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Implementing a single-qubit unitary is often hampered by imperfect control. Systematic amplitude errors
ε, caused by incorrect duration or strength of a pulse, are an especially common problem. But a sequence of
imperfect pulses can provide a better implementation of a desired operation, as compared to a single primitive
pulse. We find optimal pulse sequences consisting of L primitive π or 2π rotations that suppress such errors
to arbitrary order O(εn) on arbitrary initial states. Optimality is demonstrated by proving an L = O(n) lower
bound and saturating it with L = 2n solutions. Closed-form solutions for arbitrary rotation angles are given for
n = 1,2,3,4. Perturbative solutions for any n are proven for small angles, while arbitrary angle solutions are
obtained by analytic continuation up to n = 12. The derivation proceeds by a novel algebraic and nonrecursive
approach, in which finding amplitude error correcting sequences can be reduced to solving polynomial equations.

DOI: 10.1103/PhysRevA.89.022341 PACS number(s): 03.67.Pp, 82.56.Jn

I. INTRODUCTION

Quantum computers are poised to solve a class of techno-
logically relevant problems intractable on classical machines
[1], but scalable implementations managing a useful number
of qubits are directly impeded by two general classes of
errors [2]. On one hand, unwanted system-bath interactions
in open quantum systems lead to decoherence, and on the
other, imperfect controls for addressing and manipulating qubit
states result in cumulative errors that eventually render large
computations useless.

Systematic amplitude errors, the consistent over- or under-
rotation of a single-qubit unitary operation by a small factor ε,
are one common control fault. The discovery of a protocol
for the complete and efficient suppression of these errors
would greatly advance the field of quantum control, with
applications as far ranging as implementing fault-tolerant
quantum computation and improving nuclear magnetic reso-
nance spectra acquisition. Due to the broad scope of systematic
amplitude errors, this problem has been attacked repeatedly
by a variety of methods with varying degrees of success
[3–8]. A concept common to most approaches is the composite
pulse sequence, in which some number of L carefully chosen
erroneous primitive unitary operations, or pulses, are applied
successively such that a target ideal rotation is approximated
to some order n with an exponentially reduced error O(εn+1).

In the realm of quantum computation, the criteria for useful
pulse sequences are stringent: (1) For each order n, a procedure
for constructing a pulse sequence correcting to that order is
given. (2) This construction gives sequence lengths L that
scale efficiently with n, that is, L = O(nk), with k as small
as possible. (3) Sequences should be “fully compensating” or
“class A” [4], meaning they operate successfully on arbitrary
and unknown states (in contrast to “class B” sequences that
operate successfully only on select initial states). (4) Although
finite sets of universal quantum gates exist [1], ideally se-
quences should be capable of implementing arbitrary rotations
so that quantum algorithms can be simplified conceptually and
practically.

One finds that there are currently no sequences satisfying
all four of these criteria and suppressing systematic amplitude
errors. In the literature, SCROFULOUS [9], PB1, BB1 [10] satisfy

criteria (3) and (4) but offer corrections only up to order n = 2.
Unfortunately, generalizations of these to arbitrary n come
with prohibitively long sequence lengths, so that criterion (2)
ends up unsatisfied. Typically, a sequence correct to order
n + 1 is recursively constructed from those at order n, resulting
in an inefficient sequence length L = 2O(n) [5], although
numerical studies suggest that efficient sequences with L =
O(n3.09) exist [5]. To date, other classes of systematic control
errors [11–13] do not fare better.

There are some provable successes in efficient pulse
sequences, though. However, to find them one must relax
criterion (4), which requires arbitrary rotations. For example, if
one restricts attention to correcting π rotations in the presence
of amplitude errors, Jones proved the impressive result
that sequences with L = O(n1.47) [3,7] are possible. Uhrig
efficiently implements the identity operator in the presence
of dephasing errors with L = O(n) [14]. If we also relax the
criterion (3) and settle for specialized class B sequences that
take |0〉 to |1〉 (those we call inverting sequences), Vitanov
has found efficient narrow-band sequences for amplitude
errors also with L = O(n) [15]. Notably, both Uhrig’s and
Vitanov’s results were achieved via algebraic, nonrecursive
processes. In fact, as we show, a more generalized algebraic
approach in the amplitude error case can reinstate the crucial
criteria (3) and (4) while maintaining Vitanov’s efficient length
scaling.

Our main result is exactly such an algebraic generalization,
a nonrecursive formalism for systematic amplitude errors.
With this, we prove a lower bound of L = O(n) for class
A sequences comprised of either primitive π or 2π rotations,
then constructively saturate this bound to a constant factor with
L = 2n (plus a single initializing rotation). The improvement
of these new sequences over prior state of the art is illustrated
in Table I. We derive optimal closed-form solutions up to
n = 4 for arbitrary target angles and perturbative solutions
for any n, valid for small target angles. We then analytically
continue these perturbative solutions to arbitrary angles up to
n = 12. Since any random or uncorrected systematic errors in
the primitive pulses accumulate linearly with sequence length,
optimally short sequences such as ours minimize the effect of
such errors.
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TABLE I. Comparison of known pulse sequences operating on
arbitrary initial states that suppress systematic amplitude errors
to order n for arbitrary target rotation angles. Arbitrary accuracy
generalizations are known or conjectured for all with the exception
of SCROFULOUS. The sequences APn, PDn, and ToPn are presented in
this work. Of interest is the subset of APn sequences labeled ToPn, for
which arbitrary accuracy is provable perturbatively for small target
angles.

Name Length notes

SCROFULOUS 3 n = 1, nonuniform θj [9]
Pn, Bn O(en2

) Closed form [5]
SKn O(n3) n � 30, Numerical [5]

n > 30, Conjectured
APn (PDn) 2n n � 3(4), Closed form

n � 12, Analytic continuation
n > 12, Conjectured

ToPn 2n Arbitrary n, perturbative

We define the problem statement for amplitude-error
correcting pulse sequences mathematically in Sec. II, leading,
in Sec. III, to a set of constraint equations that such pulse
sequences must satisfy, which is then solved in Sec. IV
by three approaches: analytical, perturbative, and numerical.
The analytical method is interesting as it gives closed-form
solutions for low order sequences in a systematic fashion. The
perturbative method relies on the invertibility of the Jacobian
of the constraints and is used for proving the existence of
solutions for select target angles. The numerical method is the
most straightforward and practical for higher orders, giving
optimally short pulse sequences for correction orders up to
n = 12. Section V then presents several generalizations of
our results, including discussions on narrow-band toggling,
nonlinear amplitude errors, random errors, and simultaneous
correction of off-resonance errors. Finally, we point out dif-
ferences and similarities between our sequences and existing
art in Sec. VI and conclude in Sec. VII.

II. PULSE SEQUENCES

A single-qubit rotation of target angle θT about the axis
�n is the unitary R�n[θT ] = exp[−iθT (�n · �σ )/2], where �σ =
(X̂,Ŷ ,Ẑ) is the vector of Pauli operators. Without affecting
the asymptotic efficiency of our sequences, Euler angles allow
us to choose nz = 0, and consequently, we define Rϕ[θT ] =
exp(−iθT σ̂ϕ/2) for σ̂ϕ = X̂ cos ϕ + Ŷ sin ϕ. However, we only
have access to imperfect rotations Mϕ[θ ] = Rϕ[(1 + ε)θ ] that
overshoot a desired angle θ by εθ , |ε| � 1. With these
primitive elements, we construct a pulse sequenceS consisting
of L faulty pulses:

S = Mϕ1 [θ1]Mϕ2 [θ2] . . . MϕL
[θL]. (1)

Denote by �ϕ the vector of phase angles (ϕ1,ϕ2, . . . ,ϕL), which
are our free parameters. Leaving each amplitude θj as a free
parameter (e.g., SCROFULOUS [9]) may help reduce sequence
length, but we find that a fixed value θj = θ0 leads to the most
compelling results.

The goal is to implement a target rotation Rϕ0 [θT ] (or,
without loss of generality, R0 [θT ] by the replacement ϕj →

ϕj − ϕ0), including the correct global phase, with a small error.
The trace distance [1]

D(Û ,V̂ ) = ‖Û − V̂ ‖ = 1
2 Tr

√
(Û − V̂ )†(Û − V̂ ) (2)

is a natural metric for defining errors between two operators
Û , V̂ [5]. We demand that the pulse sequence implements

S = R0[−εθT ] + O(εn+1), (3)

so that the corrected rotation UT = SM0 [θT ] = R0 [θT ] +
O(εn+1) has trace distance with the same small leading error
D(UT ,R0 [θT ]) = O(εn+1). Thus constructed, UT implements
R0 [θT ] over a very wide range of ε due to its first n derivatives
vanishing and so has broadband characteristics [2].

For completeness, we mention other error quantifiers.
First is the fidelity F (Û ,V̂ ) = ‖Û V̂ †‖, which is not truly a
distance metric but can be easier to compute, and bounds 1 −
F (Û ,V̂ ) � D(Û ,V̂ ) �

√
1 − F (Û ,V̂ )2 [1]. The infidelity of

UT is then 1 − F (UT ,R0 [θT ]) = O(ε2n+2), which is a com-
monly used quantifier [2,7]. Finally, for the specialized class B
sequences called inverting sequences, the transition probability
|〈1|Û |0〉|2 is a viable quantity for comparison [15].

III. CONSTRAINT EQUATIONS

We now proceed to derive a set of equations, or constraints,
on the phase angles �ϕ that will yield broadband correction.
We begin very generally in the first section by assuming
just θj = θ0 as mentioned before, but then we specialize in
the subsequent two sections to the case θ0 = 2π and the
case of symmetric sequences, both of which greatly enhance
tractability of the problem.

A. Equal amplitude base pulses

To begin, we obtain an algebraic expression forS by a direct
expansion of a length L sequence. Defining θ ′

0 = (1 + ε)θ0/2,

S =
L∏

j=1

Mϕj
[θ0] = cosL(θ ′

0)
L∏

j=1

[
1 − i tan(θ ′

0)σ̂ϕj

]

=
L∑

j=0

A
j

L(θ ′
0)�̂j

L( �ϕ), (4)

where indices in the matrix product ascend from left to right,
A

j

L(s) = (−i)j sinj (s) cosL−j (s), and �̂
j

L are noncommutative
elementary symmetric functions generated by

∏L
j=1(1 +

t σ̂ϕj
) = ∑L

j=0 t j �̂
j

L [16]. The �̂
j

L are hard to work with, so by
applying the Pauli matrix identity,

σϕ1σϕ2 · · · σϕj
= exp

(
iẐ

j∑
k=1

(−1)kϕk

)
X̂j , (5)

we obtain a more useful expression as functions of the phase
angles ϕj :

�̂
j

L( �ϕ) = (
Re

[
�

j

L( �ϕ)
]
I − i Im

[
�

j

L( �ϕ)
]
Ẑ

)
X̂j , (6)

�
j

L( �ϕ) =
∑

1�h1<h2<···<hj �L

exp

(
−i

j∑
k=1

(−1)kϕhk

)
. (7)
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By defining the terminal case �0
L( �ϕ) ≡ 1, the phase sums �

j

L

are efficiently computable at numeric values of the phases
by the recursion �

j

L = �
j

L−1 + �
j−1
L−1e

i(−1)j+1ϕL using dynamic
programming (i.e., start from the terminal case and fill in the
table �

j

L for all desired j and L).
Combining the expansion of S with Eq. (3) then imposes

a set Bn,L of real constraints on �ϕ to be satisfied by any
order n, length L sequence. Bn,L is obtained by first matching
coefficients of the trace orthogonal Pauli operators on either
side of Eq. (3). We then obtain, in terms of normalized
error x = 1

2εθ0 and normalized target angle γ = θT /θ0, the
necessary and sufficient conditions

∑
j∈

{even
odd

A
j

L(θ0/2 + x)�j

L( �ϕ) =
{

cos(xγ )
i sin(xγ ) + O(xn+1). (8)

Second, the complex coefficients of x0,x1, . . . ,xn are matched,
giving 2(n + 1) complex equations linear in the phase sums
�

j

L( �ϕ), or, letting |·| denote the size of a set, |Bn,L| = 4(n + 1)
real constraints.

However, these constraints Bn,L are intractable to direct
solution, and a simplifying assumption is necessary. It should
be reasonable to suspect that the small rotation R0 [−εθT ]
can be generated by small pure error terms Rϕ [εθ0]. We will
therefore set θ0 = 2π [5]. Note that θ0 = π is also a tractable
case but is related to the 2π -pulse case by phase toggling and
so need not be considered separately. We give more detail on
toggling in Sec. V.

B. Assuming base pulses of θ0 = 2π

We now enumerate several key results, due simply to
imposing θ0 = 2π , that apply to all order n, length L, 2π -pulse

sequences. First, Eq. (8) reduces to

(−1)L
L∑

j=0

A
j

L(x)�j

L( �ϕ) = eixγ + O(xn+1) (9)

by summing its even and odd parts, justified by noting
A

j

L(θ0/2 + x) → (−1)LA
j

L(x); hence x occurs only in even
(odd) powers for j even (odd). By matching coefficients of
powers of x, this represents 2(n + 1) real constraints. Second,
the x0 terms in Eq. (9) match if and only if L is even.
Assuming this, 2n constraints remain. Third, we arrive at
our most important result by transforming Eq. (9) with the
substitution x → i tanh−1(y). This eliminates trigonometric
and exponential functions from Eq. (9), and (assuming L is
even) leaves

[(1 − y)(1 + y)]−L/2
L∑

j=1

yj�
j

L( �ϕ) =
[

1 − y

1 + y

]γ /2

. (10)

Upon rearrangement, this is a generating function for equations
that the phase sums �

j

L( �ϕ) must satisfy. The functions f
j

L (γ )
generated by

∑∞
j=0 f

j

L (γ )yj = (1 + y)(L−γ )/2(1 − y)(L+γ )/2

are, in fact, real polynomials in γ of degree j which generalize
those of Mittag-Leffler [17]. We can now write

�
j

L( �ϕ) = f
j

L (γ ), 0 < j � n, (11)

f
j

L (γ ) =
j∑

k=0

(−1)k
(

T

k

)(
L − T

j − k

)
, T ≡ 1

2
(γ + L). (12)

Equation (11) is, in our opinion, the simplest and most useful
representation of the nonlinear (in �ϕ) constraints that form the
basis for our solutions. We provide in Table II their explicit
expansions for L = 2,4,6 as examples.

TABLE II. Shown are explicit examples of the phase sums �L
j ( �ϕ) defined in Eq. (7) and the polynomials f L

j (γ ) defined in Eq. (12). From
the definitions, we see �L

0 ( �ϕ) = f L
0 = 1, not shown in the table. For L = 2,4, when the expressions are still relatively short, we show �L

j ( �ϕ)
and f L

j (γ ) for all j for completeness, although only those with j � L/2 are used in solving for our pulse sequences. Note that �L
j ( �ϕ) is a sum

of ( L

j
) complex unit vectors and f L

j (γ ) is a j -degree polynomial with either even or odd symmetry.

L j �L
j ( �ϕ) f L

j (γ )

2 1 eiϕ1 + eiϕ2 −γ

2 ei(ϕ1−ϕ2) 1
2 γ 2 − 1

4 1 eiϕ1 + eiϕ2 + eiϕ3 + eiϕ4 −γ

2 ei(ϕ1−ϕ2) + ei(ϕ1−ϕ3) + ei(ϕ1−ϕ4) + ei(ϕ2−ϕ3) + ei(ϕ2−ϕ4) + ei(ϕ3−ϕ4) 1
2 γ 2 − 2

3 ei(ϕ1−ϕ2+ϕ3) + ei(ϕ1−ϕ2+ϕ4) + ei(ϕ1−ϕ3+ϕ4) + ei(ϕ2−ϕ3+ϕ4) − 1
6 γ 3 + 5

3 γ

4 ei(ϕ1−ϕ2+ϕ3−ϕ4) 1
24 γ 4 − 2

3 γ 2 + 1

6 1 eiϕ1 + eiϕ2 + eiϕ3 + eiϕ4 + eiϕ5 + eiϕ6 −γ

2 ei(ϕ1−ϕ2) + ei(ϕ1−ϕ3) + ei(ϕ1−ϕ4) + ei(ϕ1−ϕ5) + ei(ϕ1−ϕ6)

+ ei(ϕ2−ϕ3) + ei(ϕ2−ϕ4) + ei(ϕ2−ϕ5) + ei(ϕ2−ϕ6) + ei(ϕ3−ϕ4)

+ ei(ϕ3−ϕ5) + ei(ϕ3−ϕ6) + ei(ϕ4−ϕ5) + ei(ϕ4−ϕ6) + ei(ϕ5−ϕ6)

1
2 γ 2 − 3

3 ei(ϕ1−ϕ2+ϕ3) + ei(ϕ1−ϕ2+ϕ4) + ei(ϕ1−ϕ2+ϕ5) + ei(ϕ1−ϕ2+ϕ6) + ei(ϕ1−ϕ3+ϕ4)

+ ei(ϕ1−ϕ3+ϕ5) + ei(ϕ1−ϕ3+ϕ6) + ei(ϕ1−ϕ4+ϕ5) + ei(ϕ1−ϕ4+ϕ6) + ei(ϕ1−ϕ5+ϕ6)

+ ei(ϕ2−ϕ3+ϕ4) + ei(ϕ2−ϕ3+ϕ5) + ei(ϕ2−ϕ3+ϕ6) + ei(ϕ2−ϕ4+ϕ5) + ei(ϕ2−ϕ4+ϕ6)

+ ei(ϕ2−ϕ5+ϕ6) + ei(ϕ3−ϕ4+ϕ5) + ei(ϕ3−ϕ4+ϕ6) + ei(ϕ3−ϕ5+ϕ6) + ei(ϕ4−ϕ5+ϕ6)

− 1
6 γ 3 − 8

3 γ
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In our notation the leading error of an order n, even L,
2π -pulse sequence S2π has a simple form,

S2πR0[2xγ ] = I − (
f n+1

L (γ )X̂n+1 − �̂n+1
L ( �ϕ)

)
(−ix)n+1.

(13)

Now, we recognize the operator on the right of Eq. (13) must be
unitary. Thus, if a set �ϕ satisfies Eq. (11) for 0 < j < k for any
even integer k, Re[�k

L( �ϕ)] = f k
L(γ ) follows automatically. So

we define B2π
n,L, the set of constraints resulting from applying

θ0 = 2π to Bn,L, to consist of the n complex equations from
Eq. (11), ignoring the real parts for even j .

B2π
n,L =

{
Re �

j

L( �ϕ) = f
j

L (γ ), j odd

Im �
j

L( �ϕ) = 0, for all j

}
j=1,2,...,n

(14)

Thus, |B2π
n,L| = �3n/2
.

In fact, it is not difficult to place a lower bound on the
pulse length L for a sequence correcting to order n using the
framework we have so far. This is the first bound of its kind,
and, given our solutions of the constraints to come in Sec. IV, it
must be tight to a constant factor. Begin the argument by way
of contradiction, letting n > L. In examining B2π

n,L, observe

�
j

L( �ϕ) = 0 for L < j � n, but f j

L (γ ) is a real polynomial in γ

of degree j . Hence 0 = �n
L( �ϕ) = f n

L (γ ) cannot be satisfied for
arbitrary γ . Likewise, if L = n, then 1 = |�n

L( �ϕ)| = |f n
L (γ )|

cannot be satisfied for arbitrary γ . Thus L > n is necessary.

C. Assuming phase angle symmetries

Some constraints in B2π
n,L can be automatically sat-

isfied if appropriate symmetries on the phase angle
are imposed. A symmetry property of the phase sums,
�

j

L( �ϕ) = [�j

L((−1)j �ϕR)]∗ with reversed phase angles �ϕR =
(ϕL,ϕL−1, . . . ,ϕ1), motivates us to impose a palindromic
(antipalindromic) symmetry on the phases, �ϕ = +�ϕR ( �ϕ =
−�ϕR), so that Im[�j

L( �ϕ)] = 0 for even (odd) j . Removing
these equations from B2π

n,L, we are left with the subset BPD
n,L

(BAP
n,L). By definition, ϕAP

k = −ϕAP
L−k+1 and ϕPD

k = ϕPD
L−k+1. In

both cases, we have |BPD
n,L| = |BAP

n,L| = n real constraints to
be satisfied by �L/2
 real variables �ϕAP or �ϕPD. With what
minimum L is this possible.

IV. SOLVING THE CONSTRAINTS

We now satisfy the constraints BPD
n,L and BAP

n,L with
sequences of length exactly L = 2n, using three differ-
ent methods—analytical, perturbative, and numerical—and
achieving the linear lower bound for 2π -pulse sequences.
Our solutions are nonrecursive; a lower-order sequence never
appears as part of an order n sequence. Table I summarizes our
results labeled by PDn (APn) for the palindromes (antipalin-
dromes), as well as “tower of power” (ToPn) sequences, a
name inspired by their visual appearance in Fig. 1, which are
special APn sequences essential to our perturbative proof that
length-optimal arbitrary n corrections for nontrivial γ exist.

Sections IV A, IV B, and IV C detail, respectively, the
analytical, perturbative, and numerical solution methods and
the corresponding results.

n: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Re L
1

Im L
1

FIG. 1. Pulse sequences with θ0 = 2π can be visualized with pha-
sor diagrams as the first constraint equation; �1

L( �ϕ) = ∑L

k=1 eiϕk =
f 1

L(γ ) = −γ is a sum of phases. As examples, the phase angles
�ϕL|γ=1 = (ϕ1, . . . ,ϕL) are plotted tip-to-tail to scale for ToPn

sequences where L = 2n and all arrows are of unit length. With
�ϕ chosen carefully, e.g., �ϕ2|γ=1 = (2π/3,−2π/3) or �ϕ4|γ=1 =
( cos−1(

√
10−6
4 ), cos−1(1 −

√
5
8 ), . . . ), higher-order constraints up to

�n
L( �ϕ) = f n

L (γ ) are also satisfied, thus producing rotations correct to
O(εn).

A. Closed-form solutions

We obtain closed-form solutions to BAP
n,2n and BPD

n,2n for n �
3(4), presented in Table III, by the method of Gröbner bases
[18], which we describe here. The sequences AP2, AP3, and
PD4 are original, whereas AP1 and PD2 recover SK1 and PB1

of Brown et al. [5] and Wimperis [10], respectively.
The key insight in solving the transcendental constraints

BAP
n,L and BPD

n,L with γ as a free parameter is that any Bn,L is
equivalent to systems of multivariate polynomial equations F ,
for which powerful algorithmic methods of solution are known
[19,20]. This equivalence can be seen by introducing the
Weierstrass substitution tan(ϕk/2) = tk . Any F with variables
t1, . . . ,tn ∈ C that has a finite number of zeros is zero dimen-
sional and has solutions that can always be represented in the
form of a regular chain [21], that is, a finite triangular system
of polynomials {h1(t1),h2(t1,t2), . . . ,hn(t1, . . . ,tn)} obtained
by taking appropriate linear combinations of elements of F .
Regular chains are easy to solve, as the first equation h1 is a
univariate polynomial in t1 whose zeros can then be substituted
into h2, thus converting it into a univariate polynomial in t2.
Through recursive substitution, all tk can be obtained in a
straightforward manner.

Divining these appropriate linear combinations appears
to be a formidable task, but surprisingly, they can be
deterministically computed by applying algorithms such as
Buchberger’s algorithm [22] for computing the Gröbner basis
[18] G of F . The basis G is another system of polynomial
equations that shares the same zeros asF , in addition to certain
desirable algebraic properties. For example, G can readily
decide the existence, number of, and location of complex
zeros [23], and by choosing a lexicographic term order,
G is itself a regular chain [18]. The algorithm generalizes
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TABLE III. Closed-form solutions of phase angles ϕk = 2 tan−1(tk) for pulse sequences correcting to order O(εn) represented as regular
chains, computed by the method of Gröbner bases [18]. Since h(t1) = 0 is a univariate polynomial of degree � 4 in t2

1 , it can be solved in
closed form. The other tk are obtained directly by substitution. NS2 generalizes AP2 and PD2 with one free parameter t4, which should be fixed
before solving.

Sequence n Phase angle solutions ϕk = 2 tan−1(tk)

AP1 1 h(t1) = (2 + γ ) − (2 − γ )t2
1 .

AP2 2 h(t1) = (γ + 2)2(γ + 4) + 2γ (γ 2 + 4)t2
1 + (γ − 4)(γ − 2)2t4

1 ,

t2 = t1
2−γ

2+γ
.

PD2 2 h(t1) = (4 + γ ) − (4 − γ )t2
1 ,

t2 = −t1.

NS2 2 h(t1,t4) = (γ + 2)2(γ + 4) + γ (γ 2 − 4)
(
t2
1 + t2

4

) − 16γ t1t4 + (γ − 4)(γ − 2)2t2
1 t2

4 ,

t2(3) = t1(4)
(γ−4)(γ−2)−8(1−γ )(1+t2

4(1))−1−8(1+t2
1(4))

−1

(4−γ )(γ+2)−8(γ+1)(1+t2
4(1))−1−8(1+t2

1(4))
−1 .

AP3 3 h(t1) = a1(γ ) + 4a2(γ )t2
1 + 6a3(γ )t4

1 + 4a2(−γ )t6
1 + a1(−γ )t8

1 , where
a1(γ ) = (γ − 2)(γ + 2)3(γ + 4)2(γ + 6)2,

a2(γ ) = (γ + 2)(γ + 4)(γ + 6)
(
γ 5 − 32γ 3 + 96γ 2 + 256γ + 192

)
,

a3(γ ) = γ 8 − 60γ 6 + 816γ 4 + 9152γ 2 − 9216,

t2
2 = − 96γ+16(γ 2−3γ+2)(t2

1 +1)+(γ−4)(γ−2)(γ+2)(t2
1 +1)2

96γ+16(γ 2−9γ+2)(t2
1 +1)+(γ−6)(γ−4)(γ−2)(t2

1 +1)2 ,

t2
3 = − γ+2

γ−2

16(γ+1)+(γ−4)(γ−2)(t2
1 +1)

16(γ−1)+(γ−6)(γ−4)(t2
1 +1) , where signs of t2,3 chosen to satisfy

0 = t1
s1

( 2−s1
s1

+ 2 2−s2
s2

+ 2 2−s3
s3

) + t2
s2

( 2−s2
s2

+ 2 2−s3
s3

) + t3
s3

2−s3
s3

, sn = 1 + t2
n .

PD4 4 h(t1) = a1(−γ ) + 3b1(γ )t2
1 − 3b1(−γ )t4

1 − a1(γ )t6
1 ,

tn = t1(−1)1+�n/2
 bn(γ )+an(γ )t2
1

an(−γ )+bn(−γ )t2
1
, n = 2,3,4,

an(γ ) = (γ − 8)(γ − 4)(γ + 4)

⎧⎪⎪⎨
⎪⎪⎩

−(γ − 8)(γ − 4)2γ, n = 1,

−3γ (γ 2 − 2γ + 4), n = 2,

γ (γ + 2)(γ 2 − 6γ − 4), n = 3,

γ − 4, n = 4

bn(γ ) = (8 + γ )

⎧⎪⎪⎨
⎪⎪⎩

γ 6 − 64γ 4 + 128γ 3 + 1024γ 2 + 1024γ − 1024, n = 1,

5γ 5 − 10γ 4 − 76γ 3 − 64γ 2 − 64γ + 128, n = 2,

(γ 2 − 6γ − 4)(γ 4 + 2γ 3 − 48γ 2 − 32γ − 64), n = 3,

γ 3 + 4γ 2 − 64γ + 32, n = 4

Gaussian elimination for systems of linear equations and
finding the greatest common divisor of univariate polynomial
equations to systems multivariate polynomial equations; the
reader is referred to excellent resources for more information
[18–20]. In Appendix A, we also present a brief overview
of Gröbner bases and Buchberger’s algorithm for calculating
them, including hand-worked examples for AP1 and PD2, the
results of which are part of Table III.

The regular chains for the remaining sequences AP2, AP3,
and PD4 solved in Table III can be computed by optimized
variants of Buchberger’s algorithm [18] in MATHEMATICA. In
each case, closed form is achieved since h(t1) is a univariate
polynomial of at most quartic degree in t2

1 , and the remaining
variables t2,..,n are then given as functions of only t1. Only
the real solutions, which exist for |γ | � 2�n/2� + 2, are
physically meaningful. The utility of Gröbner bases for short
sequences is clear, as is it highly unlikely that these solutions
could have been arrived at by hand.

As a curiosity, we also present in Table III a closed-form
solution for B2π

2,4, where no symmetry has been applied to the
four-pulse sequence, denoted NS2. NS2 has one free parameter
in the phase angles, which we arbitrarily choose to be t4. By
fixing t4 and solving for the remaining phase angles, one finds

that NS2 continuously deforms between PD2 and AP2 and
hence generalizes them.

Could one solve B2π
n,2n for arbitrary n by this method? Any

arbitrary system of multivariate polynomials is guaranteed
to have a Gröbner basis that can always be computed in a
finite number of steps by Buchberger’s algorithm [22]. Thus
complex solutions to zero-dimensional B2π

n,2n with the same
number of equations as free parameters ϕk can always be
found by this method in principle. However, the worst-case
time complexity of computing G for a system of n variables
and total degree d scales as O(d2n

) [24] and rapidly becomes
unfeasible. Of greater concern, there is no guarantee that such
solutions are real, representing physical phases ϕk .

We now prove that there exists real solutions to B2π
n,2n over a

continuous range of γ for arbitrary n, and show how this leads
to an efficient constructive procedure for computing arbitrary
angle sequences.

B. Perturbative solutions

We may solve BAP
n,2n and BPD

n,2n perturbatively. A well-known
theorem of square Jacobian matrices states that, given a set of
equations H( �ϕ) = {H1( �ϕ) = 0, . . . ,Hn( �ϕ) = 0}, then the set
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H( �ϕ) is locally invertible, or analytical, in the neighborhood
about some root �ϕ0 if and only if the determinant det (J ) of
its Jacobian matrix Jjk = ∂ϕk

Hj ( �ϕ)| �ϕ=�ϕ0 is nonzero. The set
of interest for us is Bn,L, for which this theorem says that
one may always construct a perturbative expansion for �ϕ over
a continuous range γ about γ0 given a valid starting point
( �ϕ0,γ0) satisfying Bn,L if and only if det(J ) �= 0. So long as
the Jacobian remains nonzero, one may extend such a solution
beyond its neighborhood by analytic continuation.

However, for arbitrary n, what are these valid initial points
( �ϕ0,γ0)? As we do not a priori know of solutions to Bn,L for
arbitrary γ , such points must be found at some γ where the
problem simplifies. Even then, the problem is nontrivial: for
example, imposing phase angle symmetries forces ϕk = mπ

2 ,

m ∈ Z at γ = 0, but one can readily verify that many such
solutions of this form to Eq. (11) suffer from det(J ) = 0.
Using the closed-form solutions in Table III, one finds at
γ = 0 that while the Jacobian of the PD2,4 sequences is zero,
the AP1,3 sequences each have a solution with a nonzero
Jacobian wherein ϕk = π/2, for k � n. We now prove that
this generalizes to arbitrary n, resulting in the special class of
ToPn antipalindrome sequences with initial values,

�ϕToP
n

∣∣
γ=2b

=
{
π, 1 � k � b

π/2, b < k � n,
(15)

for b = 0,1, . . . �n/2�. Hence nontrivial real solutions to B2π
n,2n

exist for arbitrary n.

1. ToPn is analytical at γ = 0 ∀n

We first transform the function mapping for ToPn:H( �ϕ)j =
{Re �

j

2n( �ϕ), j odd
Im �

j

2n( �ϕ), j even ,
→ { �

j

2n( �ϕ), j odd
−i�

j

2n( �ϕ), j even .
This does not affect the

magnitude of its Jacobian J as Re �
j

L( �ϕ) = �
j

L( �ϕ) for odd
j due to antipalindromic symmetry, while for even j the real
part of Eq. (11) is automatically satisfied due to unitarity [see
Eq. (13)].

The γ = 0 solution to ToPn has a simple form ϕToP
k = π/2,

for k � n. With this solution, a straightforward, if tedious,
manipulation of the phase sums shows that elements of the n ×
n Jacobian matrix satisfy the recurrence Jj+1,k+1 = Jj+1,k +
Jj,k+1 + Jjk . The solution to this recurrence is best seen from
a combinatorial standpoint. Consider the related puzzle—you
begin at the northwest corner (1,1) of an h × k checkerboard
and would like to reach the position (h,k), the southeast corner.
You may move only south, southeast, or east at any given time,
enforcing the recursion. If, additionally, your first move cannot
be south, how many paths exist that achieve your goal? The
solution is

Whk =
h−1∑
r=0

(
k − 1

h − r − 1

)(
k + r − 2

r

)
, (16)

since you may take any number of southerly steps r . If your
first move is not restricted, the number of paths is Dhk =∑h

p=1 Wpk = ∑h−1
r=0 ( k−1

h−r−1 )( k+r−1
r

). For later use, define an
n × n matrix D with the elements Djk .

We will now express Jjk in terms of the leftmost column
Jj1. This is an extension of the path counting problem, in which

we may begin our walk to (j,k) from any leftmost location.
Therefore,

Jjk =
j∑

h=1

Jj−h+1,1Whk. (17)

Now notice that the determinant of J does not depend upon
the leftmost column. Since Jjk = Jj1W0k + · · · + J11Wjk and
J11 = −2 �= 0, we can always subtract multiples of rows of J

to obtain −2D. Thus, det(J ) = (−2)n det(D).
We have reduced the problem to finding the determinant of

D. We claim that D has LU decomposition,

Djk =
n∑

h=1

(
j − 1

h − 1

)
Uhk, Uhk ≡ 2h−1

(
k − 1

h − 1

)
. (18)

This means that Djk is the binomial transform of the
Chebyshev triangle Uhk . This is proved by looking at the
generating functions of D and U , namely,

D(y,z) =
∞∑

j,k=1

Djky
j−1zk−1 = 1

1 − (y + yz + z)
, (19)

U(y,z) =
∞∑

j,k=1

Ujky
j−1zk−1 = 1

1 − (1 + 2y)z
. (20)

These are related by D(y,z) = 1
1−y

U( y

1−y
,z), which implies

the binomial transform in Eq. (18). With the LU decom-
position, one can immediately see that det(D) = det(U ) =
2n(n−1)/2, and we have det(J ) = (−1)n2n(n+1)/2 �= 0. This
concludes the proof that ToPn sequences exist for a continuous
range of small target angles γ within the neighborhood of γ0

all n.

C. Numerical solutions

Our demonstrations of real, arbitrary angle (γ ) solutions
for small order (n) and real, arbitrary order solutions for a
continuous range of small angles inspires confidence that real
solutions for larger γ at arbitrary n can always be found.
Although proving this notion is difficult, the zeroth-order
analytically continuable solutions provide, in principle, a
means of obtaining arbitrary γ , arbitrary n sequences that
are exponentially more efficient than a brute force search for
solutions to Eq. (11). As long as a sequence for some γ has
a nonzero Jacobian, its phase angles may be continuously
deformed into another solution to Eq. (11) in the neighborhood
of γ .

We detail this procedure for ToPn and PDn to obtain real
optimal-length solutions over γ ∈ [0,2] in Secs. IV C 1 and
IV C 2. In Sec. IV C 3 and Appendix B, we provide for the
convenience of the reader the solutions derived in this manner
at common values of γ = {1, 1

2 , 1
4 } up to n = 12.

1. Analytic continuation of ToPn

We plot the Jacobian of ToPn solutions obtained by analytic
continuation as a function of target angle γ in Fig. 2. The
zeroth-order ToPn solutions in Eq. (15) can be continued from
γ = 0 to arbitrary γ , up to n = 7, as J is nonzero over the range
γ ∈ [0,2]. For 8 � n � 10, analytic continuation from γ = 2
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FIG. 2. (Color online) ToPn Jacobian Jnormalized normalized to 1
at γ = 0 obtained by analytic continuation from zero-order solutions
at γ = 0,1,2 for n � 12. Analytic continuation to arbitrary angles
from γ = 0 is possible for n < 7. From 7 � n < 11, covering all γ

requires continuation from γ = 2 as well. For 11 � n, continuation
from γ = 1 is also necessary. Note that the n = 10 curve appears
have a discontinuous derivative near γ = 7/4, but is, upon closer
inspection, smoothly varying there. The inset plots the leading error
|f n+1

2n − �n+1
2n | of ToPn at γ = 1 up to n = 16 together with the

best-fit (dotted) E = −O(ln(n)).

is required as well to cover the full range of γ , as J = 0 at small
γ , as seen in Fig. 2 (inset). For 11 � n, we appear to encounter
some difficulty as J = 0 near γ = 0,2. However, inspecting
Fig. 1 suggests that an order n + 1 sequence at γ = 1 is
approximated by appending to the order n sequence the phase
angle ϕn+1 = π/2. That is, with ◦ representing the appending
operation, �ϕToP

n+1|γ=1 ≈ �ϕToP
n |γ=1 ◦ (π/2). This approximation

is qualified by observing the monotonic decrease of the leading
error |f n+1

2n − �n+1
2n | from Eq. (13) for ToPn sequences at

γ = 1. Thus, in the limit where n → ∞, ϕToP
n is a good

initial guess for numerically finding the γ = 1 ToP(n + 1) root
to BAP

n,2n. In this manner, we obtain the necessary zero-order
solutions for continuation over all γ .

2. Analytic continuation of PDn

We would like to find for PDn a set of initial points ( �ϕ0,γ0)
that are suitable for analytic continuation. These are provided
by inspecting the PD2,4 closed-form solutions at γ = 2 which
are of the form �ϕPD

n = 2π
n+1 (1,−1,2,−2, . . . ,n/2,−n/2). We

prove that these are arbitrary n solutions by noting that the
sequence

Vn = 2π

n + 1
(0,1,−1,2,−2, . . . ,n/2,−n/2), (21)

without palindrome symmetry applied, is in fact the length
L = n + 1 class B [4] sequence reported by Vitanov [15] that
is optimal in the sense that for all odd j < L, �

j

L( �ϕ) = 0
is satisfied. Thus, by applying palindrome symmetry and
dropping the zeroth pulses, a length L = 2n, γ = 2 class A
sequence is obtained. We conjecture that �ϕPD

n is contained in

1
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FIG. 3. (Color online) Phase angles ϕk as a function of tar-
get rotation γ ∈ (0,4) for a length 24, order 12 palin-
dromic PD12 sequence. This example demonstrates the method
of analytic continuation from an exact solution �ϕPD

12,6|γ=2 =
12π

13 (1,−1,2,−2,3,−3,4,−4,5,−5,6,−6), a procedure valid wher-
ever the Jacobian of a sequence is nonzero, also plotted for �ϕPD

n,n/2

(inset). The dotted lines represent the expected continuation to the
nonanalytic points γ = 0,4.

the more general class of γ = 2 solutions:

�ϕPD
n,m

∣∣
γ=2 = 2mπ

n + 1
(1,−1,2,−2, . . . ,n/2,−n/2), (22)

where (n + 1,m) are coprime.
Arbitrary angle solutions to PDn, such as in Fig. 3, may

be obtained by continuation from �ϕPD
n,m|γ=2. Unlike the ToPn

sequences, the Jacobian plotted in Fig. 3 (inset) for instances
of �ϕPD

n,n/2 is nonzero over the entire range of γ up to n = 12.

3. Brute-force numerical search

Another solution method is a direct numerical search for
all possible real solutions to Eq. (11) for a given γ . This is
by far the least efficient approach but allows one to obtain
other classes of sequences that are not contained in �ϕToP

n and
�ϕPD
n,m. Searching up to n = 8 suggests that, after palindrome or

antipalindrome symmetry has been applied, for every value of
γ , 2�n/2
 distinct real sequences exist. These sequences may
also be analytically continued, and we provide in Table IV
in Appendix B their phase angles at γ = {1, 1

2 , 1
4 } with which

the interested reader may use to do so. In the table, we also
provide a measure of the leading order error of each sequence
κ , where κ is defined such that if the leading error from Eq. (13)
is considered a small rotation, its amplitude is (κεθ0/2)n+1.

V. FURTHER EXTENSIONS

Some generalizations of the above results are possible. First,
the sequence duration Lθ0/2π may be halved by considering
θ0 = π sequences, with a significant decrease in the trace
distance E from an ideal rotation as demonstrated in Fig. 4.
This leads to similar Eqs. (9)–(13), but with replacements
�

j

L( �ϕ) → �
L−j

L ( �ψ) and eixγ → (−i)Leixγ . The x0 term of
the counterpart to Eq. (9) implies that L ∈ 4Z.
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FIG. 4. (Color online) The trace distance of order n sequences
UT from an ideal π rotation, E = ‖UT − R0[π ]‖, as a function of
error ε. Included are θ0 = 2π passband sequences ToPn (blue) and
PDn (red), as well as the broadband θ0 = π BBn (green) obtained by
“toggling” PDn phase angles. Observe that the asymptotic gradient
is O(εn), and that the number of 2π imperfect rotations is nθ0/π ,
given n is dramatically shorter than prior work by Brown et al. [5].
The inset demonstrates the effects of experimental imprecisions by
plotting E for a population of BB4 sequences subject to a combined
Gaussian distributed amplitude and phase errors with zero mean and
standard deviation σ = 10−3,−6,−9 from the top.

Second, while all 2π -pulse sequences are passband [10],
broadband π -pulse sequences BBn with phase angles �ψ
can be obtained from palindrome sequences PDn with
phase angles �ϕ through the “toggling” transformation [4,7],
ψk = −∑k−1

h=1(−1)hϕh + ∑L
h=k+1(−1)hϕh. Narrow-band π -

pulse sequences are obtained simply by using the original
phase angles �ϕ.

Third, nonlinear systematic amplitude error suppression is
also possible. Say the erroneous rotations making up sequence
S were instead Mϕ[θ0] = Rϕ[θ0 + εE(θ0)] for any function E

with E(θ0) �= 0. Then the normalization x ≡ 1
2εE(θ0) and γ ≡

E(θT )/E(θ0) preserves Eqs. (8)–(13). Therefore, our pulse
sequences correct nonlinear errors to O(εn), assuming the ratio
E(θT )/E(θ0) is known.

Real applications involve additional systematic and ran-
dom errors, assumed to be small, in both system and
control. Examples of such include phase errors in ϕ as
well as off-resonance errors [2]. These contribute to the
primitive pulse Mϕ[θ ], a small effective rotation R�n[O(δ)],
|δ| � 1, about some arbitrary axis �n. Note that in-
terchanging the order R�n[O(δ)] Mϕ[θ ] = Mϕ[θ ] R �m[O(δ)]
only changes the rotation axis. Including uncorrected er-
rors, our sequences becomeS ′ = ∏L

j=1 R�nj
[O(δj )] Mϕj

[θ0] =
(
∏L

j=1 R �mj
[O(δj )])S. Hence, the amplitude error suppression

property of a pulse sequence is preserved, while amplifying
other sources of error to LO(δ). If δ is purely random with
variance σ 2, this imposes a practical limit on the order n

of error suppression
√

LO(σ ) ∼ O(εn), beyond which no
decrease in pulse error is obtainable. This further implies
that our sequences can be implemented even with significant
experimental imprecision, which corresponds to at most
linearly accumulating errors that simply level off at small ε, as

illustrated in Fig. 4 (inset). Thus, in general, efficient sequences
amplify uncorrected sources of error by at most L = poly(n).

Since amplitude error suppression to order n is only effec-
tive when other errors are small |δ| ∼ |ε|n, the simultaneous
suppression of multiple sources of systematic errors is highly
desirable. This can often be achieved by sequence concate-
nation [2,25]. For example, let AMn = ∏L

k=1 Mϕk
[θk] denote

any sequence that suppresses systematic amplitude errors to
order n. Noting that a θ = 2π rotation is already robust to
off-resonance errors [25], replacing each θ �= 2π pulse in AMn

by a CORPSE sequence [9] results in a concatenated sequence
suppressing off-resonance errors to first order and amplitude
errors to order n. This follows from the observation that the
CORPSE sequence approximating RϕT

[θT ] yields the rotation
MϕT

[θT ] · R�n[O(δ2 + δε)] for some axis �n, where δ is the
order of the off-resonance error [25]. This property is special
to CORPSE, because the decomposition into MϕT

[θT ] times a
small error will not generally occur.

VI. COMPARISON WITH PRIOR ART

There are very few sequences in the literature that allow
for corrected arbitrary angle rotations [criterion (4) from our
Introduction]. The classic examples SCROFULOUS [9] and the
PB sequences [10] are only correct to n = 1,2, respectively.
The work of Brown et al. [5] reports sequences SKn for
arbitrary n, but with a length scaling of L = O(n3). Thus,
for any given n, the class of optimal L = 2n sequences PDn,
APn correct to same order as SKn, but with significantly fewer
pulses, as seen by comparing their trace errors in Fig. 4 with
those of Brown [5].

Therefore, for a more comprehensive comparison with prior
art, we limit ourselves to inverting sequences so that θ0 =
θT = π and the initial state is always |0〉. This corresponds
to toggling the γ = 1 sequences from Appendix B and also
to relaxing criteria (3) and (4) from our Introduction. For
consistency of notion, the pulse length L will now include
the zeroth pulse.

First, we note that the leading arbitrary accuracy θT = π

class A sequences in the literature are derived by recursive
nesting [8]. Given some order nb base sequence comprised
of Lb π pulses, one performs a nesting procedure [7] k

times to obtain an order n = (nb + 1)k − 1 sequence with
length L = Lk

b, corresponding to a length scaling of L =
(n + 1)log Lb/ log(nb+1). Wimperis’ BB1 sequence [10] with Lb =
5,nb = 2 is often used as the base sequence, resulting in the Fr

class of length L = 5r , order n = 3r − 1 sequences [8], with a
asymptotic scaling of L = O(n1.47), slightly worse than that of
the L = 2n + 1 of BBn sequences reported here. Furthermore,
our BBn sequences at γ = 1 can themselves be nested after
rearranging in the toggled θ0 = 2π frame such that the zeroth
pulse is in the middle:

S2πM0 = Mϕ1Mϕ2 . . .Mϕ2Mϕ1M0 = R0[2π ] + O(εn+1)

= Mϕn
. . .Mϕ1M0Mϕ1 . . . Mϕn

+ O(εn+1). (23)

For example, if BB12 is used as the base sequence, L =
O(n1.25) is achieved. In the limit of large Lb = 2nb + 1, L

asymptotically approaches O(n).
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FIG. 5. (Color online) Comparison of the transition probability
p = | 〈1| UT |0〉 |2 with amplitude error ε between a variety of L = 9
(blue) and L = 25 (red) pulse sequences implementing π rotations.
Solid (dashed) lines represent class A(B) sequences. Included are the
BB4,12 of this work, V8,24 [Eq. (21)], 
2 [26], C9 [27], F2 [8], and
S2[3]. In the inset, 1 − p is plotted on a logarithmic scale.

Unlike class A sequences, class B sequences are less inter-
esting from the context of quantum computing as they require
specific initial states. The trace error metric is inapplicable, but
one can nevertheless plot the transition probability |〈1|UT |0〉|2
as a function of ε for θT = π rotations acting on the ground
state as in Fig. 5. As our highest-order closed-form sequence
BB4 specialized to θT = π has L = 9, we perform a compari-
son with L = 9 inverting sequences in the literature: V8 by Vi-
tanov [15], 
2 = π

6 (0,3,0,4,7,4,0,3,0) by Shaka and Freeman
[26], and C9 = π

12 (0,1,12,11,18,11,12,1,0) by Cho et al. [27].
Other than ours, there do not appear to be any L = 9 class A se-
quences. We also include a few L = 25 sequences: the class A
BB12 and F2 [8,10], and the inverting sequences V24 and S2 =
π
3 (0,0,2,1,2,0,0,2,1,2,2,2,4,3,4,1,1,3,2,3,2,2,4,3,4) [3]. In
this notation, θ0 = π and, for example, C9 is implemented by
M0M π

12
Mπ . . . . We see that even against the specialized invert-

ing sequences of similar length, BBn compares favorably. At
the 10−4 quantum error threshold, the width of BBn of about
ε = 0 is only outperformed by the optimal inverting sequences
Vn [15].

VII. CONCLUSION

The study of pulse sequences is a broad discipline, covering
many different pulse shapes, error models, and computational
methods, and we have dealt here with only a small portion
of this breadth. However, our algebraic approach to amplitude
errors provides a major characterization of this important and
ubiquitous case. The constraints in Eq. (14) are both necessary
and sufficient for any 2π -pulse sequence of length L correcting
to order n. Using these constraints, we were able to find
sequences in closed form beyond any order previously known
analytically. From our 2π -pulse passband sequences, we also
demonstrated that it is simple to obtain π -pulse broadband and
π -pulse narrow-band sequences of the same optimal length.

In the Introduction, we proposed four criteria for a pulse
sequence to be useful to quantum computation: (1) It exists
at all orders of correction n. (2) It has efficient length L =

O( poly(n)). (3) It can operate as intended on any initial state.
(4) It exists for all target rotations. We can evaluate our results
with respect to these criteria. We proved that our ToPn and
PDn sequences satisfy (1), (2), and (3) and provided evidence
that (4) holds for them as well by studying the Jacobian of
the phase sums and proving that ToPn solutions do indeed
exist for a range of target rotations around the identity. At
the same time, our numerical results indicate that conditions
(2), (3), and (4) hold up to order n = 12 with L = 2n. This
is a strong start to a complete proof that all four criteria are
satisfiable for amplitude error correcting sequences. In fact,
even a weaker proof that criteria (1), (2), and (3) hold at target
angles π and π/4 would be valuable, as then pulse sequences
for the Hadamard and T gate, together sufficient for universal
single-qubit computation [1], could be implemented.

A very natural extension of our approach is to find
constraints for sequences correcting other systematic control
errors, for instance, arbitrary system drifts and off-resonance
errors. As an example, Uhrig’s [14] algebraic approach to
dephasing errors might also be amenable to generalization.
An anticipated problem in these other cases might be the
nonpolynomial nature of such constraint equations, meaning
more difficult analytic and numeric methods might be needed
to find solutions.
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APPENDIX A: GRÖBNER BASES AND
BUCHBERGER’S ALGORITHM

As the method of Gröbner bases is likely not well known
to expected readers, we believe that a demonstration of
deriving the bases for AP1 and PD2 would be instructive.
Generalization to AP3, PD4 is straightforward but more
computationally intensive. To begin, we use a definition of
the Gröbner basis that facilitates its computation [22]:

Definition 1: Given a term order, a set G is a Gröbner basis
if and only if for all f,g ∈ G the S-polynomial SPOL(f,g) by
repeated reduction with respect to G can be brought to zero.

Function: BUCHBERGER’S ALGORITHM (F).
G ← F �System of multivariate polynomials
C ← G × G
while C �= ∅ do

p ← (a,b) ∈ C �Chosen arbitrarily
C ← C\{p}
h = RED(SPOL(a,b),G) �Defined below
if h �= 0 then

C ← C ∪ (G × {h})
G ← G ∪ {h}

end if
end while
return G �Gröbner basis of F

end Function
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This definition follows from Buchberger’s theorem and
leads to his famous algorithm for computing a Gröbner basis
of F [22]:
where

RED(a,G)=Remainder of a upon division by G (reduction),

SPOL(a,b)= lcm(LPP(a),LPP (b))
(

a

LM(a)
− b

LM(b)

)
,

lcm(a,b)= least common multiple of a,b,

LM(a)= leading monomial of a

with respect to some term order,

LPP(a)=LM(a) with coefficients dropped.

In what follows, we apply the Weierstrass substitution
tan(ϕk/2) = tk to Bn,L, rearrange to obtain a polynomial
system Wn,L, and use the lexicographic monomial ordering
t1 ≺lex t2 ≺lex · · · ≺lex tn [18] in computing a Gröbner basis.

1. Example: AP1 from BAP
1,2

BAP
1,2 ⇒ WAP

1,2 = {t2
1 (1 + γ

2 ) − (1 − γ

2 )}. This example is
trivial, as WAP

1,2 is automatically a Gröbner basis G following
from Definition 1 as the S polynomial of an arbitrary
polynomial with itself is 0. As G generatesWAP

1,2 , they share the

same simultaneous roots. Solving G, we obtain t1 = ±
√

2−γ

2+γ
.

Solving for ϕ1 = cos−1 ( γ

2 ), we see that AP1 is the sequence
SK1 [5].

2. Example: PD2 from BPD
2,4

BPD
2,4 ⇒ WPD

2,4 = {t2
1 t2

2 (γ−4)+ t2
1 γ + t2

2 γ + (4 + γ ),t2
1 t2 +

t1t
2
2 + t1 + t2}. In rearranging, we have introduced the

complex roots 1 + t2
k = 0, which we shall have to remove

later. One could solve WPD
2,4 by inspection, but we apply

Buchberger’s algorithm to demonstrate the algorithmic
manner in which solutions may be derived. We perform the
first iteration in detail and only state the computed basis
element hi,j of succeeding iterations for brevity:

Input: WPD
2,4 .

G = WPD
2,4, C = {(g1,g2)},

Take the pair g1,g2.

LM(g1) = t2
2 t2

1 (γ − 4) = (γ − 4)LPP(g1),

LM(g2) = t2
2 t1 = LPP(g2),

LCM(LPP(g1),LPP(g2)) = t2
2 t2

1 ,

SPOL(g1,g2) = γ t2
2

γ − 4
− t3

1 t2 − t1t2 + 4t2
1

γ − 4
+ γ + 4

γ − 4
,

h1,2 = RED(SPOL(g1,g2),G) = SPOL(g1,g2),

G = G ∪ {h1,2}, C = {(g1,g3),(g2,g3)},
· · ·
Output: G = WPD

2,4 ∪ {h1,2,h2,3,h1,4,h4,5,h1,6},

h2,3 = (γ − 4)t2t4
1 + 2(γ − 2)t2t2

1 + γ t2 − 4t3
1 − 4t1

γ
,

h1,4 = 4t3
1 t2 + 4t1t2 + γ t4

1 + 2(γ + 2)t2
1 + γ + 4

γ − 4
,

h4,5 = 4γ t2t
2
1 + 4γ t2 − (γ − 4)γ t5

1 − 2(γ − 2)γ t3
1 − γ 2t1

4(4 − γ )
,

h1,6 = (γ − 4)t6
1 + (3γ − 4)t4

1 + (3γ + 4)t2
1 + γ + 4

4
,

all other hi,j = 0. (A1)

Note that the last term h1,6 is univariate in t1, as expected from
a regular chain. We have chosen pairs from C so as to minimize
the output, but any arbitrary choice will eventually terminate.
However, G from Eq. (A1) still contains more elements than is
necessary to generate WPD

2,4 . We can deterministically compute
from G a unique minimal, or reduced, Gröbner basis GR up to
constant factors by repeating G ← (G − {g}) ∪ {RED(g,G −
{g})} ∀g ∈ G until the process converges [18]:

GR = {(
t2
1 + 1

)2[
4 + γ − (4 − γ )t2

1

]
,(

t2
1 + 1

)[
(γ − 4)t3

1 + γ t1 − 4t2
]
,

4 + γ + (γ − 4)t4
1 + 2(γ − 2)t2

1 + 4t2
2

}
. (A2)

The nonphysical zeros M = {1 + t2
1 ,1 + t2

2 } that were
introduced earlier are now apparent and can be removed. We
can deterministically compute from GR another Gröbner basis
GQ with the same zeros sans M by repeatedly computing the
Gröbner basis of the ideal quotient GQ → 〈GQ〉 : 〈M〉 until
convergence, or saturation [18]. Finally, we obtain the simple
triangular system

GQ = {
4 + γ − (4 − γ )t2

1 ,t1 + t2
}
. (A3)

Solving for ϕ1 = cos−1
(

γ

4

)
, ϕ2 = −ϕ1, we see that PD2 is the

sequence PB1 [10].

APPENDIX B: NUMERICAL SOLUTIONS

Here in Table IV, we provide phase angles for APn and
PDn sequences at some common values of γ ∈ {1, 1

2 , 1
4 }

up to n = 12. Up to n = 8, we provide the phase angles
for all existing symmetric solutions at the selected values
of γ . Sequences with the same subscript are related by
analytic continuation and are sorted by their leading error
κ at γ = 1

2 . Recall from Sec. IV C 3 that κ is defined so
that (κεθ0/2)n+1 is the rotation angle of the leading error in
Eq. (13) when it is considered as a small rotation. In the table,
the bolded APn are ToPn sequences, and all PDn1 sequences
are obtained by analytic continuation from �ϕPD

n,n/2|γ=2. Note
that ϕAP

k = −ϕAP
L−k+1 and ϕPD

k = ϕPD
L−k+1. Also, for each se-

quence �ϕ listed here, there is a sequence −�ϕ with the same
leading error.
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TABLE IV. APn and PDn solutions at correction orders n = 1,2, . . . ,12 for target angles γ = 1/4,1/2,1.

γ n = 1 ϕ1 κ n = 2 ϕ1 ϕ2 κ n = 3 ϕ1 ϕ2 ϕ3 κ

1 AP11 2.09440 1.31607 PD21 1.82348 –1.82348 1.16499 AP31 0.74570 –2.11099 2.37504 1.10279
AP21 2.35949 1.35980 1.16499 AP32 2.51806 1.15532 1.66273 1.10279

1
2 AP11 1.82348 0.98400 PD21 1.69612 –1.69612 0.88856 AP31 0.87848 –1.93555 2.13129 0.93360

AP21 1.95071 1.44966 1.05957 AP32 2.03611 1.29441 1.64504 1.12057
1
4 AP11 1.69612 0.70433 PD21 1.63334 –1.63334 0.69647 AP31 0.98173 –1.85668 1.98076 0.77869

AP21 1.75891 1.50875 0.86557 AP32 1.80090 1.42667 1.61136 0.98560

γ n = 4 ϕ1 ϕ2 ϕ3 ϕ4 κ n = 5 ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 κ

1 PD41 2.26950 –1.76948 –0.80579 1.93044 1.07009 AP51 2.30757 –2.57163 1.03434 –0.26267 2.05214 1.05043
PD42 1.38777 –0.59527 2.74476 –2.19903 1.07009 AP52 0.44569 –1.40804 1.55593 –2.45457 2.50831 1.05043
AP41 1.64767 –1.97451 2.92461 0.32956 1.07009 AP53 2.19409 0.13026 –2.09113 1.82984 1.72591 1.05043
AP42 2.62323 0.99049 1.79394 1.52913 1.07009 AP54 2.69800 0.86163 1.92713 1.45034 1.59011 1.05043

1
2 PD41 2.30661 –1.30540 –0.47998 2.38635 0.88941 AP51 1.86484 –2.24227 1.42219 –0.43481 1.97474 0.91458

PD42 1.47070 0.11256 –2.96678 –1.93782 0.89673 AP52 0.60281 –1.44347 1.45031 –2.28880 2.29567 0.93241
AP41 1.05532 –2.36238 3.06746 0.26240 0.90343 AP53 1.78432 0.205507 –2.21897 1.86132 1.69801 1.05179
AP42 2.10426 1.11746 1.80109 1.52196 1.15341 AP54 2.17223 0.89078 2.05179 1.39042 1.60052 1.13467

1
4 PD41 2.45079 –0.96051 –0.28079 2.66423 0.76705 AP51 1.56763 –2.19365 1.57024 –0.61251 1.94290 0.80141

PD42 1.51926 0.73603 –2.38182 –1.76467 0.77110 AP52 0.73268 –1.46554 1.41033 –2.18996 2.15661 0.82226
AP41 0.68460 –2.64974 3.11442 0.19308 0.77643 AP53 1.62724 0.36022 –2.23779 1.88279 1.64971 0.95228
AP42 1.83302 1.33340 1.70166 1.54125 1.07442 AP54 1.86049 1.22698 1.85066 1.44825 1.59325 1.13458

γ n = 6 ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 κ

1 PD61 2.48390 –1.63561 –0.23686 2.03217 2.74686 –0.71914 1.03757
PD62 2.24222 –2.44350 1.64224 –1.08266 –1.76926 0.81242 1.03757
PD63 1.17370 –0.19700 2.33177 –0.99925 3.05926 –2.37762 1.03757
PD64 0.38266 –3.00356 –2.24117 2.23067 –1.43621 0.84607 1.03757
AP61 2.54809 2.02296 –0.58625 0.73627 2.99308 1.38890 1.03757
AP62 1.92279 –3.02711 –0.18830 –1.61442 2.05848 1.19384 1.03757
AP63 0.74467 –2.15643 2.73082 2.72326 –0.85131 1.05986 1.03757
AP64 2.75387 0.76025 2.04746 1.35335 1.63574 1.56171 1.03757

1
2 PD61 2.71338 –0.89153 0.34947 2.88508 –2.77240 0.12790 0.89347

PD62 2.40846 –1.52806 3.02225 0.14373 –1.19151 1.48740 0.89824
PD63 1.35661 0.50760 2.84949 –0.34944 –2.58938 –2.05672 0.90808
PD64 0.34769 –2.51801 2.11029 –1.90548 1.90034 –0.66420 0.91063
AP61 2.11291 2.26524 –0.55309 0.48262 2.87662 1.43607 0.95146
AP62 1.56304 2.92131 –0.50059 –1.71787 1.85652 1.29826 0.97397
AP63 0.97792 –1.74876 2.49396 2.83905 –0.72251 1.19155 0.98162
AP64 2.26941 0.51330 2.35282 1.27588 1.64389 1.56168 0.99856

1
4 PD61 3.12733 –0.27154 0.71713 –2.88348 –2.34449 0.60325 0.80563

PD62 2.66911 –0.96400 –2.59675 0.76929 –0.86098 1.89620 0.80770
PD63 1.46125 1.00480 2.91140 –0.24281 –2.10817 –1.82942 0.81322
PD64 0.61658 –2.23483 2.05399 –1.70970 2.20472 –0.51392 0.81490
AP61 1.82740 2.77886 –0.11820 0.33508 2.95974 1.46074 0.84058
AP62 1.43968 2.68323 –0.67496 –1.73584 1.74153 1.37503 0.87521
AP63 1.09750 –1.53786 2.38588 2.88953 –0.61467 1.30211 0.88747
AP64 1.88994 1.07769 2.11382 1.23820 1.68167 1.55453 1.14696
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TABLE IV. (Continued.)

γ n = 7 ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 ϕ7 κ

1 AP71 2.13314 1.81689 –1.08618 –1.35267 2.63930 0.24057 2.09463 1.02864
AP72 0.46860 –1.07834 1.37212 –1.48204 1.99013 –2.42873 2.39994 0.93660
AP73 1.53566 –1.94880 –3.10873 1.06287 –1.02408 0.63518 –2.93056 1.02864
AP74 2.79719 0.67921 2.15156 1.25324 1.70211 1.53591 1.57511 1.02864
AP75 2.67233 1.22852 –0.41410 2.09290 3.01643 0.79095 1.64235 1.02864
AP76 2.38920 2.56740 –1.87487 1.51487 –0.58086 0.89490 1.71973 1.02864
AP77 1.90502 –0.25506 –0.74525 2.18555 –2.05722 2.23559 1.78586 1.02864
AP78 2.56602 0.68912 0.58385 –2.14580 2.36676 1.54736 1.60313 1.02864

1
2 AP71 1.71155 2.56416 –0.40810 –1.38344 2.74047 0.11831 2.03574 0.92275

AP72 0.46860 –1.07834 1.37212 –1.48204 1.99013 –2.42873 2.39994 0.93660
AP73 0.62501 –2.74449 –2.77743 1.15902 –0.93150 0.79294 –2.69744 0.94367
AP74 2.33062 0.29389 2.38838 1.28505 1.66008 1.54990 1.57324 0.94652
AP75 2.20315 1.13325 –0.64167 2.00550 2.99463 0.94849 1.62714 1.01054
AP76 1.92827 2.68589 –1.88707 1.50932 –0.51984 1.04819 1.69068 1.01961
AP77 1.58492 –0.10094 –0.98974 1.95733 –2.24104 2.21759 1.75068 1.02465
AP78 2.05179 0.74564 0.44549 –2.29705 2.45454 1.51269 1.61609 1.09307

1
4 AP71 1.44528 3.12551 0.18508 –1.47200 2.68933 –0.05344 2.01638 0.83378

AP72 0.59981 –1.15892 1.31704 –1.52059 1.89255 –2.33236 2.27275 0.85026
AP73 0.10274 3.04219 –2.58618 1.23233 –0.92136 0.93214 –2.51134 0.85965
AP74 1.97582 0.44006 2.74911 1.20237 1.65775 1.55408 1.57254 0.88415
AP75 1.90819 1.35140 –0.95152 1.65205 –3.07859 1.01561 1.61079 0.89826
AP76 1.70670 2.60476 –1.80222 1.60237 –0.56759 1.19451 1.65081 0.93279
AP77 1.48964 0.08106 –1.25334 1.70494 –2.32236 2.18736 1.69126 0.94539
AP78 1.78462 1.06489 0.28111 –2.37747 2.24540 1.54878 1.60439 1.08061

γ n = 8 ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 ϕ7 ϕ8 κ

1 PD81 2.61153 –1.49208 0.15281 2.20741 –2.95859 –0.58046 –0.00546 2.86733 1.02216
PD82 2.50835 –1.80323 –1.12170 –3.08779 0.28846 1.09114 1.27599 –2.22667 1.02216
PD83 2.18294 –2.97594 1.35331 –2.84491 0.16565 –1.09595 –2.25027 0.16552 1.02216
PD84 1.82404 –0.10574 –2.98208 –2.13737 –1.50007 3.09155 0.11098 1.35471 1.02216
PD85 1.75477 –2.32150 0.12777 –1.18259 2.40815 –1.93275 0.30847 2.60823 1.02216
PD86 1.03767 –0.07640 1.75380 –1.00830 2.33601 –1.44271 –3.09970 –2.48577 1.02216
PD87 1.01659 –2.52557 2.89648 0.33374 –1.50338 2.19623 –2.29474 0.09358 1.02216
PD88 1.74334 –1.79167 –2.39342 –0.72709 2.05671 0.82258 2.48855 –1.09561 1.02216
AP81 0.83305 –1.73272 1.95053 –2.32641 2.89702 –2.63823 0.38560 0.26672 1.02216
AP82 1.61633 –2.51472 –1.51594 1.42758 0.18349 –2.50110 2.76220 0.43869 1.02216
AP83 2.27849 –2.00209 1.75303 –0.08067 0.27972 2.94649 –2.81981 0.76531 1.02216
AP84 2.83177 0.61330 2.24038 1.15822 1.77967 1.49245 1.58945 1.56873 1.02216
AP85 2.35733 1.05688 –2.82410 –0.44884 –1.30394 2.16134 1.60198 1.48100 1.02216
AP86 2.13392 –0.24881 –2.41837 1.70116 2.70715 –1.29687 1.07784 1.46294 1.02216
AP87 2.59142 1.60949 0.74701 –2.11111 –0.81043 1.71959 2.01457 1.51056 1.02216
AP88 2.74925 0.90733 0.84501 –2.90598 2.13587 0.18584 1.93876 1.54157 1.02216

1
2 PD81 3.09896 –0.40393 1.07238 –2.81247 –1.81742 0.74796 1.25751 –2.09357 0.89860

PD82 2.89767 –0.75419 0.02350 –0.44104 2.77895 2.40824 2.36633 –1.07052 0.90078
PD83 2.44672 –1.76010 2.76238 –2.67594 0.42718 0.16684 –1.48585 0.99119 0.90698
PD84 2.15221 1.77359 –1.28384 –1.48037 –0.86524 –1.76586 1.44250 2.04352 0.90990
PD85 1.79499 –2.20241 0.33989 –0.13113 –3.09034 –1.74831 0.64086 3.07444 0.91557
PD86 1.28080 0.59213 2.03022 –0.76950 2.47232 –1.08139 –2.48749 –2.13266 0.91767
PD87 0.21511 3.01940 3.12108 0.36417 –1.25531 2.24040 –2.60242 –0.03202 0.92079
PD88 0.97746 –2.40477 –2.19087 –1.03016 1.93847 0.88825 2.35917 –1.11989 0.92143
AP81 0.61590 –1.54138 1.79633 –2.64106 3.03586 –2.81243 0.25918 0.20325 0.92361
AP82 1.07682 –2.72870 –2.26979 0.70542 0.23122 –2.61839 2.88367 0.36618 0.92461
AP83 1.69369 –1.97187 2.20200 –0.14932 0.17567 2.86682 –2.78478 0.67753 0.92852
AP84 2.36536 0.18413 2.37615 1.28246 1.68628 1.52971 1.58055 1.56971 0.95723
AP85 1.88735 1.26877 –2.67285 –0.31979 –1.39755 2.12492 1.60375 1.47723 1.05962
AP86 1.73150 –0.17922 –2.55773 1.79669 2.76172 –1.23074 1.08662 1.45651 1.05991
AP87 2.09427 1.83387 0.60461 –2.17505 –0.63648 1.77937 1.98533 1.50975 1.06029
AP88 2.24717 0.77780 1.17411 –2.62726 2.07274 0.36619 1.91234 1.54065 1.07079
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TABLE IV. (Continued.)

γ n = 8 ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 ϕ7 ϕ8 κ

1
4 PD81 2.36533 –0.59348 –1.59387 2.11324 1.26477 –1.39671 –1.84750 1.47308 0.83193

PD82 2.77667 –0.07740 –0.51182 –0.44784 2.63816 –3.06582 –2.91175 0.48286 0.83255
PD83 2.78074 –1.06236 –2.83926 –2.58960 0.52429 0.80444 –1.06493 1.48454 0.83488
PD84 2.42390 2.91231 –0.17275 –0.98092 –0.48142 –0.88408 2.29932 2.48783 0.83624
PD85 1.90609 –1.94011 0.59178 0.66409 –2.37678 –1.59005 0.85358 –2.89166 0.83956
PD86 1.42220 1.05360 1.96382 –0.77487 2.39390 –1.16804 –2.05033 –1.87167 0.84089
PD87 0.15447 –2.65067 3.11263 –0.30804 1.12308 –2.27416 2.84794 0.16435 0.84309
PD88 0.52355 –2.82738 –2.13271 –1.37376 1.67229 0.88411 2.21759 –1.19502 0.84360
AP81 0.43759 –1.25361 1.97034 –2.83601 3.08638 –2.92195 0.17407 0.14459 0.84606
AP82 0.74902 –2.91162 –2.58867 0.39895 0.21710 –2.70507 2.94458 0.29709 0.84732
AP83 1.25748 –2.21044 2.40264 –0.18148 0.13282 2.86776 –2.79560 0.58885 0.85238
AP84 1.99996 0.25518 2.71191 1.27163 1.65234 1.54671 1.57614 1.57022 0.89121
AP85 1.68405 1.39892 –2.66779 –0.14679 –1.40829 2.13276 1.54453 1.50840 1.00109
AP86 1.58930 0.07907 –2.47008 1.94431 2.74375 –1.08079 1.13869 1.49385 1.00433
AP87 1.82114 1.97469 0.72846 –2.07905 –0.55151 1.93583 1.85296 1.53092 0.99405
AP88 1.93220 0.95664 1.13275 –2.40924 2.34418 0.46327 1.81690 1.55146 0.98427

γ ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 ϕ7 ϕ8 ϕ9 ϕ10 ϕ11 ϕ12 κ

1 AP9 2.86001 0.55880 2.31608 1.07164 1.86035 1.43542 1.61698 1.56086 1.57179 – – – 1.01731
PD101 2.69670 –1.35876 0.44672 2.41011 –2.50642 –0.38506 0.55856 3.03426 –2.76626 0.14621 – – 1.01358
AP10 2.88351 0.51305 2.38089 0.99425 1.93898 1.37051 1.65721 1.54389 1.57606 1.57032 – – 1.01358
AP11 2.90338 0.47416 2.43675 0.92559 2.01287 1.30273 1.70718 1.51647 1.58631 1.56802 1.57103 – 1.01065
PD121 2.75780 –1.24040 0.68112 2.61730 –2.13289 –0.15967 1.03230 –3.03873 –2.21969 0.33514 0.75161 –2.58956 1.00830
AP12 2.92039 0.44071 2.48526 0.86478 2.08092 1.23560 1.76313 1.47942 1.60447 1.56194 1.57226 1.57068 1.00830

1
2 AP9 2.39185 0.10802 2.35997 1.26948 1.72330 1.49690 1.59735 1.56486 1.57141 – – – 0.98012

PD101 2.63663 –0.29344 –1.78826 2.13382 0.91161 –1.45848 –2.30168 1.36696 0.93599 –2.02087 – – 0.90538
AP10 2.88351 0.51305 2.38089 0.99425 1.93898 1.37051 1.65721 1.54389 1.57606 1.57032 – – 1.00431
AP11 2.90338 0.47416 2.43675 0.92559 2.01287 1.30273 1.70718 1.51647 1.58631 1.56802 1.57103 – 1.02570
PD121 2.75780 –1.24040 0.68112 2.61730 –2.13289 –0.15967 1.03230 –3.03873 –2.21969 0.33514 0.75161 –2.58956 0.91310
AP12 2.92039 0.44071 2.48526 0.86478 2.08092 1.23560 1.76313 1.47942 1.60447 1.56194 1.57226 1.57068 1.03977

1
4 AP9 2.01657 0.13293 2.66164 1.30204 1.66304 1.53099 1.58483 1.56766 1.57112 – – – 0.92234

PD101 1.17079 –1.85566 –2.41411 1.28850 0.29208 –2.20261 –2.94761 0.65430 0.26564 –2.7124 – – 0.85202
AP10 2.03052 0.03473 2.61071 1.31671 1.68306 1.50560 1.60228 1.56014 1.57300 1.57059 – – 0.95542
AP11 2.04286 –0.04779 2.56212 1.32168 1.71095 1.46850 1.63306 1.54272 1.57950 1.56915 1.57094 – 0.98701
PD121 0.37918 –2.8705 –3.06176 –0.38647 0.58995 3.00952 –2.34477 0.14723 0.81150 –2.76097 –2.41850 0.57353 0.86785
AP12 2.05415 –0.11928 2.51646 1.31975 1.74694 1.41647 1.68347 1.50776 1.59664 1.56350 1.57206 1.57069 1.01568
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