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ABSTRACT

An experimental study was performed to determine the role of torque feedback in haptic
perception of object location within virtual environments. The experimental setup
consisted of two Phantom haptic interfaces connected by a common stylus and a ray-
based rendering technique for modeling the interactions between the user-controlled
stylus and the virtual environment. Subjects were asked to identify 7 locations of a
virtual object under various force display conditions, which ranged from force feedback
only at the stylus tip to accurate force and torque feedback. Subjects' ability to determine
the location of a real object was also examined in order to establish the effectiveness of
the hardware and software utilized in the study. In order to obtain their best performance,
subjects were trained in each case with correct-answer feedback.

Results indicate that the most significant improvement in perception occurred during the
first training session. The accuracy of subjects' haptic perception of virtual object
location was the same as the perception of real object position when full force and torque
feedback were provided, thus validating the realism of the simulated haptic environment.
Estimated percentage JND for these conditions, ranged from approximately 20% for the
nearest objects to 12% for the farthest objects. The information transmitted (IT) for these
conditions were also the same, at approximately 1 bit (out of a maximum of 2.81 bits).
When subjects probed the virtual object by rocking against it, thus freely changing the
orientation of the rod, even with forces reflected only at the front tip of the stylus,
performance was the same as when true force and torque feedback were provided.
However, when subjects were permitted only to tap the probe against the object, thereby
limiting the motions and orientations of the rod, providing force feedback only at the tip
of the stylus resulted in poor identification of object location. In this case, percentage
JND ranged from 37% to 27%, while IT was .17 bits. Torque feedback and object
contact with multiple probe orientations, then, provide equivalent haptic information in
terms of determining object position. Denying both results in inaccurate haptic
perception of object distance.

Thesis Supervisor: Mandayam A. Srinivasan
Title: Principle Research Scientist, Department of Mechanical Engineering
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Chapter 1

Introduction

1.1 Virtual Environments

Virtual environments (VEs) are computer-generated worlds in which one or more senses

of the human user are stimulated interactively in real time in an attempt to immerse the

user in a simulated setting. The wide variety of applications of VEs, ranging from

entertainment such as rides and games to training simulations for surgeons or pilots,

continues to expand in number and disciplines. The principal component of most current

VEs is the graphical display, such as in a head mounted display, aided frequently by

auditory stimulation. However, as virtual worlds become more immersive and realistic,

there is a need to provide stimulation to senses other than vision and hearing.

Advancements in haptic interfaces and rendering methods are beginning to allow the

sense of touch to be incorporated in interaction with virtual environments.

1.1.1 Hardware for Haptic Interfaces

Haptic interfaces can generally be divided into two categories: tactile displays and net-

force displays (Srinivasan, 1995). A tactile display distributes the net forces and torques

that result from contacting an object directly with the skin. Due to the complexities of

human tactile sensation, construction of convincing tactile displays is extremely difficult.

While this does not deter the continued effort in the development of tactile displays (see

Ikei et al., 1997 for a recent example), net-force displays are currently a more practical

11



a)

Figure 1: Force Feedback gloves. a) "RM II" developed at Rutgers University
b) "CyberGrasp" by Virtual Technologies, Inc.

means of providing haptic sensations in virtual environments. Net-force displays, or

force-feedback devices, simulate the interactions between the user and the environment

through an intermediate tool. A variety of net-force displays have been developed and

are in use today. There are two basic types of force-feedback devices: body-based and

ground-based. Body-based interfaces are exoskeletal devices that are worn by the user.

A common type of body-based device is an augmented glove (Figure 1). While such a

device provides a large workspace, the calculations required during haptic rendering of

virtual objects are very complex. Also, to fully re-produce the physical forces that act on

the hand for everyday tasks, the force-feedback glove would require an actuator for every

degree of freedom of the hand. Therefore, an interface whose purpose is to stimulate all

the joints of the hand would require approximately twenty degrees of freedom (DOF) and

additional degrees of freedom if the mobility of the wrist is taken into account. At

present, achieving the same level of resolution as human perceptual and motor abilities is

not possible. In ground-based displays, the reflection of forces through the end-effectors

simulates the indirect contact with an object that results from feeling the world through a

12
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Figure 2: "PHANToM" Haptic Interface by SensAble Technology, Inc.

stick. Types of ground-based displays range from 1 degree of freedom devices that

provide force reflection in a single direction (Beauregard and Srinivasan, 1996) to 6 DOF

devices that provide force feedback in three directions and torque feedback about three

axes (SensAble Technologies). (For a more extensive review of haptic interfaces, see

Srinivasan, 1995; Biggs and Srinivasan, 2001). The Phantom haptic interface (Figure 2)

designed in the MIT Artificial Intelligence Laboratory (Massie and Salisbury, 1994)

provides force feedback in three translational degrees of freedom and position sensing in

all six degrees of freedom. In using this device, the user typically grasps the end effector

of the device in the form of a stylus and manipulates it as if wielding a stick in order to

interact with pre-programmed VEs. The three active degrees of freedom allow the forces

to be applied on the user through the tip of the stylus, while the six translational and

rotational degrees of freedom allow the user to position and orient the stylus in 3-D

13



space. Contact between the stylus and an object results in a force and a torque felt by the

user's hand. If contact between any part of the stylus other than its tip is made with a

virtual object, the torque the user feels at the hand is not physically accurate. The torque

the user feels corresponds to contact at the tip of the stylus rather than at the actual point

of contact (Figure 3).

Subject's
Hand

Stylus

dtrue Object
d4m

d

Tip

F

Tk = Fd

Ta= Fdtu

H

Figure 3: Difference between true torque and torque felt by user

In order to present both the true force and true torque for contact at any point along the

stylus, the haptic interface used in this study connects two Phantoms with a common

probe (Figure 4).

Figure 4: Two Phantom Configuration

The main principle used is that the desired combination of force and torque values can be

applied at any point on the probe through an appropriate combination of forces acting at

the two ends of the probe. This configuration provides five degrees of freedom. Rotation

14



about the instrument itself is not controllable, though Iwata (1993) presents a solution to

this problem by attaching a screw mechanism to the stylus. While this parallel

configuration of Phantoms effectively doubles the cost in terms of hardware, it is

currently a cheaper and more compact alternative to a single serial manipulator with 6

DOF force and torque feedback.

1.1.2 Software for Haptic Rendering

Haptic interaction with objects within virtual environments is defined by the software and

requires an algorithm to define the nature of the intersection between the virtual object

and the representation of the stylus of the haptic interface. In point-based rendering

(Salisbury et al., 1995), the stylus is modeled as a single point. Therefore, regardless of

the orientation of the probe, the cursor representing the end-effector of the haptic

interface dictates the force reflected to the user. It is possible, then, for unrealistic

situations to occur, such as the stylus can be oriented such that its tip is contacting the

surface of a virtual object, yet the stylus itself may be passing through the object (Figure

5).

Point-Based Ray-Based

Figure 5: Point-based vs. Ray-based rendering
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In many applications of haptic interfaces the interaction of the entire stylus, not just the

stylus tip, with the virtual environment is of importance. In these situations, point-based

rendering is not an adequate representation of the probe. A ray-based haptic rendering

algorithm has been developed to address this deficiency (Basdogen et al., 1997; Ho et al.,

2000). In this rendering method, the stylus is modeled as a line segment such that

collision detection occurs between objects and the side of the probe as well as at its tip.

With this rendering technique, the entire stylus may interact with the VE, providing a

more intuitive interface.

1.2 Haptic Perception

1.2.1 Real World Experiments

The sense of touch simulated by most force-feedback devices in VEs today is not

experienced directly by the skin; instead, the interaction takes place between a hand-held

probe and the environment. Several studies have been conducted on haptic perception

through probing of real objects. For example, Chan and Turvey (1991) investigated the

mechanical parameters that influence the perception of the height of a surface through

dynamic touch. The rotational inertia of the probe, the orientation of the surface, and the

distance between the point of contact with the surface and the probe's center of

percussion were discovered to be factors that affect perception of the distance between

the surface and the user's hand. Quantitative results in the form of power laws were

found for perceiving distances of probed surfaces as functions of these parameters

(Carello et al., 1992). Perception of roughness and textures through probing was studied

by Klatzky and Lederman (1999). Two probes, whose tips differed in diameter, were

16



used to explore textures consisting of collections of raised dots. Results were compared

with perception with a bare finger. Perception of textures when using the probes was not

as sensitive as perception when using a bare finger. However, some discrimination of

roughness was possible even when the probes were used. Further experiments examined

the effects of speed of probing on perceiving roughness through a probe (Lederman, et.

al. 2000). Other related investigations revealed the effects of probe diameter and density

(Chan, 1995) and method of manipulation and prior experience (Chan, 1996) on

perception of rod length. While these studies identify the relationships between

mechanical properties and haptic perception, it remains unclear what the role of torque is

when these mechanical parameters, such as probe properties, are fixed and object position

is the only variable. Also, all of these experiments were performed in the real world and

while virtual environments can achieve a suspension of disbelief, VEs do not perfectly

mimic reality. Therefore, study of haptic perception of physical objects alone cannot

provide sufficient information on how virtual objects are perceived.

1.2.2 Haptic Perception in VEs

In order to determine optimal methods to simulate touch in virtual environments,

investigation into haptic perception in VEs must be conducted in addition to

understanding haptic perception in the real world. In the real world, the forces, torques,

velocities, accelerations, etc. that result from the interactions between objects are dictated

by physics and cannot be altered. In virtual reality, on the other hand, a programmer

defines the physics of the environment. Controlling the laws that govern the interactions

17



between objects provides a useful tool in investigating human haptic perception in

general as well as specifically in virtual environments.

Our focus in this thesis is to investigate the role of torque feedback in the haptic

perception of object location. Preliminary experiments examined the importance of

torque feedback in VEs for judging object position relative to hand position (Wu, 1999).

Using the parallel Phantom configuration and ray-based rendering technique described

above, a simple VE was created in which the only object in the environment was an

infinitesimally thin vertical plate located below the probe. Object location was varied

between three positions: 60 mm forward of the hand, 60 mm behind the hand, or at the

hand, as shown in Figure 6.

Hand
Side View

I I I I

Front Mid. Back

Figure 6: Stimulus positions for a preliminary experiment

Under four different force display conditions (tip force only, pure force, pure torque, and

both force and torque), subjects were asked to determine whether the object was "front",

"middle", or "back". The results of this experiment indicated that under the tip force

condition, subjects almost always perceived the object to be forward of the hand,

regardless of actual position. In the pure force case, subjects tended to respond that the

object was in the middle. Under pure torque, subjects were able to determine when the

object was placed forward of the hand or behind the hand. However, when the object

was placed directly below where the hand grasped the rod, subjects were not as certain.

18



In the case where both force and torque were presented to the subject, judgement of the

position of the object was quite accurate. These results demonstrate the need for both

force and torque feedback when the object can be located anywhere along the probe.

1.2.3 Torque Feedback Issues in Haptic VEs

In most applications, however, the stylus will not be grasped at its center, but near or at

its base. The question, then, becomes what is the role of torque feedback when the object

is always located forward of the hand. Hancock (1996) suggests that a single 3 DOF

force-feedback device is sufficient to perform some of the tasks in which 6 DOF are

typically used. Hancock argues that while no true torque feedback is presented by the 3

DOF force feedback haptic interface, the user can voluntarily supply the sense of torque.

If this is true, then the cost and complexity of haptic interface hardware and software are

considerably reduced. It seems, however, that this voluntary torque can only be supplied

in situations in which the user knows, prior to contact, how the probe should respond.

This implies a visual representation, which displays the probe and the object, is required

as well as prior experience with such a situation. However, this brings up an interesting

point: are there conditions in purely haptic virtual environments in which torque feedback

is not required? If this is the case, is haptic perception not a function only of the forces

and torques experienced during contact, but of other factors (such as user's intent, prior

knowledge, arm kinematics, etc.) as well? Is torque feedback providing haptic

information that can be presented in another form? Can the same level of haptic

perception be maintained if the number of degrees of freedom of the haptic interface is

reduced? Answers to these questions ultimately lead to the specification of the hardware

19



requirements for a haptic virtual environment. However, in order to answer these

questions, it is first necessary to identify the information needed for accurate haptic

perception within a virtual environment.

1.3 Organization of Thesis

This thesis identifies the conditions in which torque feedback is required in virtual

environments by first comparing haptic perception in virtual environments with haptic

perception in the real world. Additional studies on identifying the necessary and

sufficient information in perceiving the positions of virtual objects are also conducted.

Chapter 2 describes the design of experiments, which involved the use of a probe, under

various conditions of force and torque display (without visual or auditory stimulation), to

contact an object whose position was changed from trial to trial. For example,

experiments examining the use of full force and torque feedback versus reflecting only

the force at the stylus tip, and tapping versus rocking exploration methods are described.

Chapter 3 provides the experimental results and quantitative measures by which subject

performance was evaluated. Chapter 4 provides a discussion of the results and

conclusions. This includes several models for the possible methods by which object

distances are determined. Possible lines for future experimentation are suggested in

Chapter 5. Data on individual subject performance can be found in the Appendix.

20



Chapter 2

Experimental Design

2.1 General Method

The exploration and manipulation of objects in virtual reality requires the user to have a

sense of how those objects are situated within the environment. Locating objects, then, is

a primary task that needs to be accomplished before further interaction with the virtual

environment can take place. Therefore, these experiments focus on perception of object

position. More precisely, experiments were designed to investigate the role of torque in

the haptic perception of the location of virtual objects. Many of the experiments that

cannot be conducted in the real world due to the laws of physics can be conducted in

virtual environments. Most virtual environments attempt to mimic reality, but this need

not always be the case. For example, the programmer can choose to provide the user

with only a limited set of haptic cues or create completely non-physical responses to

interactions with the environment. In Experiments 4 and 5 (see below), the force displays

do not attempt to mimic reality. Instead, for the contact of the probe with a virtual object,

the subject was presented with a physically accurate force, but an inappropriate torque.

However, while physical laws do not dictate the interactions within virtual reality, there

are limitations on what can be presented in a virtual environment due to the state of the

hardware and software used to create the VE. Therefore, before examining human

perception under non-physical conditions, it was necessary to establish that the

imperfection of current virtual environment technology was not a factor in subjects'

perceptual abilities. Experiment 3 examined haptic perception in virtual environments in

21



order to determine how well our rendering technique and hardware configuration

simulated reality. Therefore, before experiments were conducted in virtual reality,

experiments were run in the real world (see below, Experiments 1 and 2) to determine if

subjects were capable of accurate haptic perception of object position in general. In order

to ensure that the reasonable comparison could be made between perception in the real

world and VE, the highest possible level of consistency for the experiment materials was

maintained. Due to limitations in rendering rates, it is currently not possible to simulate

perfectly rigid objects in VE. Therefore, the stimulus used for the real object was chosen

according to its stiffness to match that of the virtual object. The same probe and

hardware setup (see below) were used throughout all experiments regardless of the

experimental condition in order to neutralize the effects of Varying probe properties, such

as rotational inertia, density, etc., on haptic perception.

2.1.1 Experimental Setup

The end-effectors of two Phantom haptic interface devices (Model A1.O and Model T1.O,

each capable of 3 DOF force feedback) were connected by a hollow aluminum rod 54 cm

in length. The object, whose location was to be determined by subjects wielding the rod

as a probe, was either a prism-shaped rubber eraser or in the case of a virtual object, a

thin vertical plate. A large cardboard box and cloth screen hid the apparatus and

experimenter from the subject (Figure 7). A cross was cut into the cloth screen such that

the subject could reach through and grasp the probe, while still keeping the apparatus

hidden from view. A tape measure ran along the side of the cardboard box for the subject

to indicate, by pointing, where he/she perceived the object to be. Pointing to the

22



Figure 7: Experimental Setup

perceived object location provided subjects with a physical reference point to judge the

position of the stimulus rather than merely choosing a numerical abstraction. The

subjects wore headphones to mask the sound of contact between probe and object as well

as any possible sound coming from the Phantom motors.

2.1.2 Software

A software program, written in C++, provided control of the virtual environment,

presentation of correct-answer feedback (for some trials, see below) and recording of

results. Software functionality included: collision detection between probe and object,

control of force output for both Phantom haptic interfaces, random positioning of virtual

objects, on-screen messages, and data recording. Raw data consisted of subject responses

for each trial. While data from all experimental trials were recorded, trials in which the

probe was not moved and oriented in accordance with the experimenter's instructions

23



were tagged and not included in the analysis. The collision detection model for this

virtual environment, which consists of a single virtual object and the probe, is shown in

Figure 8.

Probe position without
collision

vertical olate
----- - Probe position during collision

.. with a virtual vertical plate
R

R =-ky

Figure 8: Collision detection model

The reaction force due to contact between the probe and object, R, is computed from

Hooke's Law, R = -ky, where k is the stiffness of the object and y is the vertical depth of

penetration of the line segment past the top of the plate. The simplicity of this virtual

environment enabled us to achieve high rendering rates of up to 15000 kHz. However,

due to the length of the probe and limitations of the encoder resolutions in the haptic

interface, some vibrations were felt through the probe during contact with the virtual

object. To minimize these vibrations, the stiffness of the virtual plate (k = 6.4N/mm) was

optimized according to the experimenter's judgement.

2.1.3 Experimental Conditions

Three different force display conditions were implemented.

1. Neither Phantom provided force feedback. The haptic cues presented to the subject

resulted from actual contact between the probe and the physical object.
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2. Both Phantoms provided force feedback. The haptic interfaces simulated the

presence of an object by reflecting both the true forces and torques whenever the

probe intersected the virtual object.

3. A single Phantom provided force feedback. Contact between the probe and the

virtual object resulted in force reflection only at the Phantom connected to the tip of

the probe (i.e. the torque feedback experienced by the user was physically

inaccurate).

The position encoders of both Phantoms were active during all trials, however, in order to

monitor the position and orientation of the probe.

Conditions 2 and 3, both of which involved interaction with virtual objects employed the

following force computations (Figure 9):

ZI Z2

Probe Tip Probe Bas

R Hand Position

F, t Object Position F2

Force applied Force applied
by Phantom 1 by Phantom 2

Figure 9: Effect of reaction force, R, on the subject's hand achieved through forces F1

and F2 applied by the two Phantoms.

e

Force and Torque: The forces applied by the two Phantoms give a resultant force

equal to the magnitude of the reaction force, R, and result in a

torque equal to the moment created by that force with moment arm

Z.

F1 + F2 = R
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(zi x FI)+ (z2 x F 2)= z x R

Tip Force: This condition is identical to having a single Phantom connected to

the tip of probe.

F 1 = R

F 2 =0

Where, F1 and F 2 are forces reflected by the Phantoms connected to the tip and base of

the probe, respectively. zi and z2 denote the relative displacements from the hand to

Phantoms 1 and 2. R is the reaction force computed from Hooke's Law (R = -ky as in

Figure 9) and z is the displacement from the hand to the point of intersection of the object

with the probe.

2.1.4 Procedure

Subjects were asked to sit in a chair facing the computer monitor such that he/she could

comfortably grasp and manipulate the rod with the right hand. The rod was grasped as

one would a pointer. A piece of tape on the rod indicated where the subject was to grip

the probe so that hand position was kept constant for all trials, experiments, and subjects.

Instructions to subjects varied by experiment. However, in all cases, the subject was

asked to grasp the probe and in a specified manner (see below) make contact with the

object. Subjects were permitted as much time as they needed to determine the position of

the object. The position of the object was fixed in each trial, but was changed randomly

from trial to trial. To simplify the problem, rather than placing the object randomly in 3-

dimensional space, only the z-component of the object position was varied. (Axes

orientations are such that the z-axis is the longitudinal axis of the probe when it is parallel

26



to the ground, the y-axis is perpendicular to the z-axis and vertical, and the x-axis is

perpendicular the z-axis and horizontal). In each trial, the subject was asked to judge the

absolute position of the object by pointing to the tape measure. There were a total of ten

sets of trials for each experimental session. The number of sessions varied for each

experimental condition, depending upon the amount of training provided (see below). A

total of twenty trials for each stimulus per experimental condition were presented to each

subject. In addition, one practice set was given to the subjects at the beginning of each

session.

2.2 Detailed Methods

Experiment 1: Real Object (4 object positions; restricted probing)

Experiments 1 and 2 made use of the first force display condition (i.e. forces and torques

experienced by subject were from contact with a prism-shaped rubber eraser). In

Experiment 1, the object was placed at four different object positions between 24 and 36

centimeters forward of the initial hand position at 4 cm increments. Subjects were

instructed to hold the rod oriented horizontally and tap the object through pure vertical

motion of the rod. Subjects were notified by messages on the computer screen when the

rod moved outside a longitudinal range of +/-3 mm. Seven naive subjects from the MIT

community ranging in age from 18 to 31 were paid to participate in this experiment. All

subjects were right-hand dominant.

Experiment 2: Real Object (7 object positions; unrestricted probing)

In Experiment 2, in order to determine the effects of learning on haptic perception,

subjects were trained using correct-answer feedback. As in Experiment 1, a prism-
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shaped rubber eraser was used as the stimulus. In this experiment and in the remaining

experiments, the object was located at seven different object positions between 9 and 33

centimeters forward of the initial hand position at 4 cm increments. In order to obtain

their optimal performance, subjects were permitted to use any exploration method they

chose, so long as the probe remained approximately in the vertical plane. Training

occurred in three stages. In the first stage, the subject's initial performance was

measured. No correct answer feedback was given to the subject. This stage provided a

baseline performance with which the subsequent results could be compared. In the

second stage of training, the same object and the same set -of object positions was

presented to the subject, this time with correct-answer feedback following each trial.

Subjects completed a total of four sessions of these experiments. The final step in the

training was a repetition of the first stage. The purpose of this third phase was to measure

the performance of these experienced subjects following extensive practice. Eight naive

subjects from the MIT community ranging in age from 18 to 27 were paid to participate

in this experiment. All subjects were right-hand dominant.

Experiment 3: Virtual Object (True force and torque feedback; unrestricted probing)

After testing the ability of subjects to distinguish different object positions when using

real objects in Experiments 1 and 2, Experiment 3 investigated haptic perception of

virtual objects. Experiment 3 made use of ray-based rendering (see -Sections 1.1.2 and

2.1.2) and force reflection at both the tip and base of the probe, effectively providing the

subject with both force and torque feedback as one would expect from the physics of

contacting a real object. In this experiment, subjects were trained as in Experiment 2.
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However, subjects completed only one session with correct-answer feedback rather than

four sessions as in Experiment 2, whose results indicated that the additional correct-

answer feedback sessions produced minimal improvement (See Section 3.3). Subjects

were permitted to use any exploration method they chose, so long as the probe remained

in the vertical plane. However, the subject was asked to limit his/her longitudinal range

of motion to +/- 30 mm of its starting position. Subjects were notified by messages on

the computer monitor if the motion of the probe exceeded this range. Six of the eight

subjects that participated in Experiment 2 took part in this experiment.

Experiment 4: Virtual Object (Tip force only; unrestricted probing)

In order to determine the role of torque in haptic perception, Experiment 4 examined

subject performance under the limited force display condition of having only force

feedback at the tip of the probe. The torque experienced by the subjects depended only

on the force and not on the position of the object as it did in Experiment 3. Thus torque

provided misleading information about object position.

Experiment 5: Virtual Object (Tip force only; restricted probing)

Subjects were trained under this force display condition using two different modes of

exploration: rocking (Experiment 5a) and tapping (Experiment 5b). Again, subjects were

limited to a longitudinal range of +/- 30 mm of the starting position.

Experiment 5a: Rocking

Exploration was restricted to rocking the probe against the object. However, subjects

were allowed to re-position the probe relative to the object as they chose (i.e. using
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different pivot points along the probe). Taking Experiment 4 to be initial subject

performance, Experiment 5a consisted of a single correct-answer feedback session and a

test session. The same six subjects that participated in Experiments 3 and 4 took part in

Experiment 5a.

Experiment 5b: Tapping

The method of exploration was restricted to tapping against the object such that the probe

always struck the object with the same orientation. As in Experiment 5a, training

consisted of one correct-answer feedback session and a test session. Five of the six

subjects that participated in Experiment 5a took part in this experiment.
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Chapter 3

Experimental Results

3.1 Data Analysis

Figure 10 provides a sample plot of several possible subject responses versus actual
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Figure 10: Sample plot of mean subject response. Line A shows zero
offset and zero slope. Line B shows unity slope and finite offset.

object position. The object positions are measured according to their initial distance from

the hand before the subject begins probing, which is constant for each trial. The dotted

line represents perfect identification of each object position for every trial. From the

results, below, it can be seen that the data points, which are the mean of all respons..es for

a given stimulus (object distance) averaged across all subjects, are monotonically

increasing with object distance and approximately linear (in general, the mean responses

actually form an S-curve). The line segments represent sample best-fit straight lines (to

be referred to as the mean subject response) through these data points. The slope of the
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mean subject response, then is a measure of subjects' ability to locate each object, within

the stimulus set, relative to the hand. A zero slope (i.e. a horizontal line) as shown in the

figure by Line A, implies that regardless of the actual position of the object, the subject

perceived the object to be at the same position for every trial. A non-zero slope indicates

that the subject can distinguish between different object positions. As seen in Figure 10,

the slope of the ideal performance trace is unity. Therefore, the closer the slope of the

subject response curve is to unity, the better the subject is able to identify the position of

the object. A slope larger than unity means that the actual relative distance between

objects is smaller than what was perceived, whereas a slope less than unity indicates that

relative distance between objects is larger than what was perceived. The slope of the

mean subject response, however, does not completely characterize subjects' perceptual

ability. For example, in Line A of Figure 11, the mean subject response lies very close to

the ideal performance line. However, imagine that subject responses for each stimulus

was distributed over a large range of values (the variance associated with the mean

response for each stimulus is described by the standard deviation and indicated by the

vertical bars). While the mean response would accurately locate the object, any single

response could lie anywhere within that range of distances and would likely not be as

accurate. This scatter is due both to variability across subjects as well as inconsistencies

in individual subject responses for the same stimulus. If, on the other hand, the mean

subject response has a very shallow slope (Line B in Figure 11), but there is no standard

deviation associated with any of the mean responses, one could conclude that each object

position was perfectly distinguished from the others, but the absolute positions were

poorly judged. Therefore, the standard deviation indicates the level of confidence
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Figure 11: Sample plot of mean subject response. Line A shows finite standard deviations with
accurate mean response. Line B shows shallow slope with no standard deviations.

associated with the mean response (i.e. indicates how well the object positions were

consistently discriminated). Another important measure of performance is bias. Where

the slope of the mean subject response line gives an indication of how well subjects

perceived object distances within a group of objects, bias shows us how well subjects

perceived the position of the group of objects as a whole (i.e. how the entire set of subject

responses is shifted with respect to the set of actual object locations). The bias is

computed by taking the average of the difference between the mean subject response

curve and the ideal performance curve. Therefore, the units of bias is centimeters.

Mathematically, this value is equivalent to the vertical offset of the midpoint of the mean

subject response line segment from the ideal performance line. A positive bias denotes

an average underestimation of object distance on the part of the subject, while a negative

bias indicates an average overestimation. Line B in Figure 10 shows an example of a

subject with perfect identification of objects within the set of stimuli, but with a negative

bias. Ideal performance can be characterized as having unity slope with no standard

deviation and zero bias.
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3.2 Information Transfer (IT)

Another way to look at subject performance makes use of information theory. Due to the

correct-answer feedback sessions and the fact that the same seven object positions were

used throughout these experiments, the task of determining the object distance ultimately

falls under the absolute identification paradigm. In other words, for a set of k stimuli Si, i

= 1..k, and a set of k responses Rj, j = 1..k, there is a single correct response, Ri for

stimulus Si. A confusion matrix can be constructed in which the entry in row i, column j

indicates the number of times that the response Rj was given for stimulus Si. Information

transfer can then be calculated according to the entries in the corresponding probability

matrix (Garner and Hake, 1951) in which each cell contains the frequency with which

response Rj was given for stimulus Si. The amount of information that is contained in the

occurrence of an event, in this case a particular response for a given stimulus, is

dependent upon the total number of possible responses. The amount of information is

actually equivalent to the uncertainty that the event will occur. For example, if there is

no uncertainty as to the occurrence of an event, no information is gained when that event

happens. If, on the other hand, there are a number of equally possible responses for a

given stimulus, then the occurrence of one particular response provides more

information. The measure used to quantify the amount of information or uncertainty is

the logarithm to the base two of the probability of the occurrence of an event. The

resulting units for this measure of information are bits.
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3.3 Results

Individual Subject Performance

Most of the results reported in the following sections of this thesis have been averaged

across a number of subjects, which ranged from 5 to 8, depending on the experiment.

However, it should be noted that not all subjects had the same perception of the object

distances. In fact, looking at the mean response for each of the 7 individual subjects for

Experiment 1 in Figure Al of the Appendix, we see that no subject could accurately

locate the objects and no two subjects agreed on the distance of the stimuli. While

Subjects 2, 3 and 4 each perceived, on average, that each of the stimuli were located at

the same distance from the hand (indicated by the horizontal slope), there was more

scatter in Subject 4's responses as shown by the larger standard deviations. Both

Subjects 2 and 3 were more consistent in their responses with standard deviations of

approximately 2 cm for each stimulus, however, the bias for Subject 3 is 8 cm larger than

that of Subject 2. Subject 6's mean responses were fairly accurate as shown by the near

unity slope, however, the large standard deviations (at least 5 cm and for the two farther

stimuli, greater than 10 cm) indicate that there was little consistency or confidence in any

single response. Subject 7 was unable to properly order the stimuli as shown by the

staggered nature of the responses for the different object distances. This large range of

responses from the different subjects is not unreasonable for Experiment 1. Without

correct-answer feedback and no prior experience, naYve subjects could respond to any one

stimulus with any position in a continuous range of 60 cm (size of the box hiding the

apparatus). However, examining the mean response of the 8 subjects for the final stage

of Experiment 2 (i.e. the test session for real object force display condition, see Section
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3.3) in Figure A2 of the Appendix, shows that there is still a large degree of variation

across subjects following training with correct-answer feedback. The responses of

Subjects 2, 6 and 9 followed pronounced S-curves, whereas the S-curves traced by the

responses of Subjects 3, 5 and 8 were less prominent and the responses for Subjects 10

and 12 were almost linear for increasing stimulus distance. In terms of vertical offset

(bias), Subject 8's perception of object distance was the closest to ideal performance.

Subject 8 underestimated the object positions as a group by .31 cm. Subjects 3 and 9

each had offsets of 2.09 cm, however where Subject 3 underestimated stimulus distance

on the average, Subject 9 overestimated. Offset is an easily corrected characteristic with

correct-answer feedback, however. It indicates that subject perception of the set of

stimuli as a group was shifted relative to their actual positions. When correct-answer

feedback is provided, subjects can adjust their mapping of the object space accordingly.

While Subjects 3 and 9 had the most significant offsets, they were able to accurately

distinguish the different object positions relative to the other stimuli as indicated by the

near unity slopes and small standard deviations. Subject 6, on the other hand, had a

smaller offset, but the slope of the response line was much shallower (.65 slope) and

farthest from unity among the 8 subjects. While this subject was able to shift the

mapping of the stimuli as a group to be closer to the actual object positions than Subjects

3 and 9, within the set of object positions, was unable to accurately perceive the relative

distances. In this regard, Subject 5 had the best performance. The slope of the mean

response line for Subject 5 was unity, indicating that, on the average, the perceived

relative distances between object positions within the stimulus set matched the actual

distances between the stimuli (4 cm). The slope of the mean response line for each of the
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subjects was less than or equal to unity aside from Subject 9 (1.04). The slopes for 5 of

the 8 subjects were within 6% of each other and included the slope for the average

response across all subjects (Figure 13f, below). This indicates that there was not a lot of

variation in slope across subjects. Subject 6 is the only significant exception. Subject 2

had the largest average standard deviation of 4.94 cm. The average standard deviation

for Subject 12, who had the smallest scatter for each stimulus, is more than 1 cm smaller

than that of the average across all 8 subjects (2.17 cm versus 3.23 cm, see below), and

more than 2 cm smaller than the average standard deviation for Subject 2 (4.94 cm). This

indicates that there was some variation across subjects in the scatter of responses for the

different stimuli.

Experiment 1: Real Object (4 object positions; restricted probing)

Figure 12 shows mean response as a function of actual object position averaged over all

subjects for Experiment 1 with one-sided error bars showing one standard deviation from

the mean.
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A large discrepancy is seen between the actual location of the object and where subjects

perceived the object to be. The .30 slope indicates that for two adjacent objects placed 4

cm apart, subjects perceived only a 1.2 cm separation (.30 * 4cm). The standard

deviations for each stimulus ranged from 3.98 cm to 4.34 cm. The positive bias of 11.81

cm shows that, on the average, subjects underestimated the object group location by

nearly 12 cm. No information transfer was computed for Experiment 1 as it was not an

absolute identification experiment. No correct-answer feedback was given to the

subjects. Therefore they were unaware of the actual position of the objects.

Experiment 2: Real Object (7 object positions; unrestricted probing)

Figure 13 shows mean subject response for each stage of the training for Experiment 2.

Initially, before any correct-answer feedback was given to the subjects, perception of

object distance was not very accurate or consistent. While the monotonic increase in

perceived position indicates the ability to properly order the stimuli by distance, the slope

of .63 in Figure 13a implies that, on the average, a 2.52 cm distance between objects was

perceived for an actual separation of 4 cm. The average standard deviation for the seven

object positions was 7.49 cm, which tells us there was a large degree of scatter for each

stimulus. Figure 13b shows subject response for the first correct-answer feedback

session. A drastic change in subject perception is seen between the initial training stage

and this first feedback session. Slope improved from .63 to .89 and bias decreased in

magnitude from 3.41 cm to .28 cm. There was also a decrease in the standard deviations

for each stimulus (the average dropping to 4.53 cm), indicating more consistent responses

for a given object distance. A relatively smaller improvement resulted from the next
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feedback session, the results of which are plotted in Figure 13c. The slope was found to

be .91 and the bias was .19 cm. The average standard deviation also improved to 3.81

cm. Identification of absolute positions continued to improve in feedback session 3 as

seen in Figure 13d, though only slightly in comparison to the two previous sessions. The

slope of the mean subject response and the bias for the third feedback session were .93

and .17 cm, respectively, while the average standard deviation decreased again, this time

to 3.69 cm. There was little change in object location identification between the third and

fourth feedback sessions. The slope and average standard deviation for the final correct-

answer feedback remained relatively unchanged at .94 and 3.68 cm, respectively, and

bias reduced to .05 cm in magnitude. Training through correct-answer feedback proved

to be an effective method for improvhig haptic perception of object distance as indicated

by the results for the test stage in Figure 13f by the .90 slope (the 4 cm distance between

objects was perceived to be 3.6 cm) and small bias of .17 cm (less than 2 mm

underestimation on average). There was also more confidence in each response as seen

by the average standard deviation of 3.23 cm. The information transfer was calculated to

be 1.05 bits. The 10% difference in slope between subject perception and ideal

perception may seem large at first, however, if one realizes that this amounts to only a

one-millimeter difference for each centimeter the object is moved, a .90 slope is, in fact,

quite accurate. The standard deviation about the mean should also be taken into account.

Though the mean response does not exactly match the actual position, it can be seen from

Figure 13f that for each stimulus, actual object distance lies within one standard deviation

of the mean. Figure 14 shows the effect of training on subject performance, in terms of

slope and percentage bias, as a function of the phase of the training, from the initial stage
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Figure 14: Effect of Training for Experiment 2 (Real Object)

through the four correct-answer feedback sessions, and finally the test stage. The slope

increased considerably between stages one and two of training from .63 to .89. In the

remaining training stages, the slope did not vary by more than 5%. Percentage bias is the

offset of the mean subject response line normalized by the average stimulus distance

from the hand (21 cm). As with the slope, the most significant effect of the training took

place during the first correct-answer feedback session in which percentage bias decreased

in magnitude from approximately 16% to 1%. The percentage bias remained under 1%

for the other training stages. Figure 15 shows how standard deviation varied by actual

object distance. Within each group is the standard deviation for each training stage. The

solid line joins the average value of each group, while the dotted line is the average value

of the group, excluding the initial training stage. The standard deviations are lowest for

the first stimulus (i.e. the object closest to the hand). This indicates that subjects were

able to distinguish this object distance with greater ease than the other positions. The

greatest uncertainty in responses (i.e. the largest standard deviations) is associated with

the object distances in the middle of the stimulus set. In fact, average standard deviations

in each grouping increases with object distance between the first object position until it
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Figure 15: Experiment 2 - Standard Deviation Grouped by Training Sessions

reaches its peak at the middle object distance, and then decreases with object distance

with the remaining stimuli. This trend exists regardless of whether the initial training

stage is included in the average. The effect of the baseline experiment merely increases

the average by approximately .5 cm. Figure 15 also shows that the effects of training on

the consistency of subject response followed approximately the same pattern for each

stimulus. In each case, variance in subject response in the initial stage was fairly large

(greater than 6 cm), decreased significantly during the first correct-answer feedback

session, and decreased slightly and settling to an approximate limit of 3.75 cm in the

subsequent feedback sessions before decreasing again in the test stage. This may be

more apparent in Figure 16, which groups the standard deviations by object distance and

is plotted as a function of training session. The average standard deviation starts high,

approximately 7.5 cm, dips considerably after the first feedback session to approximately

4.5 cm, then settles at approximately 3.75 cm for the feedback sessions. Due to these

results, the training of subjects for the remaining experiments consisted of only a single

correct-answer feedback session separating the initial and test phases. While the
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additional feedback sessions led to improvement in subject performance in terms of

accuracy and consistency, the change was not significant enough to warrant the extra

training.

Experiment 3: Virtual object (True force and torque feedback; unrestricted probing)

Figure 17 shows the plot of subject response versus actual position of the virtual object

for each stage of the training for Experiment 3, in which subjects were presented with

both true force and true torque feedback. Again, perception of object distance prior to

correct-answer feedback was not very accurate as seen in the .73 slope, 3.82 cm average

standard deviation, and 3.26 cm bias of Figure 17a. As in Experiment 3, there was

considerable improvement made during the next phase of training, which provided

subjects with correct-answer feedback. The slope of the mean subject response increased

to .91, while average standard deviation was reduced to 3.55 cm, and bias decreased to .4

cm. The test stage resulted in a slope of .95, which implies that for objects placed 4 cm

apart, on the average, a 3.80 cm separation was perceived. The standard deviation
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decreased to 3.30 cm, suggesting that subjects were more confident of their responses

despite no longer receiving correct-answer feedback. The bias of .09 indicates that there

was an average underestimation of less than a millimeter for each object distance. The

information transfer for this test stage was computed to be 1.16. These results

demonstrate the effectiveness of ray-based rendering and the parallel configuration of the

two force-feedback devices as haptic perception in the virtual environment was at least as

good as haptic perception in the physical world. From Figures 18 and 19, it is seen that

slope, average standard deviation, and bias improved for each stage of training. Figure

20 shows the same trend for the average standard deviation as seen in Experiment 2.

That is, minimal standard deviation at the extreme object positions and a maximum peak

at an intermediate distance.

Note: while subjects were permitted to use any exploration method(s) they chose,

observations by the experimenter and comments from the subjects indicated that each of

the subjects chose to focus only on one technique. Three of the subjects (Subjects 5, 10,

and 12) practiced a rocking method in which the object was used a fulcrum and the

remaining three subjects (Subjects 6, 8, and 9) employed a tapping method. Figure 21

shows that performance in each subgroup was comparable for each stage of the training.

In the test phase, there was only a 2% difference in slope and less than 2 mm difference

in bias between the two graphs. However, looking at the mean standard deviations, we

can see that those subjects in the rocking subgroup responded more consistently on the

average. In the test stage, the average standard deviation for the rocking subgroup was

2.72 cm versus 3.88 cm for the tapping subgroup.
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Experiment 4: Virtual object (Tip force only; unrestricted probing)

Figure 22 shows the mean subject response for probing the virtual object with only force

feedback at the tip of the stylus.
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Figure 22: Experiment 4: Mean Subject Response

Perception was rather poor with subject perceiving, on the average, a .96 cm separation

between adjacent object positions when, in fact, the distance between neighboring objects

was 4 cm (indicated by the .24 slope). The high average standard deviation of 4.51 cm

indicates that subjects were unable to consistently distinguish the stimulus from the

neighboring object positions. The negative bias of 5.75 cm implies a fairly large average

overestimation in distance perception.

Experiment 5a: Virtual object (Tip force only; probing restricted to rocking)

Figure 23 shows the plot of subject response versus actual object position for each stage

of the training for Experiment 5a, in which subjects were presented only with tip force

feedback and the style of exploration was limited to rocking the probe against the object.
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As in Experiments 2 and 3, subject performance improved relative to Experiment 4 after

the correct-answer feedback session, in which slope and bias were .77 and -.56 cm,

respectively. Average standard deviation did not change relative to Experiment 4,

however. Perception improved again in the test phase with slope and average standard

deviation of .90 and 3.26 cm, respectively. The bias remained the approximately the

same, however, at -.57 cm. The presence of bias may be corrected with more training

sessions, however, as indicated by the results of Experiment 2. The effects of training on

slope, bias, and standard deviation can be seen in Figures 24, 25, and 26. Each follows a

similar trend as for Experiments 2 and 3. The information transfer was calculated to be

1.01 bits for the test stage. These results demonstrate that under circumstances in which

probe orientation is not restricted, true torque feedback is not required to haptically

perceive object distance; ray-based rendering with only one 3 degree of freedom force-

feedback device is sufficient.

Experiment 5b: Virtual object (Tip force only; probing restricted to tapping)

As in Experiments 4 and 5a, force-feedback was provided at the tip of the probe.

However, in this experiment, probing was restricted to tapping. As a means of

comparison, initial perception for this experiment was taken to be Experiment 4 as the

force condition did not change. The plot is reproduced along with the feedback and test

stages for this experiment in Figure 27 for more convenient comparison. Unlike in

previous training experiments, the correct-answer feedback session did not result in

significant improvements in subject perception. The slope was .35 and the bias was
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reduced to -.61 cm. On the average, responses were distributed by an even larger margin

during this session than in the initial stage as indicated by the average standard deviation

of 6.05 cm. The .35 slope indicates that subjects still perceived the actual 4 cm

separation of neighboring object positions to be only 1.4 cm. The slope and bias of .29

and -.48 cm, respectively, for the test stage were comparable to the previous stage results.

The average standard deviation was also approximately unchanged at 6.33 cm. The

effects of training on subject ability to identify the absolute position of the object are seen

in Figure 28.
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Figure 28: Effect of Training for Experiment 5b (Tip Force, Tapping)

While the bias was largely corrected, the slope remained very poor. Figure 29 shows

that, on the average, standard deviation did not vary a great deal as object distance

increased. Figure 30 indicates that the scatter of subject responses increased with each

training session. The information transfer was found to be .17 bits. These results imply

that when restricted to tapping, torque feedback is a necessary haptic cue since, in

Experiment 3 (true force and torque feedback), subjects were able to accurately discern

the different object positions when only tapping. The required haptic information to
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judge the distance of the objects was not adequately presented when tapping with force-

feedback only at the tip.
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Figure 29: Experiment 5b - Standard Deviation Grouped by Training Session
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Figure 30: Experiment 5b - Standard Deviation Grouped by Object Distances

Note: Another subject employed a tapping method as well. However, he did not

restrict the probe to a single orientation at the time of contact with the object. He

intentionally tapped the object with the probe held at various angles. His performance

was considerably better than that of the other subjects.
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3.4 Comparison of Performance under different Experimental Conditions

The results of the test phase for each experiment is summarized in Table 1.

Table 1

Experiment Slope Average Bias Information
Standard (cm) Transfer
Deviation (bits)

1 .30 4.20 11.81 N/A
2 .90 3.23 -.03 1.05
3 .95 3.30 .09 1.16

5a .90 3.26 -.57 1.01
5b .29 6.33 -.48 .17

The conditions under which the subjects were asked to judge object distance in

Experiment 1 (exploring the object by tapping such that the probe was horizontal at the

moment of contact, and with no previous experience or correct-answer feedback) proved

to be too impoverished as seen by the shallow slope and high bias. More significant

conclusions are drawn from the subsequent experiments. The plots of subject response

for the test stages in Experiments 2, 3, and 5 are collected in Figure 31. No substantial

differences are seen when comparing plots for the real object, true force and torque,

rocking under tip force conditions in Figures 3 1a, 3 1b, and 3 1c nor in the tabulated

values for slope and bias. In each case, subjects were able to resolve the seven different

stimuli into distinct distances, and perceived the 4 cm separation of neighboring objects

to between 3.60 and 3.80 cm. The major discrepancy is seen in Experiment 5b, in which

the slope was significantly lower than for the other conditions. These results may be

more apparent in Figure 32a, which shows the slope of mean subject response as a

function of experiment number (recall that the ideal slope is unity). The difference in

slopes and average standard deviations for experiments 2, 3, and 5a are negligible when
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compared to those for Experiments 5b. Figure 32b shows subject bias as a function of

experiment number (recall that ideal performance has zero bias). The biases for

experiments 5a and 5b may seem large. However, these are absolute offsets from the

ideal performance curve. If these values are normalized against the actual distance of the

object, these biases are not as significant. For example, a .5 cm bias for an object located

21cm away is a 2.4% offset. The percentage bias as a function of experiment number is

shown in Figure 32c. Though the biases for Experiments 5a and 5b are larger than those

in Experiments 2 and 3, they are small relative to the average object distance (21 cm).

Figure 33 shows how the standard deviation varied by object distance for each of the test

experiments. For Experiments 2, 3, and 5a, a general trend is seen in which standard

deviation levels off just under 4 cm. This indicates that, in general, with the mean

response Experiments 2, 3, and 5a near the ideal response line, these standard deviations

will not contain any of the discrete object positions other than the stimulus itself.

Therefore, there is a high likelihood that the subject response will correspond to the

correct object distance, with occasional errors in judgement resulting in responding with

the immediate neighboring positions. For Experiment 5b, however, standard deviations

are consistently greater than 6 cm. This means that the two object positions adjacent to

the stimulus are each within one standard deviation of the mean response. Therefore, the

subject response is most often distributed between these three object positions, with

occasional responses in the adjacent object positions, which results in poorer

performance. Figure 34 gives the standard deviation as a percentage of the distance of

the actual object for each stimulus. This shows that following an early peak, there is a

decrease in percentage standard deviation as object distance increases.
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Response (cm)
33 29 25 21 17 13 9

33 54.4 28.6 11.0 4.7 0.6 0.6
29 27.4 38.4 23.6 7.5 3.1

Stimulus 25 15.9 27.2 30.6 20.6 5.0 0.6
(c m) 21 0.3 11.6 25.2 37.1 21.4 3.8 0.6

17 0.9 0.6 5.3 17.0 44.7 26.7 4.7
13 0.6 0.9 2.8 10.0 60.0 25.6
9 0.6 2.8 15.6 80.9

Figure 35: Experiment 2 Test Stage- Confusion matrix in which the value in cell (ij) is the
frequency with which response Ri was given for stimulus Si.

The maximum possible amount of information that can be transferred for the 7 object

position experiments is 2.81 bits. This is determined from the total number of possible

responses for a given stimulus. Due to the training sessions in which correct-answer

feedback was provided following each trial, subjects were aware of the values of the

seven distinct object positions. Therefore, for each stimulus, subjects knew the object to

be at one of seven possible distances. The logarithm to the base two of the number of

possibilities (seven) gives 2.81 bits, which gives the number of two-choice distinctions

that have to be made in order to specify one particular response from the total of seven

options. The amount of information transferred was calculated for each experiment and

tabulated in Table 1. The probabilities used in calculating information transfer are taken

from the confusion matrices constructed for each experimental condition. The

probability confusion matrix for the test stage in Experiment 2 (real object) is shown in

Figure 35 (the probability confusion matrices for all the other experiments can be found

in the Appendix). As with the slope of the mean subject response line, the information

transfer for each experiment shows no drastic change between experiments 2, 3, and 5a.

However, there is a large reduction in information transmission in experiment 5b. These

results agree with the conclusions drawn from the analysis, above. That is, considerably
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less information was transmitted when subjects limited probe contact to a single

orientation. Whereas the information transmitted with physical contact, provision of true

force and torque feedback, and tip force feedback with freedom of multiple probe

orientations is approximately equal, indicating comparable performance. Figure 36

shows IT as a function of experiment number. While subject performance in experiments

2, 3, and 5a is much better than in Experiment 5b, when compared to the maximum

possible amount of information available, IT seems rather low. This is due to the fact

that information transfer takes into account the entire spread of subject responses. These

relatively low information transfers indicate that the mean of subject responses was quite

accurate as shown by the majority of the responses lying on the diagonal of the confusion

matrix (Figure 35). However, the actual responses were distributed about the mean, as

indicated by the significant percentage of responses in the neighboring positions, which is

why the information transferred was low compared to the maximum.

3.5 Measure of Resolution

The just noticeable difference (JND) between two object positions describes the smallest

distance separating the two objects such that each one can be distinguished on a
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consistent basis, for example 70% correct discrimination may be used as the minimum

requirement for consistent accurate perception. Typically, JND is computed from the

results of pair-wise discrimination tests. While the results obtained in the previous

chapter are taken from identification experiments, it is possible to compute a measure of

haptic perceptual resolution of distance based on signal detection theory and a decision

model for the one-interval, 2AFC (two alternative, forced choice) paradigm (Durlach,

1968). Due to the imprecision caused by attempting to measure perception of a

continuous random variable (distance) with a finite number of discrete object positions,

the values reported here are merely estimates of JND for the specific conditions

examined. It is likely that these values can be taken as the upper bounds for JND.

Perception of the different object positions is expected to be better for pair-wise

discrimination experiments since the number of possible responses is reduced. In order

to apply the decision model for a one-interval, 2AFC paradigm, each interval must be

examined independently. Each of the 7 object positions can be viewed as a reference

position with which the remaining 6 positions are compared. For this study, however,

only neighboring object positions were analyzed. The sensitivity index (d' or dprime),

measures the separation of the probability density functions for two stimuli (i.e. dprime

indicates how well the two different object positions could be distinguished). For this

study, dprime was estimated by the difference in the means for two neighboring object

positions and divided by the average of the standard deviations. JND is defined as the

distance between two stimuli at which dprime has the value of 1. One way to visualize

the meaning of this value is to imagine the two probability density functions are shifted

farther apart (or closer together as the case may be) until the overlap between the two
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gives a dprime equal to 1. This corresponds to a 70% probability of responding correctly

for a given stimulus. A dprime of infinity corresponds to perfect resolution, while a

dprime of zero corresponds to random guessing, which gives 50% correct response. For

dprime to equal unity, JND must equal the average of the standard deviations of the two

stimuli. The values for dprime and JND are tabulated below for each of the 6 distance

intervals for the test stages of the various experimental conditions.

Table 2: dprime

Force Interval 1 Interval 2 Interval 3 Interval 4 Interval 5 Interval 6
Display (9cm - 13cm) (13cm - 17cm) (17cm - 21cm) (21cm-25cm) (25cm - 29cm) (29cm - 33cm)

Real Object 1.2 1.2 1.3 1.2 .6 .6

True Force 1.6 1.2 1.4 1.0 .9 .3
and Torque
Tip Force: 1.5 1.5 1.3 1.0 .3 .7
Rocking

Tip Force: .7 .3 .2 .1 .1 .1
Tapping

Table 3: JND (cm)

Force Interval 1 Interval 2 Interval 3 Interval 4 Interval 5 Interval 6
Display (9cm- 13cm) (13cm- 17cm) (17cm-21cm) (21cm-25cm) (25cm- 29cm) (29cm- 33cm)

Real Object 2.5 3.4 3.6 3.7 3.5 3.4

True Force 2.0 3.1 3.9 4.3 3.9 3.6
and Torque
Tip Force: 2.4 3.6 3.8 3.6 3.7 3.4

Rocking
Tip Force: 6.5 6.5 6.0 6.0 6.7 6.5
Tapping .-

Table 3 shows that for all intervals for each of the experiments, excluding tapping under

tip force-feedback only, the JND is less than the separation of the stimuli (4 cm). This

agrees with the results presented in the previous chapter, which indicated that in each of

these situations, subjects were able to accurately distinguish each object distance. The
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last row, however, shows JNDs consistently greater than 6 cm. Since the separation

between object positions was less than the JND, discrimination of two adjacent stimuli

was beyond subject haptic perceptual ability. Another useful quantity to look at is

percentage JND, which is found by normalizing JND with respect to the mean of the two

object positions that define the corresponding interval (mean stimulus distance). %JND

is tabulated below.

Table 4: % JND

Force Interval 1 Interval 2 Interval 3 Interval 4 Interval 5 Interval 6
Display (9cm- 13cm) (13cm- 17cm) (17cm-21cm) (21cm - 25cm) (25cm- 29cm) (29cm- 33cm)

Real Object 21.6 22.8 18.9 15.3 13.0 11.5

True Force 17.7 21.2 20.5 17.7 13.9 11.9
and Torque
Tip Force: 21.4 22.7 18.1 14.3 13.5 11.5
Rocking

Tip Force: 36.3 31.1 26.9 26.2 29.4 27.3
Tapping I

In Figure 37 we see how %JND varies by mean stimulus distance relative to the hand.

Weber's Law states that percentage JND will remain constant and independent of

variations in the reference stimuli (i.e. change in object distance in our case). For the real

object, true force and torque feedback, and rocking under tip force conditions, we see that

this is not the case. Instead, excluding the first stimulus interval distance, we have a

fairly linear relation, in which the percentage JND is inversely related to the mean

stimulus distance from the hand. If you recall Figure 33, above, in which the standard

deviation was plotted against stimulus distance, the standard deviation settled at

approximately 4 cm. Naturally, for increasing object distance, the ratio of this constant
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value to the stimulus distance will decrease. It is not a coincidence that the standard

deviations in mean response approached the separation distance between adjacent

objects. Knowledge of the seven discrete object distances, gained from the correct-

answer feedback sessions, required subjects only to bin their judgements into one of

seven categories rather than responding with any other distance in the continuous range

of positions. Therefore, errors in perception will not result in slight variations in

response, but correspond to immediate neighboring positions. For gross errors, the

responses may not necessarily correspond to adjacent object positions to the actual

stimulus but those farther away. This is likely the case for the tapping under tip force

feedback condition. Initially, %JND is high (over 35%), and settles at approximately

27% for interval distances from 19 cm to 31 cm. Clearly, regardless of the distance of

two stimuli from the hand, %JND is much higher for this experimental condition than in

the others. This explains why subjects performed so poorly. In order for subjects to

distinguish between two objects at different distances, the separation between the objects

must be at least 25% of their mean distance from the hand, and even larger for object

positions closer to the hand.
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Chapter 4

Discussion

4.1 Summary of Results

From the results shown in the figures of Chapter 4, we see that perception of object

distance when probing a real object after training was quite accurate as the subject

response line was very close to the ideal performance line in terms of both slope and bias.

This indicates that there is enough haptic information available in the act of probing a

real object to distinguish various object positions, at least when the objects are 4 cm

apart. Ray-based rendering techniques combined with the 5 DOF haptic interface

provided both true force and torque feedback, producing an effective simulation of the

haptic cues as demonstrated by the exceptional performance of subjects in Experiment 3.

As the precision in perceiving object position with virtual objects proved to be almost the

same as with real objects, Experiment 4 examined how much of the haptic information

presented in Experiment 3 is actually required to make accurate judgments on object

distance. Experiment 4 reduced the amount of haptic information presented to users by

providing only force-feedback at the tip of the probe. Therefore, the magnitude of the

torque felt at the hand was physically inaccurate. Even with this impoverished and

misleading force display, subjects were able to accurately perceive the various object

positions when exploration of the object was performed by rocking the probe against the

object. True torque feedback proved to be unnecessary in this situation. This means that

perception of object position through rocking was not based solely on force and torque

information. However, when probing was limited to tapping against the object such that
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the probe always struck the object with the same orientation, subject performance was

quite poor. Thus, indicating that true torque feedback was needed during tapping. These

last two results suggest that, in terms of perceiving object distance, orientation of the

probe at the time of contact and the torque feedback provide redundant haptic

information. One or the other is sufficient, with force-feedback and ray-based rendering,

to determine the location of an object as shown in Experiments 3 and 4a. However, when

the user is denied both true torque feedback and freedom of exploration, haptic

perception of object distance is very poor, as shown in Experiment 4b. More in depth

discussions concerning the possible methods by which subjects perceived object distance

are presented below.

4.2 Computational Theories

One might expect torque information to play a vital role in the haptic perception of object

location. Indeed, examining the static force diagram of a probe in contact with an object

(Figure 38), one can easily calculate the moment arm, d, if the reaction force, R, and the

torque, T, are known.

d =T/R

T

StylusT Rxd

Object
Hand

R R

d

Figure 38: Static force model for determining object distance
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But the distance of the object from the hand, d, is equal to the magnitude of the moment

arm, I d , since the moment arm is the distance over which R acts to create a torque, T.

For this approach to finding d, knowledge of the value of I T I is required. However, if

subjects had used this method for determining object distance, they would not have been

able to perceive the various object positions in Experiment 4a when the magnitude of the

torque did not agree with the position of the object. Therefore, the method by which

object distance is perceived is not dependent solely on force and torque feedback.

If we take a kinematic rather than kinetic approach to finding d, knowing torque is not

necessary. Below is one such computational theory for determining d based on geometry

by examining the intersection of two or more probe orientations at time of contact with

the object (Figure 39).

Stylus Hn

Object

Figure 39: Determining object distance based on intersection of two or
more probe orientations

However, since the rod and object are hidden from view of the subject, this approach is

dependent upon the subject's haptic sense of probe orientation, which is possibly related

to awareness of positioning of the arm and hand. The magnitude of the force felt at the

moment of contact is not important. The force itself is only important in that it indicates

contact has been made at that moment with the probe held in a particular orientation. If

at the next moment of contact, the probe is in a different orientation, the position of the
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object can be determined by locating the point at which the two probe orientations

intersect.

A special case exists when using the object as a fulcrum and rocking the probe against it.

This provides a continuous change in orientation for a fixed pivot point (Figure 40).

Stylus

02 d

d

Figure 40: Special case for determining object position based on geometry
in which object is used as a fulcrum

Therefore, all the orientations would intersect at the same point. One way to determine

the mathematical expression for finding this intersection point is to examine the

relationship between the angle of contact and the relative position of the hand. From

simple geometry, it can be found that

d = (y2 - yl)/(sin02 - sinO1),

where yi and y2 are the vertical components, measured from a fixed reference height (in

this case, the top of the object) at two different moments of contact and 01 and 02 are the

corresponding angles of contact.

A second, but similar special case, requires knowledge of only a single orientation of the

probe during contact with the object. The height of the object was constant throughout

all trials and experiments, though subjects were not informed of this fact. If a subject
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hypothesized that the height of all objects was the same, then a horizontal line could be

projected on which the object must lie. By contacting the object with a single non-

horizontal orientation of the probe, the location of the object can be determined from the

intersection of the horizontal line with the orientation of the probe at the time of contact

(Figure 41).

...................... ..... .....................6 ...........................................

Height of object
Stylus Hand d

Figure 41: Special case for determining object position based on
geometry in which height of object is known

The subject, then, needs to have a sense of the horizontal line and therefore, the height of

the object, as well as the orientation of the probe. Geometrically, this is the same as the

case presented above with one of the contact angles equal to zero. In this case, the

mathematical expression is even simpler than the previous formula.

d = y/sin6

Following Experiment 5b, several subjects commented that the height of the object

seemed to be changing from trial to trial. So subjects may have been attempting to use

this approach, but were unable to do so since they perceived the height of the object to be

shifting between trials.

4.3 Hardware Requirements for Accurate Haptic Perception in VE

For any application in which the interaction of the entire stylus/tool with the environment

is of interest, the collision detection algorithm must allow contact between objects and

any point along the stylus, such as in the ray-based rendering technique. Determining the
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hardware requirements for accurate haptic perception in virtual environments is not so

straightforward. As one might expect, the necessary hardware will depend upon the

application of the VE, however, force and torque requirements are not the only factors

that should be considered. Taking into account the workspace of the application may

lead to a reduction in the number and/or complexity of the haptic interfaces required for

realistic haptic perception. In cases in which the user is free to move the stylus/tool

through any motion and orientation, a single 3 DOF haptic interface is sufficient to

present the haptic cues for locating the objects in the environment. This is because the

information needed to locate the object can be obtained from the geometry of the

situation. Torque feedback becomes a redundant cue provided that the user is permitted

to change the orientation of the probe. Virtual sculpting is one such application. If the

sculptor is to have the freedom to approach the piece from any direction, he must have

the ability to manipulate a sculpting tool through a wide range of motions and

orientations. This freedom, while possibly expensive in terms of manipulator workspace,

eliminates the need for more than 3 DOF force feedback. If, however, there are

constraints placed upon the motion of the stylus, such as in a laparoscopic surgical

simulator, both force and torque feedback are needed to obtain a sense of the distances of

the objects that come into contact with the instrument. In minimally invasive procedures,

the motion and orientation of the instrument is restricted by the incision point through

which it must pass. By removing the information obtained from varying the orientation

of the tool, torque feedback becomes a necessary cue. Therefore, a 6 DOF haptic

interface, or a parallel configuration of two 3 DOF devices as described above, is

required.
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It should be noted, however, that in the majority of virtual environments, haptics is not

the only percept that is utilized. Some virtual environments will make use of sound, but

in most cases, vision plays a large part in creating the virtual environment. Numerous

studies have shown that combining modalities has an impact on one's overall perception

(e.g. Wu, et al. 1999; Srinivasan, et al., 1996; Miner, et al., 1996). Therefore, while these

results demonstrate the role of torque and in pure haptic environments, with the addition

of other sensory information, the results would likely be considerably different.

74



Chapter 5

Future Work

5.1 Additional Object Distance Discrimination

To verify the theories presented in the Discussion section, above, additional perceptual

experiments may include the following:

" Instruct subjects to probe object by tapping, but in more than one orientation.

* If it is true that the reflected force is significant only in that it indicates contact, then

the magnitude of the force presented to the user should not affect perception.

Therefore, an experiment can be designed such that the force reflected by the haptic

interface is not based on Hooke's Law, but rather a completely random function.

* In order to determine actual haptic resolution, conduct standard JND experiments in

which subjects are presented with an object at a fixed reference distance and an object

whose distance varies from trial to trial and asked to judge which one is closer.

5.2 Extension to 6 DOF Experiments

The current results are from a hardware setup that provided 5 DOF and varying the object

distance in only a single direction. Varying object position in another direction(s) may

lead to the mapping of a haptic perspective. More complex tasks such as object

manipulation or placement rather than simple position determination may also be

considered.
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5.3 Multi-Modal Experiments

Studies have shown that combining touch with another sensory modality increases the

realism of the VE in comparison to either modality alone. While the majority of this

work has been done through real world experiments (reviewed by Heller and Schiff,

1991), some studies concerning the perception of size and stiffness have been conducted

in virtual environments (Wu et al., 1999, Cividanes, 2000?). Results from these studies

indicate that human visual and haptic systems compensate for the perceptual biases that

occur when either is used alone. Similar biases may affect one's perception of distances.

Similar experiments to those discussed above can be repeated with the addition of

graphics and/or sound to determine the difference between pure haptic perception of

object distance with multi-modal perception.
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Appendix

- Individual subject results are presented here for the test stages of each of the

experimental conditions.

- Probability confusion matrices for each experimental condition and all training stages

over all subjects are presented here. The value in each cell of the matrix corresponds

to the frequency with which the response Rj was given for stimulus Si.
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Figure A6: Confusion Matrices for Experiment 2 (Real Object)
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Virtual Object: 2 Phantom, Base
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2.9 0.8
2.9
2.5 0.8
5.0

28.8 5.8
53.3 29.2
10.8 88.3

Figure A7: Confusion Matrices for Experiment 3 (Force and Torque Feedback)
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Virtual Object: 1 Phantom, Base
Response (cm)

33 29 25 21 17

33
29

Stimulus 25
(cm) 21

17
13
9

25.8
10.0
2.1
1.7
1.3
0.8
0.8

25.4 30.4 13.8 2.5 2.1
21.7 23.3 26.7 10.8 5.0 2.5
9.2 21.7 27.1 19.2 18.3 2.5
1.7 9.2 20.8 39.6 19.6 7.5
0.4 0.8 7.5 19.2 47.5 23.3

0.8 9.2 32.9 56.3
0.8 0.8 0.8 1.3 12.1 83.3

Virtual Object: 1 Phantom, Rocking, Feedback
Response (cm)

33 29 25 21 17

33
29

Stimulus 25
(cm) 21

17
13
9

41.7
33.3
22.9
8.8
5.8
0.8
0.8

25.8
28.3
32.1
23.8
7.5
1.7
2.5

20.8
15.0
25.4
25.8
6.7
5.0
0.8

4.6
17.5
10.4
21.3
20.0
5.0
2.1

5.4
2.9
5.0
14.2
37.5
10.8
4.2

13 9

1.7
1.3
1.7
4.6

20.0
54.2
21.3

1.7
2.5
1.7
2.5

22.5
68.3

Virtual Object: 1 Phantom, Rocking, Test
Response (cm)

33 29 25 21 17 13 9

33
29

Stimulus 25
(cm) 21

17
13
9

57.5
36.7
28.3
7.6
3.8
0.8

27.5
27.9
26.3
15.1
7.9

9.6
24.6
25.8
28.2
5.8
2.1

5.0
4.2
13.3
34.5
14.2
5.4

0.4
2.5
5.4
13.4
47.9
11.3
2.5

4.2
0.8
1.3
18.8
52.1
10.0

1.7
28.3
87.5

Figure A8: Confusion Matrices for Experiment 5a (Tip Force, Rocking)
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Virtual Object: 1 Phantom, Tapping, Feedback
Response (cm)

33 29 25 21 17 13 9

33 17.5 29.0 20.5 10.0 10.0 8.0 5.0
29 17.0 21.0 22.5 12.0 11.0 9.5 7.0

Stimulus 25 19.5 19.5 21.5 17.0 12.0 10.5 0.0
(cm) 21 10.0 19.5 27.5 14.0 15.5 10.5 3.0

17 9.5 11.0 14.0 27.5 24.0 8.0 6.0
13 4.0 12.0 6.0 26.5 11.5 26.0 14.0
9 2.0 11.0 7.0 13.5 5.5 26.0 35.0

Virtual Object: 1 Phantom,Tapping, Test
Response (cm)

33 29 25 21 17 13 9

33 20.0 21.0 18.0 16.0 12.0 8.0 5.0
29 18.5 20.0 18.5 14.0 11.5 9.5 8.0

Stimulus 25 10.0 23.0 13.5 21.5 16.0 11.0 5.0
(cm) 21 7.0 25.5 22.5 18.5 14.5 7.0 5.0

17 10.5 16.0 13.5 25.0 17.5 12.5 5.0
13 3.1 11.7 21.4 21.4 15.3 14.8 12.2
9 5.1 6.1 13.3 4.6 14.3 15.8 40.8

Figure A9: Confusion Matrices for Experiment 5b (Tip Force, Tapping)86



Bibliography

1. Armstrong, L. and Marks, L.E. (1999). Haptic perception of linear extent. Perception
and Psychophysics, 61(6), 1211-1226.

2. Basdogan, C., Ho, C-H., and Srinivasan, M.A. (1997). A ray-based haptic rendering
technique for displaying shape and texture of 3D objects in virtual environments,
Proceedings of the ASME Dynamic Systems and Control Division, Ed. G. Rizzoni,
DSC-Vol. 61, 77-84.

3. Beauregard, G.L. and Srinivasan, M.A. (1996). Sensorimotor interactions in the
haptic perception of virtual objects, Touch Lab Report 5, RLE Technical Report No.
607, MIT.

4. Biggs, S.J. and Srinivasan, M.A. (In Press). Haptic interfaces, The Virtual
Environment Technology Handbook, Ed: K. Stanney, Lawrence Erlbaum: New
Jersey.

5. Carello, C., Fitzpatrick, P., and Turvey, M.T. (1992). Haptic probing: Perceiving the
length of a probe and the distance of a surface probed. Perception & Psychophysics,
51, 580-598.

6. Chan, T-C. (1995). The effect of density and diameter on haptic perception of rod
length. Perception & Psychophysics, 57, 778-786.

7. Chan, T-C. (1996). The situational effects on haptic perception of rod length.
Perception & Psychophysics, 58, 1110-1123.

8. Chan, T-C. and Turvey, M.T. (1991). Perceiving the vertical distances of surfaces by
means of a hand-held probe. Journal of Experimental Psychology: Human Perception
& Performance, 17, 347-358.

9. Cividanes, A. (2000). Visual - haptic illusions in the perception of object compliance
in virtual environments, B.S. Thesis, Department of Mechanical Engineering,
Massachusetts Institute of Technology.

10. Durlach, N.I. (1968). A decision model for psychophysics. Unpublished manuscript,
available at the Research Laboratory of Electronics, Massachusetts Institute of
Technology.

11. Garner, W.R. and Hake, H.W. (1951) The amount of information in absolute
judgements. Psychological Review, 58, 446-489.

12. Hancock, D. (1996). The sense of torque with a single phantom haptics device,
Proceedings of the First PHANToM User's Group Workshop.

13. Ho, C-H., Basdogan, C., Srinivasan, M.A. (2000). Ray-based haptic rendering: Force
and torque interactions between a line probe and 3D objects in virtual environments,
International Journal of Robotics Research.

14. Ikei, Y., Wakamatsu, K., and Fukuda, S. (1997). Vibratory tactile display of image-
based textures, IEEE Computer Graphics and Applications, November, 53-61.

15. Iwata, H. (1993). Pen-based haptic virtual environment, Proceedings of IEEE Virtual
Reality Annual International Symposium, 55-5, 287-292.

16. Klatzky, R.L. and Lederman. S.J. (1999). Roughness perception with a rigid link
interposed between skin and surface. Perception and Psychophysics, 61(4), 591-607.

17. Lederman, S.J. , Klatzky, R.L., Hamilton, C.L., and Ramsay, G.I. (1999). Perceiving
roughness via a rigid probe: Psychophysical effects of exploration speed and mode of

87



touch. Haptics-e The Electronic Journal of Haptic Research, 1(1). Available at:
http://www.haptics-e.org.

18. Massie, T.H. and Salisbury, J.K. (1994). The phantom haptic interface: A device for
probing virtual objects. Proceedings of the ASME Dynamics Systems and Control
Division, number 55-1 in ASME, 295-301.

19. Miner, N., Gillespie, B., and Caudell, T. (1996). Examining the influence of audio
and visual stimuli on a haptic display. IMAGE Conference Proceedings.

20. Salisbury, J.K., Brock, D., Massie, T.H., Swarup, N., and Zilles, C.B. (1995). Haptic
rendering: Programming touch interaction with virtual objects. ACM Symposuum on
Interactive 3D Graphics.

21. Srinivasan, M.A. (1995). Haptic interfaces, Virtual Reality: Scientific and Technical
Challenges, Eds: N. I. Durlach and A. S. Mayor, Report of the Committee on Virtual
Reality Research and Development, National Research Council, National Academy
Press, 161-187.

22. Srinivasan, M.A., Beauregard G.L., and Brock, D.L. (1996). The impact of visual
information on the haptic perception of stiffness in virtual environments. Proceedings
of the ASME Dynamics Systems and Control Division, number 58 in ASME, 555-559.

23. Wernecke, J. (1994). The Inventor Mentor, Addison Wesley.
24. Wong, T-S. (1977). Dynamic properties of radial and tangential movements as

determinants of the haptic horizontal-vertical illusion with an 'L' figure. Journal of
Experimental Psychology: Human Perception and Performance, 3(1), 151-164.

25. Wu, W-C. (1999). Visual - haptic interactions in multimodal virtual environments,
M.S. Thesis, Department of Mechanical Engineering, Massachusetts Institute of
Technology.

26. Wu, W-C., Basdogan, C., and Srinivasan, M.A. (1999). Visual, haptic, and bimodal
perception of size and stiffness in virtual environments. Proceedings of the ASME
Dynamic Systems and Control Division, Ed. N. Olgac, DSC-Vol. 67, 19-26.

88


