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Weyl points and line nodes in gapless gyroid photonic crystals

Ling Lu, Liang Fu, John D. Joannopoulos and Marin Soljačić
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

(Dated: July 3, 2012)

Weyl points and line nodes are three-dimensional linear point- and line-degeneracies between two bands. In
contrast to Dirac points, which are their two-dimensional analogues, Weyl points are stable in the momentum
space and the associated surface states are predicted to be topologically non-trivial. However, Weyl points
are yet to be discovered in nature. Here, we report photonic crystals, based on the double-gyroid structures,
exhibiting frequency-isolated Weyl points with intricatephase diagrams. The surface states associated with the
non-zero Chern numbers are demonstrated. Line nodes are also found in similar geometries; the associated
surface states are shown to be flat bands. Our results are readily experimentally realizable at both microwave
and optical frequencies.

Two-dimensional (2D) electrons and photons at the ener-
gies and frequencies of Dirac points exhibit extraordinary
features [1–5]. As the best example, almost all the remark-
able properties of graphene are tied to the massless Dirac
fermions at its Fermi level [6, 7]. Topologically [8], Dirac
cones are not only the critical points for 2D phase transi-
tions but also the unique surface manifestation of a topolog-
ically gapped 3D bulk. In a similar way, it is expected that
if a material could be found that exhibits a 3D linear dis-
persion relation, it would also display a wide range of inter-
esting physics phenomena. The associated 3D linear point-
degeneracies are called “Weyl points”. In the past year,
there have been a few studies of Weyl fermions in electron-
ics [9–14]. The associated Fermi-arc surface states, quantum-
Hall-effect [15], novel transport properties [16] and the re-
alization of the Adler-Bell-Jackiw anomaly [17] are also ex-
pected. However, no observation of Weyl points has been re-
ported. Here, we present a theoretical discovery and detailed
numerical investigation of frequency-isolated Weyl points in
perturbed double-gyroid(DG) photonic crystals(PhCs) along
with their complete phase diagrams and their topologically-
protected surface states. PhCs containing frequency-isolated
linear line-degeneracies, known as “line nodes”, and theirflat-
band surface states are also presented. Unlike the proposed
Weyl points in electronic system thus far, our predictions in
photonics are readily realizable in experiments.

Before proceeding, we first point out one intriguing distinc-
tion between the 2D Dirac points and the 3D Weyl points.
2D Dirac cones are not robust; they are only protected by
the product of time-reversal-symmetry(T) and parity(P, inver-
sion). In 2D, Dirac cone effective Hamiltonian takes the form
of H(k) = vxkxσx+vzkzσz; this form is protected by PT (prod-
uct of P and T) which requiresH(k) to be real. Thus, one can
open a gap in this dispersion relation upon introducing a per-

turbation proportional toσy =

(

0 −i
i 0

)

that is imaginary;

for example, even an infinitesimal perturbation that breaks
just P or just T will open a gap. In contrast, 3D Weyl points
are topologically protected gapless dispersions robust against
any perturbation. In 3D, Weyl point dispersions are governed
by the Weyl HamiltonianH(k) = vxkxσx + vykyσy + vzkzσz;
the σy term can exist only when PT is broken: this is a nec-

essary condition for the existence of Weyl points. Since all
three Pauli matrices are used in the Hamiltonian, one has no
possibility of constructing a term that can open a gap in this
two-band-degeneracyof 3D periodic systems, thereby making
a single Weyl point absolutely robust to perturbations. The
only way to eliminate and create Weyl points is through pair-
annihilations and pair-generations of Weyl points of opposite
chiralities, which typically requires a strong perturbation.

Our starting point for obtaining Weyl points is a PhC whose
bandstructure exhibits a three-fold degeneracy(quadratic in all
three directions) at the BZ center (Γ) in an otherwise com-
plete bandgap. This pseudo-gap system was reported in a DG
PhC [18], whose real space structure is shown in Fig. 1a.
When the air-sphere is not introduced, its gapless bandstruc-
ture is plotted in Fig. 2a[33]. As shown below, applying
different perturbations to this structure will lead us to PhCs
with frequency-isolated linear point and line degeneracies (i.e.
Weyl points and line nodes).

A DG PhC consists of two single gyroids (SG)
in a body-centered-cubic(bcc) lattice. An SG surface
is a bi-continuous triply-periodic minimal surface de-
fined by g(r) = sin(2πx)cos(2πy) + sin(2πy)cos(2πz) +
sin(2πz)cos(2πx) [19]. The red gyroid in Fig. 1a is defined
by filling the inner space of the isosurface(g(r) > 1.1) to be
high refractive-index material(

√
ε = n = 4) and air otherwise;

magnetic permeabilityµ is unity everywhere. (This setting
corresponds to Germanium and air at optical frequencies.)
The blue gyroid is the inversion pair of the red gyroid with
respect to the origin; the two gyroids do not overlap in space.
The bandstructures of both SG PhC and DG PhC are plotted in
Fig. 2a by orange and blue colors respectively. The SG PhC
has a 32% complete bandgap between the 2nd and 3nd bands
from 0.42 to 0.58 in normalized frequencies [18]. The space
group of the SG isI4132 (No. 214) [20, 21]; the DG structure
belongs toIa3d (No. 230), which is a direct-product group
of I4132 and inversion. Both of the space groups are non-
symmorphic and have three-dimensional representations [22].
This explains the three-fold degeneracy in the DG PhC band-
structure, among 3rd, 4th and 5th bands at the center of the BZ
(Γ), highlighted with green ellipses in Fig. 2a. The 1st and
2nd bands are almost degenerate; so are the 3rd and 4th bands:
they concave down and touch the 5th band which concaves
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FIG. 1: Real-space unit cell and reciprocal-space BZ of the 3D
DG PhC. a, Real space geometry in a bcc unit cell wherea1 =
(−1,1,1) a

2 , a2 = (1,−1,1) a
2 anda3 = (1,1,−1) a

2 . The two identi-
cal gyroid structures of red and blue colors are high refractive index
(n = 4) materials; they are inversion pairs of each other with respect
to the origin(o). An air sphere (r/a = 0.13) located at( 1

4 ,− 1
8 ,

1
2)a

breaks the inversion symmetry of the system.b, The BZ of the bcc
lattice. Weyl points and linear line-degeneracies of investigation in
this letter always lie in the green plane through the origin(Γ). Γ-N is
along[101] andΓ-H is along[010](ŷ). c, An air-isolated DG surface
can be formed by terminating the perturbed gyroid (red) but not the
other (blue). The SG PhC on the top has a large complete bandgap
as shown in Fig. 2a.

up. The three-fold degenerate point is well isolated in fre-
quency from other parts of the dispersion diagram of the DG
bandstructure, making it an ideal starting point for applying
symmetry-breaking perturbations.

The three-fold degeneracy of quadratic dispersions atΓ can
be lifted by breaking theI4132 space group without breaking
P or T symmetries. This is done by replacing a part of the gy-
roid material with two air-spheres (one on each gyroid). The
first air-sphere is placed in the red gyroid at(1

4,− 1
8,

1
2)a, as

illustrated in Fig. 1a; and the other is its inversion pair in the
blue gyroid (not illustrated in Fig. 1a). This perturbation lifts
the 5th band out of the three-fold degeneracy with the 3rd and
4th bands atΓ, as shown in Fig. 2b. The 4th and 5th bands
linearly cross each other, forming a closed line-degeneracy
around theΓ point in theΓ-N-P-H plane, inside an other-

wise complete frequency gap. It is worth pointing out that
this bandstructure, although not exhibiting Weyl points, is in-
teresting in itself in analogy to the line-node semimetals [23].
We show its flat surface dispersions towards the end of this
paper.

In what follows, we break the PT symmetry to obtain Weyl
points of photons for the first time. We start with the struc-
ture from Fig. 2a. First, we break P while preserving T. Since
T maps a Weyl point atk to −k with the same chirality, there
must exist at least two other Weyl points, both of opposite chi-
rality, to neutralize the whole system. So the minimal num-
ber of Weyl points in this case has to be four. We break P
by placing only one air sphere on one of the gyroids (but not
the other) at(1

4,− 1
8,

1
2)a[34], as illustrated in Fig. 1(a). Un-

der this pure P-breaking perturbation[35], two pairs of Weyl
points, shown in Fig. 2c, emerge alongΓ-N andΓ-H direc-
tions. The fact that all the Weyl points appear along high-
symmetry lines significantly simplifies the analysis. Thereare
no other states in the vicinity of the Weyl points’ frequencies.

Second, DC magnetic fields (B), along different directions,
are applied to the original DG PhC structure in Fig. 2a to
break the T while preserving P. We assume the high-index gy-
roid material is gyroelectric and use a generic model [24] to
describe its magnetic response. WhenB is along ˆz, we assume
the permittivity tensor takes the form of

ε(|B|) =





ε11(|B|) iε12(|B|) 0
−iε12(|B|) ε11(|B|) 0

0 0 ε



 (1)

where det(ε(|B|)) = (ε2
11(|B|)−ε2

12(|B|))ε = ε3; this constant
determinant condition ensures the dispersions as a whole do
not move much in frequency with the external DCB fields.
The dimensionless effective magnetic field intensity is de-
fined as|B| ≡ ε12/ε in this paper. WhenB field is along
other directions, the correspondingε tensor can be obtained
through coordinate transformations. (Note the T-breakingcan
be equally well implemented viaµ for gyromagnetic mate-
rials [25].) Under this pure T-breaking perturbation, onlya
single pair of Weyl points emerges along the direction of the
magnetic field. This is the minimum number of Weyl points
that can exist under the inversion symmetry. These two Weyl
points are still frequency-degenerate: P maps a Weyl point at
k to −k with the opposite chirality. An example of this is
shown in Fig. 2d.

Third, we apply both P and T breaking perturbations at
the same time to observe the phase transitions between the
two(II) Weyl points in the pure T-breaking phase and the
four(IV) Weyl points in the pure P-breaking phase. Inter-
estingly enough, different magnetic field directions produce
strikingly different phase diagrams. WhenB is applied along
Γ-H, only two phases exist: the T-breaking dominated phase
(II) and the P-breaking dominated phase (IV). The pure P-
breaking phase, shown in the contour plot Fig. 2c, has four
Weyl points: two with positive chiralities alongΓ-H and two
with negative chiralities alongΓ-N. Applying magnetic field
along theΓ-H direction drives the two negative-chirality Weyl
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FIG. 2: Gapless photonic bandstructures of the DG PhCs without (a) and with perturbations (b,c,d). a, The original DG PhC bandstruc-
ture has a three-fold degeneracy atΓ among the 3rd, 4th and 5th bands in a pseudo-gap. The SG PhC has a huge frequency gap covering the
interesting frequency region of the DG PhC dispersion.b, We place the two air-spheres on the two gyroids: one air-sphere (r/a = 0.07) is
located at( 1

4 ,− 1
8 ,

1
2)a; the other is its inversion symmetric pair. Under this perturbation, the 4th and 5th bands linearly touch in a closed line

aroundΓ in theΓ-N-P-H plane. The linear crossing line is highlighted by a green stripe; this structure does not exhibit any Weyl points yet.
c, We apply a P-breaking perturbation by placing only one air sphere (r/a = 0.10) in one of the gyroids but not the other. Two pairs of Weyl
points appear(highlighted by the green circles): one pair appears alongΓ-H and the other pair appears alongΓ-N. d, We apply a T-breaking
perturbation (P conserves) by applying DC magnetic field (dimensionless|B|= 0.875) on the DG PhC without air-spheres. Only one pair of
Weyl points appears (highlighed by the green circle) along the direction of the magnetic field (Γ-N). Since P and T are not broken at the same
time in these PhCs,k and -k are degenerate in the bandstructures. A few lowest-value equi-frequency contours of the frequency difference
between the 4th and 5th bands are shown (hexagonal insets) for each bandstructure in theΓ-N-P-H plane; the contour spacing is 0.004 in
normalized frequency; “+” and “-” are used to label the chiralities of the Weyl points. All the dispersion behaviors close to the degeneracy
points in this figure can be well described by the low-energy-theory model in the supplementary material.

points towards the positive one alongΓ-H. Increasing the
magnetic field further annihilates two of the Weyl points of
opposite chiralities and the system enters the T-breaking dom-
inated phase which has only two Weyl points alongΓ-H. An
example where only T is broken is shown in Fig. 2d. Detailed
description of this phase diagram is shown in the supplemen-
tary Fig. A.

An even richer phase diagram, shown in Fig. 3, appears
when we switch the magnetic field to theΓ-N direction. The
system undergoes two phase transitions from the P-breaking
dominated phase(IV) to the T-breaking dominated phase(II).
The extra intermediate phase(VI) of six Weyl points is gen-
erated when one of the negative-chirality Weyl points in the
pure P-breaking phase (red contour plot) splits (orange con-
tour plot) into three Weyl points (blue contour plot) under the
increasingB field. Among these three Weyl points, the origi-
nal Weyl point flips its chirality from negative to positive;the
other two negative Weyl points move away from their creation
position towards the neighboring two positive ones. The two
pairs of Weyl points eventually meet (green contour plot) and
annihilate simultaneously, leaving the remaining two Weyl
points (purple contour plot) along the direction of the mag-
netic field(Γ-N). When two Weyl points annihilate, the band
dispersions are quadratic along the directions in which they
meet.

In general, P-T phase diagrams depend on the form of the
perturbations: the DC magnetic field can be oriented along an
arbitrary direction; in addition, there are many differentways
to break the inversion symmetry.

Weyl points are topologically stable objects in the 3D BZ:
they act as monopoles of Berry flux in momentum space, and
hence are intimately related to the topological invariant known
as the Chern number [26]. The Chern number can be defined
for a single bulk band or a set of bands, where the Chern num-
bers of the individual bands are summed, on any closed 2D
surface in the 3D BZ. The difference of the Chern numbers
defined on two surfaces, of all bands below the Weyl point fre-
quencies, equals the sum of the chiralities of the Weyl points
enclosed in between the two surfaces [15]. In particular, we
illustrate in Fig. 4a, the Chern numbers of the 2D planes per-
pendicular toΓ-H(ŷ); they are closed surfaces in the 3D pe-
riodic BZ. The first contour plot (red), of a pure P-breaking
phase in Fig. 3, is used as an example. The Chern number of
all lower bands on the plane is plotted in light blue on the left
side. The Chern number vanishes when the plane is outside
of the Weyl points. It changes by one when the plane moves
across one Weyl point and changes by two when the plane
crosses two Weyl points of the same chirality.

As a result of the non-zero Chern number of all the lower
bulk bands (1st, 2nd, 3rd and 4th), there exists topologically-
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FIG. 3: Phase diagram of the Weyl points when the magnetic field is applied along Γ-N. Each phase is labeled by the number(Roman
numerals) of Weyl points. The phase transition line is foundby scanning theB field amplitude in the calculation for three different P-breaking
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Fig. 1b.

protected gapless chiral surface states inside the bandgap(be-
tween 4th and 5th bands) away from the Weyl points [27]. In
order to prevent the surface states from radiating into air,we
interface the DG PhC with an SG PhC by removing only the
perturbed gyroid above the (101) surface: this is illustrated in
Fig. 1c. The surface states of finiteky, are trapped by the par-
tial gap of the DG PhC and the full 3D gap of the SG PhC. We
define a termination parameterτ(0 ≤ τ < 1) to indicate the
periodically equivalent termination positions along the [101]
direction.τ = 0 is set at the origin of the unit cell as shown in
Fig. 1c. An example of the non-trivial gapless surface disper-
sion, along a line cut in the 2D surface BZ in Fig. 4a, is plot-
ted in Fig. 4b. A surface mode profile is also shown. Since
T is not broken in this example, the surface dispersions are
degenerate betweenk and−k, while Chern number flips sign
under T symmetry. This means the surface modes have oppo-
site chiralities when travelling along+ŷ and−ŷ directions at
the same frequency. The above analysis on Chern numbers
and surface modes applies for states along other directions
and for other Weyl phases as well. We stress that the non-
zero Chern numbers and the associated chiral surface states
in this example are obtained without breaking T [1, 25]; thus,
this phenomenon is readily realizable at optical frequencies.

The surface states of the other two gapless PhCs in Fig.
2a and b do not involve non-zero Chern numbers, but they

can exhibit very flat bands which is also an interesting fea-
ture. Fig. 5a shows one surface state of the DG PhC of
quadratic point-degeneracy in the bulk pseudo-gap. When
τ varies periodically, the surface dispersion, at every surface
k point, moves from the air-band(conduction band) through
the pseudo-gap to the dielectric-band(valence band) [28].At
the center of the BZ, the surface dispersion is pinned into the
bulk states at the degeneracy point. The surface dispersionof
τ = 0.0, apart from theH-P region, is very flat. The high
density of states associated with the flat surface dispersion
can be potentially useful for enhancing the efficiency of light-
emitters at the surface. Even more interesting surface states
are shown in Fig. 5b for the line-node PhC. The nodal line
bulk states project onto the surface BZ as a closed line which
separates the surface BZ into two disconnected areas. So the
surface dispersions can be flat bands in these two separate re-
gions of the BZ. The green dispersion in Fig. 5b has all its
frequencies nearly degenerate inside the line-node area; while
the red dispersion is relatively flat in the rest of the BZ. The
general features of the flat surface dispersions do not change
when the line-node PhC is terminated by other means. For
example, when the SG PhC is replaced by air, one could se-
lectively enhance, by changing the surface termination, the
light emission of surface sources into either radiative or non-
radiative modes.
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In conclusion, this letter provides a detailed design of the
minimum numbers of frequency-isolated Weyl points and line

nodes along the high-symmetry lines and planes in the BZ of
the DG PhCs. Complete P-T phase diagrams are investigated
through annihilations and creations of the Weyl pairs. The
topologically non-trivial surface states of Weyl-point PhCs
and flat surface dispersions of line-node PhCs are presented.
This work potentially opens doors to new paradigms in pho-
tonics: topologically-protected chiral surface states realizable
at optical frequencies for the first time, radiation-controllable
photonic density of states enhanced by flat surface disper-
sions, novel transmission properties of light in the vicinity
of the degeneracy frequencies, and other unconventional phe-
nomena associated with the density-of-states and dispersions
of the close to the degeneracy points that were not available
before. Experimentally, our design can be realized with many
available techniques. Germanium can either be directly syn-
thesized [29] into DG strucutures or backfilled [30] into DG
polymer templates made by block-copolymers [31] or inter-
ference lithography [32]. The templates for geometrically-
perturbed DGs can be made by 3D lithography or 3D printing.
All presented results without magnetic fields are readily real-
izable with Germanium at optical frequencies; Weyl phases
involving T-breaking can be readily demonstrated with gyro-
magnetic materials at microwave frequencies [25].
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FIG. A: Phase diagram of Weyl points when the magnetic field is applied alongΓ-H. Each phase is labeled by the number(Roman numerals)
of Weyl points. We start with the structure from Fig. 2a: the gray contour plot. The phase transition line is found byscanning theB field
amplitude in the calculation for three different P-breaking strengths. The pure P-breaking phase (x-axis) is highlighted in red; it is realizable
at the optical frequencies with essentially lossless materials. Six 2D contour plots show the locations of the Weyl points at representative
positions in the phase diagram. The contour plots share the same color as the circles of their corresponding positions inthe phase diagram.
A few lowest-value equi-frequency contours of the frequency difference between the 4th and 5th bands are shown in each contour plot. The
contour spacing is 0.002 in normalized frequency. “+” and “-” are used to label the chiralities of the Weyl points. Two surface plots show the
entire band dispersions of the 3rd, 4th and 5th bands for two particular cases of the contour plots.

In Fig. A, whenB is alongΓ-H, only two phases exist: the T-breaking dominated phase(II) and the P-breaking dominated
phase(IV). The phase transition line is found by scanning|B| for different P-breaking strengths (radii of the air spheres). The
annihilation and creation of Weyl points are shown by contour plots in a 2D BZ slice(green plane in Fig. 1b), where all the
Weyl points in this letter happen to be located. The pure P-breaking phase, third(from left) contour plot in red, has fourWeyl
points: two with positive chiralities alongΓ-H and two with negative chiralities alongΓ-N. Applying magnetic field along the
Γ-H direction drives the two negative-chirality Weyl pointstowards the positive one alongΓ-H (blue contour plot). On the phase
transition line where the three Weyl points meet (green contour plot), the dispersions of the two bands are cubic(±|k3|) along
the direction which they meet, but still linear in other directions ink space. Increasing the magnetic field further annihilates two
of the Weyl points of opposite chiralities and the system enters the T-breaking dominated phase(II) which has only two Weyl
points (purple contour plot).

http://arxiv.org/abs/1207.0478v1
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MODEL OF LOW ENERGY THEORY

In order to further elucidate the physics and to tie our work more closely to the Weyl fermions in electronics, we constructed
a three-band effective Hamiltonian(H0) with three perturbation terms(V1, V2 andV3) to model the 3rd, 4th and 5th bands of the
DG PhC system. This model reproduces qualitatively all the bandstructures in Fig. 2 and the phase diagram in Fig. A. In order
to reproduce the phase diagram of Fig. 3, a more intricate model is required.

H(k) = H0(k)+V1+V2(k)+V3

H0(k) = α1|k|2−α2|k·L |2

V1 =−γ1(|L · n̂p|2−1)

V2(k) = γ2(k· n̂0)(L · n̂0)

V3 = β (L ·B)

(1)

HereL = (Lx,Ly,Lz) whereLx =





0 0 0
0 0 1
0 −1 0



, Ly =





0 0 −1
0 0 0
1 0 0



 andLz =





0 1 0
−1 0 0
0 0 0



. L is the angular momentum;

it is odd under T and even under P.n̂p = 1√
2
(1,0,1) is perpendicular to theΓ-N-P-H plane where all the degeneracies lie in.

n̂0 =
1√
2
(−1,0,1) is alongΓ-N. B is the external magnetic field.α1, α2, γ1, γ2 andβ are positive real parameters that control

the relative strengths of the different terms in the Hamiltonian.
The original HamiltonianH0[1] produces the three-fold quadratic degeneracy at zero energy, same as the PhC bandstructure

at Γ in Fig. 2a. α1 controls the curvature of the top band;α2 controls the curvatures of the two degenerate bands concaving
down.

PerturbationV1 breaks neither P nor T symmetries. This perturbation lifts the three-fold degeneracy atΓ while keeping the
quadratic degeneracy between the lower two bands at zero energy: this reproduces the linear line-degeneracy result in Fig. 2b.

PerturbationV2 breaks P.V1 andV2 together reproduce the two pairs of Weyl points alongΓ-N andΓ-H in Fig. 2c.
PerturbationV3 breaks T. When this perturbation is turned on alone, a pair ofWeyl points of opposite chiralities emerge along

the direction of the magnetic field (B̂), which is consistent with our PhC result in Fig. 2d.
When all three perturbation terms are non-zero, this model reproduces the same II-IV phase diagrams in Fig. A (i.e. whenB

is alongΓ-H).

ACCIDENTAL LINEAR-DEGENERACIES

2D or 3D linear dispersions of two bands can also exist when being accidentally degenerate among other bands at the Bril-
louin zone(BZ) center; but those points do not possess any topological features[2–4], so they are quite different from the work
presented here.
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