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Abstract

Solid Modeling is rapidly emerging as a central area of research and development for

such diverse applications as engineering and product design, computer-aided manu-

facturing, electronic prototyping, off-line robot programming, and motion planning.

All these applications require representing the shapes of solid physical objects, and

such representations of and basic operations for them can be provided by a solid

modeler.

However, currently most geometric modelers are too rigid and not tightly integrated

into design systems. Usually, they are only used for drafting and visualization during

the final stages of the design process. To model geometry of a product at all stages

of its design cycle, a more powerful and flexible geometric modeler which can be in-

tegrated into the design system is needed. The aim of this project is to develop such

a geometric modeler.

This study investigates uses of non-manifold topology in solid modeling. A non-two-

manifold geometric modeler called GNOMES (Geometric NOn-Manifold Engineering

System) which will be used as an integral part of a design system, is developed in

C++, over a C++ based object-oriented database. Various algorithms used for de-

veloping the system are presented. The theoretical foundation of GNOMES is SGC
(Selective Geometric. Complexes), a dimension-independent model for representing
pointsets with internal boundaries, incomplete boundaries, and non-two-manifold

conditions developed by J. Rossignac at IBM. The object-oriented approach used
for developing the system allows it to be easily maintained and extended.

Thesis Supervisor: Duvurru Sriram

Title: Associate Professor
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Chapter 1

Introduction

1.1 Introduction

Computer-aided design and manufacture (CAD/CAM) based on solid modeling tech-

niques is a relatively new discipline which is concerned with integrating computer

techniques with engineering design, analysis and manufacture in a unified system.

In a typical solid modeling system, tools assisting in the execution of design tasks

during the design process must be available. The design process is an interactive one

in which the designer carries out various design tasks including conceptual design,

form creation, and engineering analysis, for example, using a finite element method

and planning a fabrication process. CAD/CAM systems are also required to store

and manipulate complete, unambiguous representation of the geometry of objects

being designed. In such an integrated design environment, the designer has the ca-

pability to rapidly access the performance of a particular design at an early stage of

the design process. A correct geometric representation extracted from the geometric

database and automated engineering analysis techniques allows the designer to carry

out detailed simulations without using expensive and time consuming mechanical

prototypes. Thus, the designer can examine more design options and try different

design configurations to develop an optimal design [Kimura 90].

A solid modeler plays an important role in a modern computer-aided design system.

It is the part of a CAD system which automatically displays, manipulates and applies
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various useful analyses and operations including mass property calculation, FEA, and

boolean operations to the design objects. When considering how to design a product,

it is important to review its dynamic model evolution process. At its conceptual stage,

almost no information or fragmented information exists for product description. This

incomplete, inconsistent and ambiguous information is gradually refined to formulate

a complete, consistent and unambiguous description through the iteration of the de-

sign processes. Product shape is determined concurrently with these processes, from

initial fragmented geometric elements or constraints among them to complete solid

shape information. Conventional geometric modeling systems, however, are not nec-

essarily suited for such a model evolution process. Rather, they are more convenient

for modeling shapes that are well developed and defined before computer input [Gur-

soz 90b].

Treatment of shape information using computer or geometric modeling is a difficult

subject. Due to its practical usefulness, it has been researched extensively and has

proven successful in a number of theoretical and powerful systems which deal with

complicated solid and sculptured surface shapes. Several attempts have been made

to process more general shapes, among which non-manifold 1 geometric modeling ap-

pears to be an effective basis for realizing more powerful geometric modeling systems

such as those required for collaborative engineering applications.

1.2 Objectives

The primary objective of this study is to extend and improve a non-manifold geometric

modeler [Wong 91] which will be able to model the geometry of a product at all stages

of its design cycle. Therefore, the aims of this study are:

1. to apply an object-oriented programming approach to the extension of a geomet-

ric modeler called GNOMES (Geometric NOn-Manifold Engineering System);

'In this thesis, the word "non-mainfold" is used to mean "non-two-manifold".
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2. to implement various methods needed to build higher level operations, particu-

larly, boolean operations;

3. to improve the user interface of GNOMES

The next section will describe GNOMES and its requirements.

1.3 GNOMES

1.3.1 Motivation

In parallel with the development of technological product information, product shape

information should be generated at the beginning of product design. Even in the

conceptual design stage, it appears to be very difficult for human engineers to con-

ceive machine products without imagining geometric shape. Therefore, it is necessary

to provide geometric modeling capabilities to deal with very rough and fragmented

geometric shapes, as well as very precise descriptions of shapes.

From this point of view, existing geometric modeling systems are not powerful enough

for practical use. Because geometric modeling systems are normally very large and

complicated software systems, there are many implementational issues, such as nu-

merical instability during geometric calculation, data redundancy and program errors

[Hoffmann 89]. In addition to these issues, conventional geometric modelers are not

sophisticated to deal with incomplete shapes. Geometric information of products

gradually evolves during design and manufacture activities. In intermediate stages,

shapes are not always completely defined, and some parts may be left undefined.

In other words, engineers want to define only those shapes they think important or

necessary. As a result, geometric modelers need to deal with incompletely defined

shapes, such as solid4 shapes with undefined topology and geometry.

To overcome some of the above difficulties, several new features of geometric model-

ing were developed. These features organize geometric modeling entities as an object

library format, and make it possible to use these objects' methods within an environ-

ment of a collaborative engineering framework.
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GNOMES was developed with these considerations in mind. GNOMES introduces

general topological structures, which can represent wireframe, surface and solid shapes

in a unified manner and can be further extended as required [Wong 91]. Specifically,

fragmented shapes can easily be represented. A non-manifold topology is adopted as

a basis for GNOMES, an example of which is shown in Figure 1-1.

GNOMES was developed using an object-oriented approach. This approach allows

the geometric modeling system to be easily maintained and extended. For example,

when better algorithms for curved edges and faces are available, classes for curved

edges and faces can be implemented, but other parts of the system remain unchanged.

1.3.2 Requirements of GNOMES

The geometry of a product can have a non-manifold condition, such as mixed dimen-

sionality, incomplete boundary or internal structures during its design cycle. There-

fore, it is important for the solid modeler for engineering design to be able to represent

and deal with non-manifold geometry.

"Design is a dynamic and evolutionary process, in which a product usually evolves

from a sketchy and incomplete geometric description in its conceptual design stage

to a full and complete solid description in its final stage" [Wong 91]. Design is also a

cooperative process which involves a team of designers working on the same or differ-

ent parts of a product. Therefore, the various functional requirements for a geometric

modeler for engineering design are [Wong 91b]:

" Representation of 1D, 2D, and 3D objects in a unified framework. The ability

to represent objects of more than a single dimension greatly enhances the user's

ability to represent design at various stages of completeness.

" Representation of non-manifold objects in a unified framework. The ability to

represent non-manifold objects is particularly useful at the conceptual design

stage of product design process.

* Concurrent access in a database environment. Collaborative engineering in-

volves concurrent uses of product information by several people over a period of
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Figure 1-1: A non-manifold situation example
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time. Hence, the geometric modeler should be tightly integrated with a database

environment which provides persistent storage and manages concurrent access.

" Higher level grouping of objects. Arbitrary collections of geometric objects in a

model can be used as input to some modeling operations or returned as a result

of others. An assembly groups parts (models or other assemblies) together

such that they act as a single object (a composite object) without merging

together their data structure. An assembly can be seen as a hierarchy of models

and sub-assemblies with models at the leaves of the hierarchy. Relationships

between each part are maintained and operations applied to an assembly will

be recursively applied to its parts. The input to the grouping functions is a

list of objects to be grouped and it return an object which is an abstraction of

the assembly. Operators defined on assemblies include boolean operations and

other object manipulation functions.

" Modeling tools. Various lower and higher level modeling operations should be

performed. These include:

1. low level topological and geometric operators;

2. high level modeling functions such as sweeping functions;

3. the parametric definition of various primitive models;

4. boolean set operations, these include union, intersect and difference oper-

ations;

5. merging or gluing operations;

6. replication and deletion of objects;

7. regularization of geometric objects;

8. representing boundaries, interiors of geometric objects.

* Transformation facilities. Various transformation operations should be pro-

vided. These include translating, rotating, scaling.
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* Determination of geometric properties. Functions should be provided for deter-

mination of geometric properties such as surface area and volume of a solid.

" Spatial queries. Functions for spatial queries such as adjacency queries and

retrieving non-manifold data structure should be provided. These include func-

tions for testing inclusion and intersection.

" Non-geometric details. Facilities for associating non-geometric information are

needed. A generic interpretative interface should be provided for easier access.

" Easy extending of geometric elements. Curved edges and faces should be easily

extended in the system.

" I/O facilities. These include facilities for file storage in a standard format.

Similarly, it should be possible for the system to read in files in such a format

and construct a geometric model. This will allow communications with other

systems.

* Versioning. Facilities for storing and managing multiple versions should be

incorporated.

* Symbolic labelling of geometric information and their use in constraints speci-

fication. Design basically involves the satisfaction of various constraints some

of which depend on geometry. A facility should be provided which allows the

pertinent geometric details to be identified symbolically. This facility will al-

low symbolic constraints to be written which can be checked when changes are

made.

" Error handling. Error messages and the creation of an error handling object

should be provided whenever an operation is not permitted. Undoing operation

should be provided.

In addition to these functional requirements, the geometric modeler should be able to

provide functional access to its different parts. This will provide a flexible environment
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in which design applications can be developed. Hence, the architecture of the system

should be highly modular and layered to allow for easy access and integration of

individual parts of the system with design applications [Wong 91b].

1.4 Organization

This chapter has introduced the primary objective of this study, which is to extend

and improve GNOMES [Wong 91] to model the geometry of a product at all stages

of its design cycle. The previous section has detailed the various functionalities re-

quired from the geometric modeler. The rest of this thesis is divided into 5 chapters.

Chapter 2 provides a general background on various fields involved in this thesis.

The various fields are solid modeling, SGC (Selective Geometrical Complexes) and

the object-oriented paradigm. Chapter 3 discusses the object-oriented design of a

geometric modeler, where details of the architecture and C++ classes of the system

are described. Chapter 4 provides algorithms used for developing the system. Chap-

ter 5 presents several examples, followed by the conclusion and some suggestions for

further work in Chapter 6.
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Chapter 2

Background

2.1 Geometric Modeling

Geometric modeling is a technique to represent and manipulate geometric shapes

of two or three dimensional objects on computers. There are three main geometric

modeling forms: wireframe, surface and solid models. When only edges and points

are used to represent geometric shapes, it is called wireframe modeling. Surface

modeling was developed to represent mathematical descriptions of the shape of the

surfaces of the objects. But both wireframe and surface modeling offer few integrity

checking features (e.g. closed volumes). Solid modeling was developed to address this

integrity checking problem by containing both geometric and topological information

of an object in a model. Figure 2-1 shows these three geometric modeling forms.

Solid modeling is the central subject of this study. The next section describes solid

modeling.

2.2 Solid Modeling

Because solid modeling explicitly or implicitly contains topological information of

volumes of solid shapes, that is, every surface boundary in a boundary based solid

model is always directly adjacent to one other surface boundary, solid modeling guar-

antees closed and bounded objects. Thus, solid modeling systems have the ability to
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Figure 2-1: Wireframe, surface, and solid modeling forms [Weiler 86].

19



distinguish the outside of a volume from the inside and determine mass properties of

solids. Solid modeling systems also offer tools for creation and manipulation of com-

plete solid shapes, while maintaining the integrity of their representations [Hoffmann

89].

Traditional solid modeling systems use the two-manifold solid representation where

every point has a neighborhood which is topologically identical to a two-dimensional

disk when the surface is examined closely in a small enough area around any given

point. In such a solid modeling system, objects in Figure 2-2 can not be represented

because they are not two-manifold solids in the sense that the neighborhood of a point

need not be a simple two-dimensional disk. They are called non-manifold solids. In

order to model these non-manifold solid shapes, Weiler [Weiler 86] developed non-

manifold solid modeling to combine wireframe, surface, and solid modeling forms in a

unified representation. Such a non-manifold representation will have the capabilities

of all the three modeling forms and can represent a larger variety of objects than

manifold representation. For example, objects such as a cone touching another sur-

face at a single point, more than two faces meeting along a common edge, and wire

edges emanating from a point on a surface can be represented.

Currently, there are three widely used schemes for storing geometric representation

of objects in solid modelers. They are cell decomposition, Constructive Solid

Geometry (CSG) and Boundary Representation (B-rep). The following three

sections describe the three schemes respectively. A new representation called SGC,

which is a model for representing non-manifold situations is presented in section 2.3.

2.2.1 Cell Decomposition

"Cell decomposition models describe solids through a combination of several basic

building blocks glued together. In such a system, any solid can be represented as

the sum or union of a set of cells into which it is divided. These cells touch one

another along their bounding surfaces, but do not have common interior points"

[Mortenson85].

"A special case of cell decomposition is Spatial occupance enumeration where

20
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Figure 2-2: Examples of non-manifold
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situations [Bardis 92].

cells are cubical in shape and located in a fixed spatial grid. As the size of the

cube decreases, this method approaches the representation of a solid body as a set of

contiguous points in space" [Mantyla 88]. Cell decomposition models can represent

general objects but their validity is hard to establish and they are not unique.

2.2.2 CSG

In a CSG representation, an object is stored as a combination of simple primitives.

The data are usually arranged in a binary tree structure in which the leaves are the

shape primitives and tree nodes are the boolean set operators constructing the object

from the shape primitives. Both the surface and the interior of an object are defined

implicitly. CSG models are sometimes known as unevaluated, implicit and volume

based representations. CSG has the following advantages [Chiyokura 88]:

0 "The data structure of a CSG is simple, and its data size is small. The internal

management of the data structure is therefore easy.

* A CSG always corresponds to a physically valid solid in the sense that its surface

is closed and orientable and encloses a volume.
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e It is easy to modify a solid shape corresponding to a CSG".

CSG has the following limitations [Chiyokura 88]:

" "There are only limited operations available to create and modify a solid. Gen-

erally, it is not easy to implement operations other than boolean operations. In

an interactive design environment, to improve the user-friendliness of a system,

a wide variety of operations should be available.

" The computation for generating pictures of solids is time-consuming. This is

because boundary elements, such as faces and edges, drawn in the picture are

implicitly represented in CSG, and hence obtaining the elements is computa-

tionally expensive".

2.2.3 B-reps

In a B.rep based system, a solid is represented as a data structure composed of

vertices, edges, and faces. The orientation of surfaces allows us to decide on which

side of the surface the solid's interior is located. This suffices to describe the solid's

interior and exterior unambiguously. Therefore, Boundary Representation models are

sometimes known as evaluated, explicit and boundary based representations. B-reps

have the following advantages [Chiyokura 88]:

* "Since edges and faces are explicitly represented in a B-rep, a picture of a Brep

is quickly drawn. It is also easy and quick to ascertain topological relationships

- which vertices are connected to an edge, which edges are attached to a face,

and so on.

" In Bsep based systems, a wide variety of operations can be applied".

B-reps have the following limitations:

0 "The data structure of a Brep is complex, and it requires a large memory

space. Procedures for modifying and manipulating its internal data structure

are complex.
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e B-reps are informationally complete representations of solids. However, they do

not always correspond to valid solids".

2.3 SGC

Selective Geometric Complexes (SGC are used to represent nD pointsets. A geomet-

ric complex is a finite collection of mutually disjoined iD cells. A cell is a connected

open subset of an extent which in R 3 consists of the three dimensional space, of

two dimensional surfaces, of one dimensional curves, or simply of points. These cells

generalize the concepts of edges, faces, and vertices in most solid modelers. The

connectivity between cells (or the topology) is captured in a very simple incidence

graph whose links indicate "boundary-of" relationships between cells. By choosing

which cells of an object are "active", one can associate various pointsets with a single

collection of cells. These pointsets need not be homogeneous in dimensions, nor even

be closed or bounded. Besides the generality and flexibility of the model, it also offers

another advantage in that useful dimensional independent boolean and set-theoretic

(closure, interior, boundary) operations can be developed based on combinations of

3 fundamental steps: subdivision, selection, and simplification. In this section,

the fundamental concepts of the SGC representation are presented. This section is

taken from [Rossignac 90].

2.3.1 Geometric Extents

In order to provide the definition of extent, we have to present some additional

mathematical definitions. A real algebraic variety or simply variety in R" is

the locus of common real zeros of a finite set of real polynomials in n variables. For

example, a plane defined by the equation ax + by +cz + d = 0, a cone defined by

x 2 + y2 - Z2 = 0, and a cylinder by x 2 + y 2 - r2 = 0 are all varieties in R3 . In

fact, faces, edges, and vertices of valid solids can be considered as connected full

dimensional subsets of real algebraic varieties in R 3 .

A variety is always closed in R". A variety V, which is a subset of another variety W,
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is said to be a sub-variety of W, and if V is a proper subset of W then it is a proper

sub-variety of W. By definition, intersections and finite union of varieties is also a

variety. For example, the intersection curve between two cylinders of different radii

expressed as algebraics is also a variety in R 3 . A variety is called reducible when

it can be expressed as the union of proper sub-varieties, and is called irreducible

otherwise. For example, the plane, cone, and cylinder described above are irreducible

varieties while the intersection between a cone and a plane passing through its apex

is a reducible variety (i.e., its proper sub-varieties are the straight lines x = 0, y +

z = 0, and x = 0, y - z = 0). Every variety can be uniquely decomposed into a

union of irreducible varieties. Varieties often contain singular points, S, where certain

"smoothness" properties vanish. These may include cusps, self-crossings, and isolated

lower-dimensional pieces of V. S is a proper sub-variety and is closed. Let V be an

irreducible variety in Rn. Then, the regular points, R of V can be defined as V - S.

R is a smooth, non-empty, embedded submanifold of R" and can be decomposed

into a finite number of open, connected components. Each of these components is an

extent of V. The dimension of a variety V is equal to the dimension of R. Similarly,

S can be decomposed as a finite union of connected, relatively open subsets of extents

of lower dimensional varieties. Thus, a manifold decomposition of variety V may be

constructed.

2.3.2 Cells and Geometric Complexes

The fundamental entity for geometric modeling in SGC is a cell which is defined

as a connected open subset of an extent. Based on this definition, each face,

edge, and vertex of 3D valid solids typically supported in current modelers is a cell.

The unique irreducible variety and the extent to which a cell, c, belongs are denoted

by c.variety and c.extent respectively. A cell is then defined by its extent and

lower-dimensional bounding cells. A cell is also allowed to enclose isolated lower-

dimensional cells, which do not belong to its pointsets (e.g., isolated cracks, or edges

or vertices in a surface).

Let the topological boundary of a cell c, defined as the difference between the closure
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of c and c itself, be denoted as Sc. Then, a geometric complex or simply a complex,

K is a finite collections of cells cj where j C J, such that:

1. V i, j E J and i / j, c n cj = 0;

2. V c E K, 3 I C J D 6c = Ui<Eci; and

3. V b E c.boundary, (b C c.extent) or (b.extent = 0).

where n and U denote the intersection and union of the pointsets corresponding to

the appropriate cells.

In the above, for any cell c in a complex K, c.boundary(K) or simply c.boundary de-

notes the collection of all cells ci of K such that ci C 6c. Further, c.star(K) or simply

c.star is the collection of all cells of K containing c in their boundary (i.e., V b E K, b

E c.boundary 4 c E b.star). Both operators, star and boundary return collections of

cells and define transitive relations between their operands and the collections they

return (i.e., v E e.boundary and e E f.boundary =- v C f.boundary). Note that for

any cell c in K, c.boundary is a valid complex, but c.star is not. As an example,

consider a cone complex:

K = {a, s, c, d, v}

where a is a cell representing the apex,

s represents the conical surface,

c represents the circular boundary of cell b,

d the open disk bounded by c,

and v, the conical volume [Bardis 92].

Then, v.boundary = {a, s, c, d}, s.boundary = {a, c}, c.star= {s, d}, and a.star =

{s}. We may also see that c E s.extent but a n s.extent = 0. Similarly, d.boundary

= {c} and c E d.extent.

Other operators defined on a cell, c are:

1) c.dimension which return the dimension of the cell and corresponds to the dimen-

sion of c.extent; and

2) K.skeleton(k) which refers to the collection of all cells of K that are dimension
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less or equal to k. Note that K.skeleton(k) is a valid complex. An operator defined

for complex, K is K.cells(k) which refers to the set of all cells of dimension k in K.

Two complexes A, B are equal if they have the same collection of cells. However,

two complexes with equal point sets need not to be equal. Two complexes A, B are

compatible if V a C A, V b c B, a n b 5 0 =- a = b. A complex A is a refinement

of a complex B, if each cells of B is a union of cells of A. It is obvious that pointsets

defined by A and B are equal. The definition implies that any complex is a refinement

of itself and if A is a refinement of B but is not equal to B, then A is known as a

proper refinement of B.

Neighborhood information is also associated with a cell and its boundaries to provide

an unambiguous definition of a cell. The neighborhood information is also used in

algorithms such as those for determining cell intersections and a cell's physical proper-

ties. A cell b is known as a regular boundary cell of a cell, c, if c E b.star, c.dimension

= b.dimension + 1, and b C c.extent. A neighborhood relation, b.neighborhood(c)

can be defined between a cell and its regular boundary. This may have any one

of three values: left, right, or full. The neighborhood relation defines a topological

relation between b and c in c.extent. Hence, if b does not belong in c.extent, then

b.neighborhood(c) is not defined, and b is called a singular boundary cell of c.

b.neighborhood(c) = full indicates that b is in the interior of the closure of c or is an

"interior" boundary or embedded cell of c. For b.neighborhood(c) 5 full, b is then in

the boundary of the topological closure of c, relative to the topology of c.extent or b

is an "exterior" boundary cell. Then, b.neighborhood(c) may be defined in terms of

their orientations and can be defined as follows. For some chosen orientations of c and

b, we can find a continuous function D in b, such that there exists a D(P) in c.extent

at each point P of b and that D(P) is orthogonal to b at P. Now, b.neighborhood(c) =

left (or right) if for each point of P in b, there is a curve C, beginning at P, and totally

contained in c U P, whose tangent direction is coincident with D(P) (or -D(P)).

Intuitively, b.neighborhood(c) defines the "side" on which c is located with respect to

b [Hoffmann 89].
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2.3.3 SGC example

Fig. 2-3 shows an example of a two dimensional complex with two faces, seven edges,

and six vertices. The arrows on the edges indicate arbitrary orientations of their

extents while the extent of the faces is the plane of this paper and is also oriented.

Figure 2-4 depicts an adjacency graph capturing the boundary and star relationships

of the complex. Note that only the bidirectional boundary/star relationship of face

F1, and vertex, V6 is stored as other faces and vertices relationships can be derived.

<> represents a set.

= plane, bdry=

= plane, bdry=

= line, bdry =

= line, bdry =

= line, bdry =

= circlel, bdry

= circlel, bdry

= circle2, bdry

= circle2, bdry

FACES

Fl: ext

F2: ext

EDGES

El: ext

E2: ext

E3: ext

E4: ext

E5: ext

E6: ext

E7: ext

VERTICES

V1: ext

V2: ext

V3: ext

V4: ext

V5: ext

V6: ext

< <E2,E6,E4>, <Vl,V3,V4> >, embed=< <V6> >

< <E7,E2,E5>, <V1,V4,V3>>

<V2,V3>

<V3, V4>, star =

<V4,V5>

= <V3,V1>, star

= <Vl,V3>, star

= <V4,Vl>, star

= <Vl,V4>, star

<(F1,L),(F2,R)>

= <(F1,R)>

= <(F2,R)>

= <(F1,L)>

= <(F2,L)>

star = <(E4,L),(E5,R),(E6,L),(E7,R),<Fl,F2>>

star = <(El,R)>

star = <(El,R),(E2,L),(E4,L),(E5,R),<Fl,F2>>

star = <(E2,R),(E3,L),(E6,L),(E7,R),(E8,R),<Fl,F2>>

star = <(E3,R)>

star = <<>,<F1>>

<plane>, <line>, <circlel, circle2>, <ptl, pt2, pt3, pt4, pt5, pt6> represents in-

stances of plane, line, circle, and triplet respectively. The star relationships (star cell,

neighborhood value) are captured in the instances of star.
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E6

V2
vi

El1

E5

E3'
V4

E7 V5

Figure 2-3: A SGC example [Rossignac 90].

F1 F2

El E4 E E2 ES E7/ E3

V2 V3 g1 V4 V

Figure 2-4: Adjacency graph of SGC example [Rossignac 90].
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2.3.4 Selective Geometric Complexes

The union of pointsets of the cell of a geometric complex, K, is always a closed

set. To allow the representation of non-closed objects and for controlling structural

decomposition, we provide the notion of a Selective Geometry Complex (SGC).

A SGC, 0, is composed of a complex, denoted 0.complex and of an extendible set

of attributes attached to each cell (or group of cells). One important attribute is

the binary active attribute which specifies whether a cell should be included in the

pointset defined by the SGC. Thus, the pointset of an SGC is the union of the

pointsets of its cells, whose active attributes are set to TRUE. For example, if c is a

line segment a face, f, of an SGC and c.active = FALSE, c models a crack not included

in the pointset of the SGC. Various other attributes can be associated with a cell, for

example, a structure attribute can be associated to denote whether an interior cell is

to be preserved during merging and simplification operations. This is important for

finite element decompositions [Sriram 93].

2.4 Object-Oriented Paradigm

The object-oriented paradigm is a style of programming that involves the use of

objects and messages. Objects are entities that combine the properties of procedures

and data since they perform computation and save local state [Stefik86].

Objects contain attributes which are data and methods which are procedures attached

to the objects. Methods can be seen as behavior of the objects. These methods can be

invoked by passing messages to the objects. Objects are usually grouped into classes

with similar properties and behavior. These classes can be related to each other in

a hierarchical manner with different kinds of links, individual instances of objects

are instantiated from a class object. Two major advantages of the object-oriented

paradigm are:

" It is more easily identified with the real world concepts that it models.

* It is flexible to change in problem specifications.
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The object-oriented paradigm will generally include the following aspects:

" Identity. An object is an entity which invariably must have an identity. Any

two objects will have two different identities.

* Classification. This refers to a group of objects in terms of common attributes

and behavior. The results of classification are classes. A class functions as a

template for possible objects with the same attributes and behavior. An object

is said to be an instance of a class if it has the features described by the class

both in attributes and behavior.

" Polymorphism. The same operations in different classes may behave differently.

The specific operation is known as a method of the class. In the object oriented

world, each object knows how to perform its own operation.

" Inheritance. Inheritance is an aspect which allows the sharing of attributes and

operations based on a hierarchical relationship. A class can be defined broadly

and then refined into successively finer subclasses. Each subclass incorporates or

inherits all of the properties of its superclass and adds its own unique properties.

* Reusability. This comes as a result of inheritance and data abstraction.

* Extensibility. New classes can be easily extended by creating subclasses.

2.4.1 Object-Oriented Modeling and Design

The object-oriented modeling and design methodology provides another way of solv-

ing or thinking about problems using models based on real-world concepts. The

method is build upon an entity called an object which contains properties or at-

tributes combined with functional behavior. These models have been found useful in

software development, from analysis, through design and implementation.

The initial stage requires the building of an analysis model which is an abstraction

of the essential properties and behavior of the application domain without regard for

aspects of implementation. The next stage is the design stage whereby the model is
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enhanced to include design decisions and details. This inevitably will include select-

ing from several types of implementation. Note that the design model was "built"

on top of the analysis model. This layering is the key aspect of this technique. This

analysis - design layer is merely a translation from the problem domain to the design

domain. The design domain will modify the domain objects from the analysis to

computer domain objects. The final stage involves the implementation of the final

model in suitable languages [Rumbaugh 91]. The four stages of the object modeling

technique are:

" Analysis. The procedure starts with a problem statement. The analysis model is

built by abstracting from the real world. The problem must be fully understood

in order to do this and may require substantial interfacing with the domain

expert. It must be noted that the model is a conceptual description containing

no implementation detail at all. The most difficult part of the creation of this

model is the abstraction. All the terms used will be problem domain terms

without any hint of implementation terms.

" System design. High level system design decisions are made at this stage. The

overall architecture of the system is developed. Subsystems are developed based

on the analysis model. For small to medium sized systems, this step may be

omitted and any system dependent designs are included as part of the object

design stage.

" Object design. The design model is built on top of the analysis model - increasing

the level of detail - particularly implementation details. Data structures and

algorithms are defined for each class.

" Implementation. The object design is translated into a selected programming

language. If the design is done correctly, this stage would be a mechanical

operation.
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2.4.2 Application to Geometric Modeling

Most applications in geometric modeling utilize only a handful of geometric and

topological concepts. If these concepts are treated as an abstraction, then libraries

can be built for use and reuse because objected-oriented languages allow users to easily

reuse existing code as modules in a new program. Users can create new routines by

simply defining their relationships to existing routines. Geometric engines use this

approach in their database. Entities are thought of as objects. A cube, for example,

is a geometric entity defined as a solid, enclosed, six-surfaced object having volume

and other associated mass properties and attributes. If you make editing changes to

the cube itself, because of the object-oriented approach, changes are automatically

made to the faces of the cube. The cube may be one of several cubes (objects) that

belong to part of another object. Editing changes to the cube do not affect other

cubes, the object the cube is part of, or any other objects. The ability to abstract in

this manner contributes to the ease in designing such a system. Once the level of cube

is reached in design detailing, further detailing is unnecessary if this has already been

included in the library or if this detailing work has been done before in a previous

application by the software developer.

2.5 Summary

In the chapter, various background information utilized in this project has been de-

scribed. Traditional solid modeling forms such as Cell Decomposition, CSG and B-rep

are discussed and we can see that these traditional solid modeling technologies based

on two-manifold representation are unable to represent non-manifold objects which

frequently appear in all stages of a design cycle. To address this problem, a new

model called SGC, which can be used to represent general non-manifold situations,

is introduced. Various concepts of SGC are also discussed. Further, object-oriented

paradigms allow large and complex software systems to be easily managed. Based on

SGC and object-oriented technology, an object-oriented non-manifold geometric mod-

eler called GNOMES is developed. The next chapter describes the object-oriented
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design of GNOMES.
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Chapter 3

Object-Oriented Design of

GNOMES

3.1 Overview

The geometric engine of GNOMES provides a library of classes for representing var-

ious concepts found in SGC [Rossignac 90] and methods for manipulating GNOMES

objects. This geometric engine can be integrated into other applications which need

geometric modeling facilities.

GNOMES was developed based on object-oriented methodology and the implementa-

tion language is C++. The object-oriented methodology provides abstractions in the

form of classes for classifying or defining objects or concepts which exist in real life.

Associated with these classes are attributes and methods (operations) which define

their behavior. A class (subclass) can be derived from another class (superclass) re-

sulting in the inheritance of attributes and methods of the superclass by the subclass.

Objects or instances can then be created by instantiating a class. These instances

specify values for attributes but share the same attribute names and methods of their

corresponding class. As can be seen later, the object-oriented methodology provides

a very natural way to design and implement a geometric engine. It also leads to an

implementation which is modular and more easily extendible [Sriram 93].
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Figure 3-1: GNOMES architecture [Sriram 93].

3.2 System Architecture of GNOMES

Based on the requirements of GNOMES established in Chapter 1, the architecture of

GNOMES is shown in Figure 3-1. The architecture of GNOMES is highly modular

and layered to allow for easy access and integration.

The base layer in GNOMES architecture is the client library of the OODBMS.

GNOMES was build on the top of a commercial object-oriented database manage-

ment system (OODBMS), ObjectStore" [Objectstore 91]. ObjectStore" provides

GNOMES most of its database facilities, such as persistent objects, version manage-

ment, transaction management, and quering function. ObjectStore" also provides

GNOMES various useful classes, such as collection, set, list, and bag classes to repre-

sent a collection of GNOMES objects. A more detailed description of this base layer

can be found in [Sriram 93].

Above the database layer is the GNOMES's utility classes layer. In this layer, classes

including a vector class, GNvector 1 and a matrix class, GNtransmat are imple-

mented. This layer also implemented classes:

'All classes in GNOMES are prefixed with GN
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" GNroot which records identity, ownership, timestamping, and access history,

and

" GNobj_w_attr which allows dynamic definition of attributes, and is derived

from GNroot. GNroot is the abstract base class for most GNOMES classes.

The SGC model is implemented as the next layer and uses the classes of the previ-

ous two layers. The classes and their relationships which implement the model and

provide methods for operating on the geometric objects are shown in Figure 3-2 and

Figure 3-3. These methods include low-level operators for creation, traversal, and

deletion of the topological data structure, operations on the geometric representation,

and high level modeling facilities such as parametric specification of various primi-

tives, sweeping operations, and boolean set operations. Their details are discussed in

the next section.

The toppest layer is the client applications layer which uses the GNOMES's classes

through these classes' functional interface. A graphical user interface using Mo-

tif and the HOOPS graphics system [Hoops 90] and an Architectural-Engineering-

Construction product modeling framework over the GNOMES geometric engine have

been developed [Wong 92].

3.3 GNOMES Classes

The two primary steps of an object-oriented design are:

1. to identify the classes of the problem domain; and

2. to define the interfaces to these classes.

Using object-oriented methodology, class abstractions representing various concepts

of the SGC model are derived. Each of these classes also have methods which define

operators that can be applied to those objects. Figure 3-2 shows a class diagram of

GNOMES.
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3.3.1 Class relationships

Two kinds of class relationships are discussed here: inheritance and composition.

Inheritance Hierarchy

Inheritance is a key concept in an object-oriented framework, and allows for proper

modularization, extensibility and reusability of code. The class GNextent derived

from GNroot forms the main geometric definition base class, and further refinement

is based on dimensionality of space involved in extent representation and nature of

representation (e.g. explicit, implicit or parametric). This design allows for further

specialization from the extent classes to incorporate linear or curved representations.

The topological definition proceeds from the base class GNcell, and further subdivi-

sion is based on dimensionality. Topological definition is complete here, and further

refinement is unnecessary. The GNlink class captures the explicit adjacency informa-

tion. GNcomplex and GNassembly are derived from GNmodel and GNmodel

is derived from the base classes GNroot and GNobj-w-dattr [Wong 91]. Subclasses

of GNcomplex include GNVirtualComplex and GNpmcomplex. GNVirtual-

Complex is an abstract base class which allows the specifications of parameters used

to control the geometry of SGC. GNVirtualComplex is a SGC which does not own

their cells. Derived classes of GNpmcomplex are GNpscomplex, which imple-

ments SGCs that are created by sweeping, and GNpscale, which is an abstract base

class that provides methods for scaling SGCs.

3.3.2 Composition Hierarchy

In GNOMES design, user interaction is primarily done through the GNmanager

class. The GNmanager contains three objects of GNgeomodels. A GNgeomod-

els object is composed of assemblies and complexes, where an assembly may further

be defined to contain complexes and sub-assemblies. A complex may have various

cells, which are volume, face, edge, and vertex cells. Every cell contains boundary

cell set, embedded cell sets, and star sets. The geometry extent classes are associ-
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ated with the cell classes. Figure 3-3 illustrates the overall component hierarchy of

GNOMES design.

The following section describes the purpose of major classes of GNOMES.

3.3.3 Classes Description

Base Classes

" GNsroot: GNsroot is the base class for the entire GNOMES class hierarchy

and is primarily used to allow for polymorphism.

Attributes: GNsroot has no attribute.

Methods:

- virtual void print)const; a printing function.

- virtual char* classnameOconst; return class name.

* GNroot: GNroot is the base class for most of the geometric modeling classes.

Attributes: Ownership, local ID, time, access history of the objects created.

Methods: Methods of GNroot include accessing methods such as get-id),

get-owner).

" GNextent: GNextent is the base class for the classes defining the geometry

of objects.

Attributes: reference-count is a number showing how many cells have refer-

enced this extent.

Methods: A number of virtual functions for high level geometric queries and

transformation functions are defined, and actual runtime execution of these

functions is achieved through dynamic binding to the function of the appropri-

ate subclass.

" GNcell: GNcell is the base class for the classes encapsulating topological

information of various dimensional cells.

Attributes: an associated extent, sets of boundary and embedded cell, sets
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of stars, a containing complex, a cursor and other attributes such as active,

structure, etc.

Methods: Methods of GNcell include:

- creation and copy constructors and destructors;

- access methods for retrieving boundary cells and stars;

- virtual neighborhood computation method, comp-neighinfo);

- virtual intersection operator (overloaded operator *(GNcell*));

- virtual splitting operator, split(GNcell*);

- a virtual method which returns the dimension (i.e., dimension()).

- structural operators such as join(GNcell*), drop(GNcell*), and incorpo-

rate(GNcell*). and structural query operators such as can-join(GNcell*,

GNcell*), can-drop(), and can-incorporated(GNcell*).

- spatial query operators such as inside(GNvector&), enclosed(GNcell*), and

getting minimum distance between two cells.

- rigid transformation operators.

Classes for Geometric Definition

Derived classes of GNextent are:

e GNvolext, defines the geometry of a three dimensional space. Method for

computing the intersection of a volume and another extent, GNvolext::get-

intersection(const GNextent&), is defined here.

* GNsurfext defines the geometry of surfaces. Methods include query access

to surface area and orther properties. Further refinement based on actual ge-

ometric representation allows for modeling arbitrary curved surfaces. GN-

plane, an explicit representation of a linear surface is a subclass of GNsur-

fext. Methods for computing the intersection of a plane and another extent,
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GNplane::get-intersection(const GNextent&), and the minimum distance be-

tween a plane and another extent, GNplane::get-min-dist(const GNextentH),

are defined in GNplane.

" GNedgeext defines the geometry of curves and queries on associated proper-

ties such as normal, binormal, torsion, arc length, etc. GNline is a subclass

derived from GNedgeext for the linear geometry. Methods for computing the

intersection of a line and another extent, GNline::get-intersection(const GNex-

tent&), and the minimum distance between a line and another extent, GN-

line::get-min-dist(const GNextent&), are defined in GNline.

" GNptext defines a point. The extent of a point is the point itself, represented

by a triplet of geometric coordinates. Methods for computing the intersection

of a point and another extent, GNptext::get-intersection(const GNextent&), and

the minimum distance between a point and another extent, GNptext::getmin_

dist(const GNextent&), are defined here. GNtriplet is a subclass which repre-

sents points only as a triplet.

Classes for Topological Definition

Derived classes of GNcell are:

e GNvolume is a three dimensional cell, which contains not only the inher-

ited attributes and methods of GNcell, but also maintains a list of shells.

Methods for determining different physical properties such as get-volume(),

get-totaLsurface-area(), and get-shells() are defined here.

* GNface is a two dimensional cell containing a list of loops and higher level

query methods such as get-edges), get-area), and get-perimeter).

e GNedge stores topological information about an edge. Geometric information

is represented in this class by containing associated GNedgeext object.

* GNvertex is the topological equivalent to a geometric point extent object.
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GNlink represents the link class, which complete the topological definition of a ge-

ometric model. Link class essentially enable each cell to maintain references to all

their adjacencies and reverse references to all cells being bounded by the current cell.

GNstar comprises reverse references to the cells bounded by the current cell and is

a subclass of GNlink.

Utility Classes

" GNcollection is a class used to define parametrized collections and is defined

in ObjectStoretm. Its subclasses include GNset and GNlist for an ordered

set. This class contains functions like insertion, deletion, etc.

" GNtransmat is a 4 x 4 matrix class used for transformations. Methods for

matrix computation are defined here.

* GNvector is a simple vector class for vector operations. Methods for vector

computation are defined here.

Miscellaneous Classes

* GNobj-w-dattr is the base class which provides a facility to manage dynamic

creation of object attributes and subsequent access to these attributes. These

attributes are essentially non-geometric attributes that the geometric object

may possess. It encapsulates the class GNdattribcontainer which is a con-

tainer class to store attribute pairs (name and value), and methods to operate

on these attributes (test for equality of attributes, associate a value to the at-

tributes, etc.)

e GNcomplex is used to represent a selective geometry complex [Rossignac 90]

and comprises the set of cells representing a geometric model or a pointset. A

GNcomplex object contains collections of vertices, edges, faces and volumes.

Methods of GNcomplex include:

43



- low level topological operators such as making a vertex (mv(GNvector&)),

making a edge (me(GNvector&, GNvector&)), making a face (mf

(GNset< GNedge>)), and making a volume (mV(GNset< GNface>));

- transformation operations;

- high level modeling operations such as subdivide(GNcomplex*), select

(GNcomplex*, int), merge (GNcomplex *), and simplify(int option);

- topological operators such as boundary), interiorO, and regularize);

- boolean operators such as operator+(GNcomplex&), operator-

(GNcomplex&), and operator *(GNcomplex&);

- retrieving operations such as GNcell* retrieve-cell(const GNcell*)const;

- query methods such as inside(const GNvector&) and enclosed(const GN-

complex *).

o GNbox is a class defining a boundary box for simple inclusion tests.

* GNassembly defines assembly of objects, and is usually defined to compose

complexes and subassemblies.

e GNgeomodels defines the geometric model as a collection of GNComplex

and GNassembly objects.

* GNmanager provides access to the main facilities of GNOMES, including

database facilities, transaction management functions, workspace operators,

primitive model creation, manipulation methods, and assembly manipulation.

A more detailed description of all GNOMES classes can be found in [Wong 91].

3.4 Summary

The object-oriented design of GNOMES has been described. The geometric repre-

sentation is based on the Selective Geometry Complex (SGC) model developed

by Rossignac at IBM. A selective geometry complex is a point set represented by a
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collection of cells. Each cell has an associated extent and is bounded by lower dimen-

sional cells.

Classes to represent the elements of SGC have been developed. These include GN-

complex, GNcell and its derived classes (GNvertex, GNedge, GNface, and GN-

volume), GNlink and its derived class GNstar, and the GNextent, and its derived

classes (GNptext, GNedgeext, GNsurfext, and GNvolext). GNassembly was

developed to allow grouping of complexes and subassemblies. Most of the facilities

of GNOMES can be accessed through the GNmanager class which also provides

various initialization functions and entry points to objects stored in the database.

Various utility classes were also developed.
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Chapter 4

Algorithms for GNOMES

Methods

4.1 Overview

This chapter provides extremely important and useful algorithms used for developing

GNOMES. The current algorithms and implementation is limited to objects com-

posed of vertices, straight line segments, planar polygons and solids with polyhedral

boundaries. The geometric computation algorithms are provided in the next section.

Section 4.3 provides algorithms for computing neighborhood information which is

used extensively in GNOMES. Section 4.4 presents cell/cell intersection algorithms.

Splitting and high level boolean operations algorithms are provided in Section 4.5 and

4.6 respectively. Section 4.7 provides algorithms for model transformation. Section

4.8 provides algorithms for mass properties calculation. Algorithms for point clas-

sification are provided in Section 4.9. Distance computation is presented in Section

4.10, followed by other useful algorithms in Section 4.11.

4.2 Geometric Computation

Methods which perform geometric computation are contained in GNextent class.
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4.2.1 Line/Plane Intersection

If a line lies on a plane, the extent of the intersection of the line and the plane

is the line itself. Otherwise, the intersection is a point. The following is the al-

gorithm for computing the intersection point. This algorithm is implemented in

GNline::get-intersection(const GNextent&)const.

1. Define a line in terms of its origin and a direction vector:

Rorigin Ro = [X 0 ,Yo, Zo (4.1)

Rdirection= Rd [Xd, Yd, Zd] (4.2)

where Xd2 + Yd2 + Zd2 = 1 (i.e., normalized), which defines a line as:

R(t) = Ro + Rd * t (4.3)

where t is a real number. The line direction doesn't need to be normalized for

this calculation. However, such normalization is recommended, otherwise t will

represent the distance in terms of the length of the direction vector.

2. Define the plane in terms of [A, B, C, D], which defines the plane as:

Plane = A*x+B*y+C*z+D = 0 (4.4)

where A2 + B2 + C 2 = 1. The unit normal vector of the plane is defined as:

Pnormal = Pn = [A, B, C] (4.5)

and the distance from the coordinate system origin [0, 0, 0] to the plane is

simply D. The sign of D determines on which side of the plane the system origin

is located. This is the implicit form of the plane. The distance from the line's

origin to the intersection with the plane P is derived by simply substituting the
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line equation into the plane equation:

A * (Xo + Xd* t)+ B* (Yo +Yd*t)+C* (Zo+Zd*t) +D = 0 (4.6)

3. Solve t:

-(A * X 0 + B * Yo + C * Zo + D) (47)
A*Xd+ B * Y+ C * Zd

-(Pn - Ro + D) = V0  (4.8)
Pn -Rd Vd

If vd - 0, then the line is parallel to the plane and no intersection occurs.

Otherwise, the intersection point is:

ri = [Xi, yiZi] = [XO + Xd* t,Yo+Yd* tZo+ Zd * t] (4.9)

4.2.2 Line/Line Intersection

If the minimum distance of the two lines is zero, then the two lines have an intersec-

tion. If the two lines have the same extent, then the extent of the intersection is just

the original line. Or, the intersection is a point. The following equation is used to

compute this point. This algorithm is implemented in GNline::getintersection(const

GNextent&)const.

1. Suppose we have two line equations:

L 1(t) = P + V *t (4.10)

L2 (s) = P 2 + V2 *s (4.11)

2. To solve them for t, we get

= ((P 2 - Pi) xV2 ) XV 2) (4.12)
(V 1 x V 2 ) - (V1 x V 2 )
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3. Hence, the intersection point is

r =Pi + V * t (4.13)

4.2.3 Plane/Plane Intersection

This algorithm is implemented in GNplane::get-intersection(const GNextentH)const.

1. If two planes are parallel to each other and the minimum distance between them

is not zero, then there is no intersection line.

2. If the distance is zero, then the extent of the intersection is just the plane.

3. Otherwise, the extent of the intersection of the two planes is a line. This line's

vector can be computed by a cross product of the two planes' normals.

4. If we can find two points on this line, then, this line is decided. One of the two

points can be obtained by intersecting a line on one plane, which is not parallel

to the intersection line of the two planes, with the other plane.

5. The other point can be obtained by moving the first point one unit length in

the direction of the intersection line vector.

4.2.4 Point/Extent Intersection

An extent can be any dimensional. If the point is on the extent, then the intersection

is just the point. Otherwise, there is no intersection. This algorithm is implemented

in GNptext::get-intersection(const GNextent&)const.

4.2.5 Extent/Volume Extent Intersection

An extent can be any dimensional. A volume extent is the entire 3D space. So, the

extent of the intersection of an extent and a volume extent is the extent itself. This

algorithm is implemented in GNvolext::get-intersection(const GNextent&)const.
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4.2.6 Distance Between Two Extents

The distance between two extents can be used to determine if the two extents intersect

with each other or not.

Distance Between Two Points

The distance between two points (x 1 , Y1, zi) and (x 2, Y2, z2) can be computed from

the following equation:

dist = V(x1 - x 2 )2 + (yi - y2) 2 + (z 1 - Z2)2 (4.14)

This algorithm is implemented in GNptext::geLmin-dist(const GNextent&)const.

Distance Between a Point and a Line

The distance between a point and a line can be computed from the following equation:

dist = I(p - pl) x v| (4.15)

where p is the point, p1 is a point on the line, v is the unit vector of the line. This

algorithm is implemented in GNptext::get-min-dist(const GNextent&)const.

Distance Between a Point and a Plane

The distance between a point and a plane can be computed from the following equa-

tion:

dist = - nj (4.16)

where p is the point, n is the normal of the plane. This algorithm is implemented in

GNptext::geLmin-dist(const GNextenta)const.
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Distance Between Two Lines

This algorithm is implemented in GNline::get_minmdist(const GNextent&)const.

1. Suppose p1, P2 are two points of one line, pti, pt2 are two points of another

line.

2. If equation 4.17 holds,

1((p2 - p1) x (pti - p1)) x ((p2 - p1) x (pt2 - p1))| = 0 (4.17)

then the two lines are on the same plane. If they are parallel to each other, the

distance between them can be found by computing the distance between one

point on one line and the other line. Otherwise, the distance is zero.

3. If the two lines are not on the same plane (i.e., they are skew lines), the distance

between them can be computed from the following equation:

dist = I(pI - pt1) - (vi x V2)1 (4.18)

where vi, v 2 are unit vectors of the two lines.

Distance Between a Line and a Plane

If the line is parallel to the plane, then the distance between them is the distance

between one point on the line and the plane. Otherwise, the distance is zero. This

algorithm is implemented in GNline::get-min-dist(const GNextent&)const.

Distance Between Two Planes

If the two planes are parallel to each other, then the distance between them is the

distance between one point on one plane and the other plane. Otherwise, the dis-

tance is zero. This algorithm is implemented in GNplane::get-minmdist(const GNex-

tent&) const.
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4.3 Neighborhood Calculation

Neighborhood information is the topological relationship between a bounding element

and a cell in the higher cell's extent. Because neighborhood information is used

in mass properties calculation and cell/cell intersection, neighborhood information

calculation is important in solid modeling. If the neighborhood information is wrong,

then the solid model is incorrect. b.neighborhood(c)=full indicates that b may be

an embedded element of c or a bounding element of c whose dimension is at least

two less than c. On the other hand, b.neighborhood(c) # full indicates b is in the

boundary of the topological closure of c, then the neighborhood information between

b and c must be left or right depending on whether the normal of b is pointing inside

or outside of c.

The neighborhood information calculation is implemented in GNvolume, GNface

and GNedge's comp-neigh-info() methods, because vertices have no boundaries. The

edge's neighborhood information computation is easy.

1. First, get the two bounding vertexes' parameters to the edge's extent.

2. Second, compare the two parameters and assign corresponding neighborhood

information to them.

To compute a face's neighborhood information, do the following:

1. First, get loops of the face by calling the get-edges() method of GNface.

2. For each loop, find the farthest vertex on this loop, the conner around this

farthest vertex must be convex.

3. Take two star edges ei and e2 of the farthest vertex, compute e1 's normal which

lies in the face's extent, n1 , and e2's tangent vector which points away from the

farthest vertex, t 2.

4. Compute the dot product of ni and t 2. If the result is positive, then the normal

of edge ei points to the inside of the face if the loop is the outer loop, or outside
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of the face if it is an inner loop. The neighborhood information between the

edge el and the face is left for the outer loop, or right for inner loops. Otherwise,

the normal points to the outside of the face if it is the outer loop, or inside of

the face is it is an inner loop. The neighborhood information between the edge

and the face is right for the outer loop or left for inner loops.

5. After the first edge's neighborhood information is obtained, the neighborhood

information is propagated along the loop, that is, if the next edge has the same

orientation as the previous one, then the two edges have the same neighborhood

information, otherwise, they do not.

To compute a volume's neighborhood information, do the following:

1. First, get shells of the volume by calling the get-shells() method of GNvolume.

2. For each shell, take the first face of the returned list of faces. This face is closest

to the horizonal plane which passes the highest vertex of this shell.

3. Find the highest vertex of this face. The 3D conner around the vertex must be

convex. Find an edge which is a star of the highest vertex but does not lie in

the face's extent. This edge must belong to the shell.

4. Compute this edge's tangent which points away from the highest vertex, t. Get

the normal of the face, n.

5. Compute the cross product of t and n. If the result is positive, the face normal

points to the inside of the volume for the outer loop or outside of the volume

for inner loops. Otherwise, the face normal points to the outside of the vol-

ume for the outer loop or the inside of the volume for inner loops. Then, the

neighborhood information between the face and the volume can be determined.

6. After we get the first face's neighborhood information, we can propagate this

neighborhood information to other faces of the shell by comparing the next

face's orientation with the previous face's orientation. If two adjacent faces of a
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shell have the same orientation, the neighborhood information of the common

edge of two faces must be different, so the two faces have the same neighborhood

information. Otherwise, they have different neighborhood information.

For a general non-linear case, a halfline approach can be used. But this approach has

to deal with singularity and tends to be slow when the boundaries' cardinality is very

large.

4.4 Cell/Cell Intersection

An intersection operator is used under a subdividing framework to get the intersection

of objects of different complexes. The subdividing algorithm operates by subdividing

entities in an ordered manner, from vertex to edge, then face and volume elements.

Therefore, it does not work with general cell/cell intersection. In other words, it

can not be used without a bottom-up subdividing framework. With this subdividing

algorithm, lower dimensional entities are processed for intersections before the higher

dimensional entities. Hence, the primitive intersections are performed in the following

order:

1. Vertex-vertex intersection,

2. Vertex-edge intersection,

3. Vertex-face intersection,

4. Vertex-volume intersection,

5. Edge-edge intersection,

6. Edge-face intersection,

7. Edge-volume intersection,

8. Face-face intersection,

9. Face-volume intersection,
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10. Volume-volume intersection,

All of the intersections take place between pairs of elements that belong to two dif-

ferent complexes. The following subsections describe these intersection algorithms:

4.4.1 Vertex-cell intersection

The cell could be a vertex, edge, face, or volume. For a vertex and another cell, if this

vertex is in the cell's extent and inside the cell, the intersection is this vertex. Or,

there is no intersection. This algorithm is implemented in GNvertex::opertaor*(const

GNcell&)const.

4.4.2 Edge-edge intersection

After the vertex-edge subdividing step, the edge-edge intersection is investigated. At

this point, edge-edge relationships have only one of the following four cases:

e edge-edge does not have intersections.

e one edge crosses another edge.

* one edge connects to another at one common vertex.

e one edge is the same as another but in different complexes.

Cases in which one edge overlaps part of another edge does not exist because the

vertex of one edge which is inside another edge has already subdivided that edge into

two smaller new edges. Therefore, we only need to deal with these four situations. For

the first case, there is no intersection. For the second, the intersection is the crossing

point. For the third, the intersection is the common vertex. And for the forth, the

intersection is just the edge itself. Implementation with these considerations is very

easy. This algorithm is implemented in GNedge::opertaor*(const GNcell&)const.
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4.4.3 Edge-face intersection

This algorithm is implemented in GNedge::opertaor*(const GNcell)const.

1. After edge-edge splitting, if an edge is in the extent of the face, it can not cross

the boundary of the face, then if the middle point of the edge is inside the face,

the intersection of the edge and the face is just the edge.

2. Otherwise, if one of the edge's boundaries touches the face, then the intersection

of them is a vertex. Or, there is no intersection.

3. If the edge is not in the extent of the face, then the intersection of the edge's

extent and the face's extent must be a point.

4. If the point is inside both the edge and the face, then the intersection is this

point. Otherwise, there is no intersection.

4.4.4 Edge-volume intersection

This algorithm is implemented in GNedge::opertaor*(const GNcel5)const.

1. After edge-face splitting, an edge can not cross the boundary of the volume,

then if the middle point of the edge is inside the volume, the intersection of the

edge and the volume is just the edge.

2. Otherwise, if one of the edge's boundaries touches the volume, then that vertex

is the intersection of them. Or, there is no intersection.

4.4.5 Face-face intersection

This algorithm is implemented in GNface::opertaor*(const GNcelW)const.

1. After edge-face splitting, one face can not have boundaries which cross the other

face and its boundaries.

2. If two faces are not in the same extent, the intersection of the two faces should

be one edge or several edges.
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3. First, we find all vertices that belong to both faces from the two faces' all OD

cells and order them.

4. Next, we check if the middle point between two sequential vertices is inside

both faces. If this is so, the edge made of the two vertices is an intersection

of the two faces. Otherwise, we can only be sure that the first vertex is an

intersection. Then we go on to apply the same procedure to the second and the

third vertexes, and so on.

5. If the two faces are on the same extent, the intersection of the two faces may

be a face if the two faces intersect with each other, an edge, or a vertex if the

two faces touch each other.

6. First, we find all the cells which are contained in both faces' all GD and 1D cells

and put them in a cell set, s1.

7. GD cells which are boundaries of certain 1D cells in set s, are eliminated from

si. Or, they are inserted in another set, 82.

8. Edges which are the boundaries of both faces need special care. If the two faces

are on different sides of an edge, then this edge should not be included in an

edge set, eet, to form a new face but inserted in set 82. This situation can be

solved by using the neighborhood information.

9. If the edge set, eet, is not empty, it is used to create a new intersection face

and this face is inserted in set S2. Set 82 is returned.

4.4.6 Face-volume intersection

This algorithm is implemented in GNface::opertaor*(const GNcell)const.

1. The intersection of a face and a volume may be a face if they intersect with

each other, an edge or a vertex if the face touches the volume.

2. First, we find all the cells which are contained in both the face's and the volume's

GD and 1D cells and put them in a cell set, 81.
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3. OD cells which are boundaries of certain 1D cells in set s, are eliminated from

set s1 . Or, they are inserted in another cell set, 8 2 .

4. Edges which are the boundaries of the face and on the face boundaries of the

volume need special care. If the face and the volume are on the different sides

of an edge, then this edge should not be included in an edge set, 6,,t, to form

a new face but inserted in set S2 . This situation can be solved by using the

neighborhood information.

5. If the edge set, eet, is not empty, it is used to create a new intersection face

and this face is inserted in set 8 2 . Set S2 is returned.

4.4.7 Volume-volume intersection

This algorithm is implemented in GNvolume::opertaor*(const GNcell&)const.

1. If two volumes intersect with each other, the intersection should be a volume.

If they touch each other, the intersection may be a face, an edge, or a vertex.

2. First, we find all the cells that are contained in both volumes' OD, 1D, and 2D

cells and put them in a cell set, s1 .

3. Cells which are boundaries of other high dimensional cells in set si are elim-

inated from s1 . Or, these OD and 1D cells are inserted in another cell set,

S2-

4. Faces which are the boundaries of both volumes need special care. If the two

volumes are on the different sides of a face, then this face should not be included

in a face set, f&t, to form a volume but inserted in set S2. This situation can

be solved by using the neighborhood information.

5. If the face set, fe,, is not empty, it is used to create a new volume and this

volume is inserted in set S2. Set S2 is returned.
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4.5 Splitting

Splitting methods are mainly called in the subdividing function to achieve the com-

patibility of two SGCs. Under the subdividing framework, there are only six splitting

cases:

1. vertex-edge splitting,

2. edge-edge splitting,

3. edge-face splitting,

4. face-face splitting,

5. face-volume splitting,

6. volume-volume splitting.

4.5.1 Vertex-edge splitting

This algorithm is implemented in GNedge::split(GNcell*).

1. If the vertex is inside the edge, not on the boundaries of the edge, a new vertex

is created in the edge complex, com, and the edge is split into two new small

edges at the vertex.

2. After splitting, the two new edges should inherit all kinds of information of

the original edge. These information include active, structural, topological,

geometric and non-geometric information.

3. The original edge is deleted, and com's data structure should be updated by

calling the GNedge::after-split-change-data-structure () method. This method

remove the original edge and the relationships between this original edge and

its stars and boundaries, and establish new relationships between two new edges

and the original edge's stars.
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4.5.2 Edge-edge splitting

This algorithm is implemented in GNedge::split(GNcell*).

1. The edge-edge splitting only happens when the two edges cross each other.

When the two edges are in the same plane and cross each other, compute the

intersection of the two edges' extents. The intersection must be a point.

2. Next, check if the point is inside both edges. If this is true, each edge is split

into two smaller new edges at the intersection point.

3. New created edges inherited all kinds of information of original edges. These

information include active, structural, topological, geometric and non-geometric

information.

4. The two original edges are deleted. Both edge complexes' data structures are

updated by calling the GNedge::after-split-.change-data-structure () method.

4.5.3 Edge-face splitting

This algorithm is implemented in GNface::split(GNcell*).

1. First, compute the intersection of the edge's extent and the face's extent.

2. If the intersection cell's extent is a point type, meaning that the edge does not

lie in the face's extent, then check if the point is inside both the edge and the

face.

3. If this is true, the edge is split into two small edges at the point.

4. The point is added to the embedded set of the face. The edge complex's data

structure is updated by calling the GNedge::after-split-change-data-structure()

method.

5. If the intersection cell's extent is a line type, meaning that the edge lies in the

face's extent, then check if the middle point of the edge is inside the face.
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6. If this is so, then the intersection of them is the edge itself because at this point

an edge can not cross the boundary of a face in which it lies.

7. Next, check if the face's outer loop vertices boundaries contain both the two

vertices of the edge.

8. If this is so, the edge can split the face into two small faces, and the original face

complex's data structure is updated by calling the GNface::after-split-change_

data-structure() method.

9. If the edge can not split the face, then put the edge in the embedded cell set of

the face.

4.5.4 Face-face splitting

This algorithm is implemented in GNface::split(GNcell*).

1. If two faces are not in the same extent, compute the intersections of the two

faces.

2. If the intersection set is not empty and the intersections are edges, then check if

these edges really split each face. Basically, if these edges split a face, the face's

outer loop's vertices boundary set must contain two vertices of these edges'

boundaries.

3. If this is true, then they split that face into a set of new faces. Each new face

can be obtained by intersecting a virtual face with the original one. The virtual

face's edge boundaries are consisted of several connected, ordered edges of the

original face and an edge which is made of two vertices of those intersection

edges.

4. After splitting, new faces inherited all kinds of information of the original faces

and original faces' data structures are updated by calling the GNface::aftersplit_

change-data-structure () method.
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5. If the intersection set can not split any face, then insert every element of the

intersection set into the embedded cell set of that face.

6. If two faces are in the same extent, and the intersection of the two faces is a

face.

7. Then the intersection face is used to refine each original face. This refining

operation involves simple ObjectStore's set operations.

8. After refining, each original face is split into two new faces and one of them is

the intersection face. Each original face's data structure is updated by calling

the GNface::after-split-change-data-structure() method.

4.5.5 Face-volume splitting

This algorithm is implemented in GNvolume::split(GNcell*).

1. First, compute the intersections of the face and the volume.

2. If the intersection set is not empty, remove vertices and edges from the set.

3. After removing, if the intersection set is still not empty, then all the elements

in the set are faces.

4. Use these faces to refine the original face and update the face's data structure

by calling the GNface::after-split-.change-data-structure () method.

5. Check if these faces really split the volume and if they do, then split the volume

into a set of new volumes and update the volume's data structure by calling

the GNvolume::after-split-change-data-structure() method. Basically, if every

boundary of a face is contained in a volume's outer shell edge boundaries, then

the face will split the volume.

6. If the intersection set can not split the volume, then insert every element of the

intersection set into the embedded cell set of the volume.
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4.5.6 Volume-volume splitting

This algorithm is implemented in GNvolume::split(GNcell*).

1. First, compute the intersections of two volumes.

2. If the intersection set is not empty, remove vertices, edges, and faces from the

set.

3. After removing, if the intersection set is still not empty, then all the elements

of the set are volumes.

4. These volumes are used to refine the two original volumes. This refining oper-

ation involves simple ObjectStore's set operations.

5. After refining, each original volume is split into two new volumes and one of

them is the intersection volume. Each original volume's data structure is up-

dated by calling the GNvolum::after-split-change-data-structure() method.

4.6 Topological and Boolean Operations

Topological operations (closure, interior, and boundary) and boolean set operations

(union, intersection, and difference) on solid geometric models are convenient ways of

modeling complex shapes. Simple primitives such as cubes, cylinders, cones, spheres,

and planes are used to build desired shapes, with proper sequences of boolean set

operators. In SGC, the topological and boolean operations can be constructed as a

sequence that involves one or more of the following primitive operations on SGCs:

9 subdivision, which makes the geometric complexes of two SGCs compatible

with each other by refining them, i.e., by subdividing their cells,

e selection, which selects cells of one or more compatible geometric complexes

and sets their active attributes according to some selection criteria, and
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* simplification, which by deleting or merging certain cells produce a simpler

SGC that represents the same pointset while still maintaining desired internal

structures.

In the following three subsections, we describe the subdivision, selection, and simpli-

fication algorithms.

4.6.1 Subdividing Complexes

At subdivision step, two complexes are made compatible by subdividing the cells of

each complex at their intersections with cells of the other complex. The compatibility

is achieved by splitting cells of A and of B at their intersections while maintaining a

valid structure for both complexes.

The subdivision algorithm is composed of an outside loop which starts with dimension

0 and goes up to the highest dimension of both geometric complexes. For each value

k of this dimension, the algorithm first makes the k-cells of A compatible with the

(k-1)-skeleton of B, then symmetrically makes the k-cells of B compatible with the

(k-1)-skeleton of A. Finally, cells of dimension k in both A and B are subdivided at

their common intersections. At each stage, both A and B are refined, but remain

valid SGCs, which is the principal advantage of this bottom-up approach and greatly

simplies the algorithm [Rossignac 90].

Subdivision takes two geometric complexes A and B and produces complexes A 'and

B' such that A' is a refinement of A, B' is a refinement of B, and A' and B' are

compatible. This algorithm is implemented in GNcomplex::subdivide(GNcomplex*).

1. The subdivision algorithm is implemented in a bottom-up manner, starting

from 1 to the highest dimension of the two input complexes, A and B. For each

dimension, k, do the following:

2. split every k dimension cell of A with k-1 dimension cells of B, if one k-1 di-

mension cell of B, c, does not split any k dimension cell of A, then check if c is

an embedded element of any k + n(n > 0) dimension cells of A. If this is true,

then put c in the embedded cell set of a cell of A.
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Figure 4-1: A subdivision example [Rossignac 90].

3. split every k dimension cell of B with k-1 dimension cells of A, if one k-1 di-

mension cell of B, c, does not split any k dimension cell of A, then check if c is

an embedded element of any k + n(n > 0) dimension cells of A. If this is true,

then put c in the embedded cell set of a cell of A.

4. split A and B with the intersection of their k dimension cells.

Figure 4-1 shows the successive refinement of two 2D complexes, A and B, using the

subdivision algorithm. For k = 1, the OD cell of A subdivides the 1 D cells of B

resulting in the creation of OD intersection cell in B. Note that there is no OD cells in

B, so A is unchanged. A and B are then subdivided at the intersection of their 1D

cells resulting in the creation of new 1D cells in both complexes. For k=2, subdividing

the 2D cell of A with the 1D cells of B results in the creations of 2 1D arcs which

subdivides the original 2 D cell into 3 2D cells. Similarly, B is refined by A's 1 D

cell. At this point, no further subdivision is needed as the 2D cells have already been

subdivided at their intersections because of the previous step.
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4.6.2 Selection

Selection can either act on a single complex or on several compatible complexes.

The first case basically changes the active attribute of cells based on the selection

condition, and is used for topological operations. The later involves a merging step

where a single valid SGC is constructed from appropriate cells of the compatible input

SGCs before the active attribute is set based on the selection condition. Let A and B

be two compatible complexes. The merging algorithm essentially creates C, a copy of

A, and adds to C copies of all cells of B that are not already in A while maintaining

the validity of the complex, C. The copying of cells includes copying of attributes

from both cells. Each attribute is assigned an attribute value pair with the first value

from complex A or NIL if there is no corresponding cell in A. The second value is

derived similarly. These "inherited" values store the history of each cell and can be

used as selection criteria.

After this merging step, various boolean operations on the complex can be performed

by choosing appropriate selection conditions. The following examples illustrate this

power of selection.

" The boolean union of two SGCs may be obtained by activating (setting to

TRUE the active attributes of) all cells that were active (whose active attribute

was TRUE) in A or in B.

" The difference, A - B, may be obtained by activating cells that were active in

A but were not active or not contained in B.

* The closure of an SGC is obtained by activating all cells whose star contains an

active cell.

" A regularized difference may be obtained by performing a selection for difference

followed by a selection for closure.

In GNOMES, the *, -, and + C++ primitive operators are overloaded, in GNcomplex,

for intersection, difference and union boolean operations respectively. The selection

algorithm is implemented in GNcomplex::select(int option).
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4.6.3 Simplifying

The simplification step, which deletes or merges certain cells, reduces the complexity

of a complex's representation without changing the represented pointset and without

destroying useful structural information. A simplification step can only take place if

it:

" preserves the validity of the geometric complex

" preserves the represented pointset, and

" does not produce a loss of structural information.

In GNOMES, we have implemented methods which test if a particular cell can be

simplified. A cell can be dropped, joined, or incorporated if the following conditions

hold.

* A cell c can only be dropped if its star is empty, i.e., if it is not used to bound

another cell, and if it is inactive and removable.

" An interior boundary cell, b, can only be incorporated into a cell c, if b lies in

c.extent and if c.star = b.star - c, and if b and c are both active and have the

same structural information.

* A k-cell, b, can be used to join two (k+1)-cells, a and c, if b.extent is contained in

the common extent of a and c, if b belongs to both a.boundary and b.boundary,

and if a.star = c.star = b.star - a - c, and if a, b, and c are all active.

This algorithm is implemented in GNcomplex::simplify(int option).

1. The three primitive are applied during simplification on a complex in a top-down

manner.

2. For each dimension, k, the drop operator is applied on k-cells which can be

deleted without creating an invalid complex.

3. Next, all k-cells can be used to join two k+1 cells are merged with them.
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4. Finally, all k-cells that can be incorporated into a cell of their star are incorpo-

rated.

4.7 Model Transformation

When a complex is transformed, all its cells are transformed in the same manner and

quantity. Complexes can be transformed in complex ways. Still, all transformations

consist of various combinations of three basic (primitive) transforms:

1. Translation

2. Rotation (about the origin)

3. Scaling (about the origin)

All these primitive transformation operations have been implemented in GNcom-

plex, GNcell, and GNextent. The following discusses each of these basic transfor-

mations.

4.7.1 Translation

The form of the three dimensional translation transformation is:

= x + Dx (4.19)

y' =y+Dy (4.20)

Z' = z + Dz (4.21)

where Dx, Dy, and Dz are the quantities of translation in directions x, y, and z

respectively.

4.7.2 Rotation

The rotation transformation moves a given point to a new location along a circular

arc centered at the origin. The degree of rotation A is given as an angle that describes
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(in polar coordinates) the difference between the old angular location B of the point

relative to the origin and the coordinate axis and its new angular location A + B:

X= x * cos(A) - y * sin(A) (4.22)

y= y * sin(A) + y * cos(A) (4.23)

The same principle of rotation is directly extendible to three dimensions, where the

rotation of a point about an arbitrary axis which passes through the origin can be

decomposed into three angular motions, one about each of the three major coordinate

axes: X, Y, and Z.

Rotation by A degrees around Z axis is equivalent to two-dimensional rotation of the

projected point in the XY plane. It does not effect the Z coordinate of the point,

so the above two equations are also applicable to rotation about the Z axis in three

dimensions.

Rotation about the X axis and rotation about the Y axis differ from rotation about

the Z axis only in the coordinate values of the point which they affect: rotation by

B degrees about X axis affects the y and z coordinates(but not the x coordinate),

therefore it is expressed as:

y= y * cos(B) + z * sin(B) (4.24)

z= -y * sin(B) + z * cos(B) (4.25)

Similarly, rotation by C degrees about the Y axis is:

X' = x * cos(C) - z * sin(C) (4.26)

z' = x * sin(C) + z * cos(C) (4.27)

Rotations are not commutative: the order of applying individual rotations to the

point is significant.
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4.7.3 Scaling

The scaling operation moves a point to a new location by multiplying its former

coordinates x, y, and z by some constant factors Sx, Sy, Sz:

= x * SX (4.28)

y= y * Sy (4.29)

z= z * Sz (4.30)

A special case of scaling, mirroring, occurs when an uneven combination of Sx, Sy,

or Sz is negative. The shape will be "mirrored". Mirroring also causes a topological

change to the shapes it is applied to, by turning them "inside out". The geometric

mirroring transformation must be accompanied by a topological reversal of the shape,

or it must not be allowed to happen at all. Mirroring, however, is essential to complete

the range of symmetry operations applicable to shapes.

4.8 Mass Property Calculation

The area enclosed by a polygonal boundary can be computed as the sum of the

areas of the triangles it comprises. Triangles can be defined when the vertices of

the polygonal boundary are paired sequentially with an arbitrary reference point in

the plane. That is, we may take any point in the plane and construct virtual line

segments between it and every vertex of the polygon's boundary (one boundary at a

time). The area of the polygonal boundary is the sum of the areas of all clockwise

triangles, minus the areas of all counter-clockwise triangles, where the orientations

are defined by taking one segment of the polygonal boundary at a time, in clockwise

order. This algorithm is implemented in GNface::ge Larea().

The volume enclosed by a set of planar faces can be computed as the sum of volumes

of a set of signed tetrahedron. Every tetrahedron is formed by taking an arbitrary

point in the space and three sequential vertices of a face. The sign of the tetrahedron
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can be determined by the face orientation (i.e. face neighborhood information). This

algorithm is implemented in GNvolume::geLvolume().

4.9 Point Classification

The point classification algorithms determine whether a point is interior, on a bound-

ary, or outside of a cell. Such algorithms are useful in solid modeling as well as for

geoscience applications. To test if a point is inside, outside, or on a boundary of an

edge is easy and straightforward. Here we describe point in polygon and point in

polyhedron algorithms [Lane 84].

4.9.1 Point in Polygon Detection

This algorithm is a generalization of the line integral method for determining point

containment by a planar polygonal region which need not be connected or is simply

connected (can contain holes and separate components). In the planar case, the polyg-

onal region is represented as a set of oriented edges el, e2, ---e,. Each ei is an boundary

of the polygon. This algorithm is implemented in GNface::inside(GNvector).

1. If p is a point in the plane, then to determine whether or not p is inside the

given polygon, a triangle is constructed for each edge ei by taking the endpoints

of e, and p as vertices.

2. For each i, the angle opposite ei is computed and signed positively, if the ori-

entation on ei moves counterclockwise about p, and negatively otherwise.

3. All of these signed angles are then summed. The result will be zero if p is

outside of the region, x if it is on the interior of an edge, and 21r if it is inside.

4.9.2 Point in Polyhedron Detection

This algorithm is implemented in GNvolume::inside(GNvector). The algorithm is to

compute and sum the signed (relative to neighborhood) surface areas of the polyhe-

dron's faces radially projected to a unit sphere. This sphere should be centered at

71



the point to be tested. The result will be zero if the point is outside the polyhedron,

27 if it is on the interior of a face, and 4r if inside.

The Gauss-Bonnet formula is used to compute the area A(F) of the spherical polyg-

onal region resulting from the projection of F radially to the unit sphere centered at

p. The Gauss-Bonnet formula is listed below:

A(F) = Zthetaj + (2(s - r) - l)r (4.31)
3=1

where the 93 are the interior angles of the polygonal region Fi projected to the sphere

and where s and r are the numbers of the outer and inner loops, respectively, and I

is the number of edges per face F.

It is important to note that the case of coincidence with an edge must be detected

during angle-between-plane calculation prior to the area calculation. If the point is

on the extent of a face, then the projected area of the polygonal face onto the unit

sphere centered at the point must be zero. The case of the point on a polyhedron can

be detected without computing the final sum. If for any Fi, A(F) = 0, then the point

lies on the plane of F and the planar point in polygon algorithm can be applied.

Another method to solve this problem is the halfline approach, which count the

intersections between the boundaries of the shape and a halfline extending from the

point to infinity. A inside relationship is established when the parity-count is odd.

But the halfline approach has to deal with many special cases and its implementation

is not easy.

4.10 Distance Computation

[Gilbert 88] has developed a fast algorithm to compute distance between two convex

objects. The distance between complex objects in 3-D space can be defined as:

d(KA, KB) = min{x - y| : x E KA, y E KB}. (4.32)
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where KA, KB are compact sets of complex objects A, B and can be defined as:

KA= U K,
iEIA

(4.33)

To calculate the distance

hulls of point set X (X C

between

Rm ):

KB= U Ks (4.34)
IEIB

complex objects, we define the affine and convex

aff X =Z Ai:xi E X, A' +...+ A=1
i=1

coX= ZA'xi : xi X, A > 0,A' + ... +A = 1
i=1

(4.35)

(4.36)

Then, the distance algorithm can be stated as follows: Given a compact convex

set K C R m and initial points yi, ... , E K, 1 < v < m + 1, perform the following

steps

1. set Vo = yi,..., y, and k = 0;

2. determine Vk = v(coV);

3. if gA(vk) = 0, set v(K) = Vk and stop;

4. set Vk + 1 = Vk U{sk(-vk)}, where V C Vk has m elements or less and satisfies

Vk E co Vk, increment k, and proceed to step 2).

4.11 Other Useful Algorithms

Other useful algorithms for developing GNOMES include finding face loops and vol-

ume shells, retrieving a cell from complex, copy methods and destructors. The fol-

lowing sections describe these algorithms.
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4.11.1 Face Loops Finding

A loop of a face is any closed chain of edges bounding an object face. A multiply

connected face f will contain an external loop and zero or more internal loops.

1. To find all loops of a face, first find the farthest vertex of the face, vfar. The

face at Vfar must be convex.

2. From V ar's all star edges which belong to the face, pick one edge, e1.

3. Find a starting edge, estart, which is on the right side of el such that the angle

between ei and estart is the largest. (ei may be estart.)

4. Record Vj ar and set the other vertex of e-tart as the current vertex. At this

vertex, if it has more than two star edges, find the edge which possesses the

largest angle among all the angles between every star edge and the current edge.

5. Then the newly found edge becomes the current edge, and let the next vertex of

the current edge to be the current vertex and apply the above steps iteratively

until this current vertex is the same as Vjar.

6. When this happens, the first face loop, which is the outer loop of the face, is

obtained.

7. If there are still other edges not belonging to the outer loop, then the same

procedure is applied again on these remained edges to find inner loops.

The face loops finding method is implemented in GNface::get.vertices() method which

returns a list of vertex lists. The first list contains the outer loop vertices which are

counter-clockwise according to the face normal. Other lists are inner loop vertices

which are clockwise according to the face normal.

4.11.2 Volume Shells Finding

A shell is any maximal connected closed set of faces forming the object boundary. A

volume V will contain an external shell and zero or more internal shells. The goal of
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this algorithm is to find all the bounding shells of a volume. First, we find the outer

shell of the volume. If there are still other bounding faces, then they must be the

inner shells of the volume.

1. To find the outer shell of a volume, first find the highest vertex of the volume,

Vhigh.-

2. At the vertex, make a horizonal plane which passes Vhigh.

3. Next, from the face stars of Vhigh, pick the face fstart which has the closest

normal to the horizonal plane. fta,,t is the initial face used to traverse the outer

shell face by face.

4. Create a list of edges in which a newly found face's boundary edges are inserted.

5. For each element of this edge list, we compare the angles between the current

face and every star face of the edge.

6. When all the elements of the list are looped over, the outer shell is found.

7. Similarly, we can find inner shells if there are any.

The volume shells finding method is implemented in GNvolume::get-shells() method

which returns a list of face lists. The first list contains the outer shell faces. Other

lists are inner shell face lists.

4.11.3 Retrieve Methods

The retrieve methods are used to retrieve a cell in one complex from another complex.

1. To retrieve a cell in one complex from another one, the cell's boundaries and

embedded cells are retrieved first.

2. If one of the set of cells does not exist in another complex, then the cell is not

retrieved.
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3. After the set of cells has been retrieved, check if a cell in another complex has

exactly all the boundaries retrieved.

4. If this is ture, return the cell.

5. Otherwise, return NULL.

6. For a vertex being retrieved, all the vertices in another complex is looped to see

whether its vertex has the same coordinates as the one being retrieved.

Cells can also be retrieved by other attributes such as cell's ID. This kind of retrieving

is handled by ObjectStore's query functions.

4.11.4 Cell Copy Constructors

Every cell class has a copy constructor which is used to

to another complex. The copy constructor is called in

function.

1. When the cell copy constructor is called, it makes

and its embedded elements into another complex,

data structure and neighborhood information.

copy a cell from one complex

the copy function and merge

the cell itself, its boundaries,

establishes the correct graph

2. Other non-geometric information is also copied. It does not copy the cell's stars

and their relationships.

3. In volume copy constructor, a special case has to be considered when a cell,

c, is an embedded element of a boundary face of the volume. In this case, we

define the volume as a star cell of c, but c is not in the embedded set of this

volume, it is in the embedded set of the bounding face.

4. The extent of the cell is copied too.

4.11.5 Cell Destructors

Every subclass of GNcell has a destructor.
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1. When a particular cell is deleted, its destructor is called.

2. The cell is removed from the complex it is part of.

3. Decrease the cell's extent number by one, if the number becomes zero, then the

extent is deleted and the extent's destructor is called.

4. If the cell is a boundary of another cell, that cell is deleted and its destructor

is called. The star boundary link between the two cells is also removed.

5. If the cell is an embedded element of another cell, or the cell has embedded

cells, remove the links between them.

6. For a face and volume cell, when it is deleted, other attributes such as lists of

face.loops and volume-shells also need to be deleted.
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Chapter 5

Examples

This section uses examples to describes the various facilities of GNOMES. Cur-

rently, GNOMES has been implemented in C++ and an object-oriented database.

GNOMES' graphical user interface, ELF, has also been implemented using X/MOTIF

and HOOPS [Hoops 90]. Users can access various GNOMES's founctions through

this interface by using mouse and other standard Motif widgets, such as buttons and

menus. A screendump of the interface is shown in Figure 5-1.

5.1 Functional Interface

Applications can manipulate GNOMES objects through their classes' interface meth-

ods. This section presents an example to show how to use GNOMES geometric

engine directly. This example shows two cubes and how to move them and obtain

their boolean operations results.

main()

{

GNmanager amanager;

//declare a manager object as an entry point of GNOMES

amanager.create-db("/gnomes/newbase");//create a new database

amanager.start-transaction();//start transaction
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GNcomplex* cubel = amanager.createcuboid(20.0,30.0,40.0,"cuboidl");

//create a cube complex

GNcomplex* cube2 = amanager.create.cuboid(40.0,30.0,20.0,"cuboid2");

//create a cube complex

GNvector trans(5.0,20.0,-10.0);//declare a vector

cube2->translate(trans);//translate cube2 in x, y and z axes

cube1->subdivide(cube2);//subdivide the two cubes

GNcomplex* newcoml = &((*cubel) * (*cube2));

//newcoml is the intersection of two cubes

GNcomplex* newcom2 = &((*cubel) - (*cube2));

//newcom2 = cubel difference cube2

GNcomplex* newcom3 = &((*cubel) + (*cube2));

//newcom3 is the union of them

newcom2->regularize();//regularize newcom2

newcoml->boundaryO;//get boundary of newcoml

newcom3->simplify();//simplify newcom3

amanager.commit-transaction();//commit transaction

}

5.2 Graphical UI

This section describe the graphical user interface of GNOMES. An example of how

to use the graphical UI is described as follows.

Before runing GNOMES's graphical UI, we have to set several environment variables:

" setenv DISPLAY machinename:0.0

* setenv HOOPS-PICTURE X11/$DISPLAY

" setenv GNOMES /.gnomes

" xrdb ELF.ad.
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* The default color is gray, the default inactive color is bright blue. But the user

can set these two colors by doing setenv GNOMES-DCOLOR colorname and

setenv GNOMES -IN-DCOLOR colorname.

Figure 5-1 shows the layout of ELF's main window. It consists of a title bar displaying

the name ELF, a menu bar which provides menu access to various functions (described

in the following sections), and three display windows. The main window on the left

shows a perspective view of the geometric object while the two other smaller windows

show top and front views of the object.

The main window shown in Figure 5-1 is the primary state in ELF, upon which

other states may revolve. The user must go through this primary state to shift from

one menu mode to another. ELF contains event loops, all eventually returning to the

primary state; this is common among user interfaces. When the user is in one state,

they must return to the primary state before other events can occur [Wong 91].

The menu bar consists of six items: file, edit, display, database, structure,

and other. A popup menu which contains corresponding operations to manipulate

geometric objects will appear when the user click on any item. These operations are

discussed in the following sections. More details about the GNOMES's user interface

design can be found in [Wong 91].

5.2.1 File Operations

The File item contains general functionality desired by a user such as quitting the

application, obtaining screen dumps and finding on-line help. These functions are

not specific to a geometric modeler, but are common among user interfaces. The user

may select a function by clicking on that menu item. The File item contains the

following functions:

Quit: Quit from ELF.

On-line Help: An on-line help facility provides the user information on GNOMES.
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Figure 5-1: ELF's main window
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Print: A facility to send screen dumps of images to a default or user specified laser

printer. The default printer is specified by the PRINTER environment variable.

Bug Reports: A facility to send bug reports automatically to aswongiesl.

Change Printer Name: This function allows the user to specify a printer to print

screen dumps to.

Read File: This function allows the user to prepare a file which ELF will read into

to construct GNOMES objects.

Write File: This function allows the user to output GNOMES objects into a file

so that ELF can read the file to construct these same GNOMES objects later.

These two file facilities allow GNOMES to communicate with other systems by

transferring files.

5.2.2 Editing Operations

ELF provides facilities for interactively creating and modifying objects, using the

functions in the Edit item. Geometric primitives may be easily created, and non-

geometric attributes and their values may be associated with the geometric objects.

The Edit item contains the following functions:

Geometric Primitives: This function allow the user to create geometric primitives

entering parameter values. These primitives which can be created include lines,

rectangles, circles, arcs, cubes, spheres, cylinders, and cones. These parameters

are attributes of the selected primitives (e.g., radius for a sphere and the sub-

division parameter for curve approximation). The primitive will be created at

the origin (a reference position) and displayed.

Sweep: This function sweeps a selected line or face to create the swept surface or

volume. Both translation and rotation sweeping can be done.

Duplicate: This function creates a duplicate copy of a selected object and positions

it at the origin.
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Mirror: This function creates a mirror copy of a selected object and positions it at

the origin.

Delete: This function deletes the selected objects.

Attribute Editor: This function invokes an attribute editor. An attribute editor

is used for defining and editing non-geometric attributes associated with a ge-

ometric object.

Sliders: This function provides the user a popup slider panel to zoom, translate,

rotate objects, and modify a selected object's color.

Subdivide: This item takes as input two selected objects and subdivides them with

each other.

Union: This function can only be invoked after the subdivision operation. It returns

the union of two selected and subdivided objects.

Difference: This function can only be invoked after the subdivision operation. It re-

turns the difference of two selected and subdivided objects. The result depends

on the order of selecting two objects.

Intersection: This function can only be invoked after the subdivision operation. It

returns the intersection of two selected and subdivided objects

Simplify: This function simplifies the data structure of a selected object.

Regularize: This function regularizes an object.

Boundary: This function returns the boundary of an object.

Interior: This function returns the interior of an object.

Initial State: This function enables an object to return to its initial state after

having applied regularization, boundary, or interior operators.
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5.2.3 Display Operations

The Display item includes such features as displaying wire meshes, ray shading and

zooming.

Wire Mesh: This function causes all the objects to be displayed as wire frames.

Solid: This function display objects as 3D solids. This is the default display mode.

Ray Shading: The function uses ray tracing to shade displayed objects.

Zooming: This function zooms the displayed objects. Zooming differs from scaling.

In scaling, the actual object parameters are changed in the database, whereas

in zooming only the display's size is changed, not the actual parameters.

Refresh: This function updates the display.

Camera Control: This function pops up a slide panel with various facilities to con-

trol camera. These facilities include panning, dollying, orbiting camera and

setting camera field.

Clear Display: This function clears everything on the display.

Clear Selected: This function clears only selected objects on the display.

Show/Remove Axis: This function shows the x, y, and z axes if these axes are not

shown currently and removes them otherwise.

Show/Remove Grid: This function shows the grid if it is not shown currently and

removes it otherwise. In a future version of GNOMES, a facility to edit grid

parameters should be provided.

Show/Remove Snap: This will enter snap mode if it is not in that mode currently

and exit it otherwise. In a future version of GNOMES, a facility to edit snap

parameters should be provided.
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5.2.4 Database Operations

The Database item includes such features as starting, aborting and ending transac-

tions, listing object names, performing database queries and retrieving objects from

the database.

Create Database: This function creates a new database and opens it.

Open Database: This function opens a existing database.

Close Database: This function closes a database currently open.

Start Transaction: This function starts a new database transaction.

Abort Transaction: This function aborts the current transaction, discarding any

changes made during the transaction. This is basically a simple undo function.

Commit Transaction: This function commits the transaction, saving any changes

made to the database.

Undo/Previous Version: This function retrieves and displays the previous version

of the selected object.

List browser: This function displays a list of geometric object names. Clicking on

a name and selecting an option on the popup menu allows retrieval of infor-

mation about that object or browsing through its lower dimensional containing

elements.

Query Manipulator: The query manipulator will pop up a dialog widget, enabling

the user to type in database query commands, which will be sent as input to

the database for performing operations. This feature enables the user to take

advantage of full database capabilities.

Retrieve: This function allows the user to retrieve objects from the database. A list

of geometric objects are displayed in a list browser from which one or more can

be selected for retrieval and displaying.
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5.2.5 Structure Operations

The Structure item enables users to group and ungroup objects.

Distance: This function computes the minimum distance between two complexes.

Select All: This function selects all the objects currently being displayed.

Select Objects: The user can select an object by pointing the mouse to the object

to be selected and clicking the left mouse button. Clicking the middle mouse

button will exit the selection state. Several objects can be selected at one time.

The selection feature is required to select objects of interest for operations such

as boolean operations, grouping, ungrouping, moving and scaling an object.

Group Objects: This function is used when the user wants to perform operations

on a group of objects simultaneously. The user may want to rotate or scale a

group of objects, which makes grouping them together convenient. The selection

facility must be used to select the objects to group together.

Ungroup Objects: This function undoes the grouping described above, so that in-

dividual objects may be modified. The selection facility must be used to select

the objects to ungroup.

5.2.6 Other Options

The Other item includes miscellaneous operations (e.g., setting default parameters)

which do not fall in the aforementioned categories. The options are:

Zooming Factor: This function computes the minimum distance between two se-

lected objects.

Zooming Factor: This function pops up a dialog widget where the user can modify

the zooming factors desired.

Subdivision Parameter: This function pops up a dialog widget for entering the

default subdivision parameter for approximating curve surfaces.
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Light Model: This function pops up a dialog box for entering parameters of the

lighting model for shading.

Set Wait time: This sets the default time to wait for accessing a locked object in

the database.

During this study, the user interface of GNOMES has been extented. These exten-

sions include reading objects from a file, writing objects into a file, displaying objects,

sweeping objects, deleting objects, grouping objects, computing minimum distance

between two objects, interfacing topological and boolean operations, showing and re-

moving grid lines, improving selection function, improving edit slider panel, improving

camer control panel, and improving primitive creation function.

5.3 Tested Examples

This section presents a tested example. Figure 5-2 shows two objects before subdivid-

ing. One object is a cube with a dangling face. Another object is a cone. Figure 5-3

shows the two objects after subdividing. Figure 5-4 shows their intersection. Figure

5-5 shows their difference. Figure 5-6 shows the boundary of their difference. Figure

5-7 shows their regularized difference. Figure 5-8 shows a simplification example.

87



Figure 5-2: Two objects before subdividing
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Figure 5-3: Two objects after subdividing
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Figure 5-4: Intersection of two objects
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Figure 5-5: Difference of two objects
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Figure 5-6: Boundary of difference of two objects
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Figure 5-7: Regularized difference of two objects
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union of SGC cu and co, u
u = cu + co;

Simplication

u.simplifyo;

SGCs displayed in wireframe mode
b)a)

Figure 5-8: A simplification example [Sriram 93].
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Chapter 6

Conclusions

This thesis presents an alternative methodology for the design and implementation

of software systems for geometric modeling. The scope of work involves the study

and use of non-manifold topology, object-oriented technology and its applications on

a new technology, geometric modeling.

This chapter summarizes several major points of this thesis. Future research work is

also recommended.

6.1 Summary

Geometric modeling is an important part of most CAD/CAM applications. However,

its widespread and integrated use through the product design cycle is still limited

because of the difference in modeling requirements of applications that are used at

different stages of the design cycle [Sriram 93].

Recently, the advantages of non-manifold representation have been recognized and

several representation schemes have been developed. Non-manifold topology extends

the representational domain of the boundary representation approach. Traditional

boundary representations were based on the two-manifold assumption which implies

that they can noly represent well-defined solid models. Non-manifold topology has

the ability to represent objects which have incomplete boundarues, internal struc-

tures, and mixed dimensionality.
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In this thesis, we describe a geometric engine, GNOMES which provides a geometric

modeling framework that could be shared by many applications. It uses a unified

representation, called SGC, which can represent a large class of pointsets including

non-manifold pointsets, open pointsets, and sets with cracks or internal structures.

The SGC representation is mathematically well defined and we have also implemented

high-level modeling operations with well defined semantics which include boolean,

topological, and structural operations on pointsets which can be used to transform

and combine SGCs to construct more complex SGCs. In addition, the model and

algorithm can be used for dimensions higher than three though currently the imple-

mentation is only for R3 [Sriram 93].

Most systems in use today are designed based on functional decomposition, that is,

based on algorithmic or step-by-step solution processes. The resulting systems have

only a few large modules which interact in a non-intuitive manner. Due to its lack

of abstraction, the system contributes to its complexity and unmanageability. The

object-oriented paradigm has proven to be an extremely useful tool in the develop-

ment of a large scale complex software system. The most powerful concept of the

methodology is the aspect of abstraction. This concept tries to keep the conceptual

aspects belonging to the application domain "intact", thus keeping it simple and

manageable. GNOMES is developed using object-oriented principles leading to clear

abstractions in a reasonably small set of well encapsulated classes. Hence, it should

be reasonably easy to understand and should be quite easily extensible. Similarly,

integration into other applications should not be a problem [Sriram 93].

Further, GNOMES comes with full database facilities. A commercially distributed

object-oriented database management system is used as the backend. It includes

support for persistency of the GNOMES objects, long and short duration transaction

management for concurrent access by multiple applications, a general query facility,

and a version and configuration management facility which is used by GNOMES to

keep track of evolution of its geometric models. As a result, GNOMES is suitable

for developing cooperative or concurrent engineering CAD/CAM applications which

need these kinds of facilities [Sriram 93].
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In this study, GNOMES has been improved and extented. Various methods needed

to build high level boolean operations and calculate mass properties of solids have

been implemented. The user interface of GNOMES has also been improved.

6.2 Future Work

In the future, the following aspects of GNOMES need to be improved:

" Performance. The performance of GNOMES can be improved by devising

new efficient algorithms and storing more information in each object so that

useful information needs to be computed only once and can be accessed later.

" Algorithms. The algorithms used in GNOMES need to be more general to

deal with curved edges and faces.

* Extending to curved edges and faces. When algorithms dealing with non-

linear cases are available, extending to curved edges and faces can be easily

done by creating new classes and implementing new methods in these classes.

* Extending to higher dimensional objects. Because GNOMES is developed

in an object-oriented approach and underlying data structure SGC is dimension-

ally independent, extending to higher dimensional objects such as 4D objects

(e.g., time can be regarded as the forth dimension of an object) is possible. 4D

objects can be used to model moving objects.

" Robustness of geometric computation. Sometimes geometric computation

needs to be very precise. So robustness of geometric computation is a very

important issue in geometric modeling. This can be achieved by adding an

rational number class which implements exact rational arithmetic operations

[Hoffmann 89].

* High level modeling operations. More high level modeling operations

should be implemented. These high level operations provide convenient tools

for designers to manipulate design objects.
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