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Abstract

We perform a first principles investigation of the electronic, thermodynamic and ki-
netic properties of Li;CoQO,, an important cathode material for rechargeable lithium
batteries. In a lithium battery, the lithium concentration z in Li;CoO; can be var-
ied between 0 and 1. Such concentration variations result in important changes of
the electronic properties, the relative stability of different forms of Li;CoO, and the
mechanisms for lithium diffusion within the CoO, host structure. To study the elec-
tronic and thermodynamic properties of Li;CoO,, we have used density functional
theory within the local density approximation (LDA) along with the cluster expan-
sion formalism. We have also developed a scheme to calculate from first principles,
the diffusion coefficient in systems with significant configurational disorder.

Building on previous first principles investigations of lithium transition metal ox-
ides, we show that the lithium insertion into CoO, results in a shift in the nature
of bonding between the cobalt and oxygen ions ‘which is predominantly of a covalent
character at low z and progressively becomes more ionic as z increases. The net
effect of this change in bonding is an increased polarization of charge toward the oxy-
gen ions. The variation in electronic properties with z is responsible for important
structural changes of the host with z.

A thorough investigation of phase stability in the layered form of Li;CoO; has
clarified the nature of poorly characterized phase transformations observed experi-
mentally at low z and has exposed the thermodynamic origin of a large structural
phase transformation between crystallographically similar forms of Li;CoO, at high
z. Within layered Li;CoO,, the lithium ions reside in octahedral sites forming a
two dimensional triangular lattice between O-Co-O sheets. Our calculations predict
'~ a staging transformation around z=0.15 whereby lithium ions segregate to alternat-
ing lithium planes leaving the remaining lithium planes vacant. The calculations
predict that this phase transformation is accompanied by a dramatic drop in the
lattice parameter, ¢, of the host, a phenomenon observed experimentally. Using ther-
modynamic arguments, we demonstrate that a concentration driven metal-insulator
transition can induce a first order structural phase transformation. We propose that
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this mechanism is operative in causing the first-order structural phase transformation
in Li;CoO, at high z. '

The nature of the crystal structure of the host as well as the presence of defects
in the host can be important in determining specific electrochemical properties of
lithium intercalation compounds. To determine the effect of crystal structure on
the electrochemical properties of Li,CoO, we calculated the properties of the spinel-
like form of Li,CoO, and compare them with those of the layered form. Spinel-like
Li;CoO, differs from the layered form in that it offers both octahedral as well as
tetrahedral interstitial sites for the lithium ions. This results in a voltage versus
concentration profile that is significantly different from that of layered Li;CoO,. We
have also investigated the effect of oxygen vacancies within the layered Li;CoO, host
on the compound’s electrochemical properties. To this end, we have used a local
cluster expansion to describe the dependence of the oxygen vacancy formation energy
on the lithium-vacancy arrangement. The calculations show that oXygen vacancies
have an important effect on voltage curve especially at high z. Furthermore, we find
that oxygen vacancies tend to depress the order-disorder transition temperatures of
ordered-lithium phases.

The lithium mobility within the CoO, host determines the rate at which lithium
ions can be removed and reinserted into the host. A study of the activation bar-
riers in Li;CoO, within the local density approximation shows that the migration
mechanism and activation barriers depend strongly on the local lithium-vacancy ar-
rangement around the migrating lithium ion. We identify two hopping mechanisms.
The first involves the migration into an isolated vacancy whereby lithium squeezes
through a dumbbell of oxygen ions. The second mechanism involves migration into
a divacancy whereby the migration path passes through an adjacent tetrahedral site.
The latter mechanism has a significantly lower activation barrier than the former.
By parameterizing the activation barriers with a local cluster expansion and applying
it in kinetic Monte Carlo simulations, we predict that lithium diffusion in layered
Li;CoO; is mediated by divacancies at all lithium concentrations except at almost
infinite vacancy dilution. Our calculations show that the activation barriers have a
strong concentration dependence due to variations in the lattice parameter ¢ and the
changes in effective valence of the Co ions with z. This results in a predicted diffusion
coefficient that varies within several orders of magnitude with z.

Thesis Supervisor: Gerbrand Ceder
Title: Union Miniere Professor of Materials Science
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Chapter 1

Intercalation compounds and

electrochemical cells

Lithium transition metal oxides are important intercalation compounds that are well
suited for electrochemical applications such as lithium batteries and electrochromic
displays. These compounds typically serve as cathodes in electrochemical cells due to
their remarkably high voltage with respect to a metallic lithium anode. LizCoO, is
currently one of the most important intercalation compounds. In this thesis, we per-
form a comprehensive first principles investigation of the electronic, thermodynamic
and kinetic properties of Li,CoO,. We begin this chapter with a brief description
of intercalation compounds (section 1.1) placing our emphasis on lithium transition
‘metal oxides and their important crystal structures (section 1.2). The chapter ends

with a motivation and an overview of this thesis (section 1.3).

1.1 Intercalation compounds

Intercalation compounds are a special class of materials that can accommodate foreign
species over large concentration intervals. They are characterized by a crystalline host
with relatively open one, two or three dimensional channels through which guest ions
such as lithium or sodium can migrate freely. A familiar intercalation compound is

graphite. It consists of sheets of carbon covalently bonded in an arrangement of a two
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Figure 1-1: Schematic picture of a rechargeable lithium battery.

dimensional honeycomb pattern. The open gaps Between the sheets, which are held
together by weak Van der Waals forces, enable gfaphite to serve as host to a wide
“variety of guest species ranging from alkali metals to molecules. The intercalated
guest species can be removed reversibly to form pure graphite again.

Another important category of intercalation compounds are transition metal dichalco-
genides denoted by MX, with M a transition metal and X a chalcogenide such as
oxygen or sulfur. Lithium frequently serves as the guest ion in these compounds and
important lithium transition metal dichalcogeﬂides include Li;TiS, [1, 2], Li;CoO,
[3] and LizMnO; [4, 5]. The transition metal dichalcogenides often consist of close-
packed planes of‘ sulfur or oxygen ions with transition metal ions ordered over octa-
hedral and/or tetrahedral interstitial sites. During intercalation or deintercalation,
lithium ions fill or vacate a subset of the remaining interstitial sites within the host.

The ability of intercalation compounds to undergo large variations in lithium
concentration makes them ideal as insertion electrodes in electrochemical cells, in
particular in rechargeable lithium batteries [6]. In a lithium battery (Fig. 1-1),
lithium ions are shuttled back and forth between an anode and a cathode. The

voltage of the battery is proportional to the difference in chemical potentials of lithium
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in the cathode and the anode. Both the anode and the cathode are typically an
intercalation compound, but the cathode by definition has a higher voltage with
respect to a reference electrode of metallic lithium than does the anode intercalation
compound. In lithium batteries, graphite is commonly employed as the anode while
various lithium transition metal dichalcogenides can serve as the cathode. When
the battery is discharged, lithium ions are released at the anode in ionized form and
travel through an electrolyte to the cathode. This results in a lowering of the chemical
potential of the lithium ions. For each lithium ion released at the anode, an electron
travels through the external circuit where it performs work. The free energy reduction
associated with the transfer of lithium from the anode to the cathode constitutes the
maximum reversible work that can be extracted from ﬁhe battery. Upon charging
the battery, lithium ions are forced back to the anode by an externally imposed
voltage. In order for the electrodes to function, they must be both ionically as well
as electronically conducting. The electrolyte, which is typically a salt dissolved in
an organic solvent or a polymer, must be an electronic insulator but allow for rapid
diffusion of lithium in ionized form.

Lithium transition metal dichalcogenides exhibit a variety of interesting thermody-
namic, electronic and kinetic properties. As the lithium concentration within Li,MX,
is varied, several phenomena can occur {7, 8]. During deintercalation forAexample, va-
cancies are introduced on the lithium sites of the host. This produces configurational
disorder among the lithium ions and the vacancies. At particular lithium concentra-
tions, it may become energetically favorable for the lithium ions and the vacancies
to order. It is also possible that above a critical vacancy concentration, the host
becomes unstable or metastable and transforms to a new crystal structure. Phase
transformations such as these, though interesting from a scientific point of view, are
undesirable for hattery applications as they are often accompanied by irreversibilities
and large volume changes.

Variations in lithium concentration also produce changes in the electronic proper-
ties of the transition metal dichalcogenide host. As lithium is added, its valence elec-

tron is generally donated to the host where it can either shift the valence state of the
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transition metal ion and/or alter the nature of the bonds between the transition metal
and the chalcogenide ions. Changes in lithium concentration have been observed to
induce metal-insulator transitions [9, 10], Jahn-Teller distortions [4, 5, 11, 12] as well
as magnetic order-disorder transitions of the magnetic moments on the transition
metal ions [13, 14, 15].

The lithium diffusivity, which is a measure of the mobility of the lithium ions
within the host, is currently not well understood, yet it is an important property
since it determines the rate at which lithium ions can be removed and inserted into
the cathode. In intercalation compounds, a non-dilute concentration of vacancies
is present at most lithium concentrations, a characteristic thét is generally absent
in many other materials. Complicating an understanding of diffusion in these com-
pounds is the effect of lithium-vacancy disorder and short range order on the collective
motion of lithium ions through the host. Furthermore, lithium disorder can be ex-
pected to affect migration paths for individual hops as well as their corresponding
activation barriers.

Early lithium batteries used Li;TiS, as the cathode, but attention during the
last two decades has shifted to lithium transition metal oxides as they have a higher
voltage than the transition metal sulfides [6]. Important lithium transition metal ox-
ides include Li;CoQg, Li;NiO; and Li;Mn,04. Of these three compounds, Li;CoO,
currently exhibits the best electrochemical properties and is used as cathode in the
majority of commercial lithium batteries [6]. The recent research on compounds
such as LizNiO, and Li;Mn,O4 has been spurred by a desire to find alternatives for
Li;Co0; since cobalt is expensive and slightly toxic. Nevertheless, Li,NiO, is diffi-
cult to synthesize without defects [16, 17, 18, 19, 20, 21, 22] and Li;Mn,0,4 degrades
rapidly with cycling of the battery due to reasons that are only vaguely understood
[23, 24, 25, 26, 27, 28]. The latest trend has, therefore, shifted to identifving alloying
additions that could improve the properties of Li.CoQO,, LizNiO, and Li,MnO,. Com-
pounds such as Li;Co,Ni;-,O, (29, 30] , Li;MnyAl,_,O, [31, 32] and most recently

Li;CryMn,_,_.Li,O, [33] are receiving much attention.
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1.2 Crystal Structures

The lithium transition metal oxides that show most promise as cathode materials in
rechargeable lithium batteries have either a layered crystal structure or a crystal struc-
ture similar to the well-known spinel MgAl,04. Compounds such as Li;CoO, [3, 34],
LizNiO; [17] and Li;MnO, [35, 36] are stable or have been synthesized as a metastable
layered phase. Li;Mn,04 [23] and Li,Ti,O4 [37)] are compounds that are stable in a
spinel-like structure and layered LipsNiO, has been observed to transform to spinel
upon heating [38]. Furthermore, with recent low temperature synthesis routes, forms
of LiCoO; have been produced that can be considered a defective derivative of the
spinel structuré [39, 40, 41, 42, 43].

An important layered crystal structure for lithium transition metal oxides is shown
in Fig. 1-2(a) and consists of close-packed oxygen planes. Between the oxygen planes
are layers of transition metal ions alternated by layers of lithium ions. The layered
- crystal structure of Fig. 1-2(a), exhibits rhombohedral symmetry and belongs to
the R3m space group. The close-packed oxygen planes have an ABCABC stacking
sequence. The lithium and transition metal ions occupy octahedrally coordinated in-
terstitial sites in the oxygen skeletal framework. The collection of occupied interstitial
sites are characterized by an fcc-like connectivity on which the lithium and transition
metal ions can be viewed as occupying alternating (111) planes. This layered form is
often referred to as O3 [44] and is represent\ed in Fig. 1-2 in an hexagonal setting. The
hexagonal unit cell, however, is triply primitive and a primitive cell can be defined in
a rhombohedral setting.

When the transition metal oxide serves as a cathode, lithium ions are removed
from and reinserted into the lithium layers resulting in the creation and annihilation
of vacancies. The octahedral lithium sites of the layered crystal structure form a two
dimensional triangular lattice within the lithium layers. Adjacent to the octahedral
lithium sites are other interstitial sites which are tetrahedrally instead of octahedrally
coordinated by oxygen. These sites form an undulating honeycomb network with

the octahedral lithium sites at the center of each hexagon of tetrahedral sites. The
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Figure 1-2: Two layered crystal structures that are commonly observed in lithium
transition metal oxides. (a) The O3 structure. (b) The O1 structure.

tetrahedral sites are energetically unfavorable for occupation by lithium ions, since
they share faces with the oxygen _octahedra surrounding the transition metal ions.
The close proximity of a lithium ion in a tetrahedral site to the positively charged
metal ions results in a large electrostatic repulsion between the two species.

Other layered phases with different stacking sequences are possible énd are ob-
served. A common form has an hexagonal close-packed oxygen st‘acking with ABAB
sequence. This form is observed in the deintercalated CoO, [45] and NiO, [46] com-
pounds. The transition metal ions in this form occupy alternating layers between
close-packed oxygen planes. The remaining layers between oxygen planes are vacant.
The occupied interstitial sites are characterized by an AAA stacking sequence. This

| layered form is sometimes referred to as O1 [44]. In nature, it is observed that the O1
crystal structure is more stable when the bonding between the ions is of a covalent
nature, while O3 is more stable when the bonding is more ionic. Hence CdCl,, which
is characterized by ionic bonding, is stable in the O3 crystal structure while Cdl,,
which is more covalent in character, is stable in the O1 crystal structure [47]. Usually,
O3 is referred to as the CdCl, structure and O1 is referred to as the CdlI, structure.

The other important host structure for lithium transition metal oxides is related
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Figure 1-3: The spinel crystal structure. The particular ordering of the transition
metal ions results in a set of tetrahedral sites that can be occupied by lithium ions.

to the spinel crystal structure [48] (Fig. 1-3) which also consists of a close-packed
oxygen framework. As with the O3 structure, the oxygen planes again have an AB-
CABC stacking sequence, however, the transition metal ions are distributed more
uniformly among the octahedral interstitial sites: 3/4 of the metal ions reside in al-
ternating layers between close-packed oxygen planes while the remaining 1/4 of the
metal ions reside in the other alternating planes. This particular ordering of the metal
lons produces a transition metal oxide host structure that exhibits cubic symmetry
and belongs to the Fd3m space group. While the lithium ions can occupy vacant
interstitial octahedral sites in this host a subset of tetrahedral interstitial sites is also
available; the metal ordering in spinel results in a set of tetrahedral sites that do not
share faces with oxygen octahedra surrounding a metal ion. When compared to spinel
MgAl;0y4, the transition metal ions of the spinel-like intercalation compound occupy
the same sites as Al and the tetrahedral sites available to lithium correspond to the
those occupied by Mg. The availability to lithium of additional tetrahedral sites in
the spinel-like host produces marked features in electrochemical properties that are
absent in the layered phase. In the remainder of this text, we will refer‘ to Li;CoO,

having a spinel-like host simply as spinel LiICOOQ.

1.3 Motivation and Overview

In this thesis, we investigate the thermodynamic, electronic and kinetic properties of

LizCoO, from first principles. While Li,CoO, currently ranks among the best cath-
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ode materials available, remarkably little is known about its relevant properties. At
low lithium concentration, the layered form of Li;CoO, undergoes a series of poorly
characterized structural phase transformations that are accompanied by significant
volumetric changes (49, 45]. These phase transformations constitute a major im-
pediment to cycling the Li;CoO; compound below z=0.5 in a lithium battery. At
high lithium concentration, a large first-order structural phase transformation oc-
curs whereby two crystallographically-equivalent layered forms of Li;CoO; coexist
over a large concentration interval [50, 49, 45]. The mechanism by which this phase
transformation occurs was previously not understood. The first principles calcula-
tions of this thesis remove the uncertainties around these phase transformations. At
low lithium concentration, the calculations predict that Li;CoO, undergoes a stag-
ing transformation. We also show that the first-order phase transformation at high
lithium concentration is driven by a metal-insulator transition.
Other aspects of lithium transition metal oxides that are poorly understood in-
“clude the effect of defects in the CoO; host on the electrochemical properties of the
compound and the mechanisms of lithium diffusion within the host structure. In
this thesis, we have developed methodologies thaf enable an investigation of these
properties from first principles and we have applied them to Li;CoOs,.
Because of crystallographic similarities with other lithium transition metal oxides,
a comprehensive study of Li;CoOs will be of vélue in understanding a broad class
of technologically-important intercalation compounds. Furthermore, the variety of
phase transformations and kinetic phenomena exhibited by Li;CoO; are rarely dis-
played by more traditional materials. A deeper characterization of these phenomena
serves as an enriching addition to our current state of knowledge within the field of
materials science.
In the remainder of this text, we focus on four major aspects of LizCoQs.
(i) We study the changes in the electronic properties of Li;CoO; as the lithium |
concentration is varied.
(ii) We perform an extensive investigation of phage stability in the Li;CoO; system

as a function of lithium concentration = and temperature.
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(iii) We investigate the effect of the symmetry of the CoO, host structure and
the presence of defects within the host structure on the electrochemical properties of
Li;CoO,

(iv) We study the lithium diffusion mechanisms within layered Li,CoO,.

The first principles calculation of both thermodynamic and kinetic properties
requires as input the energetics arising from the interactions between the constituents
of the solid. Currently, the method of choice for calculating first principles energies of
-~ solids is density functional theory (DFT) which was developed in the sixties [51, 52].
The starting point of DFT is the electronic charge density as opposed to the many
electron wave fimction. DFT is most commonly implemented within the local density
approximation (LDA) [52]. It is only with the significant increases in computer speeds
and the major algorithmic improvements [53, 54] of the last decade that a study of
systems such as Li;CoO, with DFT-LDA has become possible.

At non-zero temperature entropic effects become important. These can be studied
with statistical mechanics. In an intercalation compound such as CoO,, a major
component of the entropy arises from the configurational disorder associated with
the many different ways of distributing lithium ions and vacancies over the interstitial
sites of the host. A natural tool for studying systems with configurational disorder
is the cluster expansion formalism [55] which can be considered a generalization of
the Ising model and was put on a firm theoretical footing in the mid- eighties [56].
A cluster expansion enables an accurate and rapid extrapolation of the total energy
of any lithium-vacancy arrangement within the CoO, from the first-principles energy
values of a relatively small number of arrangements. This feature makes it possible
to study complicated materials such as Li;CoQ; with standard statistical mechanics
techniques such as Monte Carlo simulations.

The thesis is divided into two parts. In part I (chapters 2-6), we focus on ther-
modynamic properties. Chapter 2 reviews the thermodynamics of intercalation com-
pounds and describes the tools used in alloy theory to study phase stability. These
include the cluster expansion formalism and density functional theory. In chapter 3,

we study the electronic properties of Li,CoO,. In chapters 4 and 5, we investigate
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phase stability in layered and spinel Li.CoQO, respectively. The effect of dilute con-
. centrations of oxygen vacancies on the electrochemiéal properties of layered Li,CoO,
are considered in chapter 6. tt

In part IT (chapters 7 and 8) we focus on kinetic properties. In chapter 7, we
describe the elements of irreversible thermodynamics that lead to the well known
Kubo-Green equations which relate the macroscopic diffusion coefficient to fluctua-
tions of lithium ions at the atomistic level. We then present a procedure that enables
the calculation of the diffusion coeflicient in solids with configurational disorder from
‘ﬁrst prjnciples. We apply this proce.dure for the study of lithium diffusion in layered
LizCoO, in chapter 8.
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Chapter 2

Thermodynamics from first

principles

Although solids are complex on a microscopic level, many of their relevant properties
can be described with oniy a limited set of macroscopic thermodynamic and kinetic
parameters. Thermodynamics, however, is a phenomenological theory and the desire
always exists to obtain a deeper and more mechanistic understanding of the uhderly-
ing atomic interactions that collectively produce the solid’s macroscopic properties.
The behavior of the elementary particles (atomic nuclei and electrons) that form the
solid is dictated by quantum mechanics. Statistical mechanics serves as the link be-
tween the description of the solid on the atomic scale and thermodynamics. Only
within recent years has it become possible to implement the tools of these fields to
qualitatively, and to an increasing extent also quantitatively, determine aﬁd predict
thermodynamic properties from first principles. In this chapter, after a preliminary
review of the thermodynamics associated with intercalation compounds, we describe

the theories that enable the ab initio investigation and prediction of phase stability.

2.1 Thermodynamics of intercalation compounds

It is well known that phase stability and the occurrence of phase transformations in a

solid at constant temperature T and pressure P are ultimately dictated by the solid’s
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Gibbs free energy. For most solids, the Gibbs free energy is difficult to obtain. For
intercalation compounds such as Li;MO,, however, a wealth of information about its
free energy, G"***(z), can be obtained by a straightforward measurement of the open
circuit voltage V(z) of Li;MO, with respect to a reference anode. This convenient
fact follows from the Nernst equation [7] which for the Li;MO, compounds can be

written as .

., _ j,8node
V(l‘) - _ (#Ll HLi )

= | (2.1)

where z is the valence of Li in the electrolyte (i.e. z=1 for Li), e is the charge of an
electron, py; is the lithium chemical potential in Li;MO, and pu37°% is the chemical
potential of Li in the anode. When the anode is metallic lithium, u$7°% is constant
and knowledge of V(z) then directly yields py; through (2.1). G?”‘, the Gibbs free

energy per Li;MO, formula unit can subsequently be calculated with
Ghort(z) = Ghoot(z,) + L puida (2.2)

The simplicity of (2.2) follows from the fact that as the lithium concentration z is
varied, the amount of host material MO, remains constant in the electrochemical cell.

As a result, the lithium chemical potential is simply the slope of G’}"" with respect,

host HGhost
w= () =% (2.9
677:[,1: T,P,Npost a:r T,P,Nhost

where np; 1s the number of lithium ions and can be written as ny; = TNpo5 With Npos

to z since

the number of MO, formula units in the cathode. Integrating (2.3) yields (2.2).

The free energy is the characteristic potential that describes the equilibrium state
of a solid at fixed concentration, temperature and pressure. Knowledge of G'f“’“(:r)
for the relevant phases of Li,MO; can be used to construct an equilibrium concentra-
tion versus temperature phase diagram with the familiar common tangent method, a
geometric translation of the requirement. that the phase(s) with the lowest free energy
will be present in therrnodyua‘mi(' equilibrinm.

While G’}’”‘ at constant T and P is useful to construct a T versus .r phase di-
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agram for Li;MO,, the independent intensive variables in an electrochemical cell
containing Li;MQO, as a cathode are not 7, P and z but are instead T, P and py;.
In an electrochemical cell, the lithium concentration is changed by a variation of
the lithium chemical potential which in turn is determined by the imposed voltage
through (2.1). Under these conditions, the characteristic thermodynamic potcntial is
the grand canonical free energy which can be derived from the free energy G’?""(z)

through a Legendre transform as
Q}fwst — Gl}.ost — T, ‘ (24)

With the above two characteristic potentials, G}°** and Q}°", it is possible to cat-
egorize different types of phase transformations. Phase transformations are accompa-
nied by discontinuities in the derivatives of the characteristic potentials with respect
to a particular intensive variable [57, 58, 59]. A distinction is made between phase
transformations that cause a discontinuity of the first derivative of the characteristic
potential (first order phase transformation) and those that cause a discontinuity or
divergence in the second derivative of the characteristic potential (second order phase
transformation) [37].

A familiar phase transformation is a polymorphic transition at constant pres-
sure whereby a single-component solid or a multicomponent compound undergoes a
structural change upon heating (cooling) above (below) a transition temperature 7.
These transformations are characterized by the release (absorption) of a latent heat
as a result of a discontinuity in the enthalpy at T,, which we denote by AH"st, be-
tween the initial and final phases of the transition. In equilibrium, the free energies
of the initial and final phases are equal at T, and the entropy must, therefore, change
discontinuously by AH"* /T, at T,. Since the entropy is the first derivative of the

Gibbs free energy with respect to temperature,

aGhost
host __
S§Mo% = ( 3T )P'I (2.5)
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a polymorphic phase transformation is of first order. Examples of second order
transformations can include special types of order-disorder transitions of the different
species in a multicomponent solid or of the magnetic moments in magnetic materials.
These transitions are not characterized by the release or absorption of a latent heat
at T, but instead by a divergence of the heat capacity which is the second derivative

of the Gibbs free energy with respect to temperature

62Ghost .
C,= (——-) (2.6)
7 aTz Pz

For intercalation compounds, we also have to consider phase transformations un-
der conditions where the chemical potential is an independent variable. In this case,
a first order phase transformation is characterized by a discontinuity in the lithium
concentration z since the first derivative of the characteristic potential Q" with

respect to the independent intensive variable p;; is

host v
zT=- (6Q ) (2.7)
auLi TP

This type of phase transformation corresponds to the crossing of é two phase region in
a temperature versus concentration phase diagramn at constant temperature. Within
the T', P and z representation, the concentration defining the endpoints of the trans-
formation are determined by the common tangent to the Gibbs free energies G**
of the initial and final phases participating in the transformation. In the two phase
region, bthe lithium chemical potential is constant resulting, accordiﬁg to (2.3),in a
plateau in the V(:::) curve.

In a second-order transition, the secoﬁd derivative of Q"¢ with respect to puz;
diverges. This second derivative is typically called a susceptibility X, which is also

related to the reciprocal of the derivative of V"(z) with respect to x according to

S €% e C W € I
g aﬂ%t TP al—"Li TP ze \ OV TP -

The above discussion clearly indicates that a measurement of ¥"(z) not only gives

99




information about G'}"" and Q’}‘”‘, but characteristic features in its shape shed light
on the nature of the phase transformations that occur in Li;MO, during the elec-
trochemical variation of the lithium concentration. Experimentally, these measure-
ments can be accompanied by in-situ or ex-situ characterization techniques such as
X-ray diffraction, TEM and Neutron diffraction which indicate the types of structural

changes that occur during the transformation.

2.2 Statistical mechanics for intercalation compounds

While the thermodynamic properties of a solid in equilibrium are time invariant, at
the atomic level the solid fluctuates from one state to another [60, 59]. For values
of z in Li;MO, that deviate from stoichiometry, there exists a degree of disorder
with respect to the distribution of lithium ions over the possible lithium sites in the
MO, host. At non-zero temperature, thermal energy enables lithium ions to hop
into neighboring vacant sites and the overall lithium vacancy configuration within
MO; evolves over time. On average though, the degree of disorder as measured by
either short-range or long-range order parameters is constant. Other fluctuations
within the solid occur on a time scale that is much shorter than that between typical
lithium hops. The most important of these are vibrational and electronic excitations.
In principle, each excitation can be described by a linear combination of quantized
states - that is a particular lithium- vacancy configuration along with a combination
of phonon and electronic eigenstates .

Each state s has an energy E, associated with it which is an eigenvalue of the
Schrddinger equation of the solid. When T and P are independent intensive variables
it is more appropriate to consider the enthalpy of the state s defined as H, = E, +
PV; where V; is the volume. According to statistical mechanics [60, 59] then, the

probability that a systern is in a particular state s is

_exp (—H,/kpT)

P,
° A

(2.9)

23

e g T S s e R § i e LS g et ol et Sl S i 3



where kg is Boltzmann’s constant and Z is the partition function defined as
Z = exp(—H,/kgT) : (2.10)
- .

Eq. (2.9) represents a distribution function that assigns the relative importance of
different states in determining thermodynamic averages and reflects the fraction of
time that a solid resides in each state s. In this way, the average enthalpy can be
calculated as

H=SH/P, (2.11)

Furthermore, the free energy is related to the partition function according to [60]
G = —kgTn(2Z) (2.12)

Clearly, evaluation of thermodynamic properties using (2.9) - (2.12) is compli-
cated as it requires a knowledge of the energy spectrum of the solid for all relevant
excitations. Nevertheless, significant simplications become evident after performing
a coarse graining of the partition function [61]. These are based on the realization
that the various excitations of the solid occur over time scales that can differ by many
orders of magnitude. For any given lithium- vacancy arrangement in Li;MO;, the
solid typically undergoes a large number of vibrations before a thermal fluctuation
produces a configurational rearrangement of the lithium ions. Hence, for every con-
figurational lithium-vacancy arrangement, which we will denote by & and specify in
more detail later, the assumption can be made that the solid is ergodic with respect to
vibrational excitations. For delocalized electronic states, the same assumption can be
made with respect to electronic excitations. These observations imply a more natural

form for the partition function for solids exhibiting configurational disorder

Z=35"% exp(—H,/kgT) | (2.13)

g SEF

where the second summation extends over all the vibrational and electronic states
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consistent with a givén lithium-vacancy arrangement labeled by &. By introducing a

configuration dependent free energy defined as

G(6) = —kpTIn (Z exp (—H,/IICBT)) (2.14)

SET

the partition function becomes
Z =Y exp(—G(&)/ksT) (2.15)
F

The coarse grained partition function, (2.15), is still formally equivalent to the original
partition function, (2.10), though now, its only explicit dependence is configuration &.
By making the assumption that the vibrational and electronic degrees of freedom are
ergodic on the time scale characterizing configurational excitations, (2.15) becomes
equivalent to the partition function for a lattice model. Furthermore, (2.15) shows
that in principle, the lattice model should reflect the configuration dependence of
G () instead of the energy as is often assumed. |

G(7) can be written as
G(G) = H,(¢) + Ge=citetions(7) (2.16)

where H,(5) is the groundstate enthalpy for the the solid having lithium-vacancy
arrangement G. G°=!etons(7) is the difference between G(&) and H,(&) and accounts
for the free energy arising from the vibrational and electronic excitations when the
solid is in the configuration &. Experience indicates that for most solids with configu-
rational degrees of freedom on a given parent lattice, inclusion of non-configurational
excitations only has a quantitative effect on predicted order-disorder transition tem-
peratures but does not alter the topology of the phase diagram [62, 63, 64, 65, 66).
Although examples exist in which the vibrational entropy difference between an or-
dered phase and the disordered phase are of a comparable magnitude as the config-
urational entropy difference [67, 66], in general, we expect vibrational and electronic

free energies to approximately cancel when comparing free encrgies of similar phases
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(68, 69, 70, 71].

In this thesis, we neglect electronic and vibrational excitations and evaluate ther-
modynamic properties by approximating G(&) By H(&). The approach used in this
‘t'hesis to calculate first principles thermodynamic properties in Li;MO, compounds
can be divided into three stages [55, 72] that will be described in more detail in the
next three sections and can be summarized as follows.

(i) First a variety of first principles total energy calculations of different ordered
arrangeménts of lithium ions and vacancies within .MOZ are performed;

(i1) These energies are then used to parameterize a cluster expansion. A well
converged cluster expansion enables an accurate and rapid extrapolation of the total
energy of aﬁy configuration from the first-principles energy values calculated in the
first step;

(iii) The cluster expansion is then used in Monte Carlo siniulations to calculate
thermodynamic properties. |

In section 2.3, we review the cluster expansion [56] which can be considered as a
generalized Ising model and is a natural way of describing the configurational depen-
dence of any property of the crystal, in particular the configurational enthalpy H(&).
In ordér to determine the coefficients of a cluster expansion for a particular System,
it is necessary to perform first principles total energy calculations of representative
lithium-vacancy arrangements in an MO, host. In this thesis we have used the local
density approximation [52] of density functional theory [51], described in section 2.4,
to obtain numerical solutions to the Schrédinger equation of the solid. Once a cluster
expansion has been constructed, thermodynamic properties can be calculated with

Monte Carlo simulations [73] which are described in section 2.5.

2.3 Cluster expansion formalism

The lithium ions within a transition metal oxide intercalation compound can be as-
signed to well defined crystallographic sites. Because of ionic relaxations though, the

lithium ions rarely reside exactly at these positions. Nevertheless there exists a one
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Figure 2-1: Typical clusters on a two dimensional triangular lattice.

to one correspondence between each lithiﬁm ion and a crystallographic site. In a
given host, there could be m possible lithium sites where m is usually a very large
number. Hence there are a total of 2™ possible lithium-vacancy arrangements within
the host. It is useful to introduce occupation variables o; that are +1 (-1) if a lithium
ion (vacancy) resides at site . The vector & which we now define in more detail as
& = (01,02, -+, Oi, ..., Om) then uniquely specifies a conﬁguration within the host. The
use of &, however, is cumbersome and a more versatile way of uniquely characterizing
configurations can be achieved with polynomials ¢, of occupation variables defined
as [56]

¢a(3) = [] o (2.17)

i€a
where i are sites belonging to a cluster a of lithium sites within the MO, host. Typical
examples of clusters are a nearest neighbor pair cluster, a next nearest neighbor pair
cluster, a triplet cluster etc. Examples of clusters on a triangular lattice are illustrated
in Fig. 2-1. There are 2™ different clusters of lithium sites and therefore 2™ cluster
functions ¢4(7).

It can be shown [56] that the set of cluster functions ¢,(5) form a complete and

orthonormal basis in configuration space with respect to the scalar product

(,9) = 5 T £(9)9(3) (218)
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where f and g are any scalar functions of configuration. The sum in (2.18) extends
over all poSsible configurations of lithium ions and vacancies over the m lithium sites
of the MO, host. Because of their completeness and orthonormality over the space of
configurations, it is possible to expand any function of conﬁguratiqn f(&) as a linear

combination of the cluster functions ¢, (&)

f(a) = fo+ Z fa¢a(a) (2'19)

where the sum extends over all clusters o over the m lithium sites. The coefficients
fa are constants and follow from the scalar product of the function f (&) with the

cluster function ¢, (&)
— (101, 6a(0) = 5 51316 (220)
5 .

fo is the coefficient of the empty cluster ¢p = 1 and is the average of f(G) over all
configurations. (2.19) is referred to as a cluster expansion.

Important examples of functions that depend on configuration are G(J) and the
ground state enthalpy H,(5). A cluster expansion of the ground state enthalpy is
typically written as

H,=Vo+ Y Vada(d) (2.21)

where Vo and V, are called effective cluster interactions (ECI) and are formally given
by
Vo = (H o(0), 9a(d)) = — EH () ¢a(a) (2.22)

(2.21) can be viewed as a generalized Ising model Hamiltonian containing not only
nearest neighbor pair interactions, but also all other pair and multibody interactions
extending beyond the nearest neighbors. Through (2.22), a formal link is made be-
tween the interaction parameters of the generalized Ising model and the configuration
dependent ground state enthalpies of the solid.

Clearly, the cluster expansion for the configurational enthalpy, (2.21), is only
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useful if it converges rapidly, i.e. there exists a maximal cluster amq; such that all
ECI corresponding to clusters larger than oy, are negligibly small. In this case, the

cluster expansion can be truncated to yield

Qmaz

Ho(0) =Vo+ Y Vaba(d) (2.23)

A-priori mathematical criteria for the convergence of the configurational enthalpy
cluster expansion do not exist. Experience indicates that convergence depends on the
particular system being considered. In general, though, it can be expected that the
lower order clusters extending over a limited range within the crystal will have the
~ largest contribution in the cluster expansion.

As the above exposition illustrates, the cluster expansion is merely a parameteri-
zation of the configurational enthalpy in terms of the cluster basis functions ¢,. The
ECI, V,, are not to be confused with pair and multi-body potentials that are fre-
quently used for modeling energetics in oxides and metals. They are simply constant
éxpansion coefficients. For a compound such as LiMO,, the number and arrangement
of M and O ions remain unchanged as the lithium concentration and/or arrangement
are varied. These ions do not contribute to the configurational degrees of freedom
within LizMO, and consequently, there is no explicit reference to them in the cluster
expansidn. Nevertheless, the cluster expansion describes the enthalpy of the whole
crystal. Since, in the expression for V, in (2.22), the enthalpies H,(5) correspond
to the fully relaxed ground state enthalpies for configuration &, the ECI implicitly
embody interactions between different lithium ions, lithium ions with the MO, host
and elastic strain energy due to varying relaxations of the host with chang‘ing lithium
vacancy arrangements. In general, therefore, it is difficult to attribute simple physical
interpretations to the numerical values of the ECI. It is also importanﬁ to realize that
a cluster expansion only describes the configurational dependence of the enthalpy of
one particular host structure of MO,. If other host structures with configurational
degrees of freedom compete for stability, a separate cluster expanéion needs to be

" constructed for each of these structures.
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2.3.1 Symmetry and the cluster expansion

Simplifications to the cluster expansion (2.21) or (2.23) can be made by taking the
symmetry of the érystal into account [55]. Clusters are said to be equivalent by
symmetry if they can be mapped onto each other with at least one space group
symmetry operation. For example, clusters o and 3 of Fig. 2-1 are equivalent since a
clockwise rotation of 3 by 60° followed by a translation by the vector 26 maps S onto
a. The ECI corresponding to clusters that are equivalent by symmetry are equal.
In the case of @ and 8 of Fig. 2-1, V, = V. All clusters that are equivalent by
symmetry are said to belong to an orbit 2, where « is a representative cluster of the
orbit. For any lithium-vacancy arrangement & we can define averages over cluster

functions ¢,(&) as
1

(8a(5)) = 5= 3 45(5) (2.24)
IQC'I BeNa

where the sum extends over all clusters 3 belonging to the orbit 2, and |Q,| represents

the number of clusters that are symmetrically equivalent to a. The (¢(5)) are

commonly referred to as correlation functions. Using the definition of the correlation

functions dlld the fact that symmetrically equivalent clusters have the same ECI, we

can rewrite the configurational enthalpy normalized by the number of primitive unit

cells N, (i.e. number of Bravais lattice points of the crystal), as v

_H,(3) _ Vo

O =N,

+Zmava (9a(5)) (2.25)

where m, is the multiplicity of the cluster «, defined as the number of clusters per
Bravais lattice point symmetrically equivalent with o (i.e. mq = |Q2|/N,). The sum

in (2.25) is only performed over the non-equivalent clusters.

2.3.2 Local cluster expansion

The description of the cluster expansion formalism so far has been restricted to global
extensive properties such as the total energy of the crystal. Local intensive properties

that depend on configuration also exist, however. Examples include the configura-
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tion dependence of the size of the magnetic moments on ions or the configuration
dependence of the local vibrational entropy assigned to each ion. The configuration
dependence of local properties can be described with local cluster ezpansions, which
were first used by Ozolins [74] and Morgan [70]. The distinction between a global
cluster expansion as described in the previous sections and a local cluster expansion
" lies in the manner in which symmetry is implemented to simplify the expansion (2.19);
The symmetry equivalence of clusters appearing in (2.19) is no longer determined by
the symmetry operations of the space group of the crystal, but instead by the sym-
metry operations of the point group at the ionic site at which the local property is
to be calculated. As with the global cluster expansion, it is essential that the local
cluster expansion can be truncated for clusters beyond a certain distance from the
ionic site of interest. |

In this thesis, we use a local cluster expansion to describe the effect of dilute oxygen
vacancies in the MO, host structure on the energetics of arbitrary lithium-vacancy
arrangements. In principle, modeling oxygen vacancies in addition to lithium-vacancy
disorder in Li;CoQ, would require the use of a coupled cluster expansion [75] since the
solid is then characterized by configurational disorder on two sublattices that do not
interchange species. In the limit of dilute oxygen vacancy concentrations, however,
interactions between oxygen vacancies can be neglected. All that is required is a way
to calculate the dependence of the oxygen formation enthalpy on lithium-vacancy
arrangement. This can be done with a local cluster expansion.

The procedure by which the effect of oxygen vacancies on the total energy of the
crystal with arbitrary lithium-vacancy configuration can be modeled within the cluster
expansion formalism, is as follows. A global cluster expansion is used to describe the
configurational energy of Li,CoO, in the absence of oxygen vacancies. For each
lithium-vacancy arrangement, the introduction of an isolated oxygen vacancy results
in a change of the energy of the crystal by a specific value AEp, . AEp,. depends on
the lithium-vacancy arrangement and the position of the oxygen vacancy with réspect
to the lithium-vacancy arrangement. AEp,, can, therefore, be characterized by a local

tluster expansion. The total energy of the crystal with an oxygen vacancy is then
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simply the sum of the global cluster expansion with the local cluster expansion.
Since the introduction of an oxygen vacancy primarily affects the local environ-
ment it is reasonable to expect the local cluster expansion for AEp, to converge for
clusters beyond a certain distance away froin the vacancy such that the expansion can
be truncated. With a truncated local cluster expansion, we can consider more than
one oxygen vacancy as long as the ranges of the truncated local cluster expansions
for the different vacancies do not overlap. In the dilute limit, this is a reasonable
assumption. Furthermore, the migration energy for an oxygen vacancy is almost an
order of magnitude larger than that for lithium diffusion. This implies that the oxy-
gen vacancies are relatively immobile and that many lithium-vacancy configurations

are sampled for a particular random oxygen vacanéy distribution in the dilute limit.

2.3.3 Determination of the ECI

According to (2.22), the ECI for the enthalpy cluster expansion are determined by
the first principles ground state enthalpies for all the different configurations &. Ex-
plicitly calculating the ECI according to the scalar product (2.22) is intractable.
Techniques, such as direct configurational averaging (DCA), though, have been de-
vised to approximate the scalar product (2.22) [76]. In recent years, the preferred
method of obtaining ECI has been with an inversion method (77, 78, 79, 55, 72].
In this approach, a set of enthalpies h,(&,) for a set of P periodic configurations &;
with ¢ = 1,..., P are calculated from first principles and a truncated form of (2.25)
is inverted such that it reproduces the h,(d;) within a tolerable error when (2.25) is
evaluated for configuration &;. The simplest inversion scheme uses a least squares fit.

A set of ECI, V,, are determined by minimizing a least squares sum

P Arner 2

Z ho(a.i) - z mnVa <¢n(5z)> (226)

i=1

The (¢ (7)) are the correlation functions evaluated for the configuration ;.
The least squares method yields values for 1/, that minimizc a sum of the squares

of the differences between the first principles enthalpies h,(&,) and the by the cluster
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expansion predicted enthalpies. In this approach, a fit is done to the absolute en-
thalpies ho(5;) and no explicit constraints are imposed that ensure that the correct
order of the enthalpies for different configurations &; is reproduced by the cluster
expansion. Phase stability, however, depends crucially on subtle differences in en-
ergies between different ordered phases. Qualitatively incorrect results are obtained
if a structure that is predicted to be metastable with a first principles method, is
predicted to be stable with the cluster expansion.

Linear ; ~gramming techniques are ideal in enforcing certain constraints on linear
expressions such as the cluster expansion (2.25). Linear programming methods make
it possible to impose a variety of inequality constraints on the enthalpies h, [80].
These constraints typically include requirements that the enthalpies h; are predicted
by the cluster expansion within a predetermined interval of error and that first prin-
ciples predicted ground states are also predicted to be ground states by the cluster
expansion. ECI are then determined that satisfy all the constraints using conven-
tional linear programming methods [80]. If the conditions cannot be met, more terms
are included in the truncated cluster expansion. Throughout this thesis, we have used
‘this linear program method [80] to determine ECI.

Other more elaborate schemes for determining ECI have been developed [81, 82,
83]. For example, to speed up convergence of the cluster expansion, contributions to
the enthalpies h, that are not well described with a short-range cluster expansion,
such as an elastic strain energy due to concentration dependent volume changes,
are subtracted from the h, 81, _82]. The remainder can subsequently be described
with a rapidly converged cluster expansion. In addition to this, schemes have been
devised in which a smoothness criteria is imposed on the Fourier transform of the ECI
corresponding to pair clusters [83]. The effect of imposing smoothness in reciprocal
space is to add constraints that encourage long range pair ECI to have small values.
A special feature of this method is that the smoothness constraints make it is possible

to have more ECI in the cluster expansion than enthalpy values h, used in the fit.
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2.4 First principles energies

The energies of a large number of periodically ordered configurations are an essential
ingredient for the determination of a cluster expansion that accurately reflects the
configurational energy of a material. These energies must be calculated from first
principles by solving an approximation to the many body Schrodinger equation for

the solid [84, 85]). The Schrédinger equation is an eigenvalue equation
Hy = Ey (2.27)

where H is the Hamiltonian operator for the solid, ¥ is the many body wave function
describing N, electrons and E is the total energy of the solid. Within the Born-
Oppenheimer approximation, the electrons are assumed to instantaneously adjust
their state to any change in the positions of the nuclei. The coordinates of the nuclei
R, then serve only as parameters in the Schrédinger equation and the Hamiltonian

can be written (in atomic units) as

H=T+V, 2.28
+ +Z TJ)+zn:mZ<:anm Rnl ( )

T is the electronic kinetic energy operator
1 2
7

and V. describes the Coulomb interactions between the different electrons

=2

i )< ITJ 1'

(2.30)

where the 7; refer to the positions of the electrons. The sums in (2.28), (2.29) and
(2.30) are over all the electrons in the solid. The third term in (2.28) describes the
Coulomb interaction between the electrons and the nuclei of the solid and the last

term is the Ewald energy arising from the coulomb interaction between the nuclei
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having charge Z,. The Ewald energy is simply an additive term and does not affect
the electronic wavefunction . It can be dropped when solving the eigenvalue equation
for the electronic ground state and only needs to be added to the electronic energy to
obtain the total energy of the crystal. The electronic wave functions that satisfy the
Schrodinger equation must be antisymmetric such that the electrons obey the Pauli
exclusion principle. |

For solids of practical interest, solving the above many body Schrédinger equation
is intractable. Often variational approximations are used whereby an anzatz wave

function v° is proposed and the energy of the crystal

_ WlHW?)

= e (23D

is variationally minimized with respect to the wave function. An example of this
approach is the Hartree-Fock method (84, 85, 86] in which the anzats wave-function
is a Slater determinant of single electron orbitals. Even this approximation is too
cumbersome for most solids and in some cases has serious deficiencies.

A different approach to solving (2.27) is with density functional theory (DFT)
[51, 86, 87]. As was shown by Hohenberg and Kohn (and extended by Levy) [51, 88],
the ground state properties of a crystal are uniquely determined by the electron

density

o(7) = (| 87— 75) ) | (2.32)

The fundamental theorems of density functional theory state that the ground state

energy of a solid is a functional of the electron density [51]

Elg) = Flo) + [ p(Mo(7)dr (2.33)
with
Flp] = (4|T + Veelv) (2.34)

a universal functional and v(7) the coulomb potential due to the nuclei of the solid.

The 1 in (2.34) is the electronic wave function that minimizes (|T + Vee|1) subject
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to the constraint that ¥ produces the density p as defined by (2.32) [88]. According
to DFT, if the functional F[p] were known, the ground state energy of the solid with
external potential v(7) is obtained by variationally minimizing the functional E|p]
with respect to p [51, 86]. The minimization proceeds over the set of all densities P
that can be obtained with antisymmetric wavefunctions [88].
Flp] is not known and approximations to it are therefore necessary. Formally,
F[p] can also be written as
Flp] = T{p] + V.[p] (2.35)

where the kinetic energy and the electron-electron interaction energy are individually
expressed as functionals of the electron density. Of the two terms in (2.35), the kinetic
energy T'[p] is the most elusive to approximate with a functional of p [87, 86). To side
step this difficulty, Kohn and Sham [52] introduced a different separation of F[p] by
writing it as |

Flol = T.lp] + Jlp) + Boulg (2.36)

where T,[p] is the kinetic energy of a system of non-interacting electrons with density
p- J[p] is often referred to as the Hartree term and is a classical Coulomb energy

given by -
J[o] = % f / LAWLIGIE (2.37)

7'-7:",

The last term F,.[p], called the exchange-correlation energy, can be written as

Ezclo] = (Tlp] = Tolpl) + (Veelp] - J[p)) (2.38)

E.. includes the difference between the kinetic energy of a system of independent
electrons with density p and the kinetic energy of the actual interacting system with
the same density. This difference, though, is generally expected to be small [86] and
E;. primarily accounts for a correction to J [0] arising from the correlations between
electrons. Since the electron density corresponds to a probability distribution and
not a charge density in the classical sense, J[p| is a mean-field approximation to the

electron-electron interactions. Embodied in J[p] is the assumption that the proba-
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bility of having two electrons at 7 and r respectively is equal to the probability of
having an electron at 7 times the probability of having another electron at 7. Ne-
glected are the conditional probabilities resulting from the fact that if an electron is
already present at 7, the probability of having another electron at ' will be differ-
ent than the average probability. These correlations between pairs of electrons are
implicitly accounted for by E;[p].

Correlations between electrons, which become more important as 7 and r ap-
proach each other, arise from two effects. The first type of correlation results from
electrostatic repulsions which ensure that electrons avoid the vicinity of other elec-
trons. These are called direct correlations. The second type of correlation has its
origin in the Pauli exclusion principle which forbids electrons with parallel spins from
having the same spatial position coordinates. This effect does not arise from the many
body Hamiltonian, but is enforced by the fact that the wave function is antisymmet-
ric. Since the wave function is continuous, the Pauli exclusion principle implies that
the probability of having electrons with the same spin approach each other is small.
This correlation is referred to as an exchange correlation. The energy contribution
of exchange correlation is typically an order of magnitude larger than that of direct
correlation [87].

The advantage of introducing the non-interacting kinetic energy functional T;[p]
is that it can be calculated exactly with a Slater determinant ¥p of independent

electron orbitals %;(7). Substituting ¥p into (2.32) yields [86]
p(P) = 3295 (Mw(7) (2.39)
j
while the independent electron kinetic energy functional becomes [86]
N. 1
T,{6] = (EolTI¥0) = 3 [0 (—57°) v (2.40)
;

where ¥p, through (2.32), and likewise the 1,, through (2.39), produce the electron

density p. Since it is possible that more than one ¥ p could produce the same density,
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the particular ¥p appearing in (2.40) is the one that minimizes (¥|T|¥ p) for fixed
p.
With the ¥p and p expressed in terms of the independent orbitals 1;, Kohn and

Sham [52] variationally minimized the energy functional

Elo] = Tilpl + Jlol + Exdlol + [ p(7)e(r)dr (2.41)

and obtained what are now referred to as the self-consistent Kohn-Sham equations

59+ ers )] 5(7) = 55 (2.42)

with

vy ) = o) + [ LEL e dr + vee(7) (2.43)

Vze(T) is the exchange correlation potential and is the variational derivative of the

exchange correlation energy functional

0Ez[p]

vael7) = p(7)

(2.44)

An equation of the form (2.42), exists for each electron in the solid. The Kohn-Sham
procedure replaces the many body eigenvalue equation (2.27) and (2.28) with a set of
indepehdent-electron—Iike eigenvalue equations. Despite their appearance, however,
the Kohn-Sham equations are not independent due to the dependence of v, sy on the
density p which itself is determined by all the orbitals 1); according to (2.43). This

means that the Kohn-Sham equations are to be solved self-consistently.

2.4.1 The Local Density Approximation

The Kohn-Sham equations as re‘presented'in (2.42) are exact provided the universal
functional E,.[p] (and hence its functional derivative v,.(7)) is known. As with F[g]

of (2.33) and (2.34), Ey[p] is not known. The most common approximation to E,
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is the local density approximation (LDA) [52]. Within LDA, E;. is written as

Eedlo = [ eae (p() (P (2.45)

where ¢, is the exchange correlation energy per electron at 7. €c(p(7)) is set equal to
the exchange correlation energy per electron of a homogeneous electron gas with the
same density p(7). LDA therefore assumes that e, is local and neglects the effects of
inhomogeneities around 7. There are different parameterizations of ¢, as a function
of the homogeneous electron gas demnsity p. For the LDA calculations performed in
this thesis, we have used a parameterization of €. that was fit by Perdew and Zunger
[89] to numerical Monte Carlo calculations performed by Ceperley and Alder [90].

At this point, several caveats of DFT and LDA in particular deserve attention.
The orbitals 1; and orbital energies ¢; of the Kohn-Sham equations do not correspond
to real electronic states and electronic energy levels. It is only the total energy and
electron density that have any physical meaning. Nevertheless, the KS energy levels
often do give a good characterization of the band structure of crystalline materials
and are frequently compared to quasi-particle energies measured in photo-emission
experiments. The kinetic energy as expressed in terms of the v; by (2.40), is not
the real kinetic energy of the solid, though it is a close approximation of it [86].
The local density approximation is exact for a uniform electron density and a good
approximation for a slowly varying one. Furthermore, for many solids exhibiting
rapidly varying electron densities, LDA has proven surprisingly accurate. Yet, for
solids in which the electronic states are highly localized in space, we can expect LDA
to break down since it cannot be expected to capture the strong correlations between
the localized electrons.

For systems with well localized electrons, specific inadequacies of the local den-
sity approximation can be identified. One inadequacy is that the approximation to
the exchange-correlation potential v,. depends only on the local density and not on
the specific orbital that a particular localized electron occupies. In the Hartree-Fock

approximation for example, the exchange energy, which is exact within the approxi-
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mation of the anzats wave function, is a non-local integral between different electron
orbitals. These integrals not only depend on the local electron density, but also on the
shape of the different orbitals. Similar orbital dependencies can be expected to arise
from direct correlations. Methods such as LDA+U attempt to remedy this deficiency
of LDA [91]. Another major inadequacy of LDA is that it has self-interaction (see
e.g. [86]). In reality, electrons interact wi*% other electrons. They do not interact
electrostatically with themselves. In the Hartree term J[p] defined by (2.37) of the
energy functional (2.41), a coulomb interaction of each electron with itself is included.
For the exact E,.[p] functional, this self-interaction component is canceled out. (In
the Hartree-Fock approximation, the self-interaction in the Hartree term is explicitly
_canceled out by an identical term in the exchange term). When an approximation
for E;. is used, however, the self-interaction does not cancel. This error becomes
severe for well localized electronic states. LDA calculations with self-interaction cor-
rections were pioneered by Perdew and Zunger [89] and have been used to investigate
the electronic propertieé of several transition metal oxides [92] and semiconductors
(93] Incorporating self-interaction corrections leads to orbital dependent effective
potentials [94] which complicates the numerical solution of the energy and éharge

density.

2.4.2 The pseudopotential method

Many numerical techniques exist for solving the Kohn-Sham equations. For oxides,
the most reliable methods have proven to be [95, 96] the Linear Augmented Plane
Wave (LAPW) method [97] and the pseudopotential method [98, 99). The LAPW
method is currently considered the most accurate and hence the standard, yet it is

computationally the most costly. In the pseudopbtential method, the effect of the |
core electrons around the ions that do not participate in bonding are replaced by a
pseudopotential. The pseudopotentials are designed such that the valence single elec-
tron pseudo—wavé functions have the same scattering properties as the actual valence
electrons would have with the core electrons. The pseudopotential approximation

is valid as long as the core electrons do not participate in the bonding of the solid
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- that is the changes in their wave functions and energy levels are negligible when
the atom is placed in different environments. For most solids this approximation is
valid. Comparisons of energy differences for the Li;:CoO, system has shown that the
pseudopotential method used in this work and the LAPW calculations of Wolverton
[100] agree to within 10 meV per Li;CoO; formula unit. Modern pseudopotentials
are determined from all electron calculations of atoms making the pseudopotential
method a first principles approach [101, 102, 103, 104, 105, 53).

The general procedure of solving the Kohn-Sham equations is to expand the or-
bitals ;(7) in terms of a set of basis functions. For infinitely large solids (i.e. ther-
modynamic limit), there are an infinite number of ;s and ¢;’s. Accord ng to Bloch’s
theorem [84, 85] for periodic solids, solutions to Kohn-Sham like equations for electron

j can be written as

b;(7) = ¥, 2(7) = ¥ u, 2(7) (2.46)

where a wave vector in reciprocal space k and a band index n specify electron j and
u,, ¢(7) is a function with the periodicity of the Bravais lattice. The usefulness of
Bloch’s theorem is that it enables the problem of solving for an infinite number of
orbitals and energy levels to be cast into a problem of solving for a finite number of
orbitals and energy levels at an infinite number of k points. At each k point, only a
ﬁxﬁte number of levels denoted by 7 are filled (i.e. the number of levels equals the
number of electrons per Bravais lattice site). The orbital energy levels are continuous
functions of k and can therefore be written as en(E). This means that e,(k) can be
calculated at a finite number of k points and any interpolation scheme can be used
to characterize the full k dependence of the orbital energies.

In the pseudopotential method, the orbitals 1;(7) are expanded in plane waves

b, 2 (7) = e Y ¢, a(F)e'” (2.47)
E

where the G are reciprocal lattice vectors and cn,@(E) are expansion coefficients to be

determined. In principle, the sum is over all reciprocal lattice vectors G though in
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practice, the expansion is truncated beyond some energy cutoff F 0z with Eraz =
(1/2)|k + C-;",;.a,,lz (in atomic units). _

Since the Kohn-Sham equations (2.42) depend on the charge density, the equations
- must be solved iteratively. In the first step, a trial charge density is proposed (typically
a superposition of the charge densities of the free atoms). This is used to calculate
Vesy(7) given by (2.43). Then at suitably chosen k points, the coefﬁcients'cm@(l-c‘) and
energy levels fn(E) are determined for the initial charge density. These coefficients

- and energy levels satisfy the following matrix eigenvalue equation
[H(E) - en(k)S(R)] & (F) = (248)

where H(k) is a matrix containing <é + K| H|G' + E) as ‘elements for all values of
G in the expansion (2.47), S(K) is an overlap matrix and Ca(K) is a column vector
containing the coefficients cn’@(l_c'). At each E, coefficients and energy levels need only
be determined for n ranging the lowest occupied levels. With the éet of cn'@(E) a new
charge density can be determined using (2.39). This charge density is mixed with the
old charge density (this is done for numerical reasons) and the .resultant density is
used to again calculate a v.;;(7). The.above procedure is repeated until the energy
and the charge density are converged. Many different efficient numerical techniques
exist to solve for the coefficients cn'é(l.c‘) and energy levels ¢, (k) at each iteration step.
See for example references [106, 54, 107] and references there in.

In this thesis, we have performed the pseudopotential calculations with the Vi-
enna ab initic simnlation package (VASP) [54, 107]. This code implements ultra-soft
Vanderbilt pseudopbtentials [63], the latest development in pseudopotential theory.
Ultra-soft pseudopotentials allow for plane wave expansions with significantly lower
cutoffs E,,,,, than traditional pseudopotentials. making it possible to investigate large
and complicated systems, including transition metal oxides, compounds that were in-

tractable with conventional pseudopotentials.
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2.5 Monte Carlo simulations

In statistical mechanics, Monte Carlo simulations are used to calculate thermody-
namic averages. For a lattice model, a Monte Carlo simulation samples different
lithium vacancy configurations with relative frequencies given by the probability dis-
tribution function (2.9). This is achieved with a Markov chain of configurations where
each configuration is derived from a previous configuration according to a suitable
transition probability.

The transition probability most often implemented is due to Metropolis. The
algorithm starts with an arbitrary configuration. Néw configurations are created by
picking lattice sites either sequentially or at random and by changing the value of

their occupation variable according to a pre-established rule in which a transition
probability w(i — f) is compared to a random number between 0 and 1. % refers to
the configuration before the transition and f corresponds to the configuration after
the transition. For the lithium ions and vacancies within lithium transition metal
oxides, a typical transition in the grand canonical ensemble would be a change in the
value of an occupation variable of a particular lithium site from +1(—1) to —1(+1).

A suitable transition probability is then

wiz— f)=1 Q(&y) < Q(d;) (2.49)
and ,
— (&) — 5 3
where Q is the grand canonical energy defined as
Q(c¢) = H(d) — uN (2.51)

H(&) is the enthalpy of configuration &, 41 is the chemical potential and N corresponds
to the number of lithium ions in the simulation. If the transition probability w(i — j)
is greater than a chosen random number, the new configuration &, is accepted. If

w(i — ) is less than the random number, the previous configuration &, is kept.
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In the canonical ensemble, candidate configurations are sampled by for example
exchanging lithium between an occupied and a vacant site. The transition probability
for these changes is similar to (2.49) and (2.50) with the exception that the (5;) and
£2(d;) should be replaced by the initial and final enthalpies H (6;) and H(d;).

Once converged, the metropolis algorithm guarantees that the configurations sam-
pled in a Monte Carlo simulation occur with a frequency given by the probability
distribution function (2.9). Hence thermodynamic averdges such as the average en-
thalpy given by (2.11) can be obtained as simple arithmetic averages ov.er the sampled
configurations. Within a Monte Carlo simulation, the positions of the lattice sites
of a finite éized crystal are stored in memory with periodic boundary conditions and
the enthalpy of the sampled configurations are calculated with a cluster expansion.
We can distinguish between two types of simulations: (1) ;:ooling or heating simula-
tions at constant 4 (in the grand canonical ensemble) or constant z (in the canonical
ensemble); and (ii) simulations in which the chemical potential is varied at constant
temperature. At fixed T and p or T and z, a large number of configurations are
sampled with the metropolis algorithm. A Monte Carlo step has passed once every
lithium site in the Monte Carlo cell has been queried on average once. Typically on
the order of 1000-10000 MC steps are required to obtain convergence and the first
several hundred to a thousand MC steps are omitted from the averaging as these
initial states are not representative of equilibrium. As the external thermodynamic
variables (i.e. T and g or T and z) are varied, the starting configuration of the
Markov chain under the new conditions is often taken to be the final configuration at
the previous external conditions. |

As described in seétion 2.1, phase transitions are characterized by discontinuities
or divergences of thermodynamic potentials. First order transformations are exposed
in Monte Carlo simulations by a discontinuity in for example the enthalpy with tem-
perature or the concentration with chemical potential. First order transformations in
Monte Carlo simulations, as in reality, are accompanied by hysteresis. The hysteresis
increases as the size of the Monte Carlo simulation cell increases.

Second order phase transitions are characterized by a divergence in thermody-
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namic response functions such as the heat capacity or the susceptibiiity. These can
be calculated from the fluctuations in enthalpy or concentration. It can be shown
that the heat capacity is given by

_8H _(H*) - (H)

Cr =G5 = s | (2.52)

Likewise, the susceptibility is given by

dz _ (N?) —(N)’

Ap = on P (2.53)

where N corresponds to the number of lithium ions in a grand canonical Monte Carlo
simulation. Since the correlation length at a second order transition becomes infinite,
the Monte Carlo results exhibit finite size effects. B |

Free energies can be obtained from results of Monte Carlo simulations by integrat-
ing the chemical potential as a function of concentration z as prescribed by (2.2). As
starting point of the integration, it is useful to set z,=0 or L since the configurational
entropy at these concentrations are zero. Neglecting non-configurational sources of
entropy, the free energy at z,=0 or 1 is simply equal to the energy of the solid.

The temperature dependence of the free energy can also be obtained by integration

of Monte Carlo data. From the following thermodynamic relation

host
0 (EIT—) H}toat
——4| = (2.54)
P,z
the difference of G}*** at two different temperatures is given by

Ghast(T) _ Ghaat(T) Ty Hhost(T)

! 2 - f ! = — _-.f—‘_
o Tl | LT (2.55)

.

where H }"’"(T) is a straightforward by product of the Monte Carlo simulations.
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Chapter 3

Electronic structure of Li,CoO-

The ability of lithium transition metal oxides to undergo large variations in lithium
concentration is attributable to the flexibility of the valence electronic structure of
the transition metal ions. Lithium is generally completely ionized within the oxide
(108], having donated its valence electron to the the host. The electronic properties
of the transition metal oxide are dictated to a large extent by the interaction of the
valence d-levels of the transition metal with the valence p-levels of the oxygen ions.
In both the layered and spinel crystal structures, the transition metal is octahedrally
coordinated by oxygen.

Fig. 3-1 illustrates the electronic charge densities of hydrogenic d-orbitals within

an octahedral oxygen environment. Although the five d levels when occupied by a

Q

(a) (b) (©)

Figure 3-1: Hydrogenic d-orbitals within an octahedral oxygen environment. (a) The
d3;2_r2 and (b) the d;2_,2 orbitals have lobes pointing toward the oxygen ions. (c)
The d, orbital, which is symmetrically equivalent to the d;. and d,, orbitals, has
lobes pointing between oxygen ions.
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single electron outside of a closed shell core are degenerate in a free transition metal
ion, in an octahedral environment, this degeneracy is broken. Crystal field theory
(109, 110, 111, 112], for example, shows that the interaction of the d orbitals with thé
electrostatic potential due to the negatively charged oxygen ions of the octahedron
produces an increase in the energy of the dj.;2_,> and d;2_,z orbitals with respect
to the energy of the dy, d;. and dy. orbitals. This occurs because the d3,2_,: and
d,2_,2 orbitals have 1obes pointing toward the negatively charged oxygen ions while
the Icbes of the dgy, d, and dy. orbitals point between oxygen ions.

S mply considering the effect of the electrostatic field of the oxygen ions neglects
the important role of covalency that can exist between the transition metal ion and
the oxygen ions. A more accurate picture of the interaction between the transition
metal ion with the surrounding oxygen ions arises from molecular orbital theory
[109, 110, 111, 112]. The d3,2_,2 and d.2_, orbitals directly overlap with the p,, p,
and p, orbitals of oxygen forming bonding and antibonding o levels referred to as e;
and e}. These levels are illustrated schematically in Fig. 3-2. Since the energy of the p
orbitals are below the energy of the d orbitals, the bonding eg levels are predominantly
of oxygen p character while the antibonding e; levels (frequently referred to as simply
e,) consist mainly of metal d states. This dichotomy in character between the bonding
and antibonding levels becomes more pronounced as the difference in the energy of
the metal d-levels and the oxygen p-levels widens.

The d,,, d:, and dy, orbitals which do not directly overlap with oxygen p orbitals
to form o bonds, are frequently said to form a set of nonbonding levels denoted by
ty, (109, 110, 111, 112]. A band gap A, separates the ty, levels from the antibonding
eq levels. In an octahedral environment, the t3, levels are below the eg4 levels. This
band gap can be attributed to the larger electrostatic repulsion between an electron in
the dj,2_,2 and dp2_,2 orbitals with the negatively charged oxygen ions as compared
to the electrostatic repulsion between an electron in d;y, d;; and d,, orbitals with
oxygen. Although the d.,, d;, and d,, orbitals do not form o bonds with the oxygen
ions, they do form 7 bonds with the p orbitals on oxygen [109]. Instead of being

non-bonding levels, t3, energy levels of Fig. 3-2, more accurately correspond to the
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Figure 3-2: Schematic illustration of the bonding and antibonding levels that arise for
a transition metal ion in an oxygen octahedral environment due to the hybridization
between the valence electronic states of the transition metal ion with those of the
- oxygen ions. |

bonding levels of the overlap between dy, d;, and d,, and thev oxygen p levels.
Increased covalency of this 7 bond will result in a lowering of the energy of the ty,
levels and hence an increase in the band gap A, [109].

Other levels arise from the overlap of oxygen p-levels with the transition metal 4s
and 4p levels. These are referred to as t,, and a;,. Since the energy of the oxygen p
levels are é.gain below the ehergy of the metal 4s and 4p levels, the bonding ¢;, and
a4 levels are predominantly of oxygen character.

In a crystal, the levels of Fig. 3-2 become bands. Furthermore, although the
transition metal io'ns reside in octahedral interstitial sites, the remainder of the crystal
outside of the octahedral site generally does not exhibit the symmetry of a perfect
octahedron. Hence the degeneracy of the levels is further broken. Nevertheless, the
schematic picture of Fig. 3-2 still persists in the band structure. Fig. 3-3 illustrates
the within the local density approximation calculated electronic band structures for
CoO; and LiCoO; [113, 114]. The lowest six bands correspond to the eg, t1. and
a1, levels of Fig. 3-2 which we will refer to as the oxygen p-levels. The next three
levels are the ty, levels and the highest two levels correspond to the e, bands. In -

LiCoO,, the Fermi level lies between the t5, and the ¢, levels, making the compound

48




Energy (eV)
o
i v

(a)

Energy (eV)
(=)
Ei/ l i

(b)

Figure 3-3: The partial band structures of (a) CoO; and (b) LiCoO, as calculated
within the local density approximation. The dashed line shows the Fermi level.
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a semiconductor. This is consistent with the experimental observations of van Elp et.
al. [115]. When all the lithium ions are removed, the Fermi level resides in the 5,
bands as one electron per CoO; formula unit is removed.

The band structures of LiCoOg and CoQ; are qualitatively similar. An impoftant '
difference between the two band structures is the distance between the oxygen p like
levels and the t,, levels which is larger in LiCoO; than in CoO;. The electron donated
by Li to the CoO; host resides in a tz, level. Through Coulombic interaction, the
addition of the extra electron to the ¢y, levels raises the energy of the other occupied
tyy levels thus increasing the distance between the metallic d-states and the oxygen
p-states. This results in a reduction in the hybridization between the Co d-levels and
the oxygen p-levels which translates into a change in the nature of bonding from a
more covalent character in CoO, to a more ionic character in LiCoQs,.

To better understand this shift in bonding characteristics with Li insertion, it is
useful to inspect a charge difference plot [116]. F1g 3-4 shows a charge difference plot
between Li;CoO, at z=1/4 and CoO, both in the layered O3 structure of Fig. 1-2. ‘
Electronic charge densities were calculated with the pseudopotential method in the
local density approximation for both Li;;4CoO; and CoO;. The lattice parameters
and the positions of Co and O were the same in the two structures to enable a point
by point subtraction of the charge density of CoO, from Li;/4CoO,. The resulting
difference shows how the electron distribution changes when Li is added to the host,
and in particular, where the electron of the added lithium resides. The plane illus-
trated in Fig. 3-4 corresponds to the shaded plan'e shown in Fig. 3-5. This plane
cuts through Li, Co and O ions.

" The charge difference plot illustrates that lithium intercalation induces a signif-
icant redistribution of charge within the CoO; host [116, 117]. Fig. 3-4 shows that
there is an accumulation of charge density around all the Co ions in lobes pointing
in directions between oxygen ions. This increase in charge results from an electron
addition to the partially filled t,, bands as lithium is added to the host. The charge |
accumulation occurs around all the cobalt ions indicating that these states are delo-

calized. Fig. 3-4 also shows that there is a significant depletion in electron density
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Figure 3-4: Charge difference plot between Li;4CoO; and CoO;. Dark shade sig-
nify regions of charge accumulation and light areas correspond to regions of charge
depletion. '
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Figure 3-5: The O3 crystal of LiCoO,. The crystallographic plane on which the
electronic charge density difference is viewed in Fig. 3-4 corresponds to the shaded
plane in this figure.

around the Co ions closest to the lithium ions. Thfe ¢hatge deplétion occurs in regions
that resemble the charge density of a d,>_,» atomic orbital. The d;2_y2 atomic orbital
tog‘et;her with the oxygen p orbitals form the o bonding eg and anti-bonding e, bands.
The depletion around the Co ions coigcides with a sigﬁ;iﬁcant; ihérease in charge den-
sity in atomic p-like orbitals on oxygen ions which point toward the lithium ions and
also overlap with the depleted cobalt dz2_,2 like lobes.

The simultaneous depletion of charge in d;2_,. like orbitals around cobalt and
accumulation of charge around oxygen indicates a change in the polarization of the o
e, bonds between oxygen and cobalt. Since the antibonding e; bands are unoccupied
in Li;CoO,, the polarization of the ¢ bond reflects changes in the nature of the
bonding e, bands. As lithium is added, the e5 bands obtain more of an oxygen
character and less of a Co character since the added electron from lithium increases
the separation between the energy of the Co d levels and the oxygen p levels. This
causes the o bond between Co and oxygen to become less covalent and more ionic
with increasing z [116]. The result is a significant increase in the electron density at

the oxygen sites immediately surrounding the lithium ions. The net effect is that the
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electron transfer from lithium to the host is very local and occurs predominantly to
the oxygen ions [108, 114].

The conventional picture of lithium transition metal oxides, is that the electron
donated to the host by lithium is transferred to the transition metal where it shifts its
valence state. Previous first principles work [108, 114, 117, 116] and the results of this
chapterbshow that the electronic changes of the host with z are in fact more subtle.
The addition of lithium to the CoO, host causes a shift in the nature of the bond
between oxygen and cobalt from a covalent character at low lithium concentration
to a more ionic character at high x. While the electron donated by lithium is added
to the ¢y, band, which is predominantly of Co d character, the effect of this addition
is to polarize the Co-O bond such that the charge around the oxygen ions actually
increases upon lithium insertion (it is important to realize that oxygen is not in its
fully ionized state of -2 in CoO,). This insight is of importance in understanding the
concentration dependence of structural properties and the sequence of stable phases
with = predicted in the next chapter for layered Li;CoO,. It is also of importance in
understanding the non-negligible concentration dependence of the activation barrier

for lithium diffusion (chapter 8).
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Chapter 4

Phase stability in layered Li;CoQO9

4.1 Introduction

The layered form of Li;CoO, exhibits a variety of phase transformations that are
typical of many intercalation compounds. It is therefore ideally suited for a detailed
theoretical study. Layered LiCoO; was first discovered to be electrochemically active
by Mizushima et. al. [3] in 1980. Since then, it has served as an archetypal cathode
material for rechargeable lithium batteries. Fully lithiated (i.e. LiCoOz), the com-
pound has rhombohedral symmetry and its crystal structure is illustrated in Fig 1-2
and described in chapter 1.

Li;CoO, undergoes only small structural changes as it is deinteracalated to a
lithium concentration of z=0.3 and when variations in lithium concentration are lim-
ited between £=0.5 and 1 the intercalation/ deintercalation process is almost perfectly
reversible [50, 49, 45]. As the lithium concentration is varied, a series of phase trans-
formations occur in Li,CoO, ranging from ordering reactions [50], transformations of
an electronic nature [9, 10] as well as structural transformations of the host [49, 45].
Reimers and Dahn [50] observed that the lithium ions order in rows at x=1/2 and
" measured an order-disorder transition temperature around 60° C. At high lithium
concentration, the compound undergoes a dramatic change in its electronic proper-
ties [9, 10]. LiCoO; is a semiconductor {115] while LizCoO. at concentrations below

£=0.75 is metallic [9, 10], implying that a metal insulator transition occurs at in-
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termediate lithium concentration. Curiously, superimposed on this metal-insulator
transition is a two-phase coexistence region between crystallographically identical
host structures [50, 49, 45]. At room temperature, this two-phase region is found
to exist between =0.75 and 0.95. At dilute lithium concentration, transformations
of yet another type occur involving structural changes of the layered host. As the
lithium concentration is brought below about z=0.2, the layered O3 crystal structure
of Fig. 1-2 is observed to undergo a phase transformation in which the lattice param-
eters change significantly [49, 45]. The phase to which the host transforms has not
been identified previously. Amatucci et. al. '[45] have shown that Li,CoO; can be
completely and reversibly deintercalated to form CoO,. They found that in the CoO,
phase, the different O-Co-O slabs, held together by Van der Waals forces, are shuffled
with respect to each other. The stacking sequence of the close-packed oxygen layersb
changes from the original ABCABC sequence of LiCoO, to an ABAB sequence.

In this chapter, we investigate phase stability in layered Li;CoO, (118, 116]. We
first consider relevant host structures that could reasonably be expected during a typ-
ical deintercalation/intercalation cyde. For each host structure, the enthalpies of a
variety of ordered phases with different lithium-vacancy arrangements were calculated
using the pseudopotential method within the local density approximation. These en-
thalpies were used to conétruct cluster expansions for the different host structures
which were subsequently implemented in Monte Carlo simulations to obtain thermo-

dynamic properties such as the equilibrium phase diagram.

4.2 Host Structures

The most stable phase at a particular lithium concentration will be the one with the
lowest free energy at that concentration. To investigate phase stability of layered
Li,CoO, with lattice models, we must consider the set of host structures that are
likely to be stable as a function of lithium concentration and temperature. Although,
during lithium removal from and reinsertion into Li;CoQO,, the material maintains

its layered nature, the oxygen stacking sequence has been observed to change at low
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Figure 4-1: Schematic illustration of the three host structures O3, O1 and H1-3.
The vertices of the octahedra correspond to oxygen ions. Uppercase letters describe
the stacking sequence of the close-packed oxygen layers in each host. Representative
octahedra surrounding lithium sites in lithium planes are also shown.

lithium concentration [45]. We, therefore, investigate the relative stability between
three layered host structures that differ only in their oxygen stacking sequence. These
are illustrated in Fig. 4-1. In this figure, the vertices of the octahedra schematically
represent the oxygen sites that coordinate the Co ions at the center of the octahedra.
The lithium ions reside in octahedral sites between the O-Co-O slabs. For each host,

a representative oxygen octahedra surrounding a lithium site is drawn in Fig. 4-1.

The first host structure is the layered form of LiCoO,, conventionally called 03

[44), which has an ABCABC oxygen stacking. This structure is observed to be stable
experimentally for lithium concentrations between x=0.3 and 1.0 [50, 49, 45]. It is the
same structure illustrated in Fig. 1-2(a) and described in chapter 1. The second host
in Fig 4-1, referred to as O1, has an ABAB oxygen stacking. This structure is observed

to be more stable than the O3 host when Li;CoO, is completely deintercalated {i.e.
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z=0) [45]. Experiment indicates that the stability of O1 seems to be restricted only
to 2=0 [45], suggesting that the lithium ions prefer the octahedral sites of the O3
host to those of the O1 host. In the O3 host, the oxygen octahedra surrounding the
lithium sites share edges with the octahedra surrounding the cobalt sites, whereas in
the O1 host, they share faces. The electrostatic repulsion between the Li and Co ions
is, therefore, greater in the O1 phase. In fact a first principles LDA linear augmented
plane wave (LAPW) calculation showed that the O1 form of lithiated LiCoO, is less
stable than O3 by 150 meV per formula unit [119].

The experimentally observed (3, 34, 45] differences in the oxygen stacking of /the
host structures at =0 and z=1 illustrates that the stable stacking sequence is sensi-
tive to the lithium concentration. The lithium ions prefer the edge sharing octahedra
of O3 to the face sharing octahedra of Ol1. On the other hand, in the absence of
lithium, the O-Co-O sheets prefer the O1 stacking order to that of O3. Hence at
z=0, O1 is stable and at z=1, O3 is stable. This is understandable in view of the
results in chapter 3, which showed that the bonding among the ions of the CoQO; host
becomes more covalent as lithium is removed. Covalent bonding tends to stabilize
O1 over O3 at the CoO, stoichiometric composition. At intermediate to low lithium
concenttations, the situation is less clear. In this case, many vacancies will be present
between the O-Co-O sheets, and a competition arises between the O1 stacking which
minimizes the interaction energy between O-Co-O sheets around vacant patches in the
lithium planes and the O3 stacking which minimizes the interaction energy between
lithium and the host. One possibility is that a new host structure that embodies
features of both Ol and O3 becomes more stable. A straightforward layered host
of this‘form would be one in which the lithium ions selectively segregate to every
other layer between O-Cio-O sheets. This phenomenon is referred to as staging. The
occupied lithium layers of the new host should have the environment of O3 while the
nnoccupied lithium layers should have the environment of O1. This hybrid structure
is illustrated in Fig. 4-1 and can be obtained from O3 by shuffling the O-Co-O Sheets'
adjacent to every other lithium plane in such a way that the shuffled planes have

an environment identical to that in O1. In the resulting hybrid host, the lithium
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ions reside only in the unshuffled planes with an O3 environment, while the shuffled

" planes are vacant. We refer to this hybrid host as H1-3 and its ideal stoichiometry is

In addition to the experimentally identified Ol and O3 host structures, we also
investigate whether the hybrid H1-3 host is thermodynamically stable with respect
to O1 and O3 at intermediate lithium concentrations during deintercalation. As is
the case for the O3 host, H1-3 has rhombohedral symmetry and belongs to the space '
group R3m. In the tripiy primitive hexagonal unit cell setting, it has the same a
lattice vector as O3 and a c lattice vector that is twice as large as that of O3. In view
of the alternating distribution of lithium ions between the O-Co-O sheets, this hybrid
host can be considered a stage II compound similar to that observed in graphite
intercalation compounds [120]. Stage III, IV, etc. ordering in Li;CoO; can also be
expected. In a stage III compound for example, occupied lithium planes would be
alternated by two vacant planes with a local O1 stacking between adjacent O-Co-O
slabs. Such a phase we refer to as H11-3. Due to complltationa] limitations, however,
we restrict our study only to the stage Il compounds, though it is possible that higher

order staged compounds are thermodynaniically stable.

4.3 Formation Enthalpies

The construction of a cluster expansion that reflects the configurational enthalpy of
a system requires accurate first-principles total-energy calculations as input. In this
work, we used the pseudopotential method within the local density approximation
as implemented in the Vienna ab initio simulation package (VASP) to perform first-
principles total energy calculations at constant pressure (see chapter 1). |

We calculated the enthalpies of (i) 44 different Li-vacancy arrangements in the O3
host for concentrations ranging from z=0 to 1, including CoO; and LiCoOy; (1) five
different Li-vacancy arrangements in the H1-3 host for concentrations ranging from

=0 to 1/2; and (iii) CoO2 in the O1 host. We definc the formation‘enthalpy for a
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Figure 4-2: Formation enthalpies of layered Li,CoQO,. Crosses are formation en-
thalpies for ordered lithium-vacancy arrangements in O3, squares are formation en-
thalpies for H1-3 structures and the diamond corresponds to the formation enthalpy
of 01 CoO,. '

given Li-vacancy arrangement with concentration z in Li,CoO, as
AIH =H - .Z‘Hucooz - (1 - .’l.‘)fl‘c‘,o2 (4.1)

where H is the total enthalpy of the configuration per Li,Con formula unit, Hy;c,0,
is the enthalpy of LiCoO; in the O3 host, and Hc,o, is the enthalpy of CoO, in
the O3 host. Formation enthalpies as opposed to total enthalpies more conveniently
display relative stability between different phases. The formation enthalpy of a given
structure Li;CoO; as defined in (4.1) reflects the relative stability of that structure
with respect to phase separation into a fraction z of LiCoO, and a fraction (1 — z)
of CoO,. ‘

The formation enthalpies for Li;CoOQ, illustrated in Fig. 4-2, are negative, indi-
cating that LizCoOZ is stable with respect to phase separation into a fraction = of
Li;CoO, and a fiaction (1 —z) of CoO; within the O3 host. Hence for sufficiently low
temperatures, we can expect that at any given lithium concentration z, the stable
phase will either be a stoichiometric compound in which the lithium ions and vacan-

cies are ordered on a superlattice, or a mixture of ordered stoichiometric compounds.
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At higher temperature, thése crdered compounds are expected to transform to the
disordered state, assuming that the host on which the lithium ions order is still stable
with respect to other host structures not considered. In Fig. 4-2, we have drawn the
convex hull connecting the structures with the lowest formation enthalpies to indi-
cate which of the structures are the most stable among those whose enthalpies were
calculated with the pseudopotential method.

Several important feétures about Li;CoO, can be deduced from the formation
enthalpies of Fig. 4-2. Fig. 4-2 shows, in agreement with experiment, that at zero
lithium concentration, the O1 host is more stable than the O3 host. The difference
in enthalpy between Ol and O3 is 40 meV per CoO, formula unit. This result
is in good agreement with a previous first-principles calculation using the LAPW
method which found a value of 50 meV [119]. Approximately halfway between the
formation enthalpies of O1 and O3 lies the formation enthalpy of the H1-3 host at
z=0. This is a plausible result since every other empty plane'between‘ 0-Co-O slabs
in the H1-3 host has an O3 environment, while the remaining empty planes have an
O1 environment. It implies that the interaction between adjacent O-Co-O slabs is
fairly short ranged and that the enthalpy of H1-3 at =0 could be approximated as
the weighted average of the enthalpies of O1 and O3. In addition, the calculated
equilibrium lattice parameter, c, of H1-3 (converted to the setting of the O3 host)
is 12.23 A which is roughly the average of the calculated value of ¢, for O3 of 12.39
A and that for O1 (also converted to the setting of the O3 host) of 11.99 A. In
Fig. 4-2, it can be seen that at £=1/6, the Li-vacancy arrangement in the Hi-3 host
lies on the convex hull. This structure is more stable than the two other Li-vacancy
arrangements considered on the O3 host at that concentration. Furthermore, the fact
that it lies on the convex hull means that it is more stable than a two-phase mixture
(with overall Li concentration z=1/6) of any other ordered Li-vacancy arrangements.
As will be shown in the next sections, this result indic#tes that the H1-3 host will
appear as a stable phase in the phase diagram. Fig. 4-2 also indicates that there is
a tendency for Li ordering within the 03 host at z=1/2.

Among the 44 different Li-vacancy configurations considered, the lowest-enthalpy
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Figure 4-3: Two lithium-vacancy arrangements at £=1/2 in Li;CoO; that have very

~ low formation energies. The triangular lattice denotes the lithium sites within a Li

plane of the O3 host. The filled circles correspond to Li ions ordered on the triangular
lattice. A given in-plane ordered arrangement can be stacked in different ways among
the different lithium planes. The empty circles indicate the projection along the c
axis of the positions of the lithium ions in the adjacent lithium plane.

configuration at z=1/2 has an in-plane lithium ordering as illustrated in Fig. 4-3
(a). In this configuration, the lithium ions are ordered in rows separated by rows
of vacancies. This in-plane Li ordering is the same as that proposed by Reimeré
and Dahn [50] based on their electrochemical and in-situ X-ray powder- diffraction
measurements. They deduced this type of Li ordering by noticing that the (104)
peak of the O3 host (which has rhombohedral symmetry) splits into two peaks with
an intensity ratio of 1:2. Reimers and Dahn [50] argued that this splitting can be
explained by assuming that the host changes from a rhombohedral to a monoclinic
structure whereby the basal plane of the monoclinic structure (containing the a and b
lattice vectors) is a two-dimensional supercell of the basal plane of the rhombohedral
O3 host in the hexagonal setting. This is illustrated in Fig 4-3(a). This still leaves

several crystallographically distinct ways to stack in plane Li-vacancy arrangements

along the c direction. Fig. 4-3(a) also indicates the stacking with the lowest enthalpy.

This is illustrated by projecting the Li-vacancy ordering in two adjacent Li planes
along a direction perpendicular to the Li planes. |

Almost degenerate, but slightly higher in enthalpy with the Li-vacancy ordering
of Fig. 4-3(a) is another structure with the arrangement as illustrated in Fig. 4-
3(b). In this cvonﬁguration, the Li ions are ordered in a zigzag arrangement. The

pseudopotential calculations predict that the formation enthalpy of this structure is
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approximately 1 meV per formula unit higher than that of Fig. 4-3(a). This difference
~ in enthalpy is too small to be resolved with currently available numerical methods.
Therefore, we cannot unequivocally deduce from our first principles calculations which
of the two Li-vacancy configurations is the ground state. Nevertheless, the calculated
powder diffraction pattern of the configuration of Fig. 4-3(a) exhibits the (104) peak
splitting observed experimentally while the diffraction pattern of the configuration of
Fig. 4-3(b) does not exhibit this peak splitting. This suggests that the structure of
Fig. 4-3(a) is indeed the stable phase at z=1/2.

4.4 Cluster Expansion and Monte Carlo simula-

tions

To study phase stability at finite temperature, we need to construct a separate cluster
expansion of the formation enthalpy for each different host structure. We did not
construct a cluster expansion for the O1 host since, as described in section 4.2, it is
stable only at very dilute Li concentrations. In our calculations of the L_izCoOz phase
diagram, O1 was therefore treated as a line compound at z=0 and its free energy was
set equal to its enthalpy.

A cluster expansion for the O3 host structure was constructed by applying an
inversion method based on linear programming techniques [80] to the formation en-
thalpies of 36 of the 44 different Li-vacancy configurations within the O3 host plotted
in Fig. 4-2. The resulting cluster expansion contains 19 terms, including 12 pairs
and 5 triplets. These clusters are illustrated in Fig. 4-4. The values of the ECI are
plotted in Fig. 4-5(a). The ECI of Figs. 4-4 and 4-5 correspond to clusters that
connect sites within the same Li plane and sites between adjacent Li planes. The
root-mean-square (rms) difference between the 36 formation enthalpy values used in
the inversion method and the corresponding values as calculated with the cluster ex-
pansion is less than 5 meV. For the remaining eight Li-vacancy configurations not

included in the inversion, the rms difference between their enthalpies as calculated
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in-plane inter plane triplets
pairs pairs

Figure 4-4: Clusters used in the cluster expansions. The triangular lattice denotes the
Li sites within a single lithium plane, while the empty circles denote the projection
of the lithium sites of an adjacent plane.

with the pseudopotential method and as predicted by the cluster expansion is 8 meV.
As can be seen from Fig. 4-4, the values of the ECI converge to zero as the number
of sites or the separation between the sites in the cluster increases. The ECI corre-
sponding to the first nearest neighbor in plane pair cluster is the largest, its value
being at least three times larger than the other ECI.

As was pointed out in the previous section, the formation enthalpies of the ex-
perimentally observed Li-vacancy ground state ordering (Fig. 4-3(a)) at z=1 /2 is
practically degenerate with that of the configuration of Fig. 4-3(b). The cluster ex-
pansion for the O3 host predicts that the ground-state configuration of Fig. 4-3(a) is
more stable than the configuration of Fig. 4-3(b) by 5 meV. Although this difference
is slightly larger than the difference calculated with the pseudopotential method, it
is still smaller than the minimum numerical error expected from the pseudopotential
method.

A second cluster expansion was constructed for the H1-3 host. This cluster expan-
sion contains five terms. It was obtained by fitting the ECI to the formation enthalpies
of the five different Li-vacancy configurations within H1-3 plotted in Fig. 4-2. The
ECI of this cluster expansion correspond to clusters within the same Li plane. Their
values are illustrated in Fig. 4-5(b). Since occupied Li planes in the H1-3 host are
further apart than in the O3 host. ECI corresponding to clusters connecting different

Li planes have been neglected.

63




40
30 F .
- 20 - -
B
E .
10 =
3
2 "\'/.\
°r ' //\,. .
B ]
-10
=20 T T T T T 7T T T T T T T T 717
1234561234561234°5
| J L JL_ |
point in-plane inter-plane triplets
pairs pairs
(a)
40
1
20 -
s 2 1
E of ¢
' .
m point pairs
_20— -
triplet
-40f ¢ .

Figure 4-5: Values of the ECI for (a) the O3 host and (b) the H1-3 host. Refer to
Fig. 4-4 for an identification of the cluster corresponding to each effective cluster
interaction.

64




Both cluster expansions of the formation enthalpy of the O3 and H1-3 hosts were
implemented in Monte Carlo simulations in the grand canonical ensemble. To study
the thermodynamics of Li and vacancy ordering in the O3 host, we used a Monte
Carlo cell containing 3888 unit cells where each primitive unit cell corresponds to a
Li;CoO, formula unit. For the H1-3 host, Monte Carlo simulations were performed
on a two-dimensional lattice, since the cluster expansion for this host only has ECI
corresponding to clusters within the occupied Li planes. The Monte Carlo cell for
the H1-3 host contained 900 primitive unit cells. At each temperature and chemi-
cal potential, 2000 Monte Carlo passes per lattice site were performed after which
sampling occurred over 4000 Monte Carlo passes. To investigate the relative stability
between the O1 host, the O3 host and the H1-3 host, we calculated the free energies
of the latter two host structures as a function of Li concentration. These free energies
were calculated by integrating the chemical potential obtained from the Monte Carlo
simulations. The integration bounds were from zero Li concentration (where the free
energy equals the ground state enthalpy) to the desired concentration z.

For both the O3 and the H1-3 host structures, we also cluster expanded the
lattice parameter, ¢, of the different Li-vacancy configurations. For each Li-vacancy
configuration, the equilibrium lattice parameters were converted to the hexagonal
setting of the O3 host. For both host structures, the cluster expansions of ¢ contained
the same clusters as used in the cluster expansion of the formation enthalpies. The
root-mean-square difference between the with the pseudopotential optimized values
for ¢ and those as calculated with the cluster expansion is 0.5 % of the average value
of ¢ for the O3 host. These cluster expansions were used to determine the equilibrium

lattice parameter as a function of Li concentration.
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Figure 4-6: The calculated Li;CoO, phase diagram. The insets show the in-plane
lithium ordering predicted to be stable at z=1/3 and 1/3.

4.5 Calculated Thermodynamic Properties

4.5.1 Phase diagram

The calculated equilibrium phase diagram of Li;CoQ, is illustrated in Fig. 4-6. As
can be seen from Fig. 4-6, O3 is predicted to be the most stable of the three hosts
considered from intermediate to high lithium concentration. Within O3, the Li ions
are predicted to order both at z=1/2 and z=1/3. At £=1/2, the lithium ions order in
rows alternated by rows of vacancies. The stacking sequence of the in-plane ordered Li
arrangement is illustrated in Fig. 4-6. At z=1/3, the Li ions order in an arrangement
in which they are spaced as far apart as possible from each other. This ordered
arrangement is illustrated in the inset in F ig. 4-6. At z=1/2, the order-disorder
transition temperature is predicted to be around 160° C while at =1/3, it is predicted
to Be approximately 80° C. Around z=0.15, H1-3 is found to be more stable than
both O3 and Ol. As is evident from the large two phase field separating the stability
regions of O3 and H1-3 in Fig. 4-6, O3 transforms to H1-3 according to a first order
trénsition. In-plane lithium ordering in the occupied planes of H1-3 is predicted at

z=1/6. The ordered Li-vacancy arrangement is the same as that predicted at z=1/3
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in the O3 host and illustrated in the inset of Fig. 4-6. The ordered Li arrangement
within the H1-3 host is calculated to disorder at 130° C through a second order phase
transition. However, since the cluster expansion for the H1-3 host only contains
5 terms and was constructed by fitting to only five enthalpy values the quantitative
accuracy of this order-disorder transition temperature is questionable. For this reason,
we have omitted the order-disorder transition within the H1-3 host from the phase
diagram of Fig. 4-6. Finally, at =0, O1 is found to be the most stable phase.

Overall, the agreement of the calculated phase diagram with experiment is good.
The relative stability between O3 and O1 as a function of Li concentration agrees with
experiment. Furthermore, the lithium ordering at z=1/2 agrees qualitatively with the
observations of Reimers and Dahn [50] who gave convincing evidence for Li ordering
at that concentration and found the ordered phase to be stable below 60° C. Note
in Fig. 4-6, that the predicted order-disorder transition temperature is too high by
approximately 100°. Over predictions of this order of mdgnitude are not uncommon
in first principles phase diagram calculations. In view of this over-prediction, it is
probable that the ordered phase predicted at x=1/3 will disorder in reality below
room temperature explaining why it has not been observed experimentally.

The H1-3 host, as described above can be considered a stage II compound in that
lithium is assumed to exclusively occupy alternating lithium planes (i.e. those planes
with an O3 local environment). The prediction that H1-3 is stable at low Li concen-
tration is consistent with experimental observations that the O3 host transforms to
a new structure as it is deintercalated to around z=0.2. Calculated X-ray diffraction
patterns of the H1-3 phase agree qualitatively with those measured in-situ around
7=0.2 [118, 45]. Furthermore, a recent refinement of the X-ray diffraction pattern of
Li,CoOz at low lithium concentration has given strong evidence that the H1-3 phase
(or possibly the stage 111, H11-3 compound) appears in that concentration range [121].

Onc major disagreement between experiment and the calculated phase diagram
is that a two phase region at high lithium concentration is not predicted. Between
=0.75 and 0.95, two O3 phases differing only in their lattice parameters and lithium

concentration coexist [50, 49, 45, 10]. As noted in the introduction, this two phase
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Figure 4-7: Calculated voltage curve of Li;CoO; at 30°C

region cloaks a metal-insulator transition in that above £=0.95, Li;CoQO; is a semi-
conductor while below £=0.75, it is a metal. In the next section, we describe how
a metal-insulator transition can simultaneously induce a first order structural phase
transition of the host. We point out here, though, that experimental evidence exists
exposing the causal l‘ink‘ between the metal-insulator transition and the structural
phase transition between z=0.75 and 0.95 in Li;CoO,. Tukamoto and West [122]
found that fully lithiated LiCoO; can be made metallic without inducing any struc-
tural changes to the host by substituting a dilute fraction of Co®* ions by Mg?* ions.
In parallel with this, they found that in the Mg doped samples, the two phase region

at high Li concentration is absent [122].

4.5.2 Voltage curve

An important property for lithium transition metal oxides is the evolution of the
voltage intercalation curve as a function of Li concentration. The voltage curve is
related to the chemical potential according to (2.1) in chapter 2. Fig. 4-7 illustrates
the voltage curve of layered Li;CoQ; as a function of . The curve was calculated
with Monte Carlo simulations using the cluster expansion of Fig. 4-5. Features in
the voltage curve reﬂec:t the phase transformations predicted in the phase diagram
of Fig. 4-6. The small's'teps at z=1/2 and z=1/3 are a result of the ordered phases

shown in Fig. 4-6. The large step around z=0.15 is a result of the occurrence of the
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H1-3 phase predicted to be stable at low z. |

Experimentally, the voltage curve of layered Li;CoO, exhibits a plateau between
z=0.75 and 0.95 as a result of the two phase coexistence region [50, 49, 45]. This
plateau is absent in the calculated voltage curve since the two phase region at high
z is not predicted by the cluster expansion derived from LDA enthalpies. The step
around z=1/2 in the calculated voltage curve due to lithium ordering is similar to
that observed experimentally at the same composition [50]. The step in the calculated
voltage curve as a result of the H1-3 phase is larger than that observed experimentally
[45]. This is in part because in actual Li,CQog particles, strain energy builds up upon
transforming from O3 to H1-3 (see section 4.6.1), which will destabilize H1-3 relative
to O3 and O1 and hence result in a reduction of the step associated with H1-3. Typ-
ically, calculated average voltages are around 0.25 to 0.5 volt below the experimental
quantities {114, 123, 124, 125, 119, 126, 127]. It is not surprising, therefore, that the
calculated voltage intercalation curve for Li;CoQ, is systematically underestimated

at all z.

4.5.3 The Lattice parameter ¢

Fig. 4-8 compares the calculated value for ¢ with that determined from in-situ X-
ray diffraction measurements of Li;CoQ, [45]. ¢ was calculated in the Monte Carlo
simulations using the cluster expansions of ¢ for the O3 and H1-3 hosts. Since the
calculated order-disorder transition temperatures of the ordered phases at z=1 /2 and
1/3 within O3 are over predicted, we calculated c at 130° C (calculation tempera-
ture). This temperature is between the order-disorder transition temperatures of the
z=1/2 phase and the z=1/3 phase and properties calculated at this temperature will
be most representative of those measured experimentally at room temperature. We
have plotted values of ¢ for both the O3 and H1-3 hosts over the range of Li concen-
trations for which these hosts can exist. Values of ¢ are therefore also plotted for Li
concentrations at which the hosts are predicted to be metastable. This enables us to
more clearly observe trends.

The calculated values of ¢ for the O3 host is systematically under predicted by
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Figure 4-8: Comparison between (a) calculated and (b) experimental (taken from
Ref. [45]) lattice parameter, ¢ as a function of Li concentration. The calculated
lattice parameters are also illustrated in the regions where the O3 and H1-3 hosts are
metastable (dashed lines).
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approximately 4%. An under prediction in lattice parameters is typical of LDA,
though a value of 4% is un‘characteristically large. It suggests that the electrons in
this system are highly correlated [128].

The qualitative variation of the calculated lattice parameter, c, agrees well with
experiment. As Li is removed from the O3 hoét, ¢ is more or less constant between
z=0.5 and 1, exhibiting only a slight maximum around z=0.5. Below z=0.5, the
lattice parameter decreases dramatically as the Li concentration is reduced. Part of
the significant contraction of the O3 form of Li;CoO, upon deintercalation can be
attributed to a reduction in the number of lithium ions between the O-Co-O sheets.
Another significant factor contributing to the contraction of the host is the change
with z in electronic properties of Li;CoO,. As described in chapter 3, removal of
lithium causes the cobalt-oxygen bonds to become more covalent. This results in a
contraction of the cobalt-oxygen distances and, therefore, a reduction in width of the
0-Co-0 slabs as z is decreased. Furthermore, the increased covalency is accompanied
by a reduction in the polarization of negative charge toward the oxygen ions. Hence
the electrostatic repulsion between negatively charged oxygen ions of adjacent O-Co-
O slabs diminishes as lithium is removed from the host.

Fig. 4-8(b) also shows that the lattice parameter, ¢, of the host drops abruptly
upon transforming from O3 to H1-3. A similar drop in c is observed experimentally,
giving further credibility to the prediction of staging at low lithium concentration.
The abrupt reduction in ¢ is a direct result of the staging process since the distance

across the empty planes of H1-3 is smaller than the occupied planes.

4.6 Driving forces for phase transformations

4.6.1 The staging transformation

As noted above, the H1-3 host structure can be viewed as a staged compound in
that Li only occupies every other open layer between O-Co-O sheets. Staging occurs

in many layered intercalation compounds [120] and transition metal dichalcogenides
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[129]. The predicted transformation from the O3 host to the H1-3 host in Li;CoO,
is similar to that observed in graphite in which the host undergoes small structural
changes simultaneously with the staging transformation. In graphite [120], the two
dimensional honeycomb sheets of carbon are stacked according to an ABAB sequence.
When the guest ion uniformly intercalates between these sheets, the stacking sequence
changes to AAA. At low concentrations, the guest ions selectively segregate to a
subset of the open galleries between graphite sheets. The sheets surrounding occupied
galleries have an AA stacking just as in the fully intercalated form of graphite whereas
the sheets surrounding unoccupied galleries have an AB stacking just as in pure
graphite. The results of this chapter indicate that the same phenomenon is occurring
in Li;CoO, at low lithium concentration. The stacking sequence of the 0O-Co-0O sheets
in the fully intercalated form of Li,CoO, (stable in the O3 structure) is different from
that of the completely deintercalated form (which is stable in the O1 structure). At
some intermediate Li concentration (i.e. around z=0.15), the Li tends to segregate to
a subset of the open layers between O-Co-O sheets. In this intermediate compound
(i.e. the H1-3 host), the O-Co-O sheets surrounding the occupied Li layers are stacked
as in the stable form of Li;CoO,, and the sheets adjacent to empty Li layers are
stacked as in the stable form of CoO,. Hence a hybrid host structure exhibiting
structural features of the stable end members LiCoO; and CoOs is stable at these Li
concentrations.

The reason for the occurrence of staging in Li;CoO, can be inferred from the
shapes of the free energy curves of Fig. 4-9. At dilute Li concentrations, the inter-
actions of the Li ions with each other and with the host are similar in both O3 and
H1-3. Therefore, the free energies of these two hosts at low Li concentration are more
or less parallel with Li concentration as is illustrated in Fig. 4-9. At =0, however,
H1-3 has an added stability compared to O3 since H1-3 has alternating Li planes
with local O1 environment. In the absence of Li ions, the O1 stacking sequence is fa-
vored. Consequently, H1-3 remains more stable than O3 for as long as the free energy
curves of these hosts remain parallel with increasing z. As the lithium concentration

is increased, however, the Li planes of H1-3 saturate sooner than in 03 because it
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Figure 4-9: The free energies at 30°C of O3 and H1-3 as a function of lithium con-
centration. Also illustrated is the energy of CoO, in the O1 host.

has only half the available Li planes. This causes the free energy of H1-3 to increase
faster with Li concentration than in O3, rendering the latter phase more stable above
a critical lithium concentration.

From a kinetic point of view, it is unlikely that perfect staging will occur within a
single grain since this would require that lithium is evenly removed from every other
plane. Instead, as was suggested for graphite intercalation compounds by Daumas
and Herold [130], staging will likely occur in domains as illustrated schematically in

Fig. 4-10. This would result in a situation in which the average concentration in

Stage I Stage IT

Figure 4-10: Staging according to the model of Daumas and Herold. Thick lines
correspond to O-Co-O slabs, dotted lines correspond to occupied lithium planes.
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each lithium plane is the same throughout the grain, however, locally the Li ions
are segregated to form domains that are staged. Althbugh this type of staging on a
local level is kinetically more likely, it does have its thermodynamic costs. Since the
stacking sequence of O-Co-O slabs across empty planes is different from that across
occupied lithium planes in H1-3, the stacking sequence would have to change at the
.boundaries of the domains within the same lithium plane. This will be accompanied
by elastic strain energy and possibly even plastic energy (in the form of dislocation
creation) which will raise the free energy of the sta;ged compound. Hence the stability
of the staged phase with respect to the O3 and O1 hosts in actual crystals will be
reduced and the measured stability region of the H1-3 will be narrower than predicted

in Fig. 4-6.

4.6.2 Metal-insulator transition and the two phase region

The electronic properties of Li,CoO, change dramatically upon crossing the metal-
insulator transition at high lithium concentration. As was described in chapter 3,
LiCoO; is a semiconductor with fully occupied tay bands. Li removal from LiCoO,
simultaneously introduces an equivalent number of holes in the tyg bands. In a simple
band structure picture in which electrons are assumed to be delocalized, this im-
plies that LiCoO, should become metallic once lithium is removed. Experimentally
though, Li;CoO, remains a semiconductor at least untill z=0.95 [9, 10]. In insulat-
ing transition metal oxides, holes in the valence bands are usually localized in space.
This picture has recently been confirmed experimentally for Li,CoO, by Menetrier
et. al. [10]. While it is well recognized that changes from localized to delocalized
electrons affect the transport properties, it can also have a signiﬁcanf effect on the
thermodynamic potentials. Localized holes contribute to the free energy of thé solid
an additional configurational entropy associated with the different ways of distribut-
ing the holes throughout the crystal. This entropy is an order of magnitude larger
than the electronic entropy associated with delocalized holes in narrow valence bands.
Also there is first principles evidence that the energetics of localized holes versus de-

localized holes can be significantly different. This was for example illustiated by first
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Figure 4-11: Free energy in the vicinity of the metal-insulator transition. The vértical
line schematically denotes the lithium concentration at which the host crosses over
from an insulator to a metal. AG refers to the additional free energy arising from
the localized holes in the insulating regime.

principles investigations within the Hartree Fock approximation on Li doped NiO,
which showed that there can be a large enthalpy gain when an electron hole goes
from a delocalized state to a localized state [131].

Such changes in thermodynamic properties upon crossing the metal-insulator tran-
sition can induce non-convexity in the free energy curve of the host material and hence
a first order transition. The possible effect of a metal- insulator transition on the free
energy of the host is illustrated in Fig. 4-11. The solid curve corresponds to the
calculated free energy of Li;CoO, using the cluster expansion of section 4.4. This
free energy curve neglects the role of localized holes for the insulating concentrations.
The solid free energy curve is characteristic of complete solid solution over the con-
centration range shown. If the intercalation compound undergoes a metal-insulator
transition (schematically at a concentration denoted by the vertical line in Fig. 4-11)
the additional configurational entropy (and possible enthalpy lowering effect) aris-
ing from the localized holes in the insulating phase, will lower its free energy as is
schematically illustrated by the dashed curve. Less change is expected for the metallic
state by including electron correlation as there is no localization enthalpy for the holes

and only a small electronic entropy. If the free energy contributions of the localized
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holes on the insulating side are large enough to break the convexity (i.e. the dashed
curve) of the initial free energy curve (solid curve) in Fig. 4-11, a two phase region
would arise with the phase boundaries determined by the common tangent.

The measurements by Tukamoto and West [122] with Mg doped LiCoO, support
the above mechanism explaining how a metal-insulator transition can induce a first-
order structural phase transition. By substituting Co®** ions with Mg?* ions, holes
are created in the ty, bands of the fully lithiated compound since Mg is only able
to donate 2 electrons to the host as opposed to 3. The effect of Mg doping on the
electronic properties of LiCoQ, is similar to lithium removal from the host. Mg doping
therefore shifts the metal-insulator transition to higher lithium concentration. This
in turn causes a reduction in stability of the semiconducting phase of Li;Co,Mg;_, 0O,
for = above the metal-insulator transition of the doped compound. For a critical Mg
concentration, the fully lithiated form LiCo,Mg;_,O is metallic and the two phase
region then disappears completely. This was observed electrochemically by Tukamoto
and West [122]. They found that as the Mg concentration is increased, the plateau in
the voltage curve signifying the two phase region decreases and completely disappears

when the Mg concentration exceeds approximately 8 percent.

4.7 Conclusion

In this chapter we have investigated phase stability of layered Li;CoO; from first
principles. We have compared the relative stability between three different host
structures, namely O3, Ol and a stage II compound that is a hybrid between O3
and O1 and which we have denoted as H1-3. In agreement with experiment, the
calculations predict that O3 is stable at intermediate to high lithium concentration
and that O1 is stable when the compound is fully deintercalated. The calculations
also predict that H1-3 is stable at low lithium concentration. This prediction sheds
light on the as of yet uncharacterized phase transformation observed experimentally
at low lifhium concentration. Although in our calculations, we have considered only

a stage II compound in addition to O1 and O3, in reality, it is possible that stage III
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| (H11-3) and even stage IV (H111-3) forms of Li;CoO, may be stable at low lithium
concentration. The qualitative evolution of the calculated lattice parameter, c, agrees
well with that observed experimentally. We have argued that the large drop in ¢ with
decreasing z is in part caused by the shift in the nature of bonding between cobalt
and oxygen from an ionic character to a covalent character.

At high lithium concentration, our calculations have demonstrated that the large
two phase region between two crystallographically identical forms of O3 with con-
centrations z=0.75 and 0.95 is not a result of lithium ordering. Instead using ther-
modynamic considerations, we have argued that this first-order phase transformation
with z is driven by a metal-insulator transition that occurs between z=0.75 and
0.95. To our knowledge, this is the first recognition that a metal-insulator transi-
tion caused by variations in concentration can induce a first-order structural phase
transformation. We expect this phenomenon to be common in other oxides exhibiting
metal-insulator transitions with concentration, yet, we expect sluggish kinetics to in-
hibit the first-order structural transformation from occurring on most reasonable time
scales. The difference between Li,CoO; and other oxides exhibiting a metal-insulator
transition with concentration such as La;Sr;_,CoOj [132, 133] is that the lithium ions
in Li;CoO; have a fast mobility that enables the first-order phase transformation to
be kinetically realized. _

The main limitations of layered Li;CoOs in a lithium battery, is that it has poor
cycling properties when z is decreased much below 0.5. This is in large part due
to the numerous phase transformations that occur below z=0.5 and the dramatic
decrease of the lattice parameter, ¢, of the host as z approaches zero. The phase
transformations from O3 to H1-3 and from H1-3 to O1, all involve the gliding of
adjacent O-Co-O sheets with respect to each other, which can cause severe damage
to the macroscopic Li,CoO, particles. Improvements in the cycling properties of
Li;CoO, will therefore require a suppression of these phase transformations. One
possibility is to find dopants that reside in the lithium planes and prevent the O-Co-
O slabs from gliding with respect to each other at low . Suppression of the large

drop in the parameter, ¢, of the O3 form of Li;CoO, at low = (see Fig. 4-8) could
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occur to a certain extent by replacing some cobalt with metal cations that reduce the

degree with which the metal-oxygen bond becomes covalent with decreasing z.
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Chaptér 5

Phase diagram of spinel Li;CoQO-

5.1 Introduction

Although LiCoO; is commonly synthesized with the layered crystal structure, low
temperature synthesis routes have produced a form of LiCoO, exhibiting cubic sym-
metry [39, 40, 41, 42]. Controversy still exists about the exact nature of its crystal
structure yet much evidence suggests that low temperature (LT) LiCoO, has a mod-
ified spinel structure> [39, 40]. While the actual material is likely to contain defects,
the ideal crystal structure has an ABCABC stacking sequence of close-packed oxygen
planes with Co residing in a subset of the octahedral sites. For stoichiometric LT
LiCoOa, the Li ions reside in octahedral sites. LT LiCoO; has poor electrochemical
properties, and is at present of little practical use. Nevertheless, since it has the
same crystal structure as spinel Li,Mn,0O4 (with y = 2 x z), an important candidate
cathode material for lithium batteries [4, 5, 23, 11], a first principles investigation of
the thermodynamic properties of the former compound can yield important insights
about the properties of the latter compound.

Li,Mn, Oy differs from many other transition metal oxide intercalation compounds
in that a range of electronic phenomena play a significant role in determining its ther-
modynamic and structural properties: Jahn-Teller distortions [4, 5, 11, 1.2], charge
ordering [134, 135] and magnetic ordering [13] have each been identified as producing

measurable imprints on electrochemical characteristics. The presence of numerous
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electronic phenomena can cloak the true microscopic origins of different phase trans-
formations. Although layered Li;CoO, undergoes a metal-insulator transition, phe-
nomena such as Jahn-Teller distortions and magnetic ordering are either absent or
insignificant in affecting phase transformations in Li,CoO,. A study of phase stabil-
ity in spinel Li;CoO, will, therefore, enable a decoupling of the roles that electronic
phenomena (associated with a particular transition metal) and structural effects (re-
sulting from the symmetry of the metal oxide host) have on the phase transformations
observed in spinel compounds. The results of the present chapter will show that most
of the phase transformations observed in spinel LiyMn;O4 are determined by the host
structure and only quantitatively affected by electronic phenomena [136]. (The sarﬁe
conclusion was drawn by a first principles investigation of spinel Li,Mn;0O4 in which
Jahn-Teller distortions, charge ordering and the temperature dependence of magnetic
ordering were neglected [137].)

The spinel crystal structure differs from the layered crystal structure in several
significant ways. In spinel Li;CoO,, Li can reside in both tetrahedral and octahedral
sites while in the layered phase Li only occupies octahedral sites. The effect of this
is that layered and spinel Li,CoQO, have topologically very different phase diagrams.
Another difference between the two hosts is that their respective symmetry puts
different constraints on how the ions of the host can relax. This affects a change in
the relative stability between the two crystal structures as the lithium concentration
is varied [126].

In this chapter, we investigate the phase diagram and electrochemical properties
of spinel Li;,CoO;. We use the same methodology as was used to investigate the

layered form of Li;CoOs.

5.2 Formation enthalpies and cluster expansion

The spinel form of Li,CoO, which belongs to the Fd3m space group has two crystallo-
graphically distinct sites which the Li ions can occupy: the tetrahedrally coordinated

(by oxygen) 8a sites and the octahedrally coordinated 16c sites. The sublattice com-
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Figure 5-1: Formation enthalpies for different ordered structures in spinel Li;CoOs.
The diamonds refer to structures in which the lithium ions occupy only tetrahedral
sites, the crosses correspond to structures in which lithium ions occupy only octahe-
dral sites and the squares correspond to structures in which the lithium ions occupy
both octahedral and tetrahedral sites.

prising the 8a sites is topologically equivalent to the diamond crystal structure. The
16c¢ sites reside in the middle of pathways connecting nearest neighbor 8a sites. Each
8a site, therefore, has four nearest neighbor 16c sites while each 16c¢ site has two
nearest neighbor 8a sites. To study the thermodynamics of this host, we constructed
a cluster expansion that describes the configurational enthalpy of distributing lithium
and vacancies over the collection of 8a and 16¢ sites. The ECI of the cluster expan-
sion were fitted to the enthalpy values of 17 different Li-vacancy arrangements in the
cubic host. We used an inversion method based on linear programming techniques
[80]. The enthalpies of the 17 different Li-vacancy éonﬁgurations were calculated with
the pseudopotential method [99] in the local density approximation (LDA) (non-spin
polarized) as implemented in VASP [54, 107]. Ultra-soft pseudopotentials [53] were
used. For each structure, the cell parameters and the ionic positions were fully re-
laxed.

Fig. 5-1 shows the formation enthalpies of 14 of the 17 structures used in the fit (3
of the structures have a concentration greater than 1). The formation enthalpies are
defined by (4.1) of chapter 4. Hc,o, used in (4.1) to calculate the formation enthalpies
of Fig. 5-1 corresponds to the enthalpy of the fully delithiated spinel host and H LiCoOs
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QO Tetrahedral 8(a) site
0 Octahedral 16(c) site

Figure 5-2: Tllustration of the clusters (connected by dark lines) used in the cluster
expansion for spinel Li,CoO,. Shown are tetrahedral 8a and octahedral 16c sites.
The positions of the Co and O ions are not shown. The numbering next to each
cluster refers to the ECI in table 1.

correspond to the enthalpy of spinel LiCoO, with all the lithium ions in the octahedral
16¢ sites. Among the 14 structures of Fig. 5-1 are configurations in which Li ions
occupy only octahedral sites (crosses), tetrahedral sites (diamonds) and configurations
in which both tetrahedral and octahedral sites are occupied simultaneously by Li
ions (squares). We have also drawn the convex hull cbnnecting the structures with
the lowest formation enthalpies to indicate the most stable structures among those
considered with thé pseudopotential method.

The cluster expansion determined by fitting to these enthalpies contains 10 terms

(table 1). This includes ECI corresponding to the empty cluster Vo, two point clusters

(tetrahedral and octahedral sites), four pair clusters and three multi-body clusters.
One type of pair cluster is between nearest neighbor octahedral and tetrahedral sites.
The other pair clusters correspond to the nearest and second nearest neighbor pairs
on the sublattice formed by the tetrahedral 8a sites and the nearest neighbor pair on

the sublattice formed by the octahedral 16c sites. The root mean square difference
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v

Clusters ECI (meV)

Empty cluster 166.9

- Tetrahedral point cluster 168.6

Octahedral point cluster 174.1

1 86.5

29.1
6.3
0.3
17.3
8.8
94

N O U W

Table 5.1: Values of the ECI for the spinel cluster expansion. The numbering in the
first column refers to the clusters in Fig. 5-2. The second column are the numerical
values of the ECI (meV).

between the cluster expansion enthalpy values and the pseudopotential enthalpy val-
ues for the 14 structures of Fig. 5-1 is less than 5 meV. The clusters appearing in the
cluster expansion are also illustrated in Fig. 5-2.

To obtain thermodynamic properties for spinel Li;CoO,, grand canonical Monte
Carlo simulations were applied to the cluster expansion of table 1. A Monte Carlo
cell containing 3072 Li sites (octahedral and tetrahedral) was used. 6000-8000 Monte
Carlo passes per lattice site were performed at each temperature and chemical poten-

tial of which the last 4000 were used for averaging. Free energies were calculated by

integrating the chemical potential from =0 (where the free energy equals the ground ‘

state energy) to the desired concentration z.

5.3 Site concentrations

The essential features of the spinel Li;CoO, phasé diagram and voltage curve are
determined by the availability to the intercalating lithium ions of the two crystallo-

graphically distinct 8a and 16¢ sites. There are twice as many 16c sites as 8a sites
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and the energetics of the crystal are sensitive to how these sites are occupied. Fig.
5-1, for example, shows that below z=1/2, the structures in which the Li ions occupy
only the tetrahedral 8a sites are energetically more stable than those in which Li ions

occupy octahedral 16c sites. The cluster expansion predicts that a single Li ion in

an otherwise completely delithiated spinel CoO; host is more stable by 130 meV in a |

tetrahedral site than in an octahedral site. The cluster expansion also predicts that
the energy increase associated with bringing two isolated Li ions (one in a tetrahe-
dral site and the other in an .octahedral site) to adjacent tetrahedral and octahedral
sites is 250 meV (in an otherwise empty host). Adjacent octahedra and tetrahedra
share faces and the large energy penalty associated with a simultaneous occupation of
these sites is d result of strong electrostatic repulsion between the positively charged
lithium ions.

These simple energy considerations already indicate that Li ions will strive to
reside in as many energetically favorable tetrahedral sites as possible while mini-
mizing the simultaneous occupation of adjacent tetrahedral-octahedral sites. Below
z=1/2 lithium ions can occupy tetrahedral sites to minimize their site enthalpy. The
tetrahedral sites, though, are less numerous than the ocfahedral sites and can only
accommodate lithium ions until z reaches 1/2. Beyond z=1/2, lithium ions must fill
energetically less favorable ‘octahedral sites which through electrostatic repulsion will
tend to displace lithium ions occupying tetrahedral sites to octahedral sites.

Fig.‘ 5-3 illustrate the concentrations in the tetrahedral and octahedral sites as a
function of z in Li,CoO, as determined with the Monte Carlo simulations. Fig. 5-3(a)
is calculated at 300 K and Fig. 5-3(b) is calculated at 600 K. According to the Monte
Carlo simulations, lithium ions added beyond z=1/2 at low temperature displace the
original lithium ions occupying the tetrahedral sites to octahedral sites through a
first-order phase transformation. This first-order phase transition corresponds to the
crossing of a large two phase coexistance region between £=1/2 and 0.95 at constant
temperature.

At 600 K, the two phase region between z=0.5 and 0.95 has disappeared, and

a solid solution exists at all lithium concentration. Fig. 5-3, shows that as the
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Figure 5-3: Concentrations of Li ions in the tetrahedral sites (full lines) and octahedral
sites (dashed lines) as a function of the overall lithium concentration z in Li;CoO,
at (a) 300 K and at (b) 600 K. (c) illustrates the dependence of the tetrahedral and
octahedral site concentrations as a function of temperature at z=1/2.
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Figure 5-4: Calculated phase diagram of spinel Li;CoO,

overall Li concentration is increased from r=1/2 to z=1, the lithium ions initially
occupying the tetrahedral sites are gradually displaced to octahedral sites. Even
at high temperatures, the lithium ions avoid a simultaneous occupation of adjacent
tetrahedral and octahedral sites.

Notice that below z=1/2, lithium ions also occupy octahedral sites, more so at
600 K than at 300 K. This is a result of entropy Which becomes more important
at high temperature; as the temperature is increased, sufficient thermal energy is
available to excite lithium ions into the energetically less favorable octahedral sites.
Fig. 5-3(c) illustrates the site occupancy as a function of temperature at z=1 /2. At
low temperature, all tetrahedral sites are occupied at z=1/2 and the concentration
of the octahedral sites increases gradually as the temperature is raised. As is clear in
Fig. 5-3, disordering of the lithium ions at =1/2 proceeds without an order-disorder

transition in the sense that the order parameter approaches zero very gradually.

5.4 Phase diagram

Fig. 5-4 illustrates the calculated spinel Li;CoO, phase diagram. It consists of a

large miscibility gap between the outer limits of x=0.5 and z=1.0. The miscibility
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gap disappears above approximately 420 K and a solid solution exists in which Li
ions occupy both octahedral and tetrahedral sites. The miscibility gap results from
a competition between filling as many energetically favorable tetrahedral sites while
at the same time keeping the occupation of adjacent tetrahedral-octahedral sites to a
minimum. Below z=0.5, the Li ions predominantly occupy the tetrahedral sites and
form a solid solution. Only below T=150 K do the Li ions order at z=0.25 (see Fig.
5-4) according to a second order phase transformation. In this ordered phase, the
Li ions occupy every other tetrahedral site whereby the distribution of lithium and
vacancies over the tetrahedral sites is similar to that of Zn and S in zinc blende ZnS.

The formation enthalpies as calculated with the pseudopotential method ‘(Fig. 5-
3) indicate that there should also be ordering at £=0.125 and £=0.375 (this is because
these enthalpy values lie on the convex hull in Fig. 5-3). The cluster expansion used
in this work, however, is too short ranged to predict these phases as ground states.
Below z=1/2, the lithium ions occupy almost exclusively the tetrahedral sites which
have the connectivity of the diamond crystal structure. A ground state enumeration
on the diamond crystal structure [8] has indicated that a lattice model with nearest
neighbor and next nearest neighbor pair interactions cannot simultaneously predict
a ground state with the ZnS blende structure at y=1/2 (z=0.25) along with ground
states at y=1/4 (z=0.125) and 3/4 (i:0.375) where y is the concentration on the
diamond crystal structure. The current cluster expansion, predicts the structures at
£=0.125 and 0.375 to be exactly degenerate with a phase separation of the ground
 states at 2=0 and 0.25 and r=0.25 and z=0.5. To remove this degeneracy, it would
be necessary to include pair clusters and/or multi-body clusters that extend over
larger distances than are currently considered. Nevertheless, we expect the ordering

at £=0.25 to be the dominant ground state between z=0 and z=0.5.

An interesting aspect of the phase diagram in Fig. 5-4 is that the perfectly ordered .

spinel phase at =1/2 does not have an order-disorder phase transition. Instead, as
- can be seen from Fig. 5-3(c), a fraction of the Li ions which at low temperature occupy
exclusively the tetrahedral sites are gradually excited into the octahedral sites over

a large temperature interval. The average enthalpy as calculated with the Monte
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Figure 5-5: Comparison between the calculated voltage profiles of Li;CoO; in the
spinel (dashed lines) and O3 (full line) crystal structures. '

Carlo simulations does not exhibit a discontinuity characteristic of a first-order phase
transition, nor does the heat capacity exhibit a divergence at any temperature. The
absence of a unique order-disorder transition temperature is presumably related to the
absence of d symmetry change upon going from the completely ordered state to the
disordered state. Due to the arrangement of tetrahedral and octahedral sites within
the spinel host, the high temperature phase, where the Li ions are distributed over
both tetrahedral and octahedral sites exhibits the same symmetry as the perfectly
ordered spinel phase Li;»CoO; where the Li ions occupy only the tetrahedral sites
(i.e. the low and high temperature phases have the same unit cell and belong to the
same space group). Generally, phase transitions upon cooling occur from a phase
with high symmetry to a new phase in which the symmetry is reduced. The lack of
a symmetry change is not a sufficient condition for the absence of a phase transition,

but it is a necessary one.
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Figure 5-6: Gibbs free energy curves of Li;CoO; in the spinel (dashed line) and the
O3 (full line) crystal structures. The free energy of spinel Li;CoO, between z=1/2
and 0.95 corresponds to the tie-line connecting the free energies of the coexisting
spinel phases in the miscibility gap.

5.5 Comparison between layered and spinel Li,CoO,

5.5.1 voltage curves

Fig. 5-5 compares the voltage curves of Li;CoO; in the spinel phase and in the layered
phase. The curves were calculated with Monte Carlo simulations using the cluster
expansions for the spinel and O3 phases respectively. It is clear that these curves are
qualitatively very different even though the average voltage of Li,CoO, in the two
structures are similar. The average voltage is given by the integral under the voltage
curves and is predicted with the pseudopotential method to be 3.73 V for layered and
3.84 V for spinel Li;CoO,.

The pronounced step in the voltage curve of the spinel host has its origin in the
availability to lithium of two crystallographically distinct sites. iIn the layered form,
in which the lithium ions occupy only the octahedral sites, a pronounced step in
the voltage curve is absent. The difference in voltage curves can be understood by
inspection of the free energy curves of the two hosts. The voltage is linearly related to
the lithium chemical potential in the cathode and hence also to the slope of the free

energy of Li;CoO, with respect to z. Fig. 5-6 illustrates the free energies of both the
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spinel and layered forms of .LizCoOZ. As is clear from Fig. 5-6, the spinel phase at
z=1/21s vvery stable and the free energy has a sharp curvature at z=1/2. This means
that the slope of the free energy, and in turn the voltage, changes rapidly as a function
of lithium concentration around z=1/2. The slope change is most pronounced slightly
above £=1/2 since the energetically more favorable tetrahedral sites are saturated at
z=1/2 and further Li addition to the host must be accommodated by the energetically
less favorable octahedral sites. This causes the free energy to rise sharply immediately
above z=1 /2. The free energy curve of the layered phase is in comparison smoother
as the lithium ions gradually fill the crystallographically identical sites over the whole
concentration range.

Voltage curves similar to that calculated for spinel Li;CoO, are observed in spinel
Li;MnO, [4, 5, 11] and spinel Li,TiO, [37]. The voltage curves of these structures
all have the characteristic one volt step at z=1/2 in common. In the Mn compound,
it has been argued that the step arises from a cooperative Jahn-Teller distortion of
the host which is fully in place at the LiMnO, stoichiometry [11]. The theoretical
study of spinel Li;CoQO,, where the effect of Jahn-Teller distortions are absent, shows
that the step at z=1/2 is not produced by a Jahn-Teller distortion, but is instead
~ caused by structural features of the spinel host structure. In fact, a cooperative Jahn-
Teller distortion of stoichiometric LiMnO, actually reduces the step at z=1/2. This
can be understood by consideri‘ng the effect of such a Jahn-Teller distortion on the
free energy curve of Fig. 5-6. In Li,MnO,, the coordinated Jahn-Teller distortion
occurring at high'Li concentration lowers the free energy of cubic spinel LiMnO, by
producing an energetically more stable tetragonally distorted spinel form of LiMnOs.
The Jahn-Teller distortion in this material, therefore, reduces the voltage step since
it would reduce the sharpness of free energy at z=1/2.

Another way to reduce the voltage step at z=1/2 in spinel compounds is by raising
the temperature. The increased thermal excitations at high temperature scramble the
perfect ordering of Li ions in the tetrahedral sites and cause them to start occupying
energetically less favorable octahedral sites. This is clearly evident in Fig. 5-7 where

the voltage step starts to disappear at 600 K as a result of the reduction of the Li
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Figure 5-7: Calculated voltage curve of spinel Li,CoO, at 600 K.

concentration in the tetrahedral sites (Fig. 5-3(b) and (c)) of the spinel host. Lithium

disorder smears out the free energy curve around z=1/2.

5.5.2 Relative stability

While a study of the phase diagrams of layered and spinel Li;CoO, are valuable fof
understanding phase stability during a typical charge and discharge cycle, it is also
- of interest to investigate the relative stability between the layered and spinel forms to
understand possible causes of degradation over many charge/discharge cycles. First
principles investigations by Wolverton and Zunger [126] exposed the fact that spinel
LizCoO, is energetically more stable by almost 200 meV than layered Li,CoO, around
z=1/2. At z=1, they found that layered Li,CoO, is only slightly more stable than
lithiated spinel while at £=0, they found that the layered form is more stable than
spinel by 100 meV [126]. Although these comparisons of stability neglected the effect
of configurational entropy, the free energy curves calculated at room temperature
ﬁsing the cluster expansions for the si)inel and O3 forms of Li;CoO, convey the same
qualitative trends.

The fact that there is a driving force of almost 200 meV for transformation from
the layered phase to the spinel phase at z=1/2 in Li,CoO; is surprising since this

transformation has rarely been observed experimentally, and when it has been ob-
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served, the amount of spinel phase formed has been low [138]. Nevertheless, this
result exposes a potential failure mechanism for the cathodes with the layered phase, .
since during each charge, there exists a thermodynamic driving force to irreversibly
‘transform to the spinel form. Due the the more favorable voltage characteristics of
the layered form, there has been an intense search in recent years to fabricate other
’pra.nsition metal oxides, most notably Li;MnO, in the layered crystal structure. In
this respect, it is of interest to know the relative stability between the layered and
spinel forms in different lithium transition metal oxides. First principles calculations
of energies of layered and spinel forms of Li,MO; compounds where M are important
transition metals such as Mn and Ni also predict that around z=1/2, the spinel form
is energetically more stable than the layered form [8].

Although the transformation from layered to spinel does not seem to occur readily
in LizCQOQ, there is evidence that it does occur the other transition metal oxides.
In recent years, ‘it has been possible to synthesize LiMnO, in a layered structure
(35, 36, 139, 140, 141]. Upon deintercalation in a battery, however, the layered form
of LiMnO, very rapidly transform to a defective spinel crystal structure, a result
which is consistent with first principles predictions for this compound [142, 8]. The
same appears to be true for the layered form of Li;NiO,. Although stable under
ambient conditions, around z=1/2, this compound has been observed to transform
to spinel at 200° C [143, 144].

Since there is a driving force in each case, the difference in behavior between the
three different transition metal oxides is a clear example of the role that kinetics can
play. During a transformation from the layered form to the spinel form, metal ions
must diffuse from the metal layer into the lithium layer. This must occur by squeez-
ihg through a close-packed oxygen plane. One possibility is that Co diffusion is much
lower than Mn diffusion within the oxygen skeletal structure. Another possibility is
that in the case of cobalt, the transformation proceeds by a nucleation and growth
mechanism while in the Mn compound the transformation occurs spontaneously, sim-

ilar to what is observed in spinodal decomposition.
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5.6 Conclusion

The significant differences in electrochemical properties between the spinel and lay-
ered forms of Li;CoO, are in large part a result of the fact that spinel offers both
tetrahedral and octahedral sites for lithium ions while the layered O3 phase has only
octahedral sites available for lithium ions. Both the phase diagrams and the voltage
curves of the two crystal structures have important qualitative differences. A signifi-
cant feature about spinel lithium transition metal oxides is that the tetrahedral sites
are energetically more favorable than the octahedral sites for occupation by lithium
ions, yet they are not as numerous. This causes a large miscibility gap whereby two
forms of spinel coexist: one form with all the tetrahedral sites occupied at z=1 /2 and
the other with all the octahedral sites filled at z=1. In fact, the immense stability of
the tetrahedral sites results in a free energy curve with a sharp curvature at z=1/2.
The sharp curvature translates into a large voltage step at z=1/2, a feature that is
characteristic of all lithium transition metal oxides with the spinel crystal structure.

An interesting feature about the phase diagram of spinel Li,CoO, is the absence
upon heating or cooling of a well defined order-disorder transition at z=1/2. In the
low temperature form of Li;,CoO; the lithium ions occupy exclusively the tetrahe-
dral sites while at high temperature the lithium ions are disordered over both the
tetrahedral and octahedral sites. The absence of a symmetry change between the low
temperature ordered phase and the high temperature disordered phase makes such a
smooth transition possible.

Although the spinel form of Li,CoO, is technologically not very important, the
first principles investigation of its properties has enabled us to isolate the effect of the
crystal structure on the thermodynamic properties of a given lithium transition metal
oxide. Many of the properties p;‘edicted for spinel Li,CoO, are observed in the spinel
form of LithOZ, even though the manganese ions induce Jahn-Teller distortions,

charge ordering and magnetic ordering.
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Chapter 6

Effect of oxygen vacancies on the

electrochemical properties of

layered Li;CoO»

6.1 Introduction

In the previous two chapfers, we considered phase stability in Li;CoO, assuming a
perfect CoO, host structure. 1n reality, though, the CoOs host will contain defects,
the most common of which are expected to be oxygen vacancies. As lithium is re-
moved from LiCoO,, the compound is oxidized whereby the effective valence of Co
progressively changes from +3 to +4. As described in chapter 3, this is countered by
a shift in the nature of bonding in Li,CoO, whereby the Co-O bonds become more
covalent as z is reduced. Another way that oxidation is accommodated is through
oxygen loss to the environment. Although the formation of oxygen vacancies within

Li;CoO, has a large energetic cost, there is an enormous entropic gain when the

oxygen ions form O, molecules in the gas phase. The equilibrium concentration of

oxygen vacancies in Li;CoQO; depends sensitively on the temperature and oxygen par-
tial pressure in the environment. The equilibrium oxygen vacancy concentration will

increase as the lithium concentration is reduced since the compound becomes more
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oxidized. Furthermore, the oxygen vacancy concentration increases as the tempera-
ture is raised, since'entropy becomes more important at elevated temperature. We
refer to the oxygen vacancy concentration as 4 which is defined by Li,CoO,_j;.

The mobility of oxygen vacancies within the Li;CoO, host is exceedlingly low.
In fact, a calculation within LDA of the activation barrier (see chapter 7) for the
migration of an isolated oxygen vacancy is on the order of 3 eV. At ambient tem-
peratures, therefore, oxygen Iosé to the environment is severly limited by kinetics,
and the equilibrium oxygen vacancy concentration as a function of the lithium con-
centration z is unlikely to be obtained during typical charge and discharge cycles.
Nevertheless, a certain concentration of oxygen vacancies will be present in the lay-
ered Li,CoO, host since this compound is typically synthesized around 800° C where
the thermodynamic driving force for oxygen vacancy formation and the mobility for
oxygen vacancy diffusion is significantly higher than at room temperature.

In this chapter, we investigate the effect of a dilute and fixed oxygen vdcancy
concentration on the electrochemical characteristics of Li;CoO; and on the predicted
transition temperatures of the ordered phases at z=1/2 and 1/3. We omit an inves-
tigation of the equilibrium oxygen vacancy concentration, because the local density
approximation results in significant errors when Comparing enthalpies of an element in
the solid and the same element in a molecule in the gas phase. Since the equilibrium
oxygen vacancy concentration depends exponentially on this enthalpy difference, any
serious errors will be magnified many fold in the predicted equilibrium oxygen vacancy
cbncentration. We limit ourselves to oxygen vacancies, although more complicated
defects to the host can be expected due to certain fabrication methods. Levasseur
. et al [145], for example, have fabricated lithium excess forms of Li;CoO, which are
believed to contain a combination of oxygen vacancies along with cobalt vacancies.

A first step in determining the effect of oxygen vacancies on the behavior of the
lithium ions is an understanding of the evolution of the oxygen-vacancy formation
enthalpy with the local lithium-vacancy configuration. The oxygen-vacancy forma-
tion enthalpy is the enthalpy increase associated with taking an oxygen ion out of

the crystal and placing it in its atomic ground state at infinity. To understand the
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dependence of the vacancy formation enthalpy on the degree of lithium disorder, we
use a local cluster expansion (see chapter 2). The local cluster expansion can then be
implemented in Monte Carlo simulations to investigate the effect of oxygen vacancies

on the thermodynamic properties.

6.2 Oxygen-vacancy formation enthalpies

Oxygen-vacancy formation enthalpies were calculated using a supercell of Li,CoO,
containing different lithium-vacancy arrangements. The supercell contained 12 Li,CoO,

formula units. Oxygen-vacancy formation enthalpies are defined as
AHo, = HLi;,C01,0, + Ho — HLiyz, 01,04 (6'1)

where H Lm;cmou is the enthalpy of the ‘supercell with’ a particular lithium-vacancy
arrangement at concentration z and a defect free CoO, host structure. Hri,,. 015045
is the enthalpy of the supercell with the same lithium-vacancy arrangement, but with
an oxygen vacancy in the CoO, host and Hp is the enthalpy of an isolated oxygen
atom in its ground state electronic configuration. The enthalpy Hy;,,. co,0,, Was
calculated within LDA by relaxing both the volume and the internal ion coordinates.
Hypi\s.C01,0,; Was calculated at the same equilibrium volume as the structure without
the oxygen vacancy but internal ion coordinates were allowed to relax.

" Fig. 6-1 illustrates twelve different oxygen-vacancy formation enthalpies as cal-
culated with the pseudopotential method in the local density approximation. The
formation enthalpies at z=1 and z=0 correspond to oxygen-vacancy formation en-
thalpies for fully lithiated and fully delithiated cases. At other lithium concentra-
- tions, Ep, is not uniquely specified by a particular lithium-vacancy arrangement
but also depends on the relative position of the oxygen vacancy with respect to the
lithium-vacancy configuration. Hence at a particular lithium concentration, different
oxygen-vacancy formation enthalpies are possible. This is illustrated in Fig. 6-1 for

example at z=11/12 where three oxygen-vacancy formation enthalpies are illustrated.
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Figure 6-1: Oxygen-vacancy formation enthalpies for the O3 form of Li;CoO, as a
function of lithium concentration and arrangement.

At z=11/ 12,. only one lithium vacancy is present in the supercell. The lowest oxygen-
vacancy formation enthalpy occurs when the oxygen vacancy is as close as possible to
the lithium vacancy. The oxygen-vacancy formation enthalpy progressively increases
as the lithium vacancy is placed further away from the oxygen vacancy. In Fig. 6-1
the two oxygen-vacancy formation enthalpies at x=11/12 that are almost degenerate
and have values around 7500 meV correspond to the enthalpies for a lithium vacancy
within the second nearest neighbor shell and the third nearest neighbor shell away
from the oxygen vacancy. Notice that when a lithium vacancy is in the second or third
nearest neighbor shell away from the oxygen vacancy, the oxygen-vacancy formation
enthalpy approximates the formation enthalpy at z=1 where lithium vacancies are
completely absent. This shows that the configuration dependence of the oxygen-
vacancy formation enthalpy is short ran’ge. It suggests that an oxygen vacancy does
not see an isolated lithium vacancy beyond the second nearest neighbor distance from
the oxygen vacancy.

At z=1/12, three oxygen-vacancy formation enthalpies are shown again, each
corresponding to an isolated lithium ion at different distances away from the oxygen
vacancy. The oxygen-vacancy formation enthalpy is the highest when the isolated
lithium ion is directly adjacent to the oxygen vacancy. The oxygen-vacancy formation

enthalpy decreases as the lithium ion is placed further away from the oxygen vacancy.
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Figure 6-2: Clusters used in the local cluster expansion for the oxygen-vacancy for-
- mation enthalpy of the O3 form of Li;CoO,. The triangular lattice corresponds to
the lithium sites and the circles correspond to oxygen ions adjacent to the lithium
plane. The square signifies an oxygen vacancy.

These results illustrate that in the dilute concentration limits, a lithium ion is
repelled by an ozygen vacancy. In effect, an oxygen ion raises the site enthalpy for
lithium occupation of the lithium sites in the immediate vicinity of the oxygen va-
cancy. An oxygen vacancy can be considered as have an effective positive charge (due
to the absence of a negatively charged oxygen ion) while a vacancy in the lithium
plane has an effective negative charge. Oxygen vacancies therefore attract lithium
vacancies.

Notice in Fig. 6-1 that as the Li concentration is decreased, the oxygen-vacancy
formation enthalpy reduces. This means that with decreasing z, it becomes energet-

ically less costly to remove an oxygen ion from an otherwise perfect CoO, host.

6.3 Local cluster expansion

An inspection of the oxygen-vacancy formation enthalpies at the dilute extremes indi-
cates that an oxygen vacancy attracts isolated lithium vacancies at high lithium con-
‘centration and repels isolated lithium ions at low lithium concentration. At interme-

diate lithium concentrations, many possible lithium-vacancies arrangements around
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Figure 6-3: ECI for the local cluster expansion of the oxygen-vacancy formation
enthalpy. See Fig. 6-2 for the numbering of the clusters.

an oxygen vacancy can exist and these will alter with concentration and temperature.
To approximate the enthalpy of arbitrary lithium-vacancy arrangements around an
oxygen vacancy we used the twelve oxygen-vacancy formation enthalpies of Fig. 6-1
to parameterize a local cluster expansion. This local cluster expansion contains clus-
ters extending up to the third nearest neighbor shell from the oxygen vacancy. The
clusters of the expansion are illustrated in Fig. 6-2 and their values are plotted in
Fig. 6-3. The root mean square error between the first principles oxygen-vacancy
formation enthalpies and those calculated with the local cluster expansion is 57 meV,
or roughly 1 percent of the oxygen-vacancy formation enthalpies.

The local cluster expansion was implemented in Monte Carlo simulations together
with the cluster expansion for the configurational enthalpy for the O3 host. Oxygen
vacancies were randomly distributed throughout the Monte Carlo cell in such a way
that the interaction range of any oxygen vacancy does not overlap with the interaction
ranges of the other oxygen vacancies. The enthalpy of the crystal was calculated by
first using the cluster expansion for the lithium-vacancy configurational enthalpy and
then calculating the oxygen-vacancy formation enthalpies for each oxygen vacancy
in the Monte Carlo cell using the local cluster expansion. Simply adding the two

components yields the total enthalpy of the crystal.
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Figure 6-4: Voltage curves for Li;CoO,_; for §=0 (solid line), 0.015 (middle dashed
line) and 0.03 (lowest dashed line).

6.4 Oxygen vacancies and electrochemical pi'oper-
ties

With the Monte Carlo simulations, it is possible to probe the effect of oxygen vacancies
on the voltage curve. Fig. 6-4 illustrates the calculated voltage of Li;CoO, in the
absence of any oxygen vacancies and with = 0.015 and 0.03 in Li;CoO,_;. Oxygen
vacancies leave a clear imprint at the initial stages of deintercalation by producing a
small kink in the voltage profile.

The kink can be understood by inspection of the concentration of lithium ions
in the immediate vicinity of the oxygen vacancies. Fig. 6-5 illustrates the average
concentrations around oxygen vacancies within the first, second and third nearest
neighbor shells. As can be seen, in the initial stages of deinteracalation, on average,
two of the three lithium ions within the first nearest neighbor shell around the oxy-
gen vacancies are almost instantaneously removed. (The nearest neighbor shell of an
oxygen vacancy has three lithinm sites.) It is no coincidence that exactly two lithium
ions immediately adjacent to an oxygen vacancy are instantaneously removed since
the effective charge of an oxygen ion is -2 while that of a lithium ion is +1. Oxygen

vacancies repel the lithium ions occupying the sites within the first nearest neighbor
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Figure 6-5: Average lithium concentration in different neighboring shells from oxygen
vacancies in Li,CoO,_; with §=0.015.

shell the most, causing them to be vacated at a lower voltage than the other sites in
the crystal. One lithium ion remains within the first nearest neighbor shell around
an oxygen vacancy, though, since the energetic penalty of having a triplet of vacan-
“cies at high lithium concentration is high as a result of the charge imbalance this
would produce. The width of the kink in the voltage profile is directly related to the
number of lithium ions repelled by the oxygen vacancies. The kink spans a lithium
concentration interval that is approximately twice the number of oxygen vacancies §
in Li;CoO,_; since each oxygen vacancy repels two lithium ions.

Oxygen vacancies also affect the phase boundaries of the ordered lithium-vacancy
phases. The local lithium-vacancy arrangements that are energetically preferred
around an oxygen vacancy are not necessarily compatible with the lithium-vacancy
arrangement in the ordered phases. This will destabilize the ordered phase with re-
spect to the disordered phase where the preferred local lithium-vacancy environment
around an oxygen vacancy can be more easily accommodated. Furthermore, a random
distribution of oxygen vacancies can produce incommensurabilities that will furt-her_

destabilize the ordered phase. Fig. 6-6 illustrates the effect of oxygen vacancies on the
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Figure 6-6: Dependence of the order-disorder transition temperatures of the ordered
phases at z=1/2 and z=1/3 in the O3 form of Li;CoO,_; (see Fig. 4-6). The order-
disorder transition temperature as a function of the oxygen vacancy concentration ¢
at z=1/2 is plotted with the solid line and at z=1/3 it is plotted with the dashed
line.

order-disorder transition temperatures of the lithium ordering at z=1/2 aund 1/3. The
order-disorder transition temperatures decrease as the oxygen vacancy concentration

increases.

6.5 Conclusion

The results of this chapter show that the effect of a dilute concentration of oxygen
vacancies in L1,Co0s is to‘ create a kink in the voltage curve at the initial stages of
charge. The pseudopotential calculations within LDA show that oxygen vacancies
repel neighboring lithium ions. Hence the lithiqm ions adjacent to oxygen vacancies
are removed at a lower voltage than the other lithium ions that are not effected by
the bxygen vacancies. The Monte Carlo simulations predict that on average, two
lithium ions per oxygen vacancy are initially removed from sites within the first
nearest neighbor shell of each oxygen vacancy.

A similar effect can be expected in lithium transition metal oxides having the spinel

crystal structure. The voltage curve of the spinel crystal structure is characterized

102



by a large step at z=1/2 in Li,MO, where M is a transition metal. As was shown
in chapter 5, lithium ions occupy tetrahedral sites below z=1/2 and predominantly
occupy octahedral sites around z=1. In the spinel structure, we can expect oxygen
vacancies to produce a kink around z=1 and again in the voltage step at z=1/2. An
oxygen vacancy will repel neighboring lithium ious residing on octahedral sites when
z=1 and it will repel neighboring lithium ions on tetrahedral sites when z=1/2.
The Monte Carlo simulations also predict that oxygen vacancies reduce the order-
disorder transition temperatures of ordered phases. The preferred lithium-vacancy
arrangement around an oxygen vacancy is not always compatible with different long-
range ordered lithium-vacancy configurations. The disordered phase can more easily
accommodate the preferred lithium-vacancy arrangement around an oxygen vacancy.
Hence oxygen vacancies stabilize thé disordered phase over the ordered phase. This
is an important result, since order-disorder transition temperatures in oxides are
often significantly over-predicted from first principles [146]. The presence of oxygen

vacancies could explain some of this discrepancy.
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" Chapter 7
Diffusion from first principles

The rate at which an electréchemical cell containing a Li,MO, cathode material can
be charged and discharged depends on the lithium mobility within the MO, host.
The process of removing and inserting lithium into Li,CoO, is a kinetic process and
is associated with irreversibility. In order for lithium ions to leave the cathode, the
cathode must be in a state that is out of equilibrium. This can be done by inducing a
concentration gradient by for example changing the lithium chemical potential at the
surface of the cathode particle. Kinetic parameters such as diffusivity D or mobility M
relate a driving force such as a concentration gradient or a chemical potential gradient
to a resultant net flux of lithium ions within the host. Although D and M describe
irreversible processes, the theory of irreversible thermodynamics shows that kinetic
parameters such as these can be calculated by a éonsideration of the thermodynamic
fluctuations that occur in a system at equilibrium (147, 148, 149, 150, 151, 152]. In
this chapter, we briefly describe the phenomenological theory of diffusion and review
how kinetic paraméters can be determined from an investigation of thermodynamic
fluctuations of a solid at equilibrium. We then present a procedure that enables the
calculation of the diffusion coefficient from first principles. We restrict our discussion

to the diffusion of a single type of particle on a lattice within a host.

104



7.1 Phenomenological equations for diffusion

According to the theory of irreversible thermodynamics {147, 148], the natural driving
force for diffusion is the gradient in lithium chemical potential ﬁum. Such a gradient

produces a diffusive flux J which is related to the driving force according to
J=—-LVu | (7.1)

L is a kinetic parameter that is determined by the mobility of lithium. pug;, the
lithium chemical potential expressed per LiMO, formula unit, is a function of the Li

concentration z. The gradient of uz; can therefore also be written as
— 6 y
Vhses = Vn—gf-Vc (7.2)

where V4, is the volume per Li;MO, formula unit and cis defined as £/ V4. (7.2) is valid
for small enough gradients in concentration such that the concentration dependence

of Vo can be neglected. Another way of writing (7.2) is

Gus, = kprve Ll ke) dnz e kT 0 (bii/ksT) & (7.3)
dlnz dz c Olnz
Using (7.3), we can rewrite (7.1) as
- k i —
J=—p (kL) Hrui/ksT) (7.4)
c Olnz :
By defining the diffusion coefficient D as
kgT a([J.Li/kBT)
D= ,
L( c ) Odlnz (7:5)
we obtain Fick's law
J=-DV¢ (7.6)

D and L are tensors which for diffusion of a single type of particle in a host can be

represented by a 3 x 3 matrix. Symmetry determines which elements of these matrices
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are non-zero. For lithium diffusion in the cubic spinel host, diffusion is isotropic and
the tensor for D has only diagonal elements that are all equal. For lithium diffusion
in the layered host, diffusion along the c-axis can be neglected due to the almost
impenetrable O-Co-O slabs, while diffusion within the lithium planes is isotropic as
a result of the high symmetry of the two-dimensional triangular lattice.

It is convenient to introduce the thermodynamic factor © defined as

_ 3(#Li/kBT)

0= Olnz (77)

The thermodynamic factor expresses the deviation of the solid solution from ideality.

In an ideal solution, the chemical potential can be written as
p=p’+kgTInz (7.8)

where pu° is independent of = and is the chemical potential in the standard state (z.e.
z=1). For an ideal solution, ©=1 and (7.5) reduces to the familiar Nernst-Einstein
relation

D L

—_—— =—=3 7.
TG I (7.9)

where the ratio L/c is referred to as the lithium mobility A/. Around an ordercd
phase, the chemical potential deviates strongly from ideality and the thermodynamic
factor becomes much larger than unity. Hence in an ordered phase, there is a large
thermodynamic enhancement of the diffusivity. This arises simply from the fact that
in an ordered phase, a small gradient in concentration produces a large gfadient in

chemical potential.

7.2 D and thermodynamic fluctuations

The validity of irreversible thermodynamics is restricted to systems that are not too
far removed from equilibrium [147, 148]. To quantify this, it is useful to mentally
divide the solid into small subregions cach with volume V5. If the subregions can be
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made microscopically large enough for thermodynamic variables to be meaningful yet
macroscopically small enough such that the same thermodynamic variables can be
considered constant within each subregion, the solid is said to be in local equilibrium or
equivalently not too far removed from equilibrium. Hence, although the solid itself is
removed from equilibrium, each subregion with volume V; can be considered locally
in equilibrium. The local equilibrium assumption is valid as long as gradients in
quantities as concentration and temperature are not too large, a requirement that is
generally satisfied in most cases of practical interest.

Within this framework, the kinetic parameters D and L can be derived by a
consideration of relevant fluctuations at thermodynamic equilibrium. Crucial in this
derivation, is the assumption made by Onsager in his proof of the reciprocity relations
of kinetic parameters [153, 154], that the regression of a fluctuation of a particular
extensive property around its equilibrium value occurs according to the same phe-
nomenological laws as those governing the regression of artificially induced fluxes of
the\same extensive property. It is now recognized that this regression hypothesis
is a consequence of an important fluctuation-dissipation theorem of non-equilibrium
statistical mechanics [155].

Onsager’s regression hypothesis is valid strictly within the local equilibrium ap-
proximation. This means that it is restricted to fluctuations of extensive properties
averaged over the microscopically large (i.e. thermodynamic limit) subregions. Math-
ematically this is expressed as a limit £ — 0 where & is the wave vector of the Fourier
components of the fluctuation. The regression hypothesis is also typically only justi-
fied on time scales of macroscopic measurements. These conditions are often referred
to as the hydrodynamic limst [155, 57].

Since the number of lithium ions are conserved, the following continuity equation
must hold

acgt’ - _$7 (7.10)

where the variables 7 and ¢ emphasize the position and time dependence of the con-
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centration ¢ and flux J. With Fick’s law, (7.6), the continuity equation becomes

9c(r) t)

= VDVc(F,t) (7.11)

@

This equation dictates how an initial concentration profile c(7,t = 0) removed from
equilibrium evolves with time.

A measure of fluctuations in the concentration profile are time correlation func-
tions defined as

S(7—7,1) = (8c(F, t)c(r', 0)) - (11)

where 6c(7,t) = ¢(7,t) — ¢, with ¢, the equilibrium concentration. For large wave
length fluctuations at equilibrium, S can be assumed to depend on 7 — 7 instead

of 7 and 7/ separately. The brackets in (7.12) denote an ensemble average with the

initial probability distribution at t=0. The mathematical formulation of the regression

hypothesis of Onsager, states that the correlation function S in the hydrodynamic

limit should satisfy the continuity equation (7.11) which incorporates Fick’s law (7.6)

27y . -
a_.Slr_aTu_) = DV2S(F—1",t) (7.13)
where the concentration dependence of D has been neglected since concentration fluc-
tuations at equilibrium are typically small. After a series of mathematical manipula-
tions applied to the above equation (see appendix) and after taking the hydrodynamic
limit, the following expression for the diffusion coefficient [151, 156, 157] is obtained

' 1 oo - e

D=————/ J0)J))dt 7.14
D= Gamaly (JOIW) (7.14)
where d is the dimension of the space in which diffusion occurs. In spinel Li,CoO,
for example, d is equal to 3 while in layered Li,CoQ,, d is equal to 2. (7.14) can be

written explicitly in terms of particle velocities as

P = (zwm) (]J)d/0m<gﬁ(0)§ﬁj(t)>dt (19
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where N refers to the number of lithium ions and d N is the fluctuation of the number
of lithium ions within a reference volume, that we denote by V, . (N) is the average
number of lithium ions in the reference volume V;. Equations (7.14) and (7.15) are
often referred to as Kubo-Green type of equations in that a kinetic parameter is
related to a correlation function of the relevant currents at equilibrium. D in (7.15)
corresponds to the diffusion coefficient appearing in Fick’s law (7.6).

The prefactor in parenthesis in {7.15) is a thermodynamic quantity, and can be
shown to be identical to the thermodynamic factor © defined in the previous section

[156]
O(uri/ksT) _ _(N)
Olnz ((6N)?)

With this observation, the kinetic parameter L defined by (7.1) and related to D

0=

(7.16)

according to (7.5) , becomes

c o | N N
L= -ngT = kB;'V;d./o <Zz7,—(0)25‘,-(t)>dt (7.17)

i=1 7=1

V, corresponds to the reference volume containing on average (N) lithium ions. By

defining D; as

p, =1L - e / <§ V; >dt (7.18)

c

we can write

D =0D, (7.19)

which is a product of a thermodynamic term © and a kinetic term D,.

Although D describes macroscopic diffusion in the presence of a concentration
gradient, frequently much attention is also paid to a self diffusion coefficient D*
which is determined by the velocity self correlations of individual particles {152, 156]

according to
1 & o
— v;(0)7;(t)) dt 7.2
TP AKCIORIO) (7.20)

In (7.20), the correlation is that of the velocity of each lithium ion at t = 0 with the
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velocity of the same lithium ion at time ¢. Apart from the thermodynamic factor O,

D* also neglects the cross velocity correlations between different diffusing particles.

Hence

br I (= 3 (0)3:(2)) dt (7.21)

In situations where cross velocity correlations between different lithium ions are neg-

D _o (1 s (z,-#«v,-(ow,-(t»dt)

ligible D is related to the self diffusion coefficient D* according
D=eD* (7.22)

This equation is the familiar Darken approximation. It has the same form as the more
rigorous expression for D given by (7.19). This similarity shows that D; introduced
in (7.18) can be viewed as a tracer diffusion coefficient which includes the correlations

between the velocities of the other diffusing lithium ions.

7.3 Diffusion for a lattice model

The lithium ions within Li,MO, spend most of their time at well defined equilibrium
sites and only a very small fraction of the time along paths connecting adjacent
sites. Diffusion arises from the migration of lithium from one site to a neighboring |
vacant site. After a lithium hop, the solid typically undergoes a large number of
vibrations before the éame ion hops again. Between hops, there is therefore enough
time for the lithium ion to thermalize whereby the momentum that the ion had
during the hop is anharmonically dissipated to the rest of the crystal. This means
that correlations between successive hops are negligibly small and diffusion can be
modeled stochastically. A good approximation for the frequency with which lithinm
ions hop between adjacent sites is transition state theory [158] to be described in the
next section.

As was demonstrated in previous chapters, the thermodynénnic properties of
Li;CoO; are well characterized with a lattice model. Furthermore, the fact that

diffusion can be viewed as discrete hops between adjacent equilibrium sites, with
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hopping frequencies given by transition state theory, suggests that a lattice model
is an appropriate tool to investigate lithium diffusion in Li;CoO,. Since diffusion in
these systems is the result of a succession of discrete hops, it is useful to rewrite the
expressions for D and D* of the previous sections in terms of position 7;(t) as opposed

to the velocities 7;(t). For D, this results in
D=0D, (7.23)

where © is the thermodynamic factor of (7.7) and Dy, commonly referred to as the

Jump diffusion coefficient [159], is given by

D, = lim [%dt <§ (gﬁ-(t))z)] (7.24)

7i(t) is the displacement of the * lithium ion after time ¢ and d is the dimension of
the lattice on which diffusion takes place. For lithium diffusion in the layered form
of LiICOOQ, d=2.

In a similar way, the self-diffusion coefficient becomes

D= jim | o (Ti,—g([aunz)” (7.25)

D differs from D, in that it measures the square of the displacement of individual
particles while the jump diffusion coefficient Dj is a measure of the displacement of

the center of mass of all the diffusing lithium ions.

7.4 Transition state theory

The i(t) appearing in equations (7.24) and (7.25) for the 1** lithium ion are the
result of individual hops between adjacent lithium sites in the MO, host. Along the
migration path between these sites, the migrating ion passes through an activated
state. The activated state is located at the maximum energy point along the minimum

energy path between the end-points of the hop. The activation barrier AHp is defined
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AHp=Hs—H; (7.26)

where H; is the enthalpy of the crystal in the initial state and Hy4 is the enthalpy of
the crystal with lithium in the activated state. The frequency, I, with which a hop

occurs is given within transition state theory [158, 160] as

I'=vexp (%) exp (_ifB) (7.27)

v is an effective frequency also called an attempt frequency and is given by

G

L and A are integration volumes around the saddle point and the initial equilibrium
state. AS in (7.27) is the activation entropy and is related to the ratio of states at the
activated state to that of the equilibrium state. It can be calculated as the logarithm

of the ratio of two Boltzmann integrals [161]

~(H~Hp)/ksT
25 [(é) Jpe 7 7r0 0 dL (7.29)

kg L) [,e"H/ksTqA

In its most rigorous form, the enthalpy H in the above equation is a surface that
depends on 3@ degrees of freedom where Q corresponds to the number of ions in the
solid. The 3Q) coordinates in phase space correspond to the position coordinates of
the ions of the solid, normalized by the square root of their mass. The integration
region L is a 3Q) — 1 dimensional dividing ’surface’ between the initial and final states
of the hop and passes through the saddle point along the migration path. A is a 3Q
dimensional 'volume’ around the initial equilibrium state of the hop.

In the derivation of (7.27), several assumptionﬁare made. As a first approxima-
tioh, it is assumed that once a migrating ion originating from the initial state has

reached the dividing surface L, it will continue to migrate to the final state. In real-

ity, a fraction of the migrating ions that pass the dividing surface L will abort their
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hop and return back to the initial state. Nevertheless, theoretical studies analyzing
this have found that neglecting the aborted hops leads to only minor quantitative
errors of several percent [162]. Within this approximation, the hopping rate I is then
set proportional to the fraction of the total time that a migrating ion resides on the
dividing surface multiplied by the rate at which the ion crosses the dividing surface
L in the direction of the final state. Both the fractional probability of being at the
dividing surface L and the rate of crossing the surface are calculated within classical
statistical mechanics [158]. At high temperature, this latter approximation is suffi-
ciently accurate, though it breaks down when quantum tunneling becomes important
as can be the case for hydrogen diffusion.

Within the harmonic approximation, (7.27) can be written as [158]

I1° v —AHB)

I'= —3—Q_1—VI exp ( 5T (730)
J

The prefactor of the exponential is a ratio of the products of the 3Q normal mode
frequencies of the equilibrium initial state to the 3Q-1 normal modes of the activated
state. Absent in the product of the denominator is the mode in the direction of
the hop. (7.30) clearly shows that the prefactor of the exponential containing the
activation barrier has the dimensions of a frequency. Furthermore, it suggests that
this prefactor has a numerical value on the order of a vibrational frequency. Typically,
the prefactor is taken to be of the order of 10" Hz. Nevertheless, examples exist,
such as the two dimensional diffusion on a Ge surface, where the prefactor was found

from first principles to be around 10'! Hz [163).

7.5 Environment dependent activation barriers

In lithium transition metal oxides, Li:MO,, a large variety of lithium-vacancy arrange-
ments occur. Both the H, and H; that determine the activation barrier according
to (7.26) depend on the lithium vacancy configuration present at the time of a hop.

In general, the enthalpies of the endpoints of a hop are not equal and the activation
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Figure 7-1: The activation barrier AHg depends on the direction of the hop (indicated
by the arrow). AHjs, however, is independent of the direction of the hop.

barrier seen from one endpoint will often differ from that seen from another endpoint
(see Fig. 7-1). To enable comparison between activation barriers in different local
‘environments, it is useful to introduce a mean activation barrier AHp. A hop is
characterized by at least two éndpoints but could have n > 2 endpoints. We define
the endpoints of a hop to be the sites around the activated state that must be vacant
when a hopping ion is at the activated state and that are at the same time possi-
ble destination points for the hopping ion at the activated state. Defining H,; as
the enthalpy of the crystal when the lithium ion is at endpoint j of the hop, we can

formulate a mean activation barrier AH,, as

AHy=Hy—
n 4

H., | (7.31)
j=1 .

The enthalpy barrier that the migrating lithium ion experiences when hopping from

one of the endpoints, say j=1, is then
1 n
AHp = AHp + ~ > H, - H.,, (7.32)
J=1

AH), is equal to AHg when the enthalpies of the n-endpoints are all the same. When
the enthalpies of the endpoints are not equal, A H,, reduces to the average of all the
AHp seen from each of the n endpoints of the hop.

Since the mean activation barrier AH,, are environment dependent, depending on

the local lithium-vacancy environment around the activated state, it can be cluster

114




expanded. Such a cluster expansion should have the form
AHy =Ko+ Y Koba, (7.33)

where ¢, are polynomials of occupation variables, and K, are ECI describing the
variation of the mean activation barrier with configuration. When a lithium ion is at
the activated state, the n-endpoints of the hop are unoccupied. For a crystal with m
lithium sites, the cluster expansion (7.33), therefore, extends over the m — n lithium
sites that do not overlap with the n-endpoints of the hop. It is reasonable to assume
that (7.33) can be truncated after a cluster that extends beyond a maximal distance
away from the hopping lithium ion, since the activation barrier is a local property.
With a cluster expansion for the mean activation barrier AHps in combination with
a cluster expansion for the configurational enthalpy of the crystal (to calculate the
end point enthalpies of the hop H,), it is straightforward to calculate the activation
barrier AH g for any lithium-vacancy environment using (7.32).

The property AH)p being cluster expanded with (7.33) is different from the
lithium-vacancy configurational enthalpy. AH), is a local property while the en-
thalpy of the crystal is a global property of the whole solid. The relevance of this
distinction manifests itself in how symmetry is used in simplifying the cluster expan-
sion. Instead of using the space group symmetry operations of the crystal (as is done
for a global cluster expansion , see chapter 2), the local cluster expansion (7.33) is to
be simplified using the point group symmetry operations that simultaneously belong
to the space group of the crystal and which map the figure of n-endpoints on itself. To
our knowledge, this is the first time that a local cluster expansion has been proposed
to parameterize the configuration dependence of the activation barrier.

The exponential prefactor of (7.27) also depends on the local environment. This
quantity can, therefore, also be characterized with a combination of global and local
cluster expansions. Nevertheless, the prefactor is expected to be less sensitive to
variations in local envirbnment than the exponential of the activation barrier. In this

thesis, we neglect the configuration dependence of the prefactor.
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Sevéral methods exist for finding the activated state and its enthalpy H,4 from first
principles. These typically make use of a large supercell such that conventional first
principles methods for periodic systems can be implemented. In this thesis, we have
used two approaches to obtain information about the activation barriers in Li;CoQO,.
The first is called the elastic band method which enables the determination of the
minimum enthalpy path between two energetically stable endpoints [164]. In thié
method, a discretized path of on the order of 8 replicas of the system is generated
by linear interpolation between the initial and final states of the path. A global
minimization is then performediwith respect to ionic positions in each replica whereby
the coordinates of each replica are connected to those of its neighboring replicas in the
interpolation sequence by a spring. The working of the algorithm can be compared
to the tightening of an elastic band across a saddle point between two minima of the
enthalpy landscape.

The elastic band method is useful to identify the migration path and the location
of the activated state. Nevertheless, to obtain an accurate approximation of the
enthalpy at the activated state, a large number of replicas are needed. In many cases,
the activated state is located at a high symmetry point between the endpoints and a
calculation of the activation barrier can be performed with the hopping lithium ion
initially placed at the high symmetry peint. During minimization of the enthalpy

" of the supercell, the lithium ion will 1:emain at the high symmetry position and the
resulting minimum enthalpy will give the best approximation of the activation barrier
within the supercell approach. ‘

Calculating the prefactor in either (7.27) or (7.30) from first principles is consid-
erably more complicated than a calculation of H4. The prefactor in (7.27) depends
on the detailed structure of the enthalpy surface around both the initial equilibrium
site of the hop and the activated site. The prefactor in the harmonic approximation
(7.30) requires a knowledge of the vibrational frequencies both at the equilibrium and
activated states. First principles calculations of prefactors have been performed in

ref [161, 165, 166, 163].

116




7.6 Kinetic Monte Carlo simulations

The kinetic Monte Carlo method enables an explicit simulation of the migratioh ofa
collection of lithium ions within the CoO, host. Iﬁdividual hops occur with relative
probabilities given by the jump frequency of (7.27). Using first principles cluster
expansions to parameterize first principles activation barriers AHp of (7.27), this
approach can be expected to yield an accurate description of lithium diffusion in
LizCoO,.

The basic algorithm implemented in this work can be summarized as follows [167].
At fixed lithium concentration and temperature, the simulation starts with a typi-
cal lithium-vacancy arrangement exhibiting the equilibrium state of short-range or
long-range order. These initial configurations are typically obtained with standard
equilibrium Monte Carlo techniques in the canonical or grand canonical ensemble us-
ing the cluster expansion for the configurational enthalpy. The kinetic Monte Carlo
simulation then consists of the repetition of three steps [167]. (i) First, all possible
migration probabilities I, are determined where m scans the collection of migration
paths available to the different lithium ions. I',, is zero if the endpoints of migration
path m are simultaneously occupied by lithium. When this is not the case, I',, is cal-
culated with the hop frequency of (7.27). (ii) In the second step, a random number

p of the interval (0,1) is sampled. The migration event k is chosen such that

)

Ftot m=

1 1 k
Tn<p<=—3 Tn (7.34)
1 Ctot m=1

where [,y is the sum of all individual probabilities I';,. This ensures that each event
m occurs with probability Iy, /Tso;. The third step (iii) consists of an update of the
time At leading up to the hop of step (ii). This time is given by

1 .
At = T log ¢ (7.35)

tot

with ¢ a random number from (0,1).

We define a kinetic Monte Carlo step as the repetition of steps (i)-(iii) as many
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times as there are lithium ions in the simulation. To obtain adequate averages for D,
and D*, of the order of 25-50 initial equilibrium states should be considered at each
temperature and concentration. Time averages of the different diffusion coefficients
can be performed as described in ref[168].

Bulnes et. al. [167] demonstrated theoretically as well as with a numerical com-
parison, that the above kinetic Monte Carlo algorithm is equivalent with the dynamic
Monte Carlo algorithm commonly implemented in diffusion studies of lattice models
[169, 159, 170]. The advantage of the above algorithm is that a lithium hop occurs
during every sequence of steps (i)-(iii). This is especially advantageous for systems

with strongly varying activation barriers.

7.7 Summary

In this chapter, we have reviewed the foundations of the Kubo-Green equations for
diffusion. Kubo-Green like equations rest on the dissipation-fluctuation theorem.
They relate kinetic coefficients describing macroscopic dissipative processes such as
diffusion to microscopic fluctuations at thermodynamic equilibrium.

We have also presented a computational scheme that enables the first principles
calculation of the diffusion coefficient in a system with configurational disorder. This
approach approximates individual hops with transition state theory and describes
the configuration dependence of the activation barrier AHg with a combination of a
total enthalpy cluster expansion and a local cluster expansion for the mean activa-
tion barrier AH), defined by (7.31). The cluster expansions are parameterized with
first principles total energy caiculations of the relevant quantities. The macroscopic
diffusion coeflicients are then determined by calculating the Kubo-Green equations

with kinetic Monte Carlo simulations.
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Chapter 8
Theory of Li diffusion in Li;CoO9

The power density of a battery is in part determined by the diffusivity of the lithinm
ions within the metal oxide host structure. To optimize power density, therefore,
a clear understanding of the lithium diffusion mechanisms within the MO, host is
necessary. In this chapter, we implement the formalism of the previous chapter to
investigate lithium diffusion in the O3 form of Li;CoO, from first principles [171]. The
results of this study are also of value to elucidate the lithium diffusion mechanisms in
other layered compounds such as Li;NiO; or Li,MnO, since the symmetry of the host
structure plays a dominant role in determining the lithium migration mechanisms.
As a first step to studying diffusion, we focus on the possible migration paths
for lithium diffusion with LDA pseudopotential calculations (section 8.1). These
calculations indicate that the migration path as well as the activation barrier has a
strong dependence on the local lithium-vacancy arrangement around the migrating
lithium ion. In section 8.2 a local cluster expansion is constructed to parameterize the
configuration dependence of the activation barriers. In section 8.3, the local cluster
expansion is implemented in kinetic Monte Carlo simulations from which diffusion
mechanisms are determined and kinetic parameters such as the diffusion coefficient

are calculated. The results are interpreted and compared with experiment in section

8.4.
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(a) - (b)

Figure 8-1: Two different migration paths for lithium exist in Li,CoO, depending
on the local environment. (a) The oxygen dumbbell hop (ODH) occurs when sites a
and b are occupied. (b) The tetrahedral site hop (TSH) occurs when at least one site
adjacent to the endpoint of the hop is vacant. Large circles are oxygen, filled circles
are lithium, squares are lithium vacancies and small empty circles are cobalt.

8.1 First principles activation barriers

In this section, we present the results of an investigation of the dependence of the
activation barrier on the lithium-vacancy arrangement. We find that two qualitatively
different hopping mechanisms exist depending on the immediate local environment
around the endpoints of the hop. These are illustrated in Fig. 8-1 (a) and (b). The
first hopping mechanism occurs when the two lithium sites (sites e and b in Fig. 8-
1(a)) immediately adjacent to the endpoints of the hop are siinultaneously occupied
by lithium ions. The diffusing lithium ion then migrates along a path that closely
follows the shortest path connecting the initial site of the hop and the vacancy. This
shortest path, denoted by the arrow in Fig. 8-1(a), passes through a dumbbell of
oxygen ions. We refer to this migration path as an oxygen dumbbell hop (ODH).
This is the mechanism by which isolated vacancies exchange with lithium. When
either onei or both of the sites immediately adjacent to the endpoints of the hop are
vacant, lithium migrates along a curved path which passes through a tetrahedral site
as illustrated in Fig. 8-1(b). Notice that for this migration mechanism to occur, the

destination of the hopping lithiumn ion must be part of a divacancy (it could also be
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40 20 00
20 20 00
0.333 1.666 0.333

Qo >y

Table 8.1: The A,B and C cell vectors of the supercell in which the activation barriers
were calculated. The vectors are expressed in terms of the conventional hexagonal
setting of the O3 layered crystal structure '

part of a cluster of vacancies containing more than two vacancies). We refer to this
migration mechanism as a tetrahedral site hop (TSH).

In the following sections 8.1.1-8.1.4, we describe first principles elastic band cal-
culations that form the basis of the above picture of lithium migration in Li;CoO,.
Energies of activated states were calculated in supercells of Li,CoO; containing 12
Li;CoO; formula units. The number of ions in this supercell ranges between 47 to
37 depending on the lithium concentration (which was varied between r=11/12 to
£=1/12). The A and B axes of the supercell form a 2v/3 x 2v/3 two dimensional
superlattice in terms of the basal plane vectors @ and b of the hexagonal unit cell
of Li;CoO,. The C axis of the supercell connects adjacent lithium planes and was
chosen‘ to be as shallow as possible to maximize the distance Between the periodic
images of the hopping lithium ions in adjacent lithium planes. The coordinates of
the supercell vectors in terms of the hexagonal unit cell vectors of Li,CoO, are listed
in table 8.1. Calculations of activation barriers were also performed in a 16 Li;CoO,
formula unit supercell to test the degree of convergence of the results obtained with
the 12 formula unit supercell. In all supercell calculations, we used a 2 x 2 x 2 k-point

mesh which is equivalent to 8 irreducible k-points.

8.1.1 Migration of a vacancy in LiCoO,

Insight about hopping mechanisms can be obtained by investigating lithium migration
in the dilute extremes of lithium concentration. One dilute extreme is migration of
a single vacancy in an otherwise fully lithiated Li;CoO, host. Fig. 8-2(a) illustrates
a projection of a lithium plane. With the pseudopotential method in combination

with the elastic band method, we find that a lowest energy migration path between
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Li ion

Li vacancy

Oxygen above Li plane

o O[e

Oxygen below Li plane

Figure 8-2: Lithium migration paths in Li;CoO, determined with the elastic band
method. The triangular lattice corresponds to the lithium sites and the filled circles
are lithium ions. The large empty circles are oxygen ions above the lithium plane

and the small empty circles are oxygen ions below the lithium plane. See text for
discussion. '
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adjacent octahedral sites closely follows the arrow A-B of Fig. 8-2(a). Although the
arrow A-B of Fig. 8-2(a) forms a straight line connecting adjacent octahedral sites,
the actual migration path is slightly curved, but passes very close to the center of
the oxygen dumbbell formed by the oxygen ions O, and O,. In fact, we find that the
saddle point for dilute vacancy migration is predicted to be 0.25 A away from the
center of the oxygen dumbbell (directed towards either one of the adjacent tetrahedral
sites) and 0.8 A away from the closest adjacent tetrahedral site. Because of this, we
will refer to this migration path as an Oxygen Dumbbeil Hop (ODH). The activation
barrier for the ODH is predicted to be 830 meV and the enthalpy along this path is
illustrated in Fig. 8-3(a).

The enthalpy of the migrating lithium ion placed exactly at the center of the
oxygen dumbbell (between O, and O; of Fig. 8-2) is only 10 meV higher than at
the true activated state which is slightly shifted towards an adjacent tetrahedral site.
This suggests that a reasonable approximation for the activation barrier for the ODH
can be obtained by assuming the activated state to be exactly at the center of the

oxygen dumbbell hop.

8.1.2 Migration of isolated lithium in dilute Li,CoO,

Another dilute extreme is the migration of an isolated lithium ion between two oc-
tahedral sites in an otherwise vacant lithium plane of CoO;. A calculation with the
elastic band method shows that the lowest energy path between adjacent octahedral
sites is along the arrow with endpoints A-B of Fig. 8-2(b). As is evident from Fig.
8-2(b), this migration path passes through an adjacent tetrahedral site making this
a tetrahedral site hop (TSH). The energy along the TSH is illustrated in Fig. 8-3(b).
The plot clearly shows that the activation barrier for migration of an isolated lithium
ion is exactly at the tetrahedral site. The value of the activation barrier is 600 meV.

It is striking that the maximum along the TSH occurs at the center of the tetra-
hedral site, a relatively open space, instead of at the centers of the oxygen triangles
forming the faces of the tetrahedral site. The explanation is electrostatic in origin.

The tetrahedral site shares a face with an oxygen octahedra surrounding a Co ion.
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Figure 8-3: Energy along the migration path in different lithium-vacancy environ-
ments determined with the elastic band method. Refer to Fig. 8-2 for the cor-
responding lithium-vacancy environments. (a) Migration of an isolated vacancy at
z=11/12. (b) Migration of an isolated lithium according to a TSH at z=1/12 (c)
Migration of a lithium ion into a divacancy according to a TSH at z=10/12.
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The large electrostatic repulsion between lithium and the positively charged Co ion
energetically penalizes the position at the center of the tetrahedron. This is mani-
fested by the prediction that the saddle point at the tetrahedral site is displaced 0.4
A from the ideal position of the tetrahedral site in a direction away from the cobalt
ion and towards one of the oxygen icns forming the tetrahedron. As a result, three
lithium-oxygen bonds have a distance of 1.85 A while the fourth lithium-oxygen bond
has a distance of 1.53 A.

The qualitative difference between the TSH and the ODH can be attributed to the
absence or presence of lithium ions simultaneously neighboring both endpoints of the
hop. In the latter case, the electrostatic repulsions due to the lithium ions adjacent
to the endpomts of the hop displace the saddle point away from the tetrahedral site

towards a posmon almost at the center of the oxygen dumbbell.

8.1.3 Migration in an intermediate environment

At non-dilute lithium concentrations, local arrangements will occur that are inter-
mediate to those of the two dilute extremes. Fig. ‘8-2(c), illustrates a particular
arrangement around a hopping lithium ion that has features of the two dilute cases
treated in sections 8.1.1 and 8.1.2: one lithium site that simultaneously neighbors
both endpoints of the hop is occupied, while the other lithium site is empty. Ap-
plying the elastic band method to this intermediate arrangement, we find that the
migration path follows the arrow A-B of Fig. 8-2(c). This path passes through the
tetrahedral site and can therefore be called a TSH.

Despite also passing through a tetrahedral site, the energetics of this migration
path exhibits a subtle difference with the TSH for an isolated lithium ion in an empty
CoO7 host (section 8.1.2). The energy along the path A-B of Fig. 8-2(c) is illustrated
in Fig. 8-3(c). The tetrahedral site is no longer a maximum along the migration
path, but a weak minimum. The activated state has shifted to a position closer to
the center of the triangle of oxygen ions that form the face between the tetrahedral
site and octahedral site. The barrier, however, is only about 25 meV higher than the

energy of lithium at the tetrahedral site.
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The difference between the energetics of the TSH of Fig. 8-2(b) and Fig. 8-2(c),
is a result of a difference in the overall lithium concentration. The TSH of Fig. 8-
2(c) occurs at high Li concentration (within the supercell, z=0.8333) while that of
Fig. 8-2(b) occurs at very low lithium concentration. As was shown in chapter 3, as
more lithium is added to the CoO, host, the charge donated by lithium to the host
is transferred to the oxygen ions. The increased negative charge on the oxygen ions
at high lithium concentration screens the electrostatic repulsion between the cobalt
and the lithium at the tetrahedral site. This is qualitatively equivalent to saying
that the effective charge on cobalt at high lithium concentration is +3 while at low
z it is closer to +4. The electrostatic repulsion between cobalt and a lithium in a

tetrahedral site therefore increases with decreasing lithium concentration.

8.1.4 General configuration dependence of Activation barrier

The above results allow us to distinguish between two different migration mechanisms,
the TSH and the ODH. Whether or not a TSH dr ODH mechanism can occur depends
on the lithium-vacancy arrangement in the immediate environment of the hopping
lithium. If the two lithium sites that simultaneously neighbor the endpdints of the
hop are occupied, lithium migration will occur according to an ODH mechanism. If
both lithium sites adjacent to the hop are vacant, lithium will then migrate along
“one of the two TSH paths. And finally, if only one of the adjacent lithium sites are
occupied, lithium migration will occur along the TSH passing by the empty lithium
site. |
Not only does the hopping mechanism depend on the local environment, but the
value of the activation barrier for a given hopping mechanism will also depend on the
surrounding lithium-vacancy arrangement. To determine this dependence, we have
calculated the activation barriers at several lithium concentrations and in different
local lithium-vacancy arrangements. Fig. 8-4 illustrates the mean activation barriers
AFE) as defined by (7.31) at different lithium concentrations and local environments.
The squares correspond to TSH activation barriers and the filled circles correspond

to ODH activation barriers. Note that for the TSH, the number of endpoints n of the
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Figure 8-4: Values for AH) at different lithium concentrations and arrangements in
the O3 form of Li;CoO,. Crosses correspond to TSH’s and the diamonds correspond
to ODH’s.

hop appearing in (7.31) is 3 and for the ODH n is equal to 2.

In the calculation of the mean activation barriers AE), for the TSH’s, E4 of
(7.31) was set equal to the energy of lithium in the tetrahedral site along the TSH
path. While for low lithium concentration, this approach yields the exact activation
barrier (within the limit of the supercell method), for higher lithium concentrations,
it leads to an approximation since the activated state is slightly shifted away from the
tetrahedral site at high z (see section 8.1.3). Nevertheless, as is clear in Fig. 8-3(c),
the error is at most of the order of 25 meV or 10% for the TSH activation barrief at
r=0.8333. For the ODH’s, E4 of (7.31) was set equal to the energy of the hopping
lithium ion placed exactly at the center of the oxygen dumbbell. Although the actual
saddle points for the ODH are slightly shifted away from the center of the oxygen
dumbbell in a direction perpendicular to the hop direction, we found that the error
of this approximation is of the order of 10 meV.

The calculated activation barriers of Fig. 8-4 convey two major trends. First, the
activation barriers for the ODH are almost twice as large as those of the TSH. This
is not surprising, since the activated state of the ODH is sterically more constricted
than that of the TSH. Furthermore, the ODH mechanism only occurs when the two

lithium sites simultaneously neighboring the endpoints of'the hop are occupied. The
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electrostatic repulsion between these adjacent lithium ions and the hopping lithium
ion constitutes an additional energetic penalty to the activated state which is absent
in the TSH mechanism.

The second trend in Fig. 8-4 is the increase in the activation barrier for the
TSH as the lithium concentration is reduced. The activation barriers for the TSH
vary relatively little at intermediate lithium concentration, however, at low lithium
concentration, the TSH activation barrier increases by a significant amount. This
increase is caused by the large contraction of the lattice parameter, ¢, of the CoO, host
frame work below 7=0.3, a phenomenon that has both been measured experimentally
[49, 45] as well as been predicted from first principles [116] (see chapter 4). The
contraction is accompanied by a reduction in the distance between the oxygen planes
adjacent to the lithium planes which in turn causes a contraction of the tetrahedral
site. To expose the role of the lattice paramter, ¢, on the activation barrier, we
artificially constrained the c for the structure at r=0.0833 to have a value typical
of that in the concentration range of z=0.3 and 0.6 and recalculated the activation
barrier. The activation barrier decreases to‘approximately 450 meV which is of the
order of the activation barriers obtained at intermediate lithium concentration.

The general decrease in activation barrier with increasing =z above z=0.5 cannot
be attributed to a variation in ¢ since it is more or less constant in this concentration
range. Instead it can be traced to an improvement with increasing x in the screening
of the electrostatic‘repulsion between the lithium in the tetrahedral site and a cobalt
ion in an adjacent face sharing octahedral site as a result of the charge transfer
to oxygen. This tends to make the energy of a lithium ion at the tetrahedral site
energetically less unfavorable than at low lithium concentration.

To obtain an estimate of the supercell convergence error for the activation bar-
riers, we calculated the activation barriers for the TSH at z=1/2 and the ODH at
infinite vacancy dilution in a supercell containing 16 Li;CoO; formula units. For the
TSH, we found that the activation barrier changes by approximately 50 meV. For
the ODH at infinite vacancy dilution, we found that the activation barrier changes

by approximately 100 meV. This suggests that the accuracy of the TSH activation

128




barriers is better than that of the ODH.

8.2 Local cluster expansion of activation barriers

Many more possible local arrangements around a migrating lithium ion exist than
were considered in the previous section. With the above activation barriers, we can
parameterize a local cluster expansion that will enable us to approximate the activa-
tion barriers for other local environments.

The TSH and ODH mechanisms, which occur in different environments are charac-
terized by distinct features; the two mechanisms have a different number of endpoints
and the values of their respective activation barriers differ by a factor of two. It is
therefore natural that the activation barriers of both mechanisms cannot be param-
eterized with the same cluster expansion.

In the present study, we constructed a cluster expansion for the activation barriers
of the TSH. Since the activation barriers of the ODH are much larger than those of
the TSH, the former mechanism will only prevail when the number of available TSH’s
are negligible. This, as is borne out by kinetic Monte Carlo simulations presented
in the next section, only occurs at very dilute vacancy concentrations, where the
divacancy concentration becomes negligible. In this regime, there is essentially one
local configuration in the immediate vicinity of the the ion undergoing an ODH,
namely all lithium sites occupied. The activation barrier for the ODH can then be
approximated by a single value, i.e. that calculated in the limit of dilute vacancy
concentration.

A local cluster expansion containing five ECI was constructed for the mean acti-
vation barriers of the TSH. The ECI were determined by performing a least squares
fit to the seven TSH activation barriers illustrated in Fig. 8-4. The root mean square
error between the seven activation barriers calculated with the cluster expansion and
the values obtained with the pseudopotential method is 25 meV, a value which is of
the order of 3 to 10% of the activation barriers. The clusters used in the expansion

are illustrated in Fig. 8-5 and consist of the empty cluster, the nearest and next
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1 -25.

Figure 8-5: Local cluster expansion of the mean activation barrier AH), for the
TSH mechanism. The triangular lattice corresponds to lithium sites, and the squares
correspond to the endpoints of the hop which are vacant when lithium is at the
activated state.

nearest neighbor point clusters, a pair cluster and a triplet cluster.

8.3 Calculated diffusion coefficients and related prop-
erties

Although knowledge of the different hopping mechanisms and their corresponding
activation barriers is an ‘essential ingredient in the calculation of the lithium diffusion
coefficient, it is not sufficient. The diffusion coefficient also reflects the degree of cor-
relation between the hopping lithium ions. This correlation is both thermodynamic,
as manifested by the degree of short or long range order, as well as dynamic and can
be captured simulcaneously with Kinetic Monte Carlo simulations.

In the kinetic Monte Carlo simulations, the activation barriers AHp appearing in
the hop frequencies.: I'; (7.27) were calculated with first principles cluster expansions.
The cluster expansion for the O3 host was used to calculate H,, of (7.32), which
represent, the conﬁgurational energies of the endpoints of the hop. For the TSH
mechanism, AH,, was calculated with the local cluster expansion discussed in the
previous section. For the ODH, AH,, was set equal to 830 meV, the calculated
activation barrier for the ODH in the dilute vacancy concentration limit. The true
activation barriers for cach hop AHjy were then calculated using the H,, and AH;\,

with (7.32).
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The prefactor in the expression for I" (7.27),

| v* =vexp(AS/k) (8.1)

sets the time scale in the kinetic Monte Carlo simulations. Although the prefactor
has a configurational dependence, this dependence is likely to be negligible in com-
parison with the configurational dependence of the exponent of the activation barrier
exp(—AHpg/kT). Therefore, for all hops in the kinetic Monte Carlo simulations sim-
ulations, we assumed a constant prefactor. Typically, the prefactor »* is on the order
of 103 sec™!, however, a first principles investigation of two-dimensional diffusion on
germanium surfaces [166] has indicated that v* can be on the order of 10'! sec™!.
Since in this work, no attempt has been made to quantitatively determine prefactors
for lithium diffusion in Li,CoO;, we plot %:—SD. This quantity should correspond to

the true values for D within one to two orders of magnitude.

8.3.1 Diffusion coeflicients

Fig. 8-6 (a) and (b) show calculated values for the diffusion coefficients D; and D*
at 300 K and 400 K as determined from kinetic Monte Carlo simulations. It is clear
that the diffusion coefficients vary within several orders of magnitude with lithium
concentration. At high lithium concentration, the diffusion coefficients are very low,
increasing by more than two orders of magnitude as the lithium concentration z is
reduced to approximately 0.6. For small z, the diffusion coefficients are again very
low. The significant dips in D; and D" around z=1/3 and z=1/2 at 300 K and
around z=1/2 at 400 K are the result of lithium ordering appearing in the calculated
phase diagram for the O3 form of Li,CoO, (see chapter 4). Notice that D; and D*
have the same order of magnitude yet they do not equal each other.

The chemical diffusion coeflicient D which determines macroscopic diffusion as
defined by Fick’s law (7.5) and (7.6) is equal to the product of D; with the thermo-
dynamic factor © given by (7.7). Fig. 8-7 illustrates the thermodynamic factor for the

O3 form of Li;CoO, at 300 K. The thermodynamic factor becomes large around or-
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Figure 8-6: Calculated lithium diffusion coefficients for Li,CoOj; at (a) 300 K and (b)

400 K. Because of the uncertainty in v* of eqn. (8.1) we plot (10'*/v*)D where D is
either D, D; or D* and is expressed in cm?/s.
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Figure 8-7: The calculated thermodynamic factor © at 300 K. © measures the devi-
ation from ideality of the system and is given by eqn. 7.7.

dered phases and at the stoichiometric compoéition of Li;CoQO,. Multiplying D; with
the thermodynamic factor © yields the chemical diffusion coefficient D illustrated in

Fig. 8-6.

8.3.2 Microscopic hopping behavior

In the kinetic Monte Carlo simulations, both the TSH and ODH mechanisms are
considered. The frequency with which either hop mechanism occurs is proportional
to the availability of the particular mechanism multiﬁlied by the exponent of the ac-
tivation barrier divided by kT. Fig. 8-8 illustrates the average availability of TSH
and ODH mechanisms per lithium ion as a function of lithium concentration. Also
illustrated is the average number of vacancies adjacent to lithium ions normalized per
lithium ion. At low z, the availability of TSH’s is high while that of ODH’s is very
low. Above about £=0.65, however, the number of candidate ODH paths accessible
to each lithium increases and exceeds the availability of TSH paths. The TSH mech-
anism requires at least a divacancy adjacent to the hopping lithium ion and at high
lithium concentration, the concentration of divacancies is less than the concentration

of single vacancies. In fact, if the lithium ions and vacancies are randomly distributed,
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Figure 8-8: The average availability of TSH pathways, ODH pathways and vacancies
per lithium ion as a function of lithium concentration.

the concentration of divacancies scales as (1 — x)? while that of single vacancies as
(1 — z). Since vacancies repel each other as x approaches 1, the concentration of
divacancies is even lower than (1 — z)? in Li;CoO,. The cross-over in the availability
of TSH paths versus ODH paths suggests that at low lithium concentration, the TSH
mechanism should dominate and at sufficiently high lithium concentration the ODH
mechanism should dominate. Nevertheless, since the typical activation barrier for the
TSH mechanism is significantly lower than the ODH activation barriers, the Monte
Carlo simulations predict that for 0 < r < 1 the TSH mechanism dominates and that
the ODH mechanism becomes important only at almost infinite vacancy dilution.

The average activation barrier (AHg) as experienced by hopping lithium ions in
* the kinetic Monte Carlo simulations is illustrated in Fig. 8-9. Since lithium ions hop
according to the TSH mechanism between z=0 and 1, (AHp) naturally follows the
same trend of the first principles values of AH), of Fig. 8-4, i.e. increasing (AHpg)
with decreasing x.

The large variations in D with = (Fig. 8-6) are closely linked to the variation in

activation barrier (Fig. 8-9) and availability (Fig. 8-8) of the TSH mechanism with
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Figure 8-9: Variation with z of the average activation barrier overcome by hopping
lithium ions in the kinetic Monte Carlo simulations.

z. At dilute z, the activation barrier is high resulting in a small diffusion coefficient.
As 7 increases, the activation barrier progressively decreases producing an increase in
the diffusion coefficient. The dips in diffusivity around z=1/3 and z=1/2 are a result
of lithium ordering which from an energetic point of view tends to lock the lithium
ions in their sublattice sites. Further increase of z above 1/2 results in a decrease in
the diffusion coefficient, even though the average activation barrier levels off. This
reduction of D is a result of a decline in the number of available vacancies to hop to
in combihation with an even more rapid decline in the average number of available

TSH paths to enable lithium hops to neighboring vacancies.

8.3.3 Correlation factor

The prevalence of the TSH mechanism for most values of z has interesting implications
concerning the correlated motion of the lithium ions. The above results indicate
that reasonable diffusion rates in layered Li;CoO; are mediated through clusters of
divacancies since they enable lithium ions to hop according to the TSH mechanism.
While at low lithium concentrations, divacancies are sufficiently abundent, at high

z, clusters of vacancies are energetically and entropically less favored than a uniform
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Figure 8-10: At high lithium concentration, lithium migration according to the TSH
mechanism occurs through the cartwheel motion of a divacancy.

distribution of vacancies. Nevertheless, even for high 2 an overwhelming majority of
lithium hops occur through divacancies.

To better understand the implications of divacancy diffusion, it is useful to con-
sider the motion of an isolated divacancy. Fig. 8-10(a) illustrates a cluster of two
vacancies surrounded by lithium ions in the immediate environment. Figs. 8-10(a)-(e)
shows that the effect of lithinm diffusion'according to the TSH mechanism (as illus-
trated by the curved aITows), is to rotate the divacancy similar to the movement Q{ a
cartwheel. Only on rare occasions after the occurrence of an ODH do the vacancies
of the divacancy cluster separate. The latter case is illustrated in Fig. 8-10(c)-(f) and
has a very low probability of occurrence due to the high activation barrier associated
with the ODH mechanism.

A measure of correlated motion is the correlation factor which is defined as

(r(1)?)

= ) (8.2)

(n(t)) a?
where (7(¢)?) is the average distance squared that a lithium jon has travelled after

time ¢, (n(2)) is the average number of hops that a lithium ion has performed in time
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Figure 8-11: Calculated correlation factor as a function of lithium concentration.

t, and a is the distance between the endpoints of the hop. The correlation factor f

measures the deviation of the lithium intrinsic diffusion coefficient D* from that of
an equal number of random walkers on a triangular lattice. When lithium migration
is uncorrelated, the correlation factor equals one. This occurs as z approaches zero
since the interactions among different lithium ions disappear and migration of isolated
lithium ions becomes that of a random walk. As z approaches one, the motion of the
isolated vacancies becomes that of a random walk, however, migration of the lithium
ions does not. The theoretical value of f as z approaches one on a triangular lattice
is around 2/3.

Fig. 8-11 illustrates the correlation factor for lithium diffusion in Li;CoO, as a
function of z at 300 K. Although f approaches the theoretical value in the dilute limit
of z=0, at intermediate z, it deviates strongly from a linear interpolation between
f=1at z=0 and f#2/3 at z=1. In fact, as z approaches 1, f remains very low. Only
once the ODH mechanism dominates at inifinite vacancy dilution whereby lithium
exchanges with isolated vacancies will f approach the value of 2/3. Fig. 8-11 clearly
illustrates that the TSH hop mechanism results in significant correlated motion of

the lithium ions.
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8.4 Discussion

The investigation of lithium diffusion with a combination of first principles LDA
calculations and kinetic Monte Carlo simulations is made possible with the cluster
expansion formalism. Although cluster expansions have been uséd extensively to
describe the configurational energy of substitutional alloys, to our knowledge, this is
the first example in which a local cluster expansion has been used to parameterize
the configuration dependence of the activation barrier for migration.

The first principles pseudopbtential calculations within the local density approxi-
mation have shown that two distinct hopping mechanisms exist for lithium migration
in Li;CoO,. We have called these the oxygen dumbbell hop (ODH) and tetrahedral
site hop (TSH) mechanisms. Whether a lithium ion hops according to the ODH or
TSH mechanism depends on the local environment around the migrating ion. If the
two lithium sites adjacent to the endpoints of the hop (sites a and b of Fig. 8-1 (a))
are occupied by lithium ions, the lithium ion migrates along the ODH path which
approximates the shortest path between the endpoints of the hop. If at least one of
the two lithium sites adjacent to the endpoints of the hop are vacant, lithium .will
migrate along the TSH path which passes through a tetrahedral site as illustrated in
Fig. 8-1(b). This means that fof the TSH mechanism to be possible, the lithium ion
must migrate into a divacancy.

The ODH path is more constricted than the TSH path making the latter a ster-
ically more attractive route. Nevertheiess, when lithium ions occupy the two sites
adjacent to the endpoints of the hop (sites @ and b of Fig. 8-1(a)), their positive
charge electrostatically repels the migrating lithium ién along a path that passes
very close to the center of the oxygen dumbbell giving rise to the ODH mechanism.
Consequently, the activation barrier for the ODH mechanism is more than twice as
large as that for the TSH mechanism. The first principles calculations show that the
activation barrier for the TSH mechanism has a strong dependence on concentration,
increasing with decreasing z. As was explained in section 8.1.4, this increase is related

to the sharp drop of the lattice parameter, ¢, below £=0.3 along with an increase in
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the effective valence charge of cobalt with decreasing z.

Since the activation barrier for the TSH mechanism is significantly below that
of the ODH, the kinetic Monte Carlo simulations predict that the TSH mechanism
dominates over the whole concentration range z=0 and 1. This result is especially
significant at high lithium concentration, as it requires that diffusion is mediated
by the motion divacancies. It means that the decrease of the different diffusion
coefficients at high z is more rapid than if diffusion occurred by exchanges with single
vacancies with the same and constant activation barrier. Due to the large variation
in activation barrier with z, the calculated diffusion coefficients vary within several
orders of magnitude. |

A hopping mechanism involving an adjacent tetrahedral site had already been con-
jectured from molecular dynamics simulations using empirical potentials [172]. The
present systematic study of the environment dependence of the activation barriers
using more realistic first principles calculations has shown that in fact two migration
paths exist depending on the immediate environment. More importantly, the present
study has shown that the migration path through the tetrahedral site will only occur
if the end-point belongs to a divacancy. This is a significant constraint on the TSH
mechanism, especially at high lithium concentration where the number of divacan-
cies are severly limited, since, as was shown with kinetic Monte Carlo simulations,
diffusion mediated by divacancies is very inefficient. The use of a first principles en-
ergy method for a system such as Li,CoQ, is essential as the subtle, but important,
changes in electronic properties with lithium concentration and environment are ex-
tremely difficult, if not impossible to capture within an empirical potential frame-work
typically used in Molecular Dynamics simulations.

Several sources of inaccuracies in the calculated activation barriers of this work
can be identified that originate either from numerical errors or from approximations.
Potential numerical inaccuracies arise from an inadequate k-point convergence and
the use of a supercell in the calculation of the activation barriers. We estimate these
errors to be of the order of 50 meV for the most important activation barriers (i.e.

those for the TSH mechanism). Nevertheless, since the same supercell and k-point
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mesh was used in the calculation of all activation barriers we expect this to be a
systematic error. Another inaccuracy occurs at high lithium concéntration. At large
z, the activation barrier for the TSH is not at the tetrahedral site as was assumed in
our calculations, but is slightly shifted away from the tetrahedral site as illustrated
in section 8.1.3. The error of this approximation is at most 25 meV and diminishes
to zero as z is reduced. Finally an error that is more difficult to quantify, arises from
the use of the local density approximation of density functional theory. Since hopping
rates depend exponentially on the activation barrier, calculated diffusion coefficients
are very sensitive to relatively small errors in activation barriers. A systematic error
‘in the calculated activation barrier of 100 meV, a value that is not uncommon for first
- principles calculations, produces an error of two orders of magnitude in the diffusion
coeflicient at 300 K.

Due to computational limitations. we have not attempted to calculate a value for
the prefactor v given by (8.1) which appears in the hop frequency T of equation
(7.27). Instead we have assumed a constant value for v* and have plotted calculated
diffusion coefficients as (10'3/1*)D, where 10"sec! is a reasonable estimate for v*.
We expect, however, that the concentration dependence of the prefactor is not negligi-
ble. The prefactor depends on the local entropy of a lithium in an octaﬁedral site and
a lithium in the activated state. The latter value will be sensitive to concentration
since the shape of the energy surface around the tetrahedral site varies qualitatively
with lithium concentration. Future studies should address the accurate calculation
of the prefactor for diffusion in Li,CoQO, to clarify its importance in affecting ﬁhe
diffusion coefficients.

Several experimental studies of the lithium diffusion coefficient in LviICoO-z have
been performed in recent years. The different measurements of D qualitatively exhibit
a similar concentration dependence. Although, in ref. [173, 174], D is expressed as
a function of voltage. the concentration dependence (;au be inferred by comparison
with accurately calibrated voltage versus concentration curves. In ref. [175], D is
expressed as a function of concentration, however, comparison of their voltage versus

concentration curves with those typically shown in the literature (50, 49] suggest

140




that the concentration scale in ref [175] is slightly expanded. Typically the lithium
concentration attributed to 4.15 V is measured to be 0.5, while i:hat. reported in ref
[175] is around 0.3, suggesting that the amount of lithium assumed to have been
removed from the Li;CoO; during charging is overestimated in ref [175]. After either
making the conversions from voltage to concentration for the data of ref [173, 174], or
the necessary adjustments in concentration in ref [175], the basic trend in D can be
summarized as follows. D drops by almost two orders of magnitude as z is increased
between z=0.5 and 0.75 and increases by one to two orders of magnitude as z is
increased from z=0.95 to 1. Between z=0.75 and 0.95, a two phase region exists
experimentally and a value for D cannot be defined.

As is clear in Fig. 8-6, the calculated D drops by an order of magnitude at z=1/2,
a concentration at which the lithium ions order. The stability of the ordered phase
at £=1/2 at room temperature is predicted to be much stronger than observed ex-
perimentally (see chapter 4). In fact, the order-disorder transition temperature of
this phase is over-predicted by 100° C [116]. Furthermore, as the results of chapter
6 illustrated, the stability of the ordered phase at x=1/2 is reduced by the presence
of defects such as oxygen vacancies, suggesting that in some samples of Li;CoO,, the
lithium ordering at z=1/2 may be suppressed altogether. This means that a com-
parison between the experimental and calculated D cannot be made around z=1/2.
Nevertheless, above £=0.65 at 300 K and z=0.6 at 400 K, D exhibits a decreasing
trend spanning several orders of magnitude. The comparison with experiment is qual-
itatively better at 400 K, where the predicted width of the ordered phase at z=1/2
closely approximates the experimentally measured width at room temperature.

The calculated values for D do not exhibit the sharp rise observed experimentally
at high = (above =0.95). We attribute this discrepancy to a difference between the
experimental and calculated thermodynamic factors ©. At z=1, the thermodynamic
factor becomes very large, since this concentration corresponds to a stoichiometric
compound where the chemical potential deviates strongly from ideality. This is true
both experimentally {171] and theoretically (Fig. 8-7). Expecrimentally, however.

there is a two phase region between £=0.75 and z=0.95 which our first principles
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cluster expansion fails to predict (see chapter 4). In a two phase region, the ther-
modynamic factor is zero. Hence the experimental thermodynamic factor, which
starts from zero at £=0.95 spans a significantly larger interval than the calculated
thermodynamic factor which is not zero at z=0.95. This dramatic increase in the
experimental © is likely to more than compensate the downward trend of D; with z
to produce a chemical diffusion coefficient D that increases with z. As is clear from
D in Fig. 8—6,'the calculated ©, does not increase sufficiently rapidly at high z to

compensate the decrease in Dj.

8.5 Conclusion

Our first principles investigation of lithium diffusion' in the layered O3 form of Li;CoQO,
has shown that lithium ions can hop according to two migration paths depending
on the local environment around the hopping ion. If lithium migrates to an isolated
vacancy, the migration path approiimates the shortest distance between the endpoints
of the hop. If the end point of the lithium hop is part of a divacancy, the migration
path passes through an adjacent tetrahedral site. The activation Barrier associated
with the divacancy hop mechanism is significantly lower than that associated with the
single vacancy hop mechanism. As a result, kinetic Monte Carlo simulations predict
that lithium diffusion is mediated by divacancies even at high lithium concentrations
where the concentration of divacancies is low.

The activation barrier for the divacancy hop mechanism increases with decreasing
lithium concentration. This is caused by the contraction of the O3 host along the ¢
axis at low lithium concentration as well as the increase in the effective valence of the
cobalt ions as z is reduced. The strong concentration dependence of the activation
barrier results in a diffusion coefficient that varies within several orders of magnitude
with lithium concentration.

Although the current investigation of lithium diffusion focussed on layered Li;CoO,
similar conclusions arc likely to hold for other layered materials with the O3 structure

such as LizNiO, and layered LiMnO,. The understanding that the concentration of
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divacancies, the variation of lattice parameter, ¢, and the change in valence of the
transition metal with z are factors that affect lithium transport may lead to strategies

to improve the diffusivity in these materials.
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Chapter 9

Conclusion

In this thesis, we have performed a comprehensive first principles investigation of the
electronic, thermodynamic and kinetic properties of Li,CoQO,. This transition metal
.oxide exhibits both technologically important and scientifically interesting properties.
Currently, it is the most successful cathode material for rechargeable lithium batteries.

We have focussed on four aspects of Li;CoQ5.

(i) As a first step, we investigated the changes in electronic properties of Li;CoO,
as the lithium concentration is varied (chapter 3). We used density functional theory
 (DFT) within the local density approximation (LDA) (reviewed in chapter 2) to
shed light on the changes in the nature of bonding between cobalt and oxygen as z
is varied. This study builds on and further clarifies the work of Avdinol, Ceder and
Kohan {108, 114] which had already shown that intercalation of lithium into MO, does
not result in a shift in the transition metal valence state, as is commonly maintained,
but produces an important change in the electron density in the immediate vicinity of
the oxygen ions. By performing calculations at intermediate lithium concentrations,
we showed that the bonding between cobalt and oxygen progresses from a covalent
character to a more ionic character as lithium is added to the CoQ, host.

(ii) We performed an extensive investigation of phase stability in the Li:CoO,
system as a function of lithium concentration z and temperature. We focussed on
both the layered aﬁd spinel forms of Li1,Co0O,. Since Li,CoO; is characterized by

configurational disorder, we implemented the cluster expansion formalism in combi-

144



nation with density functional first principles calculations (both reviewed in chapter
2), to calculate concentration versus temperature phase diagrams.

For layered Li;CoO; (chapter 4), our calculations predict staging transformations
at low lithium concentration. This result clarifies the poorly characterized phase
transformations that occur as layered LiCoQO, is deintercalated below z=0.5. The
calculations also predict, in agreement with experiment, that the lattice parameter, c,
contracts significantly as the lithium concentration approaches z=0. The volumetric
changes as well as the sequence of phase stability at low z can be rationalized by
the increased covalency of the crystal as z is reduced. A better understanding of the
phase transformation and structural properties below £=0.5 is of great value for the
efficient and intelligent optimization of this important cathode material.

In our investigation of layered Li;CoQ,, we have proposed a mechanism by which a
metal-insulator transition with concentration can induce a first-order structural phase
transformation. We have argued that this mechanism is active in layered LiCoO,
and acts as the driving force for the large two phase coexistence region observed
experimentally between £=0.75 and 0.93.

Cur study of phase stability of Li;CoO, with a spinel-like crystal structure (chap-
ter 5), has illustrated that many properties exhibited by spinel lithium transition
metal oxides such as Li;MnO; [23] and Li, TiO, [37] are determined more by the host
crystal structure than by the particular transition metal. The availability to lithium
of both tetrahedral and octahedral sites is an important feature of the spinel crystal
structure that sets it apart from the layered variants. The fact that the tetrahedral
sites are energetically more favorable yet less numerous than the octahedral sites pro-
duces a large miscibility gap between £=0.5 and 1.0 in the spinel form. It also results
in a large step in the voltage curve at x=1/2 which is a defining characteristic of
spinel lithium transition metal oxides.

(iii) As was shown in chapter 5, the host crystal structure has a significant influ-
ence on the electrochemical characteristics of a given lithium transition metal oxide.
In chapter 6, we demonstrated that defects in the host structure, such as dilute

concentrations of oxygen vacancies, also affect the electrochemical properties of a
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compound. To perform this study, we have applied for the first time, a local cluster
expansion to characterize the effect of dilute defect concentrations on a binary system
with configurational disorder. The results of chapter 6 show that oxygen vacancies
repel lithium ions and thereby cause a kink in the voltage profile at the initial stages
of charge. Furthermore, oxygen vacancies tend to stabilize the disordered phase over
ordered phases, resulting in a reduction of order-disorder transition temperatures.

(iv) Since a lithium battery involves significant transport of lithium ions, the
lithium mobility within the cathode is an important property. Investigating diffusion
in intercalation compounds has several challenges as a result of significant lithium-
vacancy disorder. In chapter 7, we introduced a scheme to calculate diffusion coef-
ficients in non-dilute systems from first principles. This procedure makes use of a
local cluster expansion to parameterize the environment dependence of the activation
barrier.

In chapter 8, we implefnented the procedure described in chapter 7 to calculate the
lithium diffusion coefficient in layered Li,CoO, as a function of lithium concentration.
A first principles investigation of the lithium migration paths between adjacent equi-
~ librium sites showed that two qualitatively different hopping mechanisms are available
for lithium ions depending on the lithium-vacancy arrangement surrounding the ac-
tivated state of the hop. The first migration mechanism, which we have referred to
as ODH (see Fig. 8-1(a)), involves an exchange with an isolated vacancy while the

second migration mechanism, termed TSH (sce Fig. 8-1(b)), requires the presence
| of a divacancy. The activation barrier associated with the TSH mechanism is pre-
dicted to be significantly lower than that of the ODH mechanism. Kinetic Monte
Carlo simulations, x‘vhich rigorously account for the configurational enthalpy and the
environment dependent activation barricrs with the cluster expansions, predict that
the TSH mechanism dominates between x=0 and 1. Diffusion in layered Li, CoOy is,
therefore, mediated throﬁgh a divacancy mechanism.

The activation barrier for the TS{H mechanism exhibits an important concentration
dependence. As 1z is reduced, the activation barrier increases due to the contraction

of the lattice parameter, ¢, at low x and the increascd effective valence of the Co
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Appendix A

Derivation of Kubo-Green equation

In this appendix, we show the mathematical steps that lead from the regression hy-
pothesis Eq. (7.13), to the Kubo-Green equation for the diffusion coefficient (7.14) of
cﬁapter 7. The steps in this derivation are purely mathematical and in this appendix,
we follow the approach given in ref. [157). The mathematical manipulations are pre-
formed in Fourier-Laplace space. In the first section of the appendix, we present the
Fourier and Laplace transforms of relevant quantities and equations. In the next sec-
tion, these equations are then manipulated and considered within the hydrodynamic

limit to yield the Kubo-Green equation for the diffusion coefficient.

A.1 Fourier-Laplace Transforms

To analyse the continuity equation it is usefull to view it in Fourier space. The spacial

Fourier transform of the fluctuation in concentration profile dc(7, t) is defined as
Seu(t) = % [ detr e Far (A1)

where V' is the volume of the region under consideration. An analogous equation

holds for the Fourier transform of the flux .J. The Fourier components cx(t) and Ji(t)
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ions with decreasing z. The variation in activation barrier produces a diffusion co-
efficient that varies within several orders of magnitude with concentration. At high
lithium concentration, the mobility of lithium ions is significantly reduced due to the

inefficiency of lithium migration through isolated divacancies.
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In (k,w) space, the continuity equation becomes

— i (w) + kDb (w) = dcx(0) (A.9)

A.2 Application of the regression hypothesis

To determine the Kubo-Green equation for diffusion, if is necessary to start with the
regression hypothesis. In (, w) space, the regression hypothesis of Eq. (7.13) takes

the form

(6Ek(w)6c_k)=%(6ck6c_k) (A1)

- where dc_y refers to dc_;(0) and A denotes
A =KD —iw ' (A.12)

Eq. (A.11) is valid in the hydrovdynamic limit. Isolating A

1 <6~ck(w)6c_-k>
A (dckde_g) (A.13)

ahd taking the inverse laplace transform of both sides yields

-1 1 _ (6ck(t)6c_k) .
17 (5) = (Bcxde_e) W)

\ Taking the time derivative of both sides

d /1N _ 1 d,
SL (K)_m£<ack(t)5c_k) (A.15)
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then satisfy the continuity equation (7.10) expressed in k-space

dd‘;"(t) +ikJL(t) = 0 (A.2)

The correlation function S(F— r,t) as defined by equation (7.12) can be written in
k-space according to
Sk(t) = (5ex(t)3c—i(2)) (A3)

This can be seen as follows. We start by explicitly writing out dc_x(t) as
_1 = 4\ KT g
be-klt) = o /V §c(F, t) e dr. (A.4)

If we set ' = 7+ 7, where 7 appears in the Fourier transform of dc_x(t) given by Eq.

(A.4), the Fourier transform of dci(t) becomes
_ l 5 ik g L g\ k() 3=
dek(t) = v /véc(r ,t)e’ dr’ = v L&q(r-&‘r,t)e dr. (A.5)
and the product of cx(t) with c_g(t) takes the form

Sk(t) = (Sex(t)de_e(t)) = % [ dFe"'E’"<—‘17 [ sertyoctr+7,0d7)  (A6)

~ which is equivalent to
1 S
=5 /v d7e¥ S (7, 1) (A7)

since the term between the brackets in Eq. (A.6) is both an ensemble as well as a
spatial average of the correlation function. Eq. (A.7) is by definition the Fourier
transform of S(7,t), showing the validity of Eq. (A.3).

It is also useful to analyse the time evolution of dc and J with a Laplace transform

defined as
§ep(w) = /0 * Seu(t)etdt (A.8)
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followed by a second laplace transform gives

L(%L‘ (1)) (Jckéc_k) [T e t(Jck(t)Jc_k) dt (A.16)

The term on the left hand side can be written as

(D)) @), en
and since

o (%) = kDt (A.18)

'Eq. (A.16) in the long wave length limit becomes

© .ad
hm zw( ) ] ,l‘m(l) Berde k)/ e o (0ck(t)oc_k) dt (A.19)

k=0

By Taylor expanding the 1/A in k around k = 0 up to second order, the left hand
side of Eq. (A.19) becomes

2 2 .
lim [—iw (L - ﬂ) - 1] = lim Q (A.20)

k-0 —w  (w)?

such that in the hydrodynamic limit (w — 0 and & — 0) Eq. (A.19) can be written

as

W 1 oo iwt d
D= ‘!’l_l;% [lcl_l;l()) kZ(JTCk)-/ € di (5Ck(t)6C_k> dt (A21)

The time derivative of the correlation in the integrand of Eq. (A.21) can be expressed

in terms of the flux using Eq. (A.2) as
%(Jck(t)éc_k) = —iE j;(t)éc_k | (A.22)
d

which due to time invariance and the principle of time reversal symmetry at equilib-

- rium is equivalent to [147]

= —ik (Ju(0)8c_r(~1)) = iF {Te(0)bc_i(2) ) (A.23)
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"Eq. (A.21) then becomes

D = lim lim —

u.ut
w—0 k—0 k2 (56”50 X / k Jk(O dc_i(t) )dt (A.24)

Note that the term (J-;(O)&_k (t)> is a vector in a d-dimensional space and the product
between £ and (j;(O)(SC_k(t)) is a scalar product.
Integrating by parts and using Eq. (A.2), Eq. (A.24) can be written as

lim lim ———— |
Ln.'l—I'% kl—l?(l) (‘SCkéc-k)

kROt + 5 [ ”z<ﬁ(0)1k(t))zefwtdt]

(A.25)
The first term in Eq. (A.25) vanishes since the time correlation between j;(O) and
dc_i(t) as t — oo vanishes and since <j;c(0)6c_k(0)> which is a correlation between an
odd and an even function at the same time also vanishes. Note that <j;c(0)f_k(t)> is
a tensor that can be represented by a d x d matrix where d is the dimension of space
in which diffusion occurs. The components of the matrix are (Jf(O)Jf k(t)) with a
and 3 denoting the components of J in for example a cartesian coordinate system.
When diffusion is isotropic (e.g. in a crystal structure with cubic symmetry with d=3
or on a triangular lattice with d=2), the diagonal terms of the matrix representation
of '<ﬁ(0).f (t )) are all equal and the off diagonal terms are zero. The tensor can
therefore be replaced by a scalar product < Ji(0) J_ > prov1ded we divide by d, the
dimension of the vector J. Eq. (A.25) then becomes

7 1wt )
D = lim P_r)% i 6c- 4 / 0)J_k(t)) e*dt (A.26)

or after taking the limits

D=+ /0°°><.f(0)f(t))dt (A.27)
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