
The Dynamics of Geometrically

Compliant Mooring Systems
by

Jason I. Gobat
S.M., MIT/WHOI Joint Program (1997)

B.S., University of California, San Diego (1993)
B.A., University of California. San Diego (1993)

Submitted to the
Department of Applied Ocean Physics and Engineering, WHOI

and the
Department of Ocean Engineering, MIT

in partial fulfillment of the requirements for the Degree of

Doctor of Philosophy in Oceanographic Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
and the

WOODS HOLE OCEANOGRAPHIC INSTITUTION

June 2000

@ Jason I. Gobat, 2000
All rights reserved

The author hereby grants to MIT permission to reproduce and distribute publicly
paper and electronic copies of this thesis document in whole or in part, and to

grant others the right to do so.

Author ........ ................................................
Department of Applied Ocean Physics and Engineering, WHOI

Department of Ocean Engineering, MIT
April 25, 2000

Certified by ...... ..............
Dr. N'ark A. Grosenbaugh

Associate Scientist
Thesis Supervisor

Accepted by... ................
Prof. Michael S. Triantafyllou

Professor of Ocean Engineering
Chairman, Joint Committee on Oceanographic Engineering

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

NOV 2 9 2000

LIBRARIES





The Dynamics of Geometrically Compliant Mooring Systems

by

Jason I. Gobat

Submitted to the
Department of Applied Ocean Physics and Engineering, WHOI

and the
Department of Ocean Engineering, MIT

on April 25, 2000 in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy in Oceanographic Engineering

Abstract

Geometrically compliant mooring systems that change their shape to accommodate defor-
mations are common in oceanographic and offshore energy production applications. Be-
cause of the inherent geometric nonlinearities, analyses of such systems typically require
the use of a sophisticated numerical model. This thesis describes one such model and uses
that model along with experimental results to develop simpler forms for understanding
the dynamic response of geometrically compliant moorings.

The numerical program combines the box method spatial discretization with the
generalized-a method for temporal integration. Compared to other schemes commonly
employed for the temporal integration of the cable dynamics equations, including box
method, trapezoidal rule, backward differences, and Newmark's method, the generalized-a
algorithm has the advantages of second-order accuracy, controllable numerical dissipation,
and improved stability when applied to the nonlinear problem. The numerical program is
validated using results from laboratory and field experiments.

Field experiment and numerical results are used to develop a simple model for dynamic
tension response to vertical motion in geometrically compliant moorings. As part of that
development, the role of inertia, drag, and stiffness in the tension response are explored.
For most moorings, the response is dominated by inertial and drag effects. The simple
model uses just two terms to accurately capture these effects, including the coupling
between inertia and drag. The separability of the responses to vertical and horizontal
motions is demonstrated and a preliminary model for the response to horizontal motions
is presented.

The interaction of the mooring line with the sea floor in catenary moorings is con-
sidered. Using video and tension data from laboratory experiments, the tension shock
condition at the touchdown point and its implications are observed for the first time. The
lateral motion of line along the bottom associated with a shock during unloading may be
a significant cause of chain wear in the touchdown region. Results from the laboratory
experiments are also used to demonstrate the suitability of the elastic foundation approach
to modeling sea floor interaction in numerical programs.

Thesis Supervisor: Dr. Mark A. Grosenbaugh
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Chapter 1

Introduction

A mooring system is typically understood as any type of cable, chain, rope, or tether

assembly that connects a floating or subsurface buoyant object (ship, buoy, platform) to an

anchoring system fixed on the sea floor. The floating object will move with environmental

forcing, but the mooring system will contain the movements to some area (the watch circle)

centered about the anchoring system. Any mooring system must provide compliance or

flexibility to accommodate deformations induced by currents and by forcing with periods

ranging from hours (tides) to seconds (wind waves) without over-tensioning the system

components.

This flexibility is typically achieved either through the use of elastically compliant

members such as rubber tethers or long lengths of synthetic rope, or through geometrically

compliant configurations in which the system accommodates deformations by changing

shape without stretching. The geometrically compliant approach is more common in

situations where adequate compliance or a combination of strength and compliance cannot

be provided by taught elastic members. This is the case in extremely shallow water, where

the lengths of the rope or tethers are so short as to limit their compliance. Geometric

compliance is also often found in offshore deep water applications where the pipe sections

can be made relatively flexible in bending (through the use of short lengths of pipe and

flexible joints), but not in axial stretching. Examples of geometrically compliant mooring

shapes are shown in figure 1-1.

The shallow water mooring shown in figure 1-1(a) illustrates the type of mooring typi-

cally used to moor oceanographic, meteorological, and aids-to-navigation buoys in shallow
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Figure 1-1: Examples of geometric compliance in mooring and riser systems: (a) shal-

low water buoy mooring, (b) deep water oceanographic mooring, and (c) lazy wave riser

configuration.

water (on the order of 100 m) [5, 13]. The typical mooring for this sort of application

consists entirely of lengths of chain, with instruments possibly attached between chain

segments. We say that this type of system is geometrically compliant because its primary

mechanism to accommodate the motion of the buoy is to lift and lower chain to and from

the bottom, thus changing its shape. As long as chain remains on the bottom in the

steady state configuration, the system is typically more flexible geometrically than it is

elastically.

The advantages to this arrangement include very high strength due to the use of chain

as the primary strength member, and the ability to deploy this configuration in a variety

of water depths. The primary disadvantage to this type of mooring is the need for regular

replacement of the chain near the bottom of the mooring due to the abrasion of the chain

on the sea bed [5,23]. A recent alternative to this type of mooring uses elastic tethers as

the primary compliance mechanism [57,77]. These systems feature significantly reduced

tensions in most sea conditions because of the much lower mass of the tethers compared

to chain moorings. Drawbacks to elastic tether moorings include the inability to place

instruments along the tether and their susceptibility to cutting, either in an accident or

through vandalism.

The second type of system in figure 1-1 is an increasingly popular configuration for deep

water surface moorings for oceanographic applications [31]. Variations on this shape are

also used to moor meteorological buoys [13]. The s-curve in the mooring shape is achieved

through careful placement of flotation and ballast along the line. The location of this curve

at mid-depth allows for geometric compliance without a rigid bottom. Previous deep water

22



surface moorings achieved compliance through the incorporation of long lengths of highly

stretchable synthetic rope [5]. The advantage to the geometrically compliant system in

figure 1-1(b) is the ability to run conductive electromechanical cable along the full length

of the mooring to bring signals from subsurface instruments to the surface for telemetry.

Elastically compliant electromechanical members have only recently been introduced [75,

76] in the oceanographic community and are difficult to handle and relatively expensive,

particularly for very long lengths.

Both of the above described mechanisms, an s-shape at mid-depth, and a catenary

shape along the bottom are often employed together in offshore energy production systems,

as pictured in figure 1-1(c). In this case the mooring line of interest is typically a pipe

running from the platform to the wellhead. The platform may also be anchored (anchoring

lines not shown in figure 1-1(c)) at multiple points by taut synthetic lines or heavy chain

and wire lines forming a catenary similar to that described for the shallow water buoy

mooring. The need for geometric compliance in the riser pipe arises from the inflexibility

of these pipes to axial (elastic) deformation.

As a final consideration in this brief overview of compliant moorings, it should be noted

that in addition to achieving compliance through the mooring line, either geometrically

or elastically, it is possible in some cases to introduce compliance at the surface by using

buoys or platforms which have a very low natural frequency (very far below typical wave

frequencies) such as a spar buoy. This effectively puts a very soft compliant element

between the wave forcing and the mooring line. Because spar buoys are very long and

slender, they typically have low reserve buoyancy and are difficult to handle.

All of the systems pictured in figure 1-1 provide significant compliance to surface wave

motions under most conditions. One well known mode under which these configurations

do not provide good compliance is in the case of large currents that pull the geometric

shaping out of the mooring. The impact of this failure mode can be lessened with the

addition of elastic compliance into the design. The geometric compliance in these systems

can also break down during a large storm in which the ability of the mooring to change

shape may be limited by fluid drag on the cable. This second failure mode is more difficult

to design for as it can occur even in conditions under which the static shape is preserved

and may not be alleviated by secondary elastic compliance. Finally, for cases with cable

resting on the sea floor, friction, adhesion and the elasticity of the bottom can affect the
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ability of the system to deform geometrically. A loss of geometric compliance as a result

of any of these mechanisms can lead to dangerously high tensions. A detailed analysis

of geometrically compliant systems, which will lead to better prediction of these types of

failures, is the primary goal of this thesis.

1.1 Analysis of compliant systems

Much of the recent analytical work relating to geometrically compliant systems has been

conducted in the context of calculating the contribution of the mooring line damping to

the overall system dynamics. Brown et al. [7] provide a review of much of the literature

to date in this area. Most of the work has focused on frequency domain quasi-linearized

numerical solutions for the slow drift case. Extensive model scale tests have also been

carried out [55, 59, 67].

Large floating structures (ships, offshore platforms) typically have little damping and

low natural frequencies for motions in the horizontal plane. For these large structures,

mooring tensions at wave frequencies are much smaller than the excitation forces. At lower

frequencies, the mooring forces and wave forces are more comparable. Thus, the damping

provided by the motion of the mooring system plays a critical role in the response of these

structures to slow drift motions [59, 96].

Motions and dynamic tension at wave frequencies are often ignored in these studies.

This allows for a simplified treatment of the dynamics. For example, Nakamura et al. [67]

used catenary formulae to calculate the integrated quasi-static velocity and acceleration

along the mooring. These integrated motions allowed them to write the dynamic tension

due to slow drift motions in a very simple form.

In the analyses of compliant systems developed in this thesis, the quantity of interest is

typically dynamic tension rather than platform motion. Such an approach is particularly

relevant in oceanographic applications where the motion of the surface platform may not

be critical, but dynamic tension is dominated by wave induced motions. Knowledge of

the tension is critical in these applications because components are typically not specified

with large safety factors for fatigue and ultimate failure (both for cost and ease of handling

reasons).

Several authors have considered the impact of wave frequency dynamics on the slow
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drift damping problem. Huse and Matsumoto [52-55] used a linearized finite element

model to compute the mooring line damping in the presence of a slow drift regular motion

superposed with a spectrum of high frequency first-order wave motions. Their calculations

showed that the damping was two to four times higher when the high frequency motions

were taken into account. Similar results were obtained by Dercksen et al. [22] and Fylling et

al. [32] with more sophisticated numerical models.

In other work that looked at both slow drift and wave frequency excitation, Web-

ster [99] characterized the mooring line damping of a non-dimensionalized catenary riser

system (a system shaped like that shown in figure 1-1(a)) as a function of static tension,

excitation frequency and amplitude, scope, stiffness, drag, and current. The excitation

was sinusoidal and either purely vertical or purely horizontal. The numerical model that

he used was a time-domain nonlinear finite element code.

Webster [99] also briefly touches on the "impedance" of mooring systems which he

describes in terms of the trade-offs between geometric and elastic compliance. This is a

concept first introduced by Triantafyllou et al. [94] to characterize the ratio of elastic to

catenary stiffness. They noted that fluid drag limits the ability of the mooring to deform

geometrically and as a result, dynamic tensions increase.

1.2 Bottom interaction

An important part of the response in many geometrically compliant systems is the inter-

action of grounded line with the sea floor. Several recent papers have described numerical

methods for modeling this interaction [16,56,63,89, 90]. To date, however, these models

have not been used to extensively analyze the implications of the bottom interaction on

the total mooring response.

Thomas and Hearn [91] and Liu and Bergdahl [63] examined the bottom interaction

problem in the context of mooring line damping. The results from both papers suggest

that bottom interaction effects do contribute to mooring line damping, with the in-plane

friction being more important than the out-of-plane effects [91].

Aranha et al. [2], Pesce, Aranha, and Martins [79], and Pesce et al. [80] have examined

the curvature of riser pipes in the touchdown region using an analytical boundary layer

approximation. Their goal is to provide better predictions of the bending moment to re-
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duce fatigue failures. Some of the background for their analytical approach comes from

work by Burridge et al. [12] and Burridge and Keller [11] for the motion of a string on

a unilateral constraint. That work demonstrated that a shock wave will form when the

velocity of the touchdown point exceeds the transverse wave speed of the cable. The ana-

lytical development in Aranha et al. [2] assumes that the touchdown point speed is always

below this critical limit. No work has been performed that examines the implications for

mooring dynamics when this assumption does not hold and shock waves do form.

1.3 Modeling tools

The problem of predicting the steady state configurations and transient motions of pipe,

hose, cable, chain, and rope systems in a marine environment is encountered in numerous

applications. Oftentimes, the methods of solving the problem seem equally numerous.

Buoy and ship moorings, offshore platforms, and towed systems are often analyzed in very

different ways, yet are at heart very similar types of structural systems.

In a 1970 survey paper, Casarella and Parsons [14] compiled an extensive list of work

related to the hydrodynamic response of cable systems. Their history starts with analytical

work dating from 1917 to calculate the steady state configuration of cables in air. Through

1950, treatments of the steady state problem dominated the literature in this area, with

the first dynamic models for cables in water appearing in 1957. Thomas [90] provides

a detailed summary of the development of the modern dynamic models, beginning with

Walton and Polachek's paper in 1960 [98], and emphasizing developments in the literature

from the offshore energy field.

The model developed as part of this thesis provides a nonlinear time-domain solution

to the mooring dynamics problem. The other modern models described below can be

similarly classified. Other types of models include frequency domain and linearized or

quasi-static time domain models. While attractive for their computational efficiency, these

latter types of models are typically not used for the types of highly nonlinear motions that

are inherent in the phenomena that are analyzed in the thesis.
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1.4 State-of-the-art time-domain models for mooring sys-

tems

Numerical models for mooring systems can be categorized in several different ways. The

most often cited distinguishing characteristic of a model is the method used to discretize

the physical system in space. Among the most common methods are finite elements,

finite differences, and lumped parameter. While there is more universal agreement on

the temporal discretization method (most use finite differences), there is some variation

in the way that the temporally discretized equations are integrated in time. Beyond

these distinctions are the mathematical and physical features incorporated by the various

models such as bending stiffness, sea bed interaction effects, and treatment of vortex-

induced vibrations.

1.4.1 Spatial discretization

Walton and Polachek [98] published the first treatment of the dynamic solution that re-

sembles very closely the solution methods in use today. They formulate the equations of

motion for discrete elements and use centered finite differences to discretize the time deriva-

tive terms and step the solution forward in time. With the addition of cable extensibility

by Polachek et al. [81], a remarkably complete treatment of the nonlinear time domain

problem existed as early as 1963. This first solution, using a force balance on discrete

elements to write the equations of motion is what we now categorize as a lumped parame-

ter method. The terminology arises from the lumping of the mass and externally applied

forces at adjacent nodes which are joined by massless springs. This discretization approach

has an intuitive simplicity to it and as such is relatively easy to implement. Recent models

that make use of this approach are described by Huang [47] and Thomas [90,91].

In contrast to the summation of forces approach used by lumped parameter methods,

finite element methods derive their governing equations through principles of virtual work.

One advantage of this approach is the possibility of a more sophisticated treatment of

mass. Lumped parameter derivations must necessarily place all mass at discrete nodes

and then write the governing equations. Finite element methods can derive the governing

equations using an integration of the mass over the entire element, thus leading to the

"consistent" mass formulation [62]. The starting point for finite element methods as

27



applied to the marine cable problem is typically a discrete element, much like the lumped

parameter methods. Examples of such derivations include Engseth [28] and McNamara et

al. [64]. Paulling and Webster [78], following Garrett [33], take the alternative approach

of formulating differential equations of motion which are solved by the substitution of a

discrete collection of shape functions which minimize the element energy. The majority

of state-of-the-art programs currently being used for riser modeling are based on finite

elements [611.

A third approach is to write the continuous partial differential equations and then ap-

ply a spatial discretization scheme based on finite differences. This is the approach taken

by Ablow and Schechter [1] among others. We distinguish between this and lumped pa-

rameter methods based on the starting point, which in this case is an infinitesimally small

differential element and in the lumped parameter case is a finite discrete element. Given

similar physical assumptions the two methods are entirely equivalent, as demonstrated by

Huang [47]. The distinction between this and the lumped parameter approach is based

largely on the applications of the method. Many of the numerical solutions for tow cable

dynamics have used finite differences of the continuous partial differential governing equa-

tions. Another reason for the distinction in this case is simply that, to date, most pure

lumped parameter methods do not include the effects of bending stiffness in the equations

of motion [91]1. Authors deriving continuous forms of the governing equations have easily

incorporated this effect [10,46,93]. The model development detailed in chapter 2 is based

on this approach.

Finally, a few alternatives to the spatial discretizations outlined above have appeared

in the literature. Chiou and Leonard [17] and Sun et al. [86] describe the Direct Inte-

gration Method, whereby a boundary value problem is recast as a set of initial value

problems. Each initial value problem is integrated spatially from a boundary with known

boundary conditions, and the solutions from these integrations are combined to form a

total solution that satisfies all boundary conditions. Because the initial value approach

allows for explicit numerical integration in space, the method has the advantage that the

solution of large linear systems of equations typical in implicit finite difference and finite

element schemes can be avoided. There is of course a spatial discretization implied by the

Buckham and Nahon [9] have recently incorporated bending effects into a lumped parameter model for
low tension ROV tethers.
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numerical integration of the transformed governing equations. Sun et al. [86] point out

the need for a method to suppress any spurious solution components that may grow as

the spatial integrations proceed along the cable. Another alternative scheme is collocation

which breaks the cable into a small number of segments and fits high order Chebyshev

polynomials as a solution to the governing equations over each region [15].

1.4.2 Temporal discretization

For all spatial discretization methods the resulting equations are typically written as a

non-linear matrix equation known as the semi-discrete equation of motion, because the

time derivatives of the vector of dependent variables are left as continuous functions.

The exception to this procedure is in finite difference based solutions which typically

are differenced both in space and in time as part of the same process. This leads to

yet another distinction between lumped parameter and finite difference approaches. The

starting point for a finite difference method is typically a set of first-order hyperbolic

partial differential equations. The equations of motion for lumped parameter schemes

are most often presented in matrix form as a system of second-order ordinary differential

equations - the semi-discrete equation of motion.

Most temporal integration schemes in use today have their roots in the method devel-

oped by Newmark [70]. Hughes and Belytschko [50] provide a summary of the development

of these types of methods in the context of linear finite element structural dynamics. The

methods typically employ temporal finite differences, with a variety of different schemes

used to interpolate the solution over the time step. Most classical methods can now

be cast into unified multi-parameter integration schemes where an adjustment in the

parameters leads to one of several different methods with different numerical properties

(e.g., [44,100,102]). Thomas [90] studied the three "classic" methods (Newmark, Houbolt,

and Wilson-0) and their applicability to the mooring dynamics problem. He concluded

that Houbolt was the best choice. This is not a surprising result - earlier, Park [74] noted

that Houbolt was a good choice for highly nonlinear problems. Thomas did not consider

any of the more modern developments in time integration that are taken up in more detail

in chapter 2.

In addition to Newmark and its variants which are popularly employed with finite

element based models, researchers in the cable dynamics field have employed a variety of

29



different schemes for the temporal integration problem. Chiou and Leonard [17] use simple

backward finite differences. Sun et al. [86] use the generalized trapezoidal rule which is a

first-order variant of the Newmark method; it will be discussed in some detail in chapter 2.

Garrett [33] and Paulling and Webster [78] use the Adams-Moulton method, which in

first-order form reduces to the trapezoidal rule. Sanders [84] used a computationally

expensive but fourth-order accurate Runge-Kutta procedure. This is unusual in that most

researchers have accepted first- or second-order accuracy in order to reduce computational

expense.

The most popular finite difference scheme is the box method, in which the governing

equations are discretized on the half-grid point in both space and time. This method was

first employed for the solution of tow cable dynamics by Ablow and Schechter [1]. Since

then it has been employed in both towing and mooring applications by Milinazzo et al. [65],

Howell [46], Tjavaras [93], and Chatjigeorgiou and Mavrakos [15] among others. As will

be shown, the temporal portion of this discretization is a special form of the generalized-a

method to be developed in chapter 2. That development will also demonstrate that the box

method is seldom the best choice of temporal discretization schemes for the cable dynamics

problem. In a recent paper, Koh et al. [60] came to this same conclusion and proposed a

modified box method that used backward differences for the temporal discretization.

1.4.3 Forcing, boundary, and material effects

There is little disagreement in the proper method of incorporating fluid forces, including

buoyancy, viscous drag, and added mass forces, into state-of-the-art numerical codes.

As late as 1970, Casarella and Parsons [14] did choose to distinguish between models

according to the treatment of drag and whether or not tangential drag was included, but

there do not appear to be any significant differences between modern approaches. Likewise,

Breslin [6] laid the groundwork for a consistent treatment of buoyancy and effective tension

in modern codes. One significant source of hydrodynamic forcing that has not yet been

fully incorporated into a nonlinear time domain code is vortex-induced vibrations. This

is an area of active research [95].

The numerical treatment of the interaction of the cable with the sea bed is also an

area of active research. Three basic approaches are prevalent in the literature. Frequency

domain models (e.g., [94]) and some time domain models (e.g., [89]) cut the mooring off
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at the touchdown point and attach an equivalent linear spring and/or dashpot. This

approach is only valid for small dynamic motions about the static touchdown point. A

second method is the lift-off and grounding approach described by Nakajima et al. [66]

and Thomas [90]. In this method, the mass of the discrete nodes or elements is reduced to

zero as they approach the bottom. This simulates a perfectly rigid bottom with no impact

loads (a smooth rolling and unrolling of the cable, similar to the analytical calculations

of Aranha et al. [2]). Thomas noted significant numerical difficulties associated with the

implementation of lift-off and grounding. The third approach is to model the sea bed

as an elastic foundation. This method has been used by Inoue and Surendran [56] and

Webster [99]. It is relatively easy to implement and places few restrictions on the types of

systems that can be modeled. The primary difficulty with this method is in determining

appropriate elastic and damping constants to associate with a given type of soil. The

elastic foundation approach is the basis for the bottom interaction model developed as

part of this thesis.

For material effects, modern codes may or may not include the effects of material non-

linearities or bending stiffness. There is little disagreement, however, on the conditions

under which these effects should be included if an accurate response calculation is to be

made. Most finite element codes, developed for riser systems that are built from relatively

large diameter metal pipes, do include bending stiffness, but may neglect material non-

linearities without a significant loss of accuracy. In the oceanographic community where

small diameter synthetic mooring lines are common, material nonlinearities can be impor-

tant and bending stiffness can often be neglected. Some codes employ a hybrid approach

whereby bending stiffness is included only in low tension regions as a numerical smooth-

ing effect (e.g., [87]). A general purpose code should allow for both linear and nonlinear

materials and for materials with and without bending stiffness.

1.5 Overview of the thesis

Chapter 2 describes the development of the generalized-a method for the time integration

of the cable equations. As an example, the governing continuous partial differential equa-

tions for mooring lines in two dimensions are presented and the reduction to semi-discrete

form, using spatial finite differences, is derived. The analysis of the stability of a time
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integration scheme is introduced using the stability of the box method as an example.

Potential problems with the box method are described and alternative methods are ex-

plored. The generalized-a method is introduced and the stability and accuracy of the

method as applied to the cable equations are presented. Comparison is made between the

new method and many of the previously used methods, including backward differences

and the generalized trapezoidal family.

Additional details about the numerical program, including boundary conditions and

the handling of bottom interaction effects, are described in chapter 3. The algorithms

used for spatial mesh refinement and adaptive time stepping are also described. Details

not provided in chapter 3 are given in the appendices.

The field experiment is described in chapter 4. The centerpiece of the experiment was

a heavily instrumented all chain mooring. Mooring hardware and instrumentation are

described. Calibration and data quality issues are also discussed.

The model is validated and the numerical parameters used in the model are studied in

chapter 5. The validation is based on analytical and experimental results for a laboratory

scale hanging chain problem and on full-scale mooring data from the experiments described

in chapter 4.

Chapter 6 details a statistical and analytical study of the different contributions to

the dynamic tension in geometrically compliant systems. These contributions are char-

acterized as drag, stiffness (geometric and elastic), and inertia. The study is based on

experimental data and extensive numerical runs. Statistical and spectral analyses are

used along with parametric numerical studies to isolate each of the different tension mech-

anisms. The result of these analyses is a very simple model that can be used to predict

dynamic tension given a basic characterization of mooring properties, steady state tension,

and sea state parameters. The chapter concludes with an investigation of the effect of the

directionality (vertical, horizontal, vertical and horizontal, fully three-dimensional) of the

input motion.

A detailed examination of the interaction between the mooring line and the bottom

is presented in chapter 7. This includes numerical and laboratory simulations of cases

where there is significant buckling of the line in the region near the touchdown point. The

implications of the shock condition at the touchdown point are also considered.

Conclusions and recommendations for follow-on study are presented in chapter 8.
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1.6 Original contributions

The numerical program developed in this thesis is based on that of Tjavaras [93] and

Howell [46]. In the thesis, the program is extended to include bottom interaction effects

and adaptive discretizations in time step and mesh density. A new temporal integration

scheme, the generalized-a method, is developed and placed in the context of the recent

structural analysis literature. An analysis of the stability and accuracy of the overall

procedure is presented and comparisons are made with other schemes. The new procedure

has substantially improved stability properties when compared to the old method. The

model validation detailed in chapter 5 is new for this particular numerical model.

The analysis of dynamic tension in geometrically compliant systems in chapter 6,

using regular and random, vertical, horizontal and three-dimensional input motions, and

a broad range of hydrodynamic and material parameters, is more extensive than any of the

previous work in this area. The approach to and the development of the simple formula

for predicting dynamic tension in these system is unique to this thesis.

Finally, the consideration of the extreme responses of the mooring line on the bottom

is new. Previous authors [2,94] have limited their analyses to the subsonic case. This is the

first time that the shock criterion has been experimentally verified and the implications

of the tension shocks observed and discussed.
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Chapter 2

Development of the Time

Integration Algorithm

2.1 Governing partial differential equation

Detailed derivations of the three-dimensional dynamic governing equations for a cable with

bending stiffness suspended in water are provided by Tjavaras [93]. For completeness, a

derivation of the two-dimensional equations, upon which the analyses presented in this

chapter are based, is provided in Appendix A. While the procedure developed below can

be applied equally well to both two- and three-dimensional models (as will be illustrated

through the use of both in subsequent chapters), the two-dimensional equations are used

here for simplicity and succinctness; the two-dimensional model requires six equations

where the three-dimensional model requires thirteen. The two-dimensional equations for
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a nonlinearly elastic cable with bending stiffness in steady current are

-(E) -Sn -m +mv- -w0  cos#
8s 8s at at

p,drCdu, |ur 11 j +c = 0, (2.1)
2

aSn ao qv [rd2 9
+T(E) -(m +ma) mu+ pd +ma (Ucos+V sino)

as as 9t 4 at
1

+ wo sinq - 2pwdCdnVr IVrI V1 + = 0, (2.2)

au a c = 0 (2.3)

av as at9V+ U 9- (I + 6) = 0, (2.4)(9s as at

--0 - 03 = 0, (2.5)as

a0 3El + Sn (1 + E)3 = 0. (2.6)
as

The cable properties are defined by the tension strain relationship, T(C), wet weight, wo,

mass, m, and added mass, ma, per unit length, diameter, d, and normal and tangential

drag coefficients, C0 d and C,. The motion and force state of the cable is completely

described by five degrees of freedom (DOF): tangential and normal velocity, u and v,

strain, E, shear force, Sn, and inclination, #. A sixth DOF, the curvature of the cable, Q3,

is introduced to remove higher order derivatives of #. The current is given in the global

vertical and horizontal coordinates by U and V, respectively. The relative velocities in

local coordinates are given by

Ur = u -U cos# - V sin #, (2.7)

Vr = v + Usin# - Vcos. (2.8)

The independent variables are s, the Lagrangian coordinate measuring length along the

unstretched cable and t, time. Equations 2.1 through 2.6 can be cast in matrix - vector
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form as

M + K + F (Y, s, t) = 0
at 8s

(2.9)

where Y = [, Sn, u, v, #, 0 3]T and the mass and stiffness matrices, M and K, and the

forcing vector F are defined in appendix A.

2.2 Discretization of the governing equation

The discretization of the partial differential

governing equation can proceed in several differ-

ent ways. A straightforward method is to use fi-

nite differences in both space and time using the

box method. This is the approach taken by Ablow

and Schechter [1], Howell [46], Tjavaras [93], Chatji-

georgiou and Mavrakos [15], and others. With

this scheme, the discrete equations are written

using what look like traditional backward differ-

ences, but because the discretization is applied on

tt

.---O --
i-i:.............

0. S
0 1 -j-. j . n-i f

Figure 2-1: Stencil of the box method.

the half-grid points the method is second-order accurate (see appendix B). The stencil for

the method is shown in figure 2-1. The result is a four point average centered around the

half-grid point. Equation 2.9 becomes

M + M +) _1 + Mi1) (-
f Yi -\ . fY .- I - Yi

+ (K + K') (+Y -Y 1) + (K'- + Kpl (

+ (F' + F' 1 + F'- + F ) = 0.0 (2.10)

The subscripts j define the spatial grid points (the nodes) and the superscripts i define

the temporal grid points (the time steps). For n nodal points, equation 2.10 defines a

system of 6(n - 1) equations to be solved for the 6n dependent variables at time step i.

The six equations needed to complete the problem are provided by boundary conditions.
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2.3 Stability of the box method

The most convenient way to analyze the stability of the box method is to consider the

stability of the method as applied to an equivalent linear, single DOF system in semi-

discrete form. The first step is to apply the half-grid spatial discretization of the box

method to equation 2.9. At each half-grid point we derive a set of six equations which we

can write as

[I] + K. [j F+ = 0 (2.11)

where the overdot signifies differentiation with respect to time. The nodal matrices M

and K, and vector F are defined by

0 0 -md_1 0 (mv)j- 1  0

0 0 0 -(m+ma)j_ 1 - [mu+(p + a)(Ucos +Vsin#) 0
4 j-1

-1 0 0 0 0 0

0 0 0 0 -(1 + E)j-1 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 -mj 0 (mV)j 0

0 0 0 -(m+ma)j -[mu+ (pwi+ Ma) (Ucos#+Vsin#) 0

-1 0 0 0 0 0
,(2.12)

0 0 0 0 -(1 + E)j 0

0 0 0 0 0 0

0 0 0 0 0 0
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-(Tj+Tj_1) 0 0 0 Sn+Sni-1 0

0 -2 0 0 -(T + Tj_1) 0

0 0 -2 0 vj+vj-1 0

3 2 0 0 0 -2 -(uj+ u-1) 0

0 0 0 0 -2 0

0 0 0 0 0 -2EI

T> +T>_ 1 0 0 0 -(Snj + Sni_1) 0

0 2 0 0 Tj + Tj_1 0

0 0 2 0 -(vj + vj_1) 0 (2.13)

0 0 0 2 uj+uj-1  0

0 0 0 0 2 0

0 0 0 0 0 2EI_

-wO (cos $j + cos $ 3-1) - ipw7rdCd, [(Ur Ur| 1 + j + (ur Url 1 + E) j1

wo (sin Oj + sin Oj1) -i+ pwdCd, [(Vr |Vr 1 +) + (yr |Vrl -0+ 1 j _

0

a- ~ 0

-93j - Q3j-1

[Sn (1 + E)3] + [Sn (1 + E)3

(2.14)

The shapes of the matrices and vectors in equation 2.11 are diagrammed in figure 2-2.

If we assemble the blocks associated with the n - 1 nodal matrices and vectors (along

with appropriate boundary conditions) according to the scheme shown in figure 2-3, then

it is clear that we can write the semi-discrete equation of motion for all of the dependent

variables at all of the nodes as

1M + KY + F=0. (2.15)

This is similar to the assembly procedure common in finite element analysis [48]. From the

semi-discrete equation of motion, then, we proceed to reduce the system to a single DOF,
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M3 -- + Ks -+ 0H2H2
Figure 2-2: The shape of the matrices and vectors in equation 2.11.

N, Y
B.C.s (Nx1)

K 2
(Nx2N)

K2KY

-22-

2N 2
. B.C.s

Figure 2-3: Assembly procedure for the nodal matrices and vectors into global form. With
N1 +N 2 = N total boundary conditions the system is square. The procedure for the global
mass matrix and force vector is similar.

linear, homogeneous problem to analyze the stability of the numerical time integration

procedure. In general, the stability of equation 2.15 in full, nonlinear form, cannot be

studied analytically. The usual practice is to study the same numerical procedure on

a simplified model equation, and extrapolate stability properties from there [48, 1001.

Numerical experiments can then be used to verify the analytical result on the full-scale

problem.

The equivalent linear, homogeneous, single DOF problem is

y + .y = 0. (2.16)

Applying the box method's temporal discretization yields a second-order accurate approx-
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imation for yZ

y+ y + W (Y i + y )= 0, (2.17)

where

y + y ( Y=2l. (2.18)At

Rearranging equation 2.18 yields the recursion relationships

-2 Y - y - (2.19)
At

yi= At W + y -)+ y-. (2.20)
2

If we substitute each of the recursion relationships separately into equation 2.17 we can

write equations for yi and ya in matrix form as

Y 2-u)At 0 Yi-1
2+wAt 0 1 . (2.21)

The 2 x 2 matrix on the right hand side of equation 2.21 is the amplification matrix. The

spectral radius, p, of this matrix, defined as

p = max(IAiI , JA21), (2.22)

governs the growth or decay of the solution from one time step to the next [48]. A1 ,2 are

the eigenvalues of the amplification matrix. For p < 1, the solution will remain steady or

decay and is said to be stable. For p > 1, the solution will grow and is said to be unstable.

For the time integration scheme defined by the box method,

A, = 2- wAt (2.23)
2 + wAt'

A2 = -1, (2.24)

and the spectral radius is unity (and the scheme is stable) for all values of w and At.

When there are no conditions on stability, a procedure is called unconditionally stable.
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An alternative analysis of the stability of the box method, using classical von Neumann

stability analysis for finite difference methods, is provided in appendix B.

In spite of the unconditional stability of the box method, however, the scheme has

significant problems. Because the update equation for y' in equation 2.21 is decoupled

from yi- we can simply write

2 - wAt
y 2-+ wAt) y-. (2.25)

As wAt goes to infinity this becomes

y = -(2.26)

This is the phenomenon known as Crank-Nicolson noise [100], whereby the high frequency

components of the solution oscillate with every time step. In a linear problem, this noise

can be removed by computing step-to-step averages once the solution is completed. For a

nonlinear problem, however, the noise can be a source of instability and hence should be

eliminated as the solution progresses.

A second, related, problem is that the spectral radius is constant at unity. An ar-

tifact of the spatial discretization process is that at some point the high frequency (or

equivalently, high spatial wave number) components of the solution are not well resolved

and the numerical solution is inaccurate. For this reason it is desirous to have numerical

dissipation in a scheme such that the spectral radius is less than unity for increasing values

of wAt [48]. The box method has no numerical dissipation.

Finally, Wood [100] cites difficulties with averaging schemes in general as applied to

nonlinear problems. For the nonlinear single DOF case, equation 2.17 can be written as

yi + y + W y + - = 0. (2.27)

The update equation for y , equation 2.25, becomes

2 -o w At
y= 2+ wiAt y . (2.28)

and the stability now becomes conditional as the parameter w changes with time. The
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practice suggested by Hughes [49], Wood [100] and others, for avoiding this problem is to

use an averaged value of w, such as

+ y + ( 2 ± )(Y + yi-) 0. (2.29)

2.4 Alternatives to the box method

Given the stability problems associated with the box method, a new solution method

is sought. Hughes [48] cites the following desirable characteristics in a time-stepping

algorithm:

1. Unconditional stability when applied to linear problems: Unconditional stability

allows the time step to be chosen based on accuracy and resolution concerns, without

regard for purely numerical issues.

2. No more than one set of implicit equations to be solved at each time step: This

minimizes computational expense compared to schemes which may achieve a high

order of accuracy at a significant computational cost.

3. At least second-order accuracy: This is a reflection of the constraints imposed by

Dahlquist's theorem which states that a third-order accurate method with the most

appropriate stability conditions does not exist [48]. Again, without a significant

increase in computational effort, second-order accuracy is the best we can do.

4. Controllable algorithmic dissipation in the higher modes: In some cases with suffi-

ciently small temporal and spatial discretizations, it may be desirable to have less

high frequency numerical dissipation.

5. Self-starting, no information is needed prior to time step zero: Accuracy at time

step zero (and thus accurate algorithm starting information) is critical in transient

analysis applications. It is less important in cases where we can slowly ramp up a

forcing scenario and are not concerned with start-up transients.

Hulbert [51] adds the following two desirable characteristics:

6. Single step, that is the solution at i depends only on information at i and i - 1:

The advantage to a single step algorithm is that it facilitates the implementation
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of an adaptive time-stepping scheme. If the time step is to be adjusted to At, in

going from step i - 1 to step i, then the storage and computational requirement are

significantly reduced if the solution at i does not also depend on information at i -2

which is Ato behind i - 1.

7. Asymptotically annihilating, or p -+ 0 as wAt -+ oc: Asymptotic annihilation is

particularly beneficial in nonlinear problems where it is desirable to damp out high

frequency noise in just one time step [19]. If the spectral radius at infinity is greater

than zero, possibly destabilizing noise sources may take several time steps to decay

completely.

Finally, based on the idea that nonlinear coefficients should be averaged as discussed

above, we add that an algorithm should have:

8. A clear approach to the averaging of temporal coefficient matrices.

Of unconditionally stable single step algorithms, Thomas [90] compared three his-

torically popular algorithms, Newmark, Houbolt, and Wilson-O, as applied to mooring

dynamics problems. His conclusion was that Houbolt was the best choice of the three.

Other recent authors, however, have noted that Houbolt has an undesirable amount of

low frequency dissipation [19,48]. Also, while asymptotically annihilating, the numerical

dissipation cannot be controlled (i.e., it can only be asymptotically annihilating). In work

similar to that described here, Koh et al. [60] proposed a method that retained the box

method's spatial discretization but replaced the temporal discretization with a backward

difference scheme. This scheme is asymptotically annihilating, but only first-order accu-

rate. Sun et al. [86] employ a generalized trapezoidal rule, which does allow for controllable

dissipation, but is only first-order accurate when there is dissipation. Zueck [103] uses the

Newmark method, which is the generalized trapezoidal rule for second-order problems,

and as such also loses second-order accuracy when numerical dissipation is present.

In the structural dynamics literature, several different schemes have been proposed to

satisfy the above outlined criteria. Most are developed to solve the second-order semi-

discrete structural dynamics equations, but can be adapted to the first-order problem

considered here. In fact, equation 2.15 has the same form as the semi-discrete equation

for transient heat conduction finite element problems.
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Some of the more recently proposed schemes include the HHT-a [42] and WBZ-a [101]

methods which combine Newmark style difference formulas with some temporal averaging

of the terms in the semi-discrete equation of motion. HHT-a averages stiffness, damping

and force terms. WBZ-a averages the mass terms. Cornwell and Malkus [20] have applied

the HHT-a method to the first-order semi-discrete heat conduction equation. Bazzi and

Anderheggen [3] proposed a method whereby the spectral radius at infinity was directly

set as the sole parameter of the scheme and no coefficient averaging was required. With

dissipation, however, it is only O(At) accurate. Several multi-parameter "unified" sets of

algorithms have been published (e.g., [44, 71, 102]). Through appropriate choices in the

parameters, these authors are able to implement many of the older methods in addition

to new schemes. Hoff and Pahl [44, 45] developed what appears to be the most all-

encompassing such scheme, based on six different parameters. Niemi [71] developed a set

intended directly for the first-order problem. For our purposes, however, the large multi-

parameter families in their most general forms do not offer a clear and direct approach

to the temporal averaging of the nonlinear coefficient matrices. A reasonably complete

family of algorithms that does offer such a clear approach is the generalized-a method

proposed by Chung and Hulbert [18]. The method is a subset of Hoff and Pahl's [44] six

parameter family and can be seen as a straightforward combination of the WBZ-a and

HHT-a algorithms.

2.5 The Generalized- method

Cornwell and Malkus [20] applied the HHT-a algorithm to the first-order problem. In this

method the semi-discrete equation of motion is discretized with temporal averaging of the

stiffness and force terms,

MY I + (1 - a)KY + akY'-l + (1 - a)F + af'- = 0. (2.30)

The difference equation is the same as for the generalized trapezoidal rule [48],

Yi = Yi-1 + At (1 - 7) -1 + . (2.31)
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algorithm -y ak am 1st order problem 2 nd order problem

box method 1 1 1 Ablow and Schechter [1]
backward differences 1 0 0 Koh et al. [60]
generalized trapezoidal , 1] 0 0 Sun et al. [86] Newmark [70]
Cornwell and Malkus - a a 0 Cornwell and Malkus [20] HHT-a [42]
WBZ-a + a 0 a WBZ-a [101]

Table 2.1: Algorithms included in the generalized-a method. The box method and a
methods are second-order accurate given the -y values as shown. The generalized trape-
zoidal rule is second-order accurate only for y = j. Backward differences are always
first-order accurate.

Following Chung and Hulbert's development of the generalized-a method for second-order

equations, we add temporal averaging of the mass terms and equation 2.30 becomes

(1 - am)MIYZ + amM 1  + (1 - ak)ky + akKYi-1 + (1 - ak)F + ak- 0.

(2.32)

The three parameter family of algorithms defined by equations 2.31 and 2.32 defines the

generalized-a method for the first-order semi-discrete problem. Several of the algorithms

that can be implemented through appropriate choices for -y, ak, and am, are summarized

in table 2.5.

2.5.1 Accuracy

As before we analyze the accuracy and stability of the method by studying a single DOF

problem

(1 - am)9I + amyi 1 + (1 - ak)wyi - akwy -1 + (1 - a)fi + akf i- 1 = 0, (2.33)

ya = -yi + At [(1 - 7) ys-l + yi ] . (2.34)

The order of accuracy of the method is determined based on a multi-step (information at

possibly more than just i and i-1), single-stage (only y or y appears, but not both) version

of the recursion relationship defined by equations 2.33 and 2.34. If we write equation 2.33

at time step i, eliminate ya using equation 2.34, and add the result to equation 2.33 written
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at i - 1 and multiplied by At(1 - y), we find

[(1 - am) + ywZAt(1 - ak)] yi

- [1 - 2am - WAt (1 - - ak + 2 yak)] yijl - [am - wAtak(1 - y)] yi-2

+ At-y(1 - ak)fi + At (1 - Y - aC- + 2 7yak) f i- + Atak (l - 7)fi-2 = 0. (2.35)

The local truncation error, r, is the error associated with the use of the difference

equation 2.35 instead of the exact ordinary differential equation

y(t) + wy(t) + f (t) = 0. (2.36)

If y (ti) is an exact solution to this ODE at time t, then the truncation error is defined

by [48]

T(t') = 13 [By (t'-) + Cnf (ti-n)] , (2.37)
n=O

where B, and Cn are the coefficients of the yi and fi in equation 2.35. Expanding y and

f terms in Taylor series about t' and then eliminating forcing terms using the exact ODE,

equation 2.36, yields after some algebraic manipulation

r (ti) = At (I - 7 - a,,, + a) (t) + O (t 2 ). (2.38)

Thus, the method is second-order accurate if

+ + am - ak . (2.39)

2.5.2 Stability

Following the same procedure as employed with the box method, the generalized-a method

for first-order problems can be written in amplification matrix form as

= A [ (2.40)
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where the amplification matrix is defined as

1A = a
(1 - am) + 7y(1 - ak)WAt

,(1 - -Yam)k-awAt At (1 - - am)

-am -(1-)(1 - a)wAt

(2.41)

The eigenvalues of this matrix are

1
A1 ,2 = 2 am

2[ywAt (ak - 1)+ am - 11
- + (1 - Y - ak + 2yak) WAt

( _ 1)2 + ak (ak + 2-y - 2)1 + 2wAt [-y + 2am - ak - 1] + 1 i.

The method will be stable for all values of wAt provided that

aek< -, am :: 1 -7 (2.43)

Chung and Hulbert [18] suggested a procedure to reduce the scheme to a one parameter

method. Taking the limit as wAt --+ oo, the eigenvalues of the amplification matrix become

A 2 {ak- -Y J (2.44)

Requiring second-order accuracy according to equation 2.39 yields A' as a function of ak

and am only

AE 2= ,- { a 1 ak - am +
1,2 =ak-i ak -am +±1 (

(2.45)

Then, by forcing A' = AT we can determine ak and am such that the spectral radius at

infinity takes on a specific value

A0

ak-A00
- 1'

3A* +1
(2.46)

This yields a second-order accurate algorithm in which the only parameter is the spectral

radius at infinity, p'.

Spectral radii of some of the algorithms that are included in table 2.5 along with
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Figure 2-4: Spectral radii of the generalized-a family algorithms.

results for various values of p' are shown in figure 2-4. Note that taking A' E [0, 1) as

the basis for the spectral radius results in a different set of algorithms than A"' E [--1, 01.

For p = 1 the only option is the negative eigenvalue and this results in the box method.

A non-dissipative algorithm with A = +1 cannot be achieved. The asymptotically

annihilating form of the algorithm is defined by ak = 0, am = -1, and y = 1.

The addition of averaging of the mass terms and the am parameter provides the extra

degree of freedom that we need to control both the accuracy and the stability over the full

frequency range. Equations 2.39 and 2.42 define a system of three equations and three

unknowns. Without the third parameter, am, we would still have three equations but only

the two unknowns, y and ak. The results from Cornwell and Malkus [20] reflect the fact

that both A, and A2 cannot be controlled while maintaining second-order accuracy. This

leads to the bifurcations in the spectral radii, evident in figure 2-4, and at some point an

increase in spectral radius with frequency. Their suggested algorithm is ak = 4, 1=.

Without am, this is the only possible algorithm that drives the bifurcation point to oc. It

is the same algorithm that results from setting A = -} in equation 2.46.
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2.6 Application to the nonlinear problem

In applying the generalized-a method to the nonlinear problem we must choose the time

point at which we will evaluate M, k, and f. A natural choice, consistent with the

practice suggested by Hughes [49] for nonlinear first-order problems and exemplified by

equation 2.29, is provided by the temporal averaging of terms that is already a part of the

method. At time step i equation 2.32 becomes

(1 - am)Mam yi + am saM yi-m 1

+ (1 - ak)Ki-C ki + ak ki-akyi-1 + (1 - ak)F + akF 0, (2.47)

where the averaged coefficient matrices are defined as

i-am = (1 - am)Mi + amMi~1 , and (2.48)

]i-ak = (1 - ak)K - akK-. (2.49)

For use with the nonlinear solver described in appendix C, in which the global stiffness and

mass matrices are never explicitly assembled, it is more convenient to expand equation 2.47

as

(1 - am) 2  + am(1 - am) [1 Piu/i-1 + MZ11 + am2 i-ly-l

+ (1 - ak)2Kyi + ak(l - ak) [iYi-l + k-lYi] + ak2 Yi-lYi-l

+ (1 - ak)F -+ akfi-' = 0. (2.50)

Equation 2.50 represents the temporally and spatially discretized form of the two- or

three-dimensional cable dynamics equations. The numerical program that implements this

discretization is described in chapter 3. In chapter 5, this program is used to examine the

stability of the generalized-a method as applied to the nonlinear cable dynamics equations,

with particular emphasis on appropriate choices for ak, am, and y (or A' )-
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Chapter 3

Implementation of the Numerical

Program

The time integration procedure described in chapter 2 is only one piece of the numerical

program that was developed as part of this thesis. Other important pieces include the

boundary conditions that round out the governing equations to form a fully determined

system of equations and the static solution which serves as the initial condition for the

dynamic solution. The entire solution procedure is diagrammed in figure 3-1. The more

interesting blocks are described below. Details of the nonlinear solution procedure are

presented in appendix C. The shooting method solution, which serves as the initial guess

for the static solution, is described in appendix D. The calculation of coordinate positions

is presented in appendix E. Details of the program interface and the procedure for model

and environment description are given by Gobat et al. [35].

3.1 Boundary conditions

As mentioned in the derivation of the semi-discrete equation of motion in chapter 2, the

governing equations provide only N x (n - 1) equations for the N unknown DOF at each

of the n nodes. The remaining N equations that are needed to completely determine the

solution are provided by boundary conditions. The procedures for specifying the boundary

conditions for the static and dynamic problems are described separately, below. Note that

much of the complexity in the specification of the static boundary conditions arises from

the fact that the coordinate positions of the boundaries are not explicitly included as
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Model and environment description

Shooting method solution

>1 Solve for equilibrium

_update topside, no Converged

forcesiterations?

yes

-- refine mesh yes Need mesh
refinement?

no

t '= 0, t = A t

Solve for equilibrim at t'

no Finished?

+~yes

Compute Jacobian
and update to solution

Compute coordinates

Converged no

yes

Compute Jacobian
and update to solution

Compute coordinates

no Converged err At =At /10

yes

Figure 3-1: Flowchart of the complete numerical solution procedure. Details are given in
the text and the appendices.

dependent variables in the governing equations. For a discussion about the merits of this

formulation see appendix E.

3.1.1 Static problem

For the two-dimensional static problem there are four unknowns at each node (N = 4, see

appendix A for details). The most common boundary conditions are based on specifying

zero curvature at both ends and applying a known force at the top end. Zero curvature

is realistic if the cable is attached top and bottom with a joint, shackle, or pivot that
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releases the moment at the termination. The applied force at the top end comes from

environmental and other applied forces (a tensioning winch for example) on the platform

(buoy, ship, drill rig, etc.). The four additional equations are

-31 = 0, (3.1)

Q3n = 0, (3.2)

F2 - [T(c,) cos #, - S,, sin #] = 0, (3.3)

FU + [T(E) sin 0, + S,, cos #!] = 0, (3.4)

where F and Fy are the applied forces at node n in the global i and j directions, respec-

tively.

In many cases, F, and Fy are not known directly. For oceanographic surface moorings

the interaction between mooring forces and buoy forces are coupled through the buoy draft.

Thus, F, and Fy cannot be known before the problem is solved. For offshore applications,

the specified boundary condition is often the position of the platform relative to the

anchor and the forces F, and Fy are sought as part of the solution. To accommodate

these conditions we must iteratively solve the static problem with consecutively better

guesses at the top forces until the desired conditions are satisfied.

Solving for buoy draft

Vertical and horizontal forces applied by a surface buoy to the cable segment under the

buoy are a function of the buoy draft and the known buoyancy and drag properties of

the buoy. The solution begins with forces calculated from the draft found as part of the

initial shooting solution, HO. After solving the full nonlinear equilibrium problem, we

then calculate the actual draft, H , for these forces based on the position of the top node.

The absolute error is

eH = HO - H (3.5)

To bracket the solution we make a second guess

H =(1+ e H H, (3.6)
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that is some small percentage, pd, above or below the initial guess, depending on the

sign of the error. Ad expresses the confidence interval on the initial shooting solution.

A value of Ad = 0.1 is typically conservative and works well. With the actual solution

now bracketed between H0 and H 1 , we proceed to use a linear interpolation root finding

technique [82] to calculate a final solution. This root finding procedure forms a second,

outer loop of iterations. At each new guessed draft we must go through a new series of

iterations within the nonlinear solution procedure to solve the problem. The inner loop

of iterations calculates the equilibrium position for a given applied static force based on

the current best guess at the draft. The outer iterations continue until the guessed draft

coincides (to within some specified tolerance) with the calculated draft.

Resolving platform position

For the case where we know the position of the upper platform we can use a similar outer

loop iteration procedure to change the topside applied force until the top end is brought

into that position. The adjusted applied force at each outer iteration is calculated from

F k+1 =_ - -' (k _- )(37

where fk and Xk are the applied force vector and calculated position of the platform

at outer iteration k, and X is the desired position of the platform. pp is a numerical

"stiffness" factor that can be used to accelerate or slow the procedure. These outer loop

iterations continue until the calculated platform position is within some specified tolerance

of the known position. The initial values for the forces are determined from the shooting

method solution which uses this same procedure to bring the platform to the required

coordinates.

A third situation requiring outer iterations arises from the inverse of the platform

positioning problem. In this case, the tension is specified but the horizontal offset of the

platform relative to the anchor is unknown. In this case we must iterate on the angle

0 at the top node such that the specified tension produces forces F and Fy such that

the platform is on the surface. Like the solution for buoy draft, we can take advantage

of the fact that the initial shooting solution for # at the top node should be reasonably

accurate. Using that initial solution as the first guess, the final solution can be bracketed
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with a second guess that is only some small distance away from the initial guess. Once #

is bracketed, it can be computed using either bisection or linear interpolation [82]. Again,

the outer iterations proceed until the calculated vertical position of the platform is within

some specified tolerance of the vertical coordinate of the surface.

3.1.2 Dynamic problem

For the two-dimensional dynamic problem with 6 degrees of freedom per node we need

to formulate a total of six boundary conditions at the two ends. Like the static problem,

two equations are provided by releasing moments at the two terminations. At the anchor

we simply impose no motion by setting both normal and tangential velocities to zero. At

the top we can impose either time varying forces or velocities in the two global directions.

Velocities are the more common case, as we are typically interested in the response of the

system to a specified environmentally induced motion of the top of the mooring. In this

case, the six boundary equations are

Q31 = 0, (3.8)

UZ = 0, (3.9)

V = 0, (3.10)

Q3'n = 0, (3.11)

U - (Ui cosq#i - Vn sin #i) 0, (3.12)

VJ - (Ui sin ' + v, cos #') = 0, (3.13)

where U' and V' are the specified velocities at time step i in the global vertical and

horizontal directions, respectively.

Velocities are typically specified in one of three ways. The first case is a regular motion

specified as displacements in the two global directions

Z = A, sin (wzti + ox) , (3.14)

= AY sin (wytz + 0Y) . (3.15)
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The velocities for this case are

U = A c, Cos (wti + ?P) , (3.16)

V) = AYwY cos (wYtz + 0y) , (3.17)

where A2,y, wx,y, and OXN define the amplitude, period, and relative phase of the displace-

ments in the two directions, respectively.

Secondly, we may specify a random motion profile for a given sea state by breaking the

spectrum into a summation of individual frequency components with separate amplitudes

and random phases [29]. For example, a Bretschneider spectrum, specified with a modal

frequency, wi, and significant height, H8 ,

1.25 w4 m 2-.5" 4

S(w) 1 5H, , W (3.18)
4 w5

can be discretized over m frequencies, Wk, with a spacing of Aw. The amplitude of the

kth component is

Ak = V/2S(wk)Aw. (3.19)

The displacement is the sum of all the discrete components

in

A' = JAk sin (t' + @k ). (3.20)
k=1

The random phases, 4k, are generated as uniform random numbers on the interval [-7r, 7r].

The total velocity is

U= Akwk cos (wkti + k). (3.21)
k=1

This procedure is not limited to spectra which are known analytically. It can easily be

applied to wave spectra derived from field data gathered by such instruments as wave-

following buoys and acoustic doppler current profilers.

Finally, for model validation purposes it is often convenient to impose an entire time

series of motion onto the top of the mooring. These time series might be the integrated
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motions from accelerometer data that were recorded during storm events. Given the known

platform motion we can compare model predicted tensions to those actually recorded in

the field. The velocity record necessary for this application can either be numerically

integrated from acceleration or numerically differentiated from displacements, depending

on the available data. If the velocity record consists of discretely sampled points, Uk, with

a spacing between points of At, then the velocity at time step i is interpolated by

UjZ = (Uk+ - Uk --i 1) + Uk 3.2

where k defines the appropriate index into the zero-offset velocity record,

k = int (: + 1. (3.23)
(Atv)

3.2 Bottom interaction

Following the same basic approach as Webster [99], the unilateral boundary condition

at the sea floor is modeled as an elastic foundation with linear stiffness and damping

properties. Given the vertical coordinate of the bottom, which may vary with horizontal

position, Xbottom(y), the bottom exerts a force on node j if xj S Xbottom(yj). For both

static and dynamic problems the force is defined as

Fb = k lxjl , (3.24)

where k is the stiffness per unit length of the bottom. In static problems the force is

constrained so that Fb K wo. The force is always assumed to act in the global vertical

direction and as such can be treated simply as a modification to the wet weight, wo, in

the governing equations. In the dynamic problem we also add a damping force,

Fd = -bvj, (3.25)

where b is the dashpot constant of the bottom and vj is the normal velocity of node j.

One of the disadvantages of this approach is that appropriate values for k and b are

difficult to calculate without extensive field and laboratory experimental testing of soils.

For most problems, however, the gross response of the system is largely insensitive to the
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choice of values. Typically, we specify k as the fraction of the line wet weight that will

be supported with a deflection equal to one diameter. A non-dimensional form of the

stiffness, k, can be defined as that fraction,

~ kd
k= . (3.26)

The damping constant b is calculated from a specified value of a damping ratio, (. Given

(, the mass plus added mass of the grounded line, m + ma, and the natural frequency of

the elastic foundation/cable system, w,, the damping constant is [92]

b = 2( (m + m) wn. (3.27)

The natural frequency of the system is calculated as

k
Wn a (3.28)

m + ma

A damping ratio of 0.5 is typically sufficient to eliminate any spurious high frequency

effects that result from the line impacting the bottom without significantly affecting overall

system response.

The advantages to this treatment of the bottom are the simplicity with which it can be

implemented and the generality which it allows. The approach places no restrictions on

the number of touchdown points or where and how those points move during the dynamic

problem because the entire mooring, including grounded line, is always "in play". This

contrasts with approaches which may track a single touchdown point, adding or removing

line from the problem to calculate a dynamic response only for line that is instantaneously

above that point. The implementation described above has no difficulty handling cases

in which positively buoyant portions of the line float above the bottom between heavier

portions of line which remain on the bottom or in which a traveling wave of ungrounded

line moves along a portion of grounded line.
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3.3 Refinement of the spatial discretization

In many moorings with low flexural stiffness, the half grid spatial discretization can lead to

undesirable spatial oscillations in the solution. This phenomenon can be easily understood

by considering the equation relating shear force to curvature,

EI + S, (1 + E) 3 = 0. (3.29)

For a static solution this equation is discretized as

2EI +- 3j- ± Sn (1 + E)3 + Snj 1 (1 + =Eg )3 = 0. (3.30)

If El ~ 0 and E << 1 as is typical, the only solution (barring Asj = 0) is Snj ~ -Snj_1.

If ISn > 0, the shear force will oscillate about zero from one node to the next. This error

is particularly manifest in areas of high curvature and at the boundaries. The problem

can be minimized by increasing the density of the spatial mesh [10].

Without a priori knowledge of the static solution the most easily applied spatial dis-

cretization is uniform,

As nL = (3.31)

where L is the length of the cable segment and n is the number of nodes used in the

discretization. Unfortunately, a uniform mesh with small As to reduce spatial oscillations

can require large numbers of nodes. An alternative is to make the mesh finer only in

problem areas: areas of high curvature and at the boundaries. To automate this allocation

of nodes we can develop a procedure such that given a static solution based on a uniform

mesh, we can optimize the mesh in some sense and then recalculate the static solution to

take advantage of the refinement. The procedure outlined below is based on that described

by Eggleton [27]. It is worth noting that Press et al. [82] describe a procedure, also based

on Eggleton's approach, that adaptively refines the mesh as part of the nonlinear solution

procedure. That procedure had significant problems with convergence when applied to the

geometrically nonlinear problems considered here. It also requires that three equations

and additional dependent variables be added into the problem.
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The approach to mesh refinement can be understood by considering a minimization of

the sum given by

E [cW (Q3(sj) - Q3 (sj- 1 )) + (sj - sj_-)]2. (3.32)
j=2

The sj coordinates of the n nodes are unknown, but from our previous static solution we

can provide a good estimate of Q3(s) for any value of s. The first term in the sum will keep

nodes close together in areas of high variability in Q3 . The second term will keep nodes

from getting too far apart in areas with low variability in Q3 . cw is a constant that controls

the weighting used to place nodes with respect to the two effects. cw >> 1 will result in a

large proportion of the n available nodes being used in areas of high curvature with large

spacing between the remaining nodes in other regions of the system. In contrast, c" << 1

results in a nearly uniform mesh, with little emphasis placed on refining mesh density in

high curvature regions.

Minimizing equation 3.32 requires that we solve an n degree of freedom nonlinear least

squares problem. Alternatively, we can approximate the sum as an integral and cast the

minimization as a variational problem. If we define the mesh control function

f (s) = cwQ 3 (s) + s, (3.33)

then equation 3.32 is simply

E [f(sj) - f(sj_)] 2. (3.34)
j=2

Without affecting the solution of the minimization problem we can introduce a new in-

dependent variable, q, that varies uniformly throughout the mesh (Aq is a constant) and

rewrite the summation as

E [f(si) _ f(sj_1) 2 (Sj _ Sj_) 2  (3.35)
j=2 Si-Sjl1A
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We can approximate this sum as the integral given by

rF 1 d f Q 3  
2 d

fL -d,-2 d L dQ3 + 1 ds. (3.36)
0 ds dq 0 ds dq

The integral form can now be minimized by solving the variational problem

f [cWQ' (s) + 1] 2 ds = 0. (3.37)

In writing equation 3.37 we have substituted a normalized estimate of the curvature gra-

dient, Q', for the spatial derivative of Q3. Q' is defined as

Q/ = Q3j - Q3:i-i
S' max I 3k - Q3k-1, k = 1... n - 1. (3.38)

This formulation normalizes the curvature to have a maximum value of one and a lower

bound at zero. cw can then be interpreted as the mesh density weight for curvature effects,

relative to unity.

The solution to the variational problem in equation 3.37 can be written as [21, 27]

ds _ /3 (3.39)
dq cwQ' + 1'

where 3 is a constant to be determined. Equation 3.39 is a boundary value problem for

s with boundary conditions s = 0 at q 0 and s = L at q = L. We use the shooting

method [82] and bisection to determine / such that all boundary conditions are satisfied.

Bounds on 3 can be derived by considering the extreme cases Q'(s) = 0 and Q'(s) = 1;

both conditions lead to a uniform mesh,

d'(s)1 + min=, (3.40)
dq

ds
+'(s) 1 + Imax = + cw. (3.41)

dq

With each trial /, we integrate from q = 0 to q = L using fourth order Runge-Kutta

integration. The error function for the bisection is simply s(q = L) - L, i.e., the difference

between the integrated s coordinate of node n and its known coordinate, sn = L.

The final step in the process it to recalculate the static solution on the refined mesh.
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With some care, it is possible to minimize the computational expense associated with

outer iterations during this second solution because the solution for the unknown boundary

conditions is unlikely to vary significantly from the uniform mesh solution to the refined

mesh solution.

3.4 Adaptive time-stepping

The stability analysis of the generalized-a method that was presented in chapter 2 can be

strictly applied only to a linear form of the problem. In the nonlinear case the method

cannot guarantee stability because the nonlinear solution procedure at each time step

is not unconditionally convergent. Because the nonlinear solver uses the result from the

previous time step as the initial guess at the solution for the current time step, the solution

may not converge if those two solutions are significantly different. For this reason, there

are limits to the maximum allowable time step that can successfully be used to propagate

the solution in time without giving rise to numerical instabilities.

Typically, we choose a value of At based on factors such as the accurate resolution

of the physics in the problem and the desired sampling rate of the numerical solution.

Depending on the particular problem this value of At may not be small enough to avoid

numerical instabilities that arise over the course of the simulation. This situation is

common in cases where the cable goes slack for brief periods of time or when there is

rapid lifting and lowering of cable to and from the bottom. A procedure for avoiding the

numerical problems in these cases, without modifying the baseline time step for the whole

problem, is adaptive time-stepping.

The adaptive time-stepping procedure that is implemented here is relatively simple.

If an instability arises the time step will be reduced automatically to try to get through

that portion of the simulation. At each time step where the baseline time increment is not

small enough to accurately propagate the solution, At is reduced by a factor of ten. The

solution then proceeds through ten steps at the smaller increment. The reduction can be

recursive, with a practical limit set as four orders of magnitude below the base value of At.

If the nonlinear solver fails even at this lowest increment, the solution is aborted. This

procedure has the advantage that the simulation always produces results on the originally

requested sampling grid.
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Adaptive time-stepping is only of limited usefulness, however, without some care being

taken in the choice of a baseline time increment. If the algorithm is deciding that it needs

a smaller time increment at every step then it would be faster to have set a smaller time

step in the first place.
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Chapter 4

Description of the Field

Experiment

Numerical studies of complex mechanical systems, like the geometrically compliant moor-

ings considered in this thesis, have the advantages that they place few constraints on the

system under study and that they are relatively inexpensive to conduct. In contrast, exper-

imental efforts are limited by practical and cost considerations. Nevertheless, a numerical

study alone is seldom able to paint a complete picture of the physics that govern the re-

sponses of these kinds of systems. For this reason, both a field and a laboratory experiment

were conducted as part of this thesis to provide an added level of detail and confidence.

The field experiment described in this chapter offered the chance to collect full scale data

that reflect a response to real environmental conditions. The results from the experiment

are used in chapter 5 as part of the validation of the numerical program and in chapter 6,

along with simulation results, to analyze the dynamic response of mooring systems. The

laboratory experiments described in chapter 7 provide higher spatio-temporal resolution

under more controlled conditions. These advantages facilitate the detailed analysis of the

bottom interaction described in that chapter.

4.1 Location and climatology

The Shallow Water Engineering Experiment (SWEX) was conducted at an area known as

the WHOI Buoy Farm. This is a one km 2 area approximately 40 km southwest of Woods

Hole, Massachusetts or 18 km southwest of Gay Head on the island of Martha's Vineyard,
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Figure 4-1: Geographic map of field experiment site. The star marks the WHOI Buoy

Farm. The base GPS receiver station was located at the Gay Head lighthouse on the

southwestern most tip of Martha's Vineyard, marked by the black square. The Buzzards

Bay tower is marked by the black circle.

Massachusetts. The site location within Rhode Island Sound is shown in figure 4-1. The

locations of the moorings within the Buoy Farm are shown in figure 4-2. Nominal water

depth at the site is 42 m.

The experiment was deployed on 5 December 1998 and recovered on 20 January 1999

to coincide with a portion of the winter storm season. As shown in figure 4-1 the site

is exposed with significant fetch to wind and storms from the south, southeast, and to a

more limited degree the southwest. There is much less exposure to significant storms from

the north and northeast due to limited fetch. Based on climatological records from the

nearby Buzzards Bay C-MAN tower, the dominant winds blow from the southwest during

this period. Figure 4-3 shows the hourly averaged wind records from the Buzzards Bay

tower during the experiment. Through December and January the average wind direction

was 2240 (southwest) and average wind speed was 18.3 knots. There were several large

storm events, however, with winds from the southeast. The largest of these occurred on

3 January 1999, with peak sustained winds of 50 knots.
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Figure 4-2: Location of the experimental moorings within the Buoy Farm during SWEX.

Surf = surface mooring, ST = Seatex waverider buoy. The 600 kHz ADCP was located in

a bottom mounted tripod that was on the groundline between SSB and SSB P/U. Dashed

circles indicate the approximate watch circle of each mooring. A,B,C, and D mark the

four corner guard buoys that delimit the Buoy Farm. Other markers indicate additional

experiments and fishing floats that were deployed at the Buoy Farm during the field

experiments.

4.2 Mooring hardware

The primary experimental mooring was an all chain catenary mooring. The mooring

design is shown in figure 4-4. The system consisted of 80 m of '-inch galvanized steel

trawler chain, broken only by three inline accelerometer instruments (AxPacks). The

AxPacks were hose clamped onto stainless steel strongbacks and the strongbacks were

shackled between shots of the chain. The surface buoy was a cylindrical block of Surlyn

foam 1.27 m in diameter and 0.75 m high. An instrument well extended through the

middle of the buoy and 1.4 m beyond the bottom of the foam. The well is approximately

24 cm in diameter. The properties for all of the mooring components are summarized in

table 4.1.
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Figure 4-3: Winds during the field deployment. The data are hourly averaged results

from the Buzzards Bay C-MAN tower maintained by the National Data Buoy Center

(http://www.ndbc.noaa.gov). Shaded areas indicate dates where all channels (dark) or

just the y accelerometer channel (light) of the surface buoy instrument had significant

data errors.

material length (m) m (kg/m) w 0 (N/m) EA (N)

}-inch chain 3.73 31.85 6.4 x 107

AxPack 0.76 10.02 70.82 8.0 x 107

shackle/ring/shackle 0.22 16.22 81.23 8.0 x 107

Table 4.1: Properties of the components used in the experimental mooring. AxPack

properties include two -inch chain shackles and a -inch pear ring at each end of the

strongback. The axial stiffness of components that include a shackle are based on the

stiffness of a shackle.
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swivel

5/8" chain shackle B
3/4" pear ring
5/8" chain shackle

= 5/8" chain shackle
3/4" pear ring
I" anchor shackle

5/8"chain shackle

3/4" pear ring

5/8"chain shackle

AxPack on

5/8"chain shackle

strongback

20 m + 2.5 m 1/2" Trawler Chain

4" pear ring A

8 "chain shackle 7.0 m 1/2" Trawler Chain

A

3.5 m 1/2" Trawler Chain

A

45 m 1/2" Trawler Chain

2300 lb anti-fouling anchor

Figure 4-4: Schematic of the surface mooring used in the field experiments.

4.3 Instrumentation

4.3.1 Engineering instrumentation

Mooring line instrumentation

The mooring chain was instrumented with three AxPack self-contained accelerometer in-

struments as shown in figure 4-4. They were located so as to span the region of high

curvature near the touchdown point over the range of currents that were expected at the

site. The lowest instrument was placed so that it would be approximately 3 m off the

bottom at the lowest tide and slack current. The data indicate that it probably did hit
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the bottom at various times during the deployment.

Each AxPack consists of Tattletale Model 8 microcontroller (with eight channels of

12-bit A/D) from Onset instruments mated to a Persistor CF8 compact flash board (with

a 24 MB compact flash card) from Peripheral Issues. The accelerometer is a Summit

Instruments model 34103A triaxial accelerometer with a 0 - 5V output scale over the

range ±1.5G. The primary advantage to these accelerometers is that they are completely

self-contained. Given a single +5V power supply they produce an amplified and filtered

0 - 5V signal. The internal filter is a single pole Butterworth filter with the 3 dB point

at 4.6 Hz. The accelerometer is packaged in a small cube less than 2.5 cm on a side.

Power is provided by three 3.6V lithium C cells (manufactured by Tadiran). All power

conditioning is done on board the Tattletale.

The sample rate throughout the experiment was 10 Hz. The AxPack accelerometers

were sampled for 20 minutes beginning on the hour at 0800, 1600, and 0000 hours localtime.

Because there is no communication between the instruments during the experiment, each

unit carries a separate battery backed real time clock (Dallas Semiconductor DS1302).

These clocks were synchronized using an electronic trigger pulse prior to deployment. The

crystals for these clock chips appear to have been cut from the same batch and exhibit

similar drift characteristics, with each AxPack losing approximately 50 seconds in 30 days.

These clocks retain the real time in case of a fault and reset in the Tattletale.

The electronics and accelerometer are secured into a machined aluminum rack and

together with the batteries sealed into delrin pressure cases. The pressure cases are 21 cm

long and 7.5 cm in diameter. A photo of the assembled and unassembled AxPack com-

ponents is shown in figure 4-5. The driving factor in the AxPack design was to keep

the size, mass, and wet weight of the units as consistent as possible with the rest of the

mooring. However, on their strongbacks and taking into account the shackle/ring/shackle

assemblies that are required to attach the AxPack inline with the rest of the mooring,

the AxPacks have approximately twice the mass and wet weight per length of the '-inch

trawler chain.

Buoy instrumentation

The buoy was instrumented with a six axis motion package: triaxial linear acceleration

(Columbia Research Laboratories model SA-307-TX) and three Systron Donner single axis
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Figure 4-5: AxPack strongback, pressure case, and electronics.

gyro rate chips. The instruments were controlled and logged (at 12-bit resolution) by a

Tattletale Model 6F controller. The surface package also included a Precision Navigation

TCM2 electronic compass module. The digital signal from the compass was converted to

an analog signal using the onboard 8-bit digital to analog converter. This analog signal

was then sampled by the Tattletale for logging, providing 256 levels of heading around the

3600 of the compass in the final dataset. The connection to the mooring chain was made

through a 5000 pound capacity load cell. The load cell was also sampled by the Tattletale.

All of these instruments were sampled at 12.5 Hz (though the effective update rate of the

compass is only 1 Hz) three times a day for twenty minutes. Due to a programming

error prior to deployment, the start time of each sample was delayed by five minutes

relative to the AxPack sample periods; the three sample periods began at 0805, 1605, and

0005 localtime. No attempt was made to synchronize the surface instrument clock with

the AxPacks beyond setting them within approximately one second of each other before

sealing the instruments.

All of the instruments performed well for the first three weeks of the deployment. Data

from the surface buoy instruments had significant drop-outs and obvious signal problems

from 27 December through 31 December. After 31 December, the y accelerometer signal

(one of the horizontal axes) was always bad, but the other channels appeared to be problem

free. During a post-deployment analysis it was determined that the multiplexer channel

for the y accelerometer had failed. Our speculation is that while it was in the process of
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failing it caused problems with the other channels, but that once it had failed completely,

the remaining channels were unaffected.

GPS instrument

The surface buoy also contained a GPS (global positioning system) receiver. The moti-

vation for including this instrument was to verify the quasi-static position of the buoy

within its watch circle. From the ship's GPS during deployment we knew the location

of the anchor to within several meters. By recording GPS signals at the buoy and at a

non-moving base station located at the Gay Head lighthouse on the island of Martha's

Vineyard (figure 4-1) we hoped to resolve the motions of the buoy to within better than

one meter [24]. The GPS receivers were Canadian Marconi Allstar units with 1 Hz po-

sition, velocity, and time output and 1 Hz carrier phase output. On the buoy the GPS

receiver was controlled by a Tattletale Model 8 with logging to a Peripheral Issues Per-

sistor AT8 with a 175 MB flash card. The base station GPS receiver was controlled by a

standard PC. Unfortunately, the remote receiver failed. We feel confident, however, that

the technique can provide an interesting and valuable dataset and thus the system will be

redeployed on a future engineering test deployment.

4.3.2 Environmental instrumentation

In order to quantify the environmental forcing on the surface mooring, both waves and

current were measured during the deployment. Current was measured using two acoustic

doppler current profilers (ADCPs): a 600 kHz unit mounted in a tripod on the sea floor

and a 1200 kHz unit mounted on top of a subsurface buoy that was tethered at 13 m

depth. Directional wave spectra were measured by a Seatex Wavescan buoy (Seatex A/S).

This buoy is moored such that it has a significant portion of its tether floating on the

surface. This allows it to respond freely to the incident waves in heave, pitch, and roll.

The motion of the buoy is measured using a six axis Hippy unit.

As part of a separate effort, the Wavescan data will be compared with the ADCP

data to test the ability of the ADCP to resolve directional wave spectra. This comparison

required relatively high frequency sampling of the ADCP. The ping rate was 3 Hz, with

the velocity results averaged and stored at 1 Hz (i.e., each 1 Hz current sample represents

the average current result from three pings over the previous second). The current data
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is provided as a profile, with 75 cm between depth bins on the 600 kHz unit and 25 cm

between bins on the 1200 kHz unit. Accounting for the tripod height above the bottom,

the first current point is 1.95 m above the bottom. An overly conservative number of bins

was used so that the last bin always fell beyond the surface. The ADCPs were sampled

for 40 minutes (600 kHZ) and 26 minutes (1200 kHz) three times per day (0800, 1600,

0000).

4.3.3 Data telemetry

All of the instruments stored their data locally. The Wavescan buoy and the surface buoy

both had ARGOS satellite transmitters that were used for location purposes only. This

allowed remote monitoring of the location of the buoys to ensure that they had not failed

and gone adrift.

4.4 Data processing

All accelerometer and gyro calibrations were performed using manufacturer supplied cali-

bration coefficients. The validity of the accelerometer calibrations was verified both before

and after the deployment through a check of each instrument's outputs in a variety of

tilted positions. The 5000 pound load cell was sent to the manufacturer for a recalibration

immediately prior to the experiment.

The motion of the buoy in earth referenced coordinates was computed using the ap-

proach outlined by Edson et al. [25]. In this procedure, the orientation of the local

coordinate system is computed using a complementary filter in which the high frequency

signal from the rate gyros is combined with low frequency tilt and heading information

derived from the horizontal accelerometers and the compass.1 The result of the comple-

mentary filter is a time series of buoy orientation which can be used to transform the

recorded accelerometer signals into east, north, and vertical components. These earth ref-

erenced accelerations are then integrated into velocity and displacement, with a highpass

filter at each step to remove any low frequency (greater than 30 second period) drift.

Results after 27 December 1998 were processed with the assumption that the low frequency y accelerom-

eter signal was identically zero, i.e., that there was no systematic tilt in that direction. The assumption

is easily justified given the near zero mean y accelerometer signals prior to 27 December and it allowed

us to compute an estimate of the vertical motion even after the loss of the y accelerometer. Motions in

the horizontal plane (east and north) were not computed for data after 27 December.
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For use with the numerical model it is convenient to determine an approximate ori-

entation for the plane of the mooring and to project wind, current, and motion vectors

into a coordinate system oriented with this plane. This approximation and projection

allows us to apply forcing data derived from the three-dimensional experimental results in

two-dimensional model simulations. Definitions for the procedure are shown in figure 4-6.

We determine the direction of the plane of the mooring by considering the net force due

to wind and current on the buoy only. We neglect for now any current drag on the chain

because the currents tended to decay sharply away from the surface and thus drag forces

on the chain were much smaller than the forces on the buoy due to current and wind. For

a current profile V(z) with magnitude and direction at the surface VH and OH, and wind

with speed W and direction OW, the north and east components of the force, F, and Fe,

are

Fn cos OH cOs Ow PSbCdbVI 1F, si OH sn0,,W
[FeJ [sinH sin PairSwCdwW

where Sw, Cdw, Sb and CAb are the projected area and drag coefficient above and below the

buoy waterline, respectively. The resultant effective direction of the plane of the mooring

is

Oeff = tan- (Fe) (4.2)

Given the effective plane determined by 0 eff, we seek effective values of the wind, Weff,

and current profiles, Veff(z), which yield the same level of force as the true forces projected

onto the effective plane

F cos (Oeff - 0(z)) = pSbCdbVeff(Z) 2 , (4.3)

Fw cos (Oeff - 0,) = -'PairSw C Weff (4.4)
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Figure 4-6: Definitions for the procedure to determine the approximate two-dimensional
plane of the mooring.

Taking care of signs, we define the effective current and wind in this plane as

Veff(z) sign [cos (Oeff - 0(z))I V(z) Icos (Oeff - 0(z))1, (4.5)

Weff = sign [cos (6eff - Ow)] W cos (0eff - 0,)1. (4.6)

The north and east components of the buoy motion, Xa(t) and Xe(t), respectively, are

converted into in-plane and out-of-plane components according to

Xip = X, cos 0 eff + Xe sin 6 eff, (4.7)

X0p = -Xn sin eff + Xe cos eff. (4.8)

Because the average water depth of 42 m was near the maximum range of the 600

kHz unit, the data from the 1200 kHz unit appear to be more accurate near the surface.

As the near surface currents (along with the wind) dominate the steady-state response of

the mooring, the profiles, 1(z), used in the procedure outlined above are based on data

from the 1200 kHz instrument, with extrapolated values below 13 m depth. While both

instruments recorded three ping ensembles at 1 Hz, only temporally averaged profiles (over

the 26 minute length of each sample period) were used.
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Chapter 5

Validation and Parameterization

of the Numerical Program

The numerical model described in chapters 2 and 3 and appendices C through E was

validated using the data collected during the full scale field experiment and by comparison

with two hanging chain problems with known solutions. The first step in the validation

is to characterize those aspects of the model which are purely numerical, particularly the

time integration and mesh refinement parameters. We do this by comparing simulation

results to a known solution. This allows us to establish reasonable values for the numerical

parameters which are then used in the comparison of model results with experimental

results in order to establish the ability of the numerical program to accurately predict

dynamic response under a variety of forcing conditions.

5.1 Response of a hanging chain

Figure 5-1 depicts the hanging chain system used for the first part of the validation. Two

cases will be considered. In the first case we apply a very small initial displacement to the

chain and then at time t = 0, release it. The dynamic response of the chain for t > 0 can

be calculated analytically for the small motions that result. In the second case we impose

a sinusoidally varying horizontal displacement to the top of the chain and analyze the

forced response. This latter problem was studied both numerically and experimentally by

Howell [46].
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5.1.1 Free response to an initial displacement

For small motions and an inextensible chain, the equation of motion for the chain can be

written as

m a q [mgsJ . (5.1)

Assuming a harmonic solution of the form

q(s, t) = q(s) [A cos wt + B sin wt] (5.2)

the mode shapes, q(s), are [97]

q(s) = ciJo (2w + c 2 Y (2w ). (5.3)

The requirement that the solution be finite at s = 0 leads to the elimination of the Y

term and the requirement that q(L) = 0 leads to the natural frequencies, w. They are

given by the roots of

Jo (2w = 0. (5.4)

The complete response is the sum of the response in each mode

q(s, t) = Jo 2 wn ) [A cos wt + B, sin wt]. (5.5)
n=

The coefficients An and Bn are determined from the initial displacement, qo(s), and

velocity, do(s). Given 4o(s) = 0, we can immediately determine that B" = 0. To determine

A, we first write

00

q(s, 0) = AnJO (2w ) = qo(s). (5.6)

Multiplying both sides by JO (2wn I), integrating from s = 0 to s = L, and making use
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of the fact that

o (2w, 2Wm 4 )ds = 0, for n #m, (5.7)

yields the following equation for An,

L

f qo(s)Jo (2wn S) ds
An = 0 (5.8)

f J02 (2wn ds
0 F

For comparison with simulation results, the analytic

solution was computed for a chain released from an initial

catenary configuration. For simplicity all of the model

parameters (mass per length, gravity, length) were set to

unity. The horizontal force applied at s = 0 to create

the initial deflection was set to 0.001. For simulation

results EI was set to 10-6 and EA to 10 9 . All of the

integrals were computed using the trapezoidal rule with

10000 panels. A 400 second time series of the response Figure 5-1: Definitions for the

at the free end was constructed using the first 20 modes hanging chains problems.

of the analytic solution. The analytic result was sampled at 20 Hz; the natural frequency

for mode 20 is approximately 5 Hz.

Because the primary distinction amongst the various algorithms contained within the

the generalized-a method is the amount of numerical damping, all results are compared

in the frequency domain. For each 400 second time series, power spectra of the response

at the free end were computed using non-overlapping 256 point FFTs. As an example,

figure 5-2 shows the power spectra for the analytic solution and for a numerical solution

with A2 = -- ', At = 0.01 s, and 50 nodes. The circle and square markers indicate the

spectral peaks as computed using a crude peak detection algorithm. In subsequent results

only the peaks are plotted.

Figure 5-3 shows a comparison between the analytic solution and numerical solu-

tions for six different parameterizations of the generalized-a method. At this time step,

At = 0.01 s, most of the algorithms are accurate out to the fifth or sixth mode. The
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Figure 5-2: Power spectral density of the response of the free end of the chain for the
analytic solution and for a numerical solution with A 2 - 1, At = 0.01 s, and n = 50.

notable exception is the first-order accurate backward differences, which substantially un-

derestimates the response even in the first mode. All of the algorithms show a marked

fall off from the analytic solution at higher frequencies, with the solutions for A 2 > 0

showing the most decay and the trapezoidal rule appearing to be the most accurate.

In figure 2-4, the numerical damping of the various algorithms varies with the product

wAt. The idea that we should see less numerical damping at a fixed frequency with a

decrease in At is illustrated in figure 5-4 which shows the same results comparison as in

figure 5-3 for a time step of At = 0.001 s. At this time step most algorithms are accurate

out to the tenth mode. Only backward differences, which due to its first-order accuracy

is again a poor solution even at very low frequencies, and A 2 = 0 (which like backward

differences is asymptotically annihilating) are worse than this.

That the other algorithms, with their varying levels of dissipation, have converged to

the same solution suggests that the remaining error is not due to numerical dissipation.

Figure 5-5 shows the comparison for four cases with A' = - and At = 0.001 s, with a1, 2

varying number of nodes. As the node density is increased, the numerical model is better

able to resolve the mode shapes associated with the higher frequencies. At n = 800, the

numerical solution is in agreement with the analytic solution over the full range of the
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Figure 5-3: Power spectra peaks of the response of the free end of the chain for the analytic

solution and for six variants of the generalized-oz method with At - 0.01s, and n 50.
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Figure 5-5: Power spectra peaks of the response of the free end of the chain for the analytic
solution and for A9 = -), At = 0.001 s, with n= 50, 200, 400, 800. Note that the y axis
scaling has changed from previous power spectra plots.

analytically computed response.

These results demonstrate that the ability of the model to accurately resolve high

frequency response is dependent on temporal and spatial discretizations and on the nu-

merical dissipation for a given algorithm. Given sufficient temporal and spatial resolution,

all forms of the algorithm appear ultimately capable of accurately calculating the free re-

sponse of the swinging chain. Based on its better accuracy at the larger time step, the

best choice of algorithm for this problem appears to be the trapezoidal rule. As will

be demonstrated, however, this may not always be the case, particularly in cases where

numerical instabilities arise.

5.1.2 Forced response to an imposed motion

Two-dimensional simulations

The second hanging chain problem that we consider is the case studied by Howell [461.

In this problem, a 1.75 m long chain is suspended from an actuator which imposes a

sinusoidally varying horizontal displacement, Q(t), to the top of the chain (see figure 2-1).

There is no analytic solution for this problem so we will compare numerical solution
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results to snapshots of the chain configuration derived from experiments conducted by

Howell. Figure 5-6 shows the configuration of the lower portion of the chain from 3.43 s

to 3.46 s for six different algorithms, all with n = 100 and At = 0.01 s. Howell observed

that the free end of the chain intersects the chain above it at approximately 3.4 seconds.

The box method and trapezoidal rule most closely match this result, with intersection

occurring by the 3.43 second mark. For the other algorithms, the delay in intersection

is proportional to the amount of numerical dissipation in the algorithm. The solution

for backward differences is again the worst; the chain never intersects itself. Likewise

for A 2 = 0, though it comes closer to doing so. For A 2 = -0.7, intersection actually

happens at 3.47 seconds and for A' 2 = -0.5, at 3.5 seconds.

The situation changes somewhat if we consider the effect of temporal and spatial

discretization. Figure 5-7 shows the same time points for versions of the box method

with n = 100, 200 and At = 0.01, 0.001, 0.0001 s. In this case we see that increasing

the number of nodes does not significantly effect the solution, suggesting that n = 100 is

adequate to accurately capture the response. An increase in temporal resolution, however,

from At = 0.01 s to At = 0.001 s, leads to a delay in the crossover to approximately

3.46 seconds. The result at the even smaller At = 0.0001 s confirms that the solution
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Figure 5-7: Snapshots of the chain configuration near
for the box method with different spatial and temporal

the time of expected intersection
discretizations.

has converged at these smaller time steps. Figure 5-8 shows this same behavior for the

trapezoidal rule. The only notable difference between trapezoidal rule and box method

solutions is the better smoothness of the trapezoidal rule solutions at At = 0.01 s.

Similar results for A 2 = -0.5 are shown in figure 5-9. In this case, the solution at

At = 0.001 s has not quite converged to the solutions from the trapezoidal rule and the box

method at the 3.46 second point. The solutions for At = 0.0001 s are in good agreement

with the similar solutions in figures 5-7 and 5-8. A notable difference in the solutions for

the various algorithms does appear in the half second (solutions were only run for four

seconds) following intersection. Both trapezoidal rule and box method solutions required

significant adaptation of time step to get through the collapse of the lower portion of the

chain following the crossover. The enhanced stability of solutions with A 2 = -0.5 allowed

for a smooth numerical solution in this region, with no or very little adaptation. Without

experimental verification, however, we cannot say if this numerically more easily obtained

solution is accurate.

The basic accuracy of the solutions from all of the algorithms can be verified by com-

parison with Howell's [46] data for the chain configuration prior to intersection. The data

points were recovered graphically from digitized versions of the hardcopy plots. Because
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Figure 5-10: Comparison of simulation and experimental results from Howell [46], fig-
ure 5.29. Simulation results are for A 2 = -0.5 with At = 0.0001 s and n = 200.

the original plots did not contain absolute offset information for the points, the experimen-

tal points were aligned with the simulation snapshots by matching the first experimental

point with the free end of the chain. The comparison for the lower half of the chain is

shown in figure 5-10. The simulation results are for A 2 = -0.5 with At = 0.0001 s and

n = 200. At this temporal and spatial resolution the solutions from all of the second-order

accurate algorithms were essentially identical. The results at all three time points show

good agreement. The comparison at I = 3.07 s improves with a slight adjustment to the

horizontal offsets that were applied.

These results are in agreement with the observations drawn from the free response

problem. At sufficiently small time steps and adequate spatial resolution, all three al-

gorithms: box method, trapezoidal rule, and A 2  -0.5, provide accurate solutions.

Trapezoidal rule is the best choice in terms of the computational costs of accuracy, where

cost is measured simply in terms of time step. As indicated, however, in regions where the

solution becomes numerically unstable some numerical dissipation may be necessary to

obtain a solution. This suggests a trade-off between optimizing the time step for accuracy

and optimizing the algorithm for stability.
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At = 0.01 s At =0.001 s

method x-over (s) run length (s) x-over (s) run length (s)

box - 3.38 3.45 3.64
trapezoidal 3.41 3.78 3.45 3.60

A2 = -0.7 - 3.40 - 3.40
A 2 = -0.5 - 3.42 - 3.40

A0 2 = -0-4 3.49 3.56 3.46 10.0
A 2 = -0.3 3.51 10.0 3.46 10.0
A0 2 = -0.2 3.52 10.0 3.47 10.0

A1 2  0 1 - 3.60 - 3.40
A0 2 = 0.0 - 10.0 - 3.42

A0 2 = 0.1 - 10.0 3.42

Table 5.1: Comparison of the predicted cross-over time and total simulation time before
failure for three-dimensional simulations of the forced hanging chain.

Three-dimensional simulations

In order to further explore these trade-offs, three-dimensional simulations were conducted

to explore the behavior of the solutions beyond the time when the chain crosses over

itself. Howell [46] noted that out-of-plane motions of the experimental chain only became

significant after this point. The simulations were conducted with a small initial out-of-

plane force applied at the free end to promote the initiation of out-of-plane motion. This

models the inevitable presence of small disturbing forces which produce instabilities in the

two-dimensional motion and eventually lead to a fully three-dimensional response.

Table 5.1 lists the observed time of the chain crossing over itself and the total running

time (out of a possible ten second simulation) of the simulation before failure. Depending

on time step, only solutions for -0.4 < A 2 < -0.2 ran for the full ten seconds and resulted

in an accurate cross-over prediction. At At = 0.01 s, the stable solutions (at A 2 = -0.3

and A 2 = -0.2) were less accurate than the two-dimensional simulations for A 2 = -0.5

at this same time step. This is consistent with the observation that as damping increases

the cross-over time is delayed, until with enough damping it does not occur at all. Also

consistent with the two-dimensional results is the convergence to an accurate prediction

of 3.46 s with an increase in temporal resolution to At = 0.001 s.

The stability of results for A 2 = 0.0 and A 2 = 0.1 at At = 0.01 s, but not at
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Figure 5-11: In-plane and out-of-plane motion
stable algorithms with At = 0.01 s.

of the free end of the hanging chain for the

At = 0.001 s, illustrates the dependence of the stability on the frequency content of the

response, the time step, and the damping properties of the algorithm. Because the spectral

radii in figure 2-4 all initially decrease with the product wAt, at a fixed frequency a decrease

in At will result in less damping. If the response at that frequency was responsible for the

instability then the solution at the smaller time step may actually be less stable.

Figures 5-11 and 5-12 show the in-plane and out-of-plane motion of the free end of

the chain for all simulations which ran for the full ten seconds. At At = 0.01 s there

is little consistency between the levels of out-of-plane motion predicted by the different

algorithms. For the solutions at At = 0.001 s the results for out-of-plane response appear

roughly equivalent. A trace of the motion of the free end in the horizontal plane for

At = 0.001 s and A = -0.3 is shown in figure 5-13. The roughly circular whirling

motion revealed by the trace after the three-dimensional motion is fully developed is the

type of response that we expect for this problem [68].

5.2 Solutions for a full scale mooring

As a final study of the stability and accuracy of the time integration algorithm we consider

a full scale mooring with an imposed sinusoidal vertical motion at the top node of the

88

2 0.2

0 0 2= .

20 = 1 02 2 4 6 8 12 -0.2
0 2 4 6 8 10 0 2 4 6 8 10

2 0.2
00 0-0.2

2 = 0.0 -0.2 0.0
0 2 4 6 8 10 0 2 4 6 8 10

2 0.2
0 - .. .

2 1=2 -0.2 =

0 2 4 6 8 10 0 2 4 6 8 10

time (s)

At = 0.01 s: In-Plane Displacement At = 0.01 s: Out-of-Plane Displacement



At = 0.001 s: In-Plane Displacement
0.2

0.1
-0.1 V~jS=-0.4

-0.2 0 2 4 6 8 10

0.1

-0.1
X -0.3

-0.2 2
0 2 4 6 8 10

0.2

0.1

-0.2

-0.2

0 2 4 6 8 10
time (s)

At = 0.001 s: Out-of-Plane Displacement
0.2

0.1 - - - - - --

X =-0.4
-0.21 2

0 2 4 6 8 10

0.2

0.1

E 0

-0.1.. . .

-0.2 1,2

0 2 4 6 8 10

0.2

0.1

0-0.1
r1, =-0.2

-0.2 .., ..
0 2 4 6 8 10

time (s)

Figure 5-12: In-plane and out-of-plane motion of the free end of the hanging chain for the
stable algorithms with At = 0.001 s.

0 0.05
in-plane coordinate (m)

0.1 0.15 0.2

Figure 5-13: Trace of the horizontal motions of the free end of the hanging chain for
A00 = -0.3 and At = 0.001 s.

89

0.2

0.15

0.1

0.051
C

Z5
0

L)

0

4 - 8 seconds
8 - 10 seconds

VA

01/

-- - -- -

-I---

F -- --0

-0.05

-0.1

-0.15- -
-0.15 -0.1 -0.05

o

0

-- --- - -

r) 2



mooring. Given the coordinate integration procedure described in appendix E, errors in

the overall solution will be evident based on the error in the computed coordinates of the

top node. We can see this if we consider integrals for the top node position in continuous

form. From equations E.1 and E.2 it is clear that we can write those positions as

x(L, t) = [1 + E(s, t)] cos #(s, t)ds, (5.9)
|L

y(L, t) = j [1 + c(s, t)] sin 0(s, t)ds. (5.10)

If we had a perfect solution, the dynamic vertical motion at the top, x(L, t) would al-

ways match the imposed vertical sinusoidal motion and the horizontal motion, y(L, t),

would always be zero. Ignoring any errors associated with the numerical integration of

equations 5.9 and 5.10, any deviation away from the ideal solution represents error in the

computed values of c and # along the entire mooring. Thus, comparing the time evolution

of the computed horizontal displacement of the top node, when the imposed motion is

purely vertical, provides a simple and convenient estimate of the error associated with a

particular form of the time integration algorithm.

The physical characteristics of the trial mooring are the same as for the field exper-

iment, as described in table 4.1 and figure 4-4. For each form of the algorithm under

consideration, the model was run for 300 seconds of simulation time with a base time

step of 0.1 seconds. To facilitate comparison with results from a previous version of the

program, the spatial discretization was uniform over each segment. The flexural stiffness,

EI, of the chain was set to 0.1 N in 2 . The environmental forcing was chosen to simulate

rather severe conditions with a uniform current of 2.0 m/s and an imposed vertical motion

with amplitude 2.0 meters and period 8.0 seconds.

Figure 5-14 shows the computed top node horizontal position for four cases: the orig-

inal box method without any averaging of the coefficient matrices, the box method that

arises from the generalized-a method with ak = 0.5, am = 0.5, y = 0.5, the generalized

trapezoidal rule, and backward differences. For all cases, the values of ak, am, and y are

summarized in table 5.2. Note that for both box methods the solution failed before the

full 300 second run was completed. A solution fails when the nonlinear solver cannot get

a convergent solution even after adapting At down by a factor of 10-4. For the original

box method without any coefficient averaging this happened at 131 seconds. The box
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algorithm ak am -Y

box method w/o coefficient averaging - - -

box method w/ coefficient averaging 0.5 0.5 0.5
trapezoidal rule 0.0 0.0 0.5
backward differences 0.0 0.0 1.0
A2 = 0.0 0.0 -0.5 1.0
AO 2 = -0.33 (Cornwell and Malkus [20]) 0.25 0.0 0.75
A' = -0.2 0.167 -0.167 0.833
A 2 = 0.1 -0.111 -0.722 1.111

Table 5.2: ak, am, and -y values for the tested algorithms. Solutions for the box method
without averaging are based on an old version of the program and cannot be obtained
within the newly developed generalized-a family of algorithms.

method with coefficient averaging (this is the box method that we can achieve within the

generalized-a family derived in chapter 2) lasted somewhat longer, with failure at 260

seconds. In addition to those failures, it appears that the solution from the trapezoidal

rule is beginning to exhibit the same type of behavior starting at around 250 seconds.

This solution does indeed fail completely at 445 seconds when allowed to proceed beyond

300 seconds.

The failure of these three algorithms reinforces two of the important motivations that

we gave in developing the generalized-a method for the cable dynamics equations. The

difference in the box method solutions illustrates the improved stability characteristics

of the algorithm with temporally averaged coefficient matrices. That all three eventually

failed illustrates the importance of numerical dissipation in improving stability. Figure 5-

15 illustrates the calculated shear force at the top node for these four trials. With EI = 0.1

for this chain mooring we expect very little shear force. Prior to failure, however, all three

algorithms developed obvious Crank-Nicolson type noise in the shear force. The solution

using backward differences has significant error in the calculated horizontal displacement

and a slightly noticeable drift in the shear force, but remains stable. The numerical

dissipation associated with backward differences eliminates the Crank-Nicolson noise and

the solution proceeds with good stability (albeit with relatively poor accuracy).

Solutions with significantly improved stability and error properties are obtained from

the one parameter form of the new generalized-a algorithm. Figure 5-16 shows the error
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Figure 5-14: Calculated horizontal displacement of the top node of the trial mooring for
the box, trapezoidal, and backward difference algorithms.

in calculated horizontal displacement for the trial mooring using four different values of

A' 2 . Noting the different vertical scales in figures 5-14 and 5-16 it is clear that the drift

in the calculated horizontal displacement is substantially reduced for all four of these

cases relative to backward differences. The worst case in figure 5-16 has approximately

two orders of magnitude less error at 300 seconds. The best case is nearly four orders of

magnitude better.

The rate of error growth, defined as the maximum absolute value of the horizontal

displacement divided by the 300 second simulation time, is plotted (with circles) for a

number of A 2 values in figure 5-17. This error rate is essentially the slope of the trends

represented by the four curves in figure 5-16. The error is minimized for A 2  -0.19.

Unfortunately, as the additional curves in figure 5-17 illustrate, the optimum value of

A 2 is highly problem dependent. The first three curves reflect the error growth rate for

the mooring in the 2.0 m/s current with three different dynamic excitation conditions. The

second set of three curves shows the error growth rate for the mooring in 0.5 m/s current

with the same three dynamic excitation conditions. The static shapes of the mooring in

the two different current conditions are shown in figure 5-18.
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Figure 5-15: Shear force at the top node in the trial mooring for the three failed solution
algorithms and backward differences. Note that the vertical axes on all four plots are
different.

For the high current configurations, the location of the error minimum does not change

significantly for excitations with the same period but differing amplitudes. When the

period of the excitation is changed, the location of the minimum does shift. This behavior

is consistent with the frequency response of the mooring not changing significantly with

amplitude of excitation. This contrasts with the low current configurations for which the

error maxima and minima are shifted most dramatically when the amplitude, not the

excitation period, changes.

Such behavior makes it difficult to draw any general conclusions that would aid in

choosing an appropriate value of A 2 for a given problem. We can say that the overall

level of error appears to be a direct function of the severity of the excitation, as measured

by the amplitude of the imposed velocity, A+2j-, for example. The safest choices also seem

to be A 2 < 0 to avoid the local maxima seen in the low current configuration.

Additional support for choosing A 2 < 0 comes from an examination of the stability

of the solution as a function of A' 2. If we modify our adaptive time-stepping scheme
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such that it functions like the adaptive relaxation scheme described in appendix C, we

can determine the largest At that can successfully and consistently be used to propagate

a solution in time. At each time step, we either increase or decrease At by some small

factor depending on the success of the solution at that step. Given

ti+1 ti + Ati, (5.11)

if we can successfully solve the nonlinear problem for t'+ 1 then we increase the time step

Ati+ = R 2 AtP, (5.12)

and try for the solution at ti+2 = ti+1 + Ati+1 . If the solution at t'+1 is unsuccessful, then

we decrease the time step

Ati = (5.13)
R1

and try again. R, and R 2 are constants slightly larger than unity with 1 < R 2 < R, so

that a failed step decreases At more than a successful step increases At. For these trials
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Figure 5-19: Average successfully adapted time step as a function of AY 2 over the course
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second period excitation.

R2= 1.02 and R1 = 1.1. This procedure tends to drive At to an optimum value in a

relatively small number of time steps.

Figure 5-19 shows the average (over a 100 second simulation) successfully applied value

of At as a function of AY 2 for the low current configuration with 1.0 m amplitude and 8.0

second period. This configuration was chosen because the simulations with AY 2 ;> 0 in the

latter three curves (the low current configurations) in figure 5-17 required base time steps

of 0.05 seconds to proceed without constant adaptation1 . Simulations with AY 2 < 0 used a

base time step of 0.1 seconds and proceeded successfully with little or no adaptation. This

suggested, and figure 5-19 confirms, that the maximum time step value for these cases was

dependent on Aj 2. Data from the high current configurations shows a similar trend, with

the maximum At decreasing sharply for AY 2 > 0. There is more variability in the data

for AY 2 < 0, however, as the maximum At is significantly larger than for the low current

configurations (between 0.5 and 1.0 second) and in each case shows more variability as

the solution progresses.

Based on data in figures 5-17 and 5-19 then, we can conclude that a value for Aj 2

1Adaptation in those simulations refers to the standard adaptive time-stepping algorithm which reduces

/ t by factors of 10 to ensure that the solution remains on the original sample grid.
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between -0.5 and -0.9 is reasonable in terms of maximizing stability (as measured by the

largest allowable At) and minimizing the drift error in long time simulations. In this range

both the error and stability properties appear to be relatively flat and near optimal for most

of the cases considered. A 2 = -1 should clearly be avoided as it is the box method with

no dissipation and is prone to the type of failures exemplified in figure 5-15. A trial using a

value of A 2 = -0.98 demonstrated the same failure mechanism after approximately 2250

seconds of simulation. This suggests that even a small amount of numerical dissipation

can significantly improve long term stability, but that for guaranteed stability there is a

nominal level of dissipation which must be provided. A run with A 2 = -0.9 showed no

signs of Crank-Nicolson noise build-up after 3000 seconds of simulation.

These results are consistent with the observations gleaned from the hanging chain

problems, with the additional caveat that in the case of real moorings, solutions with

A 2  -0.5 are significantly more stable than trapezoidal rule solutions. That we might be

able to use a slightly larger At to achieve the same level of accuracy with the trapezoidal

rule is no consolation when we cannot in fact get a stable long-time solution at any

reasonable At.

5.3 Mesh refinement

In studying the spatial discretization of a model mooring system there are three important

factors to consider. At the most basic level we must choose how many nodes to use in

discretizing each continuous segment of the mooring. The mesh refinement procedure

described in chapter 3 also requires that we set c,, the weighting factor used in assigning

the available nodes. Finally, the value of the flexural stiffness, EI, for a given segment

has an important effect on the static solution over that segment. For relatively high El,

oscillatory solutions for curvature and shear, described in section 3.3, are not typically a

problem and uniform meshes with relatively low numbers of nodes are generally sufficient.

For materials with zero EI or El just large enough to prevent the singularities associated

with zero tension, which is the typical situation for chain moorings, these oscillations can

be quite significant and mesh refinement becomes important.

For the chain mooring deployed during the field experiment we arbitrarily set the value

of El to a value of 0.1. Experience has shown that this value is large enough to prevent
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zero tension singularities in the dynamic solution. In practical terms this is the flexural

stiffness of a steel wire that is 1.76 mm in diameter. Alternatively, if we take the diameter

of the chain to be the shaft link diameter and consider that

EI ~ EA d(5.14)
16'

then our small value of El is 1/6500 smaller than the value of EI for a circular rod of

equivalent axial stiffness. Given that the refined mesh solutions with this value of El are

satisfactory, it seems reasonable to avoid any question that a larger artificial value of EI

might begin to affect the dynamic solution in a non-negligible way.

To examine the effect of c, on the static solution on the refined mesh we consider

two mooring models. The first models the system as a single, continuous shot of chain,

neglecting the presence of inline instruments. The second models the field experiment

mooring as it was deployed, with the inline AxPack instruments between shots of chain.

In both cases the current was uniform over the water column at 0.5 m/s. The static shape

of the mooring (which is nearly the same for both configurations) for this current profile is

shown in figure 5-18. For each trial static solution we compare the curvature to a baseline

solution generated on a uniform mesh with twice as many nodes and EI increased to 10.0.

The static curvature solutions for the continuous chain model are shown in figure 5-20.

The trial solutions used 162 nodes over the 80.78 m total length of the mooring. The

solutions on the mesh refined with c,, 10 and c, = 50 appear to be a clear improvement

over the unrefined uniform mesh (c = 0) with the same number of nodes and EI value.

To quantify the improvement, the error in curvature for a range of c" values is plotted

in figure 5-21. The error is calculated as the root mean square difference between the

baseline curvature solution (resampled on the trial solution mesh using cubic splines) and

the curvature from the trial solution.

The error is minimized for a value of c, ~ 5. Higher values of c, give too much weight

to curvature oscillations and produce a mesh which is too coarse in the interior portions of

the system. This is clearly shown in the top half of the mooring for c" = 50 in figure 5-20,

where there are now oscillations in the solution where there were none in the uniform mesh

trial solution. Figure 5-22 shows the mesh density (defined as the number of elements per

meter) for the same three cases shown in figure 5-20. The solution with the lower weight
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Figure 5-20: Curvature from the static solutions of the continuous all chain mooring.
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Figure 5-22: Mesh density after refinement of the all chain mooring.

is able to distribute sufficient density near the boundary while maintaining a density that

is not significantly lower than the uniform mesh in the rest of the mooring. The higher

weight solution devotes many more nodes to the area near the boundaries and as a result

cannot provide enough density to other areas.

Figure 5-23 shows the baseline solution, the uniform mesh solution (c" = 0), and

two refined mesh solutions for the mooring with inline instruments. The locations of the

instruments along the mooring are clearly visible as the flat spots in curvature at s e 45 m,

s - 50 m, and s - 57 m. The number of nodes on each of the chain segments was 91 (over

45.0 m), 18 (over 3.5 m), 36 (over 7.0 m), and 47 (over 23.0 m). Each 0.76 m AxPack was

modeled using 3 nodes. The baseline solution with uniform mesh had twice the number

of nodes over each of the chain segments. The relatively larger number of nodes in the

shorter chain segments reflects the fact that the length of the decay of oscillations in

the curvature is related more to mesh density than to physical length. This means that

comparable numbers of nodes must be employed near each segment boundary, regardless

of the length of the segment.

For this case there is no striking minimum in the error shown in figure 5-21. A value of

q, = 20 appears to give the best solution, but values at least out to c" = 100 also appear

reasonable based on this measure of the error. In looking closely at figure 5-23 for c = 50,
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Figure 5-23: Curvature from the static solutions of the mooring with inline instruments.

however, the sharpness of the plot around the curvature maximum (s ~ 35) indicates that

oscillations near the boundaries are being reduced at the expense of an overly coarse mesh

elsewhere.

5.4 Comparison with experimental results

The final phase of the model validation process is a comparison of simulation results to

data from the full-scale mooring described in chapter 4. For both the two- and three-

dimensional models we make two types of comparison. In the first we compare time series

and spectra from individual data sets to verify the ability of the model to accurately

capture the detailed response of the mooring. In the second comparison we consider

statistics of the response from all data sets. This analysis provides a check that our

chosen hydrodynamic coefficients and environmental parameters yield accurate solutions

over a wide range of forcing conditions.

The hydrodynamic coefficients for the chain and AxPacks in the validation runs are

shown in table 5.3. The added mass can be calculated from the added mass coefficients,
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material d (m) Cd Cdt Ca Cat

half-inch chain 0.0495 0.5 0.01 1.0 0.1
AxPack 0.075 0.8 0.069 1.0 0.5

Table 5.3: Mass and drag coefficients for the validation simulations.

Ca, and Cat, according to

ird2

ma,= Pw Ca,, (5.15)
4

mat =Pw 2 Cat, (5.16)
-w 4

where d is the width of a link of chain. Coefficients for the chain are based on experi-

mental results from Gopalkrishnan [37] and previous numerical studies (e.g., [8]). AxPack

coefficients are approximations based on cylinder and flat plate coefficients. The bottom

stiffness was set to 100 N/m 2 and the bottom damping ratio to 1.0. The buoy normal drag

coefficients for the static solutions were 0.5 (in water) and 1.3 (in air). For the purposes

of the validation, all of these values were chosen because they were physically reasonable

and produced simulation results that matched experimental results over most data sets.

Variations on these parameters and schemes for choosing parameters that best match the

experimental data are studied in detail in chapter 6.

5.4.1 Two-dimensional model

For each of the experimental data sets, the effective values for wind and current in the

two-dimensional plane and the time series of buoy vertical velocity are used as input to the

model and a time series of mooring response is computed. The procedures for calculating

these inputs are described in section 4.4. Because of the relatively low currents and

winds that were observed during the experiment, static solutions for the simulations were

obtained using the dynamic relaxation procedure described in section C.4.

Examples of the simulated tension beneath the buoy, along with the corresponding

experimentally observed values are shown for two cases in figure 5-24. In both cases, the

agreement between simulation and experiment is excellent. For the 6 December data with

relatively moderate environmental conditions (approximately 15 knot winds), the mean
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Figure 5-24: Comparison of experimental and two-dimensional model simulated tension.

(a) 6 December 1998 at 0800 localtime. (b) 3 January 1999 at 1600 localtime.

and standard deviation of the simulated tension over the full 200 seconds of simulation time

(excluding a 10 second initial ramp-up period) were 1503 N and 201 N, respectively. The

corresponding statistics for the experimental data were 1503 N and 208 N. The statistics

for the 3 January storm (with near 50 knot winds) also show close agreement: 1611 N

and 471 N for the simulation compared to 1610 N and 476 N for the experiment. In this

latter case a few of the tension peaks are higher in the simulation than in the experiment.

Given the sharpness of these peaks, it is possible that the analog filtering in the buoy

instrumentation attenuated the experimental signal.

Figure 5-25(a) shows the tangential acceleration signal recorded by the lowest AxPack

for the 3 January 1999 storm. For comparison, we calculate the simulated acceleration,

a(t), at this point based on the tangential velocity, u(t), and the inclination from the

vertical, 0(t),

a(t) = + G cos (t), (5.17)
At

103



20

(a) mean = 6.54, 7 = 1.55 experiment
- - - simulation

15 -

E

0

100 110 120 130 140 150 160 170 180 190 200
time (s)

20

(b) mean =8.23, (.= 1.54
.~0

1. . .1...2...3..4......... . . 1 8......2.

100 lgnn 110tw 120al 130n 140 15ak 1bsr0e 170efr 180 se90ds 200rsut

20 ~~~ ellII I

Fhiure at25: t moeais oe experiment a han inotesionltode (.4m/s2 (ss

a.2ele/st).nTisa sugstat thes AxPack ay th hJnary been stwerm a ente.anta

expered. i the pelrtode togaity shape fuatrt teming plttde thesgue 5-ndit(bns Afty

tierr alfgtwn the twre sigters uing the pesiak ofsethed juwst Axfark 10sconds prdue thuls

Foovry amilre Bamseed pitureaso of the speprracr, ofte resosidrtes (fnigur stt5-26

ands theal experimental ad seimatedn data ses. Theadsiuao standard deviationma

ofThe teansiof tre pccttedaio (ershsh sanarddeiation of theavetatceetio (ae moasre

Fo a sevre complthe ynamireforcig)einodegurer-27.mTheeee ostatisthe tesientatifsr

tics.f.r.al.119.exp .imental.ad.sim.lat..dat..se.......... evatonan ma

of the tesion are lotted.vesus.the.sandard.deiation.ofheave.accleration.a.measur
Ef th eeiyo h yai ocn)i ue52. Th ev ttsici dnia o

104



102

experiment
- - - simulation

.o -

10-

8 1 0 .. . . .. . .-.. .

102

......2. \ .... ...... ......... I ......... ....

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
frequency (Hz)

Figure 5-26: Spectral comparison of experimental and two-dimensional model simulated
acceleration signal at the lowest AxPack for the 3 January 1999 storm event.

simulation and experiment because the experimental buoy motion is imposed as an input

for the simulation. Overall, the agreement in the dynamic results (as measured by stan-

dard deviation of tension) is quite good, with nearly exact agreement in low sea states and

good agreement in higher sea states. The root mean square difference between experiment

and simulation is 16.1 N. The relative RMS difference, defined as

e = ± or 0 ,exp -
0

T,sim 1, (5.18)

is 5.8%.

The simulated mean tensions do not correspond quite as well with experimental re-

sults, but again the trend with sea state appears to be correct. The root mean square

difference between simulation and experiment, 37.0 N, is less than 16% of the total ob-

served variation in mean tension over the course of the experiment. Given the lack of

collocation of the wind measurement, the heavy temporal averaging of both wind and

current, and the assumptions made in projecting wind and current into a two-dimensional
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Figure 5-27: Comparison of experimental and two-dimensional model simulated tension
statistics over all 119 data sets. (a) Dynamic response as measured by the standard
deviation of the tension. (b) Steady-state response as measured by the mean of the
tension.

plane, these larger discrepancies in steady-state results are not unexpected. Relative to

dynamic results for which we have exact knowledge of the forcing (though we are neglect-

ing the horizontal motions of the buoy), we do not have sufficient information to hope for

an exact comparison.

Finally, for a frequency domain analog to the time domain comparisons above, we

consider the errors in the simulated tension spectra. Because the standard deviation is a

measure of the energy over the entire spectrum,

oT = j ST(w)dw, (5.19)
0

it is possible for positive and negative errors at different frequency components to effec-

tively cancel in a comparison of standard deviations. A spectral error metric that scales

similarly to the RMS error in standard deviation, but prevents the cancellation of positive

and negative errors can be derived by modifying the spectrum from the simulation so that
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all errors have the same sign,

S ,sim(W) = IST,sim(W) - ST,exp(W)I + ST,exp(W). (5.20)

The standard deviation from the discrete form of this modified spectrum with N frequency

components is

N

Tsim = E SL(Wi). (5.21)
i N=1

Analogous to equation 5.18 then, the spectral error over n data sets is simply

In - 0* 2

e= x -ETsim (5.22)
n j1 ( U,exp / j

Equation 5.22 applied to the full simulation data set produces an error result of 0.068.

To better understand the magnitude of this error, figures 5-28 and 5-29 show the experi-

mentally observed and simulated tension spectra for the 6 December and 3 January data

sets. The spectral errors for these two individual cases are 0.040 and 0.074, respectively.

Visually, the error in these two cases is quite small, indicating that the error value of 0.068

over the entire data set is quite reasonable.

5.4.2 Three-dimensional model

The validation process for the three-dimensional model is similar to that described above

for the two-dimensional model. Only 60 experimental data sets are available for the

validation, however, because of the loss of the y accelerometer channel after 27 December.

For data sets before 27 December we are able to calculate the vertical, horizontal in-plane

and horizontal out-of-plane velocities of the buoy to use as dynamic inputs into the three-

dimensional model. Like the two-dimensional simulations, static solutions are obtained

using the dynamic relaxation procedure. With the current and wind projected into the

effective plane of the mooring and horizontal motions rotated into in-plane and out-of-

plane components we can use the same high current static solution as the initial condition

in all of the dynamic relaxation solutions, regardless of the orientation of the mooring in

earth reference coordinates.
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Figure 5-29: Comparison of simulated and experimental tension spectra for the 3 Jan-
uary 1999, 1600 data record.
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Figure 5-28: Comparison of simulated and experimental tension spectra for the 6 Decem-
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Figure 5-30: Comparison of experimental and three-dimensional model simulated tension.

(a) 6 December 1998 at 0800 localtime. (b) 22 December 1998 at 0800 localtime.

A comparison of the experimental and three-dimensional model simulated tension be-

neath the buoy is shown in figure 5-30 for the same 6 December data set as in the two-

dimensional validation and for a storm on 22 December with winds of 35 knots. In both

cases the results agree well. For the 6 December data set the tension standard devia-

tion from the two-dimensional simulation (201 N) better matches the experimental result

(208 N). For the 22 December storm the tension standard deviation from a two-dimensional

simulation is 392 N and the result from the three-dimensional simulation (405 N) is closer

to the experimental result of 430 N. In both cases, the mean tension is less accurate in

the three-dimensional simulation than in the corresponding two-dimensional simulation

(the mean tension in a two-dimensional simulation of the 22 December data is 1571 N).

Statistics for all of these cases are summarized in table 5.4.

Tension statistics for all 60 data sets prior to 27 December are plotted in figure 5-31.

The root mean square difference between experimental and simulated standard deviations

is 11.2 N. For the mean tensions it is 31.7 N. In the two-dimensional simulations of these

same 60 data sets, the corresponding differences are 10.7 N and 29.6 N, respectively.
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6 December 22 December 3 January

data set O-T(N) T(N) J-T(N) T(N) 0T(N) T(N)

experiment 208 1503 430 1617 476 1610
2D simulation 202 1508 389 1580 471 1615
3D simulation 194 1474 402 1552 - -

Table 5.4: Tension statistics for the comparison data sets.
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Figure 5-31: Comparison of experimental and three-dimensional model simulated tension

statistics. (a) standard deviation of tension. (b) mean tension.

On average then, for the hydrodynamic coefficients and environmental parameters

chosen for the validation runs, the two-dimensional results are marginally more accu-

rate when compared to experimental data. However, for the purposes of the validation,

both models appear to accurately simulate the mooring response over a wide range of

forcing conditions. The primary reason for the different results from the two models is

that the hydrodynamic coefficients for the simulations were originally chosen to produce

reasonably accurate results with the two-dimensional numerical model. As discussed in

section 6.11 the two-dimensional model can often give accurate results with purely vertical
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input motion, even if the true input motion is three-dimensional, if the drag coefficients

are adjusted slightly upwards from their true values. In a three-dimensional simulation

these same values will be slightly too high. This is the situation here where for simplicity

and consistency we have used the same set of hydrodynamic coefficients for both two- and

three-dimensional results.
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Chapter 6

A Simple Model for Dynamic

Tension in Catenary Compliant

Systems

In this chapter the validated numerical program and data from the field experiment are

used to develop a simple model to predict dynamic tension in geometrically compliant

moorings, particularly shallow water oceanographic moorings. Motivated by the strong

correlation between the tension and acceleration standard deviations in figure 5-27, a

model is sought that can predict the dynamic tension (as measured by a-, the standard

deviation of tension) given only very simple inputs. Such a model can offer a significant

reduction in computational cost and provide a framework for the understanding of the

physics of these systems. While complete time domain simulations have the advantages of

high accuracy and completeness in terms of resolving the motions and loads throughout

the mooring, they are computationally expensive. The full set of two-dimensional simula-

tions generated for the program validation in section 5.4.1 took approximately six hours

to complete on a 533 MHz Alpha LX workstation (119 simulations at approximately three

minutes per simulation). For analyses requiring long-term statistics of mooring response

under a wide variety of forcing conditions, as in fatigue studies [39], such an expense can

be burdensome. In other situations, such as response prediction for offshore floating struc-

tures, a simplified model could eliminate the need for a fully coupled mooring-structure

interaction model.
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In the past, analytical formulations for these types of models have been developed for

the slow drift damping problem. Nakamura et al. [67] used catenary theory to calculate

the quasi-steady vertical velocity and acceleration along the mooring. By integrating these

quantities they were able to approximate the dynamic force at the top of the line due to low

frequency motions in both the horizontal and vertical directions. When investigating the

role of high frequency dynamics on the damping problem, however, previous investigators

have relied on numerical simulation [55]. In the development that follows, analytical

arguments are combined with statistical relationships gleaned from the experimental data

to develop a model appropriate for wave frequency dynamics.

6.1 Physical motivation for a simple model

Previous authors have used a single degree of freedom (SDOF) spring-mass-dashpot system

to model the dynamic effects in both taut [38] and geometrically compliant catenary

moorings [34,40]. The equation of motion for the SDOF system shown in figure 6-1 is

T(t) = Mi(t) + Bi(t) + Kz(t), (6.1)

where the overdots signify differentiation with respect to time. Reversing the standard

convention and treating z(t) as the input and T(t) as the output, the frequency domain

transfer function, H(w), for this system is

H(w) = -Mw 2 + iwB + K. (6.2)

For a linear time-invariant system, the spectrum of T, ST(w), and the spectrum of z,

Sz(w), are related by

ST(W) = IH(w)12 Sz(w). (6.3)
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The spectra of the input velocity, S,(w), and acceleration Sa(w), are related to the input

displacement spectrum by

Sc (W) = W2SZ(W), (6.4a)

Sa(p) = w4Sz(w). (6.4b)

By substituting equation 6.2 into equation 6.3 and making use of equation 6.4, the spec-

trum for tension can be written as

ST(W) = M 2 Sa(w) + (B 2 
- 2MK) S(W() + K 2 Sz(w). (6.5)

To apply this SDOF spring-mass-dashpot model

to the data from the SWEX experiment, a nonlin- z(t)

ear fitting procedure is used. For each time series t
from the experimental data, spectra of tension M
and heave displacement, velocity, and accelera-

tion are computed. These spectra are then fitted K B

to equation 6.5 using a minimization of the spec-

tral error defined by equation 5.22 to determine

individual values, Mi, Bi, and Ki for that data Figure 6-1: An SDOF spring-mass-

set. On these terms, and elsewhere in this chap- dashpot system.

ter, the subscript i is used to reinforce the idea

that the value in question relates to a single experimental data set. The resulting coeffi-

cients can be plotted against a non-dimensionalized form of the mean tension to observe

how the coefficients change with the shape of the mooring. The non-dimensionalized mean

tension, Ar, is defined as

Ar- T -T (6.6)
TO

This value serves as a convenient way to represent the amount that the system is pulled

away from a purely vertical (Ar = 0) configuration. To is the suspended weight of the

mooring at slack current: To = w 0H, where wo is the wet weight per length of the mooring

and H is the water depth.
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Figure 6-2: Mass values from each of the 119 spectral fits to equation 6.5.

Figures 6-2 through 6-4 show the coefficients from the fits to the 119 SWEX data sets.

The overall quality of each individual fit is quite high. The spectral error over all data

sets from equation 5.22 is 0.023. The maximum spectral error in any one data set is 0.055

and 89% of data sets have a spectral error of less than 0.03. There is a significant amount

of scatter in the aggregated results, however. In spite of the scatter, trends are apparent

in both the fitted mass and drag coefficients. The mass that participates in the response

increases with increasing Ar. This is consistent with additional mooring line being pulled

off the bottom as Ai- increases. The damping coefficient also increases with mean tension.

This is a result of both the additional suspended line and the fact that the normal motion

(and hence normal drag) over the entire mooring increases as the mooring is pulled into a

more open configuration. There is no apparent trend in the fitted stiffness coefficients.

The very high scatter in the stiffness is likely due to the difficulty in determining

a robust value when stiffness effects are relatively small. The scatter in the mass and

drag coefficients is more interesting, however, as it may well be real. That is, it may

reflect natural variation in the data that simply looks scattered given the presentation

as a function of Ar only. It may also be a reflection of the fact that the model is not

capturing all of the relevant physics.
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Figure 6-5: Static configurations of the simplified SWEX mooring used in the study to
isolate tension mechanisms.

From the governing equations (equations A.44 through A.49) the four basic mech-

anisms that produce dynamic tension are inertia, drag, geometric stiffness, and elastic

stiffness1 . The spring-mass-dashpot model includes these same mechanisms, but given

the highly coupled, nonlinear, multiple degree of freedom form of the full model there is

no particular reason that it should be an accurate SDOF representation of the coupling

between these mechanisms. To explore these ideas, simulations of a simplified version

of the SWEX mooring were run with the mooring properties varied so as to isolate the

various contributions to the dynamic tension. The mooring model consisted of a single

continuous shot of chain (the AxPacks were removed) in a fixed water depth of 40 m.

Simulations were run for five levels of non-dimensional mean tension, ranging from

Ar = 0.05 to Ar = 1.0. At each AT the static tension at the top of the mooring was

specified and the static configuration of the mooring was determined using the second of

the procedures described in section 3.1.1. The static configuration of the mooring at each

Ar is shown in figure 6-5. No current was present in the simulations. This procedure was

used so that AT would remain fixed even with variations in the mooring drag coefficients.

Dynamic excitation was sinusoidal with amplitudes ranging from 0.2 to 2.0 m and periods

'Elastic stiffness effects are negligible in most geometrically compliant systems.
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variation m (kg/m) wo (N/m) C, Cd,

k 0.01 31.85 0.0 0.0
mk 3.73 31.85 0.0 0.0
tk 0.01 31.85 0.01 0.0
nk 0.01 31.85 0.0 0.5

mdk 3.73 31.85 0.01 0.5
dk 0.01 31.85 0.01 0.5

Table 6.1: Variations on the mooring properties used in the simulations to isolate individ-

ual tension mechanisms. Normal and tangential added mass were zero.

ranging from 4 to 15 seconds. The mooring configurations that were run are shown in

table 6.1.

The first four versions can each be used to isolate a single contribution to the dynamic

tension. For example, with negligible mass, and no drag, the only contribution to the

dynamic tension in the first variant is stiffness. Because the wet weight cannot be varied

without changing Ar, other effects are obtained by subtracting the known stiffness con-

tribution. If Tk(t) is the dynamic tension record from the simulation with stiffness only

then the dynamic tension due to mass is

Tmass = Tmk (t) - Tk(t), (6.7)

where Tmk (t) is the dynamic tension record from the simulation with both mass and

stiffness effects present. If Omass, O'tan, -nor, and -stiff, are the standard deviations of the

time series of the tension contributions due to mass, tangential drag, normal drag, and

stiffness, then a convenient way to summarize the effect of each mechanism is to derive

effective mass, drag, and stiffness coefficients using

M* = -mass , (6.8)
Ca

C = _ Otan (6.9)
p~rdHo-,jini

C - nor (6.10)
jpdHo-,jvj

K* . (6.11)
c-z
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Figure 6-6: (a) Mass, (b) stiffness, (c) tangential drag, and (d) normal drag
calculated from simulations with isolated tension contributions.

coefficients

Note that for the drag coefficients in particular, these are effective calculated values,

rather than the actual values assigned to mooring materials for the numerical simulation.

Standard deviations are used because they are a convenient expression of the amplitude

of a sinusoidal time series. O-a, 0oH, and o,, are the standard deviations of the heave

acceleration, quadratic velocity, and displacement.

Figure 6-6 shows the four calculated coefficients as a function of Ar. For each coeffi-

cient type, only simulations that had a symmetric, regular tension response were used to

calculate coefficients. For the mass coefficients this means that only results for 15 second

period simulations are used. Simulations with 4 and 8 second periods did not have a

regular response because of impact loading at the bottom and the lack of damping. For

the normal drag coefficients only results for amplitudes of 1 m or less and 8 and 15 second

periods were used. With no inertial forces the tension response at high velocity was not

symmetric. The full range of simulations were used for the tangential drag and stiffness

coefficients.
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All of the coefficients behave roughly as expected. Mass, stiffness, and normal drag

coefficients all increase roughly linearly with AT as additional line is pulled off the bottom.

The tangential drag coefficient, which at AT = 0 is nearly equal to the actual tangential

drag coefficient used in the simulations, decreases with AT. This is because the amount

of tangential motion, along the chain decreases as the chain is pulled into more open

configurations.

The coefficients in figure 6-6 represent the behavior of the mooring with little or no

coupling between the tension mechanisms. The resulting mass and drag coefficients are

affected by the presence of geometric stiffness, but because stiffness effects are small,

the results are similar to those that would be obtained if pure isolation were possible.

Variations mk, mdk, and dk in table 6.1 can be used to calculate mass and drag coefficients

in the presence of more significant coupling. For these calculations a single effective drag

coefficient,

C P* = ' rag , (6.12)

combining the effects of tangential and normal drag, is used.

Assuming that the time series of tension for variation mdk (with all effects present)

can be written as

T(t) = Tmass(t) + Tdrag(t) + Tstiff (t), (6.13)

then a drag coefficient in the presence of mass coupling can be calculated by subtracting

the tension from variation mk (with mass and stiffness) from variation mdk (with mass,

drag, and stiffness). Likewise, a mass coefficient in the presence of drag coupling can

be calculated by subtracting variation dk (with drag and stiffness) from variation mdk.

These results are presented, along with the uncoupled coefficients, in figures 6-7 and 6-8

for mass and drag, respectively.

The coupled drag coefficients differ from the more fully isolated results in that they

represent the drag contribution to tension in the presence of motions which are enhanced

by mass effects. In the fully isolated case, the drag contribution was calculated in a

simulation that had no mass. The coupled drag coefficient is calculated by subtracting

the mass and stiffness contributions to tension from the tension in a simulation with all
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effects present. The effects of mass on the motion in this latter simulation are not removed

and thus the effect of that motion on the drag coefficient is reflected in the final result.

This same reasoning applies to the coupled mass coefficient as well.

In both of figures 6-7 and 6-8, the motion effects due to the coupling lead to increases

in coefficient values. For drag coefficients the presence of mass leads to increased levels of

motion along the length of the mooring. This increased motion leads in turn to increases

in the drag forces. Because the calculated drag coefficient is normalized by the motion at

the top of the mooring only, the increase in the drag contribution to tension is reflected

by an increase in the drag coefficient. For the coupled mass coefficients, the presence of

drag restricts the ability of the mooring to deform, in effect increasing the overall stiffness

of the mooring. To comply with the topside motion then, the amount of mooring line

pulled off the bottom increases relative to the simulations in which no drag is present.

This increase in line off the bottom results in a slight increase in the mass.

The coupling of mass effects into the drag coefficient is clearly the most significant of

these relationships, particularly at low values of Ar. This coupling could explain much of

the scatter that is apparent in the fitted mass and damping coefficients for the experimental

SWEX data in figures 6-2 and 6-3. Using the the individual coefficients in those figures

the spring-mass-dashpot model accurately captures the tension response in any single data

set. This is clear from the good quality of any one of the spectral fits described above.

However, the coupling between mass and drag means that the coefficients are a function

both of the steady state configuration and of the excitation frequency and amplitude.

Thus, when the coefficients are plotted as a function of the configuration (as measured

by Ar) they show significant scatter. This scatter, and the underlying dependence on

both static configuration and input excitation, make it difficult to formulate analytical

relationships for the coefficients.

One approach to developing a simple model then is to find representations of the data

that have low scatter. If the scatter in the data can be minimized, such representations

could lead to a model that naturally expresses some of the coupling in the system. In such a

model the coupling is expressed within the form of the model rather than in the individual

coefficients. This makes mass and drag effects easier to isolate and thus facilitates analytic

prediction of model mass and drag coefficients.
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6.2 Development of the simple model

Figure 6-9 shows three presentations of oT. In the first, oT is plotted against 0a as in

figure 5-27(a). In the second it is plotted against the product ATa. The third panel

presents oT as a function of the product Toa, where r is defined as

T
T = .

TO
(6.14)

There is a marked reduction in the scatter in this presentation compared to the first panel.

Motivated by figure 6-9(c) a proposal for the model is

UT MT0a + v (6.15)

where M is a single coefficient that, together with T, expresses the model mass effect for

any configuration. The simple linear form of the inertia term reflects the trend apparent in

figure 6-9(c) for values of rua < 1.0. This is the inertia dominated regime [40,99]. Beyond
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this regime drag (f(aeli)) becomes important and oT varies away from the straight line

trend.

Various forms for f(uvivi) can be examined by subtracting a preliminary estimate of

the inertia contribution from oT. An initial estimate, M', for the value of M is computed

based on the slope of a line fitted to the data for which Toa .< 1.0 in figure 6-9(c). Figure 6-

10 shows the resulting estimated values for f (UVIVI) in the same three presentations as in

figure 6-9, with a replaced by avi1 .

The scatter in the velocity plots is greater than for the best acceleration case, but the

relationship in figure 6-10(b), drag as a function of the product .... ivj, appears to have

the least scatter. It also offers the possibility that a simple linear form can be used to

model the drag contribution. This form does have the disadvantage that drag disappears

as AT goes to zero. This limitation is addressed more fully in section 6.10.

With the same type of linear form as the inertia term and the different non-dimensionalized
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mean tension, the model equation becomes

1
OT = MTr-a + 1pCdATdHo-,I l (6.16)

Like M, Cd is a single coefficient for drag in any configuration. The two model coefficients,

M and Cd can be determined from a linear least squares fit using experimentally observed

values of oT, -a, -vivi, ir, and A7-. For n data sets, the formula for the coefficients is

1 F2 n (U-1a-jLPCd [ 70a (7CaAravlv)j [ O' (Ora~)j

= (pAHI n n 1 . (6.17)
pdH2 J (ruaArO- )V (A-ruvo- (UT0'o )i

For the 119 data sets from the SWEX experiment, the fitted values are M 172.8 kg and

Cd = 0.375.

6.3 Physical interpretation of the simple model

The variance of tension in the new model is

02 = (MT)2 0, + ( pCdA-dH o Iv + pMrCdArdH0'a'vjvj. (6.18)

Using the linearizing approximation o =3 [4 this can be written as

C2 = (Mr)2 02 + 3 pCdATdH 02 + vhpMrCdATdHO-a a 2. (6.19)

Neglecting the relatively small covariance between acceleration and velocity to make use

of the fact that the variance of a sum of independent random variables is the sum of the

variances, the governing equation for the corresponding physical system is

T(t) = Ma(t) +v(t) 3 (pCDdH U + v PMCDdH-a. (6.20)

It is clear from this result that the proposed model can be understood to represent a mass-

damper system with a linearized damping coefficient that depends on both the quadratic

drag and inertia.
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Casting the simple model in the variance form given by equation 6.19 allows for a

comparison with the terms in the physically motivated SDOF spring-mass-dashpot model.

For that model, integrating equation 6.5 yields the variance of the tension in data set i as

=2 M? o2 + (B? - 2MjKj) 2i + KY 2 . (6.21)

Both models represent the dynamic tension as a weighted sum of motion statistics. They

differ in the coefficient of the velocity term and in the inclusion or absence of the stiffness

term.

The qualitative form of the mass term is the same in both models. From figures 6-2

and 6-7 it is clear that a mass term that grows linearly with non-dimensional mean tension

is reasonable. Linear fits to either of those results would be of the form Mo + Mi Ar. From

a comparison with the model mass term, MT, it is clear that the implicit assumption in

the model is that the mass initial value and growth rate are equal. To first order this is a

reasonable assumption. If the total suspended mass is taken as the mass per length times

the suspended length, then the r form of the non-dimensionalized mean tension is equal

to the scope of the mooring,

T mgL L
r - . (6.22)

TO mgH H

Assuming that the model mass coefficient is equal to the mass per length times the sus-

pended length and that the mass coefficient at Ar = 0, Mo, is equal to mH then for

M = Mo + M 1Ar = mH + M 1  - - 1 =mL (6.23)
(H

to be true, Mi must equal Mo.

In the variance form of the model, the coefficient of oV is

3 (2PCdA'rdH) 2 U + y/3pMrCdArdHoa. (6.24)

From the time domain form of the simple model, equation 6.20, it can be seen that this

entire coefficient represents a linearized damping constant. This damping constant can

be compared to the velocity coefficient B - 2MiKi, in equation 6.21 for the spring-mass-
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Figure 6-11: Total effective damping constant for the experimental spectral data, By -

2MiKi, and the simple model total damping coefficient from equation 6.24.

dashpot model. That term represents both a damping and a stiffness effect.

Figure 6-11 shows the term By -- 2M2 Ki for each of the 119 individual fits to the

SWEX spectral results for the spring-mass-dashpot model along with the total damping

coefficient for the simple model for each data set calculated from equation 6.24. With

mass and drag coefficients calculated from a linear fit to the standard deviation form of

the model, the model total damping coefficient is able to reproduce the nonlinear shape

and much of the scatter of the spectrally fitted values. With no stiffness, however, the

simple model does not capture the negative coefficients at low of. For linearized quadratic

drag in the spring-mass-dashpot model, B 2 oc o'f [29]. Thus, as the velocity goes to zero

in this model the intercept of the of coefficient is -2MK. This term is only important at

low frequencies and amplitudes where there is little damping. At higher frequencies and

amplitudes the B 2 term dominates. This higher velocity region is where the simple model

total damping constant, with its inherent expression of coupling between inertia and drag,

is accurately reproducing the shape and scatter of the individually fitted values.

In an undamped spring-mass model, the -2MK term governs the response near res-

onance. For frequencies above resonance, inertia dominates the response. By neglecting

this term the simple model is sacrificing accuracy at these lower frequencies. Given the re-
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versed notions of input and output in the definition of the transfer function in equation 6.2,

the undamped resonance is defined as the frequency at which infinite wave amplitude pro-

duces zero tension. Thus, neglecting this term is conservative. Additionally, any loss in

accuracy will be tempered in real situations because there is always some damping present.

At the very lowest frequencies, the simple model also loses accuracy because it does not

include a stiffness term like the spring-mass-dashpot model's K 2o.2 . This term governs

the response near zero frequency.

The relative importance of the two stiffness effects, mass, and damping in the SWEX

data can be calculated using the coefficients fitted to the spectra of individual data sets in

section 6.1. The relative magnitude of each of the terms on the right side of equation 6.21

in comparison with the total tension energy are

ffa = 2 a, (6.25)
UTi

B B (6.26)

fVK 2 K' , (6.27)
OTi

f K = 2 z . (6.28)
f Ti

These response fractions are plotted together in figure 6-12. From these fractions it is clear

that the stiffness term fiK has little effect over the full range of conditions encountered

during the SWEX experiment. For low Ar the relative magnitude of this term approaches

20%, but the total dynamic tension in these configurations is relatively low. At higher

sea states, this term does not contribute significantly to the dynamic tension. fZK, the

contribution from the stiffness dependent portion of the velocity coefficient is also quite

small. This explains why the simple model is able to represent the SWEX data without

any reference to stiffness. The small stiffness effect also explains the high scatter in the

fitted stiffness coefficients in figure 6-4.

6.4 Model performance

To examine the performance of the simple model, three types of analyses are made:

9 Accuracy of the model predicted o- values compared to the experimentally observed
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Figure 6-12: Portion of the total tension energy attributable to
variance form of the spring-mass-dashpot model, equation 6.21.

values in terms of RMS error, max error, and the number

less than five percent.

each of the terms in the

of predictions with error

" Accuracy of tension spectra calculated using a formula derived from the simple

model. Detailed comparisons are presented for the 3 January 1999 storm data set

and 6 December 1998 data set. The spectral error over all data sets is also presented.

" Bootstrap confidence intervals on the fitted model coefficients.

For the error analysis, the fractional error in the predicted value of OT for data set i is

defined as

model
ei T - UT

UT

The root mean square error over all data sets is

(6.29)

119

1=9

Using these metrics, the RMS error between model fitted and experimentally observed

values of OT is 2.7%. The maximum error in any one data set is 8.3%. 93% of data sets
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Figure 6-13: Comparison of model predicted and experimentally observed standard devi-

ation of tension.

have an error less than 5%. Figure 6-13 shows the model and experimental tension as a

function of roa.

Casting the statistical relationship into the form given by equation 6.19 facilitates the

prediction of the tension spectrum based on quantities that are easily obtained from an

input wave spectrum:

ST = (Mr)2 Sa + 3 ( pCdATdH O + v"3PMrCdArdHO-a Sv. (6.31)

Comparisons of model predicted spectra calculated using the fitted coefficients and equa-

tion 6.31 with the experimental spectra for the 6 December and 3 January data sets are

shown in figures 6-14 and 6-15, respectively. For the low sea state case (figure 6-14) the

response is inertia dominated and the model result agrees well with the experimental spec-

trum across the full range of frequencies. In the high sea state case the basic agreement

is good, but the model over predicts the spectral peak by 12.5%. Beyond the spectral

peak, the velocity spectrum falls away quickly while the acceleration spectrum has the

same basic shape as the tension spectrum; that the predicted tension spectrum is too high

suggests that the model is over predicting the mass effect for this configuration.
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To more fully quantify the spectral performance of the model, the spectral error metric

defined by equation 5.22 was applied to model predicted spectra for all 119 experimental

data sets. For each data set, equation 6.31 was used to calculate a model tension spectrum

for comparison with the experimentally observed tension spectrum. The RMS spectral

error for all data sets is e, = 0.043. The maximum spectral error in any one data set is 0.10.

These errors are lower than those for the tension spectra which were calculated from the

results of the full time domain numerical simulations in the validation in section 5.4.1 (e,

= 0.068, maximum error of 0.176). They are also not markedly higher than the errors for

the spectra calculated using the individually fitted coefficients in section 6.1 (e" = 0.023,

maximum error of 0.055). This is significant because each of those individual fits was

actually based on a minimization of this same error. Thus, the error for those spectra

represents a best case which requires the calculation of 119 sets of coefficients. With just

two parameters for the entire data set, the simple model is able to reproduce the tension

responses over the entire frequency range with only slightly less accuracy.

In addition to producing accurate tension results, the fitted coefficients are very robust.

With their 95% confidence intervals (calculated using the bootstrap method described in

appendix F) the fitted mass and drag coefficients are 172.8 ± 2.0 kg and 0.375 ± 0.045,

respectively. The confidence intervals on these fitted coefficients are 1% and 12% of the

nominal value. These small confidence intervals are important because they support the

idea that meaningful model coefficients can be calculated using a priori knowledge of

mooring properties. Large uncertainties on the fitted coefficients would indicate that the

model was not capturing the scatter in the data.

These values can be compared to intervals for coefficients for a model based purely

on the spectrally derived mass and damping coefficients in figures 6-2 and 6-3. In such a

model, the mass and damping coefficients as functions of AT are derived using fits to the

individual spectrally fitted values. A straightforward example of this type of model is [40]

M = Mo + M 1 4A, (6.32)

B = (Bo + B1AT) 01,. (6.33)

Linear fits to these forms yield Mo = 176.5 ± 1.3 kg, Mi = 102.4 ± 21.7 kg, B0 =

161.3 ± 27.8 kg/s, and B 1 = 1255 ± 426 kg/s. At the highest value of AT, the confidence
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intervals for M, and B are 2.8% and 27% of the nominal value. These intervals only take

into account the uncertainty in the linear fits to the individual coefficients. The actual

intervals are even larger than this because of the uncertainties in the individual fits that

are not accounted for in this analysis. These large uncertainties are a result of the highly

scattered coefficients derived from the individual spectral fits.

6.5 Model coefficient dependence on physical parameters

With a validated numerical simulation program it is possible to simulate the entire ex-

perimental data set. This capability permits the calculation of model coefficients for

parametric variations of the system that was actually deployed. By simulating a large

number of variations, the dependence of the model coefficients on the system parameters

can easily be determined. Parameters considered here are the chain normal and tangential

drag coefficients, Cd and Cd,, chain normal and tangential added mass coefficients, Can

and C,,, and bottom stiffness and damping constants.

The total explored parameter space is shown in table 6.2. In most cases only one

parameter is varied relative to the baseline case defined in the first line of the table. The

baseline values are the same as those used for the validation simulations in section 5.4. For

each set of parameters, the full time domain numerical model is run for the environmental

conditions in the 119 experimental data sets. Simulations are two-dimensional with only

vertical (heave) input. Statistics of the tension responses are then computed and a least

squares fit is used to calculate the model coefficients M and Cd for that parameter set.

Curves showing the variation in both coefficients while a single parameter is varied are

shown in figures 6-16 through 6-18.

Figure 6-16 shows a strong linear dependence of the mass coefficient on both tangential

and normal added mass. The model drag coefficient also varies with the added mass

parameters: very slightly with the tangential parameter and a bit more substantially

for the normal parameter. This dependency indicates that the model form by itself is

not completely capturing the coupling between inertia and drag. The increase in normal

motion along the chain that accompanies the increase in mass is causing an increase in

drag beyond the level accounted for by the coupling term in equation 6.19. Because the

model input velocity is the same in both cases, the increase in drag must be reflected by
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drag mass bottom

variation

baseline
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
29
31
32
33
34
35
36
37
38
39
40

Table 6.2: Parameter variations considered in the model coefficient functional dependence

study. Bold entries indicate a variation in the parameter relative to the baseline value.
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0.5
0.5
0.5
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0.5
0.5
0.5
0.5
0.5
0.5
0.0
0.2
0.4
0.45
0.55
0.6
0.7
0.45
0.55
0.6
0.7
0.5
0.5
0.5
0.5
0.5
0.4
0.6
0.6
0.6
0.6
0.5
0.5
0.5
0.5
0.5
0.5
0.5

Cdt

0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
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0.01
0.01
0.01
0.01
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0.01
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0.0
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Figure 6-16: Variation of the model mass and drag coefficient with changes to the system
normal and tangential added mass coefficients. Unless otherwise indicated, all other sys-
tem parameters are at baseline values. For reference, the suspended mass of chain and
AxPacks at slack current (A-r = 0) is 161.6 kg.

an increase in the model drag coefficient.

A similar effect is evident in figure 6-17 for the model drag coefficients as functions of

normal and tangential drag parameters. There are clear linear relationships between the

model drag coefficient and normal and tangential drag. There is also some dependence of

the mass coefficient on the system drag coefficients. The effect is quite small, however, as

expected from the earlier analysis of the effect of drag on mass (figure 6-7).

The dependencies of the model coefficients on the sea bottom parameters are shown

in figure 6-18. The smallest effect is that of bottom stiffness on model drag coefficient.

Over a broad range of stiffness levels, the model drag coefficient is nearly constant. There

is a slight linear increase in drag coefficient with increasing bottom damping. The most

significant effects of the bottom parameters are on the mass coefficient. As the bottom

stiffness increases more of the mooring is supported by the bottom, reducing the mass

of the mooring suspended beneath the buoy. This leads directly to a reduction in the

model mass coefficient. That the model mass coefficient increases with increasing bottom
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Figure 6-17: Variation of the model mass and drag coefficient with changes to the system
normal and tangential drag coefficients. Unless otherwise indicated, all other system
parameters are at baseline values. For reference, the equivalent tangential drag coefficient
of suspended chain and AxPacks at Ar = 0 is 0.015, or 1rC amyV = 0.048.

damping is a result of large accelerations (actually decelerations in this case) of the chain

near the bottom in the presence of high bottom damping. The resulting increase in inertial

force is once again reflected in the mass coefficient because of the constant acceleration

input in the model.

6.6 Parameter validation using model coefficients

One potential use of the model coefficients from the parametric studies is to validate

the choice of system parameters in the time domain simulations. In the validation in

section 5.4, simulation results were checked against experimental results to ensure that

the simulation results were correct. Given the numerous parameters in the simulations,

however, it is conceivable that the right answers could be obtained with several differ-

ent combinations of those parameters. Comparing the model coefficients derived from a

simulated data set to coefficients derived from the experimental data is one way to check
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Figure 6-18: Variation of the model mass and drag coefficient with changes to the system
bottom stiffness and damping parameters. Unless otherwise indicated, all other system
parameters are at baseline values.

whether the simulation parameters are actually correct. In a sense this process checks

not only that the simulation answers are correct, but that they are correct for the right

reasons.

Figure 6-19 shows the fitted model mass and drag coefficients for the forty variations

plus baseline simulation data sets relative to the model coefficients from the experimental

data set. The small distance between the experimental result and the coefficients for

variations 17, 18, and 31 suggests that the parameters in those variations more closely

approximate the true parameters than those in the baseline simulation. Variations 17

and 18 represent an increase in the normal drag coefficient to 0.55 or 0.6. Variation 31

increases normal drag to 0.6, but reduces tangential drag to 0.007. Based on this analysis,

the remaining baseline parameters (for added mass and the sea bottom) all appear to be

physically reasonable.

This type of validation cannot be obtained simply by comparing statistical results:

the RMS difference in tension standard deviation between simulation and experiment was
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Figure 6-19: Model mass and drag coefficients for the simulation and experimental data
sets. Numbers refer to the variation in table 6.2. The experiment result, with confidence
intervals, is marked by the circle and the dotted box. The baseline simulation result is
marked by the *.

5.7% for variations 17 and 18, and 5.8% for the baseline and variation 31. Variation 19,

the coefficients for which actually fall outside the experimental result confidence intervals,

also has an RMS error of 5.7%. While this error is minimum for all the simulation data

sets, analysis of the model coefficients indicates that the normal drag coefficient of 0.7 in

this variation is too high.

While this procedure can validate a parameter set as being a reasonable approximation

to the true parameters, it cannot reveal the true values for those parameters. With an

exhaustive search of the parameter space, which even for this simple mooring would be

computationally very expensive 2, it would be possible to determine the parameter set

which best matched the experimental results. Given the overlapping confidence intervals

of all the fitted coefficients, however, the only result that could be accurately reported

would be the possible ranges of the parameters.

2 The forty variations in table 6.2, which by no means represent an exhaustive search of the space, took

approximately eight days to complete on a 533 MHz Alpha LX workstation.

139

I



6.7 Empirical relationships for the model coefficients

The strong linear dependence of the model mass and drag coefficients on the system normal

and tangential added mass and drag parameters suggests the possibility of constructing

empirical functions which could be used to calculate model coefficients using only the

known hydrodynamic and material properties of the mooring. Particularly revealing are

the relationships exemplified in figure 6-17 for the model drag as a function of system

tangential drag. That the two lines for different normal drag coefficients are separated by

a constant offset indicates that the model drag coefficient is simply a linear combination

of the system normal and tangential drag coefficients.

Ignoring any dependence of the model drag coefficient on system mass or bottom

parameters, a formula for the model coefficient as a function of system parameters can be

written as

Cd = ,3 dtlrCdt + 04dCd.. (6.34)

3dt and /
3d, express the relative weighting of normal and tangential drag in the composite

model drag coefficient. The factor of 7r on the tangential term accounts for the definition

of the tangential drag coefficient based on material circumference, rather than diameter

as for the normal drag coefficient. The two weights, 3d, and I3d, can be determined by

a least squares fit to the model results from variations 13 through 33 (in which only the

drag coefficients were varied) plus the baseline case in table 6.2. The results from the fit

are

3 ,d = 3.79, (6.35a)

fdd = 0.46. (6.35b)

Given validated values Cdt = 0.01 and Cd, = 0.55 from the previous section, these weights

lead to proportions for tangential and normal effects in the composite model coefficient of

approximately one-third and two-thirds, respectively. The quality of the fit is quite high.

The root mean square difference between the actual model drag coefficients and those

calculated from equation 6.34 with the weights from equation 6.35 is 5.1%.

The linear dependence of the model mass coefficient on the system added mass co-
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efficients suggests that a formula similar to equation 6.34 can be derived for mass. The

dimensional nature of the mass coefficient leads to a more complicated form, however.

Taking into account the nominal mass that hangs under the buoy in a slack configuration,

and the rate of increase of suspended chain length with static tension (the slope of the

line in figure 6-20, W), a formula for the mass coefficient is

M = MT + Omt (m+ p Cat) +m M+ p 2 Ca.)]. (6.36)
4 4

The nominal mass, MTO, is defined as the mass plus tangential added mass of all of the

components hanging beneath the buoy in a slack (purely vertical) configuration. The

model mass coefficient, M, is a combination of this nominal mass and a weighted sum of

the virtual tangential and normal mass of additional material that is pulled off the bottom

as steady state tension increases. The weights, tmt and /mn, are again determined using

a least squares fit to simulation results: variations 1 to 12 plus the baseline in this case.

The fitted weights are

3m, = -0.156, (6.37a)

Om, = 0.102. (6.37b)

The RMS difference between the actual mass coefficients and the results from equation 6.36

using these weights is less than one percent.

To understand the meaning of the various terms in equation 6.36 and the importance

of the fitted weights, it is useful to consider a uniform mooring in water depth H. Defining

mat = p Ca, (6.38)
4

man = rd 2 Can, (6.39)
4

the nominal mass can be written as

MT0 = H (m + mat) , (6.40)
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Figure 6-20: Total length of mooring components suspended below the surface buoy as
a function of static tension. Data are from the two dimensional validation simulations
presented in section 5.4.1.

and equation 6.36 becomes

M = (H + Wpm,) (m + ma,) + Nmn(m. + ma) . (6.41)

With this representation, the weights specify or modify the length of mooring material

that contributes to the tangential or normal mass. This explains why Om, is negative.

The composite model mass is made up of the tangential mass evaluated over some length

slightly less than the total length of the mooring plus the normal mass evaluated over

some small length.

6.8 A priori response prediction

The primary motivation for developing equations 6.34 and 6.36 is the hope that these

formulae can be used to calculate the coefficients for a given mooring design based only

on the known (or estimated) material and hydrodynamic properties of that system. Such

a facility would permit dynamic response prediction without the costly construction and

execution of time- or frequency-domain numerical simulations. In cases where the detailed

information available from such simulations is a necessary part of the design process,
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response prediction based on the simple model and a priori coefficients could still facilitate

the early design iteration stages.

6.8.1 Specifying the steady state tension

A critical piece of information in the dynamic tension model is the non-dimensional steady

state tension, r (and Ar). In early design studies it is probably sufficient to estimate the

mean tension using catenary formulae. For more refined predictions a static nonlinear

model, such as the one described in chapter 3 and appendix D, could be run. Easiest of

all for predicting the response in survivability conditions would be to specify a value for

r directly. Experience with oceanographic catenary moorings in 40 m or greater water

depth suggests that a reasonable maximum value for r in similar systems is about 1.3.

Calculating the mass coefficient (equation 6.36) also requires knowledge of the rate of

change of the length of the mooring with steady state tension, yp. From the inextensible

catenary results in appendix G, the rate of increase of suspended length with increasing

Ar is

d L _H 
2

L - - (6.42)d~r L

This formula must be employed with some care for non-uniform moorings. More refined

calculations of W could be made by running several non-linear static simulations and

estimating the slope of the resulting (r, L) line, as in figure 6-20.

6.8.2 Calculating model coefficients

For the basically uniform all chain experimental mooring, application of equations 6.34

and 6.36 to calculate model mass and drag coefficients is straightforward - simply input

the mass and drag properties of the chain. More complicated moorings require some pre-

processing to calculate the input variables for equations 6.34 and 6.36. For a slack mooring

composed of p segments (chain shots, instrument cages, strongbacks, etc.), equivalent

normal and tangential drag coefficients are calculated as

P

Cqi = di~iL (6.43)Z't djj~d,=1t
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di, Li, and Cd are the diameter, length, and drag coefficients of segment i, respectively.

d is the diameter of the mooring material that includes the grounded portion of the

mooring. The assumptions behind this approach to averaging the drag coefficients are

that the mooring is uniform below a certain depth and that the mooring drag coefficients

can always be characterized by the drag properties of that portion of the mooring that is

suspended in a slack configuration. The first of these assumptions is not very restrictive.

Instrumentation is seldom placed below the mud line. The second assumption implies that

for heavily instrumented large scope moorings at high static tensions, the model prediction

would be overly conservative. There is no mechanism in the model to account for the fact

that the long length of ungrounded bottom line in this situation has lower drag coefficients

than those calculated from the instrumented portion of the mooring.

For the mass coefficient the process is somewhat easier because there is no averaging

involved. The nominal mass is calculated from

P
MT =+(m+ m,)i Li, (6.44)

where (m + ma,)i is the mass plus tangential added mass per length of segment i. Appro-

priate values for m, Ca, and Ca, in equation 6.36 are simply those for the lower uniform

portion of the mooring.

6.9 Validation of a priori response prediction

In order to test the idea that formulae for the model coefficients derived using a data set

from a single experiment are broadly applicable, three test moorings are considered. The

first is the shallow water chain catenary mooring from the Coastal Mixing and Optics

(CMO) experiment, for which experimental results are available. In this case the model

predictions are compared directly to the experimental results. The remaining test cases

are contrived examples of an offshore riser in four different configurations: three catenary

shapes and a lazy wave shape. The lazy wave configuration is the same as that con-

sidered in Larsen's [61] comparative study of different numerical programs. Because no

experimental results are available for these cases the model predictions are compared to

simulation results.
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6.9.1 CMO mooring

The central discus mooring of the CMO experiment was an instrumented chain mooring

deployed in 70 m of water off the northeast coast of the United States from July 1996

through June 1997 [40]. The central discus buoy contained the same motion package as in

the SWEX experiment, with a 10,000 pound load cell at the top of the mooring chain. The

primary difference in the two moorings is the instrument load. In 70 m of water the CMO

mooring had a nominal virtual mass of approximately 1570 kg of chain and instruments

suspended below the buoy. The field experiment mooring had approximately 165 kg of

chain and instruments in 40 m of water. Instrumentation included five vector measuring

current meters (VMCMs) and four Seacat conductivity and temperature probes.

The data set from the Coastal Mixing and Optics experiment comprises 634 time series

of tension and motion. Composite normal and tangential drag coefficients, calculated

according to equation 6.43, are

Cequiv = 0.025, (6.45)

Cquiv = 0.97. (6.46)

The nominal mass is 1570 kg and the outside width and mass per length of the bottom

chain are 0.066 m and 7.98 kg/m, respectively. Applying the weights from equations 6.35

and 6.37 yields model coefficients of Cd = 0.75 and m = 1553 kg.

These results are very close to the coefficients calculated from a model fit to the

564 experimental data sets for which wind data was readily available. From that fit,

M = 1557 ± 7 kg and Cd = 0.79 ± 0.05. A plot of a, versus Tr-a for the experimental

and model results with the a priori calculated coefficients is shown in figure 6-21. Because

the purpose of the comparison is to validate the a priori coefficients rather than the

usefulness of the model as an a priori design tool, the model results were calculated using

the experimental mean tension and a value for <p calculated from 564 static simulations.

The root mean square difference between the model prediction and experimental result is

2.1%. This error is the same as that from a comparison of experimental and model results

with the above mentioned fitted coefficients.
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Figure 6-21: Comparison of experimental and model predicted 0-r for the CMO mooring
using a priori calculated model coefficients. RMS error between experiment and model
result is 2.1%.

6.9.2 Catenary riser

The steel catenary riser (SCR) problem tests the predictive capabilities of the model on

a problem with a scale typical of offshore energy production systems rather than oceano-

graphic applications. The validation baseline in this case is derived from simulations. The

simulated system consists of 1500 m of 0.21 m diameter pipe deployed in three different

configurations. The pipe has a mass per length of 89 kg/m, axial stiffness of 5 x 109 N,

and bending stiffness of 6.6 x 103 Nm 2 . Hydrodynamic and bottom parameters in the

simulation were set to C = 0, Ca = 1, Cd, = 0.05, C, = 1.0, k = 0.42 and ( = 1.0.

The simulations were run for vertically imposed motions equal to sea states two through

nine. Two configurations were run in 600 m water depth with the steady state horizontal

position of the top node at 1000 m and 1200 m. A third configuration was run in 300 m

of water with the horizontal position of the top at 1450 m. The current profile in all cases

was constant at +1.0 m/s (left to right) from the surface to one-third the water depth

and then decreased linearly to zero at the bottom. The modeled static configurations are

shown in figure 6-22. These configurations provide working scopes (ratio of suspended

length to water depth) of approximately 1.1, 1.5, and 3.8.

For illustrative purposes and because only simulation results are available for compar-
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Figure 6-22: Static configurations of the catenary riser for the simulation results.

ison, this example also employs estimates for T and W based on catenary formulae rather

than detailed static simulations or experimental results. Thus, the model calculations in

this case demonstrate the process that a designer might follow in using the simple model

in the early stages of the design process. Given estimates for the working scopes of 1.1,

1.5, and 3.8 for the three configurations, equations G.4 and G.6 were used to calculate

values for r and W in each configuration. The results of these calculations are shown in

table 6.3. Because the model mass coefficient, M, depends on W, a different mass coeffi-

cient was calculated for each configuration. Substituting the known pipe properties, the

weights for the mass coefficient given by equation 6.37, and the different values for W into

equation 6.36 yields for M of 52527 kg, 52760 kg, and 26574 kg, for the three cases, respec-

tively. Similarly, substituting the pipe drag parameters into equation 6.34 with weights

given by equation 6.35 yields Cd = 1.055, independent of the configuration.

Motion statistics for the model were calculated from the same Bretschneider spectrum,

S(w), that was used in generating the input time series for the simulation in each sea state,

ovIv v w2S()dW, (6.47)

1

o-a = o 0 W S(W)dW] . (6.48)
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Configuration scope r p (in)

SCR a 1.10 1.1 545.5
SCR b 1.50 1.63 400.0
SCR c 3.80 7.72 78.9
Lazy wave 1.07 1.07 290.7

Table 6.3: Non-dimensional mean tension and W values for the catenary riser and lazy

wave riser systems.

% error in model predicted a-

sea significant peak
state height (in) period (s) config (a) config (b) config (c)

2
3
4
5
6
7
8

8+

0.3
0.9
1.9
3.3
5.0
7.5

11.5
16.0

7.5
7.5
8.8
9.7
12.4
15.0
16.4
20.0

-15.1
-14.3
-11.4
-8.3
-4.6
-1.3
3.1
0.9

-48.6
-41.1
-29.9
-16.3
-7.0
3.7
17.2
15.8

-61.5
-43.8
-27.0
-9.0
0.9
12.5
39.2
38.7

Table 6.4: Error in the model predicted o-T for the catenary riser using a priori model

coefficients. Model coefficients were calculated using approximate steady state tension
results from equations G.4 and G.6. Sea state parameters are based on the North Atlantic
data from Faltinsen [29], Table 2.3.

Results of the comparisons are shown in table 6.4 and figure 6-23. The largest relative

errors occur for the low sea states in all three configurations. At sea states two and three

in the higher scope configurations the model under predicts the response by 50% or more.

This represents a much smaller error in the total tension, however, as the static tension is

very high in these configuration. At higher sea states the agreement between model and

simulation improves. In the lowest scope case (a) the errors for sea states six and above are

less than 5%. While the same holds true for the high scope configurations in sea states six

and seven, the model over predicts o-T by approximately 17% in both sea states eight and

nine for case (b) and by nearly 40% in case (c). As described in section 6.10, the model

increasingly over predicts the tension with increasing sea state because the coupling of

mass into drag actually becomes less at these high sea states. Overall, however, the close
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Figure 6-23: Comparison of simulation and model o,, for the catenary riser. (a) Top node

at x = 1000 m and water depth of 600 m in the simulation; estimated working scope of

1.1 for model calculations. (b) Top node at x = 1200 m and water depth of 600 m in

the simulation; estimated working scope of 1.5 for model calculations. (c) Top node at
x = 1450 m with water depth of 300 m in the simulation; estimated working scope of 3.8
for the model calculations.

agreement in both the quantitative and qualitative way in which the model results predict

the response as a function of sea state suggest that the model can be applied successfully

to moorings with very different scales than those considered previously.

6.9.3 Lazy wave riser

The lazy wave riser problem is based on the configuration described by Larsen [61]. The

pipe and bottom parameters are the same as for the catenary riser. The water depth is

355 m and the static position of the top of the riser is x = 350 m, z = 375 m (20 m above

the water surface). The current flows from right to left (-x direction) with a constant

value of 1.0 m/s from the surface to mid-depth and a linear decrease from mid-depth to

the bottom. The top of the riser is held in place against the current with an applied

pre-tension. The simulated static configuration is shown in figure 6-24.
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Figure 6-24: Static configuration of the lazy wave riser for the simulation results. The
effective working scope for the model predictions was also determined from this result.

Because of the different shape, the model must be applied with some care in this case.

The water depth is taken to be the distance from the bottom of the sagged section to the

top of the riser (above the surface). Likewise, the suspended length is measured from the

bottom of the sagged section upwards. With these caveats, equations G.4 and G.6 can

be used to calculate r and <p as for the catenary riser. Results of these calculations are

given in the last line of table 6.3. The calculated model coefficients are M = 36267 kg

and Cd = 1.055.

A comparison between simulation and model predicted oT for the same eight sea states

as for the catenary riser is shown in figure 6-25. The largest relative errors in this case

occur at the highest sea states, but none of the errors exceed 11%. For sea states six and

lower the errors are all less than 5%. The good agreement between model and simulation

in this comparison reinforces the idea that the model is applicable on a range of scales,

and also suggests that it can be applied to geometrically compliant shapes other than the

simple catenary mooring.
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Figure 6-25: Comparison of simulation and model o, for the lazy wave riser.

6.10 Conditions under which the model breaks down

While the comparisons above all showed reasonably good agreement between model pre-

dictions and simulation results, there are conditions under which the accuracy of the model

becomes degraded, such as at the highest sea states in the riser response. To explore these

conditions the simplified version of the SWEX mooring first introduced in section 6.1 to

study scatter in the response statistics was subjected to a wide range of forcing conditions.

In this study, the mooring properties and hydrodynamic parameters were set to their base-

line values. The a priori model coefficients given these properties are M = 156.3 kg and

Cd = 0.349. Three hundred simulations were run with Ar values of 0.05, 0.1, 0.2, 0.5, and

1.0, ten excitation amplitudes ranging from 0.1 m to 2.0 m, and six excitation periods (4,

6, 8, 10, 12, and 15 seconds).

Figure 6-26 shows the simulated and model predicted values of 0T as a function of a,

for four values of Ar. In each case the model prediction agrees reasonably well with the

simulation for lower values of Ja. At all four Ar values, however, the model over predicts

the dynamic tension at the highest acceleration levels. The critical acceleration at which

the model accuracy is significantly degraded increases with Ar. Thus, both steady state

configuration and excitation level determine when the model breaks down. In figure 6-
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Figure 6-26: Simulation and model predicted values for o' in a study using a broad range
of sinusoidal excitation conditions.

26(a) for AT = 0.05 the model predictions for o-a > 2 m/s 2 have relatively large errors.

For Ar = 1.0 in figure 6-26(d), only the result at the highest value of U-a (approximately

3.5 m/s 2 ) has a large error.

The over prediction of the tension is likely due to the presence of the coupling between

mass and drag in the model. As shown in figure 6-8, the relative importance of the

coupling on the drag coefficient decreases with increasing Ar. The model has no way to

account for this decrease and thus the presence of the coupling leads to an over prediction

of the tension in severe conditions. That the effect of the coupling should be reduced

in severe conditions makes sense in that the process whereby an increase in inertially

induced motions leads to an increase in drag forces should be self-limiting. At some point

the motion will reach a speed at which quadratic drag, which is proportional to A 2W2 , will

restrict any additional line motions that might be caused by inertia, which is proportional

to Aw 2 . The point at which this occurs increases with increasing mean tension because

as the mooring is pulled open the coupling between inertia and drag is important over a

broader range of excitation conditions.

152

1200

1000 (b) AT 0.2

800 - -
:0

600 - .. ..
0

400 -. ..

l2 0 0 -.. . . .. .. . -.. .

0 1 2 2 3 4
a (m/s

3500

3000 (d) AT 1.0

2500-- - -
+ 0

S2000 0 -

0 1500 -.-...-

1000 009

500 
-...



In addition to this over prediction of tension in severe conditions there are several

remaining circumstances in which the model cannot accurately predict the dynamic re-

sponse. The two most interesting are both related to elastic stiffness. For moorings with

inadequate scope, the geometric compliance mechanism can fail and elastic stretching of

the mooring line becomes important. In these cases, the model would likely under predict

the tension. The model essentially assumes that there will always be sufficient geometric

compliance.

In contrast, for moorings that are basically geometrically compliant, but also relatively

elastically flexible, the model over predicts the tension. For example, the sea state 8

simulation result for o-, for the higher scope catenary riser problem with the axial stiffness

reduced by a factor of 100 is aT = 1.05 x 105 N. This is nearly three times less than the

result calculated using the original stiffness. The model has no mechanism to account for

this reduction. The implicit assumption in ignoring stiffness effects in the development

of the model is that the mooring line is inextensible. The validity of the inextensibility

assumption can be checked using the ratio of elastic to catenary stiffness [94],

(wL) 2 FA (6.49)
Fh Fh '

where Fh is the horizontal component of tension at the top of the mooring. Results from

Irvine and Caughey [58] suggest that inextensibility is a reasonable assumption if this

ratio exceeds 100 - 1000.

Other failure modes for the model include cases where the mooring is near vertical

(A - 0) and o-vivi is large or tangential drag effects are substantial. In both of these

cases, the model mass term will accurately predict the inertial response but the inclusion

of AT in the drag term means that the drag response will be neglected. Also, in cases

where tangential drag is very large and normal drag is very small, figure 6-6(c) makes clear

that the total drag coefficient should decrease with AT. The model drag coefficient always

increases. Finally, because geometric stiffness induced dynamic tension is proportional

to the dynamic length of material off the bottom and steady state forces acting on that

material, strong bottom currents or very heavy bottom line can increase geometric stiffness

effects to the point where they become non-negligible.
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6.11 Effect of horizontal motions on the model coefficients

All of the simulations used in developing the simple model thus far have used purely ver-

tical input. This approach was based on the derivation of the model using only heave

statistics. Given the comparisons to simulation results of a wide range of configurations,

the model is clearly successful at predicting the dynamic tension response to vertical mo-

tions. Furthermore, given the model's derivation from and success with the experimental

results from the SWEX and CMO chain catenary moorings, for which the topside motion

had components in three dimensions, it can be concluded that in these configurations

the dynamic tension is dominated by the system response to vertical motions. Clearly,

however, the horizontal motions must produce some contribution to the tension response.

To explore what effect horizontal motions have on the model coefficients, three-dimensional

simulations of the experimental mooring were run for the same baseline plus 40 variations

of the hydrodynamic coefficients listed in table 6.2. Because of the loss of the y accelerom-

eter channel during the experiment there are only 60 available data sets to be simulated

for each variation. Figure 6-27 shows the fitted model mass and drag coefficients as

a function of the simulation tangential and normal added mass and drag coefficients for

both the original two-dimensional vertical only simulations and the new three-dimensional

simulations.

The obvious effect of the horizontal motions is an increase in the model drag coefficient

and a decrease in the model mass coefficient. Based on the convergence to nearly identical

mass coefficients at zero normal added mass, the change in model mass coefficient appears

to be due entirely to an effect in the normal direction. In contrast, both tangential and

normal effects contribute to the increase in model drag coefficient with the addition of

horizontal motions. Qualitatively, however, there are no significant differences in the coef-

ficients derived from the three-dimensional simulations with both vertical and horizontal

topside motions. What this indicates is that the model, which uses statistics of vertical

motion as the only input, can be successfully applied to some systems with horizontal

motions because the horizontal motions in these systems can be accounted for by changes

to the model mass and drag coefficients.

Because of this, figure 6-19, which compared model mass and drag coefficients for the

vertical motion simulations to coefficients derived from the experimental data set, is not a
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Figure 6-27: Variation of the model mass and drag coefficient with changes to the system

normal and tangential added mass and drag coefficients for both vertical and fully three-

dimensional topside motion input in the simulations. The parameters not under study in

each panel remain at baseline values.

good indicator of the true value of the system hydrodynamic coefficients. Rather, it is an

indicator of the coefficient sets which when used with a vertical motion only simulation

produce good matches to the experimental results, which are three-dimensional. The best

choices for drag parameters from that figure were C, = 0.01 and Cd = 0.55. It is now

clear that these values must be too high. They had to be artificially large to match the

experimental results to make up for the fact that there was no horizontal motion in the

simulations. Figure 6-28 shows the mapping of the model mass and drag coefficients from

the three-dimensional simulations. The best choice in this case is Cd, = 0.003, Cd = 0.5,

and added mass coefficients at baseline values. This is variation 25 in table 6.2.
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6.12 Horizontal motion effects in very shallow water

Horizontal motions have a more significant effect on the dynamic tension as the water

depth decreases. This conclusion became clear during analysis of an experimental data

set from a 17 m deep National Data Buoy Center (NDBC) test mooring at Duck Pier,

North Carolina. For that experiment, an instrumented 3-meter discus buoy was deployed

from July 1997 through January 1998 [88] (due to an instrumentation failure, data is only

available for the first two months of this period). The buoy contained a six axis motion

package, current meter, and meteorological sensors. Two load cells and an S4 current

meter were deployed on the mooring line immediately beneath the buoy. The current

meter was deployed in the middle of a 7.1 m length consisting of shackle and short shots

of 1-inch and j-inch chain. The remainder of the mooring line consisted of 41 m of 1 '-inch

chain.

During the analysis of the data from this mooring two things became apparent. First,

simulation results could not be made to match experimental results without the inclusion

of the horizontal surge motion at the top of the mooring. There was no choice of hy-

drodynamic parameters which produced an accurate response given only vertical input.
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Figure 6-29: Experimental and simulated dynamic tension statistics for 126 of the data

sets from the NDBC Duck mooring.

Statistical evidence of this inability is shown in figure 6-29. This situation contrasts with

that for the deeper (40 m) SWEX experiment described above for which the hydrodynamic

parameters could be increased in conjunction with vertical input to produce a simulation

that compared well to the three-dimensional experimental result. The second observation

was that while the dynamic tension model could be fitted to the experimental results the

fitted drag coefficient was approximately three times greater than that predicted from the

a priori coefficient prediction procedures outlined in section 6.8 These two observations

indicate that the presence of horizontal motions in this very shallow water mooring lead

to a dynamic tension response that is qualitatively different than the response to vertical

motions that can be characterized by the simple model.

6.12.1 A model for the dynamic tension response to horizontal motion

To separate the effects of horizontal and vertical motions as a function of depth, simulations

of the NDBC mooring were run with horizontal only, vertical only, and combined horizontal

and vertical input motion at a series of depths from 10 to 40 m. The length of the

bottom chain was increased at the higher depths so that the touchdown point was always

away from the anchor. The simulations were two-dimensional, horizontal motion in the

surge direction only, to minimize the computation time. Tension statistics at six depths
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are shown in figure 6-30. Three results are presented for each depth: e 4 +h, dynamic

tension in the simulations with both horizontal and vertical input, 4", dynamic tension

in the simulation with vertical input, and o4r + oa, the sum of the dynamic tension in

the simulations with horizontal only and vertical only input. An important observation

to draw from figure 6-30 is that as the depth increases the results from the vertical only

and vertical+horizontal simulations appear to converge. This is consistent with the small

difference between vertical and fully three-dimensional results from the SWEX mooring. A

second observation is that at lower depths the sum of the dynamic tension from the vertical

only and horizontal only simulations appear to sum to the results from the simulation with

both horizontal and vertical input. This is important because it suggests that the effects

of vertical and horizontal motion on dynamic tension are linearly separable.

Based on this latter observation then, a modification to the dynamic tension model

can be proposed as follows:

OT = MToa + 1pCA-rdHoaII + f (horizontal motion statistics, depth). (6.50)

Figure 6-31(a) shows the dynamic tension statistics as a function of horizontal acceleration

for the simulations with horizontal only input in 15 m depth. The qualitative similarity

between this response and the typical response to vertical motions (e.g., figure 5-27(a))

suggests a form similar to the model for vertical motions for the horizontal terms,

SMh + pCASO, (6.51)

The superscripts h indicate terms specific to horizontal motion, subscripts x refer to

statistics of the motion in the horizontal direction, and S is a projected area because it is

not immediately clear that non-dimensionalizing the drag coefficient using the full water

depth is appropriate. For that reason it is more convenient to express the model with a

dimensional drag coefficient as

h - MhTJa, + b hATrUiv. (6.52)

Figure 6-31(b) which shows a linear trend with quadratic velocity for the initial guess at

the non-inertial portion of the tension response provides further evidence that this same
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given horizontal only input motion. (b) Portion of dynamic tension attributable to drag
with an initial mass estimate based on the slope of the points in (a) with roa < 0.8.

form of model may be appropriate for horizontal motions.

When the fitted coefficients for this model are mapped over a range of simulation

parameters, however, the fitted dimensional drag coefficient is insensitive to the value of

the simulation normal and tangential drag coefficients. For example, at baseline values

of C = 0.3 and Cd, = 0.003, the fitted dimensional drag coefficient is bh = 1041 kg/m.

Doubling the normal drag coefficient to 0.6 results in only a slight increase in bh, to

1080 kg/m. Likewise, increasing the tangential drag coefficient to 0.01 in the simulations

produces a fitted value for bh of 1044 kg/m. The fitted mass coefficients vary significantly

with changes to the simulation normal added mass parameter; there does not appear to

be any sensitivity of the model mass coefficient to tangential added mass. Parameter

variations were also run with a range of bottom damping and bottom stiffness coefficients.

The fitted mass and dimensional drag coefficients for some of these variations are listed

in table 6.5.

The vertical model form for the horizontal motions, equation 6.52, is only superficially

appropriate. That the dynamic tension response to purely horizontal motions is not de-

pendent on the drag coefficients or bottom damping suggests that there is no significant

drag contribution to the tension response. In fact, the only parameter variations that
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variation Mh (kg) bh (kg/m)

baseline 69.3 1041
Cd, = 0.6 60.9 1080

Cdt 0.01 69.3 1044
0.0 68.0 1026

I = 0.056 67.9 1180

Can = 2.0 84.9 1022
Cat 0.0 69.1 1045

Table 6.5: Fitted coefficients for the dynamic tension response to horizontal motions using

the same model form as for vertical motions. Baseline values are C0 d = 0.3, Cdt = 0.003,
Can = 1.0, Cat = 0.1, C = 2.0, k = 0.22. Variations were run for the 15 m depth case.

produce a significant change in the fitted drag coefficient are changes to the mooring line

wet weight. Doubling the wet weight (without changing the mass) of all the mooring com-

ponents yields fitted mass and damping coefficients of 97 kg and 2204 kg/m, respectively.

A better model then is one in which the non-inertial portion of the tension response is

attributable to a geometric stiffness effect rather than a drag effect. Such a mechanism

would explain this correlation between the non-inertial portion of the tension and the

mooring wet weight. A model that makes use of this insight is,

oh = MhrOa, + kh ATru. (6.53)

The form of the stiffness term was chosen because of the strong linearity apparent in

figure 6-32 for the non-inertial portion of the dynamic tension as a function of ATO . O'

is the standard deviation of the surge motion.

Table 6.6 lists the fitted coefficients for the model described by equation 6.53 for the

same variations as in table 6.5 plus variations on the wet weight. As expected the stiffness

coefficient is largely insensitive to changes in any parameter except mooring wet weight.

There is a slight dependence on the bottom stiffness: a factor of four decrease in k results

in a twelve percent increase in the fitted stiffness coefficient. The mass coefficient also

shows a strong dependence on the wet weight. The quality of the fits is not as high and

the confidence intervals are not as small as for the vertical model applied to the SWEX or

CMO experimental data. The errors are not unreasonable, however: RMS error between

the standard deviation of dynamic tension from the baseline simulations and the fitted
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Figure 6-32: Portion of dynamic tension attributable to a stiffness effect with an initial
mass estimate based on the slope of the points in figure 6-31(a) with rUa, < 0.8.

variation Mh (kg) kh (N/m)

baseline

C = 0.6

Cd, = 0.01
= 0.0

k = 0.056
Ca, = 2.0

Cat = 0.0
wo/w* = 0.5
wo/w* = 1.5
wo/w* = 2.0

56.5 ± 6.2
47.0 ± 6.2
56.3 ± 6.3
55.0 ± 6.3
55.3 ± 6.0
72.3 ± 6.5
56.3 ± 6.3
51.3 ± 7.7
67.6 t 6.8
82.4 ± 7.9

724 ± 100
753 ± 100
726 ± 100
718 ± 99

815 t 107
711 98

727 100
493 ± 66

1099 ± 159
1528 ± 83

Table 6.6: Fitted coefficients with 95% confidence intervals for the dynamic tension re-
sponse to horizontal motions using the model described by equation 6.53. Baseline values
for the parameters are given in table 6.5. The wet weight variations are specified as a ratio
of the specified wet weight to the nominal wet weight in the baseline case. The variation
is made to the wet weight of all mooring components.
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Figure 6-33: Simulated and model fitted (equation 6.53) values for
of tension in response to horizontal input motion.

the standard deviation

results is 25%; 74% of points have an error of less than 10%. Figure 6-33 shows the

simulated and fitted values for o4 for the baseline case in 15 m depth.

Equation 6.53 and the strong dependence of the stiffness coefficient on the wet weight

explain why the horizontal motions in the deeper SWEX mooring contributed so lit-

tle to the total dynamic tension. First, the stiffness term in equation 6.53 scales with

non-dimensional mean tension, Ar. The average value of this parameter decreases with

increasing depth. The maximum value of Ar during SWEX was 0.17. In the NDBC

experiment it was 0.99. Secondly, the weight of chain in the SWEX mooring was approx-

imately five times lower than the depth averaged wet weight of components in the NDBC

mooring. With model stiffness roughly proportional to wet weight, these two factors com-

bine to produce a horizontal motion stiffness effect that is as much as 25 times lower in

the SWEX mooring than in the NDBC mooring given similar topside motion.

6.12.2 Parametric dependence of the model coefficients

A practical benefit to choosing equation 6.53 as the form of the model for horizontal

motions is that the fitted stiffness coefficients are relatively constant with depth. Figure 6-

34 shows the fitted stiffness coefficient over a range of wet weight values for depths from

15 to 40 m. The upward trend in kh is roughly linear with increasing weight, though the
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Figure 6-34: Fitted stiffness coefficient for the horizontal motion model in 15, 20, 30, and
40 m water depth. The x-axis is the scaling factor applied to the wet weight of all mooring
components.

slope does steepen somewhat as the weight increases. It is difficult to quantify the exact

relationship between the fitted value of kh and the wet weight in the simulation because of

the variation in weight over the length of the mooring . Counterintuitively, perhaps, the

appropriate value is not simply that for the bottom chain. In 15 m depth simulations with

half the wet weight of the bottom chain, but nominal values for the rest of the mooring, the

fitted stiffness value was 645 N/m. This value is higher than the 493 N/m stiffness from

figure 6-34 calculated when all of the mooring component weights were halved, indicating

that the weights of the components above the bottom chain do effect the stiffness.

In a simulation with a uniform mooring consisting only of heavy bottom chain with a

wet weight of 188 N/m, the fitted stiffness coefficient was 850 ± 119 N/m. This leads to a

ratio kh/wo = 4.5. Applying this ratio to the actual mooring with a wet weight averaged

over a length of 15 m yields a prediction for kh of 693 N/m. This value is slightly low

compared to the fitted result of 724 N/m in figure 6-34. In 40 m of water, the average wet

weight increases because of the increased length of heavy bottom chain, and the predicted

result using the ratio of 4.5 is 788 N/m, which is too high compared to the fitted result

of 653 ± 173 N/m. All of these values, however, fall within the 95% confidence regions of

3 The NDBC test mooring consisted of four distinct segments, with heavier segments nearer the bottom.
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Figure 6-35: (a) Dynamic tension response to horizontal motion in the uniform NDBC

mooring at 15, 25, and 40 m depths. (b) Portion of the dynamic tension attributable to

stiffness. The initial mass estimate, M , is based on a linear fit to the data in (a) for

'rca < 0.8.

one another.

To eliminate the difficulty associated with the variation in mooring properties with

depth and to explore the interdependence of the mass and stiffness coefficients, simulations

with only horizontal input were run with the uniform version of the NDBC mooring in

water depths from 15 to 40 m. Because the mass and wet weight properties of a mooring

line are related through a proportionality constant in most practical situations only the

mooring mass was varied in these simulations. The wet weight was defined as

WO= (m 1- Pwater (6.54)
\Pmooring /

Both tangential and normal added mass coefficients were zero.

With a uniform mooring, the effective wet weight per length and mass per length are

constant with depth. Under these conditions, there is virtually no depth dependence in

the fitted coefficients. Figure 6-35 shows the dynamic tension response in the usual way

for three different depths overlaid upon one another. That the response across depths can

be plotted meaningfully in the same way as the response at a single depth suggests that a

fit to the combined data from all depths will yield coefficients that are valid at any depth.
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Figure 6-36: (a) Mass coefficient fitted to the tension response data in figure 6-35(a) for
the uniform NDBC mooring at 15, 25, and 40 m depths plus additional results for 20, 30,
and 35 m depths. (b) Fitted stiffness coefficient for the same data.

Figure 6-36 shows the fitted mass and stiffness coefficients for the combined data at 15,

20, 25, 30, 35, and 40 m depths with the mass per length set to 0.5, 1.0, and 2.0 times

the nominal value of 22 kg/m. The fitted coefficients vary linearly with the mooring line

mass. The average ratio of model mass coefficient to mooring mass is 2.89 m. The average

ratio of model stiffness coefficient to mooring wet weight is 4.68.

The slope of the fitted mass coefficient as a function of mooring mass in figure 6-36(a)

has units of length. This length is the amount of mooring chain over which there is an

inertial response to horizontal motions. Typically, for wave frequency excitation and low

values of non-dimensional mean tension, only a small region near the touchdown point

responds with significant acceleration to horizontal motion. The dimensionality of the

length of this region complicates any attempt to develop a formula for calculating the

model mass coefficient in an arbitrary system. In the vertical model, the appropriate

length scale was the water depth. For the horizontal model, the same mass coefficient can

be applied across depths and thus depth does not provide the appropriate scaling.

A length scale, 1, can be calculated from the ratio of stiffness and inertial effects,

S= O (6.55)
muax
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Figure 6-37: Dynamic tension response of the uniform NDBC mooring to purely sinusoidal
horizontal input motion as a function of depth and excitation period.

With the wet weight proportional to mg and c-a, oc 2,

1 0C 9, (6.56)g

where wp is the peak frequency of the spectrum of horizontal motion. Though this depen-

dence on excitation frequency could cause some of the scatter in the response statistics,

the variation in excitation frequency over the course of the experiment was not great.

To verify the dependence on frequency then, simulations were run with purely sinusoidal

input motion. Figure 6-37 shows the dynamic tension for the uniform mooring in 15 m,

25 m, and 40 m depth with excitation periods of 5 s, 8 s, and 11 s. Excitation amplitude

ranged from 0.1 m to 1.5 m. For each excitation period, the slope of the response is

roughly the same, independent of depth. As the excitation period increases, acceleration

level decreases, and the slope of the response increases. This increasing slope represents

an increase in the total mass that is needed to keep inertia in balance with stiffness effects.

The slopes from these results can be compared to values calculated using equation 6.55.

Given sinusoidal input, a, = owjo- (rather than just being proportional) and the total
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mass coefficient, ml, becomes

M1 = 2O .(6.57)
P

This formula yields predicted slopes of 575 kg, 304 kg, and 119 kg for 11 s, 8 s, and 5 s

excitation periods, respectively. These values compare to average slopes for the results in

figure 6-37 of 385 kg, 234 kg, and 126 kg. Even within the simulation results in figure 6-37

the correspondence between frequency and length scale is not exact. The ratio between the

average slope of the results for 11 s and 5 s cases is 385/126 or 3.06. From equation 6.56

the expected ratio is (11/5)2 or 4.84. The conclusion from both comparisons is that

the calculated length scale becomes too large as the excitation period increases. At the

highest frequency, where inertia is most dominant, the calculated length scale appears

to be accurate. As the frequency decreases and stiffness effects begin to dominate, the

calculated length scale becomes too large.

With the model mass coefficient written as Mh = ml, the length scale I given by equa-

tion 6.55, and the wet weight and mass related according to equation 6.54, the horizontal

model for a uniform mooring with negligible or no added mass can be written in terms of

standard deviation of motion only as

O-T W= O O (r + Ar7f), (6.58)

where /3h is a constant that relates the stiffness coefficient kh to the mooring wet weight.

Figure 6-38(a) shows the simulation results for 15 m, 25 m, and 40 m depth as in fig-

ure 6-35 along with oh calculated from equation 6.58 using a value for nh of 4.68 from

figure 6-36(b). At low values of Tuax the response is inertia dominated and the model

predictions agree reasonably well with the simulation results. As roa, increases, however,

the model prediction becomes larger than the simulation result. This is a consequence of

overestimating the mass length scale as the response becomes more stiffness dominated.

While a length scale based on the ratio of stiffness and inertial effects offers a general-

ized procedure for calculating the model mass coefficient, it is not applicable over a broad

range of conditions. Figure 6-38(b) shows values for oa calculated from equation 6.53 with

fitted mass and stiffness coefficients. At high rOa, these results are significantly more ac-

curate than those based on equation 6.58. The process of calculating model coefficients
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Figure 6-38: (a) Comparison of simulated and model calculated O-T from equation 6.58.
The simulation results are the same as those shown in figure 6-35. (b) Simulated and model
calculated o-h from the original model equation 6.53 with fitted coefficients (Mh = 61.4 kg,
kh - 848 N/m).

by fitting to experimental or simulation results is much harder to generalize, however, and

is therefore much less useful in practical applications.

6.12.3 Practical application of the horizontal model

Given appropriate coefficients for both the vertical and horizontal models, the separate

predictions for response to vertical (equation 6.16) and horizontal (equation 6.53 or 6.58)

motions can be summed to calculate the total dynamic tension response in the presence

of both vertical and horizontal topside buoy motions. The validity of this approach is

supported by the linear separability (in a statistical sense) of the response to vertical and

horizontal motions in figure 6-30. Additional work is required, however, to determine the

limits of applicability of this approach.

For the analysis of experimental results, it would be desirable to fit the experimental

data to a model which combined equations 6.16 and 6.53. The results from such a fit

would immediately reveal the relative importance of vertical and horizontal effects in a

given data set. Because of the typically strong correlation between vertical and horizontal

motion statistics, however, such a fit does not produce reliable results. There are simply

169



too many degrees of freedom in the fit (four) and too little discrimination amongst the

input parameters.

6.13 Summary

While the model for horizontal motions needs to be more fully studied, the overall results

from the above analyses of simple models for dynamic tension are quite encouraging. For

the response to pure vertical motion, or for cases with low values of Ar in which horizontal

effects can be neglected, the simple model given by equation 6.16 is quite accurate over

a broad range of conditions. In the analyses above it was applied to a variety of chain

catenary moorings and steel riser configurations with good success. When combined with

a validated model for horizontal response effects the range of applicability will be even

greater.

As a data analysis tool or as a design tool with a priori predicted coefficients, the

simplicity of the model is a compelling advantage. In fact, in the latter application, the

simplicity of the model greatly facilitated the analysis that yielded the rules for a priori

coefficient prediction. Despite the model's simplicity, however, it has features which make

it physically, as well as practically, compelling. In the analysis of these physics, many of

the important features of the dynamic response of geometrically compliant moorings were

highlighted:

* The dependence of the mass term on T and the drag term on Ar reflects the inertia

dominated response regime in low to moderate excitation conditions.

" The presence of the coupling between mass and drag in the model is important in

the transition between inertia dominated and drag dominated responses.

" At some excitation level which is dependent on both steady state configuration and

quadratic velocity, the drag forces overwhelm the inertially induced motions of the

chain. Under these conditions the coupling term in the model leads to an over

prediction of the tension.

" Stiffness effects can typically be neglected at low non-dimensional mean tension,

except perhaps for very low frequency, large amplitude excitations in which velocity
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and acceleration are small. Stiffness effects are more important in the response to

horizontal motions than to vertical motions.

Unstudied in this chapter is the elastic dominated regime which exists beyond the drag

regime for cases where the non-dimensional mean tension is high enough to pull all of the

available line off the bottom. Webster [99] studied this regime in some detail. In these

cases the system is no longer geometrically compliant and deforms elastically in response

to dynamic forcing. For the rigid, stiff materials typically used in these systems this can

be a dangerous regime. This situation can be avoided by designing the mooring with

sufficient scope given accurate specification of the environmental conditions.
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Chapter 7

Bottom Interaction

In the previous chapter the focus of the analyses was the dynamic tension at the top of the

mooring. For the most part, the stiffness and damping properties of the bottom played

little role in determining that response. Previous authors [79] have shown that the bottom

properties do play a role in governing the response, particularly the bending response, of

the mooring in the immediate vicinity of the touchdown point (TDP). In this chapter,

laboratory experiments are used to investigate whether there are excitation conditions

under which bottom interaction effects do play a role in other aspects of the mooring

response. Under these conditions, the suitability of the elastic foundation approach in the

numerical simulations is also investigated.

7.1 Description of the laboratory experiment

The laboratory experiments were conducted in the Iselin flume at the Woods Hole Oceano-

graphic Institution. The flume is 20 m long and has a cross-section approximately 1.2 m

square. It is equipped both with a tow carriage and recirculation pumps, neither of which

were used for these experiments. The experiments used a section of mooring chain de-

ployed at a fixed position in the flume. Various configurations of the chain were excited

using a linear servo actuation mechanism. Data was collected from load cells and a digital

video camera.
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Figure 7-1: The basic setup for the laboratory experiments.

7.1.1 Physical layout of the experiment

The test specimen was a length of 3-inch galvanized steel chain with an outside link

width of 1.95 cm and a shaft diameter of 0.57 cm. The mass and wet weight of the chain

were 0.57 kg/m and 4.84 N/m, respectively. The test chain was suspended from the linear

actuator and run along a bottom platform to an anchor position. The anchor end of the

chain was held in place using lead weights placed on top of the chain immediately beyond

the end of the platform. Pretension and excitation levels were constrained so that the

chain at the anchor end of the platform never lifted off the bottom. Water depth during

the experiments was 1.1 m. With a bottom platform height of 10 cm, the effective depth

was 1.0 m.

A schematic overview of the experiment is shown in figure 7-1. A photograph of the

physical arrangement of the actuator, lighting, and test specimen is shown in figure 7-2.

The 10 cm high bottom platform lifts the chain above the tank bottom so that the entire

chain is in view of the video instrumentation. The platform, a section of wide aluminum

channel stock, was used with four different surfaces. The basic hard bottom is simply the
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Figure 7-2: View of the actuator shaft, load cell, test specimen, and lighting arrangement

looking down the flume from the anchor towards the top of the chain.
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Figure 7-3: The foam anti-fatigue mat used as a bottom type.

aluminum covered with black electrical tape to reduce reflectivity. Other bottom types

were created by placing either a stippled foam or artificial grass mat on top of the tape.

Photographs of these two surfaces are shown in figures 7-3 and 7-4. The foam material is

an anti-fatigue standing mat. The artificial grass mat is a green plastic door mat of the

type commonly used to scrape the bottoms of shoes clean. For a more realistic bottom

condition, the channel was turned over and filled with sand obtained from West Falmouth

Harbor. This sand has a relatively uniform grain size of approximately 290 Am [30].

None of these bottoms were soft enough that their stiffness could be easily charac-

terized. The friction coefficient of each bottom was measured by pulling a 90 cm length

of chain horizontally by hand, at a roughly constant speed, over an approximately 1 m

length of the bottom. The average of the tension over the duration of the pull was used to

calculate an estimate of the drag coefficient. Four runs were conducted on each bottom.

These pull tests were conducted in air; the results are not necessarily directly applicable

in water, but they do provide a relative comparison of the friction on the different bot-

toms. The results of the four runs, and their average, for each bottom are summarized in

table 7.1. The hard bottom has approximately one-third less friction than the two mat

bottoms, which appear to have very similar friction properties within the context of this
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Figure 7-4: The artificial grass door mat used as a bottom type.

bottom Run 1 Run 2 Run 3 Run 4 Average

hard 0.49 0.40 0.45 0.51 0.46
foam 0.55 0.78 0.75 0.74 0.71
grass 0.61 0.80 0.69 0.75 0.71
sand 1.25 1.20 1.39 1.01 1.21

Table 7.1: Friction coefficients, in air, of the various bottom types.

test. The sand has a high coefficient in this test partly because the chain tends to become

partially buried over its length as each pull progresses.

7.1.2 Actuator mechanism

The actuator is a Parker Hauser HLE-60 with approximately 60 cm of usable throw. The

actuator is driven through a 4:1 planetary gear box by a Parker Compumotor SM233

brushless servo motor. The motor is driven by a Parker Compumotor APEX 10 servo

drive. The test specimen is attached to the actuator carriage via a hardened steel shaft

that runs through a guide plate at the end of the linear stage. The system is controlled

by a PC equipped with a Delta Tau PMAC-Lite servo controller card. The PC runs a

custom designed program which generates the motion profiles, simulating either regular

or random waves, and downloads them onto the controller card. Once the motion profile

is started, the process is entirely under the control of the PMAC card which employs a
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hardware based PID algorithm to command the drive/motor/actuator system. Feedback

is provided by a 4000 line optical encoder on the motor. Home and limit switches on the

actuator allow for repeatability to within approximately one millimeter from one run to

the next.

7.1.3 Video instrumentation

One of the significant advantages of working in the laboratory versus working in the field

is the opportunity to gather data along the whole mooring. The AxPacks on the field

mooring provide valuable data, but it is impractical to use many more than the three that

were employed. Also, they only provide relative motion. By using a video system we are

able to capture the absolute motion of the entire system in a relatively compact and easy

to interpret data set.

The video instrumentation system consists of a Pulnix TM-9701 camera and a MuTech

MV-1500 frame grabber in a 200 MHz Pentium PC equipped with 192 MB of RAM. The

camera is a progressive scan monochrome CCD camera with electronic shuttering and

digital 8-bit output via RS-422. It has a resolution of 484 lines and 768 pixels. The camera

and frame grabber are controlled by a custom written acquisition program that runs on the

PC. With a relatively simplistic interrupt driven capture algorithm the maximum frame

rate for full size frames is approximately 15 Hz. With half size frames, which are more

convenient for processing and storage reasons, the frame rate can be 30 Hz. The frame

grabber is triggered by a pulse that comes from the servo control computer.

The post-processing of the imagery is simplified by the use of blacklight and fluorescent

paint. The mooring chain is painted white and coated with ultraviolet lacquer that fluo-

resces well under black light. During an experimental run all standard lighting is turned

off and the windows are blacked out. Illumination is provided by six 40 watt blacklight

fluorescent tubes hanging immediately above the free surface, parallel to the plan view

of the chain, two 40 watt blacklight fluorescent tubes positioned across the width of the

tank just above the top of the chain, and a 400 watt theatrical blacklight flood positioned

behind and above the chain.
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7.1.4 Force instrumentation

In addition to the video instrumentation, the model system is instrumented with a small

waterproof load cell between the actuator arm and the top of the chain. The load cell

is a Sensotech Model 34 miniature underwater load cell with a 4 - 20 mA output over

the zero to five pound range of the cell. The current output is dropped across a 500Q

termination resistor to produce a 2 - 1OV output signal. This output signal is fed through

an analog six pole Tschebyscheff anti-aliasing filter with a 20 Hz corner frequency before

being digitized (100 Hz, 16-bits) and stored. The data capture routine runs on the servo

control computer as a background process while the motion profile is executing.

The load cell is attached to the test specimen and the actuator rod using loops of 26

AWG wire. The top and bottom studs on the load cell have small holes drilled through

them to accommodate this wiring. The bottom of the actuator shaft also has such a hole.

A photograph of this arrangement is shown in figure 7-5. The idea behind this attachment

scheme is to measure the inline tension at the top of the chain. A rigid, vertical connection

of the load cell to the bottom of the shaft would provide a measurement of the vertical

component of tension only.

7.2 Video processing algorithm

During each experimental run 384 x 242 pixel, 8-bit grayscale video images are captured

to RAM at 30 Hz. Each image is electronically shuttered at 1 / 6 0 th of a second. At the

end of each run, every second frame is written to a compressed disk file, yielding a final

sample rate of 15 Hz. An example of a single raw image is shown in figure 7-6. Because of

the fast shuttering the contrast of the image is relatively low. For presentation purposes,

the image in figure 7-6 was brightened and sharpened using image processing software.

The raw images are then convolved with a 3 x 3 vertical gradient filter defined as

1 2 1

0 0 0 (7.1)

-1 -2 -1

Edges are extracted from the gradient images using a simple threshold. The edge image

corresponding to the raw image in figure 7-6 is shown in figure 7-7. At any given horizontal

179



Figure 7-5: View of the actuator shaft, load cell, test specimen, and bottom platform

through the glass wall of the flume.

Figure 7-6: Example of a raw image from the video capture system.
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Figure 7-7: Edges extracted from the raw image in figure 7-6.

position, the vertical centerline of the chain at that position is calculated as the median

location of all points along a vertical line. This procedure reduces the edge image to an

image with no more than one pixel illuminated per horizontal coordinate. These pixels

are turned into a line through a simple connection of adjacent points. The result of this

final processing stage on the example image is shown in figure 7-8.

7.3 Mooring dynamics in the touchdown region

The initial series of experiments were all conducted on the basic hard bottom described

in section 7.1.1. Each experimental run lasted twenty seconds, with a two second linear

ramp of the excitation amplitude at the beginning and end. Excitation amplitudes were

0.1, 0.15, 0.2, or 0.25 m. Excitation periods were 1.25, 1.5, 2.0, and 3.0 seconds. These 16

excitation conditions were run at non-dimensional mean tensions, Ar, of approximately

0.16, 0.37, and 0.80. Ar is defined by equation 6.6,

For reasons of brevity, only results for 0.25 m excitation amplitude and the highest

and lowest mean tensions are presented. All of the different qualitative dynamic features

are evident in this subset of the results. Time series of tension for the highest Ar and

lowest Ar values are shown in figures 7-9 and 7-10, respectively, for excitation periods 3.0,

2.0, and 1.25 seconds. In both cases there is a marked difference in the tension response
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Figure 7-8: Line representing the center of the model chain extracted from the edge image
in figure 7-7.
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Figure 7-9: Tension time series for the hard bottom at Ar 0.80 for excitation amplitude
0.25 m and excitation periods (a) 3.0 s, (b) 2.0 s, and (c) 1.25 s.
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Figure 7-10: Tension time series for the hard bottom at A-r ~ 0.16 for excitation amplitude

0.25 m and excitation periods (a) 3.0 s, (b) 2.0 s, and (c) 1.25 s.

between the slowest and fastest excitation levels. For the 3 second excitation cases, the

response is roughly sinusoidal, matching the regular input motion. As the excitation

period decreases, however, the tension response becomes more and more asymmetrical.

To more fully understand what is happening in the high frequency excitation cases it is

instructive to consider the motion and tension of the chain over a single cycle. Figure 7-11

shows the positions of the chain extracted from the video and the corresponding tension

record for a single cycle of motion starting at 13 seconds for Ar ~ 0.80. The top left panel

shows the chain positions while the motion of the top of the chain is upwards (vertical

velocity greater than zero) with the starting position drawn in bold. The top right panel

shows the chain positions during the downward motion, with the first downward position

drawn in bold. In the tension plot, time points marked with circles correspond to the

timing of the upward moving position snapshots; squares correspond to downward moving

snapshots. Starting from the lowest point in the motion, the tension very gradually

increases until approximately 13.2 seconds at which point it increases very rapidly. The

tension remains relatively high for approximately 0.15 seconds before falling gradually

until 13.6 seconds. After that point the tension increases very slowly for the remaining

0.6 seconds (nearly half) of the cycle.

At the beginning of the cycle the input velocity is zero and the chain top is at its
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Figure 7-11: Chain response on the hard bottom over one cycle at 1.25 s excitation period,
0.25 m excitation amplitude, and A-r ~ 0.80 The bold line in each of the top panels marks
the first profile of that panel. The arrow indicates the direction of motion of the top of
the chain. In the tension plot, circles correspond to the time points of the upward moving
profiles, squares to downward moving profiles. The dashed line is the static tension level.
Dotted vertical lines mark the Tp/4, Tp/2, and 3Tp/4 points.

lowest point. As the chain moves upwards, drag increases as velocity increases. The large

jump in tension just after 13.2 seconds is due not to drag, however, but to a snap load

that occurs when the slack, grounded chain suddenly retensions. This phenomenon can

be seen clearly in close-up video of the touchdown region in figure 7-12. This imagery

was actually taken for a slightly different case (artificial grass bottom which was held in

place by a light coating of sand), but the features and timing are nearly the same as in

the hard bottom case. As the chain moves downward in the moments preceding the cycle

under consideration, the chain that is being grounded is slack. By the 13.14 second image

the input motion has started moving upwards again and it is clear that the slack in the

grounded chain is beginning to be pulled out. When it is fully pulled out, the tension spike

occurs. Drag keeps the tension relatively high for a time because the bulk of the chain

is moving very fast, as evidenced by the large separation between profiles in the upward

moving panel in figure 7-11. As the chain slows in its upward motion, drag decreases and
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t = 12.74 t =12.87

t =13.00 t =13.14

t =13.28 t =13.41

Figure 7-12: Closeup view of the touchdown region showing a sequence in which the chain

is laid down with slack and then pulled taut. For practical reasons, the bottom in this

case was the artificial grass mat with a light coating of sand to hold it in place. As will be

shown in section 7.4, the results for this bottom are nearly identical to those on the hard

bottom.
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tension decreases.

At the transition from upwards to downwards motion near 13.6 seconds, the velocity is

zero and the displacement and acceleration have maximum magnitude with opposite signs.

Given an acceleration of nearly two-thirds the acceleration due to gravity, the inertial effect

greatly reduces the increased tension attributable to the weight of the additional line that

is pulled off the bottom. Thus, with little drag, the tension at this mid-point in the cycle

is very low. The tension remains low after this point because at this point the chain that

is being grounded is laid down slack. With no tension at the bottom of the chain, the

curvature near the top of the chain reverses as the downward motion progresses. With

the chain top more horizontal and the mid-section of the chain moving relatively slowly

(as evidenced by the close spacing of profiles in the downward profiles of figure 7-11) due

to this curvature reversal, there is little dynamic contribution to the tension during this

part of the cycle.

Both tension discontinuities, the spike just after 13.2 seconds, and the slack at the

touchdown point starting at 13.6 seconds, are the result of a shock in the tension. Using

an analytical result for the interaction of string and bridge in a sitar by Burridge et al. [12],

Triantayllou et al. [94] predicted that for the cable bottom interaction problem, shocks

will occur when the velocity of the TDP exceeds the speed of transverse waves in the

cable. Essentially, the transverse wave speed governs the ability of the mooring line to

comply geometrically with a smooth rolling and unrolling motion. When the touchdown

point moves faster than this speed during loading (upward motion) snap loads occur. A

shock during unloading (downward motion) produces a slack condition at the touchdown

point. Both of these conditions can be seen quantitatively in the experimental results.

T(b) Following a result from Burridge and Keller [11],

-) b this shock criterion can be derived by considering theT(a) a s b
integral form of the momentum equation for the sit-

'F uation diagrammed in figure 7-13,

Figure 7-13: Definitions for the f m ds = (b t) - (a, t)+ F+ f(s)ds.

derivation of the shock criterion.
(7.2)

The limits a and b define a small region that contains
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the instantaneous TDP which is located at s = so(t). T is the line tension, f(s, t) =

[x(s, t), z(s, t)]T describes the position of a point on the line, f is the force density due

to weight and buoyancy, and F is a reaction force exerted on the line by the bottom at

the TDP. Using Leibnitz's rule [43] the integral on the left side of equation 7.2 can be

evaluated as

m ds = m ds+-- m ds
ata at at aa t at t+ t) t

Zb 0ds + m ds (s -, t) - a (s+, t). (.)Fmt dt dtatt

Assuming that the line comes instantaneously to rest after being grounded, the velocity

of the line immediately to the left of the TDP is zero and

at (SO It) = 0. (7.4)

Furthermore, letting a and b approach so from below and above, integral terms go to zero

and equation 7.2 becomes

dso a
-m dt at i(so, t) = (s)- T (s) F. (7.5)

Finally, noting that there is no vertical component of tension to the left of the TDP, and

that for small vertical displacements

x s, (7.6)

cos= az (7.7)
as,

the force balance in the vertical direction is

dxoa a
-M dx a Z (xo, t) =To z (xot) + F. (7.8)

Because z(xo(t), t) is zero for all t, the total derivative of z at the TDP must also be

zero,

a dxoa8
z (xo, t) + x Z(xo, t) = 0. (7.9)

at dt ax
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Substituting this geometric constraint into equation 7.8 yields

F dxo 2 1a
[m (O T z (xo, t) = F. (7.10)[ dt Jax

From geometric considerations and the assumption that F is an upwards directed reaction

force, all of the terms in this equation are positive or zero. This leads to two possible

scenarios:

(dxo 2a
m (x 2 >To z (xo, t) > 0, F ;> 0, (7.11)dt 09x

(dxo 2a
m -- < To -- z(xo,t)= 0, F= 0. (7.12)

dt ax

In the second scenario, the line leaves the bottom tangentially and there is no impact

force. The first scenario is the case in which a tension discontinuity forms. The condition

for this case can be re-written as

dx0  __

> F . (7.13)
dt - m

The quantity on the right in equation 7.13 is the transverse wave speed in the line. When

this condition is true, there is an impact from the bottom and the line does not leave

the ground tangentially. This impact force and the loss of tangency introduce the tension

discontinuity that is the most obvious consequence of the shock. It is important to note

that while the impact force in this derivation is not itself evident in the topside tension

record, it does have direct implications for the numerical simulations, as discussed in

section 7.5.

Both the transverse wave speed and the TDP speed can be calculated for the experi-

mental results. For the wave speed, To can be estimated by the horizontal component of

the top tension. The TDP speed is calculated by numerically differentiating the horizontal

TDP coordinates, xo, extracted from consecutive chain profiles. Figure 7-14 shows these

two results for the same high frequency, high AT case as in figure 7-11. The exceedance of

the shock criterion, equation 7.13, is clear at both the 13.2 and 13.6 second time points.

The utility of this criterion in predicting these tension discontinuities is further sup-

ported by the data from the the 2.0 and 3.0 second excitation period cases. In figure 7-15
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Figure 7-14: Transverse wave (solid line) and TDP (dashed line) speed over one cycle at

1.25 s excitation period, 0.25 m excitation amplitude, and Ar ~ 0.80. Circles and squares

indicate upwards and downwards input motion as in figure 7-11.

for Tp = 2.0 s there is no snap load during the upwards motion but the tension does exhibit

the slacking response during a portion of the unloading half of the cycle. Correspondingly,

in figure 7-16 the TDP speed exceeds the estimated wave speed during unloading, but not

during loading. Note that with slack in the grounded chain, the horizontal component of

the top tension overestimates To and the TDP speed likely exceeds the wave speed for

some length of time beyond the brief exceedance shown in figure 7-16. This estimate is

valid up to the point of the criterion being met, making it useful for the predictive purpose

shown here, but is not accurate once the tension discontinuity has formed. The response

in this case also differs from the Tp = 1.25 s case because the lower frequency excitation

leads to a basic tension response that is not simply drag dominated, with weight and

inertia effects largely canceling one another.

For 3.0 s period excitation, neither snapping nor slacking behavior is evident in figure 7-

17. This is expected as the TDP speed in figure 7-18 never exceeds the transverse wave

speed. At this lowest frequency the tension response is dominated by geometric stiffness.

The phase of the tension in figure 7-17 very nearly matches the phase of the displacement

of the chain top.

The results for 1.25 s excitation period and Ar ~ 0.16 (the lowest non-dimensional
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Figure 7-15: Chain response on the hard bottom over one cycle at 2.0 s excitation period,
0.25 m excitation amplitude, and Ar = 0.80.
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Figure 7-16: Transverse wave and TDP speed over one cycle at 2.0 s excitation period,
0.25 m excitation amplitude, and Ar = 0.80.
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Figure 7-17: Chain response on the hard bottom over one cycle at 3.0 s excitation period,
0.25 m excitation amplitude, and A-r ~ 0.80.
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Figure 7-18: Transverse wave and TDP speed over one cycle at 3.0 s excitation period,
0.25 m excitation amplitude, and Ar ~ 0.80.
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Figure 7-19: Chain response on the hard bottom over one cycle at 1.25 s excitation period,
0.25 m excitation amplitude, and Ar ~ 0.16.

mean tension) are shown in figures 7-19 and 7-20. Qualitatively, the response in figure 7-

19 is similar to that for the Ar ~ 0.80 case in figure 7-11. The onset of the snap load

is delayed relative to that case because the higher initial curvature of the low tension

configuration at its lowest point results in the TDP speed reaching its maximum more

slowly. The slack discontinuity occurs at the same time in the two cases because that

shock is more dependent on a low wave speed than on a high TDP speed and the phase

of the wave speed is similar in the two cases.

7.4 Effect of bottom conditions on mooring response

7.4.1 Artificial bottoms

In addition to the hard bottom tests described above, tests were run on the artificial

bottom types described in section 7.1.1. The artificial mats have higher friction than the

hard bottom and some unquantified differences in their stiffness properties. Based on

the results, however, these properties are only weakly relevant (a conclusion supported
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Figure 7-20: Transverse wave and TDP speed over one cycle at 1.25 s excitation period,
0.25 m excitation amplitude, and Ar = 0.16.

by the full scale experimental and simulation results in chapter 6) or the differences were

not significant enough to produce a marked change in the response. Figures 7-21 and

7-22 show the tension time series for the runs on foam and artificial grass bottoms at

Ar 0.80 with excitation period 1.25 seconds and excitation amplitude 25 cm. There

are no significant differences between these results and those shown in figure 7-9 for the

hard bottom case. The mean values are slightly different due to the added height of the

bottom mats and the accompanying small variations in the shape of the chain.

7.4.2 Sand bottom

A more interesting response was observed in the runs on the sand bottom. Like the

artificial bottoms, the tension records for these runs do not look markedly different from

those obtained on the hard bottom. The interesting feature of the response on sand is

the trenching and digging action of the cycling chain. Because of this action, the chain

was often below the plane of the bottom and thus was not visible to the camera. For this

reason, the standard high speed video and associated processing were not used for runs on

sand. Instead, the camera was repositioned to look down at an angle on the touchdown

region (this is the position from which the closeup video in figure 7-12 was taken). To

document the trenching behavior, time lapse video was then taken every ten seconds over
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Figure 7-22: Tension time series for the grass bottom at AT ~ 0.80 for excitation amplitude
0.25 m and excitation periods (a) 3.0 s, (b) 2.0 s, and (c) 1.25 s.
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Figure 7-23: Tension time series of the initial twenty seconds for the sand bottom with
Ar ~ 0.16, excitation amplitude 0.25 m, and excitation periods (a) 3.0 s, (b) 2.0 s, and
(c) 1.25 s.

the course of two consecutive three minute runs. The sand was restored to its original,

flat condition after every six minute run (between each change in excitation period or

non-dimensional mean tension). Because this process was more time consuming than the

runs on the artificial bottoms, only 25 cm excitation amplitude cases were performed.

Tension data was captured as before at 100 Hz.

Figure 7-23 shows the first twenty seconds of the tension record for the runs on sand at

Ar ~ 0.16. In the high Ar runs, the lowering of the bottom as the trench deepened over

time, and the subsequent rise in steady state tension, led to tension spikes in the 1.25 s

excitation period case which were clipped in the data acquisition system (over 5 lbs). For

this reason, the low Ar runs are used to facilitate a direct comparison with the results

already presented for the hard bottom runs in figure 7-10. As mentioned previously, these

results are not significantly different than the hard bottom results.

Even after significant trenching has occurred for the 1.25 and 2.0 second excitation pe-

riod cases, the tension results are not significantly different. The evolution of the trenching

over the first 120 cycles for the 1.25 s case is shown in figure 7-24. The state of the bottom

after 120 cycles is shown for each of the 1.25, 2.0, and 3.0 s cases in figure 7-25. Corre-

sponding twenty second time series of tension, from the time immediately preceding the
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Figure 7-24: Changes in the sand bottom over the first 120 cycles of the 1.25 s excitation

case at AT ~ 0.16.

(a) T = 3.0 s, after 120 cycles (b) T = 2.0 s, after 120 cycles (c) T = 1.25 s, after 120 cycles

Figure 7-25: State of the sand bottom after 120 cycles for the (a) 3.0, (b) 2.0, and (c) 1.25 s

excitation cases at Ar ~ 0.16.

120 cycle mark, are shown in figure 7-26. The presence of the trench increases the mean

tension level, but it does not change the basic dynamic response.

The trenching action is a result of the slacking and re-tensioning of the chain following

a shock discontinuity during the unloading phase of the motion. As the chain re-tensions,

links on the ground move laterally forward (in the direction of the chain top), carrying sand

with them. This relationship between the trench and the tension discontinuity explains

why a trench forms for the 1.25, and 2.0 s cases, but not for the 3.0 s case. In both of the

higher frequency cases a large pile of sand accumulates at the forward end of the trench.

In the 3.0 s case, the chain does settle into the sand somewhat, but no pile forms because

there is no lateral transport of sand by the links.

These results may have important implications for chain wear in long term deploy-
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Figure 7-26: Tension time series for the twenty seconds preceding the 120 cycle mark
on the sand bottom at Ar ~ 0.16, excitation amplitude 0.25 m, and excitation periods
(a) 3.0 s, (b) 2.0 s, and (c) 1.25 s.

ments. The lateral motion of the chain along the bottom that is associated with the

tension shocks may significantly enhance abrasion. If that is the case then wear might be

reduced by designing moorings so that exceedances of the shock criterion are minimized.

7.5 Comparison with numerical simulations

The numerical program described in chapter 3 uses an elastic foundation with linear

stiffness and damping to model the interaction of the mooring line with the sea floor.

With the controlled bottom conditions and the importance of the bottom interaction in

the dynamic response, the laboratory experiments provide an opportunity to investigate

the limits of the elastic foundation approach in the numerical model. This analysis was not

possible with the full scale experiment because detailed information about the response

of the mooring in the touchdown region was not available.

In searching for a baseline simulation configuration that approximately matched the

experimental results, it became clear that given correct input for the easily measured

parameters (mass, weight, static tension), the important parameters in the validation

were the bottom stiffness and damping, and the chain bending stiffness. Interestingly,
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none of these three parameters played an important role in the simulations of the full scale

experiment. The values for these parameters were chosen so that the baseline simulation

result was in reasonably good agreement with the experimental result. The baseline values

for these three parameters are k = 10000 N/m 2 , C = 0.1, and El = 10-6 Nm 2 . This

stiffness gives a non-dimensional bottom stiffness, k, of 40.3, 260 times greater than the

baseline non-dimensional stiffness used for the field experiment. Stiffnesses significantly

beyond this value made static solutions difficult to obtain. The bottom damping ratio

chosen was low enough that impact on the tension response is small, but high enough

that oscillations of the grounded chain are relatively low. The bending stiffness was set

very low to minimize any possible effect on the response. Hydrodynamic parameters were

similar to those used for the full scale mooring: Cd = 0.5, Cd, = 0.01, Can = 0.5, and

Cat = 0.05.

Figures 7-27 and 7-28 show the simulated response with these parameters for one cycle

at 1.25 and 3.0 s excitation periods, respectively. In both cases the basic agreement with

the experimental results on the hard bottom (figures 7-11 and 7-17) is quite good'. For

the high frequency excitation the same snapping and slacking behavior is evident as in the

experimental result. The magnitude of the tension spike following the snap is higher in

the simulation, but this may be an artifact of the analog filtering having attenuated the

impulse in the experimental data. The most significant qualitative difference between the

simulation and experiment is in the motion of the grounded chain during the downward

half of the cycle. In the simulation the chain from the rightmost TDP to the current TDP

at each step is bowed upwards because the model cannot properly resolve the slack in

the chain along this length. The configuration of the suspended chain (to the left of the

TDP) does accurately show the reversal in curvature that results from the slack tension

(or in the simulation, very low tension) in the grounded chain. This discrepancy does not

appear in the lower frequency excitation case because the tension discontinuity does not

occur and the grounded chain is not slack. As a result, the simulated profiles in this case

match the experiment very closely over the entire motion cycle.

The height of the buckled chain above the bottom during the downward motion can

be reduced by increasing the damping ratio. Figure 7-29 shows the simulation result for

The experimental results have a small temporal lag relative to the simulation results because of a delay
in the start of the actuator motion after the video and analog instrumentation is triggered.
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Figure 7-27: Simulated response with baseline parameters over one cycle at
tion period, 0.25 m excitation amplitude, and Ar ~ 0.80.
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Figure 7-28: Simulated response with baseline parameters over one cycle at 3.0 s excitation

period, 0.25 m excitation amplitude, and Ar 0.80.
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Figure 7-29: Simulated response with = 0.3 over one cycle at 1.25 s excitation period,
0.25 m excitation amplitude, and AT 0.80.

C = 0.3 for the 1.25 s excitation case. The motion of the grounded chain is reduced, but

so are the spatial extent of the motion and the overall tension level. A better alternative

is to increase the damping ratio to 0.3, but at the same time decrease the bottom stiffness

to 1000 N/m 2 , so that the damping constant, b = 2(Vk (m + ma), remains approximately

the same as in the baseline configuration. Results for this case, shown in figure 7-30, illus-

trate that lowering the stiffness reduces the height of the buckled chain above the bottom

while preserving the tension level. This suggests that the bottom damping constant is the

most important of the bottom parameters in determining the tension and that the motion

of the chain on the bottom can be largely controlled with stiffness.

These same parametric variations in the 3.0 s excitation case do not produce significant

changes in the simulation results. For simulations with ( = 0.3 the maximum tension in

the cycle changed by a barely detectable 0.08% relative to the baseline simulation. This

contrasts with the marked decrease in tension and increase in range of motion for the

1.25 s case. The simulation with ( = 0.3 and k = 1000 N/m 2 at this excitation period

had similarly small changes. In cases where the shock criterion is never met, the bottom
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Figure 7-30: Simulated response with ( 0.3 and k = 1000 N/m 2 over one cycle at 1.25 s
excitation period, 0.25 m excitation amplitude, and Ar ~~ 0.80.

properties do not appear to play any significant role in the dynamic response. This

statement comes with the caveat that bottom stiffness always plays a role in the static

response and thus, to the extent that the dynamic response depends on the steady state

configuration, the importance of bottom stiffness can never be completely neglected.

This same situation in which simulation results are much less sensitive to parameter

variation in the absence of tension shocks is evident in the results with increased bending

stiffness. With EI increased by four orders of magnitude to 0.01 Nm 2 , the results for the

3.0 s case again only changed very marginally: the maximum tension increased by 1.6%.

The result for the 1.25 s case is shown in figure 7-31. Both the tension and motion are

significantly different than for the baseline simulation. The increased bending stiffness

allows the wave in the grounded chain to propagate upwards into the suspended chain,

thus altering the response over the entire length.

The grounded chain buckles because there is an extended period and region of zero

tension. With no mechanism to model the collapsing of individual chain links, the chain

must deform by bending, no matter how low the EI value. Providing a means to prop-
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Figure 7-31: Simulated response with El = 0.01 N/m 2 over one cycle at 1.25 s excitation
period, 0.25 m excitation amplitude, and Ar ~ 0.80.

agate energy in the presence of zero tension is the very reason for incorporating bending

stiffness into the equations of motion in the first place. With too high a stiffness, however,

unrealistic bending effects can propagate into areas with low, but not necessarily zero

tension. Given the tensions in this model scale system, EI = 0.01 N/m 2 is not scaled

properly to prevent this. This improper scaling is not an issue with the lower frequency

excitation because flexural waves are never introduced into the system.

The conclusion of this comparison then is that the elastic foundation is accurate for

both supersonic and subsonic TDP motions. For the subsonic case this is no surprise given

the validated accuracy of the simulations of full scale moorings. In the supersonic case,

there are several qualifiers to this conclusion. Primary among them is the substantial

sensitivity of the simulation results to parametric variations in bottom properties and

bending stiffness. This adds additional complexity to the task of defining the simulated

system. Also, it should be noted that the numerical simulations at the faster excitation

periods required a higher node density (1601 nodes over the 3.29 m length of the chain)

than the slowest period cases (401 nodes) to succeed. All of the simulations were run with
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a 0.001 s base time step.

Much of the reason for this added difficulty in solutions with tension shocks arises from

the consequences of the shock condition described in equation 7.11. The non-zero impact

force gives rise to a dynamic excitation of the elastic bottom. Also, substituting the non-

zero slope at the TDP into equation 7.9 implies a non-zero vertical velocity for the chain

at the TDP, enhancing the bottom damping forces at that point. To maintain the overall

accuracy of the simulation, these vibrations must be resolved by increasing the spatial

and/or temporal resolution of the simulation. The lack of these exciting mechanisms in

the subsonic case explains the lack of sensitivity of those solutions to variations in bottom

parameters.

7.6 Implications for full scale moorings

With the validation of the elastic foundation approach it is possible to investigate the

formation of tension discontinuities in full scale moorings, such as that used in the SWEX

field experiment. As discussed above these tension discontinuities have several implications

for the design and analysis of these types of moorings. Snap loads and increased wear of

chain along the bottom may require that design life be shortened or that a heavier material

be used.

Tension and TDP and wave speeds for a relatively high resolution numerical simulation

of the SWEX mooring under the storm conditions of the 3 January 1999 data set is shown

in figure 7-32. For simplicity, the AxPacks were removed and 401 nodes were used to

discretize a single 80 m length of chain. The simulation time step was 0.01 s (compared

to 0.1 s for the simulations in chapter 5 and 6). Snapshots of motion and tension along

the entire length of the mooring were saved at 0.1 s intervals and used to calculate the

TDP and wave speeds. Under these extreme conditions the shock condition is exceeded

during both loading and unloading. The loading shocks correspond to the snap loads

that are apparent in the time series of top tension (the snap loads are not as clear in the

experimental tension record because of the analog filtering in the instrumentation).

To more fully investigate the conditions under which tension discontinuities occur, the

response of the uniform version of the SWEX mooring was simulated under a range of

mean tensions and sinusoidal excitations. Current was applied in a linear ramp from top
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Figure 7-32: (a) Tension at the top of the mooring and (b) TDP speed and transverse

wave speed at the TDP for a portion of a simulation of the full scale SWEX mooring

using environmental conditions from the 3 January 1999 storm event. The experimentally

recorded tension is shown in (a) for reference.

to bottom, with magnitudes 1.0, 0.6, 0.3, and 0.1 rn/s at the top and zero current at the

bottom. These currents produced non-dimensional mean tensions of 0.245, 0.089, 0.023,

and 0.003, respectively. Excitation amplitude and period ranged from 0.1 to 2.5 m and

3.0 to 10.0 seconds. The position and tension at all nodes was recorded every 0.1 seconds

over the course of each 60 second simulation. This information allows for calculation of

the position and speed of the touchdown point (in a procedure similar to that used for the

video data) and a calculation of the wave speed based on the actual instantaneous tension

at the TDP.

Figure 7-33 shows the maximum observed difference in the calculated instantaneous

wave and TDP speeds over the course of the entire simulation during unloading portions

of the motion. The distinction between loading and unloading motions is made using the

sign of the TDP speed. Unloading means that chain is being laid down and the TDP

speed is positive. Exceeding the shock criterion during this portion of the motion implies

that the chain is being laid down slack. Positive differences in figure 7-33 indicate an

exceedance of the criterion. The differences are plotted as a function of the ratio between

the amplitude of the dynamic tension at the top of the mooring and the static tension at

the static TDP, To(0).
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Figure 7-33: Maximum difference in the wave and TDP speeds during unloading for
simulations with sinusoidal excitation. At low values of AT the results appear clustered
because there are critical thresholds of input velocity, Aw, at which the maximum speed
difference jumps considerably.

When the dynamic tension amplitude approaches the static TDP tension, the total

tension at the TDP approaches zero. With near zero tension the wave speed is very low

and the shock criterion is easily exceeded. This argument and the results in figure 7-33

suggest that a reasonable design goal is to keep the value of this ratio below unity to avoid

tension discontinuities during unloading2. As mean tension decreases this goal could be

relaxed somewhat. Several of the simulation results for the lower values of Ar are below

the shock limit but have tension ratios of between two and six.

The maximum difference between wave and TDP speeds during loading is shown in

figure 7-34. In this case the difference is plotted as a function of the ratio between the

input velocity at the top of the mooring (the TDP speed will typically be proportional to

this) and the wave speed at the TDP calculated from the static tension at the TDP,
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TDP and Wave Speed Difference During Loading
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Figure 7-34: Maximum difference in the wave and TDP speeds during loading for simula-
tions with sinusoidal excitation.

For unloading motion, a tension ratio was used because the shocks are largely dependent

on low tensions at the TDP. Loading shocks typically form when both wave and TDP

speeds are non-zero, making a velocity dependence more meaningful.

As this ratio increases, the TDP is moving faster and faster relative to the wave speed

and shocks forms. From figure 7-34 an approximate critical value for this velocity ratio is

0.5. The shock criterion was exceeded for most of the simulations with ratios above this

value. There are fewer exceedances of the shock criterion during loading than unloading.

During unloading, 91 of the 140 simulations exceeded the shock criterion (105 simulations

have a tension ratio greater than unity). During loading, only 41 simulations exceeded

the shock criterion (47 simulations have a velocity ratio greater than 0.5). That loading

shocks (snap loads) are more rare than unloading shocks (slacks and lateral motion along

the bottom) is consistent with the experimental results where the results for 3.0 second

excitation period had no shocks, 2.0 second period had unloading shocks, and only the

fastest excitation cases had both loading and unloading shocks. No simulations in the

above cases had only loading shocks.

The critical values of the tension and velocity ratios described above can be used along

with the simple model for dynamic tension described in chapter 6 to develop a procedure

206



for estimating the likelihood of tension discontinuities in full scale moorings. Given an

input wave spectrum, spectra of heave velocity and acceleration can be computed and used

in equation 6.31 to calculate a spectrum of tension at the top of the mooring. Assuming

that the tension is a Gaussian random process, the expected number of times that the

dynamic tension will exceed the TDP static tension, TO(0), per second is [73]

1 MiT 2()/2MT
NT = 1 M'-TO (7.15)

27r ZOT'

where MT and MT are the moments of the tension spectrum,

Mg' j ST(w)dW = o, (7.16)

M j w 2 S (w)dw. (7.17)
0

The probability of at least one exceedance in a period t is

P(TI > To(0) in ~) = 1 - e-NT. (7.18)

Similarly, for loading shocks the number of exceedances of the input velocity of the level

'Vwave(0) per second is

1 0 a -V 2.,,()8,
Nv = 2 e- v(e )/8o) (7.19)

and the probability of at least one exceedance in I is

P(Aw > 0.5Vwave (0) in i) = 1 - eN (7.20)

In the above, the variances of velocity and acceleration have been substituted for the zero-

and second-order moments of velocity.

To test these guidelines, this same mooring configuration was simulated with the steady

state and dynamic excitation conditions observed from the SWEX experiment. Each of

the 119 simulations was run for 200 seconds (T = 200 s). The moments for tension

were calculated using equation 6.31 with model coefficients calculated from a fit to the

simulation results (M = 158.0 kg, Cd = 0.288). From the simulation results, 10 data
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shock type correct + correct - false + false -

unloading 112 0 7 0
loading 4 109 0 6

Table 7.2: Number of correct and incorrect predictions given a probability level of 0.9 in
equations 7.18 and 7.20 as an indicator of the presence of shocks.

sets had loading shocks and 112 simulations had unloading shocks. Using a probability

level greater than 0.9 as an indicator that a shock could be expected, the accuracy of

equations 7.18 and 7.20 can be categorized in one of four ways: correct positive, correct

negative, false positive, and false negative, where a positive is an exceedance of the shock

condition. For example, a correct positive is a data set for which the calculated probability

of an exceedance is greater than 0.9 and an exceedance was observed in that data set.

Table 7.2 lists the number of data sets that fall into each category for both types of shock.

There are no negative predictions for the unloading case. The calculated probability

of the tension ratio exceeding unity is nearly 1.0 for all data sets. The seven data sets

in the simulation results that did not have an exceedance during unloading were amongst

the twelve lowest of all data sets ranked in terms of dynamic tension (0-T). Unloading

shocks occurred under nearly all of the observed conditions. In this situation then, the

probabilistic prediction of unloading shocks in all 119 cases is not unreasonable.

As observed in the study with sinusoidal inputs, loading shocks occur less frequently

than unloading shocks. Equation 7.20 with a probability level of 0.9 appears to offer

a reasonable predictive capability for loading shocks. However, for conservative design,

the false negatives are a concern. The number of false negatives can be reduced, with a

subsequent increase in the number of false positives, by decreasing the probability level.

A value of 0.5 produces only two false negatives, but also yields three false positives.

Overall then, the design guidelines outlined above provide a reasonable prediction of

the likelihood of tension discontinuities at the TDP. For the most accurate prediction, and

for quantitative information about the magnitude of tension spikes and extent of lateral

motion along the bottom associated with shocks, full numerical simulation (with accurate

representation of bottom conditions) is still necessary.
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Chapter 8

Conclusions

The most tangible contributions of this thesis are tools that can be used in the analysis and

design of mooring systems. The generalized-a time integration scheme and algorithms for

mesh refinement, adaptive time-stepping, and adaptive relaxation contribute to the nu-

merical program and make it robust and relatively easy to use. The simple model for

dynamic tension in chapter 6 can provide a mooring designer with a convenient and accu-

rate predictor of tension given very simple inputs. On a more fundamental level, however,

the tools are not themselves the end goal of this work. That goal is to develop a deeper

understanding of the mechanics of these systems so that design methodologies can be im-

proved, and more capable, longer lasting systems can be developed and deployed. Toward

that end, the real importance of the tools is the insight that they yield in the analyses

such as those of dynamic tension in chapter 6 and bottom interaction in chapter 7. Tools

facilitate design and analysis, but ultimately, innovation must come from understanding.

8.1 Summary

8.1.1 Numerical model

The generalized-a time integration scheme for cable dynamics developed in chapter 2

offers significant advantages over the traditional box method [1] or other box method

variants [60]. By retaining the box method's finite difference spatial integration, the

method remains second-order accurate in the spatial dimension and is relatively easy to

implement. For the temporal discretization the generalized-a algorithm provides:

209



" Controllable numerical dissipation without loss of second-order accuracy. Trape-

zoidal rule is only first-order accurate in the presence of numerical dissipation. The

original box method temporal discretization has no numerical dissipation and there-

fore is subject to Crank-Nicolson noise and other numerical instabilities.

" Second-order accuracy. Box method variants using backward differences are only

first-order accurate in time.

" The ability to implement other algorithms, including backward differences, trape-

zoidal rule, HHT-a, and WBZ-a, through appropriate choices of parameters.

" Improved numerical stability through the averaging of coefficient matrices.

These advantages were made clear in chapter 5 where the scheme allowed for robust

solution of the instability in the two-dimensional hanging chain motion leading into three-

dimensional whirling. This solution could not be obtained with the previous program

that used the pure box method. The generalized-a scheme also facilitated the fast, accu-

rate, and robust simulation of the entire range of conditions observed during the SWEX

experiment in chapters 5 and 6.

8.1.2 Models for understanding dynamic tension

Chapter 6 contains a number of significant contributions regarding dynamic tension in

geometrically compliant systems. The proposed model for dynamic tension was derived

by first considering a SDOF spring-mass-dashpot system. By fitting motion and tension

spectra for each data set individually to this form, model coefficients were derived for

each data set. To understand the scatter in these coefficients, the individual tension

mechanisms (inertia, drag, stiffness) were analyzed separately and in pairs. This analysis

confirmed that the model coefficients should change roughly linearly with mooring shape

(as measured by the non-dimensional mean tension) and that the different mechanisms

are coupled together.

To account for scattering due to this coupling, relationships were sought among the

statistics of the experimental data that presented low scatter. From these low scatter rela-

tionships the tension model was constructed based on the standard deviations of tension,

heave acceleration, and heave quadratic velocity. Analyzing the model in relationship to
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the spring-mass-dashpot model showed that coupling between mass and drag was a likely

cause of much of the scatter in the coefficients fitted to individual data sets and that the

spring terms could be neglected over the range of conditions present in the experimental

data set. With just two parameters the simple model is compact and able to represent the

experimental data with only slightly less accuracy than the model using the coefficients

fitted to individual data sets.

Numerical simulations were then used to analyze the parametric dependence of the

model mass and drag coefficients on actual system parameters, including normal and

tangential drag coefficients, added mass coefficients, and bottom stiffness and damping.

From these parametric dependencies, formulae were derived for the a priori prediction of

the model coefficients. These formulae, together with the simple model, allow a designer

to analytically calculate the dynamic tension response over a wide range of conditions

without the need for experimental data or numerical simulation. This approach was

validated using data from a second oceanographic mooring (the CMO experiment) and

simulation of steel catenary and lazy wave riser configurations.

Several circumstances under which the simple model dynamic tension is not accurate

were described. Among these are:

" The coupling between mass and drag is self-limiting. At high sea state, the coupling

term in the model leads to an over prediction of the dynamic tension.

" At very low frequencies the only dynamic tension is due to stiffness effects which are

neglected in the model. These effects are small.

" There is no model drag when the mooring is slack/vertical. If input velocities are

high in such a case, the dynamic tension calculated from the model will be too low.

" The model is derived based on an assumption that the mooring materials are inex-

tensible. If the mooring has significant elastic compliance then the model calculated

tensions will be too high.

" The model assumes that adequate scope is always available for geometric compliance.

When the mooring is pulled taut, model calculated tensions will be too low.

An additional limitation of the simple model is that as AT, the non-dimensional mean

tension, increases, dynamic tension due to horizontal motions becomes significant. In the
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SWEX mooring, the non-dimensional mean tensions were low enough that surge and sway

motion did not contribute significantly to the total dynamic tension. For oceanographic

moorings in very shallow water, however, horizontal motions become important, as illus-

trated by the data from the NDBC Duck Pier mooring in 17 m depth. This situation

is also more common in riser applications where mooring pre-tensioning can lead to very

high values of AT.

In the statistical domain, the contributions to the dynamic tension due to vertical

and horizontal motions are linearly separable. Chapter 6 demonstrated that a model for

dynamic tension due to horizontal motion can be developed using a procedure similar to

that used for vertical motion. Summing the results from the two models yields a complete

prediction for the dynamic tension in the presence of both vertical and horizontal input

motions.

8.1.3 Bottom interaction

The experiments presented in chapter 7 represent the first direct observation of the shock

condition at the touchdown point of a catenary mooring. They also illustrate the impli-

cations of the shocks. The mathematical implications of the shock are a non-zero impact

force at the TDP and a loss of tangency as the mooring line leaves the bottom. Practi-

cally, the shock condition has different implications depending on whether the motion is

loading, line being picked up off the bottom, or unloading, chain being laid down on the

bottom.

In the unloading portion of the cycle, the tension discontinuity leads to zero tension

at the TDP and the grounded line being laid down with slack. As the motion reverses the

mooring line does not roll smoothly off the bottom but rather the TDP moves laterally

along the bottom. This lateral motion may be a significant source of abrasion of mooring

line in the touchdown region. This type of tension discontinuity is more common than

shocks during loading.

During loading, the tension discontinuity of the shock is manifest as a snap load, leading

to large impulsive tension spikes. This situation arises only after the shock criterion has

been exceeded during the unloading motion. The snap occurs because the geometry of

the mooring cannot change rapidly enough to accommodate the retensioning of the slack

grounded line.
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The qualitative features of the response of the mooring in the presence of tension shocks

at the TDP do not change as the bottom type changes. On two softer artificial bottoms

with higher friction, there were virtually no observable quantitative or qualitative changes

in the motion or tension response. On a realistic sand bottom, the lateral motion of the

TDP associated with unloading shocks caused a large trench to form in the touchdown

region. The digging action required to produce this trench strongly supports the idea that

mooring wear and abrasion will increase in the presence of unloading shocks.

The likelihood of both types of shocks can be predicted using relatively simple criteria.

However, for the most accurate prediction of their occurrence and their implications,

full numerical simulations should be used. The presence of the shocks make numerical

simulations more difficult because the results are more sensitive to parametric variations

in the bottom parameters and the mooring bending stiffness. The results from chapter 7

did verify that with the right parameters, the elastic foundation approach to modeling

bottom interaction can capture the tension and motion response in the touchdown region

quite accurately.

8.2 Recommendations for future work

In its current state of development the numerical program is relatively robust and capable.

While not a focus of this thesis, additional work is still needed to improve the stability

of static solutions, particularly for problems with mooring line on the sea floor. The

current static solution procedures are adequate, but a fast, robust, fully automated scheme,

coupled with the generalized-a based time integration scheme developed in this thesis

would be a very powerful tool for mooring line simulation problems.

The instrumentation suite that was deployed for the field experiments provided good

quality data for the validation of the numerical program and for the analysis of dynamic

tension. It did not provide data that could be used for a full scale comparison with

the results from the laboratory experiment. For that analysis, more complete information

about the steady state configuration and along mooring motion are needed. Redeployment

of the GPS receiver that failed in the SWEX experiment and an acoustically localized

anchor position would yield high quality data about the very slow current and tidal induced

motions of the mooring. The AxPack instruments would provide much more information
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about motion over the length of the mooring with the addition of a compass and tilt sensor.

In conjunction with the accelerometer data, this addition would provide high frequency

earth referenced motion along the mooring.

For the laboratory experiments additional realistic bottom types need to be studied.

More work is also needed to refer the laboratory observations to full scale bottom condi-

tions. Bottoms such as mud will likely make the video data very difficult to process and

additional analog instrumentation, such as very small inline accelerometers and load cells,

may be necessary to develop an accurate picture of the system dynamics on these bottoms.

An impact resistant, unobtrusive, inline load cell would also be useful in collecting tension

data directly in the grounded portion of the chain.

An interesting laboratory experiment would also be one in which chain abrasion in

the presence of tension shocks could be measured and compared to the wear experienced

during more typical, smooth motions. Such an effort would require considerable thought

about the practical aspects of runs that may last for many days or weeks. Together with

design tools that can predict the occurrence of tension shocks, a catalog of this kind of

data on various bottoms would be very valuable, as chain wear is one of the limiting factors

in current oceanographic mooring practice.

As discussed in the summary for chapter 6, additional work is needed to develop

design formulae for dynamic tension in compliant systems with horizontal input motions,

analogous to equation 6.16 for vertical motions. A reduction to such a simple form may

not be possible, but through the study of a range of systems in which horizontal motions

are important some general design rules could certainly be formulated.
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Appendix A

Derivation of 2D Equations of

Motion

This appendix contains a derivation of the two-dimensional governing equations for a cable

in water. A derivation of the three-dimensional equations can be found in Tjavaras [93].

The derivation assumes that the cable material is circular and homogeneous in cross-

section (but not necessarily along the length), has a nonlinear tension-strain relationship

and that Euler-Bernoulli beam theory can be applied. Fluid forces on the cable are

modeled using a Morison formulation [29].

A.1 Kinematics and coordinate system

The governing equations are derived in the coordinate system defined by the local tan-

gential (t) and normal (n') directions, as shown in figure A.1. The transformation between

local and global (7, j) coordinates is

t coso sin i' [71
n -sin# cos# j

i cosz -sin t
S sin# cos# n'
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Figure A-1: Vector definitions for the local coordinate system.

The time derivative of a vector, A, that is defined in the local frame is

dA - x (A.3)
dt -at

where LZ is the time rate of change of the orientation of the local frame. Likewise, the

derivative of A with respect to the Lagrangian coordinate, s, along the cable length is

dA aA (A.4)
ds as + A,

where Q is the spatial rate of change of the orientation of the local frame. For the two-

dimensional case defined in figure A.1, W and Q are

a#- -- 8S= -k) = -k. (A.5)
at' as

A.2 Cable stretch and buoyancy

If ds is the unstretched length of an infinitesimal element of cable and ds1 is the stretched

length then

dsi = (1 + c)ds, (A.6)
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where E is the cable strain. From conservation of mass, the mass and weight per unit

length of the stretched element are

mIds1 mds - m1  m
+

wI ds1 wds wi = w .
+

(A.7)

(A.8)

Based on Poisson's ratio, V, the reduction from the nominal diameter, d, of the stretched

cross-section is

6d = (-vc)d, (A.9)

the change in cross-sectional area is

6A = [(d + 6d) 2 - d2] ?d d,4 2
(A.10)

and thus

A= -2vc.
A

(A.11)

If v we have conservation of volume

A(1 - E)(1 + E)ds ~ Ads. (A.12)

Finally, we can use a binomial expansion to write the stretched area and diameter in a

more convenient form:

AA, = A(1 - A)~ ,
1 +61

(A.13)

While v = . is not strictly true for all cables (particularly metal chain and wire), the conservation
of volume that it introduces greatly simplifies the treatment of the buoyancy forces on the cable [36].
Burgess [10] calculates the error associated with using v = - when the true value of V = 0 (the2
maximum possible error in v) as pgz/E. This term becomes significant only with large depths and very
soft materials.
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Figure A-2: Schematic diagram of pressure and effective tension terms.

and

ddi =d.
"/-I +E ,

(A.14)

With the above definitions, we can easily treat hydrostatic forces on the cable by

considering the effective tension. In reality, hydrostatic forces act only on the exterior of

the element, not at the two ends. Following the procedure first suggested by Breslin [6],

however, we can introduce a pressure force on the element end faces if we also introduce

a compensating term into the tension force. This is shown schematically in figure A-2.

Mathematically,

Teffective = T + pA1, (A.15)

where p is the hydrostatic pressure at the depth of the element. With the fictitious end

pressures Archimedes' principle applies and the buoyancy force per unit length of the

stretched element is simply

A
B 1 = Aipwg = pwg,

1+ 1E
(A. 16)

where pw is the density of water and g is the local acceleration due to gravity. The total

of the weight and buoyancy forces on the stretched element are

A W 
Fw = pWg- .

(1+6 1+
(A.17)
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If we define the wet weight of the material as wo = w - Apwg, then

(1 + c)F = -woi= -wo cos qt+ wo sin On'. (A.18)

Introducing the effective tension and the wet weight frees us from any further con-

sideration of the hydrostatic pressure; pressure effects are now simply rolled into any

computed strain result [36]. Because tensions are always computed as a function of strain,

all calculated tensions will be the effective tension. For simplicity in the remainder of the

derivation of the governing equations we will use T to denote the effective tension.

A.3 Hydrodynamic forces

The hydrodynamic forces on the cable are the drag, added mass, and dynamic Archimedes

forces. The drag forces arise from the relative velocity of the cable in a current field

defined in globali, j coordinates by U and V respectively. In local coordinates the relative

velocities are

ur = U - Ucos# - Vsin#, and (A.19)

Vr = v + U sin # - V cos #. (A.20)

The drag force in local coordinates is

FP = .+ (A. 21)
Fd - 1PW d C . (V - Vc)|IV - Vc| -n

For a solid circular cross-section cable, the added mass force has a component in the

normal direction only. It is computed as a function of the relative acceleration between

the fluid and the cable. The time derivative of the current velocity in local coordinates

(assuming steady current) is

= [U cos + V sin #] t. (A.22)
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The added mass force is

-F ma [(U V*4V & (A.23)Fam = +E [ (U cos 0 + V sin #) & t(A.2

where ma is the added mass per length of the cable cross-section. Because the current

velocity in local coordinates is changing in time, there is a pressure gradient that gives

rise to the dynamic Archimedes force [69]. Like the added mass force, the only component

of this force on a solid circular cable is in the normal direction. It is defined as

-. ird2

Far = -4( (U cos 0 +V sin #] -n. (A.24)4(1 + ) at

For cables with non-solid, or non-circular cross-sections (such as chains) there can be

both added mass and dynamic Archimedes forces in the tangential direction. The time

derivative of the current velocity in the tangential direction is

it = [-U sin # + V cos #] at t. (A.25)

With the appropriate tangential components equations A.23 and A.24 become

t[-U sin[ +(V cos 9-
Fam = +1E atsat I (A.26)

Ma [- (U cos + +V sin 2-0 - L

Far mg-wo (-Usin5+Vcos] ' I( 7
Far =t (A.27)

g(1+) - (U cos 0 + V sin 0] 21n.

The term mg--wo defines the mass of the fluid displaced by the irregular cross-section.

This formulation also requires two terms to describe the cross-section added mass, mat

for tangential motion, and man for normal motion.

A.4 Balance of forces

A summation of the forces on the cable element shown in figure A.1 yields

d midsi ) = T + dT - T + Fds1. (A.28)
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If we expand the derivatives according to equations A.3 and A.4 and eliminate stretched

variables we find

m ' + x V + Q x T + F( + )(A.29)

Substituting F = F ±m + ±2, + F, + Fd and collecting terms in the normal and tangential

directions yields

/ au aq aT aqs 1m -I -- =- S wocos#--prdC,(u-uc)|u-ucI 1+e (.3O0at at as as 2

(v aq Ma- a a av ( w rd2 aat +ua) as +T maT 9 a ma±Pw) (Ucos#+Vsin#)at at as as at 4 at
1

+ wo sin# - pwdC, (v - v,) v - vc 1 + c. (A.31)
2

A.5 Balance of moments

For the two-dimensional element, the only moment balance involves moments about the

out-of-plane axis. The tension force does not contribute a moment in this case because in

the infinitesimal limit the tangential and normal directions at the two opposite ends have

the same direction and opposite magnitudes. The remaining moment contributions are

the rotational inertia, the couple due to shear, and the bending of the element:

d (a 8\
d (dsipcIi) = Snds1 + dM, (A.32)

where I, is the second-area moment of inertia of the stretched cable cross-section and pc

is the mass density of the cable. Using Euler-Bernoulli beam theory the bending moment,

M, is the product of the flexural stiffness of the cable, EI, and cable curvature:

M, = EI a . (A.33)
8s

The area moment of inertia of a circular cross section is - d4 and thus

M = M1 (I +,E)2 I = 1 (1 + F)2 . (A.34)
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Substituting equations A.33 and A.34 into equation A.32, eliminating ds1, and dividing

by ds yields

d PcI _# __EI___

d= - S (I + E) + . (A.35)
dt (1+e c t ds (I1+ I)2 as

Expanding derivatives and re-inserting the definitions for the spatial and temporal deriva-

tives of # given in equation A.5 so that the system remains a first-order PDE yields,

1oBe F & 3  203 Oe~1
PcI (1 + e) -W 9 = El [ -2 J + (1 + E) 3 Sn. (A.36)

I t Wt. .as I1+ E0s.

Howell [46] used dimensional analysis to show that for both metal and synthetic cables

the rotational inertia term and the second bending term containing the spatial derivative

of strain are of significantly lower order than the remaining terms. If we drop these terms,

the result is

EI + (1 + E) 3 Sn. (A.37)
as

Both terms could be retained without a significant loss of simplicity. Using equation A.37

over equation A.36 does offer the advantage that the additional dependent variable W does

not need to be stored.

A.6 Compatibility

Compatibility can be established by requiring continuity of the position of the cable in

both space and time. If R(s, t) is a vector to a point on the cable then continuity requires

d (d -. d (d -)R = -R .(A.38)
dt ds ds dt

By definition

dR -
= V (A.39)

dt

and from analytic geometry we know that the derivative of a position vector to a space

curve with respect to arc length is a unit vector tangent to the curve, in the direction of
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increasing arc length [43]

dR dR
=1  ds- = (1 + E)t. (A.40)

ds1 ds

Thus the continuity condition (equation A.38) reduces to

d [(1+) = dv (A.41)
dt ds

Expanding the derivatives and collecting components in the tangential and normal direc-

tions gives

au ae aq#a - at- , (A.42)as t as,
=v (1 + C)ao - U . (A.43)as at 8

A.7 Matrix form of the governing equations

Equations A.5, A.30, A.31, A.36 or A.37, A.42, and A.43, define a system of either six

equations and six unknowns (without rotational inertia) or seven equations and seven

unknowns (if rotational inertia is retained in equation A.36). The six degree-of-freedom
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form of the equations can be written as

- M-09 + My-09
at at

-p dFCdu, u,.I v/1 + = 0,
2

(A.44)

as + T ()09s 8
av

mu+ ( Pd 2

w 4
+ ma ) (U cos # + V

1
+ wo sinq - pwdCdnVr |Vr 1vl + 6 = 0,

-- a = 0,7as at

- (1 + E) a = 0,at

(A.45)

(A.46)

(A.47)

(A.48)

(A.49)

ao- Q3 = 0,as

EI 3 + Sn (1 + C) 3 = 0.
as

If we define Y = [e, Sn, u, v, q, Q 3 ]T then equations A.44 through A.49 can be written in

matrix form as

MaY aYM + K + F (Y, s,t) 0.
at 08s

(A.50)

The continuous forms of the mass matrix, "stiffness" matrix, and forcing vector are

0 0 -m 0

0 0 0 -(m+ma)j-1

-1 0 0

0 0 0

0 0 0

0 0 0

- [mu+ (Pw4

0

0

0

0

mV

+ma) (Ucosq#+

0

0

0

(A.51)
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T'(c) 0 0 0 Sn 0

0 1 0 0 T(c) 0

K = 0 0 1 0 - 0 and (A.52)
0 0 0 1 u 0

0 0 0 0 1 0

0 0 0 0 0 El

-wo cos p- ,prdCdur IUrl 1 + E

wo sinq$ + 1 pwdCdnor v| vI 1 + E

F =0 (A.53)
0

-Q3

Sn (1 + E)3

Note that the distribution of terms as either stiffness or force is somewhat arbitrary as

spatial derivatives of 0 could also appear as Q3. Experience has shown that given the

dependence of the nonlinear solver (described in appendix C) on the Jacobian of the

equations of motion, the solution typically proceeds more quickly when any dependence

on # is explicitly incorporated into the equations of motion. This is not surprising given

the formulation outlined above in which # is the primary variable used in describing the

system geometry.
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A.8 Static governing equations

The static governing equations can be derived from the dynamic equations (A.44 to A.49)

simply by dropping time derivative and velocity terms. They are

-Sn - wocos $
as

+ wo sin # +

1
+ 2pdrC, (U cos $ + V sin5) JU cos q + V sin $| v/1 +,E = 0,

(A.54)

pudCd, (-U sin $+Vcos#) J-U sin # + VcosoV |1+,E = 0,

(A.55)

(A.56)

(A.57)

Os oQ3 = 0,

El 3 + Sn (1 + 6)3 = 0.
Os

226

OSn O@
+ T(c)

as Os



Appendix B

Accuracy and von Neumann

Stability Analysis of the Box

Method

B.1 Stability

In this appendix we use the classical von Neumann method [48,82] to analyze the stability

of the box method as a pure finite difference method. This contrasts with the amplification

matrix method of stability analysis which operates on the semi-discrete equation of motion.

Like the amplification matrix method, we consider a single degree-of-freedom homo-

geneous problem

y+ O = o.+W 09O (B.1)

The fully discrete form of this equation after applying the box method is

1 - 1 Y-i -- Yjnii
2 At At

1 - Yjn-_ Y - 7 1j.
+ A As .

The proposed solution is

yn = ( e %Jk
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where C is an amplification factor, i = v-I, and k is a spatial wave number. The condition

for stability of the method is |(I < 1.

Substituting equation B.3 into equation B.2 and dividing through by ("-eikAs yields

(1 + e-ikAs) - (1 - e-ikAs)

(1 + e-ikAs) + W (1 - e-ikAs)
(B.4)

For all values of k, As, At, and w, I(| = 1, and as in chapter 2 we find that the box

method is unconditionally stable with no numerical dissipation.

B.2 Accuracy

The truncation error of the box method is found using a procedure similar to that for the

semi-discrete equations in chapter 2. Given an exact solution to equation B.1, , Taylor

series expansions for the solution near s = jAs and t = nAt are written as

At at

(as
= y- A t t .

( a

At 2

+2

At 3

6

a 2 , n
at2).

93  n

at3 ) ;

A2 a2, n
+ 2 t2.

As 2 (a2 n

2 a2 n+ 2 #9s2 J
As

3 a 3  n

6 9s3 )

At 3 a3, n

6 at3  . +

As 3 ( 3P n+
6 .s3+...

AsAt _2_ n
+Asasat .

At 2 AS

2 asat 2 J

Because j is an exact solution to equation B.1 we can write

( a2  n

a2)nat2 
.

92 n

asat .i( 3paa )n

asat2 )

0 n

-40 (4S, ,

2, n

08s2 . ,

3 n

- 2 a2t ) .
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yj

-n-1
yj-1

(B.5)

(B.6)

(B.7)

AtAs 2

2
a3 atn+
82 at i

(B.8)

(B.9)

(B.10)

(B.11)



Using these relationships and substituting the Taylor expansions for the exact solution into

the approximate difference equation B.2 yields an expression for the truncation error [83],

2 At At 2 As As

At2[6 (% )4 (a2 )4] ± s2 + ( f] + H.O.T. (B.12)

The truncation error that results from using the difference equation in place of the exact

PDE has terms of lowest order in At 2 and As 2 . Thus, the method is second-order accurate

in both space and time.
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Appendix C

Solution of the Nonlinear Problem

For all combinations of boundary conditions, 2D or 3D and static or dynamic problems,

the mathematical problem is posed as a system of coupled, nonlinear partial differential

equations. These systems are solved numerically by discretizing the continuous (exact)

forms of these governing equations onto a grid of nodes and calculating an approximate

solution. As the grid becomes finer and finer the approximate solution will approach the

exact solution. The cost of these finer discretizations which buy better solutions is an

increase in computation time.

Both the static and the dynamic cable problems can be generalized as a system of N

first-order nonlinear partial differential equations (at each time step the dynamic problem

represents a quasi-static equilibrium problem),

OY
K + F (s, Y) = 0, (C.1)

0s

where Y is the vector of the N dependent variables. For example, in the 2D static prob-

lem (the simplest of all possible cases), equation C.1 represents four equations in four

unknowns: strain (from which we can always derive tension via a constitutive relation-

ship), shear force, inclination angle, and curvature. This equation is discretized at the n

nodal points using centered finite differences written on the half-grid points. At node j

the discretized result is

Yj - Yj-1 + 2 i1(Fj + Fj_1) = 0. (C.2)
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When combined with a total of N boundary conditions at the two ends, equation C.2

written at the n - 1 half-grid points represents a coupled system of N x n nonlinear

equations in N x n unknowns. The system can be solved using a relaxation procedure

similar to Newton-Raphson [82].

C.1 Newton-Raphson updates

Equation C.2 can only strictly be satisfied by an exact solution for Yj. Given an inex-

act first guess at this solution, YQ, we need to develop an iterative scheme to calculate

successively better approximations, Y , through a series of update vectors, AY , such that

Y +1 = Y + AY, (C.3)

where Y?+ brings us closer to satisfying the equality in equation C.2. In quantitative

terms we want to iteratively minimize the error function

e (YY_1) = Y - Y_ + Si+ F 1) . (C.4)

Neglecting for clarity the dependence on the previous nodal point (j - 1), we can very

loosely write

[e+±1 (Yj+ + Y e ( ]e_Y)
~ -11(C .5 )

The derivatives on the right hand side of equation C.5 can be calculated analytically from

the known form of the discretized governing equations (equation C.4). If we were to re-

insert the dependence on Yjj, we would note that these derivatives actually constitute

an N x 2N Jacobian matrix at each j (the matrix is composed of the derivatives of the N

equations with respect to the 2N variables represented by Y, and Yi_1). We can assemble

the Jacobian matrices from each node into a single global Jacobian matrix (much like

element stiffness matrices are assembled into global stiffness matrices in the finite element

method), add boundary condition information and formulate a linear system that will

i+1find AY' to drive the updated error, e. ., to zero. If J is this global Jacobian matrix
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evaluated at Y' then we see from equation C.5 that

JiAY' = -e'. (C.6)

Because only two nodes (j and j - 1) are coupled by each individual Jacobian matrix

the assembled global Jacobian matrix in equation C.6 will be very sparse, with the only

non-zero entries clustered near the main diagonal. We can take advantage of this sparsity

in solving equation C.6 by using a sparse Gaussian elimination algorithm, NSPIV, due to

Sherman [85]. Sparse algorithms such as NSPIV exploit sparsity to reduce both memory

requirements and computation time (normal Gaussian elimination is an O(n 3 ) operation,

sparse algorithms can be as efficient as 0(n)). A distinct advantage of NSPIV over some

other algorithms for sparse linear systems is that it can handle matrices with arbitrary

sparsity patterns. This capability is important in dealing with systems that are not simply

connected (i.e., multipoint moorings and moorings with segments that branch out from

other segments).

C.2 Convergence criterion

The iterative updates of Y continue until the updates, AY, become sufficiently small as

to not warrant continuation of the process. The total error at iteration i, o-4, is defined as

N n

11 _E EAY,, (C.7)
Nnk-i Xk j=1 j

where AY. are the N components of AY at node j and iteration i and Xk are scaling

constants appropriate to each of the physical variables represented within Y. The stopping

criterion is simply

a < specified tolerance. (C.8)

233



C.3 Relaxation

The actual update to Y is scaled by a relaxation factor pr

Yi+1 = yi + Pr AYi. (C.9)

The purpose of this relaxation factor is to slow (under-relax) the update in cases where

strong nonlinearities may mean that the update is not quite as robust as we would like.

For highly nonlinear problems, where small changes in parameters can mean large changes

in system configuration, the approximation of equation C.5 becomes less valid and our

update AY', if fully applied (-r= 1), may actually increase the total system error. A

small relaxation factor increases the accuracy of the linearized Taylor series expansion

that equation C.5 represents. By slowing the process down (Pr < 1) the movement of the

system from iteration to iteration towards equilibrium will be smoother because the steps

between iterations will be smaller.

In many cases, it is desirable to have the relaxation factor vary as the solution pro-

gresses. This is particularly true in the static solution of some problems which may need

very fine movement of the relaxation process as the solution approaches equilibrium. As

an example, in cases with cable resting on the sea floor, the resolution of the location of the

touchdown point can be very difficult because of the unilateral nonlinearity represented

by the bottom. With too large a relaxation factor the update might pull a substantial

amount of cable off the bottom, only to be followed by an update that drops too much

onto the bottom.

To accommodate this behavior the actual relaxation factor used from iteration to

iteration is varied according to the progress of the solution. If at any point during the

solution the error increases from one step to the next, oi > oa-1, the relaxation factor

applied to the update at that step is reduced from the factor used at the previous step,

i-i

> -=r , (C.10)

where R1 is a constant larger than unity. If the error is decreasing as it should then we

take the opposite approach and try to speed the solution by increasing the relaxation
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factor

o- < ai- + ,4 = R 2 i 1 , (C.11)

where 1 < R 2 < R 1 . The relaxation factor is not allowed to increase beyond the baseline

value, pr, and as a protection against pathological cases in which a very small relaxation

can effectively bring the solution to a halt, it is not allowed to decrease beyond A, /1000.

In our implementation R1 = 1.1 and R 2 = 1.02.

The adaptive procedure has the effect of driving the relaxation factor into an equi-

librium at which the solution can make the best progress. For regions of the solution in

which the baseline relaxation is too large and the solution starts to diverge, equation C.10

kicks in and the relaxation factor is reduced until the solution begins to converge again.

Equation C.11 mitigates these reductions and prevents the relaxation factor from getting

too small in response to an occasional wayward oscillation in an otherwise downwards

solution path.

This procedure still requires a reasonable value for the baseline relaxation factor, but it

avoids having to set that factor very low when in fact it may need to be very low only for a

portion of a solution. For problems with cable on the sea floor the last part of the solution

may require relaxation factors on the order of 10--3, but may proceed quite well in the

initial iterations with Ar 10-1. An example of the error progress during such a problem

is shown in figure C-1. In the upper panel, the solid line charts the error in a solution with

a baseline relaxation of 0.2. The bottom panel shows how the relaxation factor changes as

the solution progresses. The dashed line in the upper panel shows the error in a solution

with a constant relaxation of 0.004 (this is the largest constant relaxation factor that

results in a solution convergent to a = 0.001). Not only does the adaptive procedure save

a significant amount of trial and error to determine that 0.004 is a reasonable relaxation,

but it also reduces the number of iterations by more than a factor of two.

C.4 Dynamic relaxation

For certain problems, particularly moorings with cable on the bottom and very low levels

of horizontal forcing (current and wind), the procedure outlined above can fail to converge

when applied to the static equations. Because of the near infinite radius of curvature at the
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Figure C-i: Error and relaxation factor during the static solution of a mooring problem
with line on the bottom. The dashed line in the upper panel is for a solution with the
largest constant relaxation factor (0.004) that will result in a solution convergent to an
error level of 0.001. The solid lines are the error and relaxation factor for a solution using
the adaptive procedure described in the text.

touchdown point in these problems, both the shooting method initial guess (appendix D)

and the subsequent relaxation method solution are difficult to obtain in any reasonable

amount of computation time. A method that works well to overcome this difficulty is

dynamic relaxation.

In dynamic relaxation, we use the standard procedure (shooting initial guess followed

by relaxation of the static equations) to obtain a static solution for a problem with a

higher level of horizontal forcing. This solution is then used as the initial condition in a

dynamic problem with the true level of current and wind applied. As time progresses in

the dynamic simulation the mooring falls back to its true equilibrium state at the lower

forcing level. With adaptive time-stepping, adaptive relaxation, and the physical drag
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and damping in the problem, solutions can be obtained for significantly lower levels of

horizontal forcing than with the standard static solution procedure.

The procedure does not work well for three-dimensional problems in which the entire

plane of the mooring may rotate as the true three-dimensional forces are applied. In

these cases the time to equilibrium can be prohibitively long. Also, for either two- or

three-dimensional cases in which the horizontal forcing is reversed from the high initial

condition to the desired low condition, the solution can run into difficulty as the mooring

crosses through a purely vertical configuration.

C.5 Coordinate integration

This solution procedure calculates the N x n dependent variables that are explicitly in-

cluded in the governing equations. Because both static and dynamic governing equations

in the formulation derived in appendix A do not explicitly include the coordinate positions

of the nodes, these positions must be calculated in a separate procedure. The position

of the nodes is critical to the solution; bottom boundary effects, wave forces, and current

are all dependent on spatial position. For this reason, the coordinate positions of all the

nodes are updated following each iteration. The integration procedure is described in

appendix E.
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Appendix D

Static Initialization Procedures

In order to solve equations A.54 through A.57 using the method outlined in appendix C

we must calculate an initial guess at the solution. We can compute a very good first

estimate of the solution using a shooting method to solve the governing equations without

bending stiffness and with a simplified treatment of bottom interaction effects. Without

bending effects the static problem reduces to two equations in two unknowns, E and #,

and a simple form of the shooting method can be employed.

The shooting method solutions have the advantage that they are quite fast and provide

a good initial solution for most problems. In many cases they are good enough to use for

preliminary static design studies. Because of the simplifications used in these solutions,

however, they do not provide appropriate initial conditions for the dynamic solution and

thus we still must solve the complete static governing equations using the Newton-Raphson

procedure described in appendix C when we want to study system dynamics. The implicit

solutions of the complete static equations are also much more easily applied to cases

in which the system is not singly connected - multipoint moorings and moorings with

branches for example.
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D.1 Integration procedure

We can derive the simplified equations from equations A.54 and A.55 by dropping the

shear force terms,

ae1
T'(,E) - wo cos q + -pwd yrC, (Ucos|+Vsin)IUcosb-Vsinl 1 -+ E = 0, (D.1)

Oq# 1
T (E) +wosinq$+ 1pwdC, (-U sinq$+Vcos q)|-Usin +Vcos # 1 +E= 0.

098 2

(D.2)

Because the static boundary conditions depend on the x, y coordinates of the top and

bottom node we also explicitly include equations for x and y. Those two equations are

= (1 + E) cos , (D.3)

ay
_9 = (1 + E) sino. (D.4)as

For the direct integration of the governing differential equations that is inherent in the

shooting method, this explicit inclusion of x and y is not significantly more computation-

ally expensive than the integration of the coordinates after the solution that is described

in appendix E.

The numerical integration of the simplified governing equations proceeds from the top

node to the anchor. Given a set of trial boundary conditions at the top node we integrate

downwards using an explicit, fourth-order accurate Runge-Kutta algorithm [82]. If during

the integration the calculated vertical position of a node is on or below the sea floor we

stop the integration and assume that the remainder of the mooring is on the sea floor

with constant angle # = t i and constant tension (equal to the tension at the touchdown

node). Sea floor slope effects are neglected in this formulation; the bottom is assumed flat

at x = 0.

D.2 Iterating on the boundary conditions

Like the outer loop iterations required to resolve the boundary conditions for the static

solution using the relaxation procedure, shooting solutions require two levels of iteration.
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The three types of static boundary conditions detailed in section 3.1.1 are:

1. A buoy is on the surface, but we do not know the buoy draft.

2. A platform is on the surface at some specified horizontal offset from the anchor. We

do not know the mooring line tension or the angle # at the top node.

3. A platform is on the surface with a known tension on the mooring line. We do not

know the angle # at the top node.

In all three cases we want to specify a value for strain (tension), #, and an arbitrary

horizontal position at the top node. We then iteratively specify a vertical position for the

top node, integrating the simplified governing equations from node n to node 1 at each

vertical position until the computed vertical position of the first or touchdown node is in

fact on the bottom. The final value for the vertical coordinate of the top node is then

used to compute corrected values for strain and # in the outer loop. In the inner loop we

are shooting for the correct position of the top node given some applied force. Within the

outer loop we are shooting for the correct applied force.

We need outer loop iterations for the relaxation procedure because the coordinate

positions do not enter directly into the governing equations. In this case, where we do have

coordinate positions in the governing equations, outer loop iterations are necessitated by

the simplified treatment of the bottom. In addition to the unknown boundary conditions

at the top node we do not know the location of the touchdown node along the mooring.

Because the simplified bottom treatment leads to a solution for the mooring only between

the touchdown node and the top node, the position of the touchdown point is critical.

For the first type of boundary condition, given a guess at the draft we can calculate

the drag and buoyancy forces and therefore T and # at the top node. If our first two

guesses at the draft are the maximum and minimum available (the minimum is defined as

the draft that will float the weight of the buoy itself and nothing more) then subsequent

guesses can be made using bisection until the position of the top node computed in the

inner loop corresponds to a position based on the guessed draft within some specified

tolerance. The standard tolerance is 1% of the maximum draft.

The third type of BC is similar in that a guess at 0 and a known T provide a complete

force specification at the top node. With two initial trials at # = 0 and # = !, the solution

is bracketed and we can use bisection to calculate a sequence of successively better guesses
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for 0. The stopping procedure is the same as for the first case - the position of the top

node computed in the inner loop must correspond with the known vertical position at the

top within some tolerance specified as a percentage of the mesh spacing, As, at the top

node.

The second case is more complicated because we only know two, x and y, of the

four boundary conditions. This requires that we iterate to find both C and #. Rather

than employing a sophisticated multi-variable nonlinear root finding technique (such as

Newton-Raphson) in the outer loop, we can use the same error correction procedure that

we use with these boundary conditions in the outer iteration loop of the regular static

solution. Given a guess at the vertical and horizontal components of the tension and the

known horizontal position of the top node, we perform the inner iterations to calculate

the vertical position of the top node. As in equation 3.7 we update the trial forces based

on positioning error and a pseudo- "stiffness" constant, pp,

F k+1 = F k- Apx kd (D.-5)

=F + /LpYanchor, (D.6)

where F k are the trial forces at iteration k in the global vertical and horizontal directions,

respectively, xtd is the calculated vertical coordinate of the touchdown node, and yanchor

is the calculated horizontal coordinate of the first node. The iterative update process is

halted when the touchdown node is on the bottom and the anchor node is at the horizontal

origin within a tolerance specified as a percentage of the mesh spacing at the anchor.

The primary complication with this approach is that there is no clear best choice for the

initial guess at the forces, F2,, such that the iteration procedure will have a reasonable

chance of rapid convergence. The initial forces in our implementation are based on an

inclined catenary solution for a uniform cable with no current. Given a uniform cable

with linear stiffness, EA, and weight per length, wo, the catenary solution for the position

of the top end is

F F(F -wo L 21  FxL
x(L)= - Y + + ,E (D.7)

y(L) = [sinh -( snhFx - ) + ,yL (D.8)
WO.I Fy Fy . EA
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where F, and Fy are the applied forces at the top end in the global vertical and horizontal

directions, respectively. Given the desired position of the top end of the mooring, we use a

two-dimensional nonlinear Newton-Raphson root finding technique to solve equations D.7

and D.8 for FO, . In multi-segment applications, EA is calculated as the equivalent stiffness

of all segments in series, with the stiffness of each segment computed as the slope of the

tension strain relationship at a strain of 1%. The unit weight in these cases is computed

by summing all weight and buoyancy forces in the system and dividing by total length.

D.3 Computing shear and curvature

As a final step before proceeding with the relaxation solution for the complete nonlinear

problem, the shear force, S, and curvature, Q3 are calculated numerically using centered

differences according to equation A.56 (to calculate Q3 ) and equation A.57 (to calculate

S, using differences of the newly calculated Q3 ). For boundary condition cases one and

three, the horizontal coordinates are also translated to bring the position of the anchor to

the origin.
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Appendix E

Coordinate Integration

Because the global coordinate variables x, y, z do not appear in any of the governing

equations, they are integrated based on cable coordinates and cable orientation after

each iteration of the nonlinear solver. While the coordinates do not enter directly into

the governing equations it is important that they be updated because they are used in

evaluating the current at a node and determining if a node is lying on the bottom.

E.1 Static solution

For the static problem we can write differential equations for the global coordinates, x

and y,

= (1 + ) cos #, (E.1)
Os

= (1 + E) sin#. (E.2)
Os

Including these two equations directly into the static governing equations would simplify

the handling of static boundary conditions in some cases, but only with a 50% increase

in computational expense in the nonlinear solver. Trial implementations based on this

approach also demonstrated convergence problems when the boundary conditions became

part of the iterative solution. The current approach of iterating on the boundary con-

ditions in a loop outside of the nonlinear solver appears to provide better stability and

convergence.
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Following the box method spatial discretization we discretize equations E.1 and E.2 as

2 x ~ = + 6j) cos #j + (1I + ej-1) cos #j_1, (E.3)
Si -- Sj_1

2 (/ -Yj =) (1 + e) sin #j + (1 + cj_1) sin #_1. (E.4)
Sj - Sj-1

With the first node always located at the origin, we can rearrange the discretized equations

to derive recursion relationships for xj and yj, j = 2... n,

Xi = j_1+ [(1 + 6j) cos /j + (1 + cj-1) cos #5_j] , (E.5)
2

j = Yj-1 + [(1 + Ej) sin #j + (1 + ej-1) sin #j-1]. (E.6)

Asj_1 is the spacing between nodes j and j - 1.

E.2 Dynamic solution

For the dynamic problem, we have a choice in the integration method. Equations E.1 and

E.2 are valid for the dynamic problem as are the temporal differential equations

Ox
0t = U cosq# -vj sin # , (E.7)

ay _

,t =u sin0 + 3cos# 0. (E.8)

Either pair of equations could be incorporated into the governing equations, but again,

only with an increase in computation expense in the nonlinear solver. With x and y

effectively decoupled from the other six dependent variables, integration outside of the

nonlinear solver is more efficient.

Experience has indicated that integrating the spatial differential equations at each

time step provides better results over long time simulations than does integration of the

temporal equations. One explanation for this is that the spatial integration couples the

coordinate positions of all the nodes together thus providing a strong notion of "connect-

edness" at each time step. In the temporal integration the positions of the nodes are

independent of one another, with the evolution of a node's position in time dependent

only on the nodal velocity and local orientation. In principle the two solutions should
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be the same given the compatibility requirements enforced in the cable governing equa-

tions (equations A.46 and A.47), but compatibility cannot be strictly enforced given the

necessarily inexact solution provided by the nonlinear Newton-Raphson procedure.

For the dynamic problem we integrate equations E.1 and E.2 using the standard half-

grid spatial discretization and the generalized-a method. The discretized equations are

2(1 - ak) [ s + 2ak [X As

- (1 - ak) [(1 + ) cos# + (1 + Ei_1) os ]

- a 1 + e-) cos - + (1 + E 1 ) cos '- = 0, (E.9)

i-1 i-1

2(1- ak) j3 jJ + 2ak A 1

(1 - ak) [(1 + e'-) sin 4 - + (1+ c-1) sin _1

- ak [(1 + E- 1) sin + (1 + e _ ) sin -_ 0. (E.10)

Rearranging terms yields the recursion relationships for the dynamic calculation of nodal

coordinates

As
z = Xj_1 + 2(1 - ak) + E ) cos #- + (1+ e _j1) cosq_]

+ at (1 + ci-) cos # -+ (1+ c i) cos # - -x~ - -_ii ~, (E.11)

* As r
y -_ + k1-a) ±1 c ) sinq$ + (1+6> 1) sin# _]2(1 - ak)[

+ a (1 -±- r1) sin ~1 + (1 + c _ ) sin 4 - - y - (E.12)
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Appendix F

Bootstrap Monte Carlo

Confidence Intervals

The bootstrap method is a procedure for calculating the error in a statistically estimated

value. The advantage to the procedure is that no assumptions are necessary about the

underlying probability distribution of the estimated value. For the purposes of this thesis,

the estimated values are regression coefficients calculated using least squares and the errors

that are sought are the 95% confidence intervals of those coefficients.

The basic procedure, as outlined by Efron and Gong [26], is as follows. Given n

independently observed data points Y1, Y2, - n , ynthe regression coefficients are calculated

as

S= f (yi, y2, - -,yn)- .(F.1)

C represents the best available estimate of the true value of the coefficients, C. For the

dynamic tension model in chapter 6 y is defined as

yi = [uai, O1vu Ti Ti]"T. (F.2)

The probability distribution for C is estimated using bootstrap with Monte Carlo simu-

lations. A bootstrap sample, y*, y*,..., y*, is drawn from the original yi. The sample

is constructed by making n random draws with replacement so that each of the original

data points has probability 1/n of being selected for each of the locations in the bootstrap

249



171 172 173
mass coefficient (kg)

174 175 176

Figure F-1: m and Cd coefficients calculated in 500 distinct bootstrap Monte Carlo sim-
ulations. 95% symmetric confidence intervals for m and Cd are indicated by the dashed
lines. The best estimates for m and Cd are indicated by the solid lines.

sample. From this bootstrap sample we calculate a bootstrap estimate of the regression

coefficients,

C*= f (yy*y,. y*) (F.3)

By repeating this procedure some large number of times, B, the distribution of C is

mapped out.

Figure F-1 shows the distribution of * [h*, Od* T for the dynamic tension model

developed in chapter 6 with B = 500. Individual probability density functions for m and

Cd with B = 20000 are shown in figures F-2 and F-3, respectively. With distributions for m

and Cd there are two basic approaches to calculating confidence intervals. For equal-tailed

confidence intervals, the bootstrap simulation results are sorted in ascending order and (for

95% confidence) the end-points of the interval are defined as those points at indices 0.025B

and 0.975B in the sorted list. With this type of formulation there is equal probability

that the true value lies above or below the interval. For mass for example, if the interval

endpoints are defined as f0.%25B and 'no9g 5 B and J = fi - rno.2 5 B, 62 = n0 9 75 B -
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probability functions for m are

P (rn - 61 <_ M <_rfn + 62) = 0.95, (F.4)

P (m <rfn - J1) = 0.025, (F.5)

P (m > ih + 62) = 0.025. (F.6)

Hall [41] showed that symmetric intervals have coverage error 0 (B--2 ) compared to

o (B-1 ) for equal-tailed intervals. Because they are also slightly easier to present they

are used throughout the thesis. The probability function for the mass coefficient with a

symmetric confidence interval is written as

P (rn - 6 < m < fit +6) = 0.95. (F.7)

In practice, 3 is calculated using bisection. Because of the discrete nature of the count

of points that fall in the interval, the search does not always converge to an interval

with exactly 0.95B points. To be conservative, the bisection algorithm always returns an

interval that contains at least 0.95B points.
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Figure F-2: Probability density function for m based on 20000 distinct bootstrap Monte

Carlo simulations. The best estimate for m from the original least squares fit is indi-
cated by the solid vertical line. The mean from the bootstrap simulations is indicated by
the dashed vertical line. 95% symmetric [ ] and equal-tailed ( ) confidence intervals are

indicated on the horizontal axis.
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Figure F-3: Probability density function for Cd based on 20000 distinct bootstrap Monte
Carlo simulations. Other markings are the same as in figure F-2.
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Appendix G

Catenary formulae

For an inextensible line with no current, and vertical and horizontal forces applied at the

top point, F, and Fh, respectively, the catenary expression for the vertical coordinate of

the top point is

=+ - .(G.1)

With excess scope remaining on the bottom the vertical force at the top of the mooring,

Fe, must equal the suspended weight, wOL. The total tension, T, at the top is simply

F2 + Fv2. If the top of the mooring is at the surface, z = H, depth, tension and length

are related by

T = woH + T 2 -(w 0 L)2 . (G.2)

After some manipulation, the non-dimensional mean tension can be written as

T = 1+ H (G.3)

AT =I 2 H 1. (G.4)

The suspended length as a function of non-dimensional mean tension is

L = H v/2A T+ 1. (G.5)
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The rate of increase of the suspended length with increasing AT is

dL H 2
-T =-.dr L

This rate slows as the scope of the mooring increases.
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