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Abstract
A fundamental assumption in neuroscience is that brain structure determines function.
Accordingly, functionally distinct regions of cortex should be structurally distinct in their
connections to other areas. We tested this hypothesis in relation to face selectivity in the fusiform
gyrus. By using only structural connectivity, as measured through diffusion weighted imaging, we
are able to predict functional activation to faces in the fusiform gyrus. These predictions
outperformed two control models and a standard group-average benchmark. The structure-
function relationship discovered from these participants was highly robust in predicting activation
in a second group of participants, despite differences in acquisition parameters and stimuli. This
approach can thus reliably estimate activation in participants who cannot perform functional
imaging tasks, and is an alternative to group-activation maps. Additionally, we identified cortical
regions whose connectivity is highly influential in predicting face-selectivity within the fusiform,
suggesting a possible mechanistic architecture underlying face processing in humans.
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A fundamental assumption in neuroscience is that function is deeply-rooted in anatomical
structure, such as extrinsic connectivity. A region’s connectivity pattern determines both the
information available as inputs from other regions, and its output and influence on other
areas. Indeed, changes in connectivity have been shown to occur at the boundaries of
functionally-defined regions that can be identified through cytoarchitectonics
(supplementary motor area (SMA) vs. pre-SMA)1. If anatomical connectivity is important
for functional operations, then variation in connectivity should correspond with and predict

Corresponding authors:zsaygin@mit.edu (Z.M. Saygin), Phone: +1-401-9352405, Fax: +1 617-324-5311, Address: Dept. of Brain
and Cognitive Sciences, Massachusetts Institute of Technology, 43 Vassar St., Room 46-4033E, Cambridge, MA 02139,
dosher@mit.edu (D.E. Osher), Phone: +1-617-324-4355, Fax: +1 617-324-5311, Address: Dept. of Brain and Cognitive Sciences,
Massachusetts Institute of Technology, 43 Vassar St., Room 46-4033A, Cambridge, MA 02139.
*Z.M.S and D.E.O contributed equally to this work

Author Contributions
ZMS and DEO designed and performed experiments, analyzed data, and wrote the manuscript. KK designed and performed
experiments. GR performed experiments and analyzed data. JDEG and RRS designed experiments and helped write the manuscript.

NIH Public Access
Author Manuscript
Nat Neurosci. Author manuscript; available in PMC 2012 August 01.

Published in final edited form as:
Nat Neurosci. ; 15(2): 321–327. doi:10.1038/nn.3001.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



variation in function, even in regions that are currently not anatomically definable or
spatially consistent across the population. This intuitive claim has not yet been formally
explored, though various frameworks for such an analysis have been suggested2.

In the absence of any additional information, can structural connectivity accurately predict
the location and degree of the functional response in the brain? The extrinsic connectivity
pattern of a structure may contain sufficient information to predict the extent to which each
voxel will respond to a given functional contrast. This hypothesis could be tested using a
functional contrast that consistently elicits robust responses, and constrained to an
anatomical structure that reliably encapsulates such responses across participants, even if
they vary spatially within the region.

Regions involved in face-processing may be well-suited for directly testing this conjecture,
given their posited specificity of function and replicability across brain imaging techniques,
participants, and species. A dedicated network of brain regions has been consistently
reported to selectively respond to faces, as revealed by fMRI3, 4, single-unit recordings5, 6,
and microstimulation7. The most robust and selective component of this network is within
the fusiform gyrus8, in a functionally defined region that is selectively activated in response
to faces relative to objects9 or scenes10. This region is typically larger and more reliably
observed in the right fusiform, and is known as the fusiform face area (FFA). This is
consistent with a wide range of evidence that most aspects of face perception are right-
hemisphere dominant in the human brain8, 11, 12. Further, damage to the right fusiform
disproportionately impairs face recognition, sometimes even without disturbing other
stimulus categories13, 14. Given that it is the right fusiform that best responds to faces across
participants (e.g.8, 15), we chose this region as a testing ground for modeling brain activity as
a function of structural connectivity.

A purely structural substrate of face-selective cortices has not yet been established, possibly
due to complications in relating classic approaches of connectivity (such as histological
tract-tracing) with functional localization in the same individual. However, diffusion
weighted imaging (DWI), an MRI technique that measures the propensity of water to travel
along myelinated axons, can be used to estimate brain connectivity in vivo16, 17, which can
be analyzed alongside fMRI data in the same individual. Using a probabilistic tractography
algorithm, we defined the connection probability of each right fusiform voxel (seeds) to all
other anatomically parcellated regions (targets) (see Supplementary Fig. 1,2 for exemplar
pathways18–20). For the same participants, the functional activation of faces relative to
scenes for each voxel in the fusiform was calculated. We then analyzed the relationship
between functional activation in the fusiform and its connection probabilities with the rest of
the brain, through a multivariate, voxel-by-voxel approach. This approach allowed us to
directly test the conjecture that while the locations of face-selective voxels are variable
across the population, their extrinsic connections vary systematically with function in each
individual, such that the connection patterns alone can predict functional activation.

Specifically, a least-squares linear regression was used to model the relationship between
each fusiform voxel’s connection probabilities and its functional activation by using a leave-
one-subject-out cross-validation approach, or LOOCV (Fig. 1a). The resulting model was
then applied to the remaining participants’ connectivity data, and prediction accuracies were
tested against two control models and a benchmark model built from a functional group-
average. The group-average is commonly used as a way to build face-selective ROIs in
fMRI studies21, and thus provides a standard that a connectivity-based method should meet.
The control models, designed from random permutations and Euclidian distance (see
Methods), were implemented to evaluate against potential confounds.
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In order to assure that the model is not overly fit to the population it was built from, it is
good practice to design a model built from all the participants in the LOOCV, and apply it to
a separate pool of observations naïve to the model-building procedure22. We applied such a
model to an independent group of participants from a separate study. This second group
provided further examination of the generalizability of the models, since their data were
acquired with different DWI scan parameters and a different functional task from the first
group of participants.

Results
Comparisons between connectivity and control models

After an initial analysis determined that the data possessed sufficient structure for its use in
prediction (Supplementary Table 1), we proceeded to build the connectivity models and
their controls. A linear regression was trained on the connectivity and fMRI data
(faces>scenes) for all participants but one, and the model was applied to the remaining
participant’s connectivity data to make predictions of this participant’s fMRI data in the
right fusiform gyrus; this was done iteratively across all participants. We calculated the
absolute error (AE) per voxel as the difference between the predicted and actual fMRI
images, and mean absolute error (MAE) as a measure of accuracy. Table 1 summarizes the
MAE’s for each model.

Next, we performed random permutation tests23 to statistically assess the performance of the
connectivity model. We built models designed from the same data but with shuffled pairings
between connectivity and functional responses, and by repeating this process 5000 times, we
generated a distribution of accuracies from random models for each individual. Relative to
this distribution, the connectivity models successfully predicted functional selectivity across
voxels in 22 out of 23 participants’ fusiform gyri at a threshold of P < 0.001.

The distance from a seed voxel to a target region may potentially bias the connection
estimates, since local connections are believed to be more probable than distant ones24, 25. In
addition, the lateral wall of the fusiform gyrus tends to be face-selective while the medial
wall more scene-selective. The connectivity model could therefore rely on the relative
distance of each voxel to each target, which is basically a high-dimensional spatial
coordinate frame. To ensure that the results of the connectivity model were not driven by
such unintended relationships, we generated distance control models using the same
LOOCV method. These models were designed identically to the connectivity model, with
the exception that they used Euclidian distance of the fusiform voxels to other brain regions’
center-of-mass, rather than their connectivity. The distance models thus use the same
number of predictors as the connectivity models and serve as controls for possible
overfitting.

We directly compared the performance of the connectivity and distance models, both across
participants (based on MAE) and within participants (based on AE). Across participants, the
connectivity model was significantly more accurate than the distance model (two-tailed t-
test of connectivity MAE vs. distance MAE, T(22) = −6.44, P = 1.75×10−6). A direct
comparison of the error per voxel at the individual-subject level revealed that the
connectivity-based predictions were significantly different from distance in 21/23
participants at a threshold of P < 0.001, all of which were better predicted by connectivity
(Fig. 2a).

Comparisons to group-average models
A group analysis was also performed on the whole-brain fMRI data in an iterative LOOCV
fashion: a random effects test was performed on the contrast images for Faces>Scenes for all
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but one participant (Fig. 1b). We registered the resulting group-average to the native
anatomical coordinates of the participant left out of the group analysis, and calculated
prediction errors for the right fusiform. Since group-analyses are standard in neuroimaging,
they were chosen as benchmark models that connectivity-based predictions should meet or
exceed in order to be considered useful.

We compared model performance and found that the connectivity-based predictions were
statistically better than the group-average, across participants (two-tailed t-test of
connectivity MAE vs. group-average MAE, T(22) = −4.01, P = 5.94×10−4). The
connectivity model was significantly more accurate than the group-average for 17/23
participants at P < 0.001, whereas the converse was true for only 2 participants (Fig. 2b and
Fig. 3). For the remaining 4 participants, the models were not significantly different.

Final connectivity models
The connectivity and distance models generated by Group 1 were then applied to a separate
group of twenty-one participants, whose connectivity and functional data were naïve to the
models. These analyses were performed in a similar manner, except that the regressions
were trained on all the participants in Group 1 (23/23), and applied to each participant in
Group 2’s connectivity data to produce images of predicted activation. We compared these
predictions to each participant’s observed fMRI image (Table 1; Fig. 3). The connectivity
model was significantly more accurate across participants than the distance model (T(20) =
−6.72, two-tailed t-test, P = 1.53×10−6). The connectivity-based predictions were
significantly better than distance-based predictions in 18/21 participants at P < 0.001 (Fig.
2c). The models were not significantly different for the remaining 3 participants.

A group-average was generated from all participants’ contrast images to Faces>Scenes in
Group 1 and registered to each participant’s own anatomy in Group 2. Across participants,
the group-average predictions were significantly less accurate than the connectivity-based
predictions (T(20) = −4.80, two-tailed t-test, P = 1.08×10−4). Comparing the AE within each
participant, we found that functional activation was better predicted by connectivity than by
the group-average-based model in 16/21 participants at P < 0.001. Only one participant’s
fusiform profile was more accurately predicted by the group-average than by the
connectivity model, and the models were not significantly different for the remaining 4
participants (Fig. 2d). The analyses above were repeated for face and scene selectivity in the
left fusiform with the same results (Supplementary Materials).

In order to investigate which targets made a significant contribution to the final model
(Table 2), a model built from only those significant predictors (with all other targets’ beta
weights set to 0) was applied to the structural connectivity data of Group 2. The MAE across
participants was significantly better than the original connectivity model’s MAE (new
model’s MAE = 0.683 ± 0.02; P = 0.038), demonstrating the predictive impact of these
regions. Some of the highest positive-predicting regions were right inferotemporal, lateral
occipital, and superior temporal, while right lingual and parahippocampal cortices were
among the highest negative-predicting regions (Fig. 4).

Spatial relationship of function and connectivity
We calculated the center-of-mass to the best face (inferotemporal) and scene (lingual)
predictors in each participant to visualize the spatial relationship between connectivity and
function (Fig. 5a). More subject variability was observed in the medial-lateral dimension for
the positive, and in the anterior-posterior dimension for the negative functional activation;
we therefore calculated correlations between functional values and connectivity strengths
along those dimensions respectively. Across participants, centroid locations for face-
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responses significantly correlated with the centroid locations of connectivity to
inferotemporal cortex along the medial-lateral dimension (Fig. 5b, r = 0.46, P = 0.002). That
is, individual participants who had a more medial center of functional activation to faces
relative to other individuals, also had a more medial center of connectivity to the
inferotemporal target region. Similarly, lingual centroids significantly correlated with scene-
centroids along the anterior-posterior dimension (Fig. 5c, r = 0.41, P = 0.005).

To better establish how individual subject variability in connectivity profiles can be
sensitive to individual subject variability in functional responses, we tested whether
connectivity patterns of one participant can do better at predicting that participant’s
functional activation than another participant’s connectivity patterns. Unlike any of the
analyses above, this relied on identifying the same voxel spatially across participants, so
each participant in Group 2 was registered to MNI space, and subsequently onto each other
participant’s native anatomical space. Functional predictions for each participant were then
made based on each other participant’s connectivity pattern. A participant’s own
connectivity values were better at predicting their own functional activation than other
participants’ connectivity values (T(419) = 11.67, paired t-test, P = 0). Thus, the
connectivity model is picking up on relationships between functional responses and
connectivity patterns that capture individual variation.

Discussion
The present study provides evidence of a direct relationship between structural connectivity
and function in the human brain. Specifically, we demonstrate that the responses to faces
within an individual’s right fusiform gyrus can be predicted from that individual’s patterns
of structural connectivity alone. This approach further reveals which targets are most
influential in predicting function. Voxels with higher responses to faces had characteristic
patterns of connectivity to other brain regions that distinguished them from neighboring
voxels with lower responses to faces, or higher responses to scenes.

The connectivity model outperformed the random permutation control, indicating that there
exists a strong relationship between connectivity and function. Moreover, it outperformed
the distance control, suggesting that spatial information alone is insufficient for predicting
functional activity and that connectivity offers information above and beyond the
topographic information inherently embedded within it (due to the posited small-world
organization of cortical connectivity24,25). The relationship between function and spatial
information was highly variable across participants, while the connectivity data was
consistent across participants in its relationship with the functional responses. When
compared to the group-average benchmark, a standard method of defining face-selective
ROIs in fMRI studies, connectivity was a significantly better predictor of the individual’s
actual activation pattern in over seventy-percent of the participants. One reason that the
group-average did not successfully predict the activation pattern could be due to the high
variability of activation loci, relative to the standard template (e.g.26).

While we have treated spatial metrics as potential confounds and controlled for them by
using distance and group activation models as controls, future studies may build other
geometric models which do predict inter-subject variability in functional activation. For
example, detailed models of cortical folding patterns27, myelination28, and/or cortical
thickness29 may be detectable with MRI and predictive of functional regions. Connectivity
can provide a complementary source of evidence in some cases, whereas in others it may be
the only gross morphological marker available.
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Despite spatial variability in functional responses, the connectivity model was highly
accurate across participants. We found that the spatial distribution of face- and scene-
selectivity varies in tandem with connection strength to their most predictive targets. A
direct analysis of subject-to-subject variability revealed that while each participant’s
connectivity profile does well at predicting their own functional response, it predicts another
participant’s functional responses relatively poorly. Overall, the connectivity patterns
appeared highly sensitive to individual variation in function.

While the results from Group 1 are noteworthy, they could be specific to one dataset22. The
findings from Group 2 demonstrate that this is not the case: the connectivity model’s
predictions from Group 1 were much more accurate than both the distance and group-
average models in over seventy percent of the new group of participants. This result was
especially remarkable, because the participants in Group 2 had been scanned while
performing a different functional task. The two tasks differed in the type of stimuli presented
(1s static images versus 3s movie-clips), type of design (event-related versus block), number
of runs (1 versus 3), and scan parameters (also see Methods for other differences). Further,
the structural connectivity measures in this second group were acquired using a DWI
sequence with half as many gradient directions (30 versus 60), indicating the generalizability
of the connectivity model across functional tasks and diffusion sequences.

This analysis also reveals the target brain regions for which connectivity with the fusiform is
most predictive of face- or scene-selective activity in the fusiform. Face-selective fusiform
voxels were predicted by connectivity with regions that have been previously reported to
have a role in face processing, such as the inferior and superior temporal cortices (e.g.30, 31).
Scene-selective voxels, on the other hand, were best predicted by their connectivity to key
brain areas involved with scene recognition, such as the isthmuscingulate (containing the
retrosplenial cortex) and the parahippocampal cortex10, 32, 33. Unlike functional
connectivity, structural connectivity models are naïve to the functional responses of the
target regions. Therefore, a region need not be category selective to be connected (and
predictive of) selective voxels in the fusiform. For example, unexpected predictors of face
selectivity were also discovered, such as the cerebellar cortices. Even though the cerebellum
is not commonly considered as part of the “core” or “extended” face processing
network3, 30, 34, tracer35–37 studies have revealed disynaptic connections with extrastriate
visual cortices via pons, which tractography is able to reconstruct (see Supplementary Fig.
1,2), and is corroborated by functional connectivity38. Future studies may explore these
relationships to further expand on the role of functional responses in components of a
structural network. Novel structure-function relationships could be investigated in macaques
with functional and connectivity data, and subsequently validated more directly through
more invasive techniques involving tracer injections (e.g.39 ,40).

The final connectivity model also provides a framework with which to evaluate the impact
of the most predictive targets and their spatial distribution. The model built from only the
significantly predictive targets resulted in more accurate predictions than the predictions
based on all of the target regions. While some of the best predictors from this model were
nearby regions, most of them were distant to the fusiform; additional analyses excluding the
fusiform’s neighbors (Supplementary Materials) revealed that while proximal targets are
part of the fusiform’s network, they do not fully account for the connectivity model’s
performance. Altogether, a distributed network of brain regions characterizes category-
specific visual processing in the fusiform gyrus.

The connectivity fingerprint has practical applications, both for defining ROIs independently
of a task, and also for exploring group differences in structural connectivity signatures.
Researchers or clinicians can apply the relationships discovered here to predict functional

Saygin et al. Page 6

Nat Neurosci. Author manuscript; available in PMC 2012 August 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



activation at the single-subject level in populations who do not or cannot have a functional
localizer, and should expect that this will be a more accurate prediction than group-based
methods. The connectivity model provided here can also be directly compared to a
connectivity model built from participants with specific lesions or conditions. For instance,
compromised structural connectivity in congenital prosopagnosics has previously been
suggested to play a role in their deficits of face-recognition, in light of their surprisingly
normal functional activation in the fusiform41. This type of analysis can shed light on which
components (if any) of the fusiform connectional fingerprint are altered or compromised in
individuals with congenital prosopagnosia. A similar analysis can be used to explore
possible substrates of face-processing differences in autism, normal development, and aging.

Future studies can also extend the present methods to other brain regions and contrasts that
are commonly used as functional localizers, such as retinotopy in visual cortices, scene-
selectivity in the parahippocampal place area10, or expression-specificity in the superior
temporal sulcus. In some cases, more complex or nonlinear approaches might better capture
the relationship of connectivity and function. We implemented a linear fit in order to provide
more parsimonious interpretations and to establish the feasibility of modeling structure-
function relationships. Since these relationships are probably not strictly linear in a complex
system such as the brain (Supplementary Fig. 3), future work can expand these findings,
creating better models, and elucidating a more detailed relationship between connectivity
and function. Additionally, voxel-to-voxel tractography may help to more finely
characterize the structure-function relationships identified here.

These findings open a window into the coupling between structural and functional
organization in the brain. The operations of a brain region are determined by both its
intrinsic properties (i.e., cytoarchitecture) that likely determine the operations that it can
perform, and the extrinsic connectivity that defines the input/output relations of that brain
region. Neuroimaging can relate localized functions (via fMRI) to input/output patterns of
cortical connectivity (via probabilistic tractography) in an individual. The present findings
demonstrate that brain structure/function relations can be defined for category-selective
functional activation.

Methods
Participants

For Group 1, twenty-three participants were recruited from the greater Boston area between
the ages of 19 and 42 (mean age = 27.9 ± 1.06, 12 female). Group 2 included twenty-one
participants between the ages of 19 and 44 (mean age = 26.9 ± 1.45, 13 female) and were
similarly recruited. Both groups of participants were screened for history of mental illness
and were compensated at $30/hr. The studies were approved by the Massachusetts Institute
of Technology and Massachusetts General Hospital ethics committees.

Acquisition parameters for Group 1
DWI data were acquired using echo planar imaging (64 slices, voxel size 2×2×2mm,
128×128 base resolution, diffusion weighting isotropically distributed along 60 directions,
b-value 700s/mm2) on a 3T Siemens scanner with a 32 channel head-coil42. A high
resolution (1mm3) 3D magnetization-prepared rapid acquisition with gradient echo
(MPRAGE) scan was acquired on these participants.

We acquired event-related fMRI data (gradient echo sequence TR/TE/flip/volumes/voxel
size = 2000ms/30ms/90°/324/3.1×3.1×4mm) while the same participants viewed color
images of faces or scenes while performing a 1-back task by responding each time a
stimulus repeated. Face stimuli43 consisted of neutral and emotional faces (angry, disgusted,
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and happy). Scene stimuli were all neutral outdoor and indoor scenes44

(http://cvcl.mit.edu/database.htm). Face and scene stimuli were ordered using optseq245

(http://surfer.nmr.mgh.harvard.edu/optseq), an optimization program for jittering trials in
event-related experiments.

Acquisition parameters for Group 2
DWI acquisition parameters for Group 2 were different, with 30 directions of diffusion, 64
slices, voxel size 2×2×2mm, 128×128 base resolution, b-value 700s/mm2, but were acquired
on the same scanner with the same 32 channel head-coil as Group 1. A high-resolution
(1mm3) 3D magnetization-prepared rapid acquisition with gradient echo (MPRAGE) scan
was also acquired on these participants.

Stimuli for the functional MRI consisted of 3-second movie clips of faces, bodies, scenes,
objects, and scrambled objects. Movies of faces and bodies were filmed against a black
background, and framed to reveal just the faces or bodies of seven children, shown one at a
time. Scenes consisted primarily of pastoral scenes filmed through a car window while
driving slowly through the countryside or suburb. Objects were selected specifically to
minimize any suggestion of animacy of the object itself or of an invisible actor pushing the
object. Scrambled object clips were constructed by dividing each object movie clip into a
15×15 box grid and spatially rearranging the location of each of the resulting boxes. Pilot
testing indicated that a contrast of the response for moving faces versus moving objects
identified the same FFA as that identified in a standard static localizer. Further studies in
adults show that the FFA responds similarly to movies of faces as to static snapshots of
faces46.

Functional data were acquired over four block-design functional runs (gradient echo
sequence TR/TE/flip/volumes/voxel size = 2000ms/30ms/90°/234/3×3×3mm). Each
functional run contained three 18-second fixation blocks at the beginning, middle, and end
of the run. During these blocks, a series of six uniform color fields were presented for three
seconds each. Each run additionally contained two sets of five consecutive stimulus blocks
(faces, bodies, scenes, objects, or scrambled objects) sandwiched between these rest blocks,
resulting in two blocks per stimulus category per run. Each block lasted 18 seconds and
contained six 3-second movies clips from each of the five stimulus categories. The order of
stimulus category blocks in each run was palindromic and specific movie clips were chosen
randomly to be presented during the block. Participants were asked to passively view the
stimuli.

fMRI analysis
For Group 1, functional neuroimaging data were analyzed using Statistical Parametric
Mapping software (SPM8, Wellcome Department of Cognitive Neurology, London, UK).
Preprocessing included slice timing correction, motion correction and linear trend, and
temporal filtering with a 128s cutoff. The images were not spatially normalized. Statistical
parametric maps (SPMs) of BOLD activation were created using a multiple regression
analysis, with regressors defined for the five stimulus categories (neutral, angry, disgusted,
happy faces, and scenes). Boxcar functions for each trial type were convolved with a
canonical double-γ hemodynamic function (SPM8, www.fil.ion.ucl.ac.uk/spm) to generate
each regressor. The resulting maps were spatially smoothed with a 6-mm Gaussian kernel
(FWHM), and the t-statistic image was generated per participant for the contrast of
Faces>Scenes.

Group 2‘s data were analyzed with FSL software (www.fmrib.ox.ac.uk/fsl/). Image
preprocessing was similar to Group 1: images were motion corrected, smoothed (5mm
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FWHM Gaussian kernel), detrended, and were fit using a γ function (δ = 2.25 and τ = 1.25).
Data were not spatially normalized. Statistical modeling was then performed using a GLM
on the preprocessed functional images. Next, t-maps corresponding to the contrast of interest
for Faces>Scenes was overlaid on each participant’s high-resolution anatomical image.

For both groups, each participant’s functional image for the Faces>Scenes contrast was
registered to his/her diffusion-weighted image. Because we were interested in predicting
relative activation values which were independent of task-specific parameters such as the
degrees of freedom, we standardized the T-statistic values (x) across the fusiform gyrus per
participant. This detrending was performed for each participant j, such that the mean value
in the fusiform was subtracted from each voxel’s fMRI value (xij) and divided by the
standard deviation. The standardized value per fusiform voxel (xzij) of participant j was then
used for the subsequent regression models.

Tractography
Automated cortical and subcortical parcellation was performed with FreeSurfer47, 48 to
define specific cortical and subcortical regions in each individual’s T1 scan, based on the
Desikan-Killiany atlas49. Automated segmentation results were reviewed for quality control,
and were then registered to each individual’s diffusion images, and used as the seed and
target regions for fiber tracking. The resulting cortical and subcortical targets were then
checked, and corrected for automatic parcellation/segmentation errors if necessary. There
was one seed region per participant, and the 85 target regions were defined as all other
automatic parcels, not including the seed. The principal diffusion directions were calculated
per voxel, and probabilistic diffusion tractography was carried out using FSL-FDT17, 50 with
25,000 streamline samples in each seed voxel to create a connectivity distribution to each of
the target regions, while avoiding a mask consisting of the ventricles.

Regressions
All analyses were performed on subject-specific anatomy, rather than extrapolation from a
template brain, except for the group-average models. It is important to note that for the
regression models, each observation was an individual voxel in native-space and there was
no identifying or matching of spatial location of voxels across participants. Further, the
model was blind to the participant each voxel belonged to.

On Group 1, we built a regression model using a leave-one-subject-out cross-validation
(LOOCV): the model was trained to predict the standardized fMRI value for each native-
space fusiform voxel based on connectivity data concatenated across 22/23 participants, and
tested using the remaining participant’s data (Fig. 1a). This was performed iteratively for all
participants. For Group 2, the analyses were performed in a similar manner, except that the
regressions were performed on all the participants in Group 1 (23/23), and simply applied to
each participant in Group 2’s connectivity data to produce an fMRI image of predicted
activation. This was then compared to the participants’ own observed fMRI images, and
MAE’s were calculated.

Using the same LOOCV method, we trained a regression model to predict T-values of
fusiform voxels based on each voxels’ physical Euclidian distance to each other target
region’s center-of-mass, rather than each voxel’s connection probability to each target
region. In this way, both the connectivity and distance models had the same number of
dimensions, and were generated identically except for the information present in each
model. We also considered other 85-dimensional spatial metrics, such as distance to the
nearest voxel of each target, and found that these measures were highly similar to the
present one. We applied the regression coefficients from the distance model generated from
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all Group 1 participants to each participant in Group 2, as described for the connectivity
model.

We created random distributions by training models using the observed fMRI images and
connection probabilities, but by randomizing the voxel data. We permuted across 5000
random combinations of connection probability to fMRI activation values per participant,
and thus obtained a distribution of random MAE per participant. We then performed a one-
tailed t-test to determine if the mean of the participant’s random distribution was
significantly greater than the same participant’s MAE for connectivity-based predictions.

Each participant’s functional data were spatially normalized into MNI space with FSL and
FreeSurfer, checked and corrected for registration errors, and superimposed to create
composite maps. For Group 1 cross-validation, we performed LOOCV: a random effects test
on whole-brain fMRI data was performed with SPM8 on the contrast images for
Faces>Scenes from all but one participant. The resulting t-statistic image, which was based
on all the other participants in normalized space, was applied to the participant left out of the
group analysis, and registered back into his/her native-space. We analyzed only the right
fusiform gyrus in comparing what the group-average predicted to that participant’s actual
fMRI image using measures of MAE (Fig. 1b).

For Group 2, we created the group-average fMRI image using the same method above, but
from all Group 1 participants’ observed (actual) fMRI images. This fMRI image was
mapped on to each participant in Group 2’s native-space coordinates, and compared to that
participant’s observed fMRI pattern.

Accuracy and benchmark comparisons
As a measure of accuracy, we measured the absolute error per voxel (AE, reported in
standardized units, s.u.) per participant, by calculating the absolute difference between the
predicted and actual values. To statistically compare the performance of the connectivity
model to the random and benchmark models, we performed a pairwise t-test per participant
across all their fusiform voxels. A criterion threshold of P < 0.001 was used to report the
number of participants whose activation pattern was better predicted by one model versus
another. Mean absolute error (MAE) was also calculated per participant for each model by
averaging the AE across the fusiform voxels. A two-tailed Student’s t-test of the MAE’s per
participant was then used to compare models, with the same threshold (P < 0.001) to decide
which model’s predictions were significantly better.

Spatial relationship of function and connectivity
We registered the connectivity data for the right inferotemporal and lingual targets to the
native-space anatomical image of each participant in Groups 1 and 2, and projected these
data to each participant’s native surface vertices using FreeSurfer. The functional data were
similarly projected to the surface. We calculated the center-of-mass for the targets with
respect to a reference frame fixed at the center-of-mass for each participant’s fusiform gyrus
(also on the surface). After partitioning the functionals into positive and negative values, we
similarly calculated their centers of mass with respect to the fusiform. We observed more
subject variability in the medial-lateral dimension for the positive, and anterior-posterior
variability for the negative functionals, and therefore calculated correlations between
functional values and connectivity strengths along those dimensions respectively. Since both
functional and connectivity centers of mass were calculated with respect to the subject’s
own fusiform, the correlations were not biased by cross-subject variability in the boundaries
between the seed region and the predictive regions.
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For the direct analyses of individual subject variation, we registered each Group 2
participant’s connectivity data to MNI space, and subsequently onto each other participant’s
brain, using FreeSurfer and FSL registration tools. We then applied the final model designed
from Group 1 to both the original participant’s and registered participant’s connectivity
values. This was done for all combinations of participant pairs (420). We then compared the
MAE’s from predictions built from each participant’s own connectivity with those built
from another participant’s connectivity across all participants in Group 2. All of the above
predictions were restricted to those voxels that overlapped between the original and
registered participants.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Schematic model design
(a) Linear regression models were trained on all but one participant’s data in Group 1. The
22 participants’ fMRI data for each voxel in the fusiform gyrus are depicted by circles that
are color-coded from red to blue, representing their responses to the contrast of Faces
>Scenes). Each voxel’s corresponding connection probabilities (for the connectivity model)
or Euclidian distances (for the distance model) to each target brain region are depicted by
the grayscale circles. The fMRI data and connectivity or distance data from each fusiform
voxel for the 22 participants are used to train the model, and the resulting model, f(x), is
applied to the remaining participant’s connectivity or distance data, resulting in predicted
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fMRI values for each fusiform voxel. The predicted values are then compared to that
participant’s observed fMRI values and the mean absolute error (MAE) is calculated for
each participant. The LOOCV is done iteratively through all the participants, such that each
participant has a predicted fMRI image based on a regression from all the other participants.
(b) Similarly, a LOOCV procedure was also performed for the group-average model, but
rather than training a linear regression, each participant’s whole-brain fMRI data was
spatially normalized into MNI space, superimposed to create composite maps, and a t-static
image was generated for the random-effects analysis. This image was registered to the
remaining participant’s native-space, and only the fusiform gyrus was extracted. This
predicted activation based on a group analysis was then compared to that participant’s
observed activation, and an MAE was computed per voxel.
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Figure 2.
Benchmark comparisons per participant. MAE’s from the connectivity-based predictions are
plotted against distance or group-average MAE’s for each participant. Participants above the
unity line thus have higher (worse) MAE’s for the benchmark than for the connectivity-
based model. Colors reflect the difference between the connectivity-based model and the
benchmark; hotter colors indicate better performance of the connectivity-based model. (a)
For 21/23 participants in group 1, the distance-based predictions had higher (worse) MAE’s
than connectivity-based predictions, and no participants’ functional activation was better
predicted by distance than by connectivity. (b) The connectivity-based model predicted
actual fMRI activation with fewer errors than the group-average for 17/23 participants,
while 2 participants’ functional activation was better predicted by the group-average than by
connectivity. (c) For 18/21 participants in group 2, connectivity-based predictions better
predicted actual activations than distance-based predictions, while no participants’
functional activation was better predicted by distance than by connectivity. (d) 16/21
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participants from group 2 had lower MAE’s with the connectivity model, while 1 participant
had lower MAE’s with the group-average model.
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Figure 3.
Actual and predicted fMRI activation to Faces>Scenes in the fusiform gyrus of five example
participants. For each participant, actual and predicted activation images (t-statistic values
for Faces>Scenes) were up-sampled from the DWI structural image (where all the analyses
were performed) to the same participant’s structural scan, and projected onto the
participant’s inflated brain surface. Each row is a single participant; the leftmost column
displays the actual fMRI activation pattern in the right fusiform gyrus. The remaining
columns illustrate, from left to right, predicted fMRI images from: connectivity, group-
average, and distance.
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Figure 4.
Beta weights for each target region from the final connectivity model. Target regions are
color-coded from hot-to-cold to reflect positive or negative beta weight values, and
projected to the pial surface of an example participant, with the lateral view on the top row,
medial view on the second row, and ventral view on the bottom. The highest predictors of
face-selective voxels are regions labeled from red-to-yellow, while the highest predictors of
scene-selective voxels are those labeled from blue-to-light blue. The seed region is
highlighted in purple. See Results for the anatomical nomenclature of the target regions.
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Figure 5. Spatial relationship of function with connection strength to the highest predictors
(a) Functional activation of an example participant, with the thresholded boundaries of
inferotemporal connectivity overlaid in dark red, and boundaries of lingual connectivity
overlaid in dark blue. (b) Each participant’s center-of-mass of connectivity to
inferotemporal is plotted against their center-of-mass of positively-responding voxels, along
the medial-lateral dimension, along which each participant’s connectivity varies alongside
face-selectivity. (c) Centroids of lingual connectivity, plotted against centroids of
negatively-responding voxels, along the anterior-posterior dimension. Solid lines in b and c
are the least-square fits of these data, and dashed lines are their 99% confidence intervals.
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Table 1

Mean absolute error ± s.e. in standard units for voxels in the fusiform gyrus across subjects for models based
on connectivity, distance, their mean permutations, and group-average.

Group 1 Group 2

Connectivity 0.65 ± 0.013 0.68 ± 0.019

 Permutation 0.77 ± 0.008 N/A

Distance 1.06 ± 0.066 1.05 ± 0.051

Group-average 0.78 ± 0.031 0.82 ± 0.039
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