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ABS TRACT

Let X be a C manifold of din 4k, oriented,
with boundary aX, where X is not C' but locally
as the boundary of the product of two manifolds with
ordinary C' boundary.

For a special Riemannian metric on X (corresponding
to a product metric near the boundary), we prove an

a priori inequality for the signature operator (that is,

d+6 acting between certain sub-bundles of the bundle of
differential forms) using non-local boundary conditions
on aX. These conditions are defined using eigen-
functions of essentially the tangential part of d+6
on the pieces of X of dimension 4k-l, subjected to
boundary conditions on the piece of dimension 4k-2.

Using this inequality, we define closed extensions

of d+6 with finite dimensional kernels and closed
images. We study such kernels and give other applications
related to the Laplace operator.
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Introduction

In [3], Atiyah, Patodi and Singer studied a non-local

boundary value problem for certain kinds of first order

elliptic differential operators on manifolds with C

boundary, and gave a formula expressing the index of

such problem. The formula is especially interesting as

it contains two different contributions to the index:

one of the same type as in the index theorem for closed

manifolds (i.e. the integral over the manifold of certain

characteristic form) and a term related to the spectrum

of an elliptic self-adjoint differential operator acting

on the boundary, essentially the tangential part of the

operator on the interior, that they called the rj invariant

of the boundary (actually, there is a third term of very

simple interpretation). One important operator which

fits into the above group is the signature operator, that

is d+6 acting between two subbundles of the bundle of

differential forms, provided the manifold is taken with

a Riemannian metric that is a product near the boundary.

If we now consider the product of two manifolds with

boundary, say X and Y, due to the multiplicativity of

the signature we can write the signature of X x Y using

the above result for X and Y. We obtain an expression
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where one term is the usual integral over X x Y, and

three more terms that roughly can be interpreted as

contributions from X x DY, X x Y and 3X x 3Y,

involving spectrums for differential operators on

these manifolds.

We consider in this work a manifold X whose

boundary X is not C , but locally it is like the

product case, that is @X = Y U Y2 , where Y.'s are

manifolds with Cw boundary. We attempted to obtain

an index for d+6, acting between the usual bundles

related to the signature, and subjected to certain non-

local boundary conditions.

As suggested by the product case, we obtain

spectrums and complete sets of eigenfunctions for the

tangential parts of d+6 on Y and Y2 , using again

non-local boundary conditions in order to get self-adjoint

operators. This is done in part I, where we also prove

some estimates that we use afterwards.

When DX is C", the existence of the index and the

formula for it are obtained constructing an explicit

parametrix. In our case, such_ construction cannot be

carried out. Instead, we prove an a priori inequality
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for the first Sobolev space. The presence of "corners"

on DX forces us to use stronger norm than H 1/2 on

the boundary to take into account compatibility conditions

at the corner. Part II consists of the proof of this

inequality, which is the main result of this work.

Using this, we define closed, densely defined

operators (A+ and A_), which are extensions of d+6

on certain differential forms. These operators have

finite dimensional kernels and closed images, and we

get A_ C A+ We didn't succeed in proving that they

have an index (implied by A_ = A+ ). If proven, this

last equality would give some indication about the con-

tribution of X to this index (using heat equation

methods). The main problem when one tries to prove

A+ = A_ comes from the difficulty in describing com-

pletely the set of restrictions to X of the elements

in the domains of A+ and A_. For the Co case this

can be done, as we remark at the end of Part III, so

one can prove at least the existence of an index without

using the parametrix. We also describe some properties

of the elements in ker A+, as well as other consequences

of the a priori inequality like a weak Hodge theorem and

a set of generalized eigenfunctions for the Laplace operator

on X (in the sense that they are not necessarily Co on the

closure of X).
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I. Operators on faces of the boundary.

Let Y be a 4k-1 dimensional manifold with C

boundary DY, oriented and with a Riemannian metric

that is a product near the boundary.

We use < , > for the inner product of differential

forms induced by the Riemannian metric, dv for the volume

element and

($P$) = f <$,$>dv for product in L2 sense.
Y

rinally * denotes the Hodge star operator (for this

and what follows, see for instance [13], Chapter I7).

Def 1

D = -E (*d - (-l) Pd*)
A.

on p-forms on Y,

p = (-1)p7

then it is immediate that: A is a 1 st order, elliptic,

formally self-adjoint operator.

Denote by u the normal coordinate to Y, so that

du is inner co-normal,

where

Idu 12 = <du,du> = 1.
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Then we can write near 3Y:

D = 07- + FL) , where

J= -Pd (*e-du (~Paedu*)

D= - (*dt - (-l)Rdt*)

on p-forms, e du is exterior multiplication by du and

dt is exterior derivation along directions tangential

to DY.

Can check easily: 6 acting on Cw(P(Y)jY)

is also a formally self-adjoint operator.

Prop. 1

aa = -0

Proof:

an immediate calculation shows

D2 = A = Laplace operator on Y

2 = = Laplace operator on Y in the sense:

Aa ($+ dU) = A a + (Aa adu, where $, are forms

tangential to Y. Now:

2 2 2 /u 2 + ca$ + j)a + ;)2

but a2 = -1, so:
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D/2 - 32/u2 + a ) + 9a + 1)2

so as the metric is a product near the boundary, we

know A - 32/au 2 + Aa, then proposition follows.

Now:

D = a(3/3u - GZ) = a(D/Du +C) r C = -a Y

and

(-yb) * = - Z*0* = Z a = -a Z

SO:

Ca is a formally self-adjoint lst order elliptic

operator on Co(Q(Y)I3Y). Then it has a set {$ } of

C eigenfunctions, orthonormal and complete in L2 sense.

Note:

if y. > 0 is an eigenvalue, OL. = p.
j J J J

then:

WCr i ) = - P (G )

so we can assume that for p. / 0, the eigenfunctions

are of the form {$ ,a$ }, yi > 0.

Write D = L + M, where
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L = - *d on p-forms, and we can check:
p

i) L* = L, L2 = 6d

ii) M* = M, 2 = d6

iii) LM = ML = 0

Then near the boundary, with a L = L(du):

L = GL a/ u + ZL

M = M 3/3u + cfYlL

and from the previous equations for L, P we get a set

of relations between aL''''e

Also define on a p-form :

V$ (-1)q*$ if p = 2q

(- 1 )q*$ if p = 2q-1

Then by direct computation we obtain

i) 2=1, v*=

ii) DV = vD, VL = Mv

iii) v4 = V (Y

Let p 3 0 be an eigenvalue of Z (they are the



13.

same as those of 0) , then have a finite dimensional

vector space of C sections:

V = V(P) = {$ IXP = P$}

From ML = LM = 0, we obtain &,1fL = Pft \, = 0. If

V:

Rk = S =

and similar equations for rT11 . As a consequence:

, ITM: V + V, and also V : V - V.

Then we have that a , rYM as linear operators

on V can be simultaneously diagonalized, and using

that c2 + r2 _ = 2 _ 2I, and v t = r1.v, we

arrive to:

there is an orthonormal basis for V of the form

{$l'''1?,., 1N' *l' VN} so that:

L4. = I'., rf\.$. = 0
J J

.v$. = 0 , 'Y\.v$. = y(V$
J J J

as for the eigenvalue -p, same is accomplished by
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{av$., a o }.

But now:

if $ = $, then

CL($a$)= (-as))(p.-a$)

= -Pa + P$

CL(o+a$) =-P($+0$)

Then we see:

can find a basis, orthonormal, consisting of C'

sections for the space of {$|o$ = p$} of the form

{$,...,N, Vp,...,V$pN}, and for -p can take

Now we look at the eigenvalue 0. The solutions

of C$ = 0 are the same than those of 4$ = 0, which

in turn are those of 2= a $ = 0.

Then we see that 4$ = 0 will be valid for the

homogeneous degree components of $, and recalling that

as DY is a compact manifold without boundary, we see

AOP$ = 0 if and only if d$P = 6$P = 0. But if we look

to the explicit form of C , Mi, we see:
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a) $ = 0 if and only if ck = rM\ = 0

Now note: -CaL = a Mr, so aL'aM ker2 + ker

and have:

CL * =~L' aM aL' L + -M1

Final property that we need is aLV = va . Then usinT

normal forms for anti-symmetric operator3, we get an

orthonormal basis for ker'0 , consisting of harmonic

forms of the type $ with:
J = 0 J J

Now denote by B the following operator on L2 3Y):

B = E( U G..+ a ) (a. + .$ )
- J J j J iJ j j

where

i) {$ ,T$ } is a basis as previously described,

the 4. correspond to p. > 0, and we supress the v
J j -

for simplicity

ii) a. = cos 6., . = sin 6., and besides they satisfy
J J J J

a) they are the same inside each V(y ), i.e.

for eiqenfunctions with same eigenvalue.

b) There is c so that: Icos 6.1 > c > 0

for all j.
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c) a 2 2 = cos 26. > 0

We summarize the properties of the operator B in

the following

Prop. 2

1) B = B and B* = B

2) Bi = 0 implies Bv$ =0

3) B$ = 0 if and only if (1-B)a$ = 0

4) B is bounded from Hs + H (Sobolev spaces)

and its range is closed.

Proof: the first three are easy consequences of the form

of our basis, we just do 3) in detail:

B = 0 iff ($jaj $ + .ap.) = 0 for all j

iff ( Ip-a 2 a $ + i$ )) = 0 for all j

iff (Gyp(-6 $ + a ca$ ))= 0 for all j

iff (1-B)a$ = 0.

Finally 4) comes from the fact that:

Hs (DY) = {Z(a.4. + b.c y)
J J J J

(a2 -

(cy* =-a)

such that:

Z(Ia. 2 + |b 2 2s
J J J
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_L /

and 2j I1s is equivalent to above sum + I 112 So the
L

proposition is proven.

One can try to characterize the above operators B

from some general properties. We observe that B

satisfies the relations:

2 2
0 B = BY (i)

a = Ba + aB (ii)

If we assume some B, continuous from Hs + Hs

and orthogonal projector when restricted to L2, satis-

fies the above equations, the first of these reduces

the problem to one of linear algebra on each finite

dimensional space W(X.) = V(X.) @ V(-X.) =

2 2
{$C = X2 4}. Both a and B leave W invariant.

J

In spite that equation (ii) imposes many conditions

on B, it is not enough to determine that B should have

the previous form.

A more interesting problem arises if we try to

obtain a B using these equations just at the symbol

level (in those cases when B is a pseudo-differential

operator). This would give a more invariant explanation

to B, we note that the important point is the commutation

relations satisfied by a, which in turn is a special
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case of Clifford multiplication by the conormal du.

In general B is not a pseudo-differential operator,

but anyways many important properties of well posed

elliptic boundary value problems (as defined in [15],

Ch. VI) are valid for the pair (D,B). First we note

that we have the inequality:

IV$l Z+l < C {ILD$jI + IIfPIK + ILBfI!H Z+1/2

for k > 0, 1 1K denotes norm in H (Y).

We can see this as follows: call B0 the operator

corresponding to S. = 0 for all j. This is a
J

pseudo-differential operator of order zero (as observed

in [3], where it is called P). We can calculate its

symbol (top order) using Seeley's formulas for fractional

powers of pseudo-differential operators, and then we get

that it coincides with the symbol of the operators called

P+ in [15] and Q in [10], Chapter II, corresponding

to D/Du +a.. But then Th. 2.2.1 in [10] tells us:

J(I-B OW H s+1/2 PY<Cs {11Dfll s + ||$lisl

so in order to establish the inequaltiy we only need

to estimate B 0 by BBO. But it is immediate from
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the expression for B and the condition b) imposed

that there is C > 0 so that:

JIBft ii JIBB&P W
S H Ht 0Y) 0 Ht Y)

so the inequality is valid.

Also we can construct a parametrix for D with

boundary conditions Bp = 0. This is an operator R,

continuous from H (Y) + H + (Y) so that

a) BR$ = 0 on DY

b) R is a two sided inverse of D modulo

operators which are continuous from

H + H+1 (note then they are compact).

The construction of such R is carried out in

complete detail in [3], so we won't repeat it here.

Everything done there is valid in this case (except the

assertions about the kernels of the operators), with

the obvious modifications as we are using B instead

of B0.

Then recalling Green's formula for 1st order

differential operators and Prop. 2, 3) we see that DB'

that is D with domain
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Dom D = H (Y) B$ = 0 on DY}

is self-adjoint, and as in the usual case we get:

D has a complete set of C eigenfunctions {$.},BJ

corresponding to a sequence of real eigenvalues {X.},
J

and the $ . satisfy B#. = 0 on 3Y.
J J

Now we proceed to make some calculations that will

be used in proving a priori estimates.

Def. 2

1 1
HB(Y) $ { H (Y) j B$ = 0 on DY}

with norm:

||$ 2 D $||2 + a jj$112

HB

norms on right hand side are L 2, and a > 0 is a constant

to be chosen later.

Fix now f in Cw([0,+)) so that:

1 if 0 < u < 1/2

f(u) = 0 if u > 3/4

>0 otherwise

Consider the following bilinear functional (the spaces
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where it acts will be precise):

9i($,$) = f
Y

then:

L L2

Now:

if both $ and p belong to H (Y), using theB

special form of the boundary condition we see that if we

integrate by parts the expression for Z above,

boundary integral disappears, so in this case:

)= -
Y

< D(fa ),f$>dv(Y)

and then:

< | (f )|1 L2

Lemma 1

there is C = C(f,f')

s E H (Y) we have:B

> 0 so that for all

the

<fa$ , (f 0)>dv (Y)

L 2
I .($,$)0 1
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312
I u9 (f$) 11 2 2

<i |JD$| + C|ti$| , all norms

Proof:

then if

for P > 3/4 we have:

IiDf | 12 = 111I12 + I IO I12

He B

As c Hl1/2 (Y), the boundary integral is well defined.

Now: as B = 0, this means on Y:

= Ea J(- $ + a $ )

then the boundary integral is equal to:

2 2 2
- Ea p (a. . )

i

and as it is preceded by a minus sign,

dition i) , c) for the

|D$l 12 = 1 , 122u

Now set = f$,

using our

S. ' . , we see
JJ

+ 12 + (positive quantity)

then -= fi + f'$ and the lemma

follows immediately.

2
are L

and $ = 0

-Y

con-

D = a(O/Du +CG), I
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In this moment we are able to fix a in the defi-

nition of the norm of H (Y): we set a > C, where CB

is that of the above lemma.

Then: if , e HB (Y) we have

9(P,'P)I < ILI 2 and

HB LB

| "P, ) I < I I|$II 21 0 H
L HB

Now we apply an interpolation theorem, all the

notation and norms that appear are as in [5], more

precisely we use 10.1 of that reference, with:

A = B2 H (Y) , A B = L2 (Y), A = B=

so:

A r B A2 B = HB(Y), then if we set

H 1 2 (Y) = [L2 (Y)H (Y)]/

= [H (Y),L 2 (Y)]l/ 2 , we have

Prop. 3

k can be extended to a sesqui-linear continuous

functional:
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P: H /2 (Y) x H 2 (Y)

iL I 1/2
HB

+ and we have

lhl H 1/2
HB

We define now a second bilinear functional:

b($,p) = - ($ID$)

which is well defined if for instance , are in H (Y).

We recall that

then we get:

D with that domain is self-adjoint,

< L| 21' H 1
L HB

HB L
B

so the same arguments as given for k can be applied

to b, and we get:

Prop. 4

b can be extended to a sesqui-linear continuous

functional:

b : H 1 2 (Y)bB

Ib($,f)l I

x H (Y)

< H$| 1/2
B

+ Q

I I I I

and we have

1/2
HB

Ib($,i)

jb($,$p)|

I r1 ) I
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Now:

interpolation spaces can also be defined as domains

of fractional powers of self-adjoint operators, and for

our case we obtain the same spaces (see for instance [11],

Chapter I). Then we see:

1/2 2
H (Y) = {Ea.$p. IX.I Ia.I < 0}

B J J

where: {$ } are eigenfunctions of DB and

eigenvalues.

As consequence of above and density of

HB , we get:

if a = Za $, $p = Zb i both in H
jjj B

{ x} their

H andB

'

then:

b($,$) = -Ex?.b.a., and then

J J 2

We need a last lemma to obtain the estimate we'll need.

Lemma 2

There is C > 0 so that for all /2 H '

= Ea.$. we have:
J J
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2

[L 2 ,H ] 1 / 2

< E|y . aI .2 + cILPI 2
L2

the norm on the left is as defined in [5].

Proof: consider the L2 valued function

f6 (z)

where 6 >

= e

0.

6 (1/2-z)
2 1/2- za $j

Then

f (1/2) = $

IIf6 (1+it) I 2
1

HB

and we can calculate

then it is

If 6 (it) 1122
L

immediate from its definition

that:

I L$| 2 1
[LB 1/2

< e 6/2 (EIxI la 12 + aIMI 2
2 )

L

and taking a sequence 8 + 0+ the lemma is proven.

Finally we combine the previous lemmas and

propositions to get our final one, whose proof has

already been done:

we observe that if = Ea i i in H

a = 0 for all

I I I I

and

and the

x > 0, then:
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E ja.1 2X. E |x.I ja. 1  > 0, so:
X.<O 3 X.<O j

Prop. 5

there is c > 0 so that for all H1/2(Y)
B

such that $ = E a.$., we have:
k.<0 3
J

-($IDf) + f<fa, (ff)>dv(Y) + ci | 22 > 0.
Y L

As we will see in the next section, we need above

inequality exactly, that is, without multiplying

-(jDp) by a positive constant, in which case it is a

trivial consequence of estimates for elliptic boundary

value problems.

We present an example to illustrate how the

operator B appears. For notation and the results used,

see [4], part 6 and [3], part 4.

Consider two manifolds with boundary, X and Y, of

dimensions 4k and 4m respectively. Then we know that

the signature of X x Y is equal to (sign X)- (sign Y).

Moreover, as

TXXY = TX Y (we use product metric and

orientations), then
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.+ + +(Y) + Q_ (x)^Q_ (Y)

Q_ (X x Y) = + (X)'Q-(Y) + Q_(X)^Q + M

so if we have harmonic forms representing the cohomology

classes involved in the calculation of the signature of

X and Y, we can construct using exterior products

those necessary for X x Y (we need to use KUnneth Th

as in [18], Chapter 5 and Prop. 4.9 of [3], but can be

easily checked).

So consider 4^ where D c Q+ ' E Q+ '

d4) = 6( = 0 and same for $ on Y, both representing

elements in (H*(-,a-) + H*(-)). We use subscript 1

for objects associated to X or X and 2 for Y.

Then if pl($) = -($+Tl) = (, where y is the

= of Q+ (X) X with Q (DX) , then:

yJ($^A$) = $

where p corresponds to X x Y.

For the operator D on X x Y explicit calculation

shows:

D = D - T2 + ( * ) ^ T2(d2+62
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where * = Hodge opt. induced by X on X. So:

if $. is an eigenfunction of Di, i.e.

D1 $ = Y$ then

D( .$ = P. ($.^$)*
SJ J

The tangential part of D on 3X x aY, that is what we

called S is:

R)= D ^T2 + E *I^T2a2A2

where:

d2 + 62 = a2 (du)(3/au + A2 )

du is inner conormal to

Now we have: near 3Y

A 2 R+ () & +(Y

a 2 : (Y) + T (Y)2 +-

and A2C52 = -C 2 A2

so if:

A 24k =kYk,

A 2 $k = Ykk

;Y in Y, 2 = CF2 (du).

, A2* = A2

then
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denoting by + their components in 2 .

As our $ is in +, we look for eigenfunctions of

related to $j^k, where k 6 +(Y). Set:

e = $jA "k' e 2 = ~ ll*j1 2 k

then note:

e 1 = e + yke 2

e 2 = Yk el - e 2

Using above equations, we get eigenvalues + (y2 + P2)1/2
k I

and passing to (, = -aD a) we obtain: if

1 k+y +(Y2 +P) 1/2 )e + (Yk 2 +P_ 1/2)e 2

1 = -- +p +(Y2 +2) 1/2)e +Y2 + 2 + 1/2 2h= T 'k 1 j'k j '(kp j 1 e 2}

where:

C2 -Pk + 2 1/2)2 +

then they satisfy:
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CY +P2 1/2 h

.h = -(Y +P 1/2h

all = h2  and 1h I 112 =

and if we express e1  in terms of hl, '2

e = {(Yk+y + (2 +P 1/2) h

+ (y1 - +(Y2 +y12 1/2 2

and:

(el J ) - (Y22 +) 1/2 k (Pj+ +y 2)1 /2
VT kj ij k~

Note:

2 + ( 2 )+y)/2 > 0
j jk so:

sign (e, Ie 1 ) = sign ykI

For simplicity write:

e = ah + bh2, then note:

a2 + 1) 2

In our case:

from the boundary conditions satisfied by 4) and ip,
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we have that y < 0 and Yk < 0, so:

(el 1 e) < 0

This corresponds to our situation for the proof of

Lemma 1, and as we'll see to condition ii), c) in the

definition of B.

We see that B should be projection on the ortho-

gonal space to el, that is:

Bf = (fjbh 1 -ah 2 ) (bh1 -ah 2 )

we already noted a + b = 1,

our calculation for (e lae 1 )

to property ii), c).

Finally we check that b

and b - a2 > 0 as

shows, so this corresponds

stays away from 0,

Note:

b = - -(2k + ( 2 + 1/ 2
V/7J (Ik Y1jk+1j )

as yk'llj < 0, so the numerator of b is always

> 'Yk1 > min {yki I Yk < 0} > 0 and as IYk 0

b tends to a finite limit > 0, and same for w.

In more precise way:
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Cosie =1 2 21/ 2Consider b = -- (2y 2+2p 2+21yl( )/2 -2lyl|yl-21pl ( )/)

2c

set x = jip, y = IyI

c = 2(x 2+y - 2x(x2+y2)1/2

2{(x 2 +y2 2 +y2)/2

Numerator is:

2{(x 2 +y2  2+y2 1/2} + 2{y(x 2+y 2 1 / 2  xy}

so passing to polar coordinates we get

b 2 =(1 + r sin2 -r sin O cos 0)

r -r cos

1
= T(l + sin 0)

and we note:

were |II = min {l i i. < 0}
j J

|7I = min {yk< 01

x > I-PI > 0, y > |7|I > 0



34.

II. An a priori estimate

Weconsider now X a Co manifold of dimension 4k,

whose boundary can be written as X = y1 U Y 2, the

Y. being in turn C manifolds with C boundary, and
J

so that 1 ) Y2 = 1 \Y2 = aY1 = aY2 is a compact

manifold without boundary X is also compact, and it is

oriented.

On X we have a Riemannian metric which is a

product near the Y.'s and near Y n Y, is isometric
J

to a product of the form (Y 1 n 72) x [0,3/2) x [0,3/2).

Such metrics exist, as is proven in (6], for instance.

So we have two coordinates:

x = normal coordinate to Y2 , defined up to 3/2

x2 = normal coordinate to Y 1 , defined up to 3/2

so that:

<dx.,dx.> = 6..
1 J JJ

where we denote by < , > the inner product induced by

the Riemannian metric on differential forms.

Now we take d+6 acting on differential forms.

We can write:
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d+6 = oy(dx 2) (/ax 2 + A ) near Y1 , and

d+6 = o(dx) ( /ax + A2 ) near -27

where the A. contain the derivatives tanaential to Y.,

and a = &d+61 symbol of d+6. We also have mnaps:

+ 2

k+p (p-1)
where T = (-1) * *

p

on p-forms. Then can check that the pi, j = 1,2

establish isomorphisms of vector bundles, and using

induced metrics and orientations on the V by x

calculation shows:

<y $), ()>X =2 Y.

3
If:

D. = - d (*d - (-l)Pd.*.)
3 P J 33

acting on p-forms on Y., subscripts referring to operators
3

induced on Y., we can prove by direct calculation:
j

-lD. = p. A...
J J ]33

We fix again f E C"( [Or) ) as follows:



36.

1 if 0 < u < -
2

30 if u > T

> 0 otherwise

and we fix boundary value problems for each

conditions B.,J
on each Y I

D., boundary

satisfying the properties

stated on the first part.

Theorem 1

There is C > 0 such that:

and $ = 0

for all $ e C (X,

on Y 2, we have

10 1 < C{II(d+6) 1k + II401I
L2 + 1/2 (LB. (2.)

where:

denote projection of

eigenfunctions of DB.
J

that are > 0.

-lv'. (1k)
j

corresponding

on the span of

to eigenvalues

The rest of this section consists of the proof of

above inequality.

First we note: can replace all above 1 b

f(u)

+

I
L 2

I|I by
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S12, and LW 2 (Y

fixed s < 1.

by any I MI I

Secondly: if $ is supported in the interior of X,

the inequality is well known. So we see that it is

enough to prove:

I If x2 ) I 12 < Cs{j s (d+6) (f (x 1 ) 112

+ II(d+6)(f(x 2) 2

+ lI$lI2 + Z j 2
11 1/2

B

So assume now

and equal to

$ is a Co form supported in

0 on Y 1n Y2.

x [0,1],

We then have:

INI is equivalent to

f i 2 dx
0 a2 L2 (Y 1 ) + f

0
SwI 1$2 1

H (Y
1 XX 2 )

dx2 + I $Il22
L (X)

If on Y

with a lst

we have an elliptic boundary value problem,

order interior operator A and boundary

conditions B1 ,

equivalent to:

IA 1 1 122
L (Y 1 xx 2 )

as in Part I, then:

+ JIB 1$|21/2
1 (i Y 12)

I I1 121
1 (Y 1x2

is

+ II$ 122
L (Y 1 xx2 )

Hs M
for a

}
)

(1)

Y 1
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Then we see: in order to prove (1), we only need to

estimate

f(x 2 4 122 + f11A (f)112 dx
2 L (X) 0 L (Y x x2

+ f 1|B1(fl p)21/2  dx 2  (2)
0 11 (aY 1 n2)

by the right hand side of (1).

Strictly we should Say D., etc. and the corresponding

isomorphisms, but it is clear what we mean and much simpler

to write.

Now we proceed to develop the terms in the right

hand side of (1) . Recall that a* = -a and a2 = -

(see for instance [13], Chapter IV), then using the

decomposition of d+6 near Y1:

l(d+6)lI 12 _ ;/ax 2 2 + 11A 1  
2

+ 2 Re ( 3/ x 2 A 1 )

(all norms in L 2(X).

Set now p1 = aA (dx1 ), then
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L f <$,A 1 $>dv(Y) =

2 Y1 xx2

f < A >dv(Y)

Y1 XX 2 ->21

+ f <$,A >dv (Y)

Y T2 2

= 2 Re f
Y

+ f
aY 1 2

1 2

(dv(-) denotes Riemannian volume element of the

corresponding manifold).

We integrate above equality with respect to

between zero and one. Recalling that $ 0 at

we get

- f <$,A $>dv(Y) = 2 Re 2A
Y 1(3 2 A1

1
+ f dx 2 f

0 Y 1 xx 2

The last integral above is equal to:

f <P1 $, >dv(Y2
Y, 2

x
2

x 
12

< A Al,>dv(Y)
x2

<pl~ $, >dvO(Y)
x21

<P1$, >dvO(Y)
2
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so we get:

11(d+6)$l 12 II11 112
x 2

+ I IA 1 112 - f <O,A $>dv(Y1 )

Y1

- f <pl$ , >dv(Y2)

Y2 X2

and a similar expression for a form supported on

Y2 x [0,1) .

Applying this to $ = f (x 2 ) $ and f (x ) $, and

recalling that f

1I(d+6) (f(x1 ) 1|

= 1J(f(x
JX

-f
Y

<' 1,A 4>dv (Y 1 )

I

- f <4,A 2 >dv (Y2
Y 2 (2

(0) = 1, we get:

2 + Il(d+6)(f(x2 ) P)1 2

12 + ZlA (f) 112

-f
Y

) P2 a l)
1

2 2
x2) a(f(x2 >dv (Y2

Tx2

V) >dv (Y1 )

(3)

Now we add C {I I$I 121/2
HB (Yj)

+ Il1 lI2 s
21 M

an s < 1. We will prove the following: after adding

C {...} to the last two lines of the right hand side of

} for
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above equality, the resulting quantity is positive.

Assuming this claim, we can finish the proof of (1) as

follows: by the remark preceeding (2), we see that the

following inequality implies (1):

1 I 2 d 1
B (fI 21/2 2 < 11C) 220 1 (Y1 xx2) 1 L (X)

+ 1A 1 (f$)112 2
L X)

+ lh$H W
Hs(x

In order to prove this, we observe:

as the boundary of the manifold Y

(coordinate x on [0,1)). Then:

consider

x x2 1

y 1 x x2

x [0,1) x x2

If C is any form supported on DY x [0,1) x x2'

and L is any 1st order elliptic differential operator

on DY1 , I|E |121 is equivalent to:
H (Y 1xx 2)

E 12 + f L 2  dxR7 2 +1 |L| 2 1x1 L (Y 1 xx 2) 0 L (DY xx xx2

+ I| E1|22
L (Y 1 xx 2 )

and

}
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I 1I 121
H~ /2(Y 1xx2)

< C i I II H1/2

< C{above sum}

and after we integrate above inequality with

= f(x1f(x 2 .

But now note: the first and third term that we

get are already included in

explicit L. For this set:

(3), so we only need to

L = L = -p A

1|ILCI22 <
L (X)

then our estimate f

cIhp12 s , here
Hs M

+ 3/3x ,

c(I IAlEI I

then is clear that

2

L2(X)

or f IB 1 112

1/2 < s < 1.

+ I 1- 12
l L 20)

follows after adding

So we only need now to prove our assertion about

the last two lines in (3).

We use our isomorphisms and see that: if P near

Y, comes from $ and we decompose $ in $+ + $

corresponding to non-negative and negative eigenfunctions

of D , we get

irrelevant):

(except for a 1/2 factor that is

)
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{f <qf+' (f+)> + f <qf$+'>
Y 1 Y 1

+ f <qf _, (f$+)> + f <qf _, (f$
Y 1 Y a

- f <, > - f< , >
Y Y

we have suppressed mention to Yl, term for Y2 is of

the same form, and

-1q = pi Pi~i

is precisely the symbol of D in direction dx1 , this

can be seen using the equations:

a d+ 6 (dx2 = d+ 6 (dx )p2  and the relation between D

and A1 .

As $) was C on X and 0 on Y1 Y2 , we

have that E H1 /2 (Y)

Now: using the same arguments of part I and

abstract theorems on interpolation, we obtain the

following inequalities:

i) If <qf$+' +(f )>1 < c, 1$+I 121/2
Y 1 H B (Y)
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ii) If $Y 1
+ <qf _ (f$+axfy1

>}

<c $+ 1/2 -Y) I 1/2

1/2
B

+ c(E)II$+1 1/2
HB

e > 0.

(here we use lal |bI < eb2 + c(E) a2)

iii) If<~+,D~+> I c< c 11$ 1/2
B

and according to Prop. 5, we have for some

iv) - f
Y

<$_,DO_> + f
Y

<qf _, (f#_)>
"

+ cI l $p 2 2
L (Y)

> 0

then by (3) , it is clear that we have proven:

the inequality:

I | 12 1
H (X)

< C{I I(d+6) $ 112 2
L2 X)

+ II12 2
L (X)

+ H.11/2
B.

J
(Y. )
J

+ C(C) $ I 2S1/2

B. j

In order to finish the proof of the theorem, we must

show that the term with $$ can be eliminated. Due

c > 0:

}
)

to
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the E, which can be made as small as desired, we see

that it is enough to prove:

1I 11~ 12
1/2

IB 1)

< c{II$I 2

II M
+ H 21/2 (HB 1

We suppress subindex 1 and proceed to prove above

inequality.

Set + = E
.>
I-

3a
the beina the eigen-

functions of DB. Then define

where f

valent to

S=f(x 2 )
X. >0

J-

is as before,

e 2a.x.
JJ3

then as

EIX I 2 a I 2 + ||$+ 2,

H (Y)
is equi-

we easily get:

1) C is in I M

2) JY = $ +

3) 1 I |I
H1  < clI$+I 1/2H (X) IB

Consider now the difference 4-E, we get then

($-) jY =

} (6)

for x 2 > 0:
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In order to prove (6), due to the presence of

on the right hand side, it is necessary only

to estimate E I x a i
2

if (_ = Za.(P.

- z
X .<0

x .ia.
J J 12 = - f <(_,D$_>

Y1

= - f<(-,D($-5)>

Using our development of d+6:

2 '
L

2 + IIf - (E) 112

- 2f <$-(,D((-t)>

Y2

-2f <p $-)
Y 2

Now we need the following lemma

Lemma 3

2 -E) >JT2 (

Let

H 1/2 (Y
B1

v E H (X) be such that

Then:

But:

(7)

(8)

v = vlY 1
is in

I (d+6) (f q-y (E) ) I
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V 2 vY 2
is in 1 /2 2)

B1 2
pendent of v such that

1 V21 121/2
HB (Y2 )

2

1 M

and there is c inde-

+ IIV1121/2
HB 1

}

Proof:

Denote by t a variable equal to x when it appears

on v1 and x2 in v 2 . Then from results of [7] , last

section, on compatibility conditions of restrictions of

elements

R x {0}

of H1 (R 
X R+ X R+) to R x R+

x R+, we get due to local nature o

x {0} and

f restrictions

that they apply

1 1

0
Y
ay 1xt

to our case, and have:

1 22 < clvI 2
11v1-v21 H (X)

Noting that B is an orthogonal projection on

L 2(Y 1 ), have:

lB (V1 -v2 2 + f
DY1 xt

| (I-B 1 ) (v -v 2) 12

Now combining results from [17], section 4

[11], Chapter I, we see that the norms ii/2 (Y)

2X
ax 2 xt

=1
ay1 xt

and

< c{|I|V||I

|1 l-V21

are
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equivalent to:

norm 111/2(Y) + (f
0 t ft

aYxt

so hypothesis about v1 implies:

f - t
0

I
Y 1xt

|B v 112 < C, 1 21
HB 1 1

but then by the previous lines, we see writing

IBiv 2 2< B1 (v-v 2)
2 + |B 1v 12 that statement

of lemma follows.

We apply Lemma 3 to C, and recalling observation 3)

about C, we get:

III12
1 /211B 1(Y 2 )

c |$ 144 1/2

and also to $-C. As

f <p1 ($-), ($-u)>
Y2a 2

isolating quantity

< c -( H 1/2 (Y
B 2

(7) from the expression (8), we see

that all terms are bounded by II $ 12 1
II (X)

and

B 112) 1/2
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I $+ 21/2
H B (Y

multiplied by constants, that is we have

proven (6).

But then we have completed the proof of the Theorem.
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III. Consequences

Now we proceed to define an extension of d+6. For

this

Def. 3

Set

V = {$ 6

so that

H (X, Q+) I there is {n I C C (X,Q +)

a) $n + $ in H sense

b) $n =0 on Y 1 n Y 2

c) $ + 0 in H 1/2(Y
n,+ B. JJ

and define:

A+V = (d+6)i for V c V.

We observe:

A+$ = lim (d+6)$i , the limit taken in L2 sense, and

the result is independent of the approximating sequence.

Also we see:

a) C'(X,Q+) c V' obviously, and
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b) If 4 c V, and $ = V($) on Y , then

H1 /2(Y) and = < a.4 ', the series

J

converges in H s(Y) sense for s < 1 where the . are
2j

the eigenfunctions of the DB6

The first assertion is consequence of restriction

theorems for Sobolev spaces and for the second see for

instance [2] or [17].

We make the following remark: it is well known

that C (R) is dense in H (X), as is proved for instance

in [1], Section 2. One can prove that the subset of

C"(X) satisfying 4 = 0 on Yi 1 n2 is also dense in

H 1(X), the proof can be adapted from related results

in [11], Chapter I. So we see that c) is the only

condition that we are imposing in the definition of B.

Prop. 6

A+, considered as an unbounded operator from

L2 (XQ+) -* L 2(X,Q_), is a closed, densely defined opera-

tor. Also: there is c > 0 so that for all $ e V:

1 1 H < c{IIA +W 2 + |I$ 1 2
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Proof:

it is clear that A+ is densely defined, as

C - V. We now prove the inequality: if en 6 C (,Q+)

tends to $ in the definition of V, then we can apply

our theorem to the n 's, so:

$~nI < c{I (d+6)$n + I 1n 2+ ,+ 11 /2

l L L 2 HB.
J

but by the properties of our sequence, taking the limit

as n + o we obtain precisely the claimed inequality.

Now we prove that A+ is closed: let $n '

A+n n {, } V and limits in L2 sense.

Then using the inequality we have just proven,

we see n + in H 1 sense, and then A+n + A+1P=

in L2 sense, as d+6 is a first order differential

operator. To see that i can be approximated by a

sequence {$} C C (XQ+) as described in the definition

of V, choose sequences {n,m} }I C' so that $n,pm n

as m + o with properties required, and choose an

appropriate diagonal subsequence from the "square" of

the { nm}. So Prop. 6 is proven.
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We now examine the kernel of A+. For this we

define a manifold X so that X X, explicitly

Def. 4

X = X u Y x (-0o,0] U Y2 (-coO

have coordinate x2 in Y x (-o,Q] and x1  on

Y2 x (-m,0]. We extend the Riemannian metric and

orientation of X to X in the obvious way, i.e.

maintaining the product structure we had near X.

Note that the isomorphisms p.. Q(Y.) + ly(X)IYJ Q4+X)

prolong to Q(Y. X {x})
J

Now assume we have 4 =

Q +(X)y .x{x}

Z a. in
X.<o
J

over Y. x (-m,0.

H 12(Y), where

Y is Y or Y2, then define on Y x

-X .x
= E e 3 a.4.

3J3
(x = x 1 or x2

accordingly)

and $ = p( ).

Then is easy to see:

1) is in C" n Hs(Y x (-o,0]) for s < 1

2) ( + D)E = 0 on Y x (-0o,) and then

(d+6)$ = 0 there.

(-o,0]
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t
3) lim =$ in H (Y) for t < .

x+O 2

4) IIE(-,x) L2 (Y
< ce-ax , where

a = min {IX.I so that A. < 0}
J J

Suppose there is fl e V so that:

A+n = 0 and nIY P().

Define then the following distribution on Y x

a on Y x (Or)
T = 1

i on Y x (-0,0)

2
so T is in L

We now calculate (d+a)T in distribution sense,

so let f e C (Y x (-o, )), then we have:

T[(d+6)f] = f
Yx (0, 1/2)

<n,(d+6)f> + f
Yx (-0o, 0)

<4,(d+6)f>

We use Green's formula to reduce integrals to

expressions involving only values over Y.

a) For the first integral: as fl c H and

(d+a)n = 0 on X, we see as f = 0 near aY that it
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is equal to an expression of the form f k(n,f) , where
Y

Z only involves the values of q

(i.e. there are no derivatives)

then

b) For the second integral:

f <$,(d+6)f> = lim+
Yx(-0o,0) 0 Z

and f on Y

set Z = Y x (-0,-E),

<ip, (d+6)f>

Now we use Green's formula for Z , and by remark 3)

on previous page we can take the limit as E + 0+. getting

the same integral as in a) but with a minus sign due to

the opposite orientations induced on Y from the two

sides. So we get:

(d+6)T = 0 on Y x (-o, )

in distribution sense. Using this we now state the

following

Prop. 7

The kernel of A+ is finite dimensional, and its

elements extend to solutions of (d+f)$ = 0 on X, such

p are inC rn H s(X,Q+) for s < 1.

As a consequence, the elements of ker A+ are

C on X ' (Y1 Y 2 ).
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Proof:

the first assertion is an immediate consequence of

the inequality in Prop. 6 and the compactness of the

1 2
injection H (X) + L (X). The prolongation to X is

done as we have just described to Y. x (-o,Q], and
J

such elements are Co as solutions of the elliptic

equation (d+6)$ = 0, and that they belong to Hs for

s < 1 was observed in remark 1) about 3. So Prop. 7

is proven.

For the image of A+(V) in L (X,Q_), we have

Prop. 8

there is C > 0 so that for all c V n (ker A+)

( in L 2-sense) we have:

H (X) < C|A+ L2 X)

So: A+ (V) is closed in L2 (X,_).

Proof:

it is a standard argument, if not there is sequence

in so that IIA+ nII - 0, HlPIK = 1 , etc. and this

would contradict the compactness of the injection



57.

H 1(X) + L (X).

We can use Dirichlet principle to solve equation

A = w, for o c L2 (XQ+) n (ker A+) . The arguments

are as in [12], Chapter 7 so we don't give many

details.

Minimizing the functional on V

I($) = II(d+6)$ 112 - 2(wl$)

we obtain an element Gw in V r) (ker A+ *

Denote by H the orthogonal projection of L 2(X,+

onto ker A+, and recall that all our operators, boundary

conditions, etc. are real.

The properties of G can be summarized in

Prop. 9

G : L2 (X,Q) + L2 (X,Q) satisfies

1) G is a compact, self-adjoint, non-negative

operator

2) ker G = ker A+

3) G(L 2 ) c_ V n (ker A+) and G is continuous

as map from L2 + V, V with H1 topology
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4) The following eqt is satisfied:

Re((d+6)GwI(d+6)$) = (w-H(w)l)

2
for all o e L , $ V. If all elements

are real:

((d+6)Gwj(d+6)l) = (w-H(w)1$)

In particular:

AGw = o-H(w) in distribution sense.

5) G has a basis of eigenfunctions

and eigenvalues {0,1/X.} where

X + +0, complete in L2(XQ+)'

They also satisfy: A$ . = x.$.
J J J

6) Any o e L can be written as:

o = H(o) 0 AGw

Now consider A+ : L (XG+ + L (X,Q_)

unbounded operator, and we look for:

* 2 2
A+ : L (X,Q_) L2L(XF2+)

its adjoint in Hilbert space sense.

First we note:

{0 } _ iv

0 < X.,

2 *
A+GL C Dom (A+
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by property 3) of G.

Def. 5

E(X,2_) 2 $ 2 (XQ_)j(d+6)$ F L2(X,Q+

(in distribution sense)}

As the formal adjoint of (d+6) is again (d+6), we see:

Dom (A+ c E.

On E we take: 11 1 2 = 1 2 12
E $ 2 + j (d+6)$| 2

L L

Now we prove an important property of E:

Prop. 10

The set

W = {$ s C(X,Q_) I $ = 0 on Yi t Y 2

is dense in E.

Proof:

note that it is enough to prove that Cw(X) is

dense in E, as this implies the density of H1, and

then use the remark following definition 3.
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So take k : E -+ continuous linear functional,

any such functional can be written as

,(i) = ((I$) + (TI(d+6)$)

2
with , L (X). Assuming kE 0 on C'(), we

prove k E 0 on E.

Choose M a manifold such that X c M, and

denote by l and n, the extensions by 0 of ( and

r to M. Then as k = 0 on Co(R), we get:

(d+6) = in distribution sense on M.

But then mi c H1 (M), and as m = 0 on M-X, we see:

m e H (X,Q_), and ((d+6)ml$) - (ml(d+6)$) = 0 for all

$ sC o(). Now choose {-n} a C(XQ_) so that

1
j + m in Ho sense.

Take a general $ 6 E, then:

(nI(d+6)$f) = lim (n I(d+6)l)

but c H 1 (X) as d+6 elliptic, so:
((c

(-m I(d+ 6)) = (d+ 6)m llPj

so
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im ( jI(d+6) f) = ((d+6)n 1$)

then Z($) = 0, as we wanted to prove.

Now we look in detail to Green formula for

(d+6). If , n are in Cm(), we then have:

((d+ 6) -n) - ((I(d+6)n) = f - - T*
ax

the integral on the right only involves forms of

dimension 4k-l. Now if we assume E in Cm(XQ+

and n in Cw(X,Q_), we have for homogeneous degree

components:

P = *4k-p

and q - F q * 4k-q

Collecting terms in above integral using these

equations, we get:

((d+6) TIn) - (Ej(d+6)n) = 2 f * (9)

Call b(t,n) the right hand side of above equation.

Then we see that by definition of V and Prop. 10,
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b extends to a continuous sesquilinear form

b : V x E+

and clearly

Prop. 11

*

Dom (A+ ) { E(X,_) Ib(-,$) ~ 0 on V}

If we now use the following isomorphisms, where

Y is Y or Y21 2

_ (Y)

0 (Y)

+ W+ (c+GW)

Q- () Y - fl1
2~

take then $, $ so that

=+ (' I-_($) = n over Y.

Taking now py+-($), we neglect those terms

containing the conormal to Y as they don't contribute

to the integral (9), and we get:

2 f + ^ - 1
Y Y

-1 <,v($)>dv(Y)
Y

= - (1 ($ )

(10)
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that is:

((d+6)EIn) - ((I(d+6)n) = - 2 ()

J J

where v is (-1 )PE * on p-forms over Y. (see
J p J J

definition on B on Part I).

Now recall: near Y (similar for Y2), we had the

decomposition:

d+6 = a(dx 2 ( /Dx2 + A1)

and

-l
D= + A P

If we do same calculation for Q_(X) and the iso-

morphism p_, the result is:

=-l
D = - 1_ A 1 _

So we observe: all our results for Q +X) can be

repeated for Q_(X), but this time we have to consider

as boundary values for the corresponding space V the

span of the eigenfunctions corresponding to the eigen-

values that are > 0.
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Equation (10) gives the explanation to conditions

for B in order that we have 2) of Prop. 2. From

equation (10) and self-explanatory notation, we have

Prop. 12

Let 6 s V(XI ) and $ c V(X,Q_), then:

(A+CpI$) =(#A$

so:

A+ is an extension of A_

We conclude making some remarks on how to prove

existence of the index in the case of Co boundary with-

out using a parametrix. As in any case the parametrix is

needed to obtain the formula giving it, we won't go into

too many details.

The a priori inequalities are valid, we indicate

how one proves A+ = A_.

We have the corresponding space E, with C" sections

dense in it. Looking to (11) we see that, as H 1/2 OX)

and H /2(X) are in duality by integration, and the

restriction map from H 1(X) + H1/2 OX) is onto and con-

tinuous, theelements of E define sections over X in
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H-/2 (X). Then, they can be expressed by series of the

form Ea.h , the $. being the solutions of D$. = ..
J J J J J J

and satisfying the condition

-l 2<
EX. 1a.1 < 0

J J

The bilinear functional b is then:

b($1,$) =Zb a~kj
jbi k(j)

where

=ZEb.p. in V, = a.$. in E
J J ]J

and we write k(j) to take v into account. But now:

if we have any $. on DX such that it corresponds
J

to X. < 0, we can find $ e V so that $lax = $.. it
c tJ

suffices to extend q. as constant along the normal to
J

DX and multiply this by a Coo cut-off function equal

to 1 on X.

As b(p,$) = 0 for 6 s V and $ s Dom A c.._ E,

we see: such $ have expansions

E a.5. in X.
X >0 J
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Using a variant of Friedrichs' Lemma (with boundary

conditions), we can construct a sequence n c H (X)

so that n + V, (d+6)n + (d+6)p both in L 2 sense,

and the V n have boundary values as $ above. But

then the a priori inequality says the $n are a Cauchy

sequence in H1 sense, and so $ is H1 and then it

belongs to Dom A_.

As we see, the crucial point in the argument is that

the boundary values of the elements in V give the whole

set {cp|$. corresponds to X. < 01.
J J J

In the C case, the elements of ker A+ are

closed and co-closed. The proof in [3] uses the extension

X of X, but this can be also proven as follows:

D = L + M with LM = ML = 0 (see Part I),

so if D4 = Xc, we get:

DL = L 2 = LD = XL$

same for M, so M and L leave invariant the finite

dimensional spaces V(X) = {jDe = Xc}, but then by

simultaneous diagonalization we can split V(X) in

VL VM, where L acts as XI on VL, 0 on VM and

vice-versa for M.
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Assume now we have c e Q + (X), (d+6)$ = 0,

= Z a. . on DX (after using the corresponding
X.<O I
J

isomorphisms), then we get using Green's formula:

I|dfIl 2 = -(d$6)X = (flL$)DX

but now

L4 = LZa - L $, so

J

1 2 2
($L )X X7 a | |i|J JJ

(recall L* = L), but as the X. < 0, above quantity is
J

< 0, but I|d$j 2 > 0 so only possibility is 0. So

d$ = 65 = 0.

To repeat this argument in our case requires to

examine the boundary conditions satisfied by L4 on DY

for the elements D = XA, B4 = 0 on DY. This involves

a long calculation as we must use aL besides aD' in

any case in order to obtain a similar division of the

eigenfunctions of DB one would need to impose more

conditions on B and in that case it does not give

self-adjointness for DBO
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