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uBoost: A boosting method for producing uniform
selection efficiencies from multivariate classifiers.

Justin Stevens and Mike Williams

Massachusetts Institute of Technology, Cambridge, MA, United States

ABSTRACT:
The use of multivariate classifiers, especially neural networks and decision trees, has become com-
monplace in particle physics. Typically, a series of classifiers is trained rather than just one to
enhance the performance; this is known as boosting. This paper presents a novel method of boost-
ing that produces a uniform selection efficiency in a selected multivariate space. Such a technique
is well suited for amplitude analyses or other situations where optimizing a single integrated figure
of merit is not what is desired.
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1. Introduction

Multivariate classifiers are playing an increasingly prominent role in particle physics. The inclusion
of boosted decision trees (BDTs) [1] and artificial neural networks (ANNs) is now commonplace
in analysis selection criteria. BDTs are now even used in software triggers [2, 3]. It is well known
that training a series of classifiers, as opposed to just one, enhances performance. The training
sample for each member of the series is augmented based on the performance of previous members.
Incorrectly classified events are assigned larger weights to boost their importance; this technique
is referred to as boosting. The result is that each successive classifier is designed to improve the
overall performance of the series in the regions where its predecessors have failed. In the end, the
members of the series are combined to produce a single classifier more powerful than any of the
individual members.

The most common usage of BDTs in particle physics is to classify candidates as signal or
background. The structure of the BDT is determined by optimizing a figure of merit (FOM),
e.g., the approximate signal significance or the Gini index. This approach is optimal for counting
experiments as it by construction produces the optimal selection for observing an excess of events
over background. However, for many types of analyses optimizing an integrated FOM is not what
is desired. For example, in an amplitude analysis obtaining a uniform efficiency in a multivariate
space of physics variates, i.e., variates that are of physical interest, is often times more important
than any integrated FOM based on the total amount of signal and background. Such analyses
often have many variates in which a uniform efficiency is desired. A uniform efficiency reduces
systematic uncertainties and helps maintain sensitivity to all hypotheses being tested.

The BDT algorithms available on the market to-date inevitably produce non-uniform selec-
tion efficiencies in the variates of physical interest for two reasons: (1) background events tend to
be non-uniformly distributed in the physics variates and (2) the variates provided as input to the
BDT have non-uniform discriminating power in the physics variates. In this paper a novel boosting
method, referred to as uBoost, is presented that optimizes an integrated FOM under the constraint
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that the BDT selection efficiency must be uniform. The method is described in detail in Section 2,
while its performance is studied in the context of a Dalitz-plot analysis in Section 3. Some discus-
sion about implementation is provided in Section 4 before summarizing in Section 5. A Dalitz-plot
analysis was chosen as the example in this paper due to the simplicity of demonstrating unifor-
mity, or lack thereof, in two dimensions. The uBoost technique is applicable to situations with any
number of variates of physical interest.

2. The uBoost Technique

The variates used in the BDT are denoted by ~x and can be of any dimension. The variates of
physical interest are denoted by~y. The goal is to produce a uniform selection efficiency in~y; thus,
the ~y variates should not also be in ~x. Some subset of ~x are biasing in ~y; i.e., their probability
density functions (PDFs) vary in~y. A uniform selection efficiency can, of course, be produced by
removing these variates from~x; however, if such a selection does not have adequate discriminating
power then the BDT must use biasing variates. The uBoost algorithm balances the biases to produce
the optimal uniform selection.

Boosting works by assigning training events weights based on classification errors made by
previous members of the series; events that are misclassified are given more weight. The uBoost
method augments this procedure by not just considering classification error, but also the uniformity
of the selection. Events in regions of ~y where the selection efficiency is lower (higher) than the
mean are given larger (smaller) weights. In this way, uBoost is able to drive the BDT towards a
uniform selection efficiency in the~y variates.

The uBoost method starts by training the first decision tree (DT) in the standard way: some
FOM is chosen, e.g., Gini index, and the data is repeatedly split in a way that maximizes this
FOM. For all other trees in the series, events in the training sample are assigned weights based on
classification error, denoted by c, and non-uniformity, denoted by u. The total weight of event i in
tree t is wt

i = ct
i×ut

i×wt−1
i . The boosting weight based on classification error, obtained following

the AdaBoost [4] procedure, for event i in the training sample of tree t is given by

ct
i = exp(αtγit), (2.1)

where αt = log((1− et)/et), γit is one if event i is misclassified in tree t and zero otherwise and

et = ∑
i

wt−1
i γit . (2.2)

For each t the wt
i are normalized such that their sum is unity. The weights ct

i boost the importance
of events that are incorrectly classified by tree t.

The weights based on non-uniformity are designed to boost in importance events in areas of
lower-than-average efficiency. This consideration only applies to signal events; for all background
events ut

i = 1. The ut
i must be determined independently for all possible mean efficiency values,

ε̄ , since the uniformity of the selection will clearly depend on ε̄ . This means that in principle an
infinite number of BDTs is required (one for each ε̄ value); however, in practice O(100) BDTs (1%
steps in ε̄) is sufficient. The CPU cost of uBoost and techniques to reduce the cost are discussed in
Sec. 4.
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For each value of ε̄ , the local efficiency for each event, ε t
i (ε̄), is determined using the fraction

of the k-nearest-neighbor (kNN) events that pass the BDT cut required to produce a mean efficiency
of ε̄ . The term BDT here refers to the BDT constructed from the series of DTs trained up to this
point in the series. The ut

i are then defined as follows:

ut
i = exp(βt(ε̄− ε

t
i )), (2.3)

where βt = log((1− e′t)/e′t) and
e′t = ∑

i
wt−1

i ct
i|ε̄− ε

t
i |. (2.4)

The total event weights are then wt
i = ct

i×ut
i×wt−1

i .
The series of DTs trained for any given value of ε̄ are combined into a single BDT whose

response is given by
T (~x; ε̄) = ∑

t
αtTt(~x; ε̄), (2.5)

where Tt(~x; ε̄) is the response of tree t in the ε̄ series. Tt(~x; ε̄) is one if~x resides on a signal leaf and
minus one otherwise1. Each T (~x; ε̄) has a proper response value associated with it, T (ε̄), such that
the fraction of signal events with T (~xi; ε̄)> T (ε̄) is ε̄ . Fortunately, the analyst does not need to see
this level of complexity. Instead, the analyst simply sees a single BDT whose response is

T (~x) =
1
N ∑Θ(T (~x; ε̄)−T (ε̄)), (2.6)

where Θ is the Heaviside function, N is the number of ε̄ values used; i.e., T (~x), is the fraction of
ε̄ values for which T (~x; ε̄)> T (ε̄). A cut of T (~x)> ε̄ produces a selection whose mean efficiency
is approximately (1− ε̄). This is the so-called uBoost DT (uBDT).

The value of k, the number of nearest-neighbor events used to determine the local efficiency,
is a free parameter in uBoost. The value of k should be chosen to be small enough such that
BDT signal selection efficiency is approximately uniform within all hyper-spheres used to collect
the kNN events. However, if k is chosen to be too small, the statistical uncertainty on the local
efficiency will be large reducing the effectiveness of uBoost. This dictates choosing k to be O(100).
Our studies show very little difference in performance for values of k ranging from 50 to 1000, but
a reduction in uniformity for k < 20. The value k = 100 should be considered as the default.

3. Performance of uBoost in Toy-Model Analyses

A Dalitz-plot analysis is used to demonstrate how uBoost works. The fictional decay X → abc
is considered where mX = 1 and ma = mb = mc = 0.1 are the particle masses (in some units)
and the minimum momentum of a, b, and c is denoted pmin. The Dalitz variates are given by
~y = (m2

ab,m
2
ac). Signal events are generated uniformly in ~y, while background events either favor

regions where one particle has very low momentum (see Fig. 1) or are uniform (different models
are considered below). In the models discussed in this section, we will consider two ~x variates
which are biasing in ~y and two which are not. The variates x1 and x2 are uncorrelated with ~y and

1Another option is to use the purity of the leaf. This can also be used in conjunction with uBoost.
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Figure 1. Dalitz-plot distributions for (left) uniform signal and (right) non-uniform background. The corner
regions, Region A, and central region, Region B, are labeled on the left plot.
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Figure 2. ~x variates: (left) x1 vs x2; (middle) x3 vs pmin and (right) x4 vs pmin for signal (top) and Model I
background (bottom).

are therefore not biasing; however, it is assumed that for this fictional analysis, these two variates
alone do not provide sufficient discriminating power. The two biasing variates, x3 and x4, are
shown in Fig. 2 as a function of pmin for the signal and background, respectively. The variate x3

provides strong discrimination for high pmin and deteriorates at low pmin, while the converse is true
for x4. The variate pmin is directly kinematically related to the Dalitz variates~y and so will not be
considered for inclusion in~x. The model variates are summarized in Table 1.

The first model (Model I) considered utilizes only variates~x = (x1,x2,x3) in the BDT training
and selection process. For Model I, the non-uniform background distribution shown in Fig. 1
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Table 1. Summary of variates used in the toy Dalitz-plot model.

variate comment
x1 only correlated with x2 (not biasing)
x2 only correlated with x1 (not biasing)
x3 correlated with pmin (biasing); more powerful at center of Dalitz plot
x4 correlated with pmin (biasing); more powerful at corners of Dalitz plot
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Figure 3. Model I selection efficiency distributions for ε̄ = 70% from (left) AdaBoost and (right) uBoost.

is used. Both the distribution of background events and the worse resolution of x3 at low pmin

contribute to a bias in the standard BDT selection efficiency. Figure 3 (left) shows that the BDT
efficiency (for an arbitrary choice of ε̄ = 70%) is much lower at the corners of the Dalitz plot than
in the center. This is not a pathology; it is the optimal selection given the variates provided as input
to the BDT training and the defined task of optimizing an integrated FOM. Figure 4(right) shows
the efficiency in the center (Region A) and corners (Region B) of the Dalitz plot as a function
of the mean efficiency (Regions A and B are shown on Fig. 1(left)). There is a sharp drop in
efficiency at the corners. Typically, in a Dalitz-plot analysis the most interesting regions physically
are the edges since these areas contain most of the resonance contributions; thus, the BDT selection
obtained here is undesirable.

Figures 3(right) and 4(right) show the results obtained for Model I using uBoost where the
Dalitz variates ~y are chosen as those of physical interest. The selection efficiency is now only
weakly dependent on ~y as desired. As expected, the ROC curve shown in Fig. 4(left) reveals that
the performance in the integrated FOMs is reduced; however, for this analysis a small reduction in
the integrated FOM is acceptable given the large gain in efficiency at the corners of the Dalitz plot.
In the context of this analysis, the performance of the uBDT is much better than that of the BDT.

Another model (Model II) is considered where both the signal and background are uniformly
distributed in~y. Here, all of the bias must come from differences in the distributions of~x for signal
and background. For Model II, the input variates to the BDT training are~x = (x1,x2,x3,x4); thus,
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Figure 4. (left) ROC curves and (right) signal efficiencies vs ε̄ in regions A and B for AdaBoost and uBoost
for Model I.
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Figure 5. (left) ROC curves and (right) signal efficiencies vs ε̄ in regions A and B for AdaBoost and uBoost
for Model II.

in this case ~x contains a variate that bias towards the center as before but also one, x4, that biases
towards the corners. Figure 5 shows that for this case, as expected, the BDT is not as biasing as
for Model I but the uBDT is still able to produce a selection with much less dependence on ~y.
Furthermore, since the uBDT has access to variates that bias the selection in both directions it is
able to more effectively balance them and produce a ROC curve that is nearly identical to that of
the BDT. In both models studied, the uBoost method trades a small amount of performance in the
integrated FOMs for a large decrease in the dependence of the selection efficiency on ~y. For a
Dalitz-plot analysis, this is a desirable trade.

For this work, AdaBoost was chosen to determine the misclassification weights and for how to
combine the DTs in a series into a BDT. Other methods could be substituted here. For example, a
number of bootstrap-copy data sets could be produced and individual uBDTs trained on each one.
These could then be combined to produce a single uBDT as in the bagging method [7]. Within a
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software framework that already supports these techniques implementation would be trivial allow-
ing analysts to easily study multiple configurations of uBoost and choose the one that works best
for their analysis.

We conclude this section by discussing an alternative method to uBoost. For this example
analysis, one can divide up the Dalitz-plot into bins and train an independent BDT in each bin.
Uniform efficiency is then obtained by determining the cuts on each BDT response that produce
a given target efficiency. As a benchmark, we have developed such a selection using 100 bins in
the Dalitz plot. In each bin an independent BDT was trained. Some care was required in defining
a binning scheme that does not produce any low-occupancy bins near the edges of the Dalitz plot.
The background rejection obtained with this method is nearly identical to that of uBoost (they
are consistent within statistical uncertainties); however, there are disadvantages to using this brute
force approach: it scales poorly to a higher number of variates of physical interest; it produces a
discontinuous selection and it requires the definition of a binning scheme with adequate occupancy
in each bin. The number of bins, or BDTs, increases exponentially with the number of variates of
physical interest. Thus, in higher dimensions uBoost is the only practical option, while in a few
dimensions the advantages of uBoost still make it the more desirable choice.

4. Discussion on Computational Performance

The BDT training and selection used in this study were implemented within the framework of
the Toolkit for Multivariate Data Analysis (TMVA) [6] using a private copy of the TMVA source
code. The uBoost method as described in Sec. 2 requires more CPU resources than AdaBoost. The
training time scales up by the number of ε̄ values for which a BDT is trained which is of O(100).
If this CPU price is too steep, then a smaller number of ε̄ values can be used resulting in a decrease
in the ROC performance. Another CPU cost is incurred when determining the non-uniformity-
based event weights which requires evaluating the BDT (at the current point in the training series)
once for each training signal event (for each DT trained). There is also a CPU price to pay for
determining the k-nearest neighbors for each event; however, this only needs to be done once prior
to training the uBDT and many algorithms exist (see, e.g., Ref. [5]; we used the k-d tree algorithm
implemented in TMVA) that make this take a negligible amount of time. The response time is
increased due to the fact that there are more BDTs (one for each ε̄ value) that need to be evaluated.
The average size of the BDTs is also increased with respect to AdaBoost. In AdaBoost, trees near
the end of the series have fewer leaves since fewer events carry a larger fraction of the weight. This
does not happen in uBoost leading to, on average, more leaves (about 50% more in our studies).

For the toy model studied in this paper, the training signal and background samples contained
25 thousand events each. For each value of ε̄ , a series of 100 DTs was trained and k = 100 was
chosen for the nearest-neighbor algorithm. BDTs were trained for 100 values of ε̄: 0.01 to 1.0 in
step sizes of 0.01. The training time for each of the uBoost BDTs for each of the 100 ε̄ values was
about 25% larger than for a single AdaBoost DT. The total uBDT training time was 100×1.25 =

125 times more than for a standard BDT. For these parameters, the standard BDT took a few
seconds to train on a single CPU core while the uBDT took several minutes. Of course, if the
analyst has a priori knowledge of the efficiency range of interest then the range of ε̄ values can
be restricted to this range which would decrease the CPU time required. The training time scales
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linearly with the number of trees trained and with the number of input variates; it scales as N logN
for N total training events. Thus, the training times should not be prohibitive. Furthermore, the
uBDT method is easily parallelized since the BDTs for each ε̄ value are independent. This permits
reduction in the real time cost by increasing the number of CPU cores. Finally, the response in our
study was evaluated at close to 20 kHz for AdaBoost compared to 250 Hz for uBoost. This scaling
is close to the number of ε̄ values chosen.

5. Summary

A novel boosting procedure, uBoost, has been presented that considers the uniformity of the se-
lection efficiency in a multivariate space in addition to the traditional misclassification errors. The
algorithm requires more CPU time than traditional BDTs but not a prohibitive amount more. The
uBoost method is expected to be useful for any analysis where uniformity in selection efficiency is
desired, e.g., in an amplitude analysis.
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