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Abstract

I built a novel prototype capillary polymerase chain reaction machine. The purpose
was to perform a single reaction as fast as possible with a reaction volume ~-d 100 nl.
The PCR mix is in the form of a 1I pL droplet that moves between three heat zones
inside of a 1 mm I.D. capillary filled with mineral oil via pneumatic actuation. A
laser beam waveguides down the capillary until it strikes the drop, at which point
it scatters. The scatter is picked up by a series of photodiodes to provide position
feedback. Due to tht efficient heat transfer arrangement, the drop can transition
between different temperature steps in ~~d2 seconds, which includes both drop motion
and temperature equilibration. It was extensively tested in both 10-cycle and 30-cycle
PCR, including nearly 200 successful 30-cycle runs. The 30-cycle PCR was typically
74% (as high as 78%) efficient, and took only 23 minutes. This compares well with
existing machines in the literature.

Thesis Supervisor: Daniel J. Ehrlich
Title: Director, BioMEMs Laboratory, Whitehead Institute
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Chapter 1

Introduction

Polymerase chain reaction (PCR) is arguably the single most widely used technique

in molecular biology today. It is used to produce many copies of a specified portion

of initial template DNA Large quantities of DNA are typically required for determi-

nation of strand size by electrophoresis, a common diagnostic technique. PCR is also

widely used to precisely alter DNA by site-specific mutagenesis.

PCR is usually performed in a 100 pl aliquot. The aliquot is put into a disposable

plastic tube, which is placed in a computer-controlled heat block. The heat block

goes up and down in temperature to perform the reaction, which is complete 1-2

hours later. Much of this time is spent heating and cooling the block.

The purpose of this thesis was to produce a proof of concept for a fast polymerase

chain reaction machine capable of handling sample volumes on the order of 100 nl.

Instead of 1-2 hours, the current machine can finish the reaction in about 20 min-

utes. While admittedly not yet in a commercial form, the device demonstrates that

PCR will be executed much more quickly in the future, increasing productivity. The

11



I P0 .

capillary "plug" (PCR mix)

Figure 1-1: Basic capillary PCR machine concept.

machine uses a 1 [L aliquot. This saves on expensive reagent costs.

The basic concept is shown in Fig. 1-1. A lpl drop, or "plug", of PCR sample mix

is placed inside of an oil-filled capillary. PCR is performed by manipulating pressures

P and P2 to move the plug to heat zones at the three PCR step temperatures T1,

T 2, and T3 , established by heat blocks. Since there is one heat block for each PCR

step, there is no time spent changing a heat block temperature. The plug volume is

small, and heats quickly. The machine was successfully used to perform about 200

PCR reactions, and required about 20 minutes to perform 30 cycles of a 500 base-pair

target.

This work opens with an explanation of the polymerase chain reaction in Chap-

ter 2. This is followed by a review of current fast PCR machines in Chapter 3.

Chapter 4 provides a detailed description of a novel fast PCR machine. Chapters 5

and 6 detail PCR experiments using this device. Chapters 7, 8, and 9 are detailed

engineering analyses of the device, especially pertaining to its speed limits. The work

concludes with recommendations for future work in Chapter 10.

Due to the large number of symbols used in this work, each chapter has its own

nomenclature, listed at the end of the chapter. The usage of symbols may be different

from those of other chapters.

12
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omenclature

Pressures at the capillary ends.

Heat block temperatures.
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Chapter 2

The Polymerase Chain Reaction

The polymerase chain reaction, or "PCR," is a common technique in molecular bi-

ology. It is used to produce many copies of a portion of DNA. While it attempts to

mimic in vivo DNA replication, it is not identical. To understand how PCR works,

we must look at the basic structure of DNA.

2.1 DNA Structure

DNA is made up of nucleotides. Each nucleotide consists of a nitrogen-containing base

and three phosphate groups are attached attached to a pentose sugar. There are only

four different types of nucleotides found in DNA: deoxyadenosine triphosphate (dATP,

referred to as 'A' for sequencing purposes), deoxycytidine triphosphate (dCTP; 'C'),

deoxyguanosine triphosphate (dGTP; 'G'), and deoxythymine triphosphate (dTTP;

'T'). They are collectively referred to as dNTPs, and are also called bases. The

nucleotides can form a chain (Fig. 2-1). The phosphate group at the 5' position of

14
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one nucleotide links with the 3' hydroxyl group of the next nucleotide. The remaining

two phosphate groups are clipped off by DNA polymerase, the enzyme catalyzing the

reaction. Additional nucleotides are added in the same manner, always at the end of

the existing chain with the free hydroxyl group at the 3' position. This is referred

to as the 3' end. The other end with the free phosphate group at the 5' position is

called the 5' end. The chain itself is a single stranded DNA (ssDNA) strand which is

said to go in the 5' to 3' direction. The length of DNA is expressed in bases: a strand

1000 bases long would be expressed as 1.0 kb (kilobases), for example.

Two single stranded DNA strands can combine to form a double stranded DNA

(dsDNA) strand. The two strands run alongside each other, forming a ladder-like

structure. The 5' end of one strand is at the 3' end of the other strand, so the ssDNA

strands are said to run antiparallel to each other. Each base on one strand hydrogen

bonds to its corresponding base on the other strand (Fig. 2-2). An 'A' will only bond

with a 'T', and a 'G' will only bond with a 'C'. For two ssDNA to form a dsDNA,

the two ssDNA sequences must match up according to these rules'. They are said to

be complementary. For example, if one ssDNA is 5'-ATGC-3', then the other must

be 3'-TACG-5'. The actual shape of dsDNA results from twisting the "ladder" into

a spiral. This produces the familiar double helix structure.

'A small percentage of bases can be mismatched under some circumstances.

16
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Figure 2-3: Denaturing, annealing and extension steps

2.2 PCR Overview

Extend (70-80 C)

for one cycle.

In vivo DNA replication is very complex, and involves the concerted effort of many

different proteins [70]. PCR is comparatively simple, and involves only one protein:

DNA Polymerase. PCR was invented in 1985 by Kary Mullis [54, 56, 74]. He re-

ceived the 1993 Nobel Prize in chemistry for this contribution. PCR is performed by

subjecting a specific fluid mix to a cyclic heating process. The mix includes copies

of the initial template DNA, free nucleotides, short ssDNA sequences called primers,

and a thermostable DNA polymerase-usually Thermus aquaticus DNA Polymerase

(Taq).

The first step in PCR is denaturating (see Fig. 2-3). This takes place around 2

94-96'C. At this temperature, the hydrogen bonds between bases are not strong

2The optimal time and temperature for each step depends on the particular DNA, primers,
polymerase, etc.

18

.................... ........

WWWWW" ... .....

...... ................



enough to hold the dsDNA together. The dsDNA dissociates into ssDNA.

The next step is annealing. The temperature of the aliquot is brought to 50-60*C

to optimize the binding (annealing) of the primers to the ssDNA. At this temperature,

the ssDNA strands can recombine. Therefore, the aliquot contains much greater num-

bers of primers than DNA in order to favor primer-ssDNA hybridization. A primer

is a short sequence of DNA, typically 20-30 bases long, that is complementary to the

desired start point of DNA replication. There are two types of primers present-one

that binds to each of the two ssDNA strands. These are called the forward and reverse

primers. DNA polymerase cannot act on a ssDNA that does not have a primer.

The third step is extension. This is the actual synthesis of new DNA. To facilitate

this process, the temperature is brought to 70-80*C. A DNA polymerase molecule

that recognizes a ssDNA-primer pair will start attaching free nucleotides to construct

the ssDNA's complement. The forward and reverse primers usually do not anneal at

the ends of the template DNA, so the new DNA is almost always shorter than the

template.

The denaturing, annealing, and extension steps are repeated. Each sequence of

these steps is termed a cycle. PCR usually has 20-45 cycles [58]. Extension produces

new DNA beginning at the primers (see Fig. 2-4). After the initial few extension

steps, the vast majority of new dsDNA that is produced is the region between and

including the two primers. By specifying the primers, researchers can search for and

amplify specific portions of template DNA.

Theoretically, each cycle can double the number of existing DNA strands. In

19
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Amount Constituent
1 pg mammalian DNA
0.5 pjM forward primer
0.5 pM reverse primer
0.2 mM dATP
0.2 mM dCTP
0.2 mM dGTP
0.2 mM dTTP
2.5 units Taq DNA polymerase
1.5 mM MgCl 2

50 mM KCl
10 mM Tris-HCI (pH 9.0 at 25*C)
0.01% Triton X-100

Table 2.1: A typical 100 pl PCR mix. From [43].

reality, the process is not 100% efficient. Its efficiency, Y, is defined as follows [13]:

concentration of product
concentration of template

= (1+Y)"

where n is the number of cycles. A typical PCR reaction is 70% efficient [13].

2.3 The PCR Mix

PCR mixes vary. A mix must be adjusted to find the optimal constituents to go

along with a given set of template and primers [13]. A typical PCR mix is shown in

Table 2.1. The constituents are mixed together in distilled water to a total volume

of 100 pL. A description of each constituent follows.

Mammalian DNA length varies, but is typically 3.0 x 109 bp long [88, page 621].

21
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dsDNA is3 660 g/bp-mole. Therefore, the DNA concentration in Table 2.1 is 5 x 10-15

M. If plasmid rather than mammalian DNA is used, only 0.1 ng is required [43]. Since

plasmid length is around 1.2-3 kb [46], this is a concentration of about 10- 2 M.

In general, PCR efficiency is greater for smaller sized template DNA [13]. The

minimum amount of starting mammalian template DNA is around 100 copies per 100

/A reaction (1.7 x 10-18M) [73], though under very special conditions, even a single

DNA molecule may be amplified 4. Concentrations greater than 10 pg template per

100 psl reaction (5 x 1014 M) hurts the reproducibility of the reaction [13]. At this

concentration, contaminants from DNA preparation may also decrease the efficiency

of the reaction [43].

The primers are short pieces of DNA, each :20-30 bp in length [43, 58]. Each

should have a sequence complementary to the end of one of the expected product

strands. The 20 bp minimum length is to ensure that each primer is complementary

to a unique position of the template DNA. Beyond this minimum, primer length

is kept short to minimize costs-primer synthesis is usually priced per base. Each

primer should be chosen so that its 3' end sequence is neither complementary to itself

nor the other primer [58]. Primer concentration should be at least 10 times that of the

expected product concentration [13] so that ssDNA-primer complexes are formed in

favor of dsDNA complexes during annealing. However, if primer concentration is too

3Therefore, ssDNA is 330 g/bp.mol. These are average numbers, assuming equal numbers of A,

C, G and T bases. A more precise equation for the molecular weight of ssDNA is [45]:

(#A x 313.2) + (#C x 289.2) + (#G x 329.2) + (#T x 304.2) - 62 + [(total # of bases) - 1] x 17

4For example, [34, 53].
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high, they can anneal to incorrect, nearly complementary locations [13]. This results

in erroneous product and decreased efficiency. The product specified by primers can

be up to 10 kb long if Taq is used. However, products greater than 3 kb in length

cause the reaction to be very inefficient [43, 65]. Different polymerases and protocols

must be used to amplify longer targets 5.

The dNTPs are the building blocks from which the product DNA is built. The

optimal concentration is around 50-200 jLM for each of the four dNTPs. Too large of

a concentration increases the rate at which DNA polymerase incorporates erroneous

dNTP6 [73]. A dNTP concentration of 4-6 mM actually decreases the Taq extension

rate [24].

DNA polymerase is the enzyme that constructs the product DNA from the dNTPs.

There are a variety of DNA polymerases available [4]. They vary in their fidelity (the

chance that they will incorporate an erroneous dNTP), thermostability (how much

activity they maintain after being heated), maximum product length, etc. However,

they all have enough heat resistance to withstand multiple denature cycles. The

quantity of DNA polymerase is usually specified in units of activity. One unit is

defined [69] as the amount of enzyme that will build 10 nanomoles of ssDNA product

in 30 minutes at 74*C. The reason why the enzymes are not specified in terms of

molar concentration is because their activity per mole varies from purification to

purification.

'For example, Kainz et al. [36] were able to amplify a 15.6 kb target using the Thb DNA poly-
merase and nonstandard PCR protocol.

6For example, under normal circumstances, Taq incorporates one wrong base every 4800 bases
[38].
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Of all the DNA polymerases available, the one most commonly used in PCR is

that purified from Thermus aquaticus. It is referred to as Taq, for short. It was

originally isolated from a hot spring in Yellowstone National Park [24]. The reason

for its popularity is that it was the first DNA polymerase used for PCR [55]. It is

still one of the fastest polymerases. Its speed is estimated at 60-120 bases/second

(see Section 2.5.5). Taq will slowly lose activity at denaturing temperatures. In a

standard PCR mix, its half life is 130 min at 92.50C, 40 min at 95*C, and 5-6 min at

97.5*C [24]. Estimates of the optimal temperature for extension vary, but fall within

the 70-80'C range [4, 13, 24, 31, 43, 55]. Concentration of Taq is 0.5-5 units per 100

pL PCR mix [31]. While greater concentrations of the enzyme can increase efficiency

(up to a point), concentrations greater than 2.5 units per 100 pl can increase the

amount of erroneous product [43].

MgC12 is necessary for the polymerase to work. The dNTPs bind to the Mg++ ions

[73]. This does not affect the dNTPs: when the free dNTP concentration becomes

low enough, they unbind. However, 0.5-2.5 mM free (not bound to dNTP) Mg++ is

required by the polymerase [31]. The optimal concentration of MgCl2 varies from mix

to mix. While all constituent concentrations may be optimized for PCR, optimization

of MgCl2 concentration is critical [13, 43]. Too much MgCl2 results in erroneous

products. Too little results in low product yield.

KCl is often included to aid annealing. Each phosphate group in ssDNA is nega-

tively charged, so the whole strand has a negative charge [70, page 320]. This makes

the DNA strands repel each other. Fortunately, K+ ions cluster around the negative

24



charges, neutralizing them and permitting annealing 7 . 50-55 mM of KCL should used

[4]. Larger amounts inhibit Taq [31].

Tris-HCl is a buffer whose presence ensures the optimal pH for the polymerase.

This range is 7.8-9.4 for Taq [4]. The manufacturer often specifies (and provides

buffer of) the optimal pH for its polymerase.

The Triton X-100 is present to stabilize the DNA polymerase. Gelatin or bovine

serum albumin ("BSA") are sometimes used instead [13]. BSA also serves as a block-

ing agent-it sticks to the walls of the tube holding the mix so less Taq gets stuck on

the walls.

Other additives, such as glycerol, dimethylsulfoxide, or formamide , are sometimes

included in the mix. These help the reaction by lowering the denaturing temperature

[13]. Annealing will also take place at a lower temperature, but this can be an

advantage if the current annealing temperature is low enough for the primers to

anneal at incorrect locations.

2.4 PCR Time Schedule

A conventional PCR machine 8 is shown in Fig. 2-5. The ~-,100 /A PCR mix is pipetted

into a small disposable plastic "Eppendorf" tube9 . A thin layer of mineral oil is

sometimes placed on top of the mix to prevent evaporation 10. The tube is placed

'While KCL is the most commonly used to provide monovalent cations, sometimes other salts are
used, such as NaCI [43].

'For example, a Techne PHC-3 (Princeton, NJ).
9 Eppendorf is a brand name. The generic term is microfuge tube, which denotes a tube suitable

for use in a small centrifuge.
' 0Newer machines often have a heated cover for the heat block which eliminates the need for

mineral oil.

25
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Heater block

Figure 2-5: A standard PCR machine.
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Table 2.2: A typical PCR heating schedule. From [75, Chap. 14].

inside of a computer-controlled heat block.

A typical heating schedule is shown in Table 2.2. The cycle is run 30 times. If

there is a large amount of initial template, fewer cycles may be run. If there is very

little initial template, up to 45 cycles may be run. More cycles are extremely unlikely

to produce additional product (see Section 2.5.5).

The denature step in cycle 1 is longer than in subsequent cycles. In cycle 1, all the

DNA is template. Template is usually much longer than the product, so it requires

a longer time to denature. In subsequent cycles, product is present. Since product is

usually shorter than template, shorter denature times are required.

The extension step in the last cycle is also longer than in other cycles. This is to

ensure that all product extension is complete.

While the extension time is fixed at 3 min in Table 2.2, the amount of tiine used

is usually varied according to product length. A common rule of thumb is 1 min per

kb of product [73].

Like the PCR mix, PCR cycle times vary. While the schedule shown in Table 2.2

serves as a starting point, the researcher must tweak it to optimize a particular mix.

The annealing temperature, in particular, is often optimized for the specific primers

used.

27

Cycle Denature Anneal [Extend

1 940C, 5 min. 500C, 2 min. 72*C, 3 min.
2-29 940C, 1 min. 500C, 2 min. 72*C, 3 min.

30 940C, 1 min. 50*C, 2 min. 72*C, 10 mi.
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Figure 2-6: Fastest temperature transitions of two state-of-the-art conventional PCR
machines: the Perkin Elmer GeneAmp 9700 (recently introduced as of Feb 2000)
and the slightly older GeneAmp 9600. The heavier "MAX Mode" line indicates
the fastest temperature transitions available to the 9700 (A40* C in ~20 sec). The
lighter "9600 Mode" indicates the fastest temperature transition available to the 9600
(A40* C heating in ^50 sec, and cooling in O20 seconds). Taken directly from the
manufacturer product literature [64].

2.5 PCR Theory

The time schedule presented in Table 2.2 is conservative. It was developed for the

conventional type of PCR machine shown in Fig. 2-5. This type of machine can only

change temperature at ^d-2*C/second due to the large thermal mass of the heater

block (see Fig. 2-6).

Since the objective of this thesis was to make a machine to perform PCR as fast

as possible, it is important to review the reaction theory.
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2.5.1 The Melting Temperature Tm

Tm is defined as the temperature at which 50% of a dsDNA's base pairs are dissociated

[91]. For short DNA such as primers, this means that half of the dsDNA have split into

ssDNA. For long DNA such as template, this can mean that the dsDNA is partially

dissociated. Tm is neither the annealing or denaturing temperature, although it is

closely related to both. The annealing temperature is lower than Tm, because it

is the temperature at which all the complementary ssDNA bind. The denaturing

temperature should be higher than Tm, since it is the temperature at which dsDNA

completely dissociates.

T, is usually calculated with a simple empirical formula. One such formula [58]

is:

Tm = 2(# A + T) +4(# C + G) for1M salt, L <20 (2.2)

where Tm is in *C. "# A + T" is the total number of A and T bases in the DNA, and

"# C + G" is the total number of C and G bases in the DNA. L is the length, in

bases. When an A pairs with a T, it forms 2 hydrogen bonds. When a C pairs with a

G, it forms 3 hydrogen bonds. Therefore, a C-G bond is stronger than an A-T bond.

This is reflected in Tm.

The most common formula used to calculate Tm includes the following variations:
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from [58], for 14 < L < 70:

Tm = 81.5 + 16.6 logo[J+] + 0.41(%GC) - -0 .63(%FA) (2.3)
L

From [3, 45], for L > 10:

Tm = 81.5 + 16.6 logo[J+] + 0.41(%GC) - - 0.65(%FA) - (%mismatch) (2.4)
L

From [91], for large L:

( [Na+] \500
Tm = 81.5 + 16.6 log1o 1 [Na])+0.41(%GC) - -5 -_(%mismatch)

1.0 + 0.7[Na+]L

(2.5)

In Eqs. (2.3), (2.4), and (2.5), Tm is in *C; [J+] is the molar concentration of the

generic monovalent salt ion J+; L is length in bases; %GC is the percentage of bases

in the DNA that are G or C; %FA is the percentage of formamide in the PCR mix

(see page 25); and %mismatch is the percentage of bases in the binding region that

are not complementary'. For standard PCR mixes, J+ is the potassium ion K+ from

KCl. However, in Eq. (2.5), [K+] should not be substituted for [Na+]. Rather, the

reference [91] states that a standard PCR buffer containing 1.5 mM MgCI2 and 50

mM KCl behaves like a 0.20M Na+ solution.

Breslauer et al. [10] developed a more complex, accurate method for determining

Tm for short DNA, building upon the earlier RNA work of Borer et al. [7]. They

"It is possible for annealing occur if a small portion of the bases are not complementary.
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Interaction AH 0 , kcal/mol |cS, cal/(mol-K) [AGO, kcal/mol

AA/TT -9.1 -24.0 -1.9
AT/TA -8.6 -23.9 -1.5
TA/AT -6.0 -16.9 -0.9
CA/GT -5.8 -12.9 -1.9
GT/CA -6.5 -17.3 -1.3
CT/GA -7.8 -20.8 -1.6
GA/CT -5.6 -13.5 -1.6
CG/GC -11.9 -27.8 -3.6
GC/CG -11.1 -26.7 -3.1
GG/CC -11.0 -26.6 -3.1

Table 2.3: Thermodynamic values of Breslauer et al. [10] for short dsDNA strands at

1M NaCl, 25*C, and pH 7.

AHtota= AH+EAH

-11.0 -9.1 -9.1 -11.0

5' -G-G-A-A-T-T-CC-3'
* * * * * * * * * *

3'-C-C-T-T-A-A-G-G-5'
+ t +4

-5.6 -8.6 -5.6

For the above dsDNA,
AHtota = [0+ (2 x -11.0) + (2 x -9.1) + (2 x -5.6) + 8.6] kcal/mol = -60.0 kcal/mol

Figure 2-7: Sample calculation of Hota for method of Breslauer et al. [10]. Hit.

is the sum of the AH0 values of adjacent base pairs from Table 2.3 and AH, the

initiation enthalpy. Breslauer et al. chose AHi = 0.

analyzed 28 different DNA fragments, ranging in size from 6-20 bases, to get the

thermodynamic data presented in Table 2.3. These values are used to calculate the

values of AHttM, ASt 0t., and AG 0 ta. Fig. 2-7 shows an example calculation of

AHtotai. AStota and AGita0 . are calculated similarly from values of AS0 and AGO,

respectively. While the helix initiation enthalphy is taken as zero,

AHl = 0 (2.6)
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there is a more complex expression for AGE:

AG 1 = AG 1 + AGaym (2.7)

Normally, AG 1 is 5 kcal/mol and AGym is zero. If the dsDNA is made up exclusively

of A-T base pairs, AG1 is 6 kcal/mol. If the dsDNA is made up of two identical (self-

complementary) ssDNA, AGym is 0.4 kcal/mol. The value of AS was found by Borer

et al. [7] to be

AS1 = -16.8 cal/(mol-K) (2.8)

From the definition of Gibbs free energy12 ,

AG = AH - TAS (2.9)

where T is absolute temperature. If AG = 0, the reaction is in equilibrium; if

AG < 0, the reaction is spontaneous. Hence, Tm can be found from Eq. (2.9) by

setting AG = 0.

Borer et al. [7] present the following equation, which accounts for DNA concen-

tration:

AH
TM = R 1A(2.10)

SR ln[c/4] + AS
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c is the total concentration of both complementary DNA strands, in molar; and

R = 1.987 x 10-3 kcal/mol-K, the universal gas constant. Note that Tm is expressed

in Kelvins. The equation applies to the case in which both ssDNA are at the same

concentration. In PCR, the concentration of primers is much greater than the con-

centration of product'.

The AG, AH, and AS values were found at 25*C. They are most accurate for

predicting Tm if (00 C< Tm < 400C) [7]. The studies of Breslauer and Borer were

conducted in 1 M NaCl at pH 7.0. PCR is typically performed in 50 mM KCl at

pH 9.

Wetmur modified Eq. (2.10) to account for varying salt concentration [91]:

TM = AH +16.6 log,() [Na t) + 3.83 (2.11)
.Rln[c]+ AS 1.0 + 0.7[Na+

where Tm is in K; R is the universal gas constant; [Na+] is the concentration of Na+

in molar; and [c] is the concentration of primer, in molar. As with Eq. (2.5), Wetmur

notes that a standard PCR buffer with 1.5 mM MgCl2 and 50 mM KCl is equivalent to

a Na+ concentration of 0.20 M. Eq. (2.11) assumes that the concentration of primers

is much greater than the concentration of product. If it is used for equal amounts of

complementary DNA, then [c] is replaced by [c/4], as in Eq. (2.10).

13 Unless so many cycles are run that product concentration approaches primer concentration. No-

tice there are two reactions going on: the forward primer annealing to one product ssDNA, and the

reverse primer annealing to the other product ssDNA. Each reaction can be considered separately.

However, the primer Tm's are usually similar and their concentrations are usually identical. Template
is not considered since its concentration is much lower than that of product

33



2.5.2 Denaturing

Matthew Meselson and Franklin Stahl were the first to observe heat denaturation of

DNA [47] while verifying Watson and Crick's semiconservative model of DNA repli-

cation [70, page 250]. According to the model, when dsDNA doubles, the resulting

dsDNA each contain one DNA strand from the original DNA, and one DNA strand

built from new bases. Meselson and Stahl grew E. Coli cells for 17 generations in

a medium where the sole nitrogen source was heavy "N rather that ordinary "N.

Subsequently, all the cell DNA was heavy. The cells were then transferred into a

medium containing ordinary 14 N. After one cell division cycle, they examined the

DNA. It had an intermediate density, between those of normal and heavy DNA.

After two cell division cycles, some of the DNA was normal density, and some was

intermediate density. This proved that DNA replication was semiconservative, rather

than completely conservative (where new DNA is formed entirely from new dNTPs,

in which case there would be no intermediate density DNA) or dispersive (where all

DNA strands would have identical density).

Meselson and Stahl heated some of the intermediate density DNA at 1000C for

30 minutes. Two different density DNA were produced. The heating had dissociated

intermediate density dsDNA into normal and heavy density ssDNA.

The literature on denaturation is sparse. Wetmur [91] presents a method for cal-

culating denaturing time for a given temperature, but it only applies to short lengths

of DNA. Golo and Kats presented a complex mathematical model of denaturation

[25]. However, they do not provide the coefficient values necessary to determine
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temperature or rate.

As mentioned previously'4 , denaturing is typically at 94-96oC. This narrow range

is used for almost all PCRs. If the temperature is too high, the DNA polymerase will

degrade. If the temperature is too low, most dsDNA will not dissociate into ssDNA

Primers cannot anneal to dsDNA, so product yield will be low. Complete dissociation

is especially important during the first denaturing cycle. Template DNA is almost

always much longer than the product DNA, and requires a longer time to denature.

For this reason, the first denature cycle is usually longer than subsequent cycles.

2.5.3 Annealing Temperature

DNA renaturation was discovered in 1961 by Marmur and Doty [47]. They found

that when denatured D. pneumoniae DNA was cooled gradually, its transforming

activity' 5 was partially restored. Further investigation proved that the ssDNA was

recombining into dsDNA.

The optimal annealing temperature is around 25*C below the primer Tm, though

the rate changes very little in the range of 15-30*C below" Tm [92]. Primers anneal

fastest at this temperature. If the annealing temperature is too low, the primers

can anneal to regions of the DNA that are not perfectly complementary. Incorrect

products are made. If the annealing temperature is too high, the primers will not

bind to the DNA quickly. This can result in low yield.

"See page 18.
"5Transformation is the process in which raw bacterial DNA in the proximity of a bacterial cell is

incorporated into the cell's own DNA [70].
16Newton and Graham [58] note that in some cases, the optimal annealing temperature may

actually be 3-12*C higher than the calculated Tm.

35



The optimal annealing temperature for a given primer, template, and mix must

be determined experimentally. Denaturing and extension temperatures do not vary

as much. Many modern PCR machines" have heat blocks with temperatures that

vary from one end to the other, specifically to test a range of annealing temperatures

simultaneously.

Several equations have been published to determine the annealing temperature

TANN. They serve as a starting point from which to fine tune TANN. If the reaction

does not have to be highly optimized, they may be used as is.

One method would be calculate to Tm using one of the formulae in section 2.5.1,

and set TANN = Tm - 25*C. There are also empirical equations for calculating TANN,

such as the following [58]:

TANN = 22+1.46 [2 x (#G + C) + (#A + C)] (2.12)

where TANN is in 'C.

Rychlik et al. [72] tested 11 different primer pairs on 2 different template DNA to

produce PCR products 135-10,881 bases long using a Perkin-Elmer/Cetus Thermal

Cycler. They came up with the following formula for the TANN:

TANN = 0-3TM7nin+ O7Tmrduct - 14.9K (2.13)

"For example, the Robocycler Gradient 96. Stratagene, La Jolla, CA.
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T7primer is a variant of Eq. (2.10):

- AH
TRpriler = n M+A + (16.6K) log[K+] (2.14)

"'R ln(C/4M) + AS

where AH and AS are as specified in Section 2.5.1; R is the universal gas constant; c

is the sum concentration of a primer and its complementary ssDNA; and [K+] is the

molar concentration of K+. Since product concentration changes several thousandfold

over the course of PCR, they determined that a value of c = 250 pM should be used

in Eq. (2.14). For Tmraduct they used Eq. (2.4), since Eq. (2.14) is not applicable to

long molecules.

2.5.4 Annealing Rate

The annealing rate is explored DNA hybridization studies. DNA hybridization is a

general term for complementary ssDNA combining into dsDNA. It applies to both

equal and unequal length complementary DNA. Annealing is a more specific term

used to describe the attachment of primers to product or template ssDNA during

PCR.

Hybridization takes place in two stages. First, there is an initiation stage where

two complementary DNA come into contact. This is followed by the two ssDNA

"zipping up" to become dsDNA. The hybridization process is second order with

respect to strand concentration. This shows that the process is dominated by the

initiation stage. The subsequent base pairing process is much faster by comparison

[90, 92].
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The kinetics of DNA hybridization were laid out by Wetmur and Davidson in 1968

[92], and have changed little since. For the following reaction, where ssDNA species

A and B combine to form dsDNA species D:

A+ B -AD (2.15)

The concentration of A is described as:

dA A-- = kAB (2.16)
dt

k in Eqs. (2.15) and (2.16) is a rate constant.

Initially, DNA hybridization studies were performed with equal numbers of ident-

ical-length complementary ssDNA. In this case, A = B, and Eq. (2.16) becomes

dA
-- = kA 2  (2.17)

Let C indicate the total strand concentration:

C=A+B (2.18)

Following the terminology of Wetmur, k is k2 if the species concentrations are specified

in base pairs per volume 18. If the concentrations and lengths of A and B are the same,

C = 2A and C = 2A6 , where the subscript b denotes a concentration in bases per

"Strand concentration x (strand length in bases).
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volume (rather than strands per volume). Eq. (2.17) becomes

dCb k2=-C= 2  (2.19)
dt jb

Integrating,

1 1 kt OR C 'l = 1+C ,it (2.20)
Cb,1  Cbt 2 C, 2

In Eq. (2.20), the i and f subscripts refer to initial (at time t = 0) and final (at time

t) states.

In the case of PCR, there should always be many more primers than product

DNA". Therefore, the primer concentration can be regarded as constant. We must

return to Eq. (2.16), expressing concentrations in terms of bases per volume:

- = -=k 2 A 5B6  (2.21)
dt

Here, A is one of the two types of single-stranded product DNA, and B is the corre-

sponding free primer. Integrating, we get

A1 = e_ - 2 Bbt (2.22)
A

Which allows us to calculate how fast annealing can take place.

"Template DNA concentration is constant and, except for the first few cycles, negligible relative
to product DNA concentration.
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The rate constant is calculated as follows [90, 91, 92]:

k'yL
k2= N (2.23)

N

L and N are the length and complexity, respectively, of the shorter of the two ssDNA

(the primer, for PCR). Normally, the two are identical2 0 . The dependency of k 2 on

vil has been explained by Wetmur's "excluded volume effect" theory, which considers

the fact that strands that come into contact do not necessarily have all their bases

in close enough proximity to anneal. A detailed explanation and derivation may be

found in [89, 92].

The length-independent rate constant k'N is:

k'N = (435 log1o[Na+] + 3.5) x 10 5M~'s-' (2.24)

for 0.2 < [Na+] 4.0 and 5 < pH < 9 [91]. [Na+] is the concentration of Na+,

in M. KCl is usually used in PCR rather than NaCl. Wetmur [91] states that, for

hybridization, a standard PCR buffer that contains 1.5 mM MgCl 2 and 50 mM KC1

is equivalent to 0.20 M NaCl. In this case, Eq. (2.24) becomes

k'N = 4.6 x 10 4M-Is1 (2.25)

Eqs. (2.22), (2.23), and (2.25) can be used to find the theoretical annealing time.

"The two are not the same for hybridizations along sequences that have repeating sequences of
DNA. The bases belonging to redundant sequences do not contribute to N.
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Temperature Extension Rate, bases/second

70*C f >60, <120
550C 24

370C 1.5

220C 0.25

Table 2.4: Taq extension rates. From Innis et al. [32]

2.5.5 Extension

The rate of extension depends upon the particular DNA polymerase being used. The

most widely used polymerase is Taq (see page 24). The speed of Taq was studied by

Innis et al. [32]. They used a mix2 ' of 25 nM radiolabelled primer, 50 nM M13mp18

ssDNA template, 200 pM each dNTP, 0.05% Tween 20, 0.05% Nonidet P-40, 10 mM

Tris-HC1 (pH 8.0), 50 mM KCl, and 2.5 mM MgCl2 . They annealed primer and

template, added dNTPs, heated the mix to the desired extension temperature, and

then added Taq. Small aliquots were removed at various time intervals, and EDTA 2 2

was put into each aliquot to halt the reaction. Taq was found to extend at the rates

shown in Table 2.4.

A more precise rate characterization was performed by Brandis et al. [9]. They

actually found the extension rate for each particular dNTP by checking the time in

took to add a single nucleotide to a primer-template complex. A special apparatus

was used to rapidly mix and stop reactions. Reactions were carried out at 60C with

500 nM Taq, 100 nM primer-template, 2 mM Mg++, and varying concentrations of

the appropriate dNTP. Results are shown in Table 2.5. The data in Table 2.5 can

2 1The Tween 20 and Nonidet P-40 are used to stabilize the polymerase. They serve the same
function as Triton X-100 in the mix described in Section 2.3.

2 2Short for ethylenediaminetetraacetic acid.
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Nucleotide k, 1, bases/s JK, pM

dATP 38±2 f52±7
dCTP 21±4 j35±2
dGTP 52±1 36±3
dTTP 31±3157±20

Table 2.5: Single nucleotide Taq rates at 60*C. From Brandis et al. [9].

be used to calculate a reaction rate at a given dNTP concentration:

k, 1[dNTPj
kraq = ko dT(2.26)[dNTP] + Kd

where kraq is the reaction rate, and [dNTP] is the concentration of the particular

dNTP. Unfortunately, this data is for 60*C , and PCR extension takes place at 70-

800C .

Since the data of Brandis et al. is only applicable at 600C, and the data of Innis et

al. only specifies a range of Taq extension rates, we must turn to manufacturer data for

the most precise extension rate. Promega Corporation [69] reports a typical specific

activity of 200,000 units/mg for their Taq23 . One unit is defined as the amount of

Taq required to extend 10 nM of bases in 30 minutes at 74C. The 50 p1 mix used by

Promega to assay Taq activity contains 200 pM each dNTP, 50 mM NaCl, 10 mM

MgCl 2 , 50 mM Tris-HCl (pH 9.0), and 12.5 pg activated calf thymus DNA (primer-

template complex). Since the DNA is 94 kDa in size, the extension rate is calculated

2 This is a standard value for Taq. A value of 200,000 units/mg was reported by Innis et al. [32],
and a slightly higher value of 250,000 units/mg was reported by Mullis [55].
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at approximately 100 bases per second:

(200,000 units 94,000g Taq\ 10 x 10-1 mol dNTP' _ 104 mol dNTP

10-3 g Taq mol Tag / (30 -60s)(unit) I (mol Taq) (s)

(2.27)

Therefore, one molecule of Taq can extend 104 bases per second. Since specific activity

of each batch varies, this value is somewhat variable.

Ideally, extension should result in an exponential increase in product each cycle.

This is true during the initial cycles, which are termed the exponential phase of PCR.

However, after a number of cycles, the number of ssDNA may exceed the number

of DNA polymerase molecules. Only a fixed amount of new DNA can be produced

each cycle. In this case, PCR has reached the linear phase. If even more cycles

are run, the reaction will eventually stop producing more product because (1) the

product concentration approaches the remaining primer concentration, and/or (2)

the mix runs out of dNTPs. When the product concentration approaches the primer

concentration, primer annealing does not occur preferentially to DNA reannealing.

For this reason, the maximum product concentration in most PCR reactions is about

1010 copies per gl [13].

2.6 Nomenclature

A dATP. See page 14.

A Generic ssDNA species. See Section 2.5.4.

A6  A, expressed in bases per volume.
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A1

As

B

Bb

c

C

C

C6

C6,7

Cbti

D

%FA

G

AGO

AG

AGi 1

AGym

AG, AGtotai

%GC

AHO

A, after time t. See Eq. (2.22).

A, at time t = 0. See Eq. (2.22).

Generic ssDNA species. See Section 2.5.4.

B, expressed in bases per volume.

Total concentration of both complementary ssDNA in Eq. (2.10)

and (2.14), and of primer in Eq. (2.11).

dCTP. See page 14.

A + B. See Section 2.5.4.

C, expressed in bases per volume.

C6 after time t. See Eq. (2.20)

C6 at time t = 0. See Eq. (2.20)

Generic dsDNA species made from A and B. See Section 2.5.4.

Percentage of formamide in the PCR mix.

dGTP. See page 14.

One nearest neighbor pair contribution to Gibbs free energy. See

Table 2.3.

Helix initiation Gibbs free energy. See Eq. (2.7).

Term making up AG1. See Eq. (2.7).

Term making up AG1. See Eq. (2.7).

Total Gibbs free energy of a dsDNA strand.

Percentage of bases in the DNA that are either G or C.

One nearest neighbor pair contribution to enthalpy. See Table 2.3.
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AH

AH, AHito

J+

k

k2

Kd

k' I

k Taq

L

%mismatch

n

N

R

AS"

AS

AS, ASttal

t

T

T

TANN

Helix initiation enthalpy. See Fig. 2-7.

Total enthalpy of a dsDNA strand.

Generic positive ion. See Eqs. (2.3) and (2.4).

Rate constant of association. See Section 2.5.4.

k, if species are specified in bases per volume. See Section 2.5.4.

Equilibrium association constant for Taq. See Table 2.5.

Length-independent rate constant. See Eqs. (2.24), (2.25).

Maximum Taq rate of phosphodiester bond formation. See

Table 2.5.

Equilibrium association constant for Taq. See Table 2.5.

Length of the DNA, in bases.

% of bases in dsDNA that are not complementary.

Number of PCR cycles (page 21).

DNA complexity. See Eq. (2.23).

The universal gas constant (1.987 x 10-3 kcal/mol-K).

One nearest neighbor pair contribution to entropy. See Table 2.3.

Helix initiation entropy. See Eq. (2.8).

Total entropy of a dsDNA strand.

Time.

dTTP. See page 14.

Absolute temperature.

Optimal annealing temperature. See Section 2.5.3.
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TM Melting temperature. See Section 2.5.1.

'g"""me Primer melting temperature. See Eqs. (2.13) and (2.14).

f'vdUCt Product melting temperature. See Eqs. (2.13) and (2.4).

Y PCR efficiency. See Eq. (2.1).
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Chapter 3

Fast PCR Machines

Section 2.4 detailed a conventional PCR machine. It consists of a computer-controlled

heater block with wells. PCR mixes are aliquotted into disposable plastic tubes, which

are then placed into the wells. The heat block can change temperature at a rate of

1-2*C/second. This temperature transition time is a significant component of the

overall process time, which is about 1-2 hours.

PCR is a ubiquitous and critical procedure in molecular biology. Therefore, many

efforts have been made to produce faster PCR machines. This chapter details some

of them.

3.1 Notes

Some of the PCR reactions detailed in this chapter use specialized methods and

reagents. These include the following:
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3.1.1 AmpliTaq® DNA Polymerase

AmpliTaq® DNA polymerase is a proprietary version of Taq manufactured by Applied

Biosystems (formerly PE Applied Biosystems) in Foster City, CA). It is practically

identical to ordinary Taq.

3.1.2 Hot Start PCR

Hot start PCR is conducted in such a way that the DNA polymerase is prevented

from acting until thermal cycling begins. When a standard PCR mix is formulated,

the polymerase can manufacture erroneous product as soon as it is introduced. While

the polymerase is not nearly as efficient at room temperature, it can extend slowly

nevertheless. Below the denaturation temperature, portions of DNA molecules can

exist in a denatured state 1. Since the PCR mix is usually prepared at lower than

the annealling temperature, primers can anneal to incorrect locations, resulting in a

some amount of erroneous product. In addition, primers can have regions of comple-

mentation and form primer dimer complexes that can be extended. These problems

are mitigated if the polymerase cannot extend prior to thermal cycling, minimizing

the amount of initial erroneous product. Hot start PCR is more efficient and specific

than ordinary PCR [58, p. 36].

Hot start PCR requires a modified protocol. In the beginning, the polymerase

was not added until the rest of the mix reached the denaturation temperature. More

recently, wax was used in the following procedure: the mix is prepared sans DNA

'In addition, template is sometimes single-stranded.
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polymerase. A wax bead is put into the tube, and the tube is heated to melt the

wax. When it cools, it forms a layer on top of the mix. Next, a solution containing

the DNA polymerase is pipetted on top of the wax, the tube is closed, and thermal

cycling initiated. During the initial denature cycle, the wax melts, allowing the DNA

polymerase to enter the mix.

Both of the above procedures requires at least one additional step. To overcome

this inconvenience, the AmpliTaq Gold® DNA polymerase 2 and TaqStartT M anti-

body have been developed. AmpliTaq Gold® is identical to AmpliTaq®, except that

it requires an initial period of 10 min at 95*C to activate it. TaqStart TM is an anti-

body which attaches to Taq, rendering it inert when the two are together. When it

is heated to > 70*C., it detaches from the Taq and becomes inactive.

3.1.3 Fluorescent Detection and TaqManTM

PCR product yield is generally quantified using fluorescence. Fluorescent techniques

vary in sensitivity, and are generally only quantitative if also applied to a control

of known DNA concentration. Unless mentioned otherwise, the PCR yields in this

chapter are quantified via agarose gel electrophoresis. The sample is manually loaded

into one end of the agarose gel. A voltage is applied across the gel, such that the DNA

migrates through the gel, with shorter DNA fragments migrating faster than longer

ones. The gel is permeated with fluorescent intercalcating dye, typically ethidium

bromide or SYBR, which gets stuck in the DNA. The dye is excited by UV light and

2Applied Biosystems (formerly PE Applied Biosystems). Foster City, CA.
'Clontech. Palo Alto, CA.
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visualized by eye.

Fluorescent based detection techniques are generally much more (~-, 1000) times

more sensitive than agarose gel electrophoresis. While ethidium bromide and SYBR

are fluorescent, the intercalcating dye in the gel and the thickness of the gel pro-

vide background that interferes with sensitive detection. In addition, fluorescence in

agarose gels is visualized by eye. Most other fluorescent detection uses photodiodes,

photomultipliers, etc. that provide much greater optical sensitivity. The greater over-

all sensitivity of fluorescent methods allows detection of product at an earlier cycle

than via agarose gel electrophoresis. The linear (rather than exponential) extension

range can be avoided (see 2.5.5), resulting in a report of higher reaction efficiency.

Recently, the fluorescent detection scheme of choice is based on the TaqManT M

system4 [28]. It uses a DNA probe that has two fluorescent molecules attached to it,

one on either end: a reporter and a quencher. When the probe is intact, the quencher

suppresses the reporter fluorescence. During annealing, the probe hybridizes to a

location in the target region downstream of one of the primers. During extension,

when the DNA polymerase reaches the probe, it chews it up into pieces, which break

away from the target. The reporter, now free of the quencher, is free to fluoresce.

Hence, fluorescence is proportion to the amount of PCR product made, which can be

tracked as the reaction proceeds in real time.

4 Applied Biosystems (formerly PE Applied Biosystems). Foster City, CA.
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Figure 3-1: The air cycler: (a) schematic; (b) temperature history for one 30 second

cycle; (c) temperature history for one 60 second cycle. From [98]. Note that the device

spikes to the denature and annealing temperatures, without holding them there.

3.2 Air Cycler

Carl T. Wittwer et al. at the University of Utah Medical School developed a thermal

cycler based on hot air [96, 98, 99] (see Fig. 3-1). To overcome the need for heating

and cooling a heat block, they did away with one altogether. Instead, capillary action

is used to inject 10 Il PCR mix into each 0.52mm I. D., 8 cm long glass capillary.

The tubes are flame sealed and placed into a chamber inside of the machine. To heat

the capillaries, a blow-dryer type arrangement involving a fan and 1000W heater coil

is used. To cool the capillaries, a door in the chamber is opened to let out the hot

air, and the fan blows ambient air over the tubes.

51



In their third work [99], Wittwer et al. examined the effect of individual annealing,

denaturing, and extension times on product yield. Their PCR mix contained 5 ng/pl

(1.9 x 10-15 M) human genomic DNA, 0.5 pM of each primer (536 bp target), 0.04

units/gl Taq, 50 mM Tris-HCl (pH 8.5 at 25*C), 3 mM MgCl2 , 20 mM KCl, 500

ng/pl bovine serum albumin, 0.5 mM each dNTP, and 2.5% (wt/vol) Ficoll 400. The

template DNA was denatured by boiling prior to PCR.

The following default thermal schedule was used: 30 cycles of denaturation at

(92-94'C, 1 s); 9 s transition to annealing; annealing at (54-56*C, 1 s); 4 s transition

to extension; extension at (75-79*C, 10 s); and 5 s transition back to denaturing.

They varied the time and temperature of each step about the default to optimize

yield. Optimal temperature conditions were as follows-denaturing: 91-97*C at < 1

s denaturing; annealing: 55*C at < 1 s; extension: 75-79C at 40 s. Optimal time

conditions were as follows-denaturing: < 1 to 8 s at 92-94*C; annealing: < 1 s at

54-56*C, at a ramp time from denaturing to annealing of 9 s (the fastest tested);

extension: > 40 s at 75-79*C.

Wittwer et al. concluded that denaturing and annealing occur almost instanta-

neously. In fact, they achieved good results spiking down to the annealing temper-

ature and up to the denaturing temperature, with no dwell time at all (see Fig. 3-1

b, c). Faster temperature transitions were found to reduce overall PCR time without

lessening yield. Fast annealing to extension transition actually improved yield. Yield,

however, still benefits from longer extension times. 30 cycles in 15 minutes yielded

product visible on an agarose gel. However, the yield was not nearly as high as a run

that took 40 minutes for 30 cycles, which was comparable to that from a commercial
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Perkin-Elmer Cetus DNA Thermal Cycler.

The device was made into a commercial product, the Air Thermo-Cycler 5 . Later,

Wittwer et al. developed the LightCycler T M [97], which adds an optical detection

system6 . If fluorescent probe is added to the PCR mix, the amount of PCR product

can be tracked as the reaction progresses, down to ~A pM.

Idaho technology's air cyclers have been incorporated with other detection and

preparation devices. Swerdlow et al. [84] used an HPLC pump to push PCR mix

through a line of interconnected PEEK and Teflon tubing. 7 cm of tubing holding 17

jl of mix is coiled inside of a model 1605 air cycler and can be sealed from the rest of

the line with HPLC valves. First PCR is performed on 17 gl of the mix, and then the

fluid is pumped into a capillary electrophoresis unit to detect product. The PCR mix

contained 2 pg/jl (4.2 x 10-13 M) M13mp18 DNA template (7.2 kb), 0.5 pM each

primer (20 and 21 bases, fluorescently labelled, defining a 303 bp target), 0.2 mM each

dNTP, 51 mM Tris-HCl (pH 8.3), 2 mM MgCl2 , 0.48 mg/ml bovine serum albumin,

and 0.04 units/pl AmpliTaq® DNA polymerase. The thermal cycling consisted of 25

cycles of q2*C for 0 s, 62*C for 0 s, and 740C for 0 s, with a final extension of 74C

for 30 s. 0 s means that the cycler was programmed to go to the desired temperature,

and then immediately go to the next temperature without waiting. This took a total

of 8 min. The end product was barely detectable by CE, and was not quantified.

Meldrum et al. [50] used a RapidCycler air cycler to amplify samples processed by

their ACAPELLA-1K system. ACAPELLA-1K automates the process of transferring

'Idaho Technology, Idaho Falls, ID.
6Idaho Technology, Idaho Falls, ID.
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samples from 96 well microtitre plates into capillaries, adding PCR reagents, and

placing the capillaries into cassettes. The cassettes must be manually loaded into the

RapidCycler for thermal cycling, though. The ACAPELLA-1K system can process

fifteen hundred 2 pl samples in 8 hours.

3.3 PCR in Silicon

Initial developments in the area of micromechanics utilized lithographic techniques to

etch miniature gears and motors out of silicon, and to pattern supporting electron-

ics directly onto the surface. It is no wonder that microfluidics explored the same

approach, constructing pumps, valves, and even PCR machines out of silicon.

3.3.1 Wilding et al.: PCRChip

Wilding et al. [15, 16, 80, 93, 94] applied lithographic techniques to etch a 14mm

x 17mm well into silicon 115 pm deep. The well was coated with 2000 A of SiO2

for biocompatibility. A Pyrex cover was bonded onto the top of the well, creating

a 12 pl PCR chamber (see Fig. 3-2). The structure, dubbed the "PCRChip" by

its developers, was mounted on a 40 mm x 40 mm copper block fused to a Peltier

heater-cooler. 40 1/min of air was directed over the block to help dissipate heat.

The PCRChip has several advantages. Since it has a small thermal mass, it is

easier to heat and cool than conventional heat block-based PCR machines. The large

surface to volume ratio ensures quick, uniform sample heating. Small aliquot size

saves on reagent costs. The silicon structure can be mass produced cheaply.
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Figure 3-2: The "PCRChip": (a) the chamber; (b) temperature history for several

cycles, at 3 min/cycle. From [94].

Wilding et al. tested two PCR mixes. The first consisted of 10 pg/pl (3.1 x 10-13

M) A phage DNA, 0.3 MM each of forward and reverse primer (25 bases each defining

a 500 bp target), 0.025 units/pl AmpliTaq® DNA polymerase, 50 mM KCl, 10 mM

Tris-HCl (pH 8.3), 1.5 mM MgCl 2 , 0.001% (w/v) gelatin, and 200 pIM each dNTP.

The second mix was identical to the first, except that the template was 10 pg/pul

(9.2 x 10-1 5 M) Campylobacter jejuni DNA, and two different primers were used

(25 bases each defining a 1.4 kb target). Thermal cycling of the A template was as

follows: an initial denature at 94'C for 1 min; followed by 35 cycles of 94*C for 15

s, 60'C for 15 s, and 72*C for 1 min; followed by a final extension of 72*C for 5

min. For the C. jejuni template, it was similar: an initial denature at 94*C for 1

min; followed by 35 cycles of 94'C for 30 s, 60*C for 30 s, 72'C for 1 min; followed

by a final extension of 72*C for 5 min. Including the ramp times, total time was ~3

min per cycle. Unfortunately, Wilding et al. were not able to match the yield of a
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Figure 3-3: Sketch of the two-chamber PCR chip of Poser et al.: 1, inlet; 2, cover; 3,

adjustment; 4, reaction chamber; 5, air chamber to provide temperature isolation; 6,

thin-film heater; 7, temperature sensor; a, cover; b, topside; c, backside. From [66].

conventional PCR machine7 in the same amount of time.

3.3.2 Poser et al.: Silicon Chamber

Poser et al. constructed a device similar to the PCRChip (see Section 3.3.1). Fig. 3-3

shows their device in its two-chamber form. They also constructed chips with one

and ten chambers. Wells were etched 450 pm deep into silicon. Pyrex or silicon

lids were glued on top to form 5-10 p1 reaction chambers. Thin-film heaters and

temperature sensors were patterned onto the opposite side of the silicon. Heating

rates up to 80'C (2.5 W per chamber) and cooling rates of 40*C using a fan were

7GeneAmpTM System 9600. Applied Biosystems, formerly PE Applied Biosystems. Foster City,

CA.
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reported. Unfortunately, they did not find a coating for the silicon that allowed them

to perform PCR successfully. They mention that polydimethylsiloxane might be a

suitable coating.

3.3.3 Applied Biosystems: Silicon Chamber

Taylor et al. [14, 85] made silicon chambers similar to the PCRChip (see Section 3.3.1).

They etched a 2 x 4 array8 of chambers into silicon, each chamber 0.5 mm deep, 5 p1

in volume, and coated with 4000 A Sio. for biocompatibility. Fill and vent holes for

each chamber were etched on the opposite side of the silicon. A 0.5 mm thick layer of

borosilicate glass was bonded on the top to seal the chambers. Heating and cooling

was provided by a Peltier unit that the silicon chip rests on.

Taylor et al. [85] used a commercial PCR mix provided in the TaqMan T M PCR

Reagent Kit9 . It consists of 0.2 ng/sl (1.0 x 1016 M) human genomic DNA template,

10 mM Tris-HCl (pH 8.3), 50 mM KCI, 4.0 mM MgCl2, 400 mM dUTP, 200 mM

dATP, 200 mM dCTP, 200 mM dGTP, 300 nM each primer (26 base forward primer,

25 base reverse primer, defining a 297 bp target), 200 nM TaqMan T M fluorescent

probe, 0.01 units/gl AmpErase TM uracil-N-gycosylase, and 0.10 units/pl AmpliTaq

GoldTM DNA polymerase. Some reagent concentrations were optimized for the silicon

PCR chambers. The PCR mix contains some unusual components. dUTP is similar

to dTTP in that it is a complementary base to dATP. However, it is usually found in

RNA, not DNA. The TaqMan TM PCR Reagent Kit mix allows reuse of the original

5In the later version tested by Chaudhari et al. [14], there is a 3 x 6 array of chambers, each
holding 2 pl of liquid.

9Applied Bicxytems (formerly PE Applied Biosystems). Foster City, CA.
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template. AmpEraseTM, which is active below 55*C but above freezing, will destroy

the PCR products which contain dUTP in them, but not the original template, which

has dTTP instead. The PCR product can be stored and analyzed by keeping the

aliquot either below freezing or above 55*C.

Taylor et al. used the following thermal schedule: an initial step of 50C for 2

min (presumably so that AmpErase can destroy any primer-dimer or other erroneous

product arising from initial assembly of the PCR mix); followed by an initial denature

at 950C for 10 minutes, which activates the AmpliTaq Gold@; then 40 cycles of 95C

for 5 s and 600C for 10 s (annealing and extension steps are combined); and finally,

the machine is held at 72*C to allow all products to reach full length. Each of the

40 cycles was 32.5 seconds, and the yield was comparable to a reaction performed on

a standard Perkin-Elmer model 2400 or 9600. The reaction was 91% efficient. The

Perkin-Elmer machines used the same temperature schedule, except that each of the

40 cycles was 95*C for 15 s and 600C for 60 s, resulting in 215 s per cycle.

3.3.4 Woolley et al.: Plastic Sleeve in Silicon Heater

Woolley et al. [100] integrated a fast PCR device with rapid electrophoresis on a

glass wafer (see Fig. 3-4). They etched grooves in two 1mm thick pieces of silicon

and bonded them together, forming a hexagonal hole. Resistive heating elements

were patterned onto the outside. The whole silicon heating assembly was epoxied

onto the electrophoresis device. Polyproylene inserts were designed to insert into

the hexagonal hole and hold 20 1l of PCR mix. Since the thermal mass of the
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Figure 3-4: Rapid PCR integrated with electrophoresis: Woolley et al. From [100].
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silicon device was small, it heated quickly and evenly at ; 10C/s. Cooling occurred

passively at ; 2.50C/s.

Woolley et al. amplified both a 268 bp f-globin fragment and Salmonella DNA.

In the former case, the PCR mix consisted of either 2.0 x 104 or 2.0 x 106 copies per jpl

(3.3 x 10-14 M or 3.3 x 10-12 M) of template (268 bp), 0.5 pM of each primer (target

was the same as the template), 0.05 units/pl Taq, 50 mM KCl, 10 mM Tris-HCl (pH

8.3), 3 mM MgCl2 , 10% glycerol, and 400 pM each dNTP. The mix was identical

for the Salmonella, except the template was genomic Salmonella DNA (4.6 Mb) at a

concentration of 10 ng/pl (3.3 x 10-12 M), and different primers were used to define

a 159 bp target.

Thermal cycling for the f-globin DNA was 30 cycles of 960C for 2 s, 55*C for 5

s, and 72*C for 2 s. The final extension was for 30 s. The total overall time was 15

minutes. Since the template was the same as the product (268 bp), denaturing times

could be kept short. The Salmonella DNA took 40 minutes total time, even though

the target was only 159 bp long. It was amplified with 35 cycles of 950C for 10 s,

56*C for 15 s, and 720C for 20 s.

Following thermal cycling, the PCR product was injected into the detection appa-

ratus. It was electrophoresed in a 0.75% (w/v) HEC in TAE gel containing thiazole

orange fluorescent intercalcating dye. A photomultiplier tube was used to detect the

presence of product. No quantification was made of the yield.

Much work has been done on Woolley's original device to take it out of the lab-

oratory and into the field. The MATCI (Miniature Analytical Thermal Cycling In-

strument) [29, 59, 60] added optical windows to the silicon heater structures to im-
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Figure 3-5: The Advanced Nucleic Acid Analyzer (ANAA): 10 rapid thermal cycling

units packaged into a briefcase. From [6].

plement real-time fluorescent product detection. The thermal cycler was packaged

in a briefcase with a controlling computer and all necessary hardware. While the

MATCI featured a single cycler, the later ANAA (Advanced Nucleic Acid Analyzer)

[5, 6] packaged 10 independently controlled units in a self-contained briefcase (see

Fig. 3-5). The developers were funded by the military, and hence their PCR is of

Erwinia herbicola cells, Bacillus subtilis spores, and MS2 virions, all possible biolog-

ical warfare agents. Their most impressive result boasts PCR detection of bacteria

in seven minutes [6]. The PCR mix in this case consists of 10 mM Tris-HCl (pH 8.3

at 25 0C), 50 mM KCL, 0.4 mM each primer, 0.4 mM fluorescent TaqManTM probe,

5 mM MgCl 2 , 0.2 mM each dNTP, 0.01 units/pl AmpliTaq® DNA polymerase, and

20 CFU/il intact Erwinia herbicola cells'0 . For their 7 minute PCR, they used the

'0 CFU stands for Colony Forming Unit. One CFU is usually a single cell, though it can be a

number of cells clustered near each following culturing on a Petri dish.
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following thermal schedule: an initial cell lysis and denature at 960C for 15 s, fol-

lowed by cycles of 96*C for 1 s and 56*C for 1 s. Each cycle took 17 s. Product was

monitored in real time, and was detected at cycle 25. The reaction was very efficient.

. These results are indeed impressive. However, they are a testimony to the de-

tection scheme and optimization of the PCR mix and temperature schedule, rather

than heating efficiency. As explained in Section 3.1.3, fluorescent detection is very

sensitive. Since it can detect small amounts of product in low cycle numbers, reported

efficiency is higher than if the reaction were allowed to complete more cycles. Also,

although each cycle took 17 s, more than 15 s of this was transition time1 . Heating

and cooling rates for the system were 6.5*C/s and 4.3*C/s, respectively.

3.4 "Sausage Machines"

These devices are the cousins of the design presented in this work. PCR mix is

pumped along a pre-heated path to perform the reaction. The cross-section of the

path is small, allowing the liquid to heat and cool quickly. Since each section of the

path is kept at a fixed temperature, heating depends on how fast the liquid moves

and how quickly it equilibriates with the wall temperatures. The time required to

heat or cool a heat block is done away with entirely. The sample or samples are put

into one end of the path, and emerge from the other. Due to the small cross-section

of the path, the aliquots form very elongated droplets inside the path, thus likening

"The nominal dwell time is 2 s per cycle: 1 s at 96*C and 1 s at 560C. However, the authors
measured the time lag of the aliquot temperature behind the silicon heater temperature, and noted
it was significant relative to the dwell times.
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them to sausages and the apparatuses to "sausage machines."

3.4.1 Nakano et al.: Flow-in-Capillary PCR

Nakano et al. [57] created the device shown in Fig. 3-6. A 0.5 mm I.D., 1.5 mm

O.D., 5 m long Teflon tube is looped thirty times through three different temperature

oil baths, corresponding to thirty cycles of the three PCR steps. The length of tube

in each loop in a given oil bath is proportional to the time that the particular step

is in a cycle. This fixed the ratio of denature : anneal : extension times at 2:3:10.

50 pil aliquots of PCR mix are pushed through the tubing at a constant rate using

a syringe pump. Each aliquot is 250 mm long, and different portions of the aliquot

are in different temperature zones simultaneously. 5 /l air gaps are used to separate

multiple aliquots from each other and the buffer" that fills the rest of the tube.

"10 mM Tris-HCl (pH 8.9), 1.5 mM Mgl 2 , and 80 mM KCl.
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The following PCR mix was used: 0.2 ng/pl (5.2 x 10-11 M) plasmid pNF-1 DNA

(5.8 kb), 2.8 x10-7 M each primer (both 24 bases long defining a 1.0 kb target), 10 mM

Tris-HCI (pH 8.9), 1.5 mM MgCl2 , 80 mM KC, 0.5 mg/ml bovine serum albumin,

0.1% sodium cholate, 0.1% Triton X-100, 0.2 mM each dNTP, and an unspecified

amount of TthTM DNA Polymerase". The denaturing, annealing, and extension

temperatures were 94C, 550C, and 72*C, respectively. The syringe pump rate was

varied to produce total PCR times from 11 to 44 minutes for 30 cycles. Yield was

determined by chromatography, and is shown in Fig. 3-6 (b).

3.4.2 Kopp et al.: Continuous-Flow PCR on a Chip

With the recent interest in performing electrophoresis on glass wafers using litho-

graphic technology developed for silicon chips1 4 , it is no wonder that the technology

has also been adapted to PCR. Kopp et al. [42] produced a PCR machine simi-

lar in concept to that of Nakano et al. (see Section 3.4.1). However, instead of the

aliquot flowing through a Teflon tube, it flows through a serpentine channel etched

into Corning 0211 glass (see Fig. 3-7). The channel is 40 pm deep, 90 pm wide, and

2.2 m long. It is treated with dichlorodimethylsilane to present adsorption of the

DNA polymerase, and covered with a glass plate. Both the base and cover plate are

0.55 mm thick. Three heat zones are established by three copper blocks that the

glass rests on, each containing a 5 W cartridge heater. The denaturing, annealing,

and extension temperatures are 950C, 60*C, and 77C, respectively. The geometry

13TthTM is known to be slower than Taq, but is better for some applications. See [4] for details.
1 'For example, [77].
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Figure 3-7: Continuous-Flow PCR on a Chip, by Kopp et al.: (a) schematic; (b)
device layout. From [42].

fixes the ratio of denature : anneal : extension times at 4:4:9 and the total number

of cycles at 20. The aliquot is ~ 10 L in volume, so it is ~ 2.8 m long. This is

longer than the channel, so different parts of the sample see different temperatures

simultaneously. The rest of the channel is filled with buffer. A syringe pump is used

to pump the aliquot through the channel-a pressure of 1 bar results in a total time

of 4 min for 20 cycles.

Kopp et al. used the following PCR mix: 107 copies/pLu (1.7 x 10-11 M) template (a

1 kb portion of the gyrA gene of Neisseria gonorrhoeae), 1 piM of each primer (18 and

19 bases long defining a 176 bp target), 0.25 units/lA Taq, 10 mM Tricine (pH 8.3),

0.01% (w/v) Tween 20, 50 mM KCl, 0.2 mM each dNTP, 1.5 mM MgCl 2 , and 1.4

pM polyvinylpyrrolidone. The pressure in the syringe pump was varied to produce
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times from 2.4 to 18.7 minutes for the 20 cycles. Results are shown in Fig. 3-8.

3.5 Infrared-Mediated PCR

Oda et al. [61] investigated heating via a lamp (see Fig. 3-9). 28 ,cd containers con-

tained 5-15 p1 PCR mix covered with mineral oil. They were manufactured from

500pm x 5.0 mm borosilicate glass stock cut to 13 mm lengths. One end was sealed,

and the interior was coated with'5 BTMSTFA to prevent adsorption of Taq onto the

sidewalls. Two identical containers were placed side by side, one with the PCR mix,

the other containing buffer with a thermocouple immersed in it to measure aliquot

'5BTMSTFA is bis(trimethylsilyl)trifluoroacetamide.
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Figure 3-9: The light-heated device of Oda et al.: (a) device schematic; (b) sample
temperature history. From [61].

temperature' 6 . 10*C/s heating was provided by a tungsten lamp. 20*C/s cooling was

accomplished by shooting compressed room temperature air at the aliquots. The sys-

tem was carefully arranged to provide identical heating and cooling to the container

with the PCR mix and the container with the thermocouple.

Oda et al. used the following PCR mix: 10 mM Tris-HCl (pH 8.3), 50 mM KCl, 1.5

mM MgCl 2 , 20 pM each dNTP, 1 ng/pl each primer (0.16 pM forward and 0.17 pM

reverse, defining a 216 bp target), 0.13 units/pl Taq, 0.33 ng/pl template (fragment of

ah T-cell receptor 3 chain), and TaqStart® antibody (see Section 3.1.2). The thermal

schedule was an initial 94*C, 5 min denature; followed by 30 cycles of 94*C for 30 s,

54'C for 30 s, and 72C for 60 s; and finally an extension of 72*C for 5 min. This

schedule resulted in roughly 30% yield of a commercial PCR machine' 7 running the

same thermal schedule. Oda et al. got the same yield but more nonspecific product

using the following schedule: an initial 94*C, 150 s denature; followed by 30 cycles of

94*C for 8 s, 54*C for 8 s, and 72*C for 15 s; and finally an extension of 72*C for 150

16The authors found that the thermocouple interferes with the PCR reaction.
17GeneAmp 9600. Applied Biosystems (formerly PE Applied Biosystems), Foster City, CA.
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s. Each of the 30 cycles took about 38 s.

3.6 Capillary Tube Resistive Thermal Cycling

Friedman and Meldrum [23] developed a PCR machine in which a capillary holding

the PCR mix is heated directly via a resistive heater. They used 55 mm long, 0.84 mm

O.D., 0.39 mm I.D. borosilicate glass capillaries with 5 IL internal volumes. The ends

were sealed with rubber bands held in place by a custom manufactured polystyrene

holder. Each capillary was coated with a 3000 A layer of indium-tin oxide, which

was used as a resistive heater. Cooling was provided by a fan. Temperature was

monitored using a thermocouple.

The PCR mix used is as follows: 51 mM Tris-HCl (pH 8.3), 0.55 mg/ml bovine

serum albumin, 2 mM MgC 2 , 0.5% sucrose, 1 mM cresol red, 4 ng/pl each primer (de-

fine a 777 bp target), 160 pM each dNTP, 0.05 units/pl Taq, and 4 ng/pl (2.0 x 10-1

M) human genomic DNA (3 x 101 bp). They used the following thermal schedule:

an initial denature of 94*C for 20 s; followed by 35 cycles of 93*C for 1 s, 550C for

1 s, and 72'C for 20 s; with a final extension of 72*C for 30 s. Although maximum

heating and cooling rates of 44*C/s and 22*C/s, respectively, were mentioned, the

actual PCR was performed with heating at only 5*C/s. This resulted in a total time

of about 20 min, which was roughly the same as their control: an Idaho Technology

air cycler running the same heat schedule. However, their yield was much less than

for an air cycler.
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Chapter 4

Machine Design

4.1 Introduction

This chapter describes the design of a novel capillary polymerase chain reaction ma-

chine. The primary objective was to prototype a machine with the fastest possible

thermal cycling. PCR is a very commonly performed reaction, so decreasing time

will increase productivity. Although the concept can be multiplexed, it is intended

for the researcher analyzing a small number of samples: the machine is optimized

for reaction speed rather than throughput. It is not designed to compete against

machines running hundreds of samples simultaneously.

A secondary objective was to use small reaction volumes. Not only does this save

on expensive PCR reagents, such as DNA polymerase and fluorescent probes, but it

can also optimize upstream procedures . For example, if cell cultures are required

prior to PCR, fewer cells have to be grown, decreasing culture time.

The basic concept is shown in Fig. 4-1. A 1 lp drop, or "plug", of PCR sample mix
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Figure 4-2: Schematic of the machine.

is placed inside of an oil-filled capillary. PCR is performed by manipulating pressures

P and P2 to move the plug to heat zones at the three PCR step temperatures T1 ,

T2, and T3, established by heat blocks. Since there is one heat block for each PCR

step, there is no time wasted changing a heat block temperature. The plug volume is

small, and heats quickly. This satisfies the need for both high speed and low reaction

volume.

4.2 Overview

Fig. 4-2 shows a schematic of the machine. To perform PCR, a 1 pl drop, or "plug",

of PCR mix is loaded into a 9" long, 1 mm.I.D., 1/16" O.D. Teflon tube filled with

mineral oil. Each end of this tube is connected to a oil reservoir/pressure manifold
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Figure 4-3: Geometry of the plug and capillary.

machined out of clear acrylic. The reservoirs are at pressures P and P2, as shown.

These pressures are established by a number of different pressure air sources and

computer-controlled valves. They move the sample plug between heat zones at tem-

peratures T1, T2 and T3 in an intermittent, reciprocating motion to perform PCR.

A laser beam directed along the capillary scatters upon reaching the plug surface.

This scatter is picked up by a series of photodiodes, and their signals are reported

to the computer to locate the plug. Subsequent sections explain each of the device

subsystems in greater detail.

4.3 Plug and Capillary

The arrangment of the plug and capillary is shown in Fig. 4-3. The capillary is filled

with mineral oil'. This serves several purposes. First, it prevents the sample plug

from evaporating: it is commonly used for this exact purpose in conventional PCR

machines, which is why I selected it. Second, it allows the laser to waveguide down the

capillary (see Section 4.6). Third, it simplifies plug motion control: compressibility

and thermal expansion are negligible, and its high viscosity makes the capillary fluid

'Product #2705-01. J. T. Baker, a division of Mallinckrodt Baker, Inc. Phillipsburg, NJ.

71



motion dynamics overdamped 2 .

The capillary is a 9" (230 mm) length of 1mm I.D., 1/16" (1.6 mm) O.D. PTFE

tubing3 . The tubirg was straightened using a heat gun, then cut to length. Teflon is

known to be chemically inert. It does not interfere with PCR, as proven by Nakano

et al. (see Sec. 3.4.1). In fact, they found that sequential reactions could be run

in the same length of Teflon tubing without cross contamination, as long as buffer

was pumped through the tube between successive runs. Eventually yield decreased,

presumably due to accumulation of residue, but was restored following a methanol

wash of the tube. I used a new tube for every run to avoid this problem.

Teflon was also chosen because it is hydrophobic. This prevented the PCR mix

from wetting the capillary. If it wetted the capillary, the plug would lose shape and

be difficult to move precisely.

The tube I.D. was chosen as 1 mm as a reasonable compromise. A smaller I.D.

results in faster heating, but since the plug shape is constrained (see below), plug

volume can get too small to analyze. Approximating the tube inside of a heat block

as having a time invariant inner wall temperature, the plug heating time is roughly the

time required to heat a 1 mm diameter cylinder of water (which has similar thermal

properties to the PCR mix, since the latter is an aqueous solution) solely by radial

conduction via a constant temperature source at the outer radius. The dominant

time constant for this reaction4 is 0.173 (r/,."), where5 r, is the cylinder radius and

2 0f course, the air in the pneumatic system is compressible. This issue is dealt with separately
in Chapter 9.

3PTFE is polytetrafluoroethylene, a form of Teflon. Part # 3132. Altech Associates, Inc.
Deerfield, IL.

4See, for example, [12, p. 199].
'Subscript comes from the fact that most of the inside of the capillary is filled with oil; do not
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a.. is the thermal diffusivity of water. Since r, = 5.0 x 10-4 m and a,, = 1.6 x 10-7

m 2 /s at ordinary PCR temperatures (see Appendix A), the time constant is 0.27 s,

which is suitably fast. Heating rates are covered in much greater detail in Chapter 7.

Since the plug/oil interfacial tension is low, the possibility of the plug breakup

is a serious concern. The Rayleigh instability6 can cause the plug to break into

pieces, even at low velocities, unless its aspect ratio is < 7r. A volume of 1 pl was

chosen. Approximating the plug as a cylinder, the aspect ratio is safely 1.3 at rest. In

addition, a 1 pl plug yielded enough product to be quantified using standard agarose

electrophoresis.

4.4 Heating System

The hardware in all three heat blocks is identical, and is shown in Fig. 4-4. Each

0.5" (13 mm) heat zone is established by a 1/2" (13 mm) aluminum cube warmed

with a cartridge heater. The cubes were cut from 1/2" (13 mm) x 1/2" (13 mm)

rod. Aluminum was chosen because it has high thermal conductivity (provides even

heating), is easy to machine, and is cheap. Three holes are drilled into each block

to fit the capillary, heater, and thermocouple. The 10 W cartridge heater7 is a 1/8"

diameter, 1" long cylinder inserted in the block parallel to the capillary to provide

even heating. The K-type thermocouple8 is 0.010" in diameter. Both are connected to

confuse with outer radius.
6 The Rayleigh instability, as well as other modes of plug breakup, are addressed in detail in

Chapter 8
7 Part # CSS-01110/120 V. Omega Engineering Inc. Stamford, CT.
8 Part # SC-TT-K-30-72. Omega Engineering Inc. Stamford, CT.
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Figure 4-4: The heating system for a single heat block.
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a commercial PID controller9 with solid state relays1" that determines the percentage

of time that the heater is switched on.

The thermocouple and heater are glued into the block using silver conductive

epoxy1 . It was also used to affix the blocks to a base made out of thermally insulative

(0.29 W/(m-K)) G-10 composite. There was 0.6" (15 mm) space between blocks to

allow room for the photodiodes, as well as to prevent the blocks from influencing each

other's temperatures.

4.5 Pneumatic Actuators

A pneumatic diagram of the pressurized air system used to move the plug is shown in

Fig. 4-5. Each end of the capillary is connected to an oil reservoir/pressure manifold

via an HPLC fitting'2 . The reservoirs are custom machined out of clear acrylic. Each

holds ~ 1 ml mineral oil, and is connected via 1/8" ID, 1/4" OD plastic tubing to

solenoid valves". Every valve can open to fill the reservoir with a different pressure

air.

Both reservoirs can be set to ~ 5 psig, ;- 8.5 psig, or atmospheric pressure. The 5

psig pressure is the minimum pressure required during PCR to avoid plug degassing

(see Section 4.5.1). The 8.5 psig pressure' 4 is used at one reservoir along with 5 psig

at the other to move the plug back and forth. The pressures were chosen somewhat

9Part # CN76000. Omega Engineering Inc. Stamford, CT.
1 0Part # SSR240DC10. Omega Engineering Inc. Stamford, CT.
"Tra-Duct 2902. Tra-Con. Medford, MA. Operating temperature range: -60*C to 110*C.

'2 HPLC stands for High Pressure Liquid Chromatography. Part # TC-2. Amersham Pharmacia

Biotech, Inc. Piscataway, NJ.
"Part #s A141010-02 and C141014-02. Kip Incorporated. Farmington, CT.
"1Actually, it drops to a 7.5 psig during plug motion.
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Figure 4-5: Pneumatic diagram of the actuation system.
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arbitrarily, but result in reasonably low transition times (~-, 1 second to move from

block to block) and avoid plug breakup that results at higher speeds (see Chapter 8).

Atmospheric pressure is provided so that the capillary can be inserted and removed

without spraying oil out of the reservoirs. The tubing from the two 5 psig valves

to the left and right reservoirs were identical in length in an effort to make their

fluid resistances the same. This was also true for the tubing from the 8.5 psig and

atmospheric air valves.

The right (farthest from the laser) oil reservoir also has connections to 1.5 psig

and -1.5 psig air. These pressures are used to load the capillary with oil and a sample

plug. The left end of the capillary is not connected to the left reservoir during these

operations.

Flow restrictors connect each oil reservoir to atmosphere. The reservoir pressures

cannot be lowered without them. The flow resistors are simply syringe filters. A

variety of different mesh sizes were tested, and a 0.2 pm mesh" provided the right

amount of fluid resistance: enough to allow a high pressure to bleed off when the input

pressure was lowered, but not so much that the reservoir would drop to atmospheric

pressure.

The building supplies both pressurized air at ; 60 psi and vacuum at < 600 mm

Hg. A compressed air tank at - 2000 psi (when freshly charged) is also used as an

air source. House vacuum is routed through a shutoff valve into a 28.7 liter buffer

tank. Vacuum is applied to the tank until it reaches -1.5 psig, and then the shutoff

valve is closed. An indentically sized buffer tank at 1.5 psig is filled in the same way

'SAcrodisc@ 0.2 pm filter. Product # 4496. Pall Gelman Laboratory. Ann Arbor, MI.
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using house air. House air is also routed through a regulator16 to provide 5 psig air.

The 2000 psi compressed air tank was regulated down'6 to supply 8.5 psig air. Two

distinct air sources are used because it was thought that downregulating the house

air to two different pressures via two closely spaced regulators might be a problem.

It is not, but the arrangement was kept.

4.5.1 Preventing Sample Degassing

After mixing, the sample plug is stored at 4*C. During PCR, its temperature can

reach17 94*C. Solubility of air in water decreases with increasing temperature, but

increases with increasing pressure. If the pressure is atmospheric during both mixing

and PCR, air will leave the sample plug and form bubbles in the mineral oil. This was

observed experimentally. Air bubbles scatter laser light, confusing the sensor system.

To overcome this problem, I pressurized the system at 5 psi during PCR, as

noted above. Let Pmin be the minimum pressure required to keep the solubility of

air in the sample plug the same as it is when it is at 4*C and atmospheric pressure.

The solubility and vapor pressure information required to calculate Pmin is shown in

Table 4.1. Note that the s values listed in Table 4.1 are expressed in such a way that

they are proportional to molarity.

We want to find Pmin so that s(940C,Pmin) is the same as the value of s(4*C, 1

atm) listed in the table. The value of s at 94C in the table is for a partial pressure

16Part # 2051021-000. 0-15 psig outlet pressure. B. 0. C. Gases. Murray Hill, NJ.
"7Depending on what the denaturing temperature is set at.
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Temp. S Vapor pressure

4.0*C 2.632 x 10-2 0.81984 kPa
940C 1.110 x 10-2 85.774 kPa

Table 4.1: Degassing calculation information. s is the volume of air (in ml) measured

at 00C and 1 atm dissolved in 1 ml of water when the total pressure (partial pressure

of air + water vapor pressure) is 1 atm; values interpolated from [20, p 10-3]. Vapor

pressure is the vapor pressure of water at the given temperature; values interpolated

from [26, p. 638].

of

1 atm - 940 C vapor pressure = 101.35 kPa - 85.744 kPa = 15.606 kPa

Henry's law18 states that the solubility of gas in a liquid (expressed in molarity) is

proportional to the partial pressure of that gas over the solution. Therefore,

P--85.744 kPa
(1.110 x 10-2) (nPi - 6 4kP ) = 2.632 x 10-2 (4.1)

15.606 kPa

Therefore, Pmin = 122.7 kPa (absolute) = 3.1 psig. The minimum capillary pressure

was set to 5 psig to provide some margin of error.

It was experimentally observed that the mineral oil did not degas significantly in

the absence of a sample plug. No air bubbles formed.

4.5.2 What Not Use a Syringe Pump?

At first glance, it seems simpler to use a syringe pump to move the plug. The

assumption is that the system could run open loop, eliminating the pneumatic and

"8See, for example, [11, p. 466].
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sensor systems entirely. Programming motion would be trivial. Unfortunately, a

sensor system is required due to the fact that the plug drifts inside of the capillary

in the absence of bulk oil flow.

There are several drawbacks to using a syringe pump. When it aspirates, it creates

a vacuum in the capillary which will lead to degassing. The air bubbles will interfere

with the sensor system. If one becomes large enough to span the cross-section of the

tube, the plug motion will be subject to a stiction effect due to the compressibility

of air, and the fact that the contact angles in a stationary bubble will vary to resist

motion up until the point when it is forced into motion. These effects were observed

experimentally when I tried using only the ±1.5 psig pressures to move the plug for

30 cycle PCR. Of course, degassing can be eliminated by pressurizing the system-

but this would bring back the pneumatic system, albeit in simpler form. The syringe

must be carefully loaded to avoid introducing air bubbles, independent of any that

may arise from degassing. This is not a problem with a pneumatic system, since the

surface of the oil in the reservoirs contacts the air. Syringe pumps are also more

expensive. The payoff is in much greater precision, which is unimportant for this

application. Due to plug drift, the current capillary PCR design requires a separate

actuator for every plug. Therefore, the extra cost of using syringe pumps can be a

significant factor if the system is multiplexed.
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Figure 4-6: Device sensor system.

4.6 Sensor System

The control program must know where the plug is to know how to move it. Plug

location is determined via the sensor system shown in Fig. 4-6. A 20 mW HeNe laser

(632.8 nm wavelength) is directed through the clear acrylic oil reservoir/pressure

manifold into the left end of the capillary. Since the index of refraction of mineral oil

(n = 1.47. [1, p. 1173]) is higher than that of PTFE (n = 1.376. [82, p. V/40]), there

is total internal reflection as long as the angle of the laser is within

(1.376
90* - sin 1  = 200

1.47

of parallel to the tube wall1". The laser waveguides down the capillary, so the capillary

does not have to be rigorously straight. When the beam reaches the plug, it is

scattered by the curved plug/oil interface. The scatter is stronger on the right than

on the left of the plug because the laser travels from left to right.

This scatter is detected by a series of 8 photodiodes2 0 which have good sensitivity

"For an explanation of total internal reflection see, for example, [27, p. 751].
20 Part # S2386-18K. Hammamatsu Corp. Bridgewater, NJ. 0.43 A/W sensitivity at 632.8 nm

wavelength. Operating temperature: -40*C to 100*C.
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to the laser light and that can withstand PCR temperatures. There are 2 photodiodes

for each block, one on each side. There are an additional 2 photodiodes on the far left

and far right of the heat blocks that serve as limit switches. The photodiode signals

are amplified and filtered21 before being reported to the computer.

4.7 Software

The computer 2 receives the amplified, filtered photodiode signals via an A/D card 23

It uses these signals to determine the location of the plug. The computer commands

the pneumatic system through a digital I/O card2 4 that activates solid state relays25

which switch voltage from a 28 volt DC power supply26 . Voltage divider circuits were

used to bring the voltage down to the 12 V required by the solenoid valves.

I wrote the controlling software program HPCR in C++ 27. The user can control

the pressures either manually or using a batch file. The manual option is used in

conjunction with the ±1.5 psig pressures in the right reservoir to load oil and a sample

plug into a capillary. The actual thermal cycling is performed using parameters

specified in the batch file.

After being amplified by an inverting op-amp circuit, the photodiode signals range

from roughly -4 to 0 volts. The stronger the signal, the more negative the voltage.

21Low pass filter, 1 kHz cutoff.
22ProLinea 4/33 (an old 80486 PC clone). Compaq Computer Corporation. Houston, TX.
"Part # CIO-DAS 801. Computer Boards, Inc. Mansfield, MA.
24 Part # CIO-DIG 24. Computer Boards, Inc. Mansfield, MA.
2(# DC05-C. Omega Engineering Engineering Inc. Stamford, CT.) and (# SSR-ODC-05. Com-

puter Boards, Inc. Mansfield, MA.). The two parts are practically identical.
26Model LCS-A-28. Lambda Electronics Corp. Melville, NY. An archaic unit rescued from salvage.
"Turbo C++ 3.0. Part # 14MN-CPP01-30. Borland International. Scotts Valley, CA.
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The range varies somewhat between individual photodiodes, since their exact place-

ment is not precise. HPCR includes a routine to normalize the photodiode ranges. After

the user manually loads a sample plug into the left capillary end, he/she connects

that end to the left oil reservoir. At this point, both ends are connected to reservoirs.

The user specifies a batch file. The left reservoir is pressurized to 8.5 psig, and the

right to 5 psig. The plug moves to the right until the right limit switch photodiode

voltage is less than 2 8 the value of LIMITTHRESH in the batch file. The plug is now con-

sidered to be close to the right limit switch. The pressures are interchanged, and the

plug moves to the left until it the left limit switch voltage is less than LIMITTHRESH.

Finally, the program opens both reservoirs to atmospheric pressure, halting the plug.

During the motion, the program collects signals from all of the photodiodes. Based

on the maximum and minimum voltages, it assigns each photodiode values a and b,

such that the range of

normalized photodiode signal = b x (raw photodiode signal + a) (4.2)

is the range specified by NORMLIMITS in the batch file. NORM.LIMITS is the same for

all photodiodes. The values of a and b are read into the batch file, and are used to

normalize all photodiode signals whenever that batch file controls PCR.

The following terminology will be used in describing the control (see Fig. 4-7):

when the reaction has completed one step (denaturing, annealing, or extension) and

goes to the next, it moves from the departure heat block to the destination heat

2 8Recall the voltages are all negative.
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Figure 4-7: Illustration of near and far photodiodes.

block. Each heat block has two photodiodes associated with it, one placed on either

side. As the plug approaches the destination block, the destination block photodiode

closest to the plug is the near photodiode, and the one farthest from the plug is the

far photodiode. There are also the left and right photodiodes corresponding to a

particular block. This distinction is important because the laser comes in from the

left side, so the scatter is stronger on the right side of the plug. However, the plug

can approach a block from either the left or right side. PDnear, PDfar, PDeft and

PDright refer to the normalized (see above) near, far, left and right photodiode signals,

respectively. If the plug arrives from the left, PDIeft = PDnear and PDright = PDfar;

if the plug arrives from the right, PDright = PDnear and PDIeft = PDfar.

To perform PCR, the user loads oil and the plug into the capillary from the left

end and then hooks that end up to the left reservoir, as in the normalization routine.

Then, a batch file is specified which contains the cycling schedule as well as control

parameters. A sample cycling schedule is shown in Fig. 4-8. The heat blocks from left

to right are designated the denaturing, extension, and annealing blocks. The schedule

in Fig 4-8 states that the plug moves to the right (since it is loaded in the left end)

into the denature block, where it sits for 30 seconds. This is followed by 29 cycles
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START
CYCLES 1

DENATURE 30.0
CYCLES 29
ANNEAL 5.0
EXTEND 30.0
DENATURE 5.0
CYCLES 1
ANNEAL 5.0
EXTEND 60.0

Figure 4-8: Sample cycling schedule in user-specified batch file.

of annealing for 5 seconds, extension for 30 seconds, and denaturation for 5 seconds.

Finally, there is a 5 second annealing followed by a 60 second extension. The user uses

this format to specify an arbitrary schedule of moving the plug between and waiting

inside different heat blocks. HPCR starts the run by pressurizing both reservoirs to 5

psig. The program is then executed. To move the plug, 8.5 psig is applied to the

reservoir that the plug moves away from.

In addition to the cycling schedule, the batch file also contains the log file name

(user chosen), the temperatures and pressures used (entered by the user), and the

parameters listed in Table 4.2. a and b are established using the normalization routine.

NORM-LIMITS and LIMITTHRESI are chosen as the values shown in the table from the

typical photodiode signal range. The rest of the parameters must be experimentally

determined for a particular set of actuation pressures. The plug is positioned using

simple bang-bang control. At the beginning of a move between blocks, the program

knows whether the destination block is to the right or left of the departure block 2 9. It

starts the plug moving in that direction. Once PD. < LIMITTHRESH, the progam

2 11t is known that the plug starts left of all of the heat blocks.
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Parameter Typical fIMeaning
a 0.5 Normalizing constant, in volts. Normalized photodi-

ode signal is (actual signal + a) x b. Different values
for every photodiode.

b 1.0 Normalizing constant, in volts. Normalized photodi-
ode signal is (actual signal + a) x b. Different values
for every photodiode.

ERRORBAND (left) 0.35 If (PDright - PDIeft), in volts, is greater than this
value, the plug is considered to be too far left of the
center of the block. Is different for each block.

ERRORBAND (right) 1.0 If (PDleft - PDright), in volts, is greater than this
value, the plug is considered to be too far right of the
center of the block. Is different for each block.

LIMITTHRESH -2.0 Maximum limit switch photodiode signal, in volts, for
the plug to be considered to be at that photodiode.

MAX-TRANSIT..TIME 3.0 Maximum amount of time, in seconds, that the plug
can take travelling from block to block.

MAXDIFF 0.35 If the plug is moving toward the destination block
and it is confirmed to be near via THRESHOLD, then if
IPDIeft - PDrightI (in volts) is less than this value, the
plug is considered to have arrived at the destination
block. Different values for travel from each block to
each other block.

MIDPOINT 0.2 The value of (PDiet - PDright), in volts, at which the
plug is considered to be in the middle of the block. Is
different for each block.

NORM.LIMITS -3.0, 0.0 These two voltage values specify how a and b should
be chosen for each photodiode-after normalizing, the
values for each photodiode fall in this range of values.

THRESHOLD -1.5 The maximum value of PD, in volts, in which the
plug is considered to be near the destination block.
Different values for travel from each block to every
other block.

Table 4.2: Variables specified in the user-written batch file. The "Typical" column
lists typical values used for 5 psig and 8.5 psig reservoir pressures. Note that all signal
voltages are negative.
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checks to see if IPDift - PDightI < MAXDIFF. When this condition is satisfied, the

plug is considered to be inside of the destination block, so motion is halted by setting

both reservoir pressures to 5 psig. Note that if the LIMITTHRESH proximity condition

is not implemented, then IPDIeft - PDightI < MAXDIFF will be prematurely satisfied

because the plug starts so far from the destination block that PDIeft and PDright are

at roughly the same background level. The time taken for the motion is continuously

monitored. If it should exceed MAX.TRANSIT.TIME seconds, something has gone wrong,

and the batch run is aborted.

Once the plug reaches the desired block, the program monitors the plug position,

since it can drift. If PDright - PDleft > ERRORBAND (left), then the plug is considered

to be too far to the left; if PDIeft - PDright > ERRORBAND (right), then the plug is

considered to be too far to the right. If the plug is too far left, it is pushed to the

right until PDeft - PDright > MIDPOINT; if the plug is too far right, it is pushed to

the left until PDIeft - PDright < MIDPOINT. The monitoring and adjustment process

continues until the step time is up. The whole procedure of moving to and waiting

in the next heat block is repeated until thermal cycling is completed.

HPCR monitors the limit switch photodiode voltages during the entire run. If either

falls below LIMITTHRESH, the plug is considered to be outside the blocks. Cycling is

aborted, and both reservoirs are brought up to atmospheric pressure. The user can

also manually abort at any time.

The monitor displays the elapsed transition, step, and total times, as well as

the current stage of the cycling schedule. Times for all the transitions and steps

completed are written to a log file whose name is specified in the batch file. Pressures
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and temperatures used are copied from the batch file to the log file.

In this way, the machine performs PCR. Chapters 5 and 6 detail protocols and

PCR mixes used with the machine, and yields produced.

4.8 Nomenclature

P1, P2  Oil reservoir/pressure manifold pressures.

PDfar Normalized voltage of the far photodiode.

PDIeft Normalized voltage of the left photodiode.

PDnea Normalized voltage of the near photodiode.

PDright Normalized voltage of the right photodiode.

ro Inner radius of the capillary. o subscript stands for oil.

s Solubility of air in water. See Table 4.1.

T1, T2, T3  Heat block temperatures.

aw Thermal diffusivity of water.
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Chapter 5

10 Cycle Experiments

5.1 Introduction

I conducted 10-cycle RCR time and temperature optimization experiments. This was

to verify that the machine works, as well as to illuminate any differences it may have

in cycling compared to a commercial heat block thermal cycler. The experiments

were designed to simulate the last 10 cycles of a 30 cycle PCR. To compensate for

the smaller number of cycles, product DNA was added to the PCR mix to equal that

after 20 cycles in a commercial machine.

5.2 PCR Mix

Table 5.1 shows the PCR mix used in the experiment.

The sterile water is distilled, filtered, and autoclaved (heated under high pressure)

to ensure the absence of contaminants and biological organisms.
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10-CyclePCRMixRecipe
Amount Component

37.6 pL Sterile water
6.0 p1 A template (1.0 ng/pl)
7.2 pl 524 bp product (84 ng/pl)
6.0 p1 A30311F forward primer (10 pmol/pl)
6.0 p1 A30835R reverse primer (10 pmol/pl)
16.0 pl Purified Taq Pol mix
6.0 p 5.0 mM each dNTP
8.4 p1 10 x.buffer
6.8 pl 25mM MgCl 2

100 pl TOTAL

10-Cycle PCR Mix Concentrations
Final

Concentration Component

1.9 pM A template
17 nM (6 ng/pl) 524 bp product

600 nM A30311F forward primer

600 nM A30835R reverse primer

0.16 units/pi Taq Polymerase
300 pM each dNTP
50 mM KC)
10 mM Tris-HCI (pH 9.0)
2 mM MgCl 2

Table 5.1: PCR mix used for the 10-cycle PCR experiments. Top chart lists the

actual components used to make a 100 pl aliquot. Bottom charts lists the resulting

component concentrations.
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The template' is genomic A phage2 dsDNA. It is linear3 in form, and is 48.5 kb

long.

The 10-cycle experiments were intended to simulate the last 10 cycles of a 30-

cycle reaction. Hence, there was 6 ng/pl of 524 bp product in the mix initially, which

was the concentration found after 20 cycles in a standard heat block PCR machine4

used as the control. The product was produced in PCR reactions in the control

machine, purified via a commercial kit5, and quantified using the standard technique

of measuring the absorbance of the liquid at the 260 nm wavelength 6.

The primers were custom manufactured 7. The forward primer A30311F is 26 bases

long. Its sequence is 5'-GGA AAA GGT CTG CGT CAA ATC CCC AG-3'. The

reverse primer A30835R is 41 bases long. Its sequence is 5'-CGT CGA TGA CAT

TTG CCG TAG CGT ACT GAA GAA GCA CCG CG-3'. Together they define a

524 bp product.

The Taq mix is purifed from a commercial Taq source8 . The commercial Taq

is stored in a mix that contains Triton X-100, an anionic detergent. The plug/oil

surface tension must be kept high to avoid plug breakup, so the Triton was removed

via centrifugal concentration. The purified mix contains 10 mM Tris-HCl (pH 9.0),

'Part # US78018. USB Corporation. Cleveland, OH.
2 A type of virus.

'Many viral and bacterial DNA are in the form of a continuous loop, referred to as circular

DNA. The template DNA is circular DNA that has been cut in one place into linear form using a

restriction enzyme.
'Model PHC-3. Techne, Inc. Princeton, NJ.

sQIAquick PCR Purification Kit. Part # 28104. QIAGEN Inc. Valencia, CA.
6Using a Model UV-1601 spectrophotometer. Shimadzu Scientific Instruments, Inc. Columbia,

MD.
'Life Technologies, Inc. Rockville, MD.
'Part # M1861. Promega Corporation. Madison, WI.
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50 mM KCl, 2 mM MgCI2 , and an estimated 1.0 units/pIl Taq in sterile water. See

Section 8.4 for details.

The PCR mix has about 0.16 units/pl Taq DNA polymerase. Standard PCR mixes

contain 0.025-0.1 units/psl Taq DNA polymerase. The capillary PCR device requires

more Taq to compensate for Taq adsorption onto the capillary walls. Though Teflon

is chemically inert, in practice it can contain a small amount of impurities. Also,

the ratio of the surface that the plug sees over the course of PCR to its volume is

very high. I cannot use a blocking agent such as bovine serum albumin, since it will

decrease the plug/oil interfacial tension.

The dNTPs were diluted from a commercial mix9 containing 20 mM of each of

the four dNTPs.

The 10 x buffer contains 500 mM KCI and 100 mM Tris-HCl (pH 9.0). This is

identical to the 10 x buffer supplied with the commercial Taq polymerase mix, except

that it does not contain any Triton X-100.

The MgCl2 concentration was optimized on the control PCR machine.

The concentrations of template, primers, and dNTPs used were based on PCR

mixes cycled in the control machine by previous researchers1 0 in the lab and are fairly

standard. The concentrations of KCl and Tris-HCI, as well as the pH of the Tris-HCl,

were as recommended by the Taq manufacturer.

tPart # 27-2094. Amersham Pharmacia Biotech, Inc. Piscataway, NJ.
"0Notably Matt Footer.
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5.3 Experimental Protocol

5.3.1 The Earlier PCR Device

The 10-cycle PCR experiments were perfomed on an earlier, nonpressurized version

of the device. It only had the right oil reservoir/pressure vessel, which was supplied

with +1.5 psig (referred to as "the pressure" in this chapter), -1.5 psig (referred to

as "the vacuum" in this chapter) and atmospheric pressures. Motion to the left and

right was accomplished by opening the pressure and vacuum valves, respectively. To

halt the plug, the reservoir was set to atmospheric pressure. No flow restrictors were

required. The left end of the capillary was stuck through a hole drilled into a plastic

cuvette". I used a new cuvette for each reaction. It contained ~1 ml of mineral

oil, and was open to atmosphere. There was usually not enough time to degas for

degassing to pose a problem in the 10 cycle reactions.

5.3.2 Starting the Day's Experiments

Each temperature or time optimization' 2 was conducted using a single PCR mix to

eliminate mix-to-mix variability. A particular optimization experiment was started

by making 100 pl of the PCR mix, which was stored at 40 C when not in use. Large

numbers of cuvettes with holes drilled in them, and capillaries straightened and cut

into 9" lengths had been already prepared. The temperature controllers were turned

on, heating the blocks within 5 minutes. The buffer tanks were set at ±1.5 psig using

"The disposable cuvettes were a commercial product used to hold spectrophotometer samples.
126 in all: denaturing temperature, denaturing time, annealing temperature, annealing time,

extension temperature, and extension time.
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house air, house vacuum, and the shutoff valves. 1.5 ml disposable plastic centrifuge

tubes (at least as many as the number of PCR runs, plus some extra) were filled with

- 0.5 ml of mineral oil each. They were used to load oil and sample plugs into the

capillaries.

5.3.3 Positive Controls

To make a positive control, 10 pL of PCR mix was covered with 10pI of mineral oil

(to prevent evaporation) in a standard 500 pl disposable plastic microfuge tube. The

tube was cycled in the control PCR machine" according to the following schedule:

(94C, 3 min) => 10 x [(92C, 30 s) -* (70*C, 45 s) -+ (720 C, 30 s)]

It is based on a preexisting schedule developed on the machine by a previous re-

searcher" in my lab. Extension time was changed from 55 s to 30 s based on the

rule of thumb of using 1 min per 1 kb target length. The annealing temperature

was changed from 55*C to 70*C following an annealing temperature optimization

with the control machine: annealing at 700 C produced more desired product and less

nonspecific product than at 55, 60 or 650 C. This is probably due to the fact that mis-

annealing can easily occur at the long annealing times and temperature transitions

required by the control machine. The control samples were stored at 4*C following

cycling.

"A commercial heat block thermal cycler. Model PHC-3. Techne, Inc. Princeton, NJ.

"Matt Footer.
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5.3.4 Each PCR Run

A new capillary was used to perform every PCR reaction in my machine. One end

was connected to the single oil reservoir/pressure manifold via the HPLC fitting. If

it was the first run of the day, the vacuum was used to fill the reservoir with ~ 1 ml

oil from a 1.5 ml centrifuge tube. For subsequent runs, the pressure was used to fill

the capillary with oil from in the reservoir.

A 1 pl drop of POR mix was pipetted into one of the tubes containing 0.5 ml oil

(see Section 5.3.2). The open capillary end was thrust into this tube. The vacuum was

used to suck the plug, as well as enough oil to restore the level in the reservoir, into

the capillary. This procedure ensured that the drop volume was ~ I jL (sometimes

small bits of drop would break off during loading) and that there were no air bubbles

loaded along with the plug.

The free (left) end of the cuvette was threaded through the hole of a new cuvette.

Oil was poured into the cuvette until its level was above the top of the capillary.

A little extra was added: when the plug moved to the right, the oil level in the

cuvette went down, but not low enough to interrupt the laser beam. The cuvette was

attached to a makeshift stand. The stand was adjusted to make the capillary roughly

straight, and then it was clamped onto the table. The laser, which was mounted

on a manipulator, was turned on and focussed onto the end of the capillary. The

manipulator allowed fine position adjustment of the beam.

The HPCR program ran a batch file to perform thermal cycling. After the cycling

was done, the laser was switched off. A length of capillary containing the plug was
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cut out of the machine and one end was stuck into a 1 ml syringe with an 18 gauge

needle. The plug, along with some of the oil, was aspirated into a 0.5 ml disposable

plastic tube. The tube was centrifuged to aggregate the contents, and stored at 4*C.

5.3.5 Negative Controls

The remaining PCR mix, which was not thermally cycled, provided the negative con-

trols. Traditionally, negative controls are the result of cycling the mix sans template.

However, there were so many reactions that produced no amplification when the cy-

cling parameter or mix was even slightly off (expired Taq or dNTPs in the latter case)

that this was deemed unnecessary.

5.3.6 Product Quantification

I used agarose gel electrophoresis, a standard molecular biology technique15 , to quan-

tify end product. The gel is a rectangle About 1/4" thick made of a firm, JelloTM-like

substance containing agarose. It has a row of identically shaped dents, or wells, cast

into one of its edges. Samples are loaded into these wells, and a voltage potential

is applied across the gel. Since DNA is negatively charged, it migrates through the

gel, with shorter strands migrating faster. A fluorescent intercalcating dye is used to

visualize the DNA inside of the gel.

My gel consisted of 1% (w/v) agarose' 6 in TBE buffer'. 1 g agarose powder' 8 is

'5 See, for example, [75, Chap. 6].
161% (w/v) means 1 g in 100 ml solution.
17nitially, I mixed the TBE myself. Later, I diluted professionally formulated 10x TBE with

sterile water.
18 Catalog # A-6877. Sigma Chemical Company. St. Louis, MO.
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Figure 5-1: Schematic of an agarose gel inside of a gel box (agarose gel electrophore-

sis).

added to 100 ml TBE in a beaker. The mix is microwaved to melt the agarose, then

poured into a tray in the gel box' 9 to a thickness of ~ 1/4". In a certain orientation,

the gel tray serves as a mold, and a teflon comb is used to cast the wells. Once the gel

cools, the tray is moved into position for electrophoresis (see Fig. 5-1). Just enough

TBE is poured into the box to cover the gel and fill the buffer reservoirs. The comb

is removed.

The DNA samples are mixed with loading buffer prior to analysis. The loading

buffer contains 0.25% (w/v) Orange-G 20 and 40% (w/v) sucrose. 5 pl loading buffer

is added to 1 IL of sample. The loading buffer/sample mix is aliquoted onto parafilm,

which tends to attract any residual oil, and then pipetted off of the parafilm relatively

oil-free into the well. Orange-G is a dye provided to aid in sample loading (both the

sample and TBE are clear). The sucrose makes the mix more dense than TBE so

that it drops into the bottom of the well, rather than diffusing away. The loading

"Models BlA and B2. Owl Separation Systems. Portsmouth, NH. Also, Horizon 58. Bethesda

Research Laboratories. Life Technologies, Inc. Gaithersburg, MD.
20Catalog # OX0185-5. EM Science. Cherry Hill, NJ.
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process is repeated for every sample, each pipetted into a different well.

Commercial size and mass ladders are loaded alongside the DNA samples. The size

ladder21 contains 100, 200, 300, ... 1500, and 2072 bp DNA. When electrophoresed,

the DNA separates according to size, since longer DNA migrates through the gel

faster than shorter DNA. DNA of a particular size clusters together into a band in

the gel. The size ladder bands are compared with the sample to see if the product

is the correct length. To quantify sample product concentrations, they are compared

against the mass ladder bands. 4 pl of mass ladder 2 2 contains 10, 20, 40, 80, 120, and

200 ng DNA bands. Since my DNA amounts were not this high, I used 2 pl of the

mass ladder in one well, and 1 pl in another.

After loading, 100 volts are applied across the gel box electrodes for about 30

minutes. Each of the two platinum electrodes rests at the bottom of a buffer-filled

reservoir at one end of the gel (see Fig. 5-1). The negative electrode is near the

wells, and the positive electrode is at the opposite end. Since DNA is negatively

charged, it slowly migrates through the gel, -, 2 inches/hour for the 524 bp product.

All of the DNA from a single well moves along a lane parallel to DNA from other

wells. The Orange-G migrates through the gel faster than the DNA, providing visual

confirmation of electrophoresis.

Following electrophoresis, the gel is placed into a tray containing 100 ml of stain.

The stain is 20 pl SYBR® Green I23 diluted in 100 ml of TBE, according to the

21100 bp DNA Ladder. Catalog # 15628-019. Gibco BRLL. Life Technologies, Inc. Rockville,

MD.
2 2 Low DNA MASSTM Ladder. Catalog # 10068-013. Gibco BRLL. Life Technologies, Inc.

Rockville, MD.
2 3 Catalog # S-7567. Molecular Probes, Inc. Eugene, OR.
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manufacturer's instructions. SYBR is a fluorescent intercalcating dye, which gets

stuck inside of DNA strands. The gel is stained for e 30 minutes on a rocker table.

The DNA bands are then visualized on a commercial CCD system". The system

consists of a CCD camera focussed on a UV light table, both inside of a dark box with

a door. The door is opened to place the gel the UV table, and then closed. The UV

light table is switched on, illuminating the SYBR-stained DNA bands. The system

uses proprietary software2 5 to project the CCD image onto the computer screen next

to the system. There is a light aperture in front of the CCD camera, and the CCD

signal can be digitally integrated. The aperature opening and integration time are

adjusted to make the image as bright as possible without saturating any of the pixels,

and the image is stored in memory. If some of the bands are weak, the shutter and

integration time are adjusted to brighten them. In this case, some of the stronger

bands are saturated, and these bands are not quantified. A second image containing

the fainter bands is also stored in memory. The software is used to quantify the

sample bands by linearly interpolating their fluorescence against the fluorescence of

the mass ladder bands. The detection limit using this method is f 1 ng. However,

accuracy is low for samples containing < 10 ng DNA.

Figure 5-2 is an image from the commercial CCD system. It shows a SYBR-stained

gel containing samples, positive and negative controls, and size and mass ladders from

the 10-cycle denaturing temperature experiment, illuminated with ultraviolet light.

Note that the negative control has signal due to initial product in the PCR mix (see

1
4 Gel Doc 1000. Bio-Rad Laboratories. Hercules, CA.

2 5Molecular Analyst®/Macintosh v 2.1. Bio-Rad Laboratories. Hercules, CA.
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Figure 5-2: CCD image of gel used for the denaturing temperature optimization

experiment.

Table 5.1). During electrophoresis, all of the bands migrate from the negative to

positive electrode, as shown, with shorter DNA strands moving faster than longer

DNA strands.

5.4 Experimental Results

To test the performance of the PCR machine, it was used to optimize denaturing,

annealing, and extension step time and temperatures. The thermal schedule was as

follows:

(TD, 5 sec) => 9 x [(TA, tA) -+ (TE, tE) -+ (TD, tD)] t (TA, tA) =' (TE, tE)

T and t are temperature and time, respectively. Subscripts D, A and E stand for

denaturing, annealing, and extension, respectively. The initial denaturing time was

always kept at 5 seconds to allow denaturing of the genomic 48.5 kb A phage template

DNA, which takes longer to dissociate than the 524 bp product. The other cycling
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Optimization TD tD TA tA TE tE

Denaturing Temp. 88-98oC 2 sec 700C 2 sec 720C 30 sec

Denaturing Time 940C 0-8 sec 700C 2 sec 720C 30 sec

Annealing Temp. 940C 2 sec 54-72*C 2 sec 720C 30 see

Annealing Time 940C 2 sec 560C 0-16 sec 720C 30 see

Extension Temp. 940C 2 sec 700C 2 see 70-800C 30 sec

Extension Time 940C 2 sec 70C 2 sec 700C 10-60 see

Table 5.2: Thermal cycling conditions for time and temperature optimization exper-

iments.

parameters are shown in Table 5.2.

The "default" parameters were TD = 940C, TA = 70C, TE = 7200, tD = tA =

2 seconds, and tE = 30 seconds. The short denaturing and annealing times were

based on Wittwer's finding that annealing and denaturing take place efficiently in

< 1 second ([99]; see Section 3.2). The extension time of 30 seconds was based on the

1 min per 1 kb rule of thumb for conventional machines; it was thought that it could

be reduced later. Annealing, denaturing, and extension temperatures were based on

those used by the control machine (see Section 5.3.3).

The temperature of interest was varied for each temperature optimization; other

conditions were their default values. The time optimization used this optimal temper-

ature and varied the time of interest; the remaining conditions were at their default

values.

To eliminate mix-to-mix variability, each of the 6 time and temperature optimiza-

tion experiments was performed in a single day using a single PCR mix. The 10-cycle

experiments took about 6 min 40 seconds for the default tD = tA = 2 seconds, and

tE = 30 seconds. This translates into 20 minutes for 30 cycles, a vast improvement

on the 1-2 hours of a standard PCR machine.

101



60.

50 -

40. A A

30

20
&. 20-

10

88 90 92 94 96 98

Denaturing Temperature (QC)

Figure 5-3: Results of the denaturing temperature optimization. TD = 88, 90, 92,
94, 96, 98*C. tD = 2 s. TA = 700C. tA = 2 s. TE = 720C. tE = 30 s. 0, A, and
0 represent 3 different trials. Positive controls: 25 and 66 ng/sl (avg: 46 ng/ul).
Negative control: 3.6 ng/pl.

5.4.1 Denaturing Temperature

Figure 5-3 shows results from the denaturing temperature experiment. The highest

temperature tested, 98*C, gives the best results. This is no surprise: greater tem-

perature results in the more thorough denaturing, which produces higher yield. The

yield from the capillary PCR machine was equivalent to that of the control machine

at 96 and 980C, and dropped off at lower temperatures.

The negative control product was quantified as 3.6 ng/1ul, when it is known to

be 6 ng/pl. The discrepancy is due to the fact that the quantification protocol loses

accuracy at < 10 ng/pl. This effect will be seen throughout the results.
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Figure 5-4: Results of the denaturing time optimization. TD = 94*C. tD = 0, 2' 1,
2, 4, 8 s. TA = 70*C. tA = 2 s. TE = 72C. tE = 30 s. 0, A, and 0 represent three

different trials. Positive controls: 12, 13 and 7.1 ng/pl (avg.: 11 ng/pl). Negative

controls: 4.4, 2.0, and 2.9 ng/jtl.

US.h iDelturiig .Lim11

The denaturing time optimization was performed with the denaturing temperature

at 94*C rather than 98*C . While 98*C is fine for 10 cycles, Taq activity drops

rapidly as the temperature approaches 100 0C, so 98*C may be unsuitable for 30

cycles. This was shown to be true in Chapter 6. Fig. 5-4 shows results for the

denaturing time experiment. 0 seconds means that the plug did not have any dwell

time inside of the block; however, the plug spent time inside the block to arrive at the

middle and then depart, of course. More than ' second dwell time did not increase

yield. From Table 7.5, it can be seen that it takes around 1.1-2.6 seconds for plug

centerline temperature to reach 93.50 C. Since 1 second denaturing time is sufficient,
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this criteria may be too strict. Times longer than required can result in unnecessary

deactivation of Taq. The positive controls (avg.: 11 ng/Pl) were somewhat higher

than the average capillary PCR machine value of 6-8 ng/pl at ;>} seconds. This

matches the denaturing temperature optimization results.

All of the yields, even for the positive control, are very low. In fact, they are

barely above the negative control concentration of 6 ng/ptl. However, the negative

control was quantified as 3.1, rather than the expected 6 ng/pl, so there is in fact

twofold to threefold amplification-still very low when compared to the denaturing

temperature optimization. Since all of the trials used the same mix, the mix itself is

bad due to some combination of (1) low initial Taq activity; (2) low activity recovered

following centrifugal concentration of the Taq; and (3) low yield due to degradation

of dNTPs.

5.4.3 Annealing Temperature

Fig. 5-5 shows annealing temperature optimization for 10 cycles. At the default an-

nealing temperature, 700C, the yield was a slightly less than that of the positive

controls. At an average value of 9 ng/pl, is it roughly the same as that found in the

denaturing time optimization, and much lower than that in the denaturing tempera-

ture optimization under the same conditions (TD = 94C, TA = 70%, TE = 72 0 , tA

= tE = 2 seconds, tE = 30 seconds).

Section 2.5.1 defines the primer melting temperature Tm and presents a number

of equations to calculate it (2.2, 2.3, 2.4, 2.5 and 2.11). Section 2.5.3 states that the
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Figure 5-5: Results of the annealing temperature optimization. TD = 94*C. tD = 2

s. TA = 54, 56, 60, 64, 68, 70, 72*C. tA = 2 s. TE = 72C. tE = 30 s. El, A, and 0
represent three different trials. Positive controls: 14 and 15 ng/pl (avg. 15 ng/pl).

Negative controls: 2.3 and 2.5 ng/jl (avg. 2.4 ng/pl).

optimal TANN = Tm- 250 C, and also presents equations to calculate TANN directly

(2.12 and 2.13).

Which equations are the most reliable? (2.2, 2.3 and 2.12) are from PCR by

Newton and Graham [58]. While the equations provide a good starting point for TANN,

their origins are not referenced. There is some ambiguity between Tm and TANN: the

two are expected to be within about 5*C, and (2.12) is alternately presented as an

equation for Tm and an equation for TANN. Therefore, I eliminate (2.2, 2.3 and 2.12)

as candidates.

Wetmur and Davidson's pioneering work in DNA hybridization [92] in 1968 re-

mains the standard today [91]. Since this initial work, Wetmur has investigated many

aspects of DNA hybridization, including its application to PCR annealing [91]. The
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A30311F A30835R Equation

Tm = 860 C Tm = 990 C t (2.11)

TANN = 58*C TANN = 63CC (2-13)

Table 5.3: Melting (Tm) and annealing (TANN) temperatures for the primers from the

literature. t: equation may not be applicable to a primer this long.

equations he uses, (2.5 and 2.11), are credible. However, (2.5) is for long DNA, and

is not as accurate for primers.

Rychlik et al. [72] did a very careful study of the optimal annealing temperature

in PCR. Therefore, I feel that their equation (2.13) is reliable.

Equation (2.4) has a familiar form that is used by Wetmur [91] and Rychlik

et al. [72] to find Tm for long DNA. Therefore, it may not be accurate for short

primers, which are most precisely accounted for by the nearest-neighbor methods26

incorporated into (2.11) and (2.13).

Table 5.3 shows the melting and annealing temperatures predicted by the most

accurate equations, (2.11) and (2.13): Since TANN = Tm - 25*C, (2.11) predicts TANN

= 61*C for A30311F and 72*C for A30835R, though it is queCtionable whether (2.11)

can be applied to a primer as long as A30835R. The TANN value for A30311F is close

to that found by (2.13). Therefore, theory predicts TANN e 58-610 C for A30311F,

and ~63*C for A30835R.

TANN for experiment and theory match well for A30311F, but not as well for

A30835R, which has a higher theoretical TANN. Why? Because if the temperature

is roughly correct, annealing rate is more important than misannealing (annealing

in an incorrect location) in my system. The lower the temperature, the faster the

26See Section 2.5.1.
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annealing rate. I use very short annealing times, so the annealing rate must be

fast. If the temperature is too low, misannealing is frequent. The machine's fast

cooling also encourages misannealing. However, there is not enough time for most

misannealed products to grow long enough to be extended in later cycles, either during

the annealing step (at which temperature extension is very slow) or in the transitions

to and from annealing. Of course, at very low temperatures, many misannealed

products will arise regardless, but at 56*C , this is not yet a problem with A30835R.

Yield is high and amount of misprimed products are low for my fast temperature

transitions and short annealing times, which agrees with the findings of Wittwer et

al. (see Section 3.2).

Conversely, the control machine2 7 had an optimal TANN of 70C. Cooling to TANN

is slow, and the required annealing time is long. Any mispriming that takes place

has time to extend and produce erroneous product in later cycles. However, there is

ample time to anneal even at a temperature much higher than the optimal TANN

5.4.4 Annealing Time

Fig. 5-6 shows results for the annealing optimization experiment. There is no advan-

tage gained by annealing > 2 seconds. From Table 7.5, we see that the time required

to cool the plug to 53*C (is slightly less for 560C) is ~ 0.3-1.7 seconds. Subtracting

this from the 2 second optimal annealing time (which includes temperature equili-

bration), we find that the optimal annealing time is ~~ 0.3-1.7 seconds. This matches

"See Section 5.3.3.
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Figure 5-6: Results of the annealing time optimization. TD = 940 C. tD = 2 s. TA =

56*C. tA = 0, 1, 2, 4, 8,16 s. TE = 720C. tE = 30 s. C, A, and 0 represent three
different trials. Positive controls (2 trials): 19 and 19 ng/gl. Negative controls: 6.2
ng/jsl.

Wittwer's find'ng (Sectn 3.2' that the optimal annealing time is < 1 second for

rapid PCR.

We compute the theoretical time constant for annealing using equations (2.22),

(2.23) and (2.25) presented by Wetmur et al.:

annealing time constant = (k2B)~ 1 = [(4.6 x 10 4M~'sr')BVI>'-I (5.1)

where k2 is a rate constant, B is the primer molar concentration, L is primet length

in bases, and B = BL. The time constant for A30311F (26 bases) is 7.1 seconds,

and for A30835R (41 bases) it is 5.7 seconds. After one time constant, only 1/e of the

ssDNA remains unannealed.
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These times are much longer than what Wittwer et al. and I found was optimal.

Why is this? First, our cooling rates may far exceed those used by Wetmur, who

cooled his liquid inside of a spectrophotometer cell. Cooling rate is not accounted

for by Wetmur's theory, but fast rates may affect annealing. Second, Wetmur found

his rate constants using very long DNA (~ 104 bases) with complexities N (see

Section 2.5.4) : L (the two are equal for primers). The resulting annealing time

constants were in the minutes or hours, rather than seconds. In fact, when Wetmur's

equations are extrapolated to short primers cooled at very rapidly, it is not so much

a failure as a triumph that the results are within an order of magnitude.

5.4.5 Extension Temperature

The results for extension temperature are shown in Fig. 5-7. The optimal tempera-

ture range of Taq is that tested: 70-80'C [4]. It appears that product yield is still

increasing as TE drops below 70*C, but this may just be an artifact of the data scatter.

This point was returned to in the 30 cycle experiments. The overall yield was good,

and actually higher than the control machine at the optimal extension temperature.

5.4.6 Extension Time

The results of the extension temperature optimization are shown in Fig. 5-8. As

expected, product drops off as time decreases. Theoretically Taq can extend" at 100

bases/second, so only 5.2 seconds should be required to extend the 524 bp product.

"See (2.27).
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Figure 5-7: Results of the extension time optimization. TD = 94*C. tD = 2 s. TA =

700C. tA = 2 s. TE = 70, 72, 74, 76, 78, 800C. tE = 30 s. El, A, and 0 represent
three different trials. Positive controls: 18 and 24 ng/pl. Negative control: 4.8 ng/pl.
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Figure 5-8: Results of the extension time optimization. TD = 94*C. tD = 2 s. TA =

700C. tA = 2 s. TE = 70*0. tE = 10, 20, 30, 40, 50 and 60 s. 0, A, and 0 represent
three different trials. Positive controls: 7.4 and 13 ng/pl (avg. 10 p/I). Negative
control: 3.8 ng/pl.
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However, as extension time is lowered, efficiency drops. This effect is seen in many

fast PCR machines 2 9.

There is some amplification even with only 10 seconds extension. Additionally,

there seems to be no added benefit of extending longer than 30 seconds. More product

was produced by the capillary PCR machine than the control. The results of this

optimization are somewhat questionable, due to the low yield of both the optimization

and positive controls.

5.5 Conclusion

The machine performs 10 cycles of PCR in about 400 seconds. Optimal Ti is 98*C,

the highest temperature tested. However, this may result in rapid Taq decay for 30

cycles. At a standard Ti of 94*C, the most product was produced for tI, > > seconds.

540 C TA 600C was optimal for the primers used, which agrees well with theory.

Optimal tA 2 seconds, which agrees with Wittwer's air cycler results. The optimal

TE in the 70-8C10 C range is 700C, which suggest that the optimal TE may be lower.

The greater the tE, the higher the efficiency (plateau at 30 seconds), which was as

in the literature. However, product was produced for tE = 10 seconds, the lowest

time tested. Fluctuation in yield, including that of the positive controls, was found

throughout the optimizations, suggesting that the process of removing the detergent

may cause mix-to-mix variability in Taq activity.

29 See Chapter 3.
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5.6 Nomenclature

B Molar concentration of primer.

Bb BL.

k2 An annealing rate constant. See Chapter 2.

L DNA length, in bases.

tA Annealing time.

TA Annealing temperature.

TANN Annealing temperature.

tD Denaturing time for cycle > 1.

TD Denaturing temperature.

tE Extension time.

TE Extension temperature.

Tm Primer melting temperature.
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Chapter 6

30 Cycle Experiments

6.1 Introduction

After proving that 10-cycle PCR works in the capillary machine, I progressed to

more realistic 30-cycle experiments. Experimental protocol was similar: unless stated

otherwise, it is the same as for the 10-cycle experiments (see Chapter 5).

6.2 PCR Mix

Table 6.1 shows the PCR mix used in the experiment. Constituents are identical to

those used for the 10-cycle experiments (see Section 5.2) except for the primers'. Their

sequences are based on primers provided in a commercial PCR kit2 . The sequence

of primer 1 is 5'-GAT GAG TTC GTG TCC GTA CAA CTG-3', and the sequence

'Custom manufactured. Life Technologies, Inc. Rockville, MD.
2 GeneAmp PCR Reagent Kit. Part # N801-0055. Applied Biosystems (formerly Perkin-Elmer),

Foster City, CA. The primers provided in this kit are both 25 bases long. The last two bases of

each primer are intentionally complementary to demonstrate the primer-dimer complex. To reduce

the tendency of my primers to anneal to each other, I left off the last base of each primer.
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30-Cycle PCR Mix Recipe
Amount Component

3.0 pL A template (1.0 pg/pl)
3.0 pl primer 1 (10 pmol/pl)
3.0 pl primer 2 (10 pmol/pl)

35.4 pl Purified Taq Pol mix
3.0 pl 5.0 mM each dNTP
1.46 pl 10 x buffer
1.17 pL 25 mM MgCI2

50 l ______ITOTAL

30-Cycle PCR Mix Concentrations
Final

Concentration Component

1.9 fM A template
600 nM primer 1
600 nM primer 2

0.7 units/psl (3.8 x 10-8 M) Taq Polymerase
300 pM each dNTP
50 mM KCI
10 mM Tris-HC1 (pH 9.0)
2 mM MgCl2

Table 6.1: PCR mix used for the 30-cycle PCR experiments. Top chart lists the
components used to make a 50 pl aliquot. Bottom charts lists the resulting concen-
trations.
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of primer 2 is 5'-GGT TAT CGA AAT CAG CCA CAG CGC-3'. They define a 500

bp product. Both primers are 24 bases long with ; 50% GC content, so they have

similar melting temperatures. The primers used in the 10 cycle experiments were 26

and 41 bases long, so their melting temperatures varied considerably.

The template DNA concentration is 1/1000 that of the 10-cycle PCR mix3 . This

is toward the lower end of the range used in standard PCR mixes. I wanted to prove

that the capillary PCR machine could amplify as dilute a template as a commercial

thermal cycler. Of course, this resulted in lower product yields than during the

10-cycle experiment. However, the lower end product helps keep the reaction away

from the primer limit. Once the product molar concentration exceeds 1/10 of the

primer concentration, product reannealing starts to compete with primer annealing.

Amplifying 1.9 fM template over 30 cycles with a standard 70% efficiency results

in (1.9 fM)(1.7) 30 = 1.6 x 10-8 M product. This is less than 1/10 of the primer

concentration (6 x 10-8 M, or 20 ng/pl product), avoiding the primer limit.

The PCR mix contains about 0.7 units/l Taq DNA polymerase. This is more

than in the 10-cycle PCR mix (~ 0.16 units/pl) and a standard PCR mix (0.025-0.1

units/pl). The concentration is higher than a standard mix4 to compensate for the

adsorption of the enzyme onto the capillary walls. 30 cycles rather than 10 means that

the plug sees about 3 times as much surface area, which is why the Taq concentration

is higher than that used for the 10-cycle reactions. As with the 10-cycle mix, the Taq

had the Triton X-100 removed via centrifugal concentration 5 .

3 See Section 5.2.
4See Section 2.3.
'See Sections 5.2 and 8.4.
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Furthermore, since erroneous product was not a big problem in my machine6 , I

decided to use as much Taq as much as possible to allow exponential amplification

across all 30 cycles. Since Taq can extend7 at 100 bases/second, it theoretically

requires 5 seconds to extend the 500 base product. 30 seconds extension times were

used for the 30-cycle experiments, so each new cycle can create up to 6(3.8 x 108

M) = 2.3 x 10-7 M (38 ng/pl) new product. Of course, it is impossible to more than

double the amount of existing DNA per cycle, and the Taq is not 100% efficient. Since

the product resulting from the 30-cycle temperature optimizations are significantly

less8 than 2 x 38 = 76 ng/pl, all cycles should have exponential amplification.

6.3 Experimental Protocol

As noted at the start of this chapter, the experimental protocol was identical to that

used for the 10-cycle experiments except for following details.

6.3.1 The Device

The 30-cycle experiments were conducted in the full device described in Chapter 4.

I used both left and right oil reservoir/pressure manifolds. Each contained ~ 1 ml

of mineral oil. After loading the capillary with oil and plug using the ±1.5 psig

pressures at the right reservoir, oil was added to the left reservoir with a syringe

8Due to short annealing times and fast transitions to and from annealing. See Section 5.4.3.
7See (2.27).
81t must be significantly less to account for Taq adsorption to the capillary walls; the fact that the

reaction is not 100% efficient; and the influence of the primer reannealing at 20 ng/pl, as explained
previously in this section.
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Figure 6-1: The Robocycler Gradient 96: the machine used for the positive controls

in the 30 cycle experiments. The Robocycler has a robotic arm that moves the tubes

between 4 different temperature heat blocks (denaturing, annealing, extension, and

refrigerated storage). From [83].

(some oil dripped out of the reservoir after removal of the capillary following every

PCR), and then the left end of the capillary was connected to the left reservoir.

6.3.2 Starting the Day's Experiments

The 30 cycle PCR experiments took a longer time to conduct than the 10 cycle

experiments. Therefore, not every optimization used samples drawn from the same

aliquot. Rather, each trial of each temperature optimization used a separate aliquot.

6.3.3 Positive Controls

A newer, more efficient PCR machine' [19] was used to perform the positive control

reactions (see Fig. 6-1). The control machine has four heat blocks: one each for

9Robocycler Gradient 96. Stratagene®. La Jolla, CA.
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denaturing, annealing, extension, and cold storage following PCR. Each block is at

a constant temperature' 0, eliminating the need to heat and cool each block (though

it takes ~, 30 minutes to bring the blocks to temperature once the machine is turned

on). To perform PCR, a robotic arm physically moves the tubes from wells in one

block to wells in another. The machine uses 0.2 ml polypropylene tubes" that have

thin walls to reduce thermal resistance. The reaction is faster than in a standard heat

block PCR machine. However, the insulating polypropylene tubes and the normal (~

100 Al) aliquot volumes still result in times of about 1 hour for 30 cycles of PCR.

Each positive control was 10 p1 of PCR mix. No oil was required to prevent

evaporation since the control machine was equipped with a heater resting above the

tubes that prevents condensation at the top. The following thermal schedule was

used:

940C, 8 min = 30 x [(94*C, 30 s) -+ (53*C, 45 s) -+ (700C, 30 s)] => 70*C, 7 min =t 60C, hold

The schedule was modified from that used for the 10-cycle controls". The annealing

temperature was optimized on the control machine. Since it has faster temperature

transitions than the control machine used for the 10 cycle experiments, misannealing

is not as large of a problem, so the temperature more closely approaches that predicted

by theory (in the 50-60C range). The long initial dentaure and final extension times

were based on PCR protocols established by researchers in lab'3 for the same machine.

"'One of the blocks can be programmed to vary its temperature linearly as much as 11*C across
its length to allow temperature optimization of one of the PCR steps (usually annealing). This
temperature distribution does not change over the course of the reaction.

"Part #s N801-0540, N801-0580 and N801-0535. Applied Biosystems. Foster City, CA.
2See Section 5.3.3.

'3 Notably John Newman.
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A thorough initial denaturation is critical since the first cycle relies completely on the

template, rather than product produced in earlier cycles; the genomic 48.5 x 103 bp

template takes longer to denature than the 500 bp product 4 . 6*C is a standard

holding temperature once the reaction is completed. It prevents subsequent reactions

from occuring.

6.3.4 Negative Controls

Negative controls were merely uncycled PCR mix, as in the 10 cycle experiments. No

negative control showed any sign of product.

6.3.5 Product Quantification

The product quantification protocol was improved for the 30 cycle experiments. A

heavier (2% instead of 1% w/v) agarose gel was used along with a thin wells to produce

sharper bands with less smearing. This results in more accurate quantification. Fig. 6-

2 compares bands from the conventional-shaped wells used in the 10-cycle experiments

and the wide, thin wells used in the 30-cycle experiments.

The instructions that come with the commercial Low DNA MASSTM ladder state

the following:

NOTE: the closer the size of the sample band relative to the band of
comparable intensity in the Low DNA MASS Ladder, the more accurate
the estimation will be.

Therefore, to get the best possible correlation, I quantified my product against several

14 Wittwer et al. found that their template had to be boiled prior to rapid PCR in the air cycler
[99].
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Figure 6-2: A comparison of bands: (a) the conventional bands used in the 10-cycle

experiment; (b) the wide, narrow bands used in the 30-cycle experiment. 34, 17, and

8.5 ng 500 bp product, as well as a mass ladder, was loaded into the wells in both

(a) and (b), as shown. Both set of bands were run on the same 2% agarose gel at

100 volts, 30 minutes. The gel was then stained for 30 minutes in SYBR Green I

diluted 1:10,000 by TBE. It is not obvious from the figure, but there is significantly

more smearing in the 500 bp product bands (the 34, 17, and 8.5 ng bands) in the

conventional wells. The smearing is clearly visible when the image is displayed on the

computer monitor.

lanes containing known concentrations' 5 of the product itself, produced using the

control PCR machine.

All of these measures ensure greater uniformity. Even so, quantification is only

good to within about 20%. Part of this is due to nonuniformity in the UV light table

within the Gel Doc 1000 itself (see Section 5.3.6).

6.4 Experimental Results

To test the performance of the PCR machine, it was used to optimize denaturing,

annealing, and extension temperatures. I also intended to do a time optimization, as

in the 10-cycle experiments; however, time constraints prevented its completion. The

"5 Quantified via the standard method of checking absorbance at 260 nm with a spectrophotometer.

Model UV-1601 spectrophotometer. Shimadzu Scientific Instruments, Inc. Columbia, MD.
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Optimization TD TA TE

Denaturing Temp. 86-96*C 530C 700C
Annealing Temp. 94*C 33-68*C 70C
Extension Temp. 94C 53*C 54-78*C

Table 6.2: Thermal cycling conditions for 30 cycle temperature optimization experi-

ments.

thermal schedule was as follows:

TD, 30 s => 2 9 x [(TA, 5 s) -+ (TE, 30 s) -+ (TD, 5 s)] = TA, 5 s =>rTE, 60 s

TD, TA and TE are the denaturing, annealing, and extension temperatures, respec-

tively. Their values are shown in Table 6.2. The initial denaturing time was always 30

seconds to allow denaturing of the template DNA16 . An extension time of 30 seconds

was based on the rule of thumb of 1 min per 1 kb product length. The denaturing and

annealing were set at 5 seconds each. Although 2 seconds were used for both in the

10-cycle optimization, it was barely enough time to reach a plateau in end product,

so 5 seconds was used as a more conservative starting point. If time optimization

revealed that shorter step times produced just as good results, I felt I could switch

then (although I never got around to the time optimizations). A long final extension

time is traditionally used in PCR protocols. As in the 10-cycle experiments, this was

set to 60 seconds.

The range of annealing and extension temperatures tested were much larger than

for the 10-cycle experiments. This was to ensure that a plateau existed within the

range of temperatures tested. This was not the case in the 10-cycle extension tem-

16See Section 6.3.3.
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perature optimization.

The "default" parameters were TD = 94*C, TA = 53*C, and TE = 70*0. 940

for denaturing is a standard in commercial machines. TA = 53*C was taken from

the control machine TA optimization 1 7 . TE = 700 was taken from the 10 cycle TE

optimization' 8.

Each trial was performed in a single day using the same PCR mix. For this reason,

each temperature optimization presents a distinct curve for each trial, rather than a

single curve of averaged yields as in the 10-cycle experiments.

Each 30-cycle experiment took about 24 minutes to run. This is a great im-

provement over the 1-2 hours required by a standard commercial heat-block PCR

machine.

6.4.1 Denaturing Temperature

Figure 6-3 shows results from the denaturing temperature experiment. The results

indicate that, as expected, higher temperatures deliver more product due to more

thorough denaturation. At 940C there is a plateau in product, due to the fact that

more thorough denaturation is offset by decay of Taq at higher temperatures.

The yields from the control machine are generally not as high as for the capillary

PCR machine at 94 and 960C. There is one exception in which the control machine

gave exceptionally high yields roughly 3 times (21 and 29 ng/gl) that of the capillary

PCR machine. While this difference may seem very large, a 3-fold product difference

17See Section 6.3.3.
"See Section 5.4.5.
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Figure 6-3: Results of the denaturing temperature optimization. TD = 86, 88, 90, 92,
94, 960 C. TA = 53*C. TE = 700 C. 0, 0 and 0 represent 3 different trials. Positive
controls: for 0, 3.6 and 2.9 ng/pl; for 0, 6.5 and 6.4 ng/pl; for 0, 21 and 29 ng/pl.

over the course of 30 cycles is a 31/30 -1 = 0.04 (4%) difference in efficiency, which is

actually reasonably small. This effect will be seen in the other temperature optimiza-

tions. The point is that the efficiencies of the capillary and control PCR machines

are similar under the given conditions.

6.4.2 Annealing Temperature

Fig. 6-4 shows annealing temperature optimization for 30 cycles. Table 6.3 shows

the theoretical melting and annealing temperatures' 9 . Since TANN = Tm -- 25*C,

(2.11) predicts TANN = 52*C for Primer 1 and 59*C for Primer 2. Therefore, theory

predicts TANN ~% 52-58*C for Primer 1, and TANN ~ 59-60*C for Primer 2. This

19See Section 5.4.3.
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Figure 6-4: Results of the annealing temperature optimization. TD = 94*C. TA =

37, 41, 45, 49, 53, 57 and 61*C for the top curve, and 33, 38, 43, 48, 53, 58, 63, 68*C
for the bottom curve. TE = 70*C. A, and > represent two different trials. Positive
controls: for A, 3.6 and 2.9 ng/pIL; for 0, 1.7 and 1.9 ng/pl.

Primer 1 Primer 2 Equation

Tm = 77C Tm = 840C (2.11)

TANN = 580 C TANN = 600 C (2.13)

Table 6.3: Melting (Tm) and annealing (TANN) temperatures for the primers from the
literature.
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agrees reasonably well with the optimal annealing temperature found on the control

machine (530C). However, it does not seem to match well for the capillary PCR

machine. In fact, it appears that the optimal annealing temperature for the capillary

PCR machine is at the extension temperature!

The first possibility is that the 680C datapoint is merely an anomaly, and that

the actual peak annaling temperature is somewhere near 60*C, which matches the

theory. Certainly, more data needs to be taken to confirm the optimal annealing

temperature. What if this is not the case, though? There is another explanation.

It is not actually the annealing temperature that is optimized; it is the annealing

block temperature. Ideally, the two should be the same. However, in the capillary

PCR machine, the plug temperature can dip as it passes in the cool region between two

heated blocks. Using the heat transfer model detailed in Chapter 7, I calculated the

approximate plug temperature history as it travels from the denaturing to annealing

block when the latter is at the optimal temperature2 . The results are shown in

Fig. 6-5. The minimum temperature plug temperature is between 53C and 62*C,

the all-water and all-oil minimums. The theoretical annealing temperatures for both

primers fall inside this range. Therefore, I believe that the plug anneals as it travels

between the extension and annealing blocks2 1. The total travel time from the denature

to annealing block is about 2.8 seconds, so the plug spends only ' . second at

temperatures optimal for annealing. However, as found by Wittwer (see Section 3.2),

this is enough!

2 0 TD = 940C, TA = 68*C, and Tt = 70*C. This is for the highest TA tested; any higher, and it

would be > TB.
2 1See Section 10.4.3 for suggestions on how to solve this problem.
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Figure 6-5: Temperature as plug moves to the right (increasing distance), from de-
naturing to annealing block, at 0.033 m/s. Temperature is assumed to lie somewhere
inbetween the temperatures shown for oil and water. T, = 940C, TA = 68*C, TE =

700C.
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Theory predicts an annealing time constant 22 of 7.4 seconds for each primer. My

results support the idea that the hybridization theory equations are incorrect by an

order of magnitude when applied to short primers 2 3.

If the annealing occurs between blocks, then why don't lower TA values give as

much product? First, the plug is actually extending efficiently inside of the anneal-

ing block at higher TA values. Second, at high TA values, annealing cannot occur

efficiently inside of the annealing block, so the annealing time is kept short. This

reduces the amount of time available for misannealed primers to extend-they fall

off ssDNA at typical extension temperatures. Erroneous product is minimized and

desired product is maximized.

Why don't we see this effect in the 10-cycle experiments 24 ? Because in the that

case, there was a lot of product to start with. Extension efficiency is not critical.

At the optimal 10-cycle annealing temperature, 56*C, the product is > 20 ng/pl

(see Fig. 5-5). At this point 25 , ssDNA reannealing starts to compete with primer

annealing. To get significantly more than 20 ng/pl product, annealing has to be

optimized as much as possible: it does more good to provide additional annealing time

rather than additional extension time26 . This explains the optimal TA matching the

theoretical annealing temperature for the 10-cycle experiments, but not the current

30-cycle experiments.

2 2 After one time constant, only 1/e of the denatured ssDNA remains unannealed to primers. See
Section 5.4.4.

23See Section 5.4.4.
24See Section 5.4.3.
25ee Section 6.2.
26 Although providing too much annealing time will increase erroneous products at the expense of

desired products.
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Figure 6-6: Results of the extension time optimization. TD = 94*C. TA = 53C. TE

= 54, 58, 62, 66, 70, 74, 78*C. 0, 0, and A represent three different trials. Positive

controls: for 0, 1.7 and 1.9 ng; for 0, 13 and 18 ng; for A, 21 and 29 ng.

6.4.3 Extension Temperature

The results for extension temperature are shown in Fig. 6-6. Curiously, the optimal

temperature seems to be around 62-68*C, rather than 70-80C reported in the liter-

ature [4]. To test whether this was due to the unusual constituency of the PCR mix

(no Triton X-100 or similar enzyme stabilizing agent, as well as an unusually high

amount of DNA polymerase), I ran an extension temperature optimization on the

control PCR machine. The cycling is as described in Section 6.3.3 except that the

extension temperature is varied. All reactions were aliquots of the same PCR mix.

The temperature gradient feature of the control machine allowed me to run 12 differ-

ent extension temperatures simultaneously. Results are shown in Fig. 6-7. The figure

shows some poor datapoints. For example, there is hardly any product at 64 or 72*C.
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Figure 6-7: Results of extension temperature optimization for 30 cycles using the
control PCR machine.

However, this is the nature of PCR: some reactions fail randomly, even though they

are aliquoted from the same mixture and cycled identically to many other reactions

that succeed. Discounting this anomalous data, we see that the peak is around the

mid 60C range. This is consistent with the results of Fig. 6-6, suggesting that the

low optimal TE is due to the unusual PCR mix.

The capillary PCR shows much greater sensitivity to T than the control machine.

The control machine uses an annealing time of 45 seconds, wheras the capillary PCR

machine uses only 2 seconds. The extra annealing time of the control machine also

serves as additional extension time (though extension is not as efficient at 53*C),

making the control machine PCR less sensitive to changes in Taq activity. In addition,

Taq adsorbs to the sidewalls in the capillary PCR machine, again making PCR in the

capillary machine more sensitive to changes in Taq activity.
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6.5 Product Variability

There is significant variability in product between different runs, even for the same

cycling conditions. For example, in Fig. 6-6, there is 3.6, 6.3, and 11 ng/pl product

for 3 different trials at TD = 94*C, TA = 530C, and TE = 70C. Why is this?

6.5.1 The Nature of PCR

PCR is an exponential amplification process, so a small difference in efficiency results

in a large difference in product. For example, if every cycle has exponential amplifica-

tion, increasing efficiency by just 5% will produce (1.05)30 = 4.3 times more product

after 30 cycles.

While every effort was made to use the same PCR mix, the fact is that most trials

were conducted on different days. A mix had to be formulated anew each day from

frozen constituent aliquots that had to be thawed prior to use. The constituents,

especially the dNTPs, can decay over time, especially with all of the freezing and

thawing. This will affect the product yield.

6.5.2 Variability Due to the Mix

The mix did not have any Triton X-100 detergent. According to the manufacturer

[69], this will result in deactivation of the Taq. I found that complete deactivation did

not occur between the time that I removed the Triton and the time that I ran my PCR

experiments. However, did (1) the absence of Triton, (2) the process2 7 used to remove

27See Section 8.4.
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Template Taq Trial (ng/pl) Avg. Std. Dev

DNA Case (units/pl) .1.L23LI 4 5 (ng/pl) (ng/psl)
A 0.1§ 88 0 84 62183 63 37

1.9pM B 0.16t 44 11 31 69 46 40 21

C 0.7t 86 90 91 100 t 92 5.9

D 0.1§ 24 21 18 15 26 21 4.4

1.9 fM _E 0.16t 30118 27 23 22 24 4.6

F 0.7t 16J23 37 27 27 26 7.6

Table 6.4: Experiment to determine effect of centrifugal concentration and removal

of Triton X-100 on product variability. All experiments of a given trial number used

the same tube of Taq. For example, trial 1 of cases A, B, C, D, E and F used

Taq from the same tube. §: Taq was used as supplied by the manufacturer without

modification. The PCR mix also contained 0.12% Triton X-100, as recommended by

the manufacturer. t: The Triton X-100 was removed from the Taq mix purchased

from the manufacturer. t: in this instance, there was not enough Taq left to perform

this case.

the Triton, as well as (3) the high concentration of Taq result in greater than normal

product variability? To find out, I used the control PCR machine to compare mixes

both with and without Triton. Table 6.4 shows the results. The amount of template

DNA was either 1.9 pM (the concentration used in the 10-cycle experiments) or 1.9

fM (the concentration used in the 30-cycle experiments). The amount of Taq used

was either 0.1 units/il (a typical concentration in a normal reaction), 0.16 units/pl

(concentration used in the 10-cycle experiments), or 0.7 units/pIL (concentration used

in the 30-cycle experiments). Otherwise, the mixes are identical to that described in

Section 6.2.

Each trial of a given number used Taq from a given tube. For example, I took

a tube of Taq and pipetted some Taq directly into aliquots for trial 1 of cases A &

D. These aliquots contained the 0.12% w/v Triton X-100, as recommended by the

manufacturer [69]. 20 pl of Taq from the tube was subject to centrifugal concentration
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to remove the Triton X-100. The Triton-free Taq was then used to make mixes for

trial 1 of cases B, C, E and F. Other than the variation of Taq, template DNA,

and Triton X-100, all mixes were as described in Section 6.2. Unfortunately, there

was not enough Taq left in Trial 5 to run case C. All aliquots were thermal cycled

simultaneously in the control PCR machine as described in Section 6.3.3.

There is a greater difference in average product between cases A, B and C (1.9

pM template) than between cases D, E and F (1.9 fM template). The reason is that

in cases D, E and F, the DNA can amplify exponentially for almost all cycles25 . Taq

is not a limiting factor for these cycles, so adding more Taq makes little difference.

For cases A, B and C, there is so much initial template that the exponential limit

is reached sooner. Thereafter, the amount of DNA increases linearly each cycle, and

this amount is directly proportional to the amount of Taq. Also, the more Taq there

is, the greater the amount of product possible before exponential amplification ceases.

Cases D and E produce very similar results. The similarity in average yield is

explained above. However, I expected case E to have a higher standard deviation.

Comparing cases A and B, we see that 0.1 units/pd of Taq with Triton X-100 has

greater activity than the estimated 0.16 units/pl Taq without Triton X-100. Appar-

ently, the absence and/or removal of the Triton reduces the activity of Taq, which is

as expected. Comparing cases A and B, we again see that the standard deviation for

28In Section 6.2, I calculated that exponential amplification occurs up to the point at which there

is 76 ng/pl product when there is 0.7 units/pIl Taq (as in case F). In case D, there is 0.1 units/pl Taq,

so exponential amplification occurs up to the point at which product is 11 ng/pl, and increases up
to 5.3 ng/pl per cycle thereafter. For case E, there is 0.16 units/pi Taq, so exponential amplification
occurs up to 17 ng/pl product, and increases up to 8.4 ng/pl thereafter. These numbers may be
smaller for cases E and F due to Taq deactivation in the absence of Triton X-100, and lower still in

the capillary PCR machine due to the Taq adsorbing to the capillary.
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both is roughly the same (M50% relative of the average), suggesting again that the

absence and removal of Triton does not significantly increase variation of Taq activity.

The highest concentration of Taq (0.7 units/pl) results in more product (compare

case C to cases A and B) at the expense of greater variability (compare case F to

cases D and E). The standard deviation is low for case C because the concentration of

product is so high that the concentration of free primer 1, free primer 2, and dsDNA is

about the same (all 300 nM), so ssDNA reannealing is a serious competitor to primer

annealing. In short, the amount of product has pretty much hit the limit. Therefore,

the standard deviation is low.

Case F is the mix used for the 30 cycle temperature optimizations. As we have

shown, the absence and removal process of Triton and is not a major factor in product

variability. The variability is somewhat higher than that for a standard PCR mix,

and this was shown to be due to the greater amount of Taq.

6.5.3 Machine Variability

To compare product variability of the capillary PCR machine to the control machine,

I analyzed 9 data points from the three temperature optimizations (TD = 94C,

T = 53*C, and TE = 70C for all), and 10 positive controls used in these same

reactions (all cycled as described in Section 6.3.3). Results are shown in Table 6.5.

The slightly higher average product of the control machine is to be expected due to

the longer annealing time used, since extension can take place at this temperature2 9

29 See Table 2.4.
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PCR No. of Product
Machine Datapoints [ Average Std. Dev. (Std. Dev.)/(Avg.)]

Capillary 9 8.0 ng/pl 3.1 ng/pl 0.39
Control 1 10 10 ng/pl 9.5 ng/pl 0.95

Table 6.5: Comparison of capillary PCR machine and control PCR machine. See text
for details.

(53*C), albeit slower than at 70C. The lower standard deviation of the capillary PCR

machine may be due to the fast annealing, which helps to prevent misannealing.

The averages for both capillary PCR machine and control machine show lower

product averages and higher standard deviations (expressed as a percentage of the

average product) than for the experiment detailed in Section 6.5.2. In Section 6.5.2,

all of the mixes were made at the same time from the same aliquots of template,

primers, dNTPs, etc. The template, primers, and dNTPs were freshly mixed from

stock. This was not the case here3 0 , which accounts for the lower average product

and greater product variability.

6.6 Conclusion

Almost 200 successful" 30-cycle runs were performed on the capillary PCR machine.

Typical efficiencies were 74%32 for TD = 94*C, TA = 53*C, and TE = 700 C). Efficiency

reached as high as 78%31. This is comparable to a standard PCR machines, which

have a typical reaction efficiency of 70%34. However, it only takes about 24 minutes

30 See Section 6.5.1.
"Not all data was reported in this work.
32Starting template concentration: 1.9 fM. End product concentration: 10 ng/pl (30 nM). 30

cycles. Efficiency = [(30 nM)/(1.9 fM)]I/ 30 - 1 = 0.74.
"See Fig. 6-4, where one datapoint is 22 ng/jl (67 nM) product. Starting template concentration:

1.9 fM. 30 cycles. Efficiency = [(67 nM)/(1.9 fM)]/3 0 - 1 = 0.78.
"'See Chapter 2.
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for 30 cycles, rather than the 1-2 hours required by a commercial machine. Further

time optimization is possible.

To test the machine, temperature optimization of all 3 PCR steps were performed

using the PCR mix listed in Fig. 6.1. The optimal denaturing temperature is 94*C.

This is a standard temperature used in commercial thermal cyclers, and is a com-

promise between denaturation thoroughness and loss of Taq activity, both of which

increase with temperature. The optimal annealing temperature was curiously 68*C,

the highest temperature tested. The theoretical optimal annealing temperature is

around 58*C. The discrepancy is hypothesized to be due to the mix annealing rapidly

as it travels in the cool region between the extension and annealing blocks; the an-

nealing block just provides more extension time. The optimal extension temperature

was found to be in the 60s, rather than in the 70-80*C range reported in the liter-

ature. This was due to the unusual constituency the PCR mix, which had a large

concentration of Taq to compensate for sidewall adsorption and no Triton X-100 to

maximize the plug/oil surface tension.

The capillary PCR machine requires a larger than normal concentration of Taq

in order to compensate to loss via adsorption to the capillary walls. This results

in greater mix-to-mix variability in product than would be expected using a more

conventional mix3 5. However, the capillary PCR machine itself shows less sample-

to-sample product variability than the control PCR thermal cycler (a commercial

machine).

35See Section 10.4.7 for suggestions on how to overcome this problem.
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6.7 Nomenclature

TA Annealing temperature.

TANN Annealing temperature.

TD Denaturing temperature.

TE Extension temperature.

T,, Primer melting temperature.
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Chapter 7

Heat Transfer Model

7.1 Introduction

Temperature cycling is performed by moving the sample plug between heat blocks.

The heat block that a plug starts at will be referred to as the departure heat block.

The block that the plug subsequently arrives at will be referred to as the destination

heat block. It is important to know the temperature history of the sample plug and

oil as they travel between these blocks for the following reasons:

1. A plug can heat or cool as it travels between blocks. This can affect temperature

equilibration time at the destination heat block.

2. It is possible that the plug temperature can drop to the annealing temperature

between blocks. This will influence their optimal temperatures.

3. The conditions under which the sample plug breaks into fragments are depen-

dent on the viscosity of the oil and surface tension of the plug. These properties
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Teflon capillary: 1 mm . D. and 1/16" 0. D.

Heat blocks made out of aluminum

Figure 7-1: Some relevant machine dimensions used in the model.

vary with temperature.

Therefore, I developed a rudimentary model to estimate this history.

7.2 Model Development

7.2.1 Dimensions

Figure 7-1 shows some important dimensions used in the model formulation.

7.2.2 Constant Capillary Temperature

The capillary has a 1/16" outer diameter and 1 mm inner diameter. Therefore, the

outer (1.2 mm2 ) is roughly the same as the inner (0.8 mm2 ) cross-sectional area.

From Table 7.1, we see that the product of density and heat capacity of Teflon is

much greater than that of mineral oil or sample plug fluid' in the temperature range

of interest (20*C room temperature to 94*C at the hottest heat block). This suggests

that as the plug moves from block to block, the fluid motion has very little effect on

IThe plug fluid is assumed to have approximately the same density and heat capacity as water.
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Material pc, in J/(mt-K)
Teflon 1.1 x 108

Mineral Oil 1.8 x 106

Plug Fluid (water) 4.2 x 10 6

Table 7.1: Values of pc, for Teflon, mineral oil, and water in the 20-90*C range. Also

see Appendix A.

I

Teflon radius = 0.8 mm V,
V, Tn- ----- --- --- - ---- ------------ --- P T (average)

Oil .1 radius=0.5mm ,''Oil

t

fully developed
velocity profile,

uniform
temperature

length =0.5"1

V= 0.030 m/s If Tn = 20'C, ATTSno== -0.7'C
time = 1.9 s Th = 94'C, ATTen.= 0.9'C
TTCamO= 53'C

Figure 7-2: Schematic of the model used to estimate the temperature change of the

capillary within the annealing block, which is 0.5" long. V is the average velocity of
the oil. Tin is the uniform temperature (a modelling assumption) of the oil entering
the capillary portion, and T0ut is the average temperature of the fluid exiting it. Tmfl0n

is the temperature of the capillary, modelled as being uniform within the capillary
region of interest.

the capillary temperature.

I used a simple model to estimate how much the temperature of the capillary

inside of the annealing block changes as the plug travels from the denaturing to

the annealing block (see Fig. 7-2). The annealing block was chosen rather than the

denaturing or extension blocks since the plug travels about twice as far to reach

the annealing block as it does to reach either of the other two blocks during PCR.

There is more oil preceding the plug that can change the temperature of the capillary.

The regions between the blocks were not chosen in the simple estimation since their
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temperatures vary along the capillary axis, and are also not as well known.

The temperature of the capillary inside of the annealing block was taken to be

53*C, which is a typical annealing temperature 2 . The average velocity of the oil in the

tube was taken to be3 0.030 m/s, based on experimental results. Since the plug moves

a total distance of4 2.2 inches from the center of the denaturing block to the center

of the annealing block, this corresponds to 1.9 seconds of travel5 . The heat block

is modelled as a perfect insulator, conservatively neglecting the heat input from the

cartridge heater. The oil is modelled as entering the portion of the capillary inside of

the annealing block at a constant temperature and with a fully developed parabolic

velocity profile.

The temperature of the oil entering the annealing block cannot be cooler than

room temperature (20*C) or hotter than the temperature of the denaturing heat

block (94C). The simple model6 predicts that the average temperature of the oil

exiting the annealing block is 75*C if it enters at 94C, and 37*C if it enters at

20*C. If we take the temperature of the capillary inside of the annealing block to be

uniform, we calculate that it increases 0.9C if the oil enters at 94C and -0.7*C if

the oil enters at 20*C. This is a small change. Since the actual oil entering the block

falls between 20*C and 940C, the actual capillary temperature change will be much

lower. Therefore, I decided to model the temperature of the capillary as constant.

2See Chap. 6.
'See Table 7.3.
4Each heat block is 0.5 inches long. There is a 0.6 inch distance between adjacent heat blocks.
5Plug acceleration and deceleration were neglected. In any event, plug acceleration to full speed

takes place within 70 ms seconds, as does deceleration to a full stop. See Section 9.2.2.
6See Section 7.6.1.
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Figure 7-3: Capillary surface temperatures measured between heat blocks. (a) Be-

tween 940C denature and 700C extension blocks. (b) Between 700 extension and

anneal blocks. A is for anneal block at 680C. 0 is for anneal block at 53*C.

This simplified modelling greatly.

7.2.3 Surface Temperature Measurements

The capillary surface temperature between blocks was measured using a K-type ther-

mocouple 7. Results are presented in Fig. 7-3. Results for annealing block tempera-

tures of both 530C and 68*C are presented. These represent the typical and upper end

of annealing temperatures used in my experiments. Approximating the temperature

distribution as piecewise linear, the average temperature between the 94*C and 70C

blocks is 550C; between the 700C and 68*C blocks, 480C; and between the 70*C and

53*C blocks, 45*C.

The thermocouple was fashioned from 36 gauge wire and was insulated along most

of its length. Since (1) its size (36 gauge is 0.005" diameter) is much smaller than that

71tem # 5SC-TT-K-36-72. Omega Engineering, Inc. Stamford, CT.

141



of the capillary (0.063" diameter); (2) the thermocouple was insulated along most of

its length (reducing its effectiveness as a fin); and (3) the thermal conductivity of

Teflon is much lower than that of the thermocouple wire, it is assumed that the

measurement itself did not affect the temperature readings significantly. A small

amount of oil was used at the point of contact to ensure good heat transfer to the

thermocouple.

Since there is very little distance (0.3 mm) between the inner and outer surfaces

of the capillary, it was suspected that the two were essentially the same temperature.

Heat transfer models were constructed to see if this was the case. In fact, it was.

7.2.4 Sources of Heat

Figure 7-4 is a drawing of the device near the region in which PCR occurs. Heat

transfer with the capillary includes the following:

* Heat provided by the heat blocks via conduction.

* Convection to the surrounding air.

* Radiative heat provided by the laser.

* Radiative heat from the heater blocks, heaters, guard wire, base, etc.

7.2.5 The Laser

The laser is a 20 mW Helium-Neon laser (wavelength 632.8 nm). While its power

output is substantial, it does not significantly heat the system. Absorption of Teflon

in the 632.8 nm range is very low [82, p. 42]. Absorption in this wavelength by mineral
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_BaHeat Heat Heat
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Cartridge
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Wire Leads

Figure 7-4: Drawing of the device in the vicinity of the heaters. The three heat

blocks are epoxied onto a base of G-10 composite. Each heat block is a 1/2" cube of

aluminum with holes for the capillary, cartridge heater and thermocouple. There is

0.6" spacing between blocks. Since each of the three cartridge heaters is 0.5" long,

the lengths of the capillary between blocks are in close proximity to the heaters. The

heater leads are very fine, so wire was wrapped around the ends of the heaters to

protect them from breakage. The laser beam enters the capillary from the left, and
waveguides down its length.

oil or a typical PCR mix8 was not detectable on a commercial spectrophotometer9 .

In addition, the capillary surface temperature, as measured by a thermocouple, did

not change significantly in the presence or absence of the laser.

7.2.6 Heat Blocks

Each heat block was modelled as being at a uniform temperature. According to

Kreith and Bohn [44, p. 73], this assumption is justified if the Biot number is very

8 Mix consisted of 10 mM Tris-HCI (pH 9.0 at 25*C), 50 mM KC, 0.1% Triton X-100, 2 mM
MgCl2 , 300 pM each of the four dNTPs, 60 pg/pl genomic A phage DNA, 0.6 pmol/pl forward
primer (24 bases), 0.6 pmol/pl reverse primer (24 bases), and 0.1 units/pl Taq DNA Polymerase.

9Model UV-1601. Shimadzu Scientific Instruments, Inc. Columbus, MD.
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small. The Biot number is defined as

Bi = --- (7.1)
kb

where hb is the coefficient of convection from the heat block to the surrounding air; k

is the coefficient of conduction inside the heat block; and I is a characteristic length

of the heat block. Relations presented by King [39] were used to find h. From this

reference, I is defined as follows:

1 = 1 1(7.2)
l lhoriz. +vert.

where lhoriz. and vert. are the horizontal and vertical dimensions of the object in

question, respectively. Since each heat block is a 1/2" cube, 'horiz. = Ivert. = 0.5", and

I = 6 mm. King's correlation, presented in Fig. 7-5, provides the Nusselt number as

a function of the product of the Grashof and Prandtl numbers. The Nusselt number

is

Nuh= 6 -(7.3)
ka

where ka is the thermal conductivity of air. The Grashof number is

Gr g(T-Too)13 (7.4)
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Figure 7-5: Convection data presented by King [39]. The x-axis parameter, aL3O, is

defined such that it is the product of the Grashof and Prandtl numbers, GrPr. The

y-axis parameter hL/k is the same as the Nusselt number, Nu.

where g is gravitational acceleration, 0,a is the coefficient of expansion of air, T is the

surface temperature of the heat block, T,, is the temperature of the air far from the

blocks, and Va is the kinematic viscosity of the air. The Prandtl number is

Pr = -Va (7.5)

where a,, is the thermal diffusivity of air. The heat blocks typically range from 53'C

(annealing block) to 94'C (denaturation block). In this range, the product"a GrPr =

650-1100. From Fig. 7-5, Nu ~ 3.5. Bi = Nu x(ka/kb) ~~ 5 x 10-4 < 1. Therefore,

the heat blocks are justifiably modelled as isothermal.

0 The product GrPr is also known as the Rayleigh number, Ra.

145

'-I I L- I - LL I LI-L-Ll



Could the flow of mineral oil affect heat block temperature? Not significantly.

Assuming a worst case scenario of instantaneous thermal equilibration and 20*C oil,

the motion of the plug between the rightmost and leftmost block will produce a

maximum heat block change" of 1*C. Of course, the temperature of the oil entering

the heat block is actually significantly higher than 20*C, and there is constant heat

input from the cartridge heaters to maintain temperature, so this calculation is an

overestimation.

7.2.7 Natural Convection

The general relation presented by McAdams [49, p. 243] was used to determine the

coefficient h for natural convection from the capillary to air. Fig. 7-6 shows McAdam's

correlation, which is based on a wide variety of data on natural convection from

horizontal cylinders to gasses and liquids. The correlation is for isothermal horizontal

cylinders. However, it was assumed to apply to the present case in which the surface

temperature varies axially. The cylinder surface temperature was taken to be the

average surface temperature. The air properties were determined at a temperature

halfway between this surface temperature and T,. The resulting h was applied to

the entire capillary surface between two heat blocks.

Although room temperature was 200C, the heat blocks and heaters made the

air temperature in the vicinity of the capillaries higher. In essence, the capillary is

within the thermal boundary layers of the blocks and heaters. Hence, T, the value

"Using material properties presented in Appendix A.
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Figure 7-6: Natural convection from horizontal cylinders to gasses and liquids. From
McAdams [49, p. 243]. The x-axis coordinate may be expressed as loglo(GrPr), and
the y-axis coordinate may be expressed as loglo(Nu).

Heat Blocks T..

94C and 70C 35C
70C and 68C 28C
70C and 53'C 28C

Table 7.2: Values of T,, used for calculations of natural convection from the portion of
capillary between the heat blocks to air. Measured experimentally by thermocouple
approximately 5 mm above the capillary surface.

of the temperature of the air "far" from the capillary (for purposes of convection

calculations), was measured about 5 mm from the capillary. Results are shown in

Table 7.2.

When the plug was stationary, convection in the oil was ignored, since the capillary

inner diameter is small and there was no overall pressure difference across the tube.

Heat flow through the oil was modelled solely via conduction.
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7.2.8 Radiation

Radiative heating of the capillary via heat blocks, heaters, etc. is difficult to model.

View factors can be difficult to calculate. The radiation sources heat different parts

of the capillary to different degrees. Material absorptance and emittance values are

complex functions of wavelength, and even spectrally averaged values are difficult to

aquire for many materials (such as Teflon).

Since radiation was difficult to model, it was neglected in the preliminary analyt-

ical model. The subsequent finite element model incorporates radiation, modelling it

as affecting the outer surface of the capillary evenly.

7.2.9 Steady State Analytical Model

As mentioned in Section 7.2.8, radiation is difficult to model. Initally, I created a

simple analytical model that did not account for radiation to see if the temperature

distribution was similar to that found experimentally. If the two matched well, I

could use the model to estimate the temperature distribution at r = ro.

The model consists of a hollow cylinder of length L, inner radius r0 (the subscript

denotes oil), and outer radius rt (the subscript denotes Teflon). From the device

geometry, ro = 5 x 10-4 m, rt = 8 x 10- 4 m, and L = 0.015 m. The axial and

radial coordinates of the cylinder are denoted by x and r, respectively. At x = 0, the

capillary comes into contact with a heat block at temperature T1 . At x = L, it comes

into contact with a different heat block at temperature T2. This was modelled via

the following boundary conditions: at x = 0, T = T1 for all r. At x = L, T = T2 for
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all r.

The cylinder is subject to a convection boundary condition at r = rt. h was

figured as described in Section 7.2.7.

I wanted to model the conduction in the oil. However, the requirement of tem-

perature and heat flux continuity at r = r, is difficult to solve analytically. In the

temperature range of interest (200C room temperature to 94C at the hottest heat

block), the thermal conductivity of Teflon (0.395-0.431 W/(m-K)) is roughly three

times that of oil (0.13-0.14 W/(m.K)). Therefore, in order to simplify the problem,

the oil was modelled as a perfect insulator. This created a zero heat flux boundary

at r = r0.

The solution to this problem is derived in Section 7.4. It is:

T = To + 0f 2rthkU(Art)U(Anr)[(T2 - T.) sinh(Ax) + (T1 - T)sinh(A(L - x))]
E To + [r2(A2k 2 + h2 )U2 (Art) - r A 2k 2U 2 (Aar,)] sinh(AL)

(7.6)

where k is the thermal conductivity of Teflon, and12

U(Anr) = Jo(Ar)Y1(Ar 0 ) - J(Anr 0)Yo(Ar)

Jo and J, are the Bessel functions of the first kind of order zero and one, respectively;

and Yo and Y, are the Bessel functions of the second kind of order zero and one,

'2 See (7.29,7.31).
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respectively. The A, are values of A which satisfy

kA[J,(Art)Y,(Ar 0 ) - J,(Ar)Y,(Art)]= h[Jo(Art)Yi(Ar0) - Ji(Ar0 )Yo(Art)]

From (7.6), Ti,., averaged over 0 < x < L is

S= Too + 0E 2rthkQn[T, + T2 - 2Too][cosh(AnL) - 1](77)
** 1LA sinh(AL)

where

= [r2(A2k 2 + h2)U 2 (Anr)- (r0 A(kU(A7r))) 2]

The value of T averaged over both r , r rt and 0 C x < L is

T = To + 4(rth)2  (T, + 2 - 2Too) z0Qn[cosh(AnL) - 1] (7.9)
-(2r2)L ,Msinh(AL)

Since the properties of air and Teflon vary with temperature, the temperature

distribution was solved iteratively using commercial numerical software'3 . As a first

guess, both Tj,., and 7 were assumed to be the average of T, and T2. The properties

of air were taken at the average of TI,., and T, and were used to find h. T was used

to find k. h and k determined the first ten A values, which were used to establish

a new temperature distribution for the cylinder. The process was repeated 6 times.

Convergence of 7 and Tj,., to 6 decimal places was achieved after 3 cycles.

13 MATLAB Version 5.3.0; The Mathworks, Inc., Natick, MA.
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Results of the analytical model are shown in Fig. 7-7. Note that there is practically

no difference between the temperatures at r, and rt. At first glance, the "+" and

"x" symbols are so close together that they appear as a single asterisk. If the model

and experimental temperature distributions were very similar, I could conclude that

the temperatures at r = r0 and r = rt were practically the same.

However, the model underpredicts the temperature. This is due to a combination

of several factors. Use of a single Nu across the whole tube overestimates heat transfer

in the middle of the capillary. There the temperature difference (as measured exper-

imentally) between the surface and the air is small. Nu increases monotonically with

GrPr (see Fig. 7-6). Pr is constant (0.71) in the temperature range of interest. Gr

is proportional to the temperature difference between the capillary surface and air,

so Nu and hence h should be lower in this region. In addition, the model completely

neglects the contribution of radiation, as well as heat coming from the oil inside the

capillary.

7.2.10 Finite Element Model

To get better matching between experimental and model surface temperatures, a finite

element model was constructed using ADINA, a commercial finite element package' 4.

The model consists of two concentric cylinders of length L = 0.015 m. The inner

radius is r0 = 5 x 10- 4 m and the outer radius is rj = 8 x 104 m, as before.

The boundary conditions were similar to those used in the analytical model. At

'4 ADINA 7.3.1. ADINA R & D, Inc. Watertown, MA.
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x = 0, the temperature is T1 for all r. At x = L, the temperature is T2 for all r.

Heat transfer within the cylinders takes place solely by conduction. The solid

inner cylinder has the same thermal conductivity as oil. The hollow outer cylinder

has the same thermal conductivity as Teflon. Teflon and oil thermal conductivities

were based on the average experimentally determined surface temperatures (see p.

141). They are 0.41 W/(m.K) for Teflon and 0.14 W/(m.K) for oil for both the (T1 =

940C, T2 = 70C) case and the (T1 = 70*C, T2 = 530C) case. Basing these values

on the experimental surface temperatures assumes that there is not a substantial

temperature difference between r = r and r = rt. As will be seen, this assumption

was verified by the model. There is temperature and heat flux continuity at the

interface (r = r,) of the two cylinders.

At r = rt, the model is subject to both convection and radiation. T for convection

is based on values shown in Table 7.2. The convection coefficient h was calculated

using T, and the average experimental surface temperature. As with the thermal

conductivities, it turned out that h = 23 W/(m.K) for both the (T1 = 94C, T2 =

700C) case and the (T1 = 70*C, T2 = 530C) case.

ADINA allows two parameters to be specified for r: diation: the emissivity of the

model surface, and th, ,serature of the environment (assumed to be a blackbody).

The emissivity was estimated as 0.9, based on values for other nonconductive materials

[52, p. 77, 108]. The radiation environmental temperature was adjusted to around

600 to match the minimum surface temperature with that observed experimentally.

At this point, I feel that the model heat flux at the surface is a good approximation

of the actual heat flux.
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Figure 7-8: Finite element model geometry. The model is radially symmetric, so only
half of the cylinder is simulated.

The model geometry is shown in Fig. 7-8. The temperature distribution is mod-

elled as radially symmetric. In order to simplify the model, only half of the cylinders

are included, with a symmetry boundary condition (zero heat flux) at the axial mid-

plane. The two concentric half cylinders have 320 elements each. Each element has

20 nodes. The elements divide each half cylinder equally into 16 parts along the x

axis, 5 parts along the r axis, and 4 parts along the 9 axis. There are no temperature

discontinuities across element borders, indicating that the subdivisions are sufficiently

fine.
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The results are shown in Fig. 7-9. While the match is not perfect, it is reason-

ably close. The temperature difference between r = r, and r = rt in the model is

practically nonexistent. This was also the case in the analytical model. Therefore, I

assumed that this temperature difference is negligible in the actual capillary.

7.2.11 Fluid Speed

To calculate the heat transfer to the sample plug when the plug is in motion, one

needs to know its speed. The speed is determined by the pressures at the ends of

the capillary. Each of the capillary ends is connected via a manifold to a set of

solenoid valves. The solenoid valves can be opened to set each manifold to a number

of different pressures. The pressures are set upstream of the valves.

For almost all of the PCR experiments, these pressures were set to 5 and 7.5

psig with regulators, resulting in ~~2.5 psi pressure difference across the capillary.

However, the pressures drop somewhat along the paths from regulator to manifold. I

connected a differential pressure gauge in parallel with the capillary to get a better

measure of the pressure difference across the capillary. It was 2.9 psi when the fluid

moved from right to left, and 2.2 psi when the fluid moved from left to right. The

discrepancy is due to the different aperture sizes in the solenoid valves used.

To measure fluid velocity, the capillary was set up as it would be in a PCR

run: it was filled with oil and passed through three heat blocks set at typical run

temperatures (94*C, 70*C and 53*C). The right end of the capillary was coupled to

the right pressure manifold, as usual. The left end was left open to atmosphere.
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Figure 7-9: Results of the steady state finite element model. + indicates temperature
at the inner radius r,,. x indicates temperature at the outer radius rt. o is the
experimentally measured surface temperature. (a) Temperature of capillary between
94*C and 700C blocks. (b) Temperature of capillary between 70*C and 530C blocks.
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Oil Motion Trials: Am/At (g/s) Avg. Speed (m/s)
right to left, oil only 0.026, 0.025, 0.023, 0.025 0.025 0.037

right to left, oil with plug 0.025, 0.022, 0.020, 0.020 0.022 0.033
left to right, oil only 0.021, 0.020, 0.020 0.020 0.030

left to right, oil with plug f0.018, 0.019, 0.019, 0.016 0.018 0.027

Plug Motion t's (s to travel 15 cm) Avg. Speed (m/s)

right to left 0.041, 0.043, 0.044, 0.048 0.045
left to right 0.031, 0.038, 0.038, 0.041 j 0.037

Table 7.3: Fluid speed measurement data.

Initially, the right manifold was also open to the atmosphere. Then the manifold

was pressurized to either 2.2 or 2.9 psi, depending on whether I wanted to measure

left to right or right to left fluid speed. I waited about one second before taking

measurements to allow the oil to reach steady state speed.

The sample plug speed was measured by using a stopwatch to record the amount

of time it took to travel 15 cm. To measure oil speed, the oil was collected in a

pre-weighed microfuge tube. This was performed both in the presence and absence of

a sample plug. In the former case, oil was collected ~~10 seconds. In the latter case,

it was collected ~3 seconds. This produced a less accurate result, but any longer

and the plug would exit the left end of the tube. Collection times were taken with

a stopwatch. The collected oil was weighed. The quotient of oil mass divided by

collection time was averaged over several trials. Oil velocity was determined using

this average, r0, and the density of oil.

Results are shown in Table 7.3. Oil speeds were a hair lower in the presence of

the plug, but this could easily be attributable to experimental error and difference

in measurement protocols, particularly given the crude nature of the velocity mea-

surements. The plug itself moves slightly faster than the bulk flow of oil. This to
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be expected since the average speed of fluid in the center is higher than that at the

edges in fully developed laminar flow through a tube. This effect is widely reported

in reported in slug flow literature' 5.

7.2.12 Convection Model

From the results of the analytical and finite element models (Sections 7.2.9 and

7.2.10), I was confident that the temperature of the capillary did not vary appre-

ciably from r = r. to r = rt. The experimental measurements of the outer surface' 6 ,

coupled with the modelling assumption of constant capillary temperature over time1 ,

provided a constant inner wall temperature distribution. Coupled with a basic forced

convection model, this produced a rough time-temperature history of the plug and

oil.

The temperature distribution at the wall (r = r,) is modelled as radially sym-

metric. The axial temperature distribution is based on the experimental surface

measurements. I approximated the temperature between these points as linear, re-

sulting in a piecewise linear distribution. Since the experimental measurements were

taken at increments of L/8 = 1.875 mm, I used this as the Ax for my model. The

1/2" heat blocks were approximated as 7Ax = 13.125 mm long.

The actual flow field inside and around the sample plug is very complex. To

estimate the plug temperature, I assumed it fell somewhere between the temperatures

of only oil and only water flow. The fluid exiting a departure block is modelled as

"See [62], for example.
"Se Section 7.2.3.
17see Section 7.2.2.
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being at a uniform temperature equal to that of the block.

At this point, it is useful to calculate Re for the flow. The oil is > 20*C (room

temperature) and < 94*C (hottest heat block). Therefore, from Appendix A, we see

that the range of kinematic viscosity of the oil is 9.9-204 centistokes (9.9 x 10-6 to

2.04 x 104 m 2/s). From Table 7.3, we see that the plug speed is slightly higher

than the bulk flow speed. I modelled fluid speed as the average of the experimentally

determined plug and oil speeds: 0.041 m/s for right-to-left flow, and 0.033 m/s for

left-to-right flow. The fluid is assumed to start at the departure heat block and travel

to the middle of the destination heat block. Acceleration of the fluid is was assumed

to occur completely in the departure heat block, so its velocity is constant. The

inner diameter of the capillary is 1 mm. Using the speeds, kinematic viscosities, and

diameter listed above, Re is calculated as 0.16-4.1.

Since Re < 2300, the flow is clearly laminar1 . The velocity profile of the fluid

is fully developed at a distance > 0.06(2r)(Re) from a capillary end1 . Assuming

that the temperature at the ends of the capillary is 20*C, this is only 24 pm. This

is a ridiculously small number, due to the small Re. In any case, the region of the

capillary in which PCR takes place is at least 60 mm, or 60 inner diameters, away

from the capillary ends. Clearly, the velocity profile is fully developed.

It is also necessary to find the product RePr. Using Appendix A, the fluid veloc-

ities 0.041 and 0.033 m/s (see above), and a temperature range of 20-94*, RePr is

calculated as 200-290 for water, and 390-600 for oil.

'"See, for example, [22, p. 332].
"Fully developed flow criteria from [22, p. 333].
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Details of the math behind the convection model are presented in Section 7.6.

Briefly, I start with the differential equation expressing conservation of energy. After

nondimensionalizing, it is noted that the axial conduction term is proportional to

1/(RePr)2 . Since RePr > 100, axial conduction can be ignored 2 0 . Using the velocity

profile for fully-developed laminar flow, the change in temperature due to a step

change (across x) in pipe temperature is derived. This is used to find the heat

flux distribution on the inside of the capillary for the piecewise linear temperature

distribution. Since axial conduction is negligible, the mean fluid temperature as a

function of x is derived from the heat flux distribution.

The model is realized numerically using MATLAB. The temperature of the fluid

averaged over the flow path is given an initial value. The model uses this tempera-

ture to define the fluid properties. The temperature distribution is then found, and

averaged to get a more accurate mean temperature. The process is repeated until the

average temperature changes by less than 1*C.

7.2.13 Transient Radial Conduction

Once the plug reaches the middle of the destination block, the pressure differential

across the capillary is removed, arresting plug motion. The plug resumes its original

shape, filling the capillary from r = 0 to r = r.

Since the plug is stationary, heat transfer to the plug is considered to be com-

pletely by conduction. Axial conduction is assumed to be negligible relative to radial

2 0 See [37, p. 128].
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conduction 2 1 . The cylinder is modelled as being at a uniform initial temperature T3

and subject to a constant T4 at r = ro.

This simple problem has long been solved. The solution presented by Carsaw and

Jaeger [12] is derived in Section 7.5. The solution is2 2 :

T = T + 2(T3 - T4)$4 Jo(Anr). -atl (7.10)
ro =1AnJi(Anro)

where

Jo(Anro) = 0

I let T3 be equal to the mean plug temperature when the plug reaches the middle

of the destination block. This is determined from the convection model. The sample

plug is considered to have reached the desired temperature T4 when TI,,. is within

0.50C of T4. This is a conservative estimate. In most commercial PCR machines,

the desired temperature is assumed to be reached when the device temperature is

within 0.5*C of the desired temperature. However, this temperature is measured

at an arbitrary location in the heat block, and there is some time lag before the

temperature at the middle of the sample catches up.

The equation listed above was solved for t numerically using the first 10 A on

MATLAB. Actually, there was no difference in t calculated using 1 <n C 2 and

using 1 Cn 10, since terms associated with n > I drop off quickly relative to the

2 1This presumption is validated in Section 7.3.
22See (7.59) and (7.66).
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Figure 7-10: Temperature as plug moves to the right (increasing x), from denatu-
ration to annealing block, at 0.033 m/s. Temperature of the plug is assumed to lie
somewhere inbetween the temperatures shown for oil and water. Temperatures of the

denaturation, extension, and annealing blocks are 94C, 70*C, and 53*C respectively.

n = 1 term as time progresses. This confirms that T approximated using only the

1 < n < 10 terms is sufficient.

7.3 Results

This section presents results for typical heat block temperatures of 940C, 70C, and

53*C for denaturation, extension, and annealing, respectively. As reported in Sec-

tion 7.2.11, the fluid speed was taken as 0.033 m/s from left to right (denature to

annealing), and 0.041 m/s from right to left (annealing to extension, and extension

to denaturation). Figs. 7-10, 7-11, and 7-12 show the temperatures of oil and water

as a function of x. As explained in Section 7.2.12, the plug temperature is assumed

to lie inbetween the water and oil temperatures.
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Figure 7-11: Temperature as plug moves to the left (decreasing x), from annealing to
extension block, at 0.041 m/s. Temperature of the plug is assumed to lie somewhere
inbetween the temperatures shown for oil and water. Temperatures of the denatura-
tion, extension, and annealing blocks are 940C, 700C, and 530C, respectively.
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Figure 7-12: Temperature as plug moves to the left (decreasing x), from extension
to denaturation block, at 0.041 m/s. Temperature of the plug is assumed to lie
somewhere inbetween the temperatures shown for oil and water. Temperatures of the
denaturation, extension, and annealing blocks are 94*C, 700C, and 530C, respectively.
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__l Water Temp. (*C) Oil Temp. (*C)
Fluid motion through these blocks: Min. Avg. Max. End in MI. Avg. j Max._I End

From 940C, through 700C, to 530C 50 66 94z J 52 60 73 94 60
From 53*C to70C*C 46 50 57 57 48 51 55 55
From 70C to 940C 58 6 7 7 62 66

Table 7.4: Temperature maximum, minimum, average, and ending values for the

simulations in Figs. 7-10, 7-11, 7-12.

First, let us examine Fig. 7-10. Since the capillary temperature dips markedly

between heat blocks, the fluid temperature drops quickly as in these regions. Since

the diffusivity of water in the temperature range of interest (~ 1.6 x 10-7 m2 /s) is

higher than that of oil (~s 7.4 x 10-8 m 2 /s), it has a faster temperature response.

Although the fluid temperature drops between blocks, it rises slightly just before

entering a heat block. This is somewhat counterintuitive, since the mean temperature

of the fluid is still higher than the wall temperature. However, the temperature of

the fluid at the wall is constrained to be the temperature of the wall. When the wall

temperature rises rapidly, the mean temperature of the fluid will also tend to slightly

increase. Of course, there is an overall drop in the fluid temperature as it travels

between blocks.

Because of the cooler regions between heat blocks, the minimum fluid tempera-

tures do not occur at the coolest 530C annealing block, but instead between blocks.

Table 7.4 reports the minimum, maximum, average, and end temperatures of the wa-

ter and oil temperature curves shown in Figs. 7-10, 7-11, and 7-12. For water moving

from the 94*C denaturing block to the 530C annealing block, the minimum tempera-

ture is 500C, although the final temperature is 52*C. For oil, these two temperatures

are the same: 60*C, although this temperature is reached both outside and inside
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the annealing block. The fact that the minimum temperature occurs between blocks

is not pronounced in this case. However, annealing can occur between the extension

and annealing blocks if the annealing block temperature is raised. This is covered in

greater detail elsewhere in this work.

Now we turn our attention to Figs. 7-11 and 7-12. They are very similar in

appearance. Note that the fluid is moving to the left (decreasing x) in each figure.

The fluid temperature again dips in the colder region between heat blocks. However,

the drop is not as dramatic as in Fig. 7-10 since (1) the initial plug temperature is

closer to the temperature between the heat blocks, and (2) the plug is moving to a

hotter heat block. The temperature dips in these cases are not important, as the plug

mix has already annealled-either in the annealing block or in the temperature dip

right before it reaches that block.

We see from the figures that the axial temperature gradient of the fluid once it

enters a heat block is small. To get an order of magnitude estimate of the ratio of

axial to radial conduction, I calculated AT/Ax ~-dT/dx. AT was the difference

between the two simulation fluid temperatures (let's call them T5 and T6 ) at the

ends of the middle Ax of the heat block, where the plug is assumed to end up in.

As previously mentioned, Ax = L/8. For AT/Arr~ dT/dr, I took AT to be the

difference between the heat block (wall) temperature and the average of the T5 and

T6 . Ar is r0 , the capillary radius. I calculated these crude estimations for both the

water and oil simulation data, and arrived at a ratio of AT/Ar to AT/Ax of about

50 for water and 100 for oil in all three motions presented in Figs.-7-10, 7-11, 7-12.

While this is admittedly a very rough estimate, since the ratio is> 1, I assume that
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Fluid motion through these blocks: Water Time Oil Time

From 94*C, through 700C, to 53*C 0.3 s 0.8 s
From 53*C0to 70*C 1.Os 1.0s
From 7000 to 9400 1.1 s 1.1 S

Table 7.5: Temperature equilibration times required for the plug (modelled as water)
at mean (modelled as uniform) temperature listed as the "end" temperature in Ta-

ble 7.4 (using the all-water and all-oil models, respectively) to reach the destination
heat block temperature. It is considered to have reached this temperature when its

centerline (r = r,) temperature is within 0.5*C of the heat block temperature.

radial conduction dominates axial conduction for stationary plug heating.

Table 7.5 presents the plug equilibration times. The method described in Sec-

tion 7.2.13 was used. When the plug stops moving, it shortens to fill the entire

capillary cross-section. Therefore, I used the thermal diffusivity a of water in the

equilibration calculations are based on that of water. As can be seen, the times re-

quired are on the order of 1 second. The advantage of the present capillary PCR

machine lies in these brief equilibration times.

7.4 Steady State Analytical Model

7.4.1 Setting up the Problem

Let x be the axial coordinate of the tube, and r the radial coordinate. Hence, the

model of the temperature between blocks is as follows: a hollow cylinder of dimensions

0 < x < L and r r < rt, where L is the distance between heat blocks, r0 is the inner

("oil") radius of the capillary, and rt is the outer ("Teflon") radius of the capillary.
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Within these boundaries, the conduction equation applies:

02T' lOT 8 2T
&T + 1 +-T=0(7.11)

Or2  r Or Ox2

where T is temperature. The boundary conditions are as follows:

T = T, at x = 0 for all r (7.12)

T=T2 at x = L for allir (7.13)

-k-OT= h(T - T,)at r = rt for all x (7.14)
Or

OT-- = 0 at r = r for all x (7.15)
Or

where h is the coefficient of convection to the surrounding air, and T, is the air

temperature at infinity, i.e., room temperature, taken to be 20*C. Boundary condition

(7.15) arises from the simplification of the oil as a perfect insulator.

I used the general method presented by Carslaw and Jaeger's classic work, "Con-

duction of Heat in Solids" [12] to solve this problem. Apply separation of variables

to (7.11). Let

T = T + AR(r)X(x) (7.16)

where R(r) is only a function of r, X(x) is only a function of x, and A is a constant.
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Therefore, from (7.11) and (7.16):

d2R 1dR d2X
X±---X+R- =0

dr2  r dr dX2

Since R is only a function of r and X is only a function of x,

R" 'X= - 2
- + -- _ _- - = -

R r R X

where R' is dR/dr, M" is d2R/dr2 , X" is d2X/dx 2 , and A is a constant. Therefore,

1
r

and

X" - A2 X = 0

Hence, from (7.16, 7.18 and 7.19),

T = To + A(Jo(Ar) + BYo(Ar))(eAx + Ce->a)

where A, B, and C are constants. JO is the Bessel function 2 3 of order zero. Yo is

the Bessel function of the second kind of order zero. Both are linearly independent

solutions of (7.18).

"For a description of Bessel functions, see, for example, [76].

168

(7-17)

(7.18)

(7.19)

(7.20)



To solve the problem, split it into two different parts whose solutions are added to

produce the final solution. Both parts I and II are subject to the convection boundary

condition at r = rt (7.14) and the adiabatic condition at r = r0 (7.15). The boundary

conditions (7.12, 7.13) are split as follows:

Part : T = T,.at x=0 for all r (7.21)

T=T2 at x=L for all r (7.22)

PartII: T=T 1 atx=0 for all r (7.23)

T = Taat x = L for all r (7.24)

7.4.2 Start on Part I

Let us first solve for part I. From equations (7.20, 7.21), we see that

C= -1 (7.25)

Applying (7.14) to (7.20) and simplifying,

kA[Ji(Art) + BY(Art)] = h[Jo(Art) + BYo(Art)] (7.26)

Here I have used the identities24 dJo(z) -Ji(z) and dLoL) - -Yi(z).dz =dz= Yz)
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Applying (7.15) to (7.20) and simplifying,

A[Ji(Ar0 ) + BYi(Ar 0 )] = 0 (7.27)

Since21 Yo(0) = -oo, we cannot choose A = 0 to satisfy (7.27). Therefore, from (7.27),

B = -J(Aro)/Y(Aro) (7.28)

Using (7.28) in (7.26),

kA[Ji(Art)Yi(Ar0 ) - Ji(Aro)Yi(Art)] = h[Jo(Art)Yi(Aro) - Ji(Aro,)Yo(Art)] (7.29)

A must satisfy (7.29).

Using (7.25) and (7.28) in (7.20),

T = Too + Ar0 U(Ar)(eA" - e-A) (7.30)
Yi (Ar")

where A satisfies (7.29) and

U(Ar) = Jo(Ar)Yi(Aro) - Ji(Aro)Yo(Ar) (7.31)

Only one boundary condition remains to be satisfied: Eq. (7.22). Since U(Ar)
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varies with r, (7.22) is sa,,isfied using an infinite series solution:

T = Too+1 1 (A) U(Anr) (eAnZ - e-AX)
nlY (Anro)

(7.32)

7.4.3 Digression: Some Integrals

To solve for (7.22), we must first find the values of some integrals. Let a and P be

two different values of A. Let U0 = U(ar) and Up = U(flr). Since U(Ar) satisfies

(7.18),

d 2 U ldUS +rdr + a2U = 0 (7.33)
dr2 +r -dr (-3

d 2 U +

dr2
1 dUo+p 2 u

r dr
(7.34)

Taking Eqn. (7.33) xrUp- (7.34) xrU0 and integrating from r0 to rt,

(#2a2)jrUaUdr
o

2UC(Up dUp2U
-rU dr2 ~U*dr +rUp dr2 +

f rt U[T d r(dUp + Upd (= -U QY +Uoy K
- d r rt fr

U r- + rr d r drUtrdr Iro fro, dr dr

dUa " rdUct dUp dUrrdr ,.0 1 .0 dr dr

dU_ dUp\rt
= rjUpdr- Udr,

dU0 'I
Up dr dr

r ii dr
dr

(7.35)
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From the convection boundary equation (7.14) and (7.30),

-k dU(Ar) = hU(Art)
dr rt

Therefore, at r = rt,

dUa dUf Up ,V07iV rt hU(Prt)U(art)+ hU(art)U(3r) = 0

From the adiabatic boundary condition(7.15) and (7.30),

dU(Ar) =0
dr ro

so at r = ro,

r dUa

If a $ #, (7.37) and (7.39) can be applied to (7.35) to yield

(#2 - a 2 ) j rUUpdr = 0
rtfo

(7.40)

What about the case in which a = P?

Substituting Jo(Ar) + BYo(Ar) = U(Ar)/Y(Ar0 ) for R in (7.18) (also see (7.32))

172

(7.36)

(7.37)

(7.38)

(7.39)Up



and multiplying by 2r2 dU(Ar)dr

2 r2 dU(Ar) d2 U(Ar) + 2r dU(Ar) 2 + 2A2r2dU(Ar) U(Ar)
dr dr2  K dr} dr

d rdU(Ar)]2 +A2r2d(U(Ar))2
r dr ]+ r dr

r dU(Ar)] 2 ftr 2 d(U(Ar)) 2

dr r,..odrL7 ' 2' A2  i di

r dU(Ar)!2 +A2r2U2 A - 2A2  rU2 (Ar)dr

r ( =
2 f dU(Ar)rrU2 (Ar)dr = r 2U2 (Ar) + 2A2 \d(r ) 2

= 0

=0

= 0

= 0

(7.41)

Using (7.36) and(7.38) in (7.41),

/7r U 2 (Ar)dr =1
-r2U 2 (Ar 0)] (7.42)2 + u2(Art)

The difference between (7.40) and (7.42) is that (7.40) applies to two different A, a

and 0 (with a $ /), whereas (7.42) is for a single A.

We also need to find the value of one more integral. From (7.18), again using the
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fact that R(r) = U(Ar)/Y(Ar0 ),

d2U(Ar) 1'dU(Ar) + A2U(Ar) =
dr2  r dr

d ( dU(Ar) +A2rU(Ar) =
dryddrr

jrt r U(Ar) dr=

0

0

r dU(Ar)
A 2 dr

- U(Art)A2k (7.43)

where (7.36) and (7.38) were used to obtain (7.43).

7.4.4 Completing Part I

Returning to (7.32) subject to the T2 boundary condition at x = L (7.22),

T2 =Too+Z yiAnU(Ar) (eL - enL

n=1Y,(n,)

Multiplying both sides by rU(Ar), integrating from r, to rt, and using (7.40), (7.42)

and (7.43), we get

(T2 - To)(rth) U(, t rt) = Y4 sinh(AnL) r (1 + h2)U 2 (Anrt) - r2U2(Anro)

Therefore,

An (T2 - TO,)rthkU(Anrt)

Yi(Anr 0) ~sinh(AnL)[rl(A2k 2 + h2 )U2 (Anrt) - r2A2k 2 U2 (Anr)]
(7.44)
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7.4.5 Part II

Now we shall solve Part II of the problem. From (7.20) and (7.24),

eAL + Ce-A = 0

C = -e2L

Therefore, (exx+ Ce~tx) = -eAL (eA(L-Z) - e-x) (7.45)

Since -eAL is a constant, lump it in with A. From (7.20) and (7.45),

T = Too + A(Jo(Ar) + BYo(Ar))(eA(L-) -- e-A(L-x))) (7.46)

The solution is identical to Part I, except that (e(L~x)-e-A(LZ)) replaces (el"-e~A),

and T1 replaces T2.

7.4.6 Total Solution

Therefore, from (7.32) and (7.44),

S 2rthkU(A.rt)U(Ar)[(T2 - T,,) sinh(Anx) + (T1 - T,,) sinh(A,(L - x))]
T -- To + E[r22(A2k2 + h2 )U2(Anrt) - rAlk2 U2(Anro)] sinh(AnL)

(7.47)
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where2 6

U(Anr) = Jo(Anr)Yi(Ar 0) - J1(Anr 0)Yo(Anr)

and the various An are values of A which satisfy

kA[Ji(Art)Y(Ar 0) - Ji(Aro)Yi(Art)]= h[Jo(Art)Yi(Ar0 ) - Ji(Aro)Yo(Art)]

7.4.7 Average Values

Let

U2(Art)
[lr2(A2k2+h 2 )U2 (A rt) - (r0 AnkU(Anr,)) 2]

From (7.47), TI,, averaged over 0 Cx C< L is

Tir = oo 002rthkQn[T1 + T2 - 2Too][cosh(AnL) - 1]
Z=1LAn sinh(AnL)

The value of T averaged over both r, r rt and 0 C x C L is

T = To + 4(rt)L(T + T2
( r2)L(1T

- 2T.) Ssinh(AL
"See (7.29,7.31).
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7.5 Radial Transient Conduction Model

The following problem is to be solved: a homogeneous cylinder of radius r0, initially

at uniform temperature T3, is subjected to a temperature T4 at r = r0 at time t = 0.

Conduction is negligible in the axial direction. The cylinder has thermal diffusivity

of ao. This section presents the solution provided by Carslaw and Jaeger ([12]).

The conduction equation for this situation is:

t2T lO&T _ lOT
&T + 1- - = 1- -(7.51)

ar2 r ar ao &t

The boundary conditions are:

T=T3  at t = 0 for all r (7.52)

T=T4  at r = ro for all t (7.53)

To solve this problem, apply separation of variables. Let

T = T4 + AR(r$)4(t) (7.54)

where A is a constant, R(r) is only a function of the radius r, and 4'(t) is only a

function of the time t. Therefore, from (7.51) and (7.54),

1 1
k"4 + -R' = -RV'

r a

R" iPR' 1Q
- 1+= -- = - 2  (7.55)

WR+ r R a 4
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where if is dR/dr, R" is dR/dr2 , X' is dX/dx, and A is a constant. Therefore,

1
R"+ -R'4 + A2R = 0 (7.56)

r

'+ aA24)= 0 (7.57)

Hence, from (7.54), (7.56) and (7.57),

T = T4 + A(Jo(Ar) + BYo(Ar))e- 2t (7.58)

where Jo is the Bessel function of the first kind of order zero, and Y is the Bessel

function of the second kind of order zero. Since T is finite at r = 0, and 2 7 Y0 is -0

at 0, B = 0.

Plugging the T4 boundary condition at r, (7.53) into (7.58),

AJo(Ar,)e- 2 * = 0 for all t

A = 0 results in the trivial solution, so instead choose A such that

Jo(Ar,) = 0 (7.59)

There are an infinite number of A that satisfy (7.59).

To solve the T3 initial temperature boundary condition (7.52), we have to use an

"See, for example, [63, p. 391].
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infinite series solution:

T = T4 +Z AnJ,(A\nAr)e-n (7.60)
n=1

To get An values, we need to first get the value of several integrals. Let a and f be

two different values of A. Let Ja = Jo(ar) and J = Jo (#r). We follow the same

procedure as in Section 7.4, substituting J for U, 4 for Up, r for rt and 0 for ro.

Therefore, (7.35) becomes

(#2 -2)1rJ Jpdr = r (J4f - J, (7.61)

From (7.59), Jo(Aro) = 0. Using this in (7.61), we get

rJa Jpdr = 0 (7.62)

Similarly, (7.41) becomes

'' 1 22r 2 dJo(Ar) 2' ro

rJo(Ar)drT-24 0(Ar) + ; dr (7.63)

Since Jo(Ar) = 0 from (7.59) and d(Jo(z))/dz = -J(z), (7.63) becomes

rJ2(Ar)dr = roJj2(Aro ) (7.64)
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The same substitutions turn (7.43) into

rJo(Ar)dr
0*

r dJ(Ar) To
- 2 dr 0

f) Ji(Ar )

Using the T3 initial boundary condition (7.52) in (7.60),

00

T- T4= AnJo(Anr)
n=1

Multiplying both sides by rJo(Anr), and using (7.62), (7.64) and (7.65),

An = 2(T 3-T4)
AnroJi(Anro)

Therefore,

T = T4 + 2(T 3 - T4) 00 Jo(Anr) c-,Xat
+, rAnJI(Anr0)

where, from (7.59),

JO(Anro) = 0
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7.6 Convection Model

7.6.1 Uniform Wall Temperature

This section presents calculations for heat transfer by convection to a homogeneous

fluid moving within a tube. The fluid entering the tube has fully-developed laminar

flow and is at a uniform temperature T. The tube has a constant wall temperature

T0. The solution for this simple case is taken from [37], and its derivation is required

for the more complex case used in my model which has axial temperature variation.

The energy equation for this flow is as follows:

a O8rT 8 2T T0"
Ir-I - a 1 -+ u--=Q (7.67)

r Or Or Ox2  Ox

where af is the thermal diffusivity of the fluid, and u is the velocity. Let us define

the following nondimensional variables:

- T - T r U X Xa
T =X= (.68)

Te -T V (Re) (Pr)(r0 ) 2Vr2

V is the average fluid velocity; Re is the Reynolds number, 2Vr0 /zu; Pr is the Prandtl

number, v 1/a 1 ; and v is the fluid kinematic viscosity.

Using (7.68) to nondimensionalize the energy equation (7.67), we get

- ---+ -- =0(7.69)
fe2e c P (Re -Pr2 a2 b2 i

If the product Re . Pr > 10, axial conduction can be ignored [37. Frthi- rest 4f
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the derivation, we assume that this is the case. Therefore, (7.69) becomes

022; 10i682
+ =u&T 0 (7.70)

092 -Y 20ft

Since the velocity is fully developed Poiseuille flow2,

i = 2V 1 -r 2 ) (7.71)
r2

or, in nondimensional terms,

6= 2(1 - f2) (7.72)

Using (7.72), (7.70) becomes

021 ioct at
-- + --- t= (1- f2)- (7.73)92 rOlf

Boundary conditions for this equation are as follows:

TIe=o = 1 for all r (Fluid enters at T = T,) (7.74)

TIf=1 = 0 for all ± (T = T0 at tube wall) (7.75)

OT
= 0 for all ± (Radial symmetry) (7.76)

2"For a derviation of this standard velocity distribution, see for example, [21, page 289].
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Use separation of variables to solve for (7.73). Assume that

T= DR(f)X(±)

Where D is a constant. Substituting (7.77) into (7.73), we get

j92

(7.77)

(7.78)R-X=(1-f2)R--at

Since R is only a function ofr, and k is only a function of ±,

1 it' 1 N'
- + -

= -A 2

x (7.79)

where A is a constant, IR' is OR/Of, A" is a2ft/Or 2 , and Y" is 2k/O±2 . This results

in the following two equations:

(7.80)

('-.81)

(7.80) is solved by

X = exp(-A 2 i)

To solve for the boundary condition at the wall (7.74), an infinite series is required,
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so (7.77) becomes

''= >D,,(f?) exp(-A 2i) (7.82)
n=O

R is not so easily found. Fortunately, equation 7.81 has been studied extensively, and

is known as the Graetz Problem [79], or an equation of the Sturm-Liouville type [37].

Let Tm(x) be the mean temperature of the liquid at x. To find Tm, we use an

energy balance with the control volume being defined by the fluid in the tube from 0

to ±. At ±, the heat flux q from the tube wall into the fluid, per unit area, is:

OT
q = k-

ir r=r0

kf(Te- T) T T
To o

,2=1

2k1(T0 - T, )
-- D4(1) exp(-A'i)

n=0

- 2k 1(To - Te) ZGnexp(-A2±) (7.83)
r. n=O

where kf is the thermal conductivity of the fluid. (7.83) was arrived at using (7.82).

For convenience, Gn is defined as

1
G= -- DnkR(1) (7.84)

2

Values of A, and Gn for n = 0 to 4 were calculated by Lipkis [79], and are presented

in Table 7.6. Doing an energy balance on the fluid from 0 to i, we get
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n An Gn
0 2.7043644 0.74879
1 6.679032 0.54424
2 10.67338 0.46288
3 14.67108 0.41518
4 18.66987 0.38237

Table 7.6: Values of An and Gn presented in f79J. For n > 2, An s 4n + , and

Gn ~ 1.01276An.

p cf Vlrro(Tm - TC)

1pfc Vro (Tm- Te)

= 2rroqdx

= qdx (7.85)

where pf is the fluid density, and cf is the specific heat at constant pressure of the

fluid. Using (7.83) in (7.85),

1pfc 1Vro(Tm - T) = 2k,1Re - Pr(To - Te) ZnGj ex p(-A±)d±

00

4vocf Pf (To - TO)(
n=0

(1-Tm) = [ - exp(-Ai)]
n=o 'A

TTmm T
TM=T -TO
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As x -+ oo, Tm -+ T. Therefore, as ± -+oo, Tm -+ 0, so from (7.86),

= ,(7.88)

n=O n

Plugging (7.88) into (7.86), we arrive at

Tm = 8 exp(-A.±) (7.89)
n=O n

7.6.2 Axially Varying Wall Temperature

In this subsection, we will extend the results of Section 7.6.1 to the case of a wall with

a piecewise linear axial temperature distribution. Otherwise, the case is identical to

that in Section 7.6.1: radially symmetric, with fully developed fluid velocity profile

and uniform temperature at the fluid entrance. Again, we model the case in which

axial conduction is negligible.

We model the tube as a series of infinitesimal constant-temperature steps. The

case of a single step, in which the tube wall temperature T is constant and different

from the uniform fluid entrance temperature Te, was presented in Section 7.6.1. From

(7.68),

T - T

Te - T
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If the temperature change were to occur at ± =x rather than i= 0,

T(i - ,f) = T - To

For an infinitesimal step of constant wall temperature To,

dT - dTo
-dTo

Rearranging:

dT = [1i- T(t-&,)]dTo

Therefore,

T-Te = I [1

J=0

- o -,Q)]dTo

dT0
T(X^ ,f)-*f
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Find q, the heat flux per unit area from the tube wall into the fluid:

q() = k (-i)
(fT

Ic1 (OT\
- / I=

kff (Ot (i ,f) (dTo(ro) d (7.91)
r, o 0 0 d

- . -t-2G exp[-A2n - )Tr) 4  (7.92)

-?ffG [ exp[-A 2 (1_)] dTo(rj d(7.93)
iOn=O f

(7.91) was arrived at using (7.90). (7.92) was arrived at using (7.82) and (7.84).

7.6.3 Piecewise Linear Wall Temperature

The piecewise linear axial temperature distribution is as follows. Each piece covers

an axial distance of A±. i = mAl. Therefore, up to ±, there are m pieces. Each

piece, indexed by i, spans A±(i - 1) _< < iA±. Its slope, Ot/dC, is S. Fig. 7-13

illustrates the piecewise axial temperature distribution for m = 4.

At = 0, T = Te, the fluid entrance temperature. This is an important distinction.

If the T 0 # T at = 0, then there need to be additional [1 - S(i - , f)]AT, terms

present in (7.93) to account for T0 - T4, as well as any other steps in wall temperature

[37, page 141].

From the piecewise linear distribution, we have the tT/tk values: the Si's. Even

though T, will be only found at discrete values of ±, q rnust be defined continuously
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TO QC)

Te

slope =S

=i2

slope =S2 i 3

slope = S3  slope =S4

0-
A (dimensionless)

0 Ax 2Ax 3Ax x=4Ax

Figure 7-13: Piecewise linear wall temperature distribution for m = 4. Note that at

=0,To = Te.
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from 0 < C S 1 in order to be integrable. Continuing from (7.93),

2 k=Z G f exp[-A 2t-()]qxi)

T2Cm xp[nJ xZ+ Siexp[-An x-
rn=O n I i=1

21
2 { Sm(1 - exp[-A Qx (n-1) x ~ ]~ff)~

M-1

± > Si(exp[-A(X - iA*)] - exp[-A(4 -

i=1

2k Sm (1- exp[-A2( - mA)]
n=O n4

- exp[-A( - iA±)]}

(i - 1)A±)}

(7.94)

= exp(AA ) (7.95)

To find T,(X), we use an energy balance on the tube from 0 to ±. From (7.85),

1ppc 1Vro(T. - Te) = qdx

Tm - Te = 4$jqd
kf on

(7.96)

where the definition of the .i (7.68) was used to arrive at (7.96). Using the expression
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for q from (7.94) in (7.96),

T -Te = r,, qd^
kf f0

m4r,,,ZI qd±
Ikf pi i-Dl

= 8Z {Sj~) + F2exp[-AZQt - jij]l

- 001x(i - exp[-A( - i )}

vS5 ISA±5+ F (1 -F.)

=A2ZnfA2L

+ -6k 1 [ (1- FA) exp[-A(j - i)AI}

= + 2 + + 8S:(1 - F)

+ Z8 1 (1- F n) exp(-A[(j - i)t)] (7.97)

i 'In

7.7 Nomenclature

Constant used in T equation. See (7.20).

Constant used in T equation. See (7.20).

The Biot number. hl/k6 . See (7.1).

Constant used in T equation. See (7.20).

Specific heat at constant pressure of the fluid.

Constant used in T equation. See (7.77).

exp(A2At). See (7.95).
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9 Gravitational acceleration.

Gr The Grashof number. g/3,(Tb - T,)O/v2 . See (7.4).

h Coefficient of convection from the capillary to surrounding air.

h6  Coefficient of convection from the heat block to surrounding air.

i Index number. See, for example, (7.94).

JO Bessel function of order zero.

J Bessel function of order one.

k Thermal conductivity of teflon.

ka Thermal conductivity of air.

kb Thermal conductivity of the heat block.

kf Thermal conductivity of the fluid.

L Distance between heat blocks.

1 Characteristic length. See (7.2).

1 horiz. Heater block horizontal dimension. See (7.2).

'vert. Heater block vertical dimension. See (7.2).

m Number of pieces in piecewise linear approximation of T from 0 to x.

Pr Prandtl number. Pr = v/a.

q Heat flux per unit area at tube wall, from tube wall to fluid.

Qn U2(Anre)/[r 2(A2 k2 + h2)U2(Are) - (roAnkU(Anr 0 ))2j. See (7.48, 7.49,

7.50).

r Radial coordinate of the model.

f Normalized r. t = r/r0 . See (7.68).
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ro Capillary inner radius (the o stands for "oil").

rt Capillary outer radius (the t stands for "Teflon").

R(r) Function of r used in T. See (7.16).

R(f) Function of? used in T. See (7.77).

Ra Rayleigh number. Ra = Gr x Pr.

Re Reynolds number. Re = 2Vr0 /v1 .

Si Slope 8TO/&8 at piece i of piecewise linear wall temperature. See page

188.

T Temperature.

t Normalized temperature. = (T - T0)/(T, - To). See (7.68).

T T averaged over 0 < x < L and r, r rt. See (7.50).

TM, Room temperature, taken to be 20*C .

T Boundary condition temperature. See (7.12).

T2 Boundary condition temperature. See (7.13).

T Boundary condition temperature. See (7.52).

T4 Boundary condition temperature. See (7.53).

T Temperature at one end of the middle Ax inside a heat block. See

p. 165.

T Temperature at one end of the middle Ax inside a heat block. See

p. 165.

Tb Surface temperature of the heat block.

Te Uniform temperature of the fluid entering the tube.
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Tin Uniform temperature of oil entering the annealing block in the model

in Section 7.2.2.

TM Mean fluid temperature. See page 184.

T Tube wall temperature.

Tut Average temperature of oil exiting the annealing block in the model in

Section 7.2.2.

TIr, T at r = rt averaged over 0 < x < L. See (7.49).

Tma0f Temperature of the portion of the capillary inside the annealing block

in the model in Section 7.2.2.

U Fluid velocity.

ft Normalized fluid velocity. 12 = u/V. See (7.68).

Ua U(ar).

Up U(8r).

U(Ar) Jo(Ar)Yi(Ar0 ) - Ji(Ar0 )Yo(Ar). See (7.31).

V Average fluid velocity.

x Axial coordinate of the model.

i. Normalized x.aI = x/[(Re)(Pr)(r 0 )]. See (7.68).

X(x) Function of x used in T. See (7.16).

k(t) Function of ± used in T. See (7.77).

YO Bessel function of the second kind of order zero.

Y Bessel function of the second kind of order one.

a Possible value for A used to determine the values of some integrals.
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aa Thermal diffusivity of air.

af Fluid thermal diffusivity.

ao Oil thermal diffusivity.

#3 Possible value for A used to determine the values of some integrals.

#/3$a.

It Coefficient of thermal expansion of air.

ATmafl0  Change in TTeflOn in the model in Section 7.2.2.

Ax Increment at which experimental surface temperatures are taken, and

at which the convection model is split.

A A constant linking radial and axial conduction. See (7.17).

Va Kinematic viscosity of air.

vf Fluid kinematic viscosity.

pf Fluid density.

4)>(t) Function of time used in T. See (7.54).
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Chapter 8

Plug Breakup

8.1 Introduction

One unique aspect of the present design is that the sample drop (sometimes referred

to as the plug) moves inside of an oil-filled capillary. If the surface tension is not

strong enough to hold the plug together, it will break into smaller droplets. This will

confuse the sensor system; the machine cannot handle multiple plugs. Therefore, it

is important to quantify this design limitation.

There are two basic failure modes (see Fig. 8-1). If the plug is too large relative

to the capillary and there is even a thin layer of oil between the plug and the cap-

illary wall, it will break into pieces via the Rayleigh instability. This is discussed in

Section 8.2. It is solely a matter of plug shape. To keep this from happening, I chose

a plug volume of 1 Id for the 1 mm I.D. capillary.

Even if the plug is small enough to avoid the Rayleigh instability, if it moves

fast enough, the surface tension will not be able to keep it intact. This is a more
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plug 9 oil

oil Qpiug) *

(b)

(a)

Figure 8-1: The sample plug breaks into smaller fragments if (a) the plug is too large,
or (2) the velocity is too high.

complicated problem addressed in Section 8.3. An operating capillary number of Ca

< 0.2 is recommended for this system to prevent breakup, based on experimental

data.

In order to move the plug as fast as possible, Triton X-100 detergent present in

the commercial Taq mix was removed via centrifugal concentration. This is described

in Section 8.4. The resulting Taq mix was used to make the PCR mix. Section 8.5

describes the procedure used to approximate the surface tension of this mix (about

40 dyne/cm at 20*C).

8.2 Breakup Due to Excessive Plug Size

If the plug is long enough and there is even a thin layer of oil at its sides, the oil will

impinge on the plug and break it into pieces. This will occur even if the plug is moving
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very slowly or is stationary1 . Lord Rayleigh analyzed this situation mathematically

in 1878 in his classic work On the Instability of Jets [71]. He modelled an infinite

liquid column immersed in a second immiscible liquid. If the column is subject to a

sinusoidal disturbance of a given wavelength or greater, the surface area will decrease,

causing the column to pinch off into a series of droplets. This is called the Rayleigh

instability.

8.2.1 Rayleigh's Analysis

Consider an infinite cylinder of fluid with radius rRayligh subject to a small sinusoidal

disturbance of amplitude a and wavelength ARayleigh:

27rx
rRayleigh = rRayleigh + a cos (Aa2igh) (8.1)

where x is the axial coordinate, and FRayleigh is the average rRayleigh. The average

surface area per unit length is

S2

A = 2 7rrRAyleigh + 27 3 VRayleigh ae(8.2)
( Rayleigh

The average volume per unit length is

V=7r(fRayleigh) 2  
2r

'This phenomenon has been observed many times in the literature. See, for example, [78].

198



Rearranging (8.3),

Rayleigh (8.4)

N r 2V

Plugging (8.4) into (8.2) and approximating for vanishing a,

A = 2V7W+ 22Rayleigh [(27Rai) 2 (8.5)
2 TRayleigh \ Rayleigh/

If Zo is Zif a = 0, then

A - A0 = 7ra [(27rRayleigh)2 ](8.6)
2TRayleigh \ Rayleigh)

If A - AO > 0 for small a, then the system is stable. For this to be true,

ARayleigh < 27rfRayleigh (8.7)

8.2.2 Plug Volume

From (8.7), we see that the Rayleigh instability can be avoided by choosing the liquid

cylinder length to be less than 7r times its diameter, since Apayleigh cannot be larger

than the cylinder length. Therefore, the plug volume was chosen to be 1 Al. The

capillary inner diameter is 1 mm. Approximating the shape of the stationary plug as

a cylinder, the length is 4/7r the diameter.

At slightly higher velocities, the plug elongates and assumes a different shape. At
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these velocities, breakup is not governed merely by initial plug geometry.

8.3 Breakup Due to Excessive Speed

When plug speed is high enough, viscous and inertial forces can overcome the surface

tension holding the plug together. This is true even if its dimensions make it safe

from the Rayleigh instability.

8.3.1 Problem Definition

A homogenous drop moves at uniform velocity in a cylinder filled with a second

homogeneous, immiscible fluid. The drop volume is 1 I. The cylinder radius rtube is

5.0 x 10-4 m. Due to the small dimensions of the problem, gravity is ignored. This

assumption will be justified later. For simplicity, the model is axisymmetric.

Fig. 8-2 illustrates the problem as well as many of the relevant variables. r and

x are the radial and axial coordinates. The fluid is split up into two regimes: the

fluid inside of the drop, denoted by subscript d (which stands for drop), and the fluid

outside of the drop (mineral oil), denoted by subscript f (which stands for fluid).

The velocity vectors are 1d and i'p; the absolute viscosities Ad and pf; the pressures

Pd and pf; and the stress tensors 'd and Q,. The position vector for a point inside of

the drop is A f is a unit vector normal on the plug surface pointing away from the

plug. -y is the surface tension at the plug/oil interface. Q is the bulk flow rate. U is

the average bulk velocity, such that iUT= Q/(rr 2).

If the plug has surfactant, it must be accounted for. If the drop is stationary, the
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r rue =n ' D,
5.0 x 10-4 m x-a ,-W _

-- - -No. ,
vf, p, pf, 6f v(2 .=1 p

Ds
A
p
Q
v
.2

Variables:
surfactant surface diffusivity y local surface tension
unit normal to plug surface yo uniform y in absence of surfactants
pressure P local surface surfactant concentration
bulk flow rate Po uniform F in absence of flow
velocity vector ys viscosity
average bulk flow velocity 5 stress tensor
position vector

Subscripts:

Figure 8-2: Schematic of the problem.

surfactant will eventually assume a uniform surface concentration Po. When the plug

moves, the concentration varies across the surface, and the plug shape and surface

area also change. The local surfactant concentration is P. D, is the diffusivity of the

surfactant at the surface, assuming that it is confined to the surface.

Table 8.1 lists the governing equations for this problem 2. Gravity can be ignored

in the Navier-Stokes equations because the ratio of gravitational to surface tension

forces, represented by the Bond number Bo, is small:

Bo= 1APgrtube (1000 kg/m 3 - 855 kg/m 3)(9.8 m/s 2 )(5.0 x 10-4 m)2
-0.021

7 17 x 10-a N/m

(8.8)

Bo usually is proportional to p; it is the difference in density here since the density

2See, for example, [86].
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STANDARD FORM NONDIMENSIONAL FORM

Conservation of mass

DVif=O

V d t=0 - fd = 0

Vf t=0@- Of = 0

Navier-Stokes (neglect gravity)
DPVb -(t2od

Pd t= -VPd + dV 2 Vd T &ReD = -YVad+ 2

Pf = -Vpf + pf V 2 5 jRej=-Vn+V2Vf
Effect of surfactant on surface tension

-y=-yo-RT ^y=1-of

Surfactant convection/diffusion on plug surface

+ Vs - 6, - DsVsr) -t + t, - Of - &$x)

+r (V,8-ii) (V - fl) = 0 +iY,- )(of -ft) = 0

Boundary condition: no slip at the capillary wall

vf = 0 at r = rube 0f = 0 at r = 1

Boundary condition: velocity continuity at the plug surface

Vda = Vf at pug surface fsd = Vf at pug surface

Boundary condition: Stress balance at the plug surface

- ad> - = '(V -ft)f at plug surface Ca(Qp - d> ft = (V -f)ft at plug surface

Kinematic constraint at plug surface:

-ALI = n -n at pug surface At -. ft= v - n at pug surface

Boundary condition: approaches laminar pipe flow far from plug

= 2htube - r2 )i0 at x - oo = 2(1 - 92)iz at W -4 I X)

Dimensionless Variables
r = r/rtube I = i/rtube j = (prtube)/(PfU) = 7/70

0 = V/U & = (rue)/(Pfl) P = F/Io

Table 8.1: Governing equations, in standard and dimensionless forms. i. is a x unit
vector. V, = V - (n- V)nf is the surface gradient operator. VY, = V - (f -f7n is the
plug surface velocity. R is the universal gas constant. T is the absolute temperature.
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Name Symbol Definition

Capillary number Ca (pfu)/y
Reynolds number Re (2pfiirtube)/(Pf)

Viscosity ratio K Ad/Lf

Density ratio 0 Pd/Pf

Radius ratio A rd,undeformed/rtube

Sensitivity to surface tension P (PoRT)/yo
P6eclet number Pe (Urtube)/Ds

Table 8.2: Dimensionless parameters determining plug breakup. R is the universal

gas constant. T is the absolute temperature.

of the two liquids are of the same order. The density of the plug is taken to be the

same as that of water. The y value is based on data in Fig. 8-7: the lowest Y in the

temperature range of interest (20C room temperature to 94C at the hottest heat

block).

To find the relevant dimensionless quantities, we nondimensionalize the governing

equations. Choose rtub, as the length scale; U as the velocity scale; rtube/4U as the time

scale; piU/rtube as the pressure scale; yo as the surface tension scale; and 1 o as the

surfactant concentration scale. Table 8.1 lists the nondimensionalized variables and

equations. Note that the V, V2 , and b/b operators are also nondimensional. We see

that the relevant dimensionless variables are Ca, Re, 0, Pe. n = pd/f, and p = Pd/pf.

Of course, the plug size relative to the capillary matters. This is designated by the

quantity A = rd,undeformed/rtube. rd,undeformed is the radius of a sphere with the same

volume as the drop:

rd,undeformed 3drop volume)'(8.9)
4r

Table 8.2 lists the dimensionless parameters determining plug breakup.
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Figure 8-3: Flow, relative to the plug. From [67]. Plug is moving to the right. In

the reference, the plug is pointed downward, and moves under the action of gravity;
however, the flow lines are still applicable to slow pressure-induced flow.

Since Ca is proportional to U, breakup conditions in the literature is usually spec-

ified in terms of a critical Ca, which we will designate Cat, above which breakup

occurs. Re is also proportional to U, but most of the cases studied in the literature

have negligible Re. From Table 8.2, we see that

Cac = Cac(Re,#f, Pe, r., L, A) (8.10)

Unfortunately, there is no simple equation relating these quantities. A few values of

Ca, exist in the literature for very specific cases.

8.3.2 Literature

A fluid plug moving through a capillary filled with a second immiscible liquid has

the internal flow pattern shown in Fig. 8-3. At Cat, the drop shape is unstable. The

surrounding fluid impinges upon the rear of the drop (see Fig. 8-4). This accumulation

continues, leading to plug breakup.

Olbricht and Kung [62] examined equilibrium plug shapes for a range of A, K, and

Ca, all the way up to plug breakup. The plug was a blend of Dow-Corning DC200

fluids, carefully mixed to produce the correct viscosity for the particular experiment.

204



-8 -6 -4 -2 0 2 4 - 6 8
Z

Figure 8-4: Initiation of breakup at high Ca for an initially spherical plug. From
[86]. A = 0.9, r = 0.1, and Ca = 1.0. Plug motion is to the right. The surrounding
fluid enters the rear of the drop and accumulates. This process continues until plug
breakup.

Viscosity Dimensionless drop size A
ratio n i1.13 0.95J0.83 0.70 0.66 0.62 0.56 0.49 J-0.39
0.0013 4.08 4.08 4.82 5.50 >7.0
0.0022 4.24 4.24 4.74 5.47 >5.7
0.011 3.51 3.51 3.81 4.24 4.98 >5.7
0.021 3.20 3.20 3.56 3.97 4.59 >5.7
0.030 3.14 3.14 3.51 3.81 4.06 4.24 5.23 >5.7
0.047 2.71 2.71 2.89 3.38 3.51 3.81 4.24 >5.7
0.056 2.38 2.38 2.58 3.12 3.40 3.51 >6.4
0.156 1.97 1.97 2.28 2.52 2.71 2.71 3.14 >5.7
0.235 1.97 1.97 1.97 2.28 2.52 2.71 2.71 3.14 >5.7
0.469 1.85 1.85 1.97 2.28 2.52 2.89 3.14 4.24 >5.7
1.09 1.85 1.85 1.97 2.28 2.71 2.89 3.00 4.24 >5.7
1.75 1.85 1.85 1.97 2.28 2.71 2.89 3.00 4.24 >5.7
3.66 1.83 1.86 1.95 2.31 2.82 2.91 3.06 4.28 >5.7

Table 8.3: Ca, values found by Olbricht and Kung [62] for low Re and no surfactants.
Ca, does not change with A for A > 0.83.

The fluid surrounding it was either corn syrup or castor oil. To eliminate the effect of

gravity, they made sure that p = 1. The liquids were very clean, with no surfactants.

They kept Re < 0.1 to eliminate the effect of inertia. The plug was observed to move

faster than U7, which was what was predicted in earlier theoretical work. Olbricht and

Kung photographed the process shown in Fig. 8-4. They also found Ca, for different

A and r, which is presented in Table 8.3.

There are a number of numerical simulations of a liquid drop moving within an
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immiscible fluid in a capillary (for example, [8, 18, 35, 48, 67, 86, 87]). They examine

low Re (Stokes) flow in which the acceleration terms in the Navier-Stokes equations

are negligible. As seen in Table 8.1, if the model has Re = 0, then 0 does not

matter, since only the product g Re appears in the equations of motion. Most of the

simulations neglect gravitational and surfactant effects.

Martinez and Udell [48] were the first to numerically simulate Stokes flow of a

fluid plug moving in an immiscible fluid within a capillary. They modelled the plug

as inviscid (Ad = 0). Although they simulated Ca as high as 10, they suggested that

their results could indicate breakup at Ca ~ 1.

Pozrikidis [67], and later Jinnan and Maldarelli [35] improved on Martinez and

Udell's model by accounting for plug viscosity. However, their studies were limited

to the case of Id = [If. They investigated a train of plugs in a capillary. There was

no mention of breakup criteria.

Tsai and Miksis [86] add an additional dimension by allowing for r. 0 1. They

studied a single plug in a capillary, rather than a train of plugs. They also carry

their investigation to Ca values high enough for a steady-state drop shape not to

exist. At this point, breakup eventually occurs as the surrounding fluid penetrates

the trailing edge of the drop. Unfortunately, only two breakup conditions are listed

in the paper: (A = 0.9, r, = 0.1, Ca = 1.0) and (A = 1.2, n = 0.1, Ca = 2.0). Ca

values found by Tsai and Miksis were somewhat lower than that found by Olbricht

and Kung experimentally.

Coulliette and Pozrikidis [18] simulate a neutrally buoyant drop in an immiscible

fluid within a capillary. As in Pozrikidis' early study, d = pf, and a train of plugs is
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modelled . However, they do relax the axial symmetry constraint present. For K = 1,

A = 0.7, they present the following equation:

Cac - A = 0.25 rtube (8.11)
rtube + SOr

where Sro is the initial distance of the plug centroid from the capillary axis. Unfor-

tunately, (8.11) only applies to a train of equally spaced drops, where the spacing is

2 rtube. Under these conditions, Coulliette and Pozrikidis found that the effect of the

drops on each other is significant.

Borhan and Mao [8] as well as the second study of Tsai and Miksis [87] used the

two surfactant equations listed in Table 8.1 to model the effect of surfactants. They

modelled insoluble surfactants that were confined the the surface of the plug.

Borhan and Mao [8] studied the following ranges of parameters: 0.01 < Pe < 100,

< 1, 0.50 K A < 1.30, 0.05 < Ca < 0.75, and 0.19 K K < 10.0. They found

that the greater A, the greater the surfactant dilution. This is because a large drop

deforms and increases its surface area more than a smaller drop. For large Pe, the

effect of surfactant diffusion is small relative to the convective effect of the flow at the

surface. In this case is little relative motion of the plug surface relative to the plug

as a whole, due to Marangoni stresses. Unfortunately, Borhan and Mao do not say

much about breakup. Their only comment is that for A = 0.726, .c = 1.0, Ca = 0.75,

and 0 = 0.5, the plug was only stable for Pe < 0.1.

In their second study, Tsai and Miksis [87] found similar results to Borhan and

Mao. They only present the case of A = 0.9, K = 0.1, and listed two breakup
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conditions: (1) Ca = 0.4, # = 0.75, Pe = 1; and (2) Ca = 1, # = 0.5, and 0.1 < Pe

< 10. They found that increasing # or Pe will decrease Ca,. Also, the mere presence

of surfactant decreases Ca,: even if two otherwise identical drops have the same 7,

but one of them has surfactant and the other does not, the one with surfactant will

have a lower Ca,. This can be seen from comparing the results with their earlier

study of drops without surfactants [86] (see above).

Milliken and Leal [51] modelled drops with soluble surfactants in uniaxial exten-

sional flow. The surfactant was located both on the interfacial surface and in the

fluid surrounding the drop, and was free to diffuse between the two. They found that

the resulting behavior was between that of a drop with insoluble surfactant (in which

the surfactant was confined to the plug surface) and that of a drop with uniform sur-

factant distribution. While our flow is different, and the surfactant is present inside

rather than outside of the drop, we expect the same general qualitative results.

8.3.3 Room Temperature Experiment

To get an initial estimate of Ca for my system, I first ran an experiment with the

entire system at 200C. This made temperature-dependent properties easy to evaluate.

Also, U was slower than it would be in the actual PCR system due to higher [f, so

U was easier to measure. I used the actual PCR mix described in Table 8.6, and

increased -9 up to plug breakup to determine Ca,.

To find U, the pressure across the capillary at (actually, just under) breakup was
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Property Value

V 0.067 m/s

y 4.08 x10-2 N/m
K = IPd/p 0.0057
A = rd,undeformed/rtube 1.2

I-If 0.174 kg/(m-s)

p1 855 kg/m3
rtube 5.0 x 10-4 m
Ca = (.f p)/y 0.29
Re = (2 pfvrtube/tf) 0.33

Table 8.4: Selected quantities at breakup for 20*C experiment. Material properties

are from Appendix A. y is from Fig. 8-7.

measured with a differential pressure gauge3 . This pressure difference was duplicated

with one end of the capillary at atmosphere. Oil was collected from this end in

preweighed microfuge tubes for ~~ 8 seconds for each of 3 trials. The quotient of

collected oil mass to collection time was averaged and used with the oil density to get

U = 0.067 m/s.

Table 8.4 lists some properties at plug breakup. For A > 0.83 and 0.0022 < K <

0.011, Olbricht and Kung predict 3.51 < Cac < 4.24 (see Table 8.3). This is much

larger than my value of 0.29. There are several possible reasons for this, which are

discussed in Section 8.3.5.

8.3.4 Heated Blocks Experiment

I repeated the Ca, experiment for realistic conditions under which the denaturing,

extension, and annealing blocks were 94*C, 70*C, and 53*C, respectively. Cac is more

difficult to calculate in this instance since the sample plug moves through a range of

3Magnehelic 2230. Dwyer Instruments, Inc., Michigan City, IN.
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different temperatures, and the speed is higher.

I ran three trials. In two trials, I reached the Ap limit of ;19 psi across the 9"

capillary without breakup. In one trial, Ap = 13 psi just before breakup. This was

for motion from right to left, which was faster than left to right, due to a difference in

air resistance of the solenoids supplying the pressurized air to the two capillary ends.

Unfortunately, the oil was moving too fast to estimate U by the oil collection

method used in Section 8.3.3. Instead, I defined an average oil viscosity ;7p, such that

the bulk flow rate corresponds to laminar flow in a capillary with the same rtube and

dpf/dx but uniform viscosity if:

tu=b- rt2"b" (8.12)
87pf dx ,

I approximated ft as 7.0 x 10-2 kg/(m-s), the value found via oil collection at Ap's of

2.2 psi and 2.9 psi. Given this 17f, the radius rtube = 5 x 10- m, and dp 1 /dx Ap/Ax

= (-13 psi)/(9"), (8.12) is used to estimate U as 0.18 m/s.

pf and -y both decrease with increasing temperature. y is not nearly as tempera-

ture dependent, however. Therefore, the highest Ca, and most likely breakup, occurs

when the plug temperature is lowest. I used the heat transfer model described in

Chapter 7 to determine the lowest temperature. Since the velocity is fairly high for

this system, the temperature does not change much during travel. The plug speed

is slightly higher than U, but as a model simplification the two are taken to be the

same. The lowest temperature experienced by the plug is as it travels from the anneal

(53*C) block to denature (94*C) block, between the anneal and extension blocks. See
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Figure 8-5: Simulation of the temperature history of the plug and the oil in its
immediate vicinity. The plug temperature is between the only oil and only water
curves. Heat transfer model details are found in Chapter 7. Plug is moving from
right to left (decreasing distance) at a velocity of 0.18 m/s.

Fig. 8-5. The minimum temperatures for the all-water and all-oil simulations are 50*C

and 51*C, respectively. They occur at the same x. These minimum temperatures are

very close to the annealing block temperature as well as each other. This is because TU

is too high for much heat transfer to take place before the plug reaches the denature

block. Since the plug is between the all-oil and all-water simulation temperatures, I

take it to be 50*C.

Table 8.5 shows some quantities calculated at 50*C and just under breakup U. At

= 0.013, A > 0.83, Olbricht and Kung predict Ca = 3.5 (see Table 8.3). This

is much larger than the 0.24 found experimentally for my system. Reasons for this

discrepancy are discussed in Section 8.3.5.
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Property Value

0.18 m/s
3.12 x 10-2 N/m

K = pd/'p 0.013
A = rd,undeformed/rtube 1.2

pf 0.0415 kg/(m.s)

pf 855 kg/m3

Ttube 5.0 x 10-4I m
Ca = (U - f)/7 0.24

Re = (2 pf frtube/f ) 3.7

Table 8.5: Selected quantities at breakup assuming breakup at 50*C. Material prop-
erties are from Appendix A. -y is from Fig. 8-7.

8.3.5 Ca, Discrepancy

In Sections 8.3.3 and 8.3.4, we found Ca values of 0.29 and 0.24 respectively. This

is much lower than the values obtained by Olbricht and Kung (approximately 4 and

3.5, respectively) for their low Re, surfactant-free experiments [62]. From (8.10), we

see that Ca, is a function of six dependent variables: Re, 3, Pe, K, L, and A. We will

examine which of these variables can account for the discrepancy, as well as discussing

additional causes of difference.

A :

A = 1.2 is a constant, and is accounted for by Olbricht and Kung, so it cannot account

for the Ca, discrepancy.

K is accounted for the Olbricht and Kung. However, K was only calculated for at the

minimum temperature in Sections 8.3.3 and 8.3.4. It was assumed that pp affects Cac
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Figure 8-6: n = /d/f. Ad and pf were based on values in Appendix A, and were
linearly interpolated between datapoints.

more than r., since Ca, is proportional to jif. tK = Pd/pi' changes with temperature

(sae Fig. 8-6). In PCR, plug temperature typically ranges from 45-94*C, so the K

range is 0.013-0.04. From Table 8.3 we see that Ca, for A = 1.2 does not change

much in this range. Therefore, I assume that r. does not significantly affect Car, and

cannot account for the (greater than tenfold) Cac discrepancy.

o = Pd/p! = (1000 kg/m 3)/(855 kg/m) = 1.17. Olbricht and Kung used g = 1, so

the Bond number Bo = 0. Since e ~ 1 and the Bo = 0.021 (see (8.8)), 1 do not expect

my e to cause Ca, to deviate much from Olbricht and Kung's results.
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)9 and Pe:

# and Pe play a role in systems with surfactants. I removed the Triton X-100 from my

plug mix (see Section 8.4), but other constituents could possibly act as surfactants,

such as the Taq itself. Based on the results of Tsai and Miksis ([87]; see Section 8.3.2),

Ca, is lower than it would be without surfactants, and their presence accounts for

some of the discrepancy. However, since I cannot find D,, I do not know Pe =

vrtube/D, so I cannot further quantify the effect of surfactants using information

from the literature.

Re:

In Section 8.3.4, I calculated Re = 3.7 at the minimum temperature (50*C), assuming

that this is where breakup occurs. This assumption is based on the fact that Ca

is proportional to pf, which is highest at this lowest temperature. At the highest

temperature, 94*C, vf is 9.80 x 10-6 m 2/s, so Re is 18. If Cac drops steeply as Re

goes from 3.7 to 18, breakup may occur when the plug is at the highest (94*C) rather

than lowest (50*C) temperature. In any case, Re > 1, so kinetic effects are significant,

and can account for some of the Ca, discrepancy.

Additional Possible Causes:

There are several other influences which can account for Ca, that are not covered by

any of the six dependent variables listed above.

First, the y found by the faux PCR mix may be off significantly. BSA and ATP

may not have the same effect on -y as Taq and the four dNTPs. y may have been
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overestimated, resulting in a lower calculated than actual Cat.

Olbricht and Kung take care to accelerate their drops slowly to eliminate the

influence of acceleration on Cac. In the capillary PCR system, the plug is accelerated

and decelerated as fast as the actuators allow. The plug speed was too high to observe

whether breakup was due to acceleration, deceleration, or the entrainment effect at

constant U described Olbricht and Kung. This can definitely result in a lower apparent

Ca,. In fact, I may require a more complicated breakup criteria than just Ca,.

U at breakup has significant variation from trial to trial. In the Ca experiments

with the heat blocks at 94*C, 70*C, and 53C (Section 8.3.4), 1 of the trials had the

plug intact up Ap = 13 psi across the capillary, whereas the other 2 trials had the

plug intact to Ap ; 20 psi. I based Ca on the lowest U, not the highest, and this

definitely contributes to the discrepancy in Ca. Drop initial conditions seem to play

a large role in determining breakup, and acceleration and deceleration may not be

exactly the same at each application.

In addition, the breakup mode reported in the literature in Section 8.3.2 may not

be applicable at all to the capillary PCR machine. In the literature, breakup occurs

when the nonsteady drop shape allows the surrounding fluid to enter the interior

of the drop, and so much fluid enters the drop that it splits into pieces. Oil was

observed to enter the drop in the 200 C experiments, but the travel time was too short

for enough oil to enter the plug to break it up. Instead, once the plug was stopped, it

resumed its intact stationary shape. Unfortunately, in the more realistic experiment

with the 94*C, 700 C, and 53*C blocks, the plug was moving too fast to see if this

occurred.
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Volume Constituent

35.4 plTaq mix
1.46 p1 10 x buffer mix
1.17 pl 25 mM MgCI2

3 pL A DNA template (1 pg/pl)
3 p1 PE1 primer (10 pmol/pl)
3 pL PE2 primer (10 pmol/pl)
3 pl 5 mM dNTPs

50 p TOTAL

Table 8.6: 30 cycle PCR mix. The Taq mix is described in the text. The 10x buffer
is 500 mM KCl, 100 mM Tris-HC (pH 9.0 at 25*C).

Given all these factors, it is difficult to determine a precise breakup criterion.

Keeping Ca < 0.2 should be safe. This is assuming the the plug acceleration and

deceleration is no higher than that imposed in the current system (which are roughly

quantified in another chapter).

8.4 Removing the Detergent

The PCR mix used in the 30 cycle experiments is shown in Table 8.6. Since it was

important to have y as high as possible, I tried to remove the Triton X-100 from the

mix, since it is a nonionic surfactant. While it is necessary to stabilize the protein

during storage, it was experimentally determined that Taq remains active immediately

after its removal.

To remove the Triton, I used centrifugal concentration devices4 with 50 kDa cutoff

membranes. Prior to usage, I passivated the devices with 1% powdered milk in

distilled water according to manufacturer's instructions. This was to prevent the

4 Centricon-50. Millipore Corporation, Bedford, MA.
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Property IValue Reference

Critical Micelle Concentration 0.24 mM [31, p. 1882]
Molecular Weight 625 [81, p. 1882]

Specific Gravity (25*C) 1.0595 [95, p. 971]

Table 8.7: Selected properties of Triton X-100.

Taq from sticking to the wals of the devices themselves. I diluted with 20 pl of

Promega5 Taq solution with 2 ml dilution buffer. The Taq solution consists of 5U/pI

Taq enzyme, 50 mM Tris-HCI (pH 8.0 at 25*C), 100 mM NaCl, 0.1 mM EDTA, 1

mM DTT, 50% glycerol, and 1% Triton X-100 [69]. The glycerol and Triton X-100

are liquids, so they are expressed in volume fractions. The dilution buffer consists of

50 mM KCl, 10 mM Tris-HCl (pH 9.0 at 25*C), and 2 mM MgCl2 .

Triton X-100 has the properties listed in Table 8.7. Diluting 20 Al of Promega

Taq with 2 mL of the buffer results in a Triton concentration of:

(20 x 10-6 1 1.0595 x 03 g\ mole'\ 0.17 mM (8.13)
(1%) \2 x 10-3 16 I ) k 25 g=

This is below the critical micelle concentration, so the Triton X-100 exists in the

solution as individual particles. The solution is placed in a concentrator and spun.

The 625 Da Triton molecules pass through the 50 kDa cutoff membrane, but not the

94 kDa Taq. Since 0.17 mM is close to the critical micelle concentration of 0.24 mM,

the process is repeated.

About 80 p liquid remains after the spin. Since the liquid is largely dilution buffer,

the mix shown in Table 8.6 has a KCI concentration of 50 mM, a Tris-HCl (pH 9.0 at

5Taq DNA Polymerase in Storage Buffer A. Catalog number M1861. Promega Corporation,

Madison, WI.
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Solute J Concentration J Nominal MW % Retentate Recovery
Bovine IgG Fraction IH 1 mg/ml 156,000 95

Phosphorylase B 1 mg/mI 97,400 90
Bovine Serum Albumin 1 mg/ml 67,000 95

Ovalbumin 1 mg/ml 45,000 85
a-Chymotrypsinogen 1 mg/mi 25,000 75

Cytochrome c 0.25 mg/mi 12,400 35
Protamine Sulfate 1 mg/mi 5,000-10,000 <5

Vitamin B12 0.2 mg/ml 1,355 <5
Riboflavin (saturated solution) 376 <5

Table 8.8: Typical retentate recovery for the Centricon-50 centrifugal concentrator
device. Taken from product literature.

25*C) concentration of 10 mM, and a MgCl 2 concentration of 2 mM, as desired. The

amount of Taq and its remaining activity is unknown. However, Taq is a thermostable

protein, so I assumed no loss of activity per unit mass. The centrifugal concentrator

literature lists the typical retentate recoveries shown in Table 8.8. Phosphorylase B

has a molecular weight (97.4 kDa) close to that of Taq (94 kDa), and its typical

recovery is 90%. Therefore, I assumed 90% recovery of Taq during each of the two

spins. Hence, the end Taq concentration is about

(5 units 20/0l( 0 .9 )2 = 1.0 units (8.14)\ p1 80pIl, -10 p1 8.4

Note that the protein concentrations listed in Table 8.8 are ~1 mg/ml. Since

the activity of Taq is ~ 200, 000 units/mg [68], and 100 units Taq are put into 2 ml

dilution buffer, the end concentration is ~ 2.5 x 10 4 mg/ml. This is significantly

less than 1 mg/ml. This lessens the chance of the protein aggregating (destruction

of activity results) or sticking to the membrane, and is likely to result in more rather

than less recovery.
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8.5 Plug Surface Tension

I wanted to measure the surface tension at the sample plug/oil interface. Unfortu-

nately, the tensiometer requires ~-, 100 ml of liquid. Taq and the dNTPs are far too

expensive to merely scale up the PCR mix. Therefore, I created a "faux" PCR mix

designed to mimic the PCR mix shown in Table 8.6.

Bovine Serum Albumin (BSA) Fraction V was used as a substitute for Taq. From

Table 8.8, we see that the molecular weight of BSA is 67 kDa, so it is roughly the same

size as Taq (94 kDa). Since Taq has ~~ 200,000 units/mg, from (8.14), we see that the

Taq mix has a Taq concentration of :::: 5 x 10-3 g/l after centrifugal concentration.

Therefore, 5 x 10-3 g/l BSA in water was used to substitute for the Taq solution.

ATP is chemically very similar to dATP. The difference is merely the substitution

of a single OH group with an H group in dATP. Hence, ATP was used to substitute

for dATP, as well as dCTP, dGTP, and dTTP. It was assumed that the different

dNTPs had similar effects on the surface tension of the mixture. The original PCR

mix calls for a solution of 5 mM of each of the four dNTPs (see Table 8.6). The faux

PCR mix is made with 20 mM ATP solution instead.

The rest of the mix had the same constituency as the actual PCR mix. The recipe

for the faux PCR mix is shown in Table 8.9.

Surface tension measurements for the faux PCR mix were taken using a ring

tensiometer'. The faux PCR mix was poured into a thoroughly cleaned glass dish

and covered with a layer of mineral oil. The dish was placed in a water bath to alter

'Cenco #70535 with platinum-iridium ring #6406. Mean ring circumference 5.935 cm. Cenco
Instrument Corp.

219



the temperature. Results are shown in Fig. 8-7. As can be seen, the surface tension

exhibits somewhat linear temperature behavior. The best fit formula in Fig. 8-7 is

used for the surface tension in this chapter.
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Volume Constituent

35 ml faux Taq mix
1.46 ml 10x buffer mix
1.17 ml 25 mM MgCI2

3 ml A DNA template (1 pg/pl)
3 ml PE1 primer (10 pmol/gl)
3 ml PE2 primer (10 pmol/pl)
3 ml 20 mM ATP mix

50 ml TOTAL

Table 8.9: Faux PCR mix.

30 Cycle PCR Mix Surface Tension

0 o00

- 40

Best Fit Line:
Surface Tension = (47.2 - 0.32 T) dynes/cm

R 2=0.9

1 1 I 1 i I

30 40 50 60 70
Temperature (C)

80 90 100

Figure 8-7: Surface tension data for faux PCR mix. T for the best fit line is temper-
ature in *C.
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8.6 Nomenclature

A

Zo

Ca

Cac

Ds

%x

n

Pd

Pf

Pe

Q

R

Re

r

rd,ndeformed

rRayleigh

TRayleigh

rtube

t

T

Average surface area per unit length. See Eq. (8.2).

A for undisturbed surface. See Eq. (8.6).

The capillary number. Ca = u7 -fy.

The critical capillary number. Ca at which plug breakup occurs.

Surface diffusivity of surfactant.

Unit normal in x direction.

Unit normal pointing away from the plug surface. See Fig. 8-2.

Pressure inside the plug.

Pressure in the fluid surrounding the plug.

The Peclet number. Pe = U - rtube/Ds.

Volume flow rate in capillary.

The universal gas constant (1.987 x 10-3 kcal/mol-K).

The Reynolds number. Re = 2r0U/V.

Radial coordinate of capillary.

Radius of a sphere with the same volume as the plug.

Radius of fluid cylinder in Rayleigh instability derivation. See

Eq. (8.1).

Average rRayleigh- See Eq. (8.1).

Inner radius of the capillary.

Time.

Absolute temperature.
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U Average velocity of fluid in the capillary.

V Average volume per unit length. See Eq. (8.3).

Vd Velocity vector inside the plug. See Fig. 8-2.

6f Velocity vector of fluid outside the plug. See Fig. 8-2.

v, The surface velocity i, = y - (ft -it)i. See Table 8.1.

Xd Position vector of the plug surface. See Fig. 8-2.

x Coordinate along axis of capillary, in direction of flow.

a Disturbance amplitude. See Eq. (8.1)

# Sensitivity of surface tension to surfactants. # = PoRT/yo.

7 Surface tension.

'Yo Surface tension in the absence of surfactants.

r Local surfactant concentration.

Fo Uniform surfactant concentration in the absence of flow.

K Viscosity ratio. , = Pd/If.

A Radius ratio. A = rd,undeformed/rtube.

Aftyieigh Disturbance wavelength in Rayleigh instability calculation.

See Eq. (8.1).

p Absolute viscosity.

Pd Absolute viscosity of the plug.

p1  Absolute viscosity of the fluid surrouding the plug.

pf Average p1 in the capillary.

V, The surface gradient operator. V8 = V - (n- V)ft. See Table 8.1.
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V Kinematic viscosity. v = p/p.

p Density.

Pd Plug density.

pf Density of the fluid surrounding the plug.

e Density ratio. pd/pr.

ad Stress tensor for the plug fluid.

af Stress tensor for the fluid surrounding the plug.
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Chapter 9

Motion Control

9.1 Introduction

Chapter 8 examined the maximum speed the plug can attain before it fragments into

pieces. However, at lower velocities, the speed may still be so high that the plug

continually oscillates within a heat block after reaching it. This is undesirable. The

solenoid valves are not designed to alternate quickly between open and closed states

over many cycles. Oscillation also greatly increases the total plug displacement, and

therefore the amount of Taq adsorbed onto the capillary walls.

This chapter determines the maximum velocity attainable before oscillation oc-

curs.
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9.2 Dynamics

9.2.1 Oil

There are several dynamics involved in plug motion. First is that of the mineral

oil inside of the capillary. The plug velocity is slightly higher than, but directly

proportional to, the bulk oil speed. The plug motion is assumed to be completely

dominated by the oil, since it occupies the vast majority of the capillary. Oil velocity

throughout 1 the capillary is assumed to be parallel to the capillary axis.

The problem of transient velocity distribution for axisymmetric fluid in a tube

has been solved2 . The governing equation is

O9 (8 2 u 1Ou\ dp
p- - 11 + -- = - (9.1)ot fi2r -r dx

where p is oil density, u = u(r, t) is oil speed, t is time, p is oil viscosity, r is the radial

coordinate, p is pressure, and x is the axial coordinate. The boundary conditions are

u(r, 0) = 0 u(rtube,t) = 0 (9.2)

where rtube is the capillary inner radius. The solution is

- - 8 Jo(Anr/rtube) ._(,t)/(r2 e) (9.3)
Umt -"A

3 J,(A)
Umaxtube n=1 n ,

'Except at the entrance and exit; entrance and exit effects are assumed to be negligible since the
capillary length is much greater than the capillary inner diameter.

2 See, for example, [17, p. 189-193].
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where JO and J are the Bessel functions of order 0 and 1, respectively. The An's are

roots of JO:

JO (An) = 0 (9.4)

and u,,, is the maximum u which occurs at r = 0, t -+ oo:

Umax = r dp (9.5)
4Lp dx

We see from (9.3) that the transient component of the solution has time constants

2
Prtube (9.6)

MA2

The dominant time constant is associated with3 A1 = 2.40. Since4 p = 855 kg/m3

and A = 7.0 x 10-2 kg/(m.s), the dominant time constant is 0.53 ms.

9.2.2 Valves and Pneumatics

This is very fast. However, the capillary is also connected to a pneumatic system. It

takes time for the valves to open and close 5, and for the pressure to equilibriate in

each oil reservoir. I felt that these dynamics were probably much slower than the oil

dynamics.

3 For A values, see for example [63, p. 409].
4p was taken from Appendix A. p was the average value established in Section 8.3.4.
'According to the manufacturer [40, p. 52], the typical valve response time is 6-12 ms. This is

the time required for a closed valve to totally open or vice versa. Valve dynamics are reflected in
the overall time constant.
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To test this hypothesis, I used a VCR and CCD camera to record plug motion at

30 frames/second. The plug accelerated from stationary to steady-state speed within

2 frames. It also decelerated from steady state to a full stop within 2 frames. 2

frames is 70 ms, which is much longer than the oil time constant of6 0.53 ms, so the

pneumatic system dynamics dominate over the oil dynamics.

I modelled the overall system dynamics as first-order. Data from the VCR was

too crude to determine more than a single time constant. Since the speed reaches

steady-state within 70 ms, assume that this is 3 time constants (a standard point at

which a first order reaction is considered to have arrived at steady-state). Therefore,

the observed time constant -r = 20 ms.

9.2.3 Computer Sampling

Although the A/D card can sample up to 50 kHz, the process is much slower than

that due to all the housekeeping tasks that the controlling program performs, such

as updating the display and writing to the log file. I determined that the actual

sampling time is about 4 ms.

6Since the opaque heat blocks had to be removed to film the plug, the experiments were conducted
at room temperature. The oil also has higher p at room temperature than during PCR, reducing
the plug speed and simplifying measurements. The time constant for room-temperature mineral oil
(p/p = 2.04 x 10- m2 /s) is 0.29 ms. This differs from the 0.53 ms time constant when the capillary
passes through the heat blocks. However, both are < 70 ms, justifying the overan time constant
measurement.
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9.3 Modelling

This section presents a simple model of oscillation, which is used to determine the

criteria under which it will occur.

9.3.1 Photodiode Signals

Let PDiert and PDdght be the normalized signals of the photodiodes to the immediate

left and right of a heat block. Both are negative7 . Assume that both signals have

been normalized to a range of 0 (background signal) to -3 volts (maximum signal).

Define PDLR PDIeft -PDright. Fig. 9-1a shows a typical PDLR curve as the plug

moves from left to right completely through the heat block. PDL-R passes over8 the

left photodiode, and largest when the plug passes over the right photodiode. PDIeft

dominates PDL-R in Fig. 9-1 from a distance of about 40-60 mm. The influence of

both PDIeft and PDright are strong at 60-70 mm. At 70-90 mm, PDLR is dominated

by PDight.

Model PDL-R as linear, as shown in Fig. 9-1b. There is 18 mm distance between

the signal maximum and minimum. This is the center-to-center distance between the

two photodiodes (see Fig. 9-2). The actual width of each heat block is 1/2" (12.5

mm). In order to ensure that the plug is heated at the block temperature at all

times, take the errorband to be 8 mm. This is a maximum value; it is often smaller

in practice. The errorband is the region that the plug center must stay within. If the

7 See Chapter 4 for details.
8Actually, when the center of the plug is just slightly to the left of the photodiode. Since the

laser beam enters from the left, the scatter is stronger to the right of the plug than to the left.
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Figure 9-1: PDL-R as a plug passes completely through a heat block: (a) actual
sample; (b) idealized model.
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18 mm

12.5 mm

8 mm errorbandE

left ::::::::::::::::::::::::::::::::::::: nght
photodiode fili2::l~i::iheat bock iii~::i:::: photodiode

Figure 9-2: Dimensions used for the control modelling. The errorband is set at 8 mm
to ensure that the plug is heated at the block temperature.

plug strays from the errorband, corrective actuation pushes it back to the middle of

the block.

9.3.2 First Order Dynamics

Denote the plug velocity by v. v. is the steady-state (maximum) v. Since the motion

dynamics are assumed to be first order with r = 20 ins, the relations in Table 9.1

apply. d is displacement. v is considered to have reached v. for all practical purposes

when t = 3r1. Therefore, when the plug is accelerating, d(3'r) in (9.9) is the distance

required for the plug to reach full speed. If at time t = 0, v' = v1 and the actuation

is turned off, the plug will continue to drift a distance of d(oo) = ViT (see (9.12)).
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Acceleration (At t =0, d = 0 and v = 0. At t -+ oo, v -+ v.)
v(t) = v.(1 - e-t/r) (9.7)

d(t) = v.(t + re-t/f - -r) (9.8)

d(3r) = vwr(2+ e- 3 ) ~ 2v.r (9.9)

Deceleration (At t = 0, d = 0 and v = v 1 . At t -+ oo, v -+ 0)
v(t) = vie~iT (9.10)

d(t) = vir(1 - e~t/T) (9.11)

d(oo) = vr (9.12)

Table 9.1: Selected first-order relations.

errorband errorband

heat block

Figure 9-3: Plug oscillation.

9.3.3 Oscillation

The control scheme was presented in Section 4.7. When the plug moves outside the

errorband (due to slow drift; this is observed experimentally), the control program

pushes it back to the middle of the block. If the v. is high enough, the plug moves

all the way to the other end of the errorband. The plug will oscillate back and forth

continually, as shown in Fig. 9-3. Let t1 be the time for the plug to move from one

end of the errorband to the middle of the block. Using (9.8),

v0(t1 + re(t1 /) -r) = 4 mm (9.13)
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Let v, = v(t,). The plug continues to accelerate until the actuation is shut off, which

can occur up to 4 ms after it passes the midpoint, due to the sampling time delay.

Let t 2 = t1 + 4 ms. Using (9.7), v(t2 ) = v.(1 - e-t2/r). The plug will then drift a

distance specified by (9.12) before coming to a halt. If the total combined distance

is equal to the errorband, oscillation will occur. Using (9.8) and (9.12), we get

v (t 2 + -re(t 2 /r) - r) + V.(1 - -e-1')r = 8 mm

vat2 = 8 mm (9.14)

Combining (9.13) and (9.14) and since r = 20 ms and t2 = t 1 + 4 ms, we get v. = 0.2

m/s. Therefore,

v. <0.2 m/s (9.15)

To avoid oscillation. This is for the maximum errorband of 8 mm. v < 0.2 m/s

anyway to avoid plug breakup9 .

9.4 Experiments

Table 9.2 presents the results of some experiments near the oscillation threshold. Lp

is the pressure' 0 applied across the end of the 9" long capillary. v, is experimental

'See Chaptei 8.
"'Due to a poor choice in valves, the pressure difference and v., is greater when the plug moves

from right to left than from left to right. Ap is the lower pressure used in the left-to-right motion.

This is because both left-to-right and right-to-left v, must be high enough to sustain oscillation.
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Case Ap| v.I Errorband Errorband VBS,Ma

No. (psi) (m/s) (volts) (mm) (m/s) Oscillation v._>_v_,m_

1 6.510.09 1.0 3.0 0.07 yes yes
2 6.5 0.09 1.35 4.1 0.1 no no
3 6.51 0.09 1.5 4.5 0.1 no no
4 8.5 0.1 1.35 4.1 0.1 yes yes

Table 9.2: Comparison of experimental vs. theoretical predictions of breakup. See
the text for details.

plug speed. While it is actually slightly higher than the bulk oil speed, the two are

taken to be the same. The bulk oil speed was too fast to measure directly, so it

was estimated" using the standard pipe flow equation (8.12) using the average oil

viscosity p = 7.0 x 10-2 kg/(m-s) and approximating dp/dx as Ap/(9").

The errorband used in experiments was smaller than the 8 mm maximum con-

sidered in Section 9.3. The errorband in volts is translated into mm using the linear

approximation of Fig. 9-1b: 6 volts translates into 18 mm, and distances scale ac-

cordingly. The midpoint was assumed to be in the middle of the errorband voltages,

and this was approximately the case. ss,m is based on equations (9.13) and (9.14),

substituting'2 the errorband listed for 8 mm.

The oscillation column lists whether or not continuous oscillation was experimen-

tally observed. If the theory is correct, then oscillation can occur when v. Vss,max,

and this is what was observed. v,,ma is an estimate good to within about 10%

(approximating by comparison with the experimental data).

"See Section 8.3.4.
12t 1 and t2 are not affected by the errorband. From (9.14), Vs,mn = (errorband length)/t 2 , where

t2 = 42 ms.
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9.5 Conclusion

Continuous oscillation of the plug within a block can occur if the steady-state velocity

v. is high enough. This is undesirable even if the plug stays within the heat block,

since it causes undue wear on the valves and increased adsorption of Taq to the

capillary walls. The plug motion dynamics were modelled simply as a 4 ms computer

time delay followed by first order pneumatic/valve/oil dynamics. The time constant of

the first order dynamics was determined to be ~s20 ms by examining plug acceleration

and deceleration at 30 frames/second using a VCR and CCD camera. v. < 0.2

m/s to avoid oscillation if the errorband is set to a maximum value of 8 mm. The

maximum allowable v. scales linearly with errorband. The theory matched observed

experimental v. to within about 10%.

9.6 Nomenclature

JO Bessel function of order zero.

J Bessel function of order one.

p Pressure.

PDL-R PDIeft - PDright-

PDIeft Normalized voltage signal of the photodiode to the immediate left of

the heat block of interest.

PDright Normalized voltage signal of the photodiode to the immediate right of

the heat block of interest.

r Radial coordinate inside the capillary.
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rtube Capillary inner radius.

t Time.

ti Time for the plug to move from the edge of the errorband to the mid-

point, if v = 0 at t = 0.

t2 t1 + 4 ms. 4 ms is the sampling time delay.

u Local oil axial velocity.

V Plug velocity.

V1  v at t = t1

VSB Steady-state plug velocity.

Vs,max v. must stay below this value to avoid oscillation.

x Axial coordinate inside the capillary.

A Oil viscosity.

p Oil density.

7 Plug motion time constant (20 ms).
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Chapter 10

Conclusion

10.1 Summary

I built a novel prototype capillary polymerase chain reaction machine. The purpose

was to perform a single reaction as fast as possible with a reaction volume '' 100 nl.

The PCR mix is in the form of a 1 1A droplet that moves between three heat zones

inside of a 9" long, 1 mm I.D. PTFE capillary filled with mineral oil via pneumatic

control of the end pressures. A laser focused on one end of the capillary waveguides

down its length until it hits the drop/oil interface, where it scatters. The scatter is

detected by a series of 8 photodiodes which provide position feedback to a computer

controlling the pneumatics. The machine can transition between one temperature

step and another in ~,2 seconds, which includes both drop motion and temperature

equilibration. It was extensively tested in both 10-cycle and 30-cycle PCR, including

nearly 200 successful.30-cycle runs. The 30-cycle PCR was typically 74% (as high as

78%) efficient, and took only 23 minutes. This compares well with existing machines
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Template Target Time per No. of Y

Machine (M) (bp) Cycle Cycles (%) Ref.
Conventionalt 5 x 10-1 500-1000 4 m . 30 70 [13], [43]

[96], [98],
Air Cycler 1.9 x 10-15 536 80 s 30 r70 [99]

Applied Biosystems

Silicon Chambers 1.0 x 10-16 297 32.5 s 40 91 [14, 85]
Flow in Capillary 5.2 x 10-11 1000 88 s 30 29 [57]
PCR on a Chip 1.7 x 10-11 176 56.1s 20 ~70 [42]
Capillary PCR 1.9 x 10-1' 500 46 s 30 74 t

Table 10.1: Comparison of several PCR machines. Y is efficiency (2.1). t: typical. t:
this thesis. See text for details.

in the literature. The machine requires a modified PCR mix with high amounts of Taq

to counter adsorption onto the capillary walls, and without enzyme-stabilizing Triton

X-100 detergent in order to keep the drop/oil surface tension as high as possible.

Even so, the plug speed must be K 0.2 m/s, otherwise it will break into fragments.

The control scheme also forces the speed to be < 0.2 m/s.

10.2 Performance Comparison

Table 10.1 compares the performance of the present PCR machine with fast PCR

machines from the literature'. Efficiency is defined by (2.1). A 30-cycle PCR reaction

in a commercial machine is assumed to be 70% efficient, which is a typical value [13].

Much of the literature listed in Table 10.1 did not provide quantification of their

product. The inventors of the air cycler [96, 98, 99] only presented photos of product

bands in ethidium bromide-stained gels. The band from their 40 minute, 30-cycle

reaction is almost as bright and large as that from a conventional machine they used

'See Chapter 3.
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as a control. Neither is quantified, so I assumed that both reactions were about

70% efficient. The Applied Biosystems silicon chamber boasts an incredible 91% ef-

ficiency, with a relatively low concentration of start template and short cycle time

(32.5 s/cycle). However, since they performed sensitive fluorescent product quan-

tification during PCR, the reported efficiency is for early cycles with exponential

amplification. Most of the other reactions included some cycles in which there was

only linear amplification, resulting in a lower average cycle efficiency. Product from

continuous-flow PCR machine developed by Kopp et al. [42] produced a band with

85% the fluorescence of a band produced by a commercial thermal cycler on an ethid-

ium bromide-stained gel. No absolute quantification was listed, so again I assumed

both the continuous-flow and control machines were ~70 % efficient.

Several of the PCR machines described in Chapter 3 were not listed in Fig. 10.1

because they did not produce as much product as the commercial PCR machines they

used as controls, even for identical cycling schedules. This included the PCRChip [15,

80, 93, 94], which used a conventional heat block thermal cycler as a control machine;

and the infrared-mediated [61] and capillary tube resistive [23] PCR machines, both

of which used a commercial air cycler as the control machine.

Some of the PCR machines listed in the literature performed the same reaction

in different times. For example, 20 cycles of PCR were performed in as short as 90

seconds on Kopp et al.'s PCR chip [42]. In this case, I only listed the most efficient

reactions in Table 10.1 to permit accurate comparison. Efficiency invariably decreases

with time per cycle.

A notable exclusion from the chart are the silicon heater units which include
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the MATCI and ANAA [5, 6, 29, 60, 100]. The reason for this is that the results

are reported in terms of fluorescence, which is much more sensitive than running

a gel. No absolute product quantitation is reported, so it is difficult to compare

the results with those of others. In the most recent work [6], the ANAA was used

to PCR initially intact cells. Product was detected within 25 cycles at 17 s/cycle,

with high efficiency. However, as explained in Section 3.3.4, this is more a testimony

to the sensitive fluorescent detection and PCR mix optimization than the machine,

which has slow temperature transitions (all of the cycling time is literally spent in

transition). The high average cycle efficiency is due to the fact that the sensitive

fluorescent detection allows product to be detected in the early cycles in which all

amplification is exponential.

How do my 30-cycle results compare with those in the literature? Judging from

Table 10.1, pretty well. Only the Applied Biosystems chip has a faster cycle time.

However, for rapid PCR, the time per cycle is dominated by extension time. Their

297 bp product is 60% as long as mine, but their time per cycle is 70% as long as

mine. So for the same product, performance of my machine is expected to be similar

or superior. Applied Biosystems reports greater efficiency, but this is due to their

sensitive product detection that allows all cycles to have exponential amplification.

The PCR on a chip of Kopp et al. [42] successfully performed 20 cycles of PCR

in a mere 90 seconds. It is doubtful that my machine could perform the same feat.

However, the objective of my experiments was to get the fastest possible cycling with

no significant loss in Y. I did not have time to perform 30-cycle time optimization.

Doubtless, cycle times could be reduced. In any case, Table 10.1 indicates that for
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comparable Y, my machine has a shorter cycle time even though my product (500 bp)

is almost 3 times as long (176 bp). My PCR was performed with much less template

(5 x 10-15 M vs. 1.7 x 10-"M) over more cycles (30 vs. 20), which is a much more

difficult reaction to perform.

While Nakano et al. report only 29% efficiency, it is not clear whether or not

whether their results are inferior. They use a much smaller amount of a DNA Poly-

merase enzyme (Tth) that is known to be slower than Taq. Their template (1000 bp)

is also twice as long as mine (500 bp).

10.3 Contributions

I was solely responsible for the design, construction, testing and analysis of a novel

rapid PCR machine. It is a simple, straightforward design that incorporates hardware,

software, and biology. It was extensively tested in nearly 200 successful trials. While

it is not yet good enough to be a commercial product, it is very reliable. Its speed

and efficiency are comparable or superior to existing rapid PCR machines.

10.4 Future Work

The following are some of the remaining system challenges.
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10.4.1 Completing Time Optimizations

The 30-cycle experiments described in Chapter 6 can be completed by performing

time optimization for the PCR steps, as described in Chapter 5 for 10-cycle PCR.

Once the individual steps have been optimized, an optimal PCR can be performed.

With any luck, it will produce as much product as the reactions listed in Chapter 6

in less time, better characterizing the time limitations of the current device.

10.4.2 Loading/Unloading

Loading and unloading are performed manually. The advantage of fast, automated

PCR is lost if these procedures require a lot of operator attention. Loading in partic-

ular requires some degree of manual dexterity. Perhaps the sample can be pipetted

into oil-filled well with a specially-shaped bottom (tapered?) that fixes the sample

location for easy loading. Of course, loading from a well requires that either the

capillary be held vertically, or (as was done in the experiment) the end tipped down-

ward. The machine will have to be modified appropriately. Connection to the left

oil reservoir following loading should also be automated. A cooled location should be

added to store samples after running.

10.4.3 Eliminating Heating Irregularities

As pointed out in Chapter 7, the gap between the heat blocks allows the plug temper-

ature to drop between blocks. This effect can be minimized by decreasing the block

spacing. Currently, the size of the photodiodes limits the spacing. The spacing can be
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decreased by using smaller sensors. Another option is to use fiber optic cable, which

uses little space, to carry the scattered laser light to the sensors. Smaller heaters

might be required.

At the limit, the capillary can be threaded through a single heat block that has a

temperature gradient across its length. Instead of going from one block to another,

the plug would just move to different locations inside of the block. Again, the sensor

system would have to be changed. Perhaps the single block could be solid except for

the capillary hole and small viewports for fiber optic cable.

10.4.4 Syringe Pump

The sensor system could be eliminated entirely by using a syringe pump rather than

pneumatic actuation. To prevent degassing, the end of the capillary opposite the

pump could be pressurized. However, as stated in Section 4.5.2, random plug drift

requires that there is one syringe pump for every capillary. This may prove too

expensive if the system is multiplexed.

10.4.5 Multiplexing

A commercial machine must have the capability of cycling multiple samples simul-

taneously. In the current system, this means multiple capillaries. There would only

have to be three heat blocks, but each would have accomodate more capillaries. There

would be more valves and sensors, and the laser beam would be split up. This would

reduce the laser strength, which could be compensated for by more sensitive sensors,
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a more transparent capillary, and light shielding around the apparatus.

10.4.6 Fluorescent Real-Time Product Detection

Integrating TaqmanTM or other fluorescence-based detection 2 system into the appara-

tus would allow for real-time PCR detection that is faster, more sensitive, and more

convenient than running the samples on a gel and staining them with an intercal-

cating dye. This is why recent PCR literature is primarily reported using realtime

fluorescent methods.

10.4.7 Dealing with the Unusual PCR Mix

The PCR mix must currently be made with a high concentration of Taq (to compen-

sate for Taq adsorption onto the sidewalls) but no detergent (so that the sample/plug

oil interface maintains high surface tension). In the PCR reactions reported in this

work, I concentrated the detergent out of the manufacturer-supplied Taq solution

prior to use3 . This took about an hour. The speed advantage of the machine is lost

if the detergent removal procedure must be performed every time. Perhaps it can be

performed in a large batch and the resulting detergent-free Taq solution frozen. This

worked over a 3-day time period, but I did not test longer time periods. Perhaps

some Taq stabilizer that is not a surfactant can be found. Maybe a different capillary

material or a capillary coating can be used to decrease Taq adsorption to the capillary

walls, allowing the use of standard Taq concentrations. Some promising results were

2See Section 3.1.3 for a description of TaqManTM

'See Section 8.4.
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found by silanizing the PTFE capillaries 4 with dichorodimethylsilane, but I did not

have enough time to follow up on these experiments.

10.4.8 Increasing Breakup Speed

Plug breakup limits the speed of the current device, as described in Chapter 8. There

is a critical capillary number Ca at which breakup occurs, which is proportional to

the product of the oil bulk velocity and absolute viscosity. If we substitute a lower

viscosity fluid for mineral oil, we can increase the bulk velocity. This will decrease

block-to-block transit time. However, any fluid that replaces the mineral oil must

(1) not interfere with the PCR reaction; (2) be immiscible with water; (3) have a

higher index of refraction that the PTFE capillary; (4) have an operating temperature

range compatible with PCR temperatures. If the viscosity of the fluid is significantly

different than that of oil, the pneumatic pressures will have to be changed.

10.4.9 Scaling Down

Cycle times can be reduced by scaling the apparatus. Fig. 10-1 shows how components

of minimum cycle time vary with apparatus size for a 500 bp product. It is assumed

that the block size and distance between blocks scale with capillary inner diameter

d.

One component of cycle time is the time required to heat and cool the sample

plug. This was conservatively estimated by modeling the sample plug as a cylinder

4PTFE is chemically inert; however, impurities can enter the material during manufacture, which
is why silanizing had some effect.
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Figure 10-1: Dependence of minimum heating, travel, and extension times on capillary
inner diameter d for a 500 bp product.
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of water initially at uniform temperature in which heat transfer takes place solely

by radial conduction. The capillary wall temperature is modelled as constant, as in

Chapter 7. The greatest temperature transition5 is between annealing and denaturing,

typically 500C and 94*C, respectively. PCR samples are considered to be at the

correct temperature if they are within 0.50C of the specified denaturing, annealing,

or extension temperature. Therefore, the heating time was taken as the time for

the cylinder, starting at a uniform temperature of 50*C, to reach 93.50C along its

centerline when its outer radius is exposed to a constant temperature of 94C . To

simplify the estimate, I neglected any temperature change that occurs between blocks.

From the radial conduction solution presented in Section 7.2.13, the dominant time

constant is c/(23a), where a is the thermal diffusivity of the plug. Assume that the

faster time constants do not significantly affect the solution. Since the equilibration

is first-order, it requires - ln[(94 - 93.5)/(94 - 50)] = 4.5 time constants6 for the

centerline temperature to go from 50*C to 93.5*C with a steady-state temperature of

94*C. 4.5 time constants is 0.20(d2 )/a. a is taken to be the same as that of water,

which is 0.16 x 10-6 m2 /s in the temperature range of the blocks. Since there are

three heat steps per cycle, the heating time is (3.6 s/mm 2 )dP.

Another factor to consider is the minimum transit time. If the sample plug moves

too fast, it will break into pieces. In Section 8.3.4, the maximum bulk oil velocity

prior to breakup was experimentally found to be ~0.2 m/s, corresponding to a critical

5 Other than the room temperature to initial denature transition, which is discounted since the

initial denature time is much longer than subsequent denature steps.
6 This justifies the assumption that the solution is adequately approximated using only the domi-

nant time constant. In fact, the solution found using only the first (dominant) time constant versus

the solution using the first 10 time constants are identical to within 9 decimal places.
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capillary number Ca of 0.24. As a conservative estimate7 , we assumed Ca = 0.24 and

Vma, = 0.2 m/s for all d. vmn is the maximum plug speed and bulk oil velocity, taken

to be the same (although plug speed is slightly greater). The sample plug travels

4" per cycle. Neglecting actuator dynamics, and noting that the fluid acceleration

and deceleration time is very small8 compared to travel time, the travel time is about

4" /Vma = 0.5 seconds for the present system, in which d = 1 mm. Of course, this

is at greater pressure differentials than used for the 10 and 30 cycle experiments. As

the machine is scaled down, the travel distance scales with the diameter, so travel

time is (0.5 s/mm)d.

For small d, PCR time is ultimately dominated by the extension time, which does

not scale with size. Taq can process DNA at9 100 bases/second, so a 500 base DNA

takes 5.0 seconds to extend.

The diameter is limited by the total number of copies of template. Less than ~100

template molecules will result in unreliable PCR. Concentrations > 5 x 10-14 M also

hurt the reaction [13]. Combining these two constraints results and keeping the same

the sample plug aspect ratio, it is determined that the minimum capillary diameter

is 0.11 mm.

Cycle time is comprised of the following factors: denaturing time, annealing time,

extension time, travel time, and heating time. Annealing and denaturing have been

7 1t is conservative since the critical Ca is a function of the Reynolds number Re and P6clet number

Pe. Re and Pe are proportional to d. As d decreases, Re and Pe decrease, which (as explained in

Chapter 8) should permit the critical Ca to increase to the values determined experimentally by

Olbricht and Kung [62]. From (8.10) and Table 8.2, we see that the other parameters that the
critical Ca depends on do not change with d.

8See Section 9.2.1. For d = 1 mm, the time constant for acceleration and deceleration is 0.53 ins.
9 See (2.27).

248



shown to take place almost instantly [99]. With good actuators, plug acceleration time

is overshadowed by constant velocity travel time. Fig. 10-1 shows how the minimum

times of the remaining significant factors scale with apparatus size. For a 500 bp

target, cycle time is completely dominated by extension time for d < 0.5 mm. From

this perspective, it is not worth scaling down to smaller diameters. Of course, the

point of diminishing returns varies with product length.

10.5 Nomenclature

Ca Capillary number. See Table 8.2.

d Capillary inner diameter.

Pe P6clet number. See Table 8.2.

Re Reynolds number. See Table 8.2.

vmax The maximum allowable plug velocity.
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Appendix A

Material Properties

PTFE (Polytetrafluoroethylene, a.k.a. Teflon)
Property 1 Value
density 2.280 x 103 to 2.290 x 10 kg/M3

heat capacity c 51.42 kJ/(kg - K) at 300 K
59.24 kJ/(kg - K) at 400 K

refractive index 1.376
service temperature -269OC to 260*C
thermal conductivity [4.86 x 10~" W/(m- K2)] - T + 0.253 W/(m- K)
refractive index 1.376 at 250C

Reference: [82]

Aluminum (2024-T6)
Property Value

Thermal conductivity 177 W/(m'K) at 300 K
1 186 W/(m.K) at 400 K

Specific heat c, 875 J/(kg.K) at 300 K
925 J/(kg.K) at 300 K

Density 2770 kg/m 3

Reference: [30]
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G-10 Composite

Property Value ] Value converted to S.I. units
Thermal conductivity 7.0 x 104 cal/(s.cm-*C) 0.29 W/(m-K)
Specific heat c, 0.35-0.40 cal/(g.*C) 1300-1700 J/(kg.K)
Density 1.80 g/cm3  1.80x103 kg/m

Reference: [33]

Mineral Oil (Product # 2705, J. T. Baker, Phillipsburg, NJ)
Property Value Reference
density 855kg/mli[2]
heat capacity cp 1.882 kJ/(kg - K) at 00 C [41]

3.263 kJ/(kg - K) at 4000 C [41]
thermal conductivity 0.14 W/(m - K) at OC [41]

0.11 W/(m - K) at 400*C [41]
kinematic viscosity 204 centistokes at 20*C experimental

64.0 centistokes at 39.6*C experimental
19.3 centistokes at G9.6*C experimental
18.2 centistokes at 71.7*C experimental
14.2 centistokes at 79.9*C experimental
11.9 centistokes at 86.6*C experimental
9.9 centistokes at 93.6'C experimental

refractive index 1.47 at 200 C [1]

Kinematic viscosities were determined using cross-arm viscometers (Technical Glass
Products, Dover, NJ). The heat capacity and thermal conductivity values were noted
by the reference to be linear within the temperature range given.
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Dry Air at Atmospheric Pressure
Coefficient
of Thermal Specific Thermal Thermal Absolute Kinematic

Temp. Density Expansion Heat c, Conductivity Diffusivity Viscosity Viscosity
* 0 C kg/m1/K J/(kg-K) W/(m-K) m2 /s N.s/m 2  m2 /s
0 1.252 3.66 x 10-3 1011 0.0237 1.92 x 10-5 1.7456 x 10~" 1.39 x 10--

20 1.164 3.41 x 10- 1012 0.0251 2.20 x 10I5 1.8240 x 10-5 1.57 x 10-5
40 1.092 3.19 x 10 1014 0.0265 2.48 x 10-5 1.9123 x 1O- 1.76 x 105
60 1.025 3.00 x 10-3 1017 0.0279 2.76 x 10- 1.9907 x 10-5 1.94 x
80 0.968 2.83 x 10-3 1019 0.0293 3.06 x 10-5 2.0790 x 10~5 2.15 x 10-5
100 0.916 2.68 x 10-3 1022 0.0307 3.36 x 105- 2.1673 x 10-9 2.36 x 10 '

Water at Saturation Temperature
Specific Thermal Absolute Kinematic

Temperature Density Heat c, Conductivity Diffusivity Viscosity Viscosity
*C kg/M 3  J/(kg-K) W/(m.K) m2 /s N-s/m 2  m2 /s
0 999.9 4226 0.558 1.31 x 10- 1.794 x 10-3 1.789 x 10-6
5 1000 4206 0.568 1.35 x 10-7 1.535 x 10- 1.535 x 106

10 999.7 4195 0.577 1.37 x 10- 1.296 x 10-3 1.300 x 10-6
15 999.1 4187 0.585 1.41 x 10~7 1.136 x 10 1.146 x 10-6
20 998.2 4182 0.597 1.43 x 10-7 9.93 x 10-4 1.006 x 10-6
25 997.1 4178 0.606 1.46 x 10- 8.806 x 10-4 8.84 x 10-7
30 995.7 4176 0.615 1.49 x 10- 7.924 x 10~4 8.05 x 10
35 994.1 4175 0.624 1.50 x 10~7 7.198 x 10-4 7.25 x 104
40 992.2 4175 0.633 1.51 x 10-7 6.580 x 10-4 6.58 x 10-7
45 990.2 4176 0.640 1.55 x 10-7 6.051 x 10~4 6.11 x 10
50 988.1 4178 0.647 1.57 x iO- 5.551 x i0~ 5.56 x 10-
75 974.9 4190 0.671 1.64 x 17 3.766 x 10~ 3.66 x 10-
100 958.4 4211 0.682 1.69 x 10- 2.775 x 10-4 2.94 x 10

Reference: [44]
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Solubility of Air in Water
Temp. a Temp. a Temp. a

*C CC C
0 29.18 x 10-3 12 21.87 x 10-3 24 17.38 x 10-3
1 28.42 x 10-3 13 21.41 x 103 25 17.08 x 10-3

2 27.69 x iO-3 14 20.97 x 10-3 26 16.79 x 10-3
3 26.99 x 10~3 15 20.55 x 10-1 27 16.50 x 10-3

4 26.32 x 10-3 16 20.14 x 10~3 28 16.21 x 10-
5 25.68 x 10-3 17 19.75 x 10' 29 15.92 x 10-3

6 25.06 x 10-3 18 19.38 x 10-3 30 15.64 x 10-3

7 24.47 x 10-3 19 19.02 x 10- 40 14.18 x10-3

8 23.90 x 10-3 20 18.68 x 10-3 50 12.97 x 10-3
9 23.36 x iO-, 21 18.34 x 10-3 60 12.16 x 10~3

10 22.84 x iO- 22 18.01 x 1O- 80 11.26 x 1O-
11 22.34 x 10~3 23 17.69 x 10-3 100 11.05 x 10-3

a is the volume of gas (in mL)
kPa) dissolved in 1 ml of water
gas without that of water vapor

measured at standard conditions (0CC and 101.325
at the temperature listed and when the pressure of
is 101.325 kPa. Reference: [20]
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