010(¥). ¢, An air-isolated DG surface through coordinate transformations. (Note the T-breakany

can be formed by terminating the perturbed gyroid (red) lotithe  pe equally well implemented vig for gyromagnetic mate-

other (blue). The SG PhC on the top has a large complete bandggjg|s [25].) Under this pure T-breaking perturbation, oaly

as shown in Fid 12 single pair of Weyl points emerges along the direction of the
magnetic field. This is the minimum number of Weyl points
that can exist under the inversion symmetry. These two Weyl

up. The three-fold degenerate pOint is well isolated in fre'points are still frequency-degenerate: P maps a Wey| p¢)|nt a

quency from other parts of the dispersion diagram of the DG to —k with the opposite chirality. An example of this is

bandstructure, making it an ideal starting point for applyi  shown in Fig[®l.

symmetry-breaking perturbations. Third, we apply both P and T breaking perturbations at

The three-fold degeneracy of quadratic dispersiofisan  the same time to observe the phase transitions between the

be lifted by breaking thé4,32 space group without breaking two(ll) Weyl points in the pure T-breaking phase and the

P or T symmetries. This is done by replacing a part of the gyfour(IV) Weyl points in the pure P-breaking phase. Inter-

roid material with two air-spheres (one on each gyroid). Theestingly enough, different magnetic field directions proglu

first air-sphere is placed in the red gyroid(ét —%, %)a, as strikingly different phase diagrams. Whenis applied along

illustrated in Fig[h; and the other is its inversion pair in the '-H, only two phases exist: the T-breaking dominated phase

blue gyroid (not illustrated in Fid.H). This perturbation lifts  (II) and the P-breaking dominated phase (IV). The pure P-

the 8" band out of the three-fold degeneracy with tfiéahd  breaking phase, shown in the contour plot Fig, Bas four

4™ bands af”, as shown in Fig[l2. The 4" and 8" bands  Weyl points: two with positive chiralities alonig-H and two

linearly cross each other, forming a closed line-degeryeracwith negative chiralities alon§-N. Applying magnetic field

around thel" point in thel-N-P-H plane, inside an other- along thd -H direction drives the two negative-chirality Weyl
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FIG. 2: Gapless photonic bandstructures of the DG PhCs without (a)red with perturbations (b,c,d). a, The original DG PhC bandstruc-
ture has a three-fold degeneracylaamong the 8, 4" and 8" bands in a pseudo-gap. The SG PhC has a huge frequency gamgdhe
interesting frequency region of the DG PhC dispersibnWe place the two air-spheres on the two gyroids: one aiergpp/a = 0.07) is
located at( 3, — g, 3)a; the other is its inversion symmetric pair. Under this pdsation, the #' and 8" bands linearly touch in a closed line
aroundr in thel-N-P-H plane. The linear crossing line is highlighted by aegr stripe; this structure does not exhibit any Weyl poiets y
¢, We apply a P-breaking perturbation by placing only one glirese (/a = 0.10) in one of the gyroids but not the other. Two pairs of Weyl
points appear(highlighted by the green circles): one gaiears alond -H and the other pair appears alofigN. d, We apply a T-breaking
perturbation (P conserves) by applying DC magnetic fielthédisionles$B| = 0.875) on the DG PhC without air-spheres. Only one pair of
Weyl points appears (highlighed by the green circle) aldregdirection of the magnetic field{N). Since P and T are not broken at the same
time in these PhCgk and k are degenerate in the bandstructures. A few lowest-valuefezguency contours of the frequency difference
between the 4th and 5th bands are shown (hexagonal insetsqdéb bandstructure in tHeN-P-H plane; the contour spacing is 0.004 in
normalized frequency; “+” and “-” are used to label the chiiies of the Weyl points. All the dispersion behaviors @ds the degeneracy
points in this figure can be well described by the low-endtwery model in the supplementary material.

points towards the positive one alofigH. Increasing the In general, P-T phase diagrams depend on the form of the
magnetic field further annihilates two of the Weyl points of perturbations: the DC magnetic field can be oriented along an
opposite chiralities and the system enters the T-brealdngrd  arbitrary direction; in addition, there are many differertys
inated phase which has only two Weyl points aldriéi. An  to break the inversion symmetry.

example where only T is broken is shown in Figl. Detailed Weyl points are topologically stable objects in the 3D BZ:
descr|_pt|0n of this phase diagram is shown in the supplemer}hey act as monopoles of Berry flux in momentum space, and
tary Fig. A. hence are intimately related to the topological invariantkn

An even richer phase diagram, shown in Fig. 3, appear&S the Chern number [26]. The Chern number can be defined
when we switch the magnetic field to tReN direction. The forasingle bulk band or a set of bands, where the Chern num-
system undergoes two phase transitions from the P-breakirRfrs of the individual bands are summed, on any closed 2D

dominated phase(IV) to the T-breaking dominated phase(llySUrface in the 3D BZ. The difference of the Chern numbers
The extra intermediate phase(VI) of six Weyl points is gen-defined on two surfaces, of all bands below the Weyl point fre-

erated when one of the negative-chirality Weyl points in theduencies, equals the sum of the chiralities of the Weyl jgoint
pure P-breaking phase (red contour plot) splits (orange Con_enclosed_ln petween the two surfaces [15]. In particular, we
tour plot) into three Weyl points (blue contour plot) undee t |Ilustr_ate in Flg.[},A the Chern numbers of the ZP planes per-
increasing field. Among these three Wey! points, the origi- Pendicular tor-H(y); they are closed surfaces in the 3D pe-
nal Wey! point flips its chirality from negative to posititlre ~ "odic BZ. The first contour plot (red), of a pure P-breaking
other two negative Weyl points move away from their creationP@se in Figl13, is used as an example. The Chern number of
position towards the neighboring two positive ones. The twcd!l lower bands on the plane is plotted in light blue on the lef
pairs of Weyl points eventually meet (green contour plot) an side. The Che_rn number vanishes when the plane is outside
annihilate simultaneously, leaving the remaining two Wey|©f the Weyl points. It changes by one when the plane moves
points (purple contour plot) along the direction of the mag-across one Weyl point and changes by two when the plane
netic field-N). When two Wey! points annihilate, the band crosses two Weyl points of the same chirality.

dispersions are quadratic along the directions in whicly the As a result of the non-zero Chern number of all the lower
meet. bulk bands (&, 2"d, 39 and 4"), there exists topologically-
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FIG. 3: Phase diagram of the Weyl points when the magnetic field is apied along I'-N. Each phase is labeled by the number(Roman
numerals) of Weyl points. The phase transition line is fobpa@canning thé® field amplitude in the calculation for three different P-dding
strengths. The pure P-breaking phase (x-axis) is higtdjhrt red; it is realizable at the optical frequencies witbegsially lossless materials.
Six 2D contour plots show the locations of the Weyl pointsegiresentative positions in the phase diagram; the conpagirgy is 0.002 in
normalized frequency. The contour plots share the same aslihe circles of their corresponding positions in the plitiagram. Two surface
dispersion plots show the entire band dispersiofis) of the 39, 4 and 8" bands for two particular cases, whérées in the green plane of

Fig.[Db.

protected gapless chiral surface states inside the barfdgap can exhibit very flat bands which is also an interesting fea-
tween 4" and 8" bands) away from the Weyl points [27]. In ture. Fig. [%® shows one surface state of the DG PhC of
order to prevent the surface states from radiating intongr, quadratic point-degeneracy in the bulk pseudo-gap. When
interface the DG PhC with an SG PhC by removing only thet varies periodically, the surface dispersion, at everyaagf
perturbed gyroid above the (101) surface: this is illusglah  k point, moves from the air-band(conduction band) through
Fig.[Ic. The surface states of finitg, are trapped by the par- the pseudo-gap to the dielectric-band(valence band) [28].

tial gap of the DG PhC and the full 3D gap of the SG PhC. Wethe center of the BZ, the surface dispersion is pinned irgo th
define a termination parametef0 < 7 < 1) to indicate the bulk states at the degeneracy point. The surface dispes§ion
periodically equivalent termination positions along thi€]] 1 = 0.0, apart from theH-P region, is very flat. The high
direction.7 = 0 is set at the origin of the unit cell as shown in density of states associated with the flat surface dispersio
Fig.[c. An example of the non-trivial gapless surface disper-can be potentially useful for enhancing the efficiency diilig
sion, along a line cut in the 2D surface BZ in Higp, 4s plot-  emitters at the surface. Even more interesting surfacesstat
ted in Fig.[®. A surface mode profile is also shown. Since are shown in Fig[B for the line-node PhC. The nodal line

T is not broken in this example, the surface dispersions arbulk states project onto the surface BZ as a closed line which
degenerate betwednand—k, while Chern number flips sign separates the surface BZ into two disconnected areas. So the
under T symmetry. This means the surface modes have oppsurface dispersions can be flat bands in these two separate re
site chiralities when travelling alongy and—y directions at  gions of the BZ. The green dispersion in Flgb Bas all its

the same frequency. The above analysis on Chern numbefiequencies nearly degenerate inside the line-node atgke w
and surface modes applies for states along other directiorthe red dispersion is relatively flat in the rest of the BZ. The
and for other Weyl phases as well. We stress that the norgeneral features of the flat surface dispersions do not éhang
zero Chern numbers and the associated chiral surface stateben the line-node PhC is terminated by other means. For
in this example are obtained without breaking [TL[1, 25]; thus example, when the SG PhC is replaced by air, one could se-
this phenomenon is readily realizable at optical frequesici  lectively enhance, by changing the surface terminatioa, th

The surface states of the other two gapless PhCs in Fidi_ght emission of surface sources into either radiativeanm-n
Za andb do not involve non-zero Chern numbers, but they'adiative modes.
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a nodes along the high-symmetry lines and planes in the BZ of
the DG PhCs. Complete P-T phase diagrams are investigated
= through annihilations and creations of the Weyl pairs. The
2 topologically non-trivial surface states of Weyl-point Gh
g and flat surface dispersions of line-node PhCs are presented
c This work potentially opens doors to new paradigms in pho-
053 - tonics: topologically-protected chiral surface stategizable
5 \ at optical frequencies for the first time, radiation-cofiiole
. w.(k) Z w, (K) \\ photonic density of states enhanced by flat surface disper-
T Pe s 4 \ sions, novel transmission properties of light in the vigini

of the degeneracy frequencies, and other unconventioral ph
nomena associated with the density-of-states and digmersi

of the close to the degeneracy points that were not available
before. Experimentally, our design can be realized withynan
available techniques. Germanium can either be directly syn
thesized[[29] into DG strucutures or backfilled|[30] into DG

Wavevector Bl polymer templates made by block-copolymeérs [31] or inter-
vy o 0 T3 U'V'ax ference Iithography{EZ]. The templates for geometrically
[o1] ro o] ao 0 Gﬂ" 0 OﬂDOUDQm‘B -0 0 ‘ perturbed DGs can be made by 3D lithography or 3D printing.

All presented results without magnetic fields are readig}-re
izable with Germanium at optical frequencies; Weyl phases

FIG. 4: Topological surface states of a Weyl-point PhC. alllus- InVOIthg T brtea.kllng fan. be readlicy demo%atzesd with gyro
tration of the Chern number of the lower bulk bands on the glan magnetic ma.erlas at microwave reque-n [25].

moving alongky in the 3D bulk BZ.b, An example of a topologi- We would like to thank Fa Wang, Martin Maldovan, Zheng
cally protected surface state of a Weyl point PhC. The ptegebulk ~ Wang, Steven G. Johnson, Ashvin Vishwanath and Dung-
states are plotted in blue in the surface bandstructurestlace  Hai Lee for helpful discussions. This work was supported
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PhC. 0819762. M.S. and L.L. were supported in part by the MIT
S3TEC Energy Research Frontier Center of the Department
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FIG. A: Phase diagram of Weyl points when the magnetic field is appléealong'-H. Each phase is labeled by the number(Roman numerals)
of Weyl points. We start with the structure from Figa: 2he gray contour plot. The phase transition line is foundségnning theB field
amplitude in the calculation for three different P-bregkétrengths. The pure P-breaking phase (x-axis) is higleddym red; it is realizable

at the optical frequencies with essentially lossless ria$er Six 2D contour plots show the locations of the Weyl pwiat representative
positions in the phase diagram. The contour plots shareatime €olor as the circles of their corresponding positionthénphase diagram.

A few lowest-value equi-frequency contours of the frequedifference between the 4th and 5th bands are shown in eatburglot. The
contour spacing is 0.002 in normalized frequency. “+” aridafe used to label the chiralities of the Weyl points. Twoface plots show the
entire band dispersions of th&34" and 8" bands for two particular cases of the contour plots.

In Fig. [Al, whenB is alongl-H, only two phases exist: the T-breaking dominated ph§safd the P-breaking dominated
phase(lV). The phase transition line is found by scanfiBjgor different P-breaking strengths (radii of the air spisgrerhe
annihilation and creation of Weyl points are shown by contadats in a 2D BZ slice(green plane in Figh)l where all the
Weyl points in this letter happen to be located. The puredking phase, third(from left) contour plot in red, has favayl
points: two with positive chiralities alonig-H and two with negative chiralities alodgN. Applying magnetic field along the
I'-H direction drives the two negative-chirality Wey! poittsvards the positive one alofigH (blue contour plot). On the phase
transition line where the three Weyl points meet (greenaamplot), the dispersions of the two bands are cubjkf|) along
the direction which they meet, but still linear in other ditiens ink space. Increasing the magnetic field further annihilates tw
of the Weyl points of opposite chiralities and the systemeenthe T-breaking dominated phase(ll) which has only twglWe
points (purple contour plot).
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MODEL OF LOW ENERGY THEORY

In order to further elucidate the physics and to tie our wodkerclosely to the Weyl fermions in electronics, we condtrdc
a three-band effective Hamiltoniatif) with three perturbation termé{, V> andVs) to model the %, 4" and 3" bands of the
DG PhC system. This model reproduces qualitatively all #aedstructures in Fig. 2 and the phase diagram in[Eig. A. lerord
to reproduce the phase diagram of Fig. 3, a more intricatesiisdequired.

H (k) = Ho(k) +V1+V2(k) +V3
Ho(k) = a1|k|? — az|k-L|?

Vi=—yn(L-rp>—1) @
Va(k) = ya(k-rig)(L - rip)
V3=pB(L-B)
0 0O 00 -1 0 10
HereL = (Lx,Ly,Lz) whereL,x= O O 1 |,Ly=| 00 O | andLz=| —1 0 O |.L isthe angular momentum;
0-10 100 0 0O
it is odd under T and even underrip, = %(1, 0,1) is perpendicular to thE-N-P-H plane where all the degeneracies lie in.

g = %(—1, 0,1) is alongl'-N. B is the external magnetic fieldr;, oz, y1, ¥ and3 are positive real parameters that control
the relative strengths of the different terms in the Hamiko.

The original HamiltoniarHg[1] produces the three-fold quadratic degeneracy at zezcggnsame as the PhC bandstructure
atl in Fig. 2a. a; controls the curvature of the top banalj controls the curvatures of the two degenerate bands cargavi
down.

Perturbation/; breaks neither P nor T symmetries. This perturbation lifesthree-fold degeneracy Btwhile keeping the
guadratic degeneracy between the lower two bands at zergyertlis reproduces the linear line-degeneracy resultgn 2.

Perturbation/, breaks PV, andV, together reproduce the two pairs of Weyl points aléry andl"-H in Fig. 2c.

PerturbatioV; breaks T. When this perturbation is turned on alone, a paivefl points of opposite chiralities emerge along
the direction of the magnetic field], which is consistent with our PhC result in Figl.2

When all three perturbation terms are non-zero, this magebduces the same II-1V phase diagrams in Elg. A (i.e. wien
is alongl-H).

ACCIDENTAL LINEAR-DEGENERACIES

2D or 3D linear dispersions of two bands can also exist whémgb&ccidentally degenerate among other bands at the Bril-
louin zone(BZ) center; but those points do not possess groldgical features[2--4], so they are quite different frdra work
presented here.

[1] Y. D. Chong, X.-G. Wen, and M. Soljacic, Phys. Rev7B 235125 (2008).

[2] X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, Natt&td.0, 582 (2011).
[3] K. Sakoda, Opt. ExpresZ0, 3898 (2012).

[4] X. Huang, F. Liu, and C. T. Chan, ArXiv e-prints (2012),020886.



	 Phase diagram
	 Model of low energy theory
	 Accidental linear-degeneracies
	 References

