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State and measurement tomography make assumptions about the experimental states or measurements. These
assumptions are often not justified because state preparation and measurement errors are unavoidable in practice.
Here we describe how the Gram matrix associated with the states and measurement operators can be estimated
via semidefinite programming if the states and the measurements are so-called globally completable. This is, for
instance, the case if the unknown measurements are known to be projective and nondegenerate. The computed
Gram matrix determines the states, and the measurement operators uniquely up to simultaneous rotations in the
space of Hermitian matrices. We prove the reliability of the proposed method in the limit of a large number of
independent measurement repetitions.
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I. INTRODUCTION

Analyzing a quantum experiment amounts to fitting a quan-
tum description (i.e., states, measurements, and processes)
to measurement data. State tomography accomplishes this
task when we ignore the dynamics between the state prepa-
rations and the measurements, and when the experimental
measurements are known accurately. Hence, from the perspec-
tive of state tomography, deviations between the postulated
measurement operators and the experimental measurement
operators are systematic errors (as opposed to statistical errors
which are a consequence of finite measurement repetitions).
These errors are unavoidable in practice [1,2]; they are a
serious bottleneck for today’s experiments [3–5], and they
undermine the recent efforts [6–8] to equip state tomography
with meaningful error bars. Systematic errors are addressed
in self-consistent tomography [1,2,9–12]: Assuming as little
as possible about the experiment, self-consistent tomography
aims at fitting quantum models to measured data.

Ideally we would like an algorithm that takes the measured
data as input and outputs compatible states and measurements.
This task can by no means be compared with state tomography
because the underlying computational problem is nonconvex
and therefore, it will require a lot of effort to fully understand
this problem. In fact, the simultaneous estimation of states
and measurements and its classical analog are closely related
to two tasks from computer science: the computation of
the nonnegative and positive semidefinite (psd) rank [13,14].
This close connection suggests that fully assumption-free
tomography is computationally too challenging because the
computation of the nonnegative rank is NP hard.

To proceed, we could either try to come up with approxi-
mation algorithms, or we could analyze practically important
special cases to avoid the hard instances of the problem,
or we could raise the question whether weak assumptions
(weaker than the assumptions underlying state tomography)
could render the problem tractable. Here, we will pursue the
latter strategy which focuses on a middle ground between
state tomography and fully assumption-free tomography. One
self-evident assumption is that some measurement operators
are pairwise orthogonal projectors (projective measurements
as opposed to general POVMs). Even though this assumption

is strictly speaking violated in real experiments [15], we still
believe that this is a good starting point for the exploration of
the middle ground mentioned before.

Our objective is the estimation of the Gram matrix
associated with the experimental states and measurements.
The Gram matrix G ∈ Rn×n of vectors �v1, . . . ,�vn ∈ Rm is
defined by Gij = �vT

i �vj . The Gram matrix G fixes the pairwise
relative geometry of the vectors (�vj )j because it determines
via ‖�vi − �vj‖2

2 = G2
ii + G2

jj − 2Gij all the pairwise distances
between the vectors generating G.

Projectiveness of the measurements can be enforced by
fixing some entries in the Gram matrix G associated to the
collection of matrices describing the experimental states and
measurements. This observation on the one hand and the
observation that G determines the states and the measurements
up to simultaneous rotations on the other hand motivates
the objective of this work: Given measurement data and
assumptions like projectiveness of measurements, find G. The
precise list of assumptions can be found in the discussion
(Sec. V) at the end of this paper. We introduce a method
for G estimation whose output can be certified. Our main
contribution is not of a technical nature but the observation
that it is possible to analyze systematic errors via estimation
of the state-measurement Gram matrix G.

It is shown elsewhere [16] that the Gram estimation opens
up the door for heuristic algorithms to search for explicit
states and measurement operators describing the experimental
data. This is our main motivation for G estimation: Knowing
G opens up the door for heuristic algorithms searching for
explicit states and measurement operators. However, knowing
G allows us also to assess the purity of states because ρ is
pure if and only if ‖ρ‖2 = 1. So if the diagonal entry of G

corresponding to ρ is equal to 1 (consequently, ρ = |ψ〉〈ψ |)
then the fidelity F (ρ,σ )2 = ‖ρ1/2σ 1/2‖2

1 = tr (|ψ〉〈ψ |σ ) is
equal to the entry of G corresponding to the inner prod-
uct between ρ and σ . For general states ρ and σ , the
fidelity can be upper bounded [17] via F (ρ,σ ) � tr (ρσ ) +√

[1 − tr (ρ2)][1 − tr (σ 2)]. Again, this upper bound is a func-
tion of the entries of the state-measurement Gram matrix G.

Our approach to self-consistent tomography is entirely
different from existing approaches which assume that the
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unknown quantities (depending on the context, these are states,
measurements or processes) are known approximately. For
instance, [1] introduces a method for process tomography
which is not prone to state preparations and measurement
errors if the experimental gates are approximately known
beforehand (see also [2,9–12,18]). On the other hand, Kimmel
et al. showed in their seminal work [19] that randomized
benchmarking can be used for self-consistent process tomog-
raphy if the considered processes are assumed to be unital.
Here, we do not need to know any of the experimental
states or measurements explicitly. Qualitative features such
as projectiveness and nondegeneracy of the measurements are
sufficient. Thus, our method can, for instance, be used to detect
and correct misalignment errors [5].

We start by describing the setting and by defining the
notation. Then, in Sec. III, we introduce the Gram estimation
problem, we explain the underlying difficulties, and we show
how the Gram matrix generated by the quantum states and
measurements can nevertheless be computed by a combination
of tools from convex relaxation and rigidity theory. To illustrate
the performance of the proposed method, we ran extensive
numerical simulations. The results are summarized in Sec. IV.
We conclude the paper with a discussion comparing our
method for Gram estimation with state tomography and listing
the precise set of assumptions.

II. SETTING

We consider an experiment which allows the preparation of
W different unknown states (ρw)Ww=1 and the performance of V

different unknown measurements, each of which is described
in terms of measurement operators (Evk)Kk=1. Repeating the
measurement of ρw with (Evk)Kk=1 N times, we can count how
many times we have measured the outcomes “1”, . . . , “K”.
Dividing these numbers by N we obtain frequencies fk|wv for
measuring “k” given that we have prepared the state “w” and
performed the measurement “v.” The data table,

D =

⎛
⎜⎜⎜⎜⎝

f1|11 · · · fK|11 · · · f1|1V · · · fK|1V

f1|21 · · · fK|21 · · · f1|2V · · · fK|2V

...
...

...
...

f1|W1 · · · fK|W1 · · · f1|WV · · · fK|WV

⎞
⎟⎟⎟⎟⎠ ,

describes the phenomenological content of the experiment.
Changing the row index in D amounts to changing the
state while changing the column index in D amounts to
changing the measurement outcome. In the limit N → ∞,
by Born’s rule, fk|wv = tr (ρwEvk). The matrices ρw and Evk

are contained in the space of Hermitian matrices Herm(Cd )
if the underlying quantum system is d dimensional. With
respect to an othonormal basis in Herm(Cd ) we can express
them in terms of vectors �ρw, �Evk ∈ Rd2

because Herm(Cd ) is a
real d2-dimensional vector space. It follows that tr (ρwEvk) =
( �ρw)T �Evk . Define the matrices,

Pst := ( �ρ1 | · · · | �ρW ),

Pm := ( �E11 | · · · | �E1K | · · · | �EV 1 | · · · | �EV K ), (1)

P := (Pst | Pm),

and G = P T P . The matrix G is the Gram matrix associated
with ρ1, . . . ,EV K . The data table D appears as an off-diagonal
block in the state-measurement Gram matrix:

G =
(

Gst D
DT Gm

)
. (2)

III. GRAM ESTIMATION

Our objective is the estimation of G. Let � be the set of
indices marking the known entries of G, and let �K ∈ R|�| be
the explicit numerical values of the known entries. Thus, G� =
�K captures our a priori knowledge about the entries of G. In
the remainder we assume that at least the phenomenological
data D are known and thus part of G�.

Note that rank(G) = rank(P ). We can only hope to recon-
struct general states and measurements if

Herm(Cd ) = spanR{ρw}w = spanR{Evk}vk. (3)

Otherwise, we could not even determine the states if all
measurements were known and vice versa. Hence, both
matrices Pst and Pm are assumed to be full rank in the
remainder [20]. Recalling D = P T

st Pm, it follows that

d2 = rank(D) = rank(P ) = rank(G). (4)

This was first observed in [21]. Let GQM denote the set of
Gram matrices that can be generated via quantum density
matrices and measurement operators. The set GQM is contained
in the set S+(RN ) of symmetric and positive semidefinite
matrices on RN (N := W + V K). By Eq. (4), determining
the state-measurement Gram matrix is equivalent to solving
the problem,

find G ∈ GQM,

subject to G� = �K, (5)

rank(G) = rank(D).

The result will automatically be the lowest-dimensional model
that is favored by Occam’s razor. Since D is a partial matrix of
G, rank(D) � rank(G). Thus, instead of solving (5), we can
equally well try to solve the optimization problem [22],

minimize rank(G),
(6)

subject to G� = �K, G ∈ GQM.

When trying to compute (6) we face two difficulties:
(D1) The optimization problem (6) is not convex because

the rank of a matrix is not a convex function [24]. For example,

2 = rank(p |0〉〈0| + (1 − p) |1〉〈1|)
> p rank(|0〉〈0|) + (1 − p) rank(|1〉〈1|) = 1.

(D2) We do not know how to efficiently characterize the
set of quantum Gram matrices GQM.

Difficulty (D1). One approach to solve nonconvex opti-
mization problems is to relax them to closely related convex
optimization problems. This is illustrated in Fig. 1: Instead of
trying to find the global minimum of the nonconvex function
f (x), we are computing the minimum of the function g(x).
The convexity of g(x) guarantees that the found minimum is a
global minimum of g(x). A function g : C → R from a convex
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FIG. 1. (Color online) The functions g(x) and h(x) are convex
envelopes of f (x) with respect to the intervals C = R, respectively,
C = [−1,0].

set C to R is the convex envelope of a function f : C → R if it
is the pointwise largest convex function satisfying g(x) � f (x)
for all x ∈ C. Note that this property depends on the convex set
C. This becomes evident when we replace the choice C = R
in Fig. 1 with an interval, e.g., to C = [−1,0]. Recall that
GQM ⊂ S+(RN ). Our goal here is to solve the optimization
problem (6) by replacing the rank function by its convex
envelope with respect to the convex set,

C := {X ∈ Rn×n | X � 0, ‖X‖ � RQM(d)},
where ‖.‖ denotes the operator norm and

RQM(d) := sup{‖X‖ | X ∈ GQM, dim(H) � d}, (7)

i.e., RQM(d) is the radius of the smallest operator norm ball
containing the Gram matrices corresponding to d-dimensional
quantum systems. In the appendix we show that RQM(d) =
W + V d. Fazel, Hindi, and Boyd proved [26] that ‖X‖1/RQM

is the convex envelope of the rank function on the larger set,

C ′ := {X ∈ Rn×n | ‖X‖ � RQM(d)} ⊃ C.

Here, ‖.‖1 denotes the trace norm. Since C is a proper subset
of C ′ it is unclear whether or not ‖X‖1/RQM is also the
convex envelope of the rank function with respect to C (see
Fig. 1). The validity of this claim is proven in the appendix by
modifying the derivation from [26]. Consequently, we arrive
at the following substitution of the nonconvex optimization
problem (6):

minimize tr G,

subject to G� = �K,

G ∈ S+(RN ), ‖G‖ � RQM(d).

(8)

Problem (8) can be cast into a semidefinite program (SDP):
The constraint ‖G‖ � RQM in Eq. (8) is equivalent to RQMI −
G � 0 because G � 0. Hence, the optimization problem (8)

Algorithm 1 Gram estimation

Require: G � 0 is determined uniquely by G� = �K and
rank(G) = rank(D) [27].

1: Run the optimization (9) to compute a completion Ĝ

of G�.
2: while rank (Ĝ) > rank (D) do
3: Prepare additional states, or perform additional
4: measurements. Run the optimization (9).
5: end while
6: Return Ĝ.

is equivalent to the SDP,

minimize tr G,

subject to G� = �K,
(9)

Z = (W + V d)I − G,

G,Z � 0,

because MQM(d)I − G � 0 is implied by Z � 0 and G + Z =
MQM(d)I. Consequently, the optimization problem (8) can be
solved efficiently by standard methods [28,29].

Difficulty (D2). Even though closely related, the prob-
lems (6) and (8) are not identical. There exists no guarantee
that the global optimum of the semidefinite program (8) and
the global optimum of the rank minimization (6) agree. In
particular, when going from the original rank minimization
to its convex relaxation, we extended the feasible set by
replacing GQM with {X � 0, ‖X‖ � RQM(d)}. Hence, there
is no guarantee that the solution of the relaxed problem (8)
lies in GQM. However, if there existed only one Gram matrix G

satisfying G� = �K and rank(G) = rank(D) and if the solution
Ĝ of (9) satisfies G� = �K and rank(G) = rank(D), then we
know that Ĝ is equal to the correct state-measurement Gram
matrix. Is the state-measurement Gram matrix G ever uniquely
determined in this way? Generically G is never uniquely
fixed if D is all we know about G. Hence, we need to make
sure that our knowledge G� = �K and rank(G) = rank(D) is
sufficient to uniquely determine G. In [27], a necessary and
sufficient criterium for the uniqueness of G—given G� = �K
and rank(G) = rank(D)—is derived for situations where either
something is known about Gst or Gm. Then, G is uniquely
determined if and only if

rank[M( �K,�)] = d2(d2 + 1)/2,

where M(·) is a matrix-valued function in �K and � (see [27]
(Theorem 2), and [30,31] for related work). Applying this cri-
terion to specific circumstances we observe (for instance) that
knowing that the experimental measurements are projective
and nondegenerate is sufficient to ensure uniqueness of G if
the number of measurements exceeds a critical value.

Algorithm. The previous discussions lead to Algorithm 1
for estimating the state-measurement Gram matrix.

IV. NUMERICAL EXAMPLES

We ran Algorithm 1 for different dimensions d assuming
that the measurements are projective and nondegenarate. We
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TABLE I. Numerical experiments.

Dim(H) Successes Failures Start point Solver

2 1000 0 (5,5) SeDuMi [28]
3 1000 0 (60,100) TFOCS [29]
4 1000 0 (65,130) TFOCS [29]

observed that the completions Ĝ frequently fail to satisfy
rank(Ĝ) = rank(D) whenever �, d, W , V , and K are such that
G is not overdetermined by G�. The results are summarized
in Table I. Here,

“failure” :⇔ max
ij

|Ĝij − Gij | � 10−3, (10)

with Ĝ and G denoting the estimated and the correct Gram
matrix, respectively. “Start point” refers to the number of states
and measurements we use to start Algorithm 1. These start
points are chosen such that P is globally completable. If the
trace minimization (8) fails to satisfy rank(Ĝ) = rank(D), we
alternatingly add a new state or a new measurement and rerun
the trace minimization (8); cf. Algorithm 1. More details are
provided in the appendix.

V. DISCUSSION

If we assume the following, then we could prove that
Algorithm 1 returns the correct Gram matrix:

(1) Asymptotic limit. That is, unbounded measurement
repetitions, so that fk|wv = tr (ρwEvk).

(2) Informationally complete states and measurements.
The unknown matrices (ρw)w and (Evk)vk separately span
Herm(H) [see Eq. (3)].

(3) Uniqueness. Our a priori knowledge G� = �K implies
uniqueness of the Gram matrix G satisfying rank(G) =
rank(D) [27].
Note that these assumptions are nonexotic and strictly weaker
than the assumptions made in asymptotic state tomography
and measurement tomography. For instance, in case of state
tomography all measurement operators are assumed to be
known and consequently, all of the measurement Gram matrix
Gm is known a priori. For global completability of the states
and the measurements on the other hand it suffices to know
(for example) that the measurements we perform are projective
and nondegenerate. Such properties are easily enforced by only
fixing a block diagonal of Gm (see [27]).

Knowing G is important because G suffices to determine
the states and the measurements up to simultaneous rotations
in Herm(H). Experiments involving processes {Ej }j , a single
state ρ and a single POVM (Ek)k can be reduced to the
considered prepare and measure setup by focusing on states
(
∏

s Ejs
)ρ and measurements (

∏
s E

†
is

)Ek . Once these states
and POVMs are estimated, they can be used as anchors for
conventional process tomography.

Explicit density matrices and measurement operators can be
found by heuristic algorithms (e.g., [16]) that take G as input.
To deal with finite measurement repetitions, we would need
to weaken the sharp constraints fk|wv = tr (ρwEvk), e.g., by
enforcing tr (ρwEvk) ∈ [fk|wv − ε,fk|wv + ε] for some ε > 0.

Assume that under these constraints Algorithm 1 returns
Ĝ satisfying rank(Ĝ) � Herm(H) = d2 where d denotes
the dimension of the underlying Hilbert space (assumed to
be known). Then, as long as ε  1, we suspect that Ĝ

approximates the correct Gram matrix G well if the states
and the measurements are somewhat spread out in the cone of
positive semidefinite matrices. It is an important open problem
to investigate the validity of this intuition and to find convenient
upper bounds for the distance between Ĝ and G. However, this
problem is much more challenging than the analogous problem
in state tomography.

ACKNOWLEDGMENTS

I would like to thank Johan Åberg for his continu-
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APPENDIX A: COMPUTING THE BOUND RQM

The purpose of this section is the computation of the upper
bound RQM from Eq. (8) in the main text. We start with

‖G‖ � ‖G‖2, (A1)

where ‖G‖2
2 = tr (G∗G), which holds true for general ma-

trices. The bound (A1) is tight for G ∈ GQM because for
every Hilbert space dimension d and for every rank of
G, we can choose the vectors �ρ1, . . . , �EVK [the columns
of P ; cf. Eq. (2) in the main text] such that they are
almost parallel to RI. Thus, for any choice of rank(G) =
rank(P ), G can become arbitrarily close to a positive
semidefinite rank-1 matrix (corresponds to all columns of
P being parallel). Thus, the vector of eigenvalues of G

becomes arbitrarily close to the vector (‖G‖,0, . . . ,0)T ,
i.e., ‖G‖ becomes arbitrarily close to ‖G‖2. Consequently,
the upper bound (A1) is tight. We continue by observing
that

‖G‖2 � ‖G‖2
2 = ‖P T P ‖2

2 � ‖P ‖4
2 =

⎛
⎝W+V K∑

j=1

‖ �Pj,·‖2
2

⎞
⎠2

=
(

W∑
w=1

‖ρw‖2
2 +

V∑
v=1

K∑
k=1

‖Evk‖2
2

)2

. (A2)

In the second inequality, we have used the submultiplicativity
of the Hilbert-Schmidt norm. The Hilbert-Schmidt norm of
quantum states is lower bounded by the norm of the maximally
mixed state and upper bounded by the norm of pure states.
Consequently,

‖ρj‖2 ∈ [1/
√

d,1] ⇒ ‖ρj‖2
2 � 1. (A3)
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The condition
∑

k Evk = I implies

d = ‖I‖2
2 =

∥∥∥∥∑
k

Evk

∥∥∥∥2

2

=
∑

k

‖Evk‖2
2 +

∑
k �=q

tr (EvkEvq),

(A4)

and therefore, ∑
k

‖Evk‖2
2 � d, (A5)

because tr (MN ) � 0 whenever M,N � 0. This upper bound
is tight because it is achieved by projective, nondegenerate
measurements. Using Eqs. (A5) and (A3) in Eq. (A2), we
arrive at

RQM = W + V d. (A6)

APPENDIX B: FINDING THE CONVEX RELAXATION
WITH RESPECT TO S+ ∩ B‖.‖�1

Fazel, Hindi, and Boyd proved [26] that ‖ · ‖1 is the convex
envelope of the rank function on the set of matrices X with
‖X‖ � 1. In the following we present a modification of their
argument to show that the trace (and hence still the trace
norm ‖ · ‖1) is the convex envelope of the rank function
when restricting the above ball of matrices ‖X‖ � 1 to its
intersection with the cone of positive semidefinite matrices,
i.e., X ∈ S+ ∩ B‖.‖�1.

Recall that for an arbitrary function f : C → R, C convex,

f ∗(y) = sup{〈y,x〉 − f (x) | x ∈ C},
is its conjugate. The convex envelope of the rank function with
respect to the convex set,

C := {X ∈ Rn×n | X � 0, ‖X‖ � 1},
is rank∗∗, i.e., the double conjugate [32] with respect to C.
Observe that

rank∗(Y ) = sup
X∈C

{tr (YX) − rank(X)} = max

⎧⎪⎪⎨
⎪⎪⎩ sup

X ∈ C,

rank(X) = 1

{tr (YX) − 1}, . . . , sup
X ∈ C,

rank(X) = n

{tr (YX) − n}

⎫⎪⎪⎬
⎪⎪⎭ . (B1)

Here, Y is an arbitrary Hermitian (n × n) matrix (recall that
the Hermitian matrices form the vector space carrying S+).
Due to their Hermiticity, both X and Y can be diagonalized
orthogonally,

X =
n∑

j=1

ε(X)j |ε(X)j 〉〈ε(X)j |,
(B2)

Y =
n∑

j=1

ε(Y )j |ε(Y )j 〉〈ε(Y )j |.

In the remainder we are assuming that all the eigenvalues are
sorted descendingly. We observe that

tr (YX) =
n∑

i=1

ε(Y )i

⎛
⎝ n∑

j=1

ε(X)j |〈ε(X)i |ε(Y )j 〉|2
⎞
⎠

= �ε(Y )T Q �ε(X),

(B3)

where Q is the doubly stochastic matrix Qij =
|〈ε(X)i |ε(Y )j 〉|2. Let s be such that ε(Y )j � 0 for j � s

and ε(Y )j < 0 for j > s. Consider a term “m”, m � s, from
Eq. (B1), i.e.,

sup
X ∈ C,

rank(X) = m

{�ε(Y )T Q �ε(X) − m
}
.

We claim that

�ε(Y )T Q �ε(X) � �ε(Y )T (1, . . . ,1︸ ︷︷ ︸
m−times

,0, . . . ,0)T ,∀Q,�ε(X), (B4)

is a tight upper bound. Consider

maximize �ε(Y )T Q �ε(X),

subject to Q doubly stochastic.
(B5)

The optimization problem (B5) is linear. It follows that the op-
timum is achieved at an extremal point. The doubly stochastic
matrices form a polytope whose vertices are the permutation
matrices (Birkhoff–von Neumann theorem). Hence, a solution
Q to (B5) is a permutation matrix. An optimal choice is Q = I
because �ε(X) and �ε(Y ) are ordered descendingly, and

〈x↓,y〉 � 〈x↓,y↓〉,
for arbitrary vectors x,y ∈ Rn (see Corollary II.4.4 in Bathia’s
book [33]). Consequently, Q = I, e.g., via

|ε(X)j 〉 := |ε(Y )j 〉,∀j,

solves (B5) independently of the specific values of �ε(X) and
�ε(Y ). To conclude the proof that Eq. (B4) describes a tight
upper bound, we have to solve

maximize �ε(Y )T �ε(X),

subject to X � 0, ‖X‖ � 1, rank(X) = m.
(B6)

The constraints imply

(0, . . . ,0)T � �ε(X) � (1, . . . ,1︸ ︷︷ ︸
m−times

,0, . . . ,0)T

(componentwise). As m � s, the left-hand side of Eq. (B4)
becomes maximal for the componentwise maximum of �ε(X),
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i.e., for

�ε(X) = (1, . . . ,1︸ ︷︷ ︸
m−times

,0, . . . ,0)T . (B7)

This proves that the upper bound in Eq. (B4) is correct and
tight. In case of m > s, nonzero choices of ε(X)j , s < j � m,
lead to negative contributions to the left-hand side of Eq. (B4).
Hence, in the case of m > s, the choice,

�ε(X) = (1, . . . ,1︸ ︷︷ ︸
s−times

,0, . . . ,0)T , (B8)

realizes the tight upper bound. Combining Eqs. (B7) and (B8),
we arrive at

sup
X ∈ C,

rank(X) = m

{�ε(Y )T Q �ε(X)
} − m

=
{ ∑m

j=1[�ε(Y )j − 1], for m � s,

−(m − s) + ∑s
j=1[�ε(Y )j − 1], for m > s.

(B9)

To choose the optimal m [recall Eq. (B1)], we note that
m �→ m + 1 is profitable as long as �ε(Y )m − 1 � 0. Using
the compact notation a+ = max{a,0}, we conclude

rank∗(Y ) =
n∑

j=1

[�ε(Y )j − 1]+. (B10)

To determine rank∗∗(Z), we can copy and paste the Fazel-
Hindi-Boyd arguments [26]. We repeat them for the reader’s
convenience:

rank∗∗(Z) = sup
Y=YT

{
tr (ZY ) − rank∗(Y )

}
, (B11)

for all Z � 0 and ‖Z‖ � 1. Define

� := {
tr (ZY ) − rank∗(Y )

}
. (B12)

We consider the two cases ‖Y‖ � 1 and ‖Y‖ > 1,

rank∗∗(Z) = max

⎧⎪⎪⎨
⎪⎪⎩ sup

Y = YT ,

‖Y‖ � 1

�, sup
Y = YT ,

‖Y‖ > 1

�

⎫⎪⎪⎬
⎪⎪⎭ . (B13)

Assume ‖Y‖ � 1. Then, as a consequence of Eq. (B10),
rank∗(Y ) = 0, and therefore,

sup
Y = YT ,

‖Y‖ � 1

� = sup
Y = YT ,

‖Y‖ � 1

{
tr (ZY )

}
. (B14)

By von Neumann’s trace theorem [34],

tr (ZY ) � �ε(Z)T �ε(Y ). (B15)

This upper bound can be achieved by choosing Y , such that

|ε(Y )j 〉 := |ε(Z)j 〉,∀j.

Consequently, going back to Eq. (B14),

sup � =max, �ε(Z)T �ε(Y ),

subject to |�ε(Y )j | � 1, ∀j.
(B16)

Since componentwise 0 � �ε(Z) � 1, �ε(Y ) = (1, . . . ,1)T is the
optimal choice. It follows that

sup
Y = YT ,

‖Y‖ � 1

� =
n∑

j=1

�ε(Z)j = tr (Z). (B17)

This concludes the discussion of ‖Y‖ � 1. Assume ‖Y‖ >

1. Note that rank∗(Y ) is independent of our choice of the Y

eigenvectors |ε(Y )j 〉. Hence, in Eq. (B11), we choose

|ε(Y )j 〉 := |ε(Z)j 〉,∀j,

as before to reach the von Neumann–upper bound in Eq. (B15).
Thus,

sup
Y = YT ,

‖Y‖ > 1

� = sup
ε(Y )1 � 1

{�ε(Z)T �ε(Y ) − rank∗(Y )}, (B18)

leading to

sup
Y = YT ,

‖Y‖ > 1

� = sup
ε(Y )1 � 1

n∑
j=1

[ε(Z)j ε(Y )j ] −
s∑

j=1

[
ε(Y )j − 1

]
.

(B19)

Here, s is chosen such that ε(Y )j � 1 for j � s and ε(Y )j < 1
for j > s. As in the derivation by Fazel and coworkers [26], we
continue by the addition and the subtraction of

∑n
j=1 ε(Z)j :

sup
Y = YT ,

‖Y‖ > 1

� = sup
ε(Y )1 � 1

n∑
j=1

[ε(Z)j ε(Y )j ] −
s∑

j=1

[ε(Y )j − 1]

−
n∑

j=1

ε(Z)j +
n∑

j=1

ε(Z)j

= sup
ε(Y )1 � 1

s∑
j=1

[ε(Y )j − 1][ε(Z)j − 1]

+
n∑

j=s+1

[ε(Y )j − 1]ε(Z)j +
n∑

j=1

ε(Z)j . (B20)

In this last expression, the first sum is negative semidefinite
because ‖Z‖ � 1, and the second sum is negative semidefinite
because by definition of s, ε(Y )j � 1 for all j > s. Therefore,

sup
Y = YT ,

‖Y‖ > 1

� �
n∑

j=1

ε(Z)j = tr (Z). (B21)

Hence, using Y with ‖Y‖ > 1 brings no advantage [compare
Eqs. (B17) and (B21)]. Going back to Eq. (B13), we conclude

rank∗∗(Z) = tr (Z), (B22)

i.e., the convex envelope of the matrix rank function over the
set S+ ∩ B‖.‖�1 is the matrix trace.

APPENDIX C: NUMERICAL EXPERIMENTS

To perform the numerical experiments, we need to sample
explicit states and measurements. We proceeded by choosing
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FIG. 2. (Color online) Histogram for dim(H) = 2 illustrating
how many states and measurements were finally needed to find the
correct state-measurement Gram matrix.

pure states from the Haar measure and by rotating a reference
projective, nondegenerate measurement according to the Haar
measure. In Algorithm 1 in the main text we need to compare
the ranks of matrices. In principle, the rank of a matrix is equal
to the number of its nonzero singular values. However, due to
small numerical fluctuations in the solutions G, this definition
is too strict. Rather, one should tolerate small variations by
setting to zero singular values that are very small. We need
to compare the rank of G with the rank of D. We proceed by
defining a threshold τ := 10−4 and

š := (srankD+1, . . . ,sN ), (C1)

with sj denoting the singular values of Gst (sorted descend-
ingly). Then, we choose the following criterion to decide
whether or not the ranks of G and D agree:

rank(G) ≈τ rank(D) :⇔ ‖š‖2 � τ. (C2)

When running Algorithm 1, we start with a specific number
of unknown states and measurements. This is specified by
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FIG. 3. (Color online) Histogram for dim(H) = 4 illustrating
how many states and measurements were finally needed to find the
correct state-measurement Gram matrix.

“start point” in Table I. If the trace minimization does not
manage to find the solution satisfying the rank condition, then
we need to add new states and measurements (see Algorithm
1). The histograms in Figs. 2 and 3 illustrate how often
we had to add new states and measurements to the initial
situation when the Hilbert space was two dimensional or four
dimensional. In case of the three-dimensional simulations we
chose the start point large enough (to save computation time)
so that we never had to increase the number of states or
measurements (the corresponding histogram is trivial). From
the perspective of state tomography, the required number of
states and measurements appears to be large. However, in the
most general cases where all the states and measurements lie
in the interior of the cone of positive semidefinite matrices,
large numbers of states and measurements are really needed
(see [27]) to uniquely specify the quantum model, respectively,
the Gram matrix. This changes as soon as enough states and
measurements are rank deficient because in these situations,
the boundary of the cone of positive semidefinite matrices can
help to uniquely specify the state-measurement Gram matrix.
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Córcoles, B. R. Johnson, C. A. Ryan, and M. Steffen, Phys. Rev.
A 87, 062119 (2013).

[2] R. Blume-Kohout, J. K. Gamble, E. Nielsen, J. Mizrahi, J. D.
Sterk, and P. Maunz, arXiv:1310.4492.

[3] A. Acı́n, N. Gisin, and L. Masanes, Phys. Rev. Lett. 97, 120405
(2006).

[4] I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, V. Scarani,
V. Makarov, and C. Kurtsiefer, Phys. Rev. Lett. 107, 170404
(2011).
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