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Symmetry-protected topological (SPT) states are short-range entangled states with a symmetry G. They
belong to a new class of quantum states of matter which are classified by the group cohomology Hd+1(G,R/Z)
in d-dimensional space. In this paper, we propose a class of symmetry-protected topological invariants
that may allow us to fully characterize SPT states with a symmetry group G [i.e., allow us to measure the
cocycles in Hd+1(G,R/Z) that characterize the SPT states]. We give an explicit and detailed construction of
symmetry-protected topological invariants for 2 + 1D SPT states. Such a construction can be directly generalized
to other dimensions.

DOI: 10.1103/PhysRevB.89.075121 PACS number(s): 75.10.Jm, 73.43.Cd

I. INTRODUCTION

Quantum states of matter have shown a lot of fascinating
properties which require a completely new way of under-
standing. Recent study of long-range quantum entanglement
[1] (as defined through local unitary (LU) transformations
[2–4]) reveal a direct connection between entanglement and
gapped phases of quantum matter. The notion of long-range
entanglement leads to a more general and more systematic
picture of gapped quantum phases and their phase transitions
[1]. For gapped quantum systems without any symmetry, their
quantum phases can be divided into two classes: short-range
entangled (SRE) states and long-range entangled (LRE) states.

SRE states are states that can be transformed into direct
product states via LU transformations. LRE states are states
that cannot be transformed into direct product states via LU
transformations. There are many types of LRE states that
cannot be transformed into each other via the LU transfor-
mations. Those different types of LRE states are nothing but
the topologically ordered phases. Fractional quantum Hall
states [5,6], chiral spin liquids [7,8], Z2 spin liquids [9–11],
non-Abelian fractional quantum Hall states [12,13], etc., are
examples of topologically ordered phases.

For gapped quantum systems with symmetry, the structure
of phase diagram is even richer. SRE states now can belong to
different phases. The Landau symmetry breaking states belong
to this class of phases, where different states are characterized
by their different symmetries. However, even if there is no sym-
metry breaking, the SRE states that have the same symmetry
can still belong to different phases [14–16]. The 1D Haldane
phases for spin-1 chain [17,18] and topological insulators
[19–24] are examples of nontrivial SRE phases that do
not break any symmetry. Those phases are beyond Landau
symmetry breaking theory since they do not break any
symmetry. Those phases are called symmetry-protected
topological (SPT) phases, which have been under intense
study recently [25–47].

We know that topological order [48–50] (i.e., patterns
of long-range entanglement) cannot be characterized by the
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local order parameters associated with the symmetry breaking.
We have to use topological probes to characterize/define
topological order. It appears that we only need two topolog-
ical probes to characterize/define 2 + 1D topological orders:
(a) the robust ground state degeneracy that depends on the
spatial topologies [48,49] but cannot be lifted by any small
perturbations, and (b) the quantized non-Abelian geometric
phases from deforming the degenerate ground states [50,51].
Using ground state degeneracy and non-Abelian geometric
phases to characterize/define topological order is just like using
zero viscosity and quantized vorticity to characterize/define
superfluid order. In some sense, the robust ground state
degeneracy and the non-Abelian geometric phases (that gen-
erate modular representation of the degenerate ground states)
can be viewed as a type of “topological order parameters”
for topologically ordered states. Those “topological order
parameters” are also referred to as topological invariants of
topological order.

With the above understanding of topological order, we
would like to ask, What are the “topological order parameters”
or the symmetry-protected topological invariants that can
be used to characterize/define SPT states? One way to
characterize SPT states is to create a boundary, and then
study the boundary properties [14,27,28,31,39,40,46,52]. This
approach is very practical since the boundary can be probed
in experiments. But it is not convenient theoretically, since
the different ways to create the boundary can lead to different
boundary properties, even for the same bulk SPT state. Another
way to characterize SPT states is to gauge the on-site symmetry
[52] and use the introduced gauge field as an effective probe
for the SPT order [53]. This will be the main theme of this
paper. In Ref. [53], many SPT invariants are discussed and
constructed based on the structure of the group cohomology
class that described the SPT states. However, the construction
in Ref. [53] is not systematic and we often fail to find SPT
invariants that fully characterize the SPT state. In this paper,
we will try to systematically construct SPT invariants that can
fully characterize the SPT state.

We find that we can use the introduced gauge field in
a SPT state to “simulate” the degenerate ground states of
intrinsic topological order. We can even use the introduced
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gauge field in a SPT state to “simulate” the quantized non-
Abelian geometric phases describe by a unitary matrix U

from deforming the “simulated” degenerate ground states. We
propose an easy way to compute such non-Abelian geometric
phases: the matrix elements of U can be computed from the
overlap of a “simulated” degenerate ground state and its twist.
For example, in 2 + 1D, we have

〈α|Û |β〉 = e−L2/ξ 2+o(1/L)Uαβ, (1)

where L2 is the area of the system, |α〉,|β〉 are the “simulated”
degenerate ground states, and Û is the operator that generates
the twist [see Eqs. (10)–(12) for more details]. The coefficient
1/ξ 2 is not universal, while the factor Uαβ , we believe,
is universal [54,55]. We have a similar result for higher
dimensions.

We find a direct relation between the quantized non-Abelian
geometric phases and the topological partition function on
space-time which can be an arbitrary fiber bundle over
S1. The different choices of the twist Û correspond to
different fiber bundles. This makes us believe [56] that the
quantized non-Abelian geometric phases from deforming the
simulated degenerate ground states are the “topological order
parameters” or the SPT invariants that can be used to fully
characterize/define SPT states.

II. UNIVERSAL TOPOLOGICAL INVARIANTS
OF SPT ORDERS

A. Symmetry twist

In order to use introduced gauge field to “simulate” the
degenerate ground states, let us introduce the notion of “sym-
metry twist.” We first assume that the 2D lattice Hamiltonian
for a SPT state with symmetry G has a form (see Fig. 1)

H =
∑
(ijk)

Hijk, (2)

where
∑

(ijk) sums over all the triangles in Fig. 1 and Hijk

acts on the states on site i, site j , and site k: |gigjgk〉. (Note
that the states on site i are labeled by gi ∈ G.) H and Hijk are
invariant under the global G transformations.

Then we perform a G transformation, h ∈ G, only in the
shaded region in Fig. 1. Such a transformation will change H

to H ′. However, only the Hamiltonian terms on the triangles
(ijk) across the boundary are changed from Hijk to H ′

h,ijk .
Since the g ∈ G transformation is a unitary transformation,

h

FIG. 1. (Color online) A 2D lattice on a torus. A h ∈ G trans-
formation is performed on the sites in the shaded region. The h

transformation changes the Hamiltonian term on the triangles (ijk)
across the boundary (the loop) from Hijk to H ′

h,ijk .

x

y

h

h

FIG. 2. (Color online) The Hamiltonian H
gauged
hx ,hy

with two sym-
metry twists hx and hy along the loops in the y and x directions,
respectively. The shaded triangles (ijk) across the the loop contain
Hamiltonian terms H ′

hx ,ijk or H ′
hy ,ijk .

H and H ′ have the same energy spectrum. In other words
the boundary in Fig. 1 (described by H ′

h,ijk’s) do not cost any
energy.

Now let us consider a Hamiltonian on a lattice with a “loop”
(see Fig. 1):

H
gauged
h =

∑
(ijk)

′
Hijk +

loop∑
(ijk)

H ′
h,ijk, (3)

where
∑′

(ijk) sums over the triangles not on the loop and
∑cut

(ijk)
sums over the triangles that are divided into disconnected
pieces by the loop. We note that the loop carries no energy. The
Hamiltonian H

gauged
h defines the symmetry twist generated by

h ∈ G. We would like to point out that the above procedure to
obtain H

gauged
h is actually the “gauging” of the G symmetry.

H
gauged
h is a gauged Hamiltonian that contains a locally flat

gauge configuration.

B. Simulating nearly degenerate ground states

The 2 + 1D topologically ordered states usually have
topologically robust nearly degenerate ground states on a torus.
Such nearly degenerate ground states can be simulated in SPT
states via the symmetry twists discussed above.

To simulate the nearly degenerate ground states on a torus,
we consider a SPT state on a torus with two symmetry twists hx

and hy along the loops in the y and x directions, respectively
(see Fig. 2). The resulting Hamiltonian is denoted as H

gauged
hx,hy

,
and its unique ground state is denoted as |�hx,hy

〉.
We note that the loops in the y and x directions intersect. In

order that the intersecting point does not cost any energy (i.e.,
in order for the gauged Hamiltonian to describe a locally flat
gauge configuration), we require that

[hx,hy] = 0. (4)

|�hx,hy
〉 with commuting hx,hy simulates the nearly degener-

ate group states.
A symmetry twist locally breaks the global symmetry, and

group action can be defined on them. In our construction, a
twist characterized by a group element h is transformed to
h → ghg−1; i.e., the group acts by conjugation. Therefore,
twists connected by orbits of the group action fall into the
same conjugacy class. This is analogous to the usual quotient
group G/H classification of defects, where H is a normal
subgroup keeping the defect invariant. It is then clear that
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FIG. 3. (Color online) (a) A system on a torus with two symmetry
twists in the x and y directions. Note that the torus has the same size
L in the x and y directions. (b) The S transformation of the torus, and
the resulting new symmetry twists.

the G symmetry implies that the ground states |�hx,hy
〉 and

|�ghxg−1,ghyg−1〉 of H
gauged
hx,hy

and H
gauged
ghxg−1,ghyg−1 , respectively,

connected by a group action I (g),g ∈ G, i.e.,

I (g)
∣∣�hx,hy

〉 = I(ghxg−1,ghyg−1),(hx,hy )

∣∣�ghxg−1,ghyg−1

〉
, (5)

for some characteristic U (1) phase I(ghxg−1,ghyg−1),(hx,hy ) have
exactly the same energy. In an intrinsic topological order
constructed from the gauged theory with the same group
G, it is the equivalence class {|�ghxg−1,ghyg−1〉|g ∈ G} that
corresponds to a single nearly degenerate group state.

If G is Abelian and finite, each equivalent class contains
only one state |�hx,hy

〉, and the total number of equivalent
classes is |G|2, where |G| is the number of elements in G.
This agrees with the topological ground state degeneracy of
G-gauge theory on a torus which is also |G|2 if G is Abelian.

C. Simulate the non-Abelian geometric phases

Using the simulated degenerate ground states and assuming
that the Hamiltonian is translation invariant, we can also
simulate the non-Abelian geometric phases in the topological
order. Let �hx,hy

({gix,iy }) be the wave function of |�hx,hy
〉:

∣∣�hx,hy

〉 =
∑

{gix ,iy }
�hx,hy

({
gix,iy

})∣∣{gix,iy

}〉
, (6)

where we have assumed that our system is on a square lattice
with periodic boundary condition, and the physical states on
each site, (ix,iy), are labeled by gix,iy . The symmetry twists
hx,hy are given in Figs. 3(a) and 4(a).

h

h

x

y h y

h x

(a) (b)

h x

(c)

h y h x

FIG. 4. (Color online) (a) A system on a torus with two symmetry
twists in the x and y directions. Note that the torus has the same size
L in the x and y directions. (b) The T transformation of the torus,
and the resulting new symmetry twists. (c) After local symmetry
transformation hx in the shaded region, the symmetry twists in (b)
become symmetry twists in the x and y directions.

Now let us consider the modular transformations of the
lattice (

ix
iy

)
→ W

(
ix
iy

)
, W ∈ SL(2,Z), (7)

which maps the torus to torus. The modular transformations
are generated by

S0 =
(

0 −1
1 0

)
, T0 =

(
1 1
0 1

)
. (8)

The state |�hx,hy
〉 changes under the modular transformation.

Let us define∣∣�S
hx,hy

〉 =
∑

{gix ,iy }
�hx,hy

({
g−iy ,ix

})∣∣{gix,iy

}〉
,

(9)∣∣�̃T
hx,hy

〉 =
∑

{gix ,iy }
�hx,hy

({
gix+iy ,iy

})∣∣{gix,iy

}〉
.

We note that the state |�S
hx,hy

〉 and the state |�h′
x ,h

′
y
〉 have the

same symmetry twists if (h′
x,h

′
y) = (h−1

y ,hx). Thus we define
a matrix

Ŝ(h′
x ,h

′
y ),(hx,hy ) = δh′

x ,h
−1
y

δh′
y ,hx

〈
�h′

x ,h
′
y

∣∣�S
hx,hy

〉
. (10)

However, |�̃T
hx,hy

〉 and |�h′
x ,h

′
y
〉 always have different

symmetry twists [see Fig. 4(b)]. To make their symmetry
twists comparable, we make an additional local symmetry
transformation hx in the shaded region Fig. 4(b), which
changes |�̃T

hx,hy
〉 to |�T

hx,hy
〉. Now |�T

hx,hy
〉 and |�h′

x ,h
′
y
〉

have the same symmetry twists if (h′
x,h

′
y) = i(hx,hyhx) [see

Fig. 4(c)]. Thus we define a matrix

T̂(h′
x ,h

′
y ),(hx,hy ) = δh′

x ,hxhy
δh′

y ,hy

〈
�h′

x ,h
′
y

∣∣�T
hx,hy

〉
. (11)

As is evident from the expressions above, for given pair
{hx,hy}, it uniquely specifies the values of Ŝ and T̂ , since
the bra state 〈�h′

x ,h
′
y
| with nontrivial overlap with the modular

transformed state depends solely on the choice of |�hx,hy
〉.

This suggests that we might as well view Ŝ and T̂ as
some functions of {hx,hy}, i.e., Ŝ(h′

x ,h
′
y ),(hx,hy ) = FS̃(hx,hy) and

similarly T̂(h′
x ,h

′
y ),(hx,hy ) = FT̂ (hx,hy).

Note that both Ŝ(h′
x ,h

′
y ),(hx,hy ) and T̂(h′

x ,h
′
y ),(hx,hy ) depend on the

size L of the torus (which is the same in the x and y directions).
Here we conjecture that Ŝ(h′

x ,h
′
y ),(hx,hy ) and T̂(h′

x ,h
′
y ),(hx,hy ) have

the forms

Ŝ(h′
x ,h

′
y ),(hx,hy ) = e−ASL2+o(1/L)S(h′

x ,h
′
y ),(hx,hy ),

(12)
T̂(h′

x ,h
′
y ),(hx,hy ) = e−AT L2+o(1/L)T(h′

x ,h
′
y ),(hx,hy ),

where AS and AT are two complex constants (with positive
real parts), and S(h′

x ,h
′
y ),(hx,hy ) and T(h′

x ,h
′
y ),(hx,hy ) are topological

invariants that are independent of any local perturbations of the
Hamiltonian that respect the translation symmetry. This is one
of the main results of this paper. It is possible that S(h′

x ,h
′
y ),(hx,hy )

and T(h′
x ,h

′
y ),(hx,hy ), together with the group action operator I (g),

fully characterize the SPT states with a symmetry group G in
2 + 1D. In the rest of this paper, we will compute S and T

for 2 + 1D SPT states described by ideal fixed point wave
functions [14–16].
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III. COMPUTE THE UNIVERSAL TOPOLOGICAL
INVARIANTS FOR SPT ORDERS

In the previous section, we have introduced the notion of
symmetry group action matrix I (g) and modular matrices S

and T acting on a basis states containing a pair of twists on a
torus in an SPT phase. In this section, we would like to discuss
how these quantities are computed in idealized fixed point
wave functions describing an SPT phase, and the procedure to
restore the topologically invariant information stored in these
objects.

A. Twisting the SPT

It is known that the fixed point wave function of a SPT
is blind to the group cohomology data of the system, whereas
that of the related topological gauge theory is a very interesting
object. The group cohomology data are revealed in the gauge
theory through field configurations consisting of Wilson loops
that wind nontrivial cycles. This corresponds to link variables∏

ij∈loop μij , where i,j, . . . are vertices along a loop. If this
is a flat connection, and the loop is contractible, this Wilson
loop evaluates to 1. These loops are exactly the gauge theory
version of the loops introduced in Eq. (3). The only difference
is that in a gauge theory these loops are dynamical degrees of
freedom that can be excited anywhere, whereas in Eq. (3) they
appear in a designated place.

In the discussion surrounding (3), the manifold is basically
assumed open, such that there is a clear notion of a region inside
of the given loop and a region outside. More generally, say on
a torus or more general higher genus surfaces, by insisting
that vertices “inside” a noncontractible loop get transformed
by h, we are essentially defining a branch cut along the
noncontractible loop, and the field configuration is not single
valued. Such configurations are not usually considered in
the SPT path integral, because the path integral over field
configuration g(x) includes only single-valued maps g(x) to
the target space G. It is however a well-defined link variable
from the point of view of the gauge theory.

To reiterate, these twists correspond to a “twisted” boundary
condition in the field configuration g(x). In particular, in the
case of a finite group on a lattice, closed loops are represented
by a set of lattice vectors e = {ex,ey, . . .}, which specifies
shifts on the lattice that take one between identified vertices;
a Wilson loop in the SPT phase can be implemented by

gi+e = gi × he. (13)

This is practically how we specify field configuration on
the idealized lattice wave function corresponding to the
transformation effected on the Hamiltonian described in the
diagram (2).

The path integral of the SPT phase now sums over all maps
g(x) satisfying the given twisted boundary condition specified
above. Schematically, the SPT path integral would be given by

ZSPT =
∫

D[g(x)]|gi+eμ=gi×hμ
eiS[g(x)]. (14)

This however should be contrasted with the path integral
of the topological gauge theory where all different gauge
configurations or Wilson loops have to be summed over. In
the SPT path integral the “Wilson loops” are twisted boundary

conditions, and are thus fixed. Such boundary conditions
would lead to interesting dependence of the SPT path integral
and ultimately the S and T matrices on the group cohomology
data, as we will demonstrate in some simple examples in the
following sections.

B. Examples for finite groups

In order to set the notations for our results, let us begin with
a review of the idealized fixed point wave functions on a lattice
describing an SPT with global symmetry group G.

1. Some preamble on idealized fixed point wave functions

Let us consider the path integrals or fixed point wave
functions in greater detail in the case of finite group G on a
discrete lattice. This requires a triangulation of the space-time
manifold M which we denote as Mtri, the space-time complex.
The action amplitude is then the product of the amplitude
of each d simplex Td of Mtri. The amplitude νd ({gva∈Td

})
on each Td is a U (1) phase that depends on the “field
configuration” gva

∈ G and va ∈ Td denotes the d vertices on
Td . As shown in Ref. [15] and briefly discussed above, these
phases νd ({gva∈Td

}) satisfy the d-cocycle condition and the
distinct equivalence classes in the group cohomology group
Hd (G,U (1)) correspond to different phases. To evaluate νd

on each simplex for a given representative of an equivalence
class in Hd (G,U (1)), one needs also to assign a local order
of the vertices. This gives an orientation to each edge and
also determines the orientation of the simplex. Such an order
is called a branching structure. The cocycle is therefore a
function of the field configurations on the ordered vertices
νd (gi0 ,gi1 , . . . ,gid ), i0 < i1 < · · · < id . Such a local ordering
can also be obtained if we assign a global ordering to all the
vertices in the complex Mtri. As discussed in the previous
section, we would like to evaluate the action amplitude with
twisted boundary conditions.

In general, there would be nontrivial cycles in a closed
orientable manifold. As we described in the previous section,
nontrivial closed loops can be represented by a set of shift
vectors e = {ex,ey, . . .} on the lattice where vertices related
by the shift are identified. Let us emphasize that these lattice
vectors serve to specify how the multiple (i.e., infinite in this
case) copies of the space-time manifold M are identified and
are not related to the lattice discretization in the triangulation
Mtri. In this light, the twisted boundary condition is given by

gi+e = gihe, (15)

for a fixed set of group elements he assigned to each of
the d 1-cycles. The choice for he along each 1-cycle is
not completely arbitrary. Very much like the case of Wilson
loops in lattice gauge theory, they have to satisfy consistency
conditions. The basic rule is that the aggregate twist element
along a contractible loop has to be the identity. For example,
on a d torus since eμ + eν − eμ − eν is a contractible loop for
any μ,ν ∈ {1, . . . ,d}, it means [heμ

,heν
] = 1 for all pairs. This

is precisely the same condition already described in Sec. II.
To evaluate the action amplitude therefore, we pick a

fundamental region among the multiple copies of space-time
manifold introduced. The boundaries of the fundamental
region are thus d − 1 dimensional surfaces with normal vectors
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given by e = {ex,ey, . . .}. Action amplitudes of simplices
lying well within the fundamental region can be evaluated
as usual. For a simplex that crosses the boundary with outward
normal ±e, the action amplitude is ν(g̃i1 , . . . ,g̃id ), such that
g̃in = gin for the vertex in within the fundamental region,
but otherwise g̃in = ginh

±
ν according to the twisted boundary

condition Eq. (15).
In other words, in a general d manifold M , the twisted

boundary condition above where the field is shifted across
a closed loop defined by the shift vector e corresponds to
introducing some d − 1 dimensional branch surfaces (whose
precise positions are arbitrary and fixed by some chosen
convention as in the choice above for a d torus) such that the
field acquires a “twist” he when the cut surface with normal
vector e is crossed.

In order to make direct parallels with the case of lattice
gauge theories we also require that the numbering of the vertex
in satisfies a twisted boundary condition

in(va + ei) → in + i × Nv, (16)

where Nv is the total number of vertices in Mtri. The virtue
is that this gives a unique orientation to all the edges if we
stay in one fundamental region of the lattice, and that edges
that are identified in different unit cells would have consistent
orientations. The path integral of the SPT phase is now given
by

ZSPT({hi}) = |G|−Nv

∑
{gva }

∏
k

{
νd

({
gva

}
T k

d

)}
εk . (17)

In the presence of these twists {hi}, the path integral would
depend nontrivially on the cohomology classes.

2. d = 3

Having discussed very generally the construction of these
twisted path integrals in general dimensions, let us focus
particularly on the interesting case of d = 3. As a warm up,
it is useful to first consider the special case where the three
space-time manifolds concerned are given by Y × S1, where Y

is a 2-sphere with three holes. The triangulation is represented
in Fig. 5, where the sphere is represented by the triangle whose
three vertices are identified, and the holes by the three edges,
and S1 corresponds to the vertical edge perpendicular to the
triangle.

We can again assign twist boundary conditions on the
noncontractible cycles of Y .

FIG. 5. (Color online) The cellurarization into three tetrahedrons
of Y × S1.

A group element is assigned to each of the cycles, subjected
to the flatness condition on the triangle. The consistency
condition also immediately follows:

[h,gi] = 1. (18)

Again, the above condition is a result of considering the
group element assignment to diagonals on any of the vertical
rectangles. Since the manifold is open, no summation is
required over the group elements, and the path-integral with
the orientation assignment as in the figure is given by

ZY×S1 = α(h,g1,g2)α(g1,g2,h)

α(g1,h,g2)
≡ ch(g1,g2). (19)

Here for convenience we denote ν3(g0,g1,g2,g3) ≡
α(g−1

0 g1,g
−1
1 g2,g

−1
2 g3), where the cocycles expressed in the

form α are typically used in defining a lattice gauge theory in
which gauge degrees of freedom sit on the links connecting the
vertices. One important feature to notice is that in the path inte-
gral above the twists on closed loops h,g1,g2 are not summed
over, since they correspond to specific boundary conditions of
the field configurations, contrasting what happens in a gauge
theory when the link variables are dynamical and has to be
summed.

This combination of three cocycles is denoted ch(g1,g2)
because it can be readily shown that it is a 2-cocycle of
the group Nh, where Nh ⊂ G denotes the subgroup whose
elements commute with h. From the relation between ch(g1,g2)
and the 3-cocycles α, we should rewrite ZY×S1 = cε

h(g1,g2). If
the orientation of the triangle aligns with that of the vertical
edge we obtain ε = +1, and ε = † otherwise.

3. Group action and modular matrices

As it is well known that path integrals evaluated on an open
d space-time manifold with a d − 1 dimensional boundary
surface with specific boundary conditions, we are essentially
defining a basis of quantum states in a Hilbert space. Operators
acting on this basis of states would appear as a path integral
over a space-time manifold that connects the two different
d − 1 dimensional surfaces where the quantum state is defined.
Geometrically, an operator is therefore a cylindrical object
with two different boundary conditions at the top and bottom,
and whose path integral is interpreted as the matrix element
M�1�2 |�1〉〈�2|. They are depicted in Fig. 6.

Now in particular, we can consider placing the system on
a solid torus. The boundary is a two torus which has two
noncontractible cycles, although one of them is contractible in
the interior of the torus. See Fig. 7.

The path integral on the solid torus thus defines a basis
for the Hilbert space on the surface torus. In particular, the
basis is built up by setting different boundary conditions on
the torus, including different twisted surface configurations
where nontrivial branch cuts are placed on the boundary. These
branch cuts extend into branch surfaces inside the solid torus
and could end in the interior. Since there are two nontrivial
closed cycles, the distinct basis states are specified by the
nontrivial twists along each cycle |�hx,hy

〉. In the following,
for simple notations, we denote each state |�hx,hy

〉 simply as
∣∣�hx,hy

〉 ≡ |hx,hy〉. (20)
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FIG. 6. (Color online) An operator acting on a set of basis states
defined on a 2d torus. The top and bottom surface rectangles
correspond to two states defined on a torus.

It is a property of the ground state fixed point wave function
of the SPT phase defined on an open manifold that it is
insensitive to the triangulation up to a phase which can be
absorbed into the definition of the wave function of the state.
This fact will be important as we explore quantities that are
genuinely free of phase ambiguities. Let us in the meantime
make a convenient choice of our basis states with specific
branch cuts on the surface torus by picking the simplest
possible surface triangulation where there is only one vertex
on the boundary, as depicted in Fig. 8. Vertices labeled 1 to
4 are identified. Our choice of basis states is also depicted in
Fig. 8; i.e., in the figure we have |�hx,hy

(g1)〉, where g1 ∈ G

is the field degree of freedom sitting at the one vertex of the
torus, and hx,hy are the twists across the two one-cycles. Note
that the path integral has no dependence on g1. Note also
that in the topological gauge theory, where the symmetry is
gauged, each ground state on a torus is given by the sum of
a state characterized by the pair |hx,hy〉 and all its conjugates
|ghxg

−1,ghyg
−1〉, where g ∈ G. This can be thought of as a

projection onto G-invariant states. As already emphasized in
the previous section, in a SPT the orbits of states under the
action of G give rise to a set of physical degenerate states.

The surface torus is invariant under modular transformation.
Under such a transformation, it is in fact a reparametrization of
the torus, and thus the Hilbert space has to be invariant under
the transformation, except that our canonical choice of basis
states would be rotated between themselves.

FIG. 7. (Color online) The depiction of a solid torus. The colored
surfaces correspond to the position of the branch surfaces across
which a vertex field degree of freedom is twisted by a group element.
The loop on the surface torus that is contractible in the solid torus
extends into a branch surface that ends in the interior of the solid
torus (blue surface).

FIG. 8. (Color online) Our choice of basis states parametrized by
different twists across branch cuts (dotted lines) on the surface of a
solid torus.

Therefore, we can construct modular transformation matri-
ces that act on the basis states. These transformation matrices
can be understood geometrically as a cylindrical object that
connect two different solid torus related by a twist. They can
thus be expressed as a product of cocycles.

Let us present here the explicit form of both the S and T

generators of the modular group, and also the group action
operator I (g).

The S transformation corresponds to rotating the torus,
where the complex structure τ → −1

τ
. The T transformation

corresponds to a shear transformation where the complex
structure τ → τ + 1. These transformations are depicted in
Figs. 9 and 10.

The S operator, being a path integral on a cylindrical object
that connects the above two parametrizations, can thus be
triangulated and expressed in terms of the 3-cocycles. The
same construction appears also in topological lattice gauge
theories, as in Ref. [58]. We first define an S operator that
involves a nontrivial twist along the vertical direction (along
the cylinder) leading to branch cuts in the new surface torus
conjugated by element x ∈ G. Choosing hx = h,hy = g, we
have

S(x)|h,g〉 = (α(hg−1,g,x)α(g−1h,gx,x−1g−1x)

×α(gx,x−1g−1x,x−1hx)

×α(x−1hx,x−1g−1h−1x,x−1hx)

×α(g,x,x−1g−1hx))(α(g,g−1h,x)

×α(x,x−1hx,x−1g−1x))−1|x−1g−1x,x−1hx〉.
(21)

FIG. 9. (Color online) The T transformation involving a
reparametrization of the surface torus. The blue labels correspond
to the new parametrization, and the blue solid lines outline a
parallelogram which is the new choice of unit cell.
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FIG. 10. (Color online) The S transformation involving a
reparametrization of the surface torus. The blue labels correspond
to the new parametrization, equivalent to rotating the torus by 90
degrees. The blue diagonal correspond to the canonical triangulation
we have chosen, now with respect to the new parametrization.

Similarly, we can read off the T matrix with vertical twist
x as

T (x)|h,g〉 = (α(hg−1,g,x)α(hg−1,gx,x−1g−1x)

×α(g,x,x−1hg−1x)α(gx,x−1g−1x,x−1hx))

× (α(g,hg−1,x)α(x,x−1hx,x−1g−1x)

×α(x−1g−1x,x−1ghx,x−1g−1x))−1

× |x−1hx,x−1ghx〉. (22)

The group action matrix I (x) on the other hand preserves
the parametrization of the surface tori, but introduces a vertical
x twist, leading to a conjugation of the branch cuts on the
surface tori. Explicitly, it is given by

I (x)|h,g〉
= (α(g−1h,g,x)α(g−1h,x,x−1gx)−1

×α(x,x−1g−1hx,x−1gx)α(x,x−1gx,x−1g−1hx)−1

×α(g,x,x−1g−1hx)α(g,g−1h,x)−1)

× |x−1hx,x−1gx〉. (23)

Since the S(x) and T (x) transformation corresponds to a
reparametrization of the torus (in conjunction with shifting
the jumps across the branch surfaces by conjugating by x),
the position of the branch cuts essentially did not move. They
only appear different because we have made a different choice
of the unit cell after the reparametrization. Another way to
view the transformation is that it maps the three one cycles
[v1v2], [v2v3], and [v3v4] to another three, v′

1v
′
2, v′

2v
′
3, and

v′
3v

′
4 according to the new parametrization as demonstrated in

Figs. 10 and 9. We could easily rearrange the branch cuts so
that they take the same canonical shape with respect to the new
unit cell, but the twist is shifted by suitable group elements.

Note that S(x) = S(1)I (x) and similarly T (x) = T (1)I (x).

C. Caution: Fixing phase ambiguity and true
topological invariants

We would like to pause here and deal with a very important
issue: as already noted above, there are phase ambiguities in
our choice of basis states. Therefore the I,S, and T matrix
components are generally ill defined quantities. There are
two sources of phase ambiguities. First, the three cocycles
α are subjected to an ambiguity. They can be rescaled by a

coboundary built on 2-cochains β(g,h) as follows:

α′(g,h,k) = β(g,hk)β(h,k)

β(g,h)β(gh,k)
α(g,h,k). (24)

Upon rescaling, S(x) and T (x) are rescaled as follows:

〈g−1,h−1|S(x)|h,g〉
→ 〈h,g−1|S(x)|g,h〉

× β(g,g−1h)

β(g−1h,g)

β(x−1h−1g−1x,x−1hx)

β(x−1hx,x−1h−1g−1x)
(25)

and

〈x−1hx,x−1ghx|T (x)|h,g〉
→ 〈x−1hx,x−1ghx|T (x)|g,h〉

× β(g,g−1h)

β(g−1h,g)

β(x−1g−1x,x−1ghx)

β(x−1ghx,x−1g−1x)
. (26)

Similarly,

〈x−1gx,x−1hx|I (x)|g,h〉
→ 〈x−1gx,x−1hx|I (x)|g,h〉

× β(g,g−1h)β(x−1g−1hx,x−1gx)

β(g−1h,g)β(x−1gx,x−1g−1hx)
. (27)

This suggests that the surface states are simply rescaled by

|h,g〉 → β(g,hg−1)

β(g−1h,g)
|h,g〉. (28)

Second, as noted already earlier, we have picked a particular
triangulation of our tori. For a different choice of triangulation,
that corresponds to filling in extra 3-cocycles α. To illustrate
that, consider a small change in triangulation in which we
replace the solid line joining vertices 2 and 3 by one which
joins vertices 1 and 4 in Fig. 8. This change of triangulation
would amount to an extra factor given by α(hy,h

−1
y hx,hy),

which originates from fitting an extra three tetrahedral on the
surface of the torus.

The matrix elements of I (x),S(x), and T (x) therefore
generally suffer from these phase ambiguities, since they
correspond to overlaps of wave functions each plagued by
phase ambiguities.

A natural way to construct invariant quantities is to consider
combinations of I (x),S(x),T (x) that generate a closed orbit in
the basis states. As shown in Fig. 11, a closed orbit connects
the same state so that any phase ambiguity would be canceled
out between the state and its own complex conjugate. One
salient example is the combination (ST )3. What does this
combination of wave function overlaps correspond to from
the perspective of path integrals of topological theories? This
in fact is precisely the path integral over a closed manifold. It
is well known that a three-manifold M can be decomposed
into two “handle bodies” M1,M2 of genus g by cutting
M along a genus g surface. This is known as “Heegard
splitting.” To reproduce M , the surfaces of M1,M2 have to
be identified in a nontrivial way. In particular, for g = 1,
the nontrivial identification corresponds precisely to doing
modular transformations, S,T on the surface torus of M1

before gluing with M2. Therefore, path integrals on such an M
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hy

hx

I

S

T

FIG. 11. (Color online) hx,hy describe the symmetry twists in
the x and y directions, which label the simulated degenerate ground
states on a torus. The action of the S, T , and I change one simulated
degenerate ground state to another. A closed orbit can be generated
by repeated actions of the S, T , and I operators.

in topological quantum field theories take precisely the form

ZM =
∑
|�〉

〈�|
|�〉, 
 ∈ SL(2,Z), (29)

where |�〉 is the quantum state defined by the path integral
on the open manifolds M1,M2, and ZM is the overlap of the
same quantum state after insertion of modular transformation
operators 
, which are combinations of S and T . This is
indeed what the wave function overlap computes, in which
the M1 and M2 each correspond to a T 2 × R. In the case of
topological gauge theories, we project |�〉 to a gauge-invariant
state, by the projector

∑
x∈G I (x), and then finally, we also

sum over all the states |�〉. In the case of the SPT phase,
however, no such projection is necessary, and the basis states
with given twists h,g are background configurations that
should not be summed over. We can thus keep I (x) as an
extra operator in our toolbox in addition to S and T , which we
could use to operate on our basis states defined on the surface
torus on M1, before taking overlap with the state defined on
the surface of M2. Therefore, our wave function overlaps are
precisely path integrals of the topological theory underlying
the SPT phase over some closed manifold M .

1. ZN

Consider specifically ZN groups. The 3-cocycle of ZN is
given by [57]

αk(g1,g2,g3) = exp

(
2πikḡ1

N2
[ḡ2 + ḡ3 − (g2 + g3)]

)
,

(30)

for some appropriate k ∈ Z, gi ∈ ZN , and x̄ = x mod N

for x ∈ Z. There are altogether N distinct choices of k

that give rise to representatives of the N different group
cohomology classes in H 3(ZN,U (1)). However, this gives
I (x) = 1 identically, independently of the choices of branch
cuts h,g or the choice of 3-cocycle specified by k.

Let us also inspect the form of the S and T matrix of
ZN . For concreteness, let us look at a few simple cases.
Substituting into the cocycles, we have, say for N = 2, the
following nonvanishing components:(〈0,0| S(1) |0,0〉 〈1,0| S(1) |0,1〉

〈0,1| S(1) |1,0〉 〈1,1| S(1) |1,1〉
)

=
(

1 (−1)k

(−1)k (−1)k

)
.

(31)

Similarly(〈0,0| T (1) |0,0〉 〈0,1| T (1) |0,1〉
〈1,1| T (1) |1,0〉 〈1,0| T (1) |1,1〉

)
=

(
1 1
1 (−1)k

)
.

(32)

Just to give an example where g−1 	= g, we inspect also the
form of N = 3, which evaluates to⎛

⎝〈0,0| S(1) |0,0〉 〈2,0| S(1) |0,1〉 〈1,0| S(1) |0,2〉
〈0,1| S(1) |1,0〉 〈2,1| S(1) |1,1〉 〈1,1| S(1) |1,2〉
〈0,2| S(1) |2,0〉 〈2,2| S(1) |2,1〉 〈1,2| S(1) |2,2〉

⎞
⎠

=

⎛
⎜⎝

1 exp
(

2ikπ
3

)
exp

(
4ikπ

3

)
exp

(
4ikπ

3

)
exp

(
2ikπ

3

)
exp

(
4ikπ

3

)
exp

(
2ikπ

3

)
exp

(
4ikπ

3

)
exp

(
2ikπ

3

)

⎞
⎟⎠ . (33)

Correspondingly,⎛
⎝〈0,0| T (1) |0,0〉 〈0,1| T (1) |0,1〉 〈0,2| T (1) |0,2〉

〈1,1| T (1) |1,0〉 〈1,2| T (1) |1,1〉 〈1,0| T (1) |1,2〉
〈2,2| T (1) |2,0〉 〈2,0| T (1) |2,1〉 〈2,1| T (1) |2,2〉

⎞
⎠

=

⎛
⎜⎝

1 1 1

exp
(

2ikπ
3

)
1 1

exp
(

4ikπ
3

)
exp

(
4ikπ

3

)
1

⎞
⎟⎠ . (34)

These quantities, as we discussed, are subjected to rescal-
ing. There is however a very convenient set of invariants for
cyclic groups. Consider acting the operator T on a state N

times, where N is the order of the group– that necessarily
takes us back to the same state. In the case of ZN , this gives

〈h,g|T N |h,g〉 = exp

(
2πi(h − 1)2k

N

)
, (35)

where k is the parameter specifying the 3-cocycle as we
described above. This quantity turns out to be sufficient to
distinguish all the different ZN SPT phases. The combination
(ST )3 however evaluates to 1 always.

2. ZN × ZN × ZN

The group elements of the group are denoted by a “three-
vector” g = (g1,g2,g3). The cohomology groupH3(Z3

N,U (1))
has seven generators. Six of them involve only two of the three
ZN , which lead to trivial results. The interesting generator
intertwines the threeZN . The corresponding topological gauge
theory contains non-Abelian anyons. This set of cocycles takes
the following form:

αk(h,g,l) = exp

(
2πki

N
h1g2l3

)
. (36)

Note that the action of I (x) becomes x dependent for this set
of cocycles.

Evaluating on T 2 × S1 gives

ZT 2×S1 (h,g,x)αk
= exp

(
2πki

N
(h.g × x)

)

= 〈h,g| I (x) |h,g〉, (37)

where [x,g] = [x,h] = [h,g] = 1, and h · g × x =
εabchagbxc. In this case, therefore, we find that each
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element of I (x) is a topological invariant capable of
distinguishing all these nontrivial 3-cocycles.

We can also evaluate S(1) and T (1). In fact, for N = 2,
T (1) simplifies to

〈h,gh|T (1)|h,g〉 = exp[πki(h1g2g3 + h2g1g3 + h3g1g2)].

(38)
Similarly, S(1) is given by

〈g−1,h|S(1)|h,g〉 = exp(πki(g1g2g3 + h1h2h3

+h1g2g3 + g1g2h3 + h1g2h3)). (39)

In this case of course the matrix elements of T N are again
topological invariants. With I (x) and the matrix elements of
T N one can distinguish all possible SPT phases with ZN ×
ZN × ZN symmetries. Related observations in the context of
SPT phases on a cylinder is reported in [59].

3. Some examples of non-Abelian groups

Let us also inspect some simple cases with non-Abelian
symmetry groups. In particular, the simplest such example is
the dihedral group DN , for N odd. The 2N group elements
can be represented as a pair (A,a), where A ∈ {0,1}, and a ∈
{0, . . . ,N − 1}. The group product is given by

(A,a) × (B,b) = ((A + B)Mod 2,(−1)Ba + b)Mod N . (40)

The group cocycles are given by

αk(g,h,l) = exp

[
2πik

N2

(
(−1)H+Lg((−1)Lh + l

− [(−1)Lh + l]Mod N ) + N2GHL

2

)]
, (41)

where as explained above a group element g corresponds to
the pair (G,g), and with an abuse of notation we use the same
symbol g also for the second component in the pair, where it
is ∈ZN .

Evaluated on T 2 × S1, one again requires that the
monodromies across each of the branch cuts, given by h,g,x,
have to be mutually commuting. In the dihedral groups
where N is odd, two elements g1 given by (G1,g1) and g2

corresponding to (G2,g2) are mutually commuting if and only
if they belong to one of the following situations: (1) they are
both in the ZN subgroup where G1 = G2 = 0; (2) if g1 and g2

are the same group element; (3) either g1 or g2 is the identity
element (0,0). As a result

αk(g,h,l)

αk(g,l,h)
= 1 (42)

for any k if g,h,l are mutually commuting. As a result, it is
also clear from Eq. (23) that the partition function on T 2 × S1

is unity for any set of allowed branch cuts.
We could also look at some examples of I (x). It is not hard

to check that for odd values of N

〈x−1hx,x−1gx|I (x)|h,g〉

= exp

(
2πki(−1)G+X

N2
[(g−1h)〈(−1)Xg+x(1 − (−1)G)〉

− (−1)H g〈(−1)Xg−1h + x(1 − (−1)G+H )〉]
)

, (43)

where the pointed bracket above means 〈n〉 = n − (n)Mod N .
The T (1) matrix can be simplified to

〈h,gh|T (1)|h,g〉 = α(g,g−1,h)α(g−1,h,g)α(h,g,g−1)
(44)

and the corresponding S(1) can be massaged to the form

〈g−1,h|S(1)|h,g〉
= α(h,g−1,h)α(g−1h,g,g−1h)α(h,g−1h−1,h). (45)

In this case, the operator S(1) acting on basis states with
h = g = {1,a} already forms closed orbits. Therefore each
matrix element, which evaluates to

〈h,g|Ŝ(1)|h,g〉|h=g=(1,a) = (−1)k, (46)

is a topological invariant.
This only distinguishes k even from k-odd 3-cocycles.

Similar to cyclic groups, one can also inspect T N , acting on
states |h,g〉 such that h,g lives in the ZN subgroup, taking the
form {0,a}. In this case, T N evaluates precisely to the same
value as in Eq. (35), with h replaced by a for the element
h = {0,a}. Here (ST )3 again evaluates to 1 identically.

IV. SUMMARY

In this paper, we propose a systematic way to construct
“order parameters” of SPT phases, by exploiting the relation-
ship between an SPT phase and the corresponding intrinsic
topological order obtained by gauging the global symmetry
described in Ref. [52].

To simulate the effect of gauging, the idea of the sym-
metry twist is introduced. Symmetry twists are generated by
symmetry transformations performed in a restricted region.
The boundary of such a region would play the analogous role
of a Wilson line in a topological gauge theory, although in
contrast to Wilson lines in a gauge theory, these twists are not
dynamical excitations, but background defects.

In the special case of a 2 + 1D SPT we can consider
putting the system on a torus, i.e., one that satisfies periodic
boundary conditions. States with symmetry twists wrapping
the two cycles on the torus can be constructed, leading to a
set of almost degenerate basis states. This is again analogous
to the situation of a gauge theory with nontrivial Wilson
lines. Modular transformation on a torus, corresponding to a
reparametrization of the lattice on the torus, can be performed,
which would take us to a different basis state; so does a global
symmetry transformation. One could consider overlaps of the
wave functions between a state |α〉 with some given symmetry
twists and a modular and global symmetry transformed version
of another state |β〉:

〈α|Û |β〉 = e−L2/ξ 2+o(1/L)Uαβ. (47)

We conjecture that the factor Uαβ is universal which can be
used to characterize the SPT states.

These wave function overlaps can be understood as path
integrals of the SPT phase on a three manifold with two
boundaries, where each boundary is our torus, which is a
constant time slice on which we define our states. These
wave function overlaps therefore generally suffer from a phase
ambiguity, since they are not invariant upon rescaling each
basis state with an arbitrary phase. To construct truly universal
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topological invariants, we further consider closed orbits of
the modular transformations; i.e., we systematically look for
combinations of these modular transformations and global
symmetry transformations on our basis states such that it keeps
the states invariant up to an overall phase.

These overall phases generated by closed orbits of transfor-
mations are the topological invariants that we set out to find:
like Berry phases, they are independent of any rescaling of our
basis states by arbitrary phases. We demonstrate how in various
simple symmetry groups, both Abelian and non-Abelian, such
closed orbits can be constructed and how they can be extracted
using idealized fixed point wave functions. It is amusing that,
as explained in the text, these special wave function overlaps
are equivalent to the path integral in some highly nontrivial
closed manifold. In the examples we explored in detail, the
precise combination of modular transformations leading to
closed orbits are generically dependent on the symmetry group

involved, and in all the discrete symmetry groups we have
considered, there are enough closed orbits that distinguish all
the distinct SPT phases with the given symmetry classified in
Ref. [16]. This supports the conjecture that our constructed
topological invariants fully characterize the SPT states.
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