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We show how to use trapped ultracold atoms to measure the magnetic susceptibility of a two-component
Fermi gas. The method is illustrated for a noninteracting gas of 6Li, using the tunability of interactions around
a wide Feshbach resonance. The susceptibility versus effective magnetic field is directly obtained from the
inhomogeneous density profile of the trapped atomic cloud. The wings of the cloud realize the high-field limit
where the polarization approaches 100%, which is not accessible for an electron gas.

DOI: 10.1103/PhysRevA.87.043629 PACS number(s): 67.85.Lm, 67.10.Db

I. INTRODUCTION

Ultracold atoms can be prepared with almost complete
control over their density, temperature, and interactions. They
serve as model systems for exploring unsolved problems in
many-body physics as well as for demonstrating well-known
textbook physics, such as ideal, noninteracting gases that do
not exist in nature. For example, several phenomena related
to Pauli blocking of fermions were clearly demonstrated only
after the advent of ultracold Fermi gases [1]. Here we use the
tunability of atomic interactions near Feshbach resonances to
create a noninteracting Fermi gas with two components. This
is a realization of an ideal, noninteracting free-electron gas
(FEG) with spin-up and spin-down components, as assumed
in the simple theory of metals. We demonstrate how such an
ideal Fermi gas will respond to effective magnetic fields, which
is described by Pauli paramagnetism.

The paper is mainly pedagogical. It explains how para-
magnetism is observed in trapped atomic samples which
have an inhomogeneous density due to the harmonic confine-
ment potential. Furthermore, these atomic samples realize a
canonical ensemble in the fixed atom numbers N↑ and N↓
of the two components, whereas in metals and solid-state
physics, N↑ − N↓ is the magnetization determined by the
applied external magnetic field. In all previous studies of
paramagnetism, the magnetization was weak since the applied
magnetic field times the magnetic moment was much smaller
than the Fermi energy [2–5]. With ultracold atoms, we can eas-
ily realize the strong-field case where the chemical-potential
difference is larger than the Fermi energy and therefore
fully polarizes the gas. Besides its pedagogical purpose, this
paper experimentally demonstrates Pauli paramagnetism in a
truly noninteracting system exactly described by basic theory,
whereas measurements even in simple metals revealed major
discrepancies due to interaction effects [2–5].

II. CONCEPT

Pauli paramagnetism explains the magnetization of a free-
electron gas with two spin states, neglecting the contribution

*Present address: Korea Research Institute of Standards and
Science, Daejeon 305-340, Korea.

from orbital motion. In a FEG, the applied field shifts the
energies of the two spin states in opposite directions, as in
Fig. 1(a). For a uniform FEG at temperature T = 0, the total
number N↑(↓) of electrons in each spin state inside a volume
V is given by

N↑(↓) =
∫ EF

∓μBB

g(E ± μBB)dE, (1)

where g(E) = V
4π2 ( 2m

h̄2 )3/2E1/2 is the density of states, EF is
the Fermi energy, m is the mass of an electron, μB is the
Bohr magneton, and h̄ is Planck’s constant. The magnetic
susceptibility χ is defined as μB∂�n/∂B, where �n ≡ n↑ −
n↓ = (N↑ − N↓)/V . As a dimensionless quantity, we consider
the normalized susceptibility

χ = ∂ (�n/n)

μB∂ (B/EF [n/2])
, (2)

where the polarization �n/n is used as a more meaningful
measure of magnetization. EF [n] = h̄2(6π2n)2/3/2m, and the
total density is n ≡ n↑ + n↓ = (N↑ + N↓)/V .

Here we experimentally simulate Pauli paramagnetism
using trapped fermionic alkali atoms. The two lowest
hyperfine states of 6Li, |F = 1/2,mF = 1/2〉 ≡ |↑〉 and
|F = 1/2,mF = −1/2〉 ≡ |↓〉, represent the two spin states of
an electron. This atomic system is different from free-electron
systems: (1) Due to the slow dipolar relaxation [1], the
population in each spin state is conserved and, therefore, (2)
an external magnetic field does not lead to any magnetization;
it only shifts the energies of the two spin states (only in the
case of strongly magnetic dipolar gases such as Cr the dipolar
relaxation is fast, and therefore the spin populations follow an
external magnetic field [6]).

To realize the effective magnetic field, we introduce density
imbalance while preparing the system [7,8], as illustrated in
Fig. 1(b). In the grand-canonical description of a system with
fixed atom number, a Lagrange multiplier (called the chemical
potential) ensures the correct expectation value for the atom
number. In our case, the atom numbers in both spin states
are fixed. In a grand-canonical description, this leads to two
Lagrange multipliers, μ̂↑ and μ̂↓ (the two chemical potentials
for the two spin states), or to one Lagrange multiplier for the
total number and the other �̂μ = μ̂↑ − μ̂↓ for the population
difference. Under the external magnetic field B, �̂μ(B) is a
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FIG. 1. Comparison between a FEG and a trapped two-
component Fermi gas at temperature T = 0. (a) Response of the
FEG to an external magnetic field B. Electrons in the two spin states
are filled up to the Fermi energy EF . An external magnetic field B

shifts the energy of the two states in opposite directions and produces
the density difference, or magnetization. (b) Density distributions
n↑ and n↓ of a two-component trapped Fermi gas at T = 0. As
discussed in the text, the local density polarization and corresponding
normalized effective magnetic field varies across the atomic cloud.
This is illustrated in the diagrams next to the curve for n↑, where the
gaps between the two spin states represent the absence of spin-flip
processes in the system mentioned in the text.

function of B in the form of �̂μ(B) = �μ + μBB(g↑ − g↓),
where �μ = �̂μ(B = 0) and μBg↑(↓)B is the field-dependent
energy of each state. The resultant population imbalance
in thermal equilibrium is the response to the sum of this
multiplier and the contribution from the external magnetic
field, −μBB(g↑ − g↓), which is obviously canceled out by
the second additive component in this multiplier. Therefore,
the effective magnetic field determining the population im-
balance does not depend on the external magnetic field. For
example, a balanced gas (�μ = 0) always has zero effective
magnetic field, independent of the applied field.

For a uniform Fermi gas at T = 0, the number in each spin
state determines chemical potential μ↑(↓) [9] and satisfies

N↑(↓) =
∫ μ↑(↓)

0
g(E)dE =

∫ μ̃

∓�μ/2
g(E ± �μ/2)dE, (3)

where μ̃ = (μ↑ + μ↓)/2 and �μ = μ↑ − μ↓. g(E) is the
same as in Eq. (1) if m is taken to be the mass of a 6Li atom.
A comparison with Eq. (1) shows that the chemical-potential
difference �μ is the effective magnetic field that takes the
place of the magnetic field in a FEG. With this effective
magnetic field, the magnetic susceptibility can be written as

χ = ∂�n

∂�μ
. (4)

We show now how a single atomic density profile in a
harmonic trap V (�r) can be used to determine the normalized
susceptibility as a function of magnetic field. In the local-

density approximation, the density at each point in the trap is
that of the corresponding uniform gas with modified chemical
potentials μ↑(↓)(�r) = μ

g

↑(↓) − V (�r) [1,10], where μ
g

↑(↓) is
global chemical potential defined for the whole trapped cloud,
which constrains the total number of atoms in each spin state.
This concept has been used to determine the equation of state
of interacting Fermi gases [8,11–13]. Here we are interested in
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FIG. 2. Determination of the susceptibility χ from atomic density
profiles. (a) Simulated density profiles of a two-component Fermi gas
in a spherically symmetric harmonic trap at zero temperature. The
total population imbalance δ ≡ (N↑ − N↓)/(N↑ + N↓) = 21%. The
shaded area corresponds to the partially polarized region where χ

is well defined. (b) The local chemical-potential difference �μ with
(solid line) and without (dashed line) normalization by the Fermi
energy EF [n]. For the fully polarized gas, �μ = �μ/EF [n] = 1
according to the definition in the text. (c) The density difference
�n with (solid line) and without (dashed line) normalization by the
total density n. (d) Normalized density difference �n vs normalized
chemical-potential difference �μ. For the fully polarized gas, �n =
�μ = 1. A linear fit at low �μ (dashed line) gives χ = 3/24/3 ≈
1.19. (e) Normalized magnetic susceptibility χ vs the normalized
chemical-potential difference �μ.
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the normalized magnetic susceptibility which is the slope of the
normalized density difference versus the normalized chemical-
potential difference [14]. We demonstrate this procedure first
using simulated density profiles (Fig. 2).

As μ↑(↓)(�r) varies across the cloud, the chemical-potential
difference �μ(�r) ≡ μ↑(�r) − μ↓(�r) = μ

g

↑ − μ
g

↓ remains con-
stant, as shown in Fig. 2(b). However, the total density n(�r) =
n↑(�r) + n↓(�r) changes across the cloud and, consequently,
the local Fermi energy EF [n(�r)] as well, with EF [n] being
the same as in Eq. (1) if m is taken to be the mass of
6Li. The normalized magnetic susceptibility χ depends
on the dimensionless effective magnetic field �μ =
�μ(�r)/EF [n(�r)], which does vary across the cloud, from small
values near the center to the saturated value of one at the edges.
From Fig. 2(d), a single set of atomic density profiles contains
a range of polarizations �n = �n/n and normalized effective
magnetic fields �μ/EF [n]. The slope of the �n vs �μ yields
the normalized susceptibility

χ = ∂( �n )/∂( �μ ). (5)

The normalization of χ in Eq. (5) is chosen to ensure �n =
�μ = 1 for a fully polarized gas. The slope near the origin,
corresponding to small values of �μ, gives χ (T = 0) ≡ χ0 =
3/24/3 ≈ 1.19 [15]. As shown in Fig. 2(e), the susceptibility
decreases with increasing �μ and drops to zero when the
Fermi gas reaches full polarization.

III. EXPERIMENT AND RESULTS

An ultracold one-component Fermi gas of 6Li in the
state |F = 3/2,mF = 3/2〉 is prepared by sympathetic cooling
with bosonic 23Na atoms [16,17]. 6Li atoms are then loaded
into an optical dipole trap followed by radio-frequency (rf)
transfer to |F = 1/2,mF = 1/2〉 using an rf Landau-Zener
sweep at 300 G. A superposition of the two lowest hy-
perfine ground states, |F = 1/2,mF = 1/2〉 ≡ |↑〉 and |F =
1/2,mF = −1/2〉 ≡ |↓〉, is prepared by a rf sweep at 300 G,
and holding here for 500 ms results in an incoherent mixture.

Further cooling is provided by lowering the optical trapping
potential, which leads to radial evaporation (axial confinement
is provided magnetically). We increase the magnetic field in
200 ms to 528 G, where the scattering length is zero [18],
leading to a noninteracting two-component Fermi gas. The
oscillation frequencies of the final trapping potential are ωy =

Probe
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FIG. 3. Double-shot phase contrast imaging. |e〉 is the 2P3/2

excited state in 6Li. Two successive images are taken at two different
imaging frequencies, (a) and (b). Corresponding CCD images are
shown on the right.

2π × 35 Hz axially and ωx = ωz = 2π × 390 Hz radially.
The total population imbalance δ ≡ (N↑ − N↓)/(N↑ + N↓) is
about 33%. The final temperature is about 0.22T/TF , where
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FIG. 4. (Color online) Experimental determination of χ . Repre-
sentative profiles of (a) 2D column densities for |↑〉 (upper solid
curve) and |↓〉 (lower solid curve). The temperature and chemical
potential are obtained from the fit (dotted curves) as discussed in
the text. Each elliptical average is plotted vs the axial position (long
axis of the ellipse). (b) 3D density difference obtained from a single
double-shot image. The dotted curve is a theoretical curve based on
the chemical potentials and the temperature obtained from the 2D
fit in (a). (c) The normalized 3D density difference is plotted as a
function of the normalized chemical-potential difference. The solid
line is the theoretical prediction. (d) The linear fit at low �μ gives
the low-field susceptibility χ = 0.95(1).
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kBTF = EF [n/2] with n being the total peak density and kB

being the Boltzmann constant.
To obtain the density profile of each spin state of 6Li,

we use a double-shot phase contrast imaging technique that
involves two images taken at two different imaging frequencies
[8,17] (see Fig. 3). One frequency is tuned to the average of the
two resonant transition frequencies for |↑〉 and |↓〉 states to the
2P3/2 electronically excited state. The resulting phase contrast
picture is a measure of the density difference �n = n↑ − n↓.
To measure the density of each component, a second image
is taken of the same cloud at a frequency detuned towards
the |↑〉 transition by 10 MHz. The two images can be taken
in quick succession because of the nondestructive nature of
phase contrast imaging.

For dispersive imaging techniques such as phase contrast
imaging, it is crucial to carefully focus the imaging system,
since the atomic cloud refracts the probe light (in contrast
to resonant absorption imaging). One can check this by
comparing in-trap profiles of |↑〉 atoms imaged at positive
and negative detunings of 60 MHz and find the focal position
which minimizes the difference [17].

Figure 4 shows the experimental results. The camera images
provide two-dimensional (2D) column densities n2D, which
integrate the density distribution along the line of sight. To
reduce the noise for the following analysis, we take advantage
of the symmetry of the trap and perform quadrant averaging
and elliptical averaging: First, the four quadrants around the
center of the images are averaged. Second, the data is averaged
along elliptical contours. The aspect ratio of the ellipses is de-
termined from in-trap images [8]. The temperature and global
chemical-potential for each component are obtained by fitting
2D densities with theoretical noninteracting density profiles.
Since the temperature T is small but non-negligible, data are
fitted with finite-temperature Fermi gas 2D distribution in a
harmonic trap given by

n2D(x,y) = −m(kBT )2

2πh̄3ωz

Li2[−e[μg−m(ω2
xx

2+ω2
yy

2)/2]/kBT )], (6)

where Lin(z) is the nth-order polylogarithm. z is the axis
along the line of sight. Since the majority component has
a better signal-to-noise ratio, we determine the temperature
and chemical potential first for this component, and keep the
temperature as a fixed parameter in the fit of the minority
profile. Three-dimensional (3D) densities [Fig. 4(b)] are
obtained by performing the inverse Abel transformation of
the column densities [8]. The linear fit of �n as a function
of �μ at small �μ gives the low-field susceptibility at finite
temperature [Fig. 4(d)]. For finite but low temperatures, the

low-field susceptibility is known to vary as [19]

χ = χ0

[
1 − π2

12

(
T

TF

)2]
. (7)

T/TF changes from 0.24 to 0.35 within the fitting region
in Fig. 4(d), affecting the susceptibility by about 3%. For
T/TF = 0.29, this theoretical calculation gives χ = 1.108 and
the experimentally obtained value is 0.95(1) in Fig. 4(d). The
discrepancy between the experimental and theoretical value
is most likely due to a residual dispersion effect leading to
systematic uncertainty estimated to be 10–20% [20,21]. We
did not attempt to quantify this effect since this paper is
mainly pedagogical and a dispersion effect depending on the
imbalance as well as two detunings would be time consuming
to quantify.

Figure 4(c) illustrates that we can easily approach the
high-field limit of a fully polarized gas �μ ≈ 1. Note that �n

is smaller than 1 because at finite temperature the minority
component extends beyond its Thomas-Fermi radius. In a
metallic free-electron gas, with a typical Fermi temperature
of 10 000 K, the high-field region would require magnetic
fields of 10 000 Tesla, which is 200 times stronger than the
strongest continuous laboratory magnetic fields.

IV. CONCLUSIONS

We have demonstrated how the ideal-gas magnetic sus-
ceptibility can be measured in ultracold Fermi gases. After
considering finite-temperature effects, the experimental results
are in quantitative agreement with the prediction from Pauli
paramagnetism. Since the local spin polarization varies across
the trapped atomic cloud, a single density profile gives
the susceptibility for both low and high effective magnetic
fields. This method can be applied to the study of magnetic
properties of strongly interacting Fermi gases, which are of
current interest [22–25]. Such measurements could address the
possible existence of a ferromagnetic transition in a repulsive
Fermi gas [16] for which the spin susceptibility would diverge
at the phase transition [26].
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