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ABSTRACT

This thesis presents a new approach to noninvasive, continuous monitoring of arterial
blood pressure for advanced cardiovascular diagnoses. Most of the current noninvasive,
continuous blood pressure measurement devices are mechanically intrusive and, therefore,
cannot be used for long-term ambulatory monitoring. The new approach requires only
simple, noninvasive monitoring devices, such as finger photo plethysmographs (PPGs)
and an electrical impedance plethysmograph (EIP), to monitor the dynamic behavior of
the arterial blood flow. In this new approach, a precise hemodynamic model for a digital
arterial segment, on which sensors are located, is derived and combined with relatively
simplified models of the upstream and the downstream arterial flows to represent the entire
arterial stream. Eventually the measured signals from these noninvasive sensors on the fin-
ger are integrated with this model using a Kalman filter to estimate the blood pressure in
the digital segment. This thesis also proves that the digital blood pressure can be estimated
from the observable subspace (i.e. this system is partially observable), even though the
overall system is unobservable from the limited peripheral sensors. Experimental results
verify that this approach can generate an accurate estimation of the arterial blood pressure
in real-time even from noisy sensor signals.
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Chapter 1

Introduction

1.1 Continuous Patient Monitoring

Rapidly increasing aged population living alone is one of the critical problems faced by

today's society worldwide. Healthcare for these people is badly needed to cope with the

growing challenge. According to 1999 Heart and Stroke Statistical Update from the Amer-

ican Heart Association and National Center for Health Statistics (NCHS), cardiovascular

diseases (CVDs) have been the No. 1 reason of mortality in the United States every year

since 1900 but 1918 [1]. Therefore, it is highly demanded to develop effective technolo-

gies, which would provide useful and valuable information for early diagnosis and treat-

ment and for prevention and control of such disorders.

Continuous monitoring of vital signs allows the detection of emergencies and abrupt

changes in the patient conditions. Especially for cardiovascular patients, long-term moni-

toring plays a pivotal role. It provides critical information for long-term assessment and

preventive diagnosis, for which long-term trends and signal patterns are of special impor-

tance. Such trends and patterns can hardly be identified by traditional examinations. The

cardiac problems, which occur frequently during normal daily activities, may disappear

the moment when the patient is hospitalized, causing diagnostic difficulties and conse-

1.1 Continuous Patient Monitoring 
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quently possible therapeutic errors. Thus continuous cardiovascular monitoring is signifi-

cant for such diagnosis.

Among the widely accepted physiological indices, blood pressure is one important

indicator of cardiovascular condition. Traditionally, systolic and diastolic brachial pres-

sure is measured by a sphygmomanometer. However, it would be more desirable if such

monitoring could be made on a beat-to-beat basis because of two reasons. First, blood

pressure can fluctuate considerably, not only over a long period of time but also in a very

short term [2]. Second, continuous waveform of blood pressure can provide more diagnos-

tic information about the patient's cardiovascular state, which are difficult to obtain from

the routine antecubital pressure measurement [3-6]. For example, the rate of pressure rise

at the beginning of systole indicates the strength of cardiac contraction, while the rate of

pressure decay during end diastole can be used as a measure of peripheral vascular resis-

tance. It is obvious that long-term continuous monitoring of arterial pressure would bring

enormous improvement of the quality of healthcare.

1.2 Scope of Current Work and Organization of This Thesis

This thesis is conducted under the Wearable Sensors project of Home Automation and

Healthcare Consortium in d'Arbeloff Laboratory for Information Systems and Technol-

ogy, which aims at developing new technologies for continuously monitoring of time-

varying hemodynamic variables (such as blood pressure) by using the sensor-fusion tech-

nique (will be described in Chapter 2) and the non-invasive assessment of a patient's car-

diovascular conditions based on those monitored variables. The objective of this thesis

work is to formulate the problem of dynamic estimation of blood pressure and experimen-

tally validate it, so as to provide a design guideline for the continuous hemodynamic sen-

1.2 Scope of Current Work and Organization of This Thesis 8



soring system.

This thesis is organized as follows:

In Chapter 1, a background description and scope of this thesis are given.

Chapter 2 reviews the previous work in noninvasive continuous blood pressure moni-

toring. A new approach using a Kalman filter and sensor fusion is proposed. The nature of

the problem and issues to be solved are also discussed.

Chapter 3 develops a state-space model for arterial hemodynamics, which includes a

precise local digital arterial segment model and widely used relatively simple models for

upstreams and downstreams dynamics. Detailed derivation is included in this chapter.

Chapter 4 proposes a sensor combination and designs a Kalman filter based on the

observability analysis. Partial observability theorem, based on which the sensors are

selected, is stated and proved. An Observable-Subspace Kalman filter is designed for the

partially observable system, from which blood pressure can be estimated.

In Chapter 5 the proof-of-principle experiment is described. The estimated blood pres-

sure waveform from the proposed approach is compared with the direct measurement

from a FDA approved arterial tonometer.

Chapter 6 summarizes conclusions from this work and recommends improvements

and future work following from the experiments and analyses done in this thesis.

1.2 Scope of Current Work and Organization of This Thesis 9



Chapter 2

Review and Proposal

2.1 Review of Previous Work

Beat-to-beat arterial blood pressure can be measured continuously in two manners: inva-

sively and non-invasively. Invasive blood pressure measurement requires inserting a cathe-

ter into the artery, therefore it is painful and poses significant risks to the patient [7-8],

which are not acceptable to long-term continuous monitoring. Noninvasive continuous

blood pressure measurement is the 'holy grail' of patient monitoring. A few devices have

been developed for noninvasive continuous blood pressure monitoring [9-14], and the prin-

ciples of these devices fall into two categories: tonometry and volume compensation.

Tonometry

Figure 2.1 shows a schematic diagram of an arterial tonometer. A pressure transducer is

placed over an artery, which is relatively superficial and supported by a firm base, such as

a bone or a ligament. External pressure is applied non-invasively to squeeze the artery

against the firm base, such that the tensile forces are just orthogonal to the transducer sur-

face. In this case, the transducer directly measures the intra-arterial pressure. The result of

this method is a waveform similar to catheter measurements, and an algorithm must be

2.1 Review of Previous Work 
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used to calculate pressures from that waveform.

Fsensor

Ftensiie Ftensiie

tterial

Tonome 
eSkin

Tissue

Radial artery

Figure 2.1 Schematic diagram of an arterial tonometry. Reprinted from [15].

ACITU-
ATOR LED

~D

REF I

REF 11

Figure 2.2 Volume Compensation method. Reprinted from [16].

112.1 Review of Previous Work



Tonometry has several limitations. First, a tonometer can only measure pressure on a

superficial artery. Second, tonometry is highly sensitive to sensor position & angle and the

force applied on the sensor, thus has low inter-operator reproducibility. These sensitivity

problems and mechanically intrusive requirement of applying force on skin make tonome-

try a poor candidate for long-term blood pressure monitoring.

Volume Compensation Method

The volume compensation method, a. k. a. vascular wall unloading, uses a different

approach. The vascular volume changes as the intra-arterial pressure varies. This volume

change can be compensated by applying external pressure to maintain the constant vascu-

lar volume of the unloaded state. As shown in Figure 2.2, the vascular volume change in

the finger segment is detected by photo plethysmograph, and a cuff is inflated to apply

external pressure, which is continuously adjusted by a servo control system. Apparently

this method is still not good for long-term continuous monitoring because of the use of

cuff.

Conclusion

The major drawback of these currently available approaches are the tight confinement and

mechanical intrusiveness of the sensor probes and the resultant discomfort to the patient.

These methods require a constant and continuous external pressure on the skin surface of

the patients, and it could cause vasospasm and pressure drops in the peripheral artery [14].

Therefore, a new approach has to be developed to meet the demand of long-term, noninva-

sive and non-intrusive, continuous monitoring of beat-to-beat blood pressure.

2.2 Proposal of a New Cuff-less Approach
In this thesis, an innovative approach is proposed for noninvasive non-intrusive continuous

2.2 Proposal of a New Cuff-less Approach 12



monitoring of pulsating arterial blood pressure without using a cuff.

2.2.1 Introduction of the New Approach

The new approach, as illustrated in Figure 2.3, requires only simple, noninvasive mon-

itoring devices, such as finger photo plethysmographs (PPGs) and an electrical impedance

plethysmograph (EIP), to monitor the dynamic behavior of the arterial blood flow. In this

new approach, a precise hemodynamic model for a digital arterial segment, on which sen-

sors are located, is derived and combined with relatively simplified models of the

upstream and the downstream arterial flows to represent the entire arterial stream. Eventu-

ally the measured signals from these noninvasive sensors on the finger are integrated with

this model using a Kalman filter to estimate the blood pressure in the digital segment.

2.2.2 Major Issues in the New Approach

There are two major issues that has to be solved to make this approach feasible.

The first one lies in the design of the Kalman filter. In general, design of a Kalman fil-

ter requires a precise state-space model of the process to be estimated. However, the arte-

rial hemodynamic system is a complicated, nonlinear distributed system, therefore it is

challenging to reduce the mathematical hemodynamic model to a state-space model that is

simple while precise enough for implementing a feasible real-time Kalman Filter.

The second issue is related to the observability. Because the sensor measurements are

assumed to be available only at a peripheral part such as a finger, whereas the mathemati-

cal model covers the entire arterial stream (shown in Fig. 2.4), the observability condition

of such a system is hardly met. Therefore, the general design method of Kalman filters

cannot be applied to this estimation problem.

2.2 Proposal of a New Cuff-less Approach 13
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Figure 2.3 Block Diagram of Sensor Fusion
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Figure 2.4 Nature of the problem
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2.2.3 How to Address These Issues

In this thesis, a new technique is developed for designing a Kalman filter for a partially

observable arterial hemodynamic system based on observable/unobservable subspace

decomposition. First of all, a precise two-dimensional mathematical model of the arterial

blood flow is derived and applied to a small digital arterial segment. Then, it is extended to

include the heart as the proximal boundary and the capillary as the distal boundary to rep-

resent the entire arterial stream. To avoid complexity and high-order modeling, the

upstream is simply modeled as an extended Windkessel model, and the downstream is

modeled as a classic Windkessel model. A commonly assumed pattern of the cardiac out-

put is used as the system's input. It is expected that the overall system is unobservable for

limited peripheral sensors. However, it is found from the observability analysis that the

blood pressure in the digital arterial segment can be estimated from the observable sub-

space. Finally, a low-order Kalman filter is designed for the observable subspace to esti-

mate the blood pressure. Since the original local arterial segment is precisely modeled and

the output signals are measured from the segment, it is expected that the Kalman filter can

estimate the local arterial blood pressure accurately even with the simplifications of the

input and the modeling of the upstream and downstream blood flows. Proof-of-principle

experiments are conducted to verify the approach and support the above arguments.

2.2 Proposal of a New Cuff-less Approach 16
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Chapter 3

State-Space Modeling of Arterial Hemodynamics
The approach proposed in Chapter 2 utilizes a mathematical hemodynamic model to

describe the complex behavior of the arterial vessel and blood flow from the left ventricle

to a peripheral arterial segment. The modeling of the arterial hemodynamic system con-

sists of two parts: precise modeling for the peripheral segment, from which sensor signals

are obtained, and simplified modeling for the rest of the arterial system. As to be examined

in Chapter 5, the accuracy and fidelity of the peripheral arterial model determines the

accuracy of the resultant Kalman filter. Many hemodynamic models have been developed

for the study of the two-dimensional nonlinear behavior of the pulsating blood flow [17]-

[20]. In this paper, we apply a mathematical framework developed by Belardinelli and

Cavalcanti [17][18], which describes a two-dimensional nonlinear flow of Newtonian vis-

cous fluid moving in a deformable tapered tube. The upstream and the downstream arterial

flows are modeled as simplified low-order lumped-parameter models and combined with

the above nonlinear model of the local segment to constitute the entire arterial stream.

3.1 Local Arterial Flow Model

3.1.1 Mathematical Model of Arterial Flow

A small segment (distance of L) of a small artery, such as a digital artery, is considered, as

3.1 Local Arterial Flow Model 17
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shown in Figure 3.1. It is assumed that the arterial vessel is a rectilinear, deformable, thick

shell of isotropic, incompressible material with a circular section and without longitudinal

movements. Blood is an incompressible Newtonian fluid, and flow is axially symmetric.

Two-dimensional Navier-Stokes equations and continuity equation for a Newtonian and

incompressible fluid in cylindrical coordinate (r 0, z) are:

/2 2
au au au l aP a u lau a u 1

- + + U = +I+- (3.1)

P ( 2 2
Jt or az p az arrr z2)

12 2
aJw aw aw 1W jp aJ W La w I

t + r + z UZ p Zr + r2 +r r 5Z2 r 2

W+w+ -0 (3.3)
r Dr az

where P denotes pressure, p density, v kinematic viscosity, and u=u(rz,t) and

w=w(r,z,t) denote the components of velocity in axial (z) and radial (r) directions respec-

tively, as shown in the figure.

--------------------- --

L

Figure 3.1 A segment of a viscoelastic artery with length of L.
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The boundary condition for these equations are:

U= 0 1 r =R

DR

w- G

= 0 Ir=O

w a|r-r

(3.4)

(3.5)

(3.6)

(3.7)

Let R(z,t) denote the inner radius of the vessel and define a new variable, dimension-

less radius:

r
11 = -

R(z, t)

We can rewrite the above equations (3.1) and (3.3) in a new coordinate (rI, 0, z) as

(3.8)

(du
+ U

Uz

w 1w

rjR RaT

1 P

_pTz

j aIuR -
RaTYaz

(' 2

+VR2 2+ R2

0

(3.9)

(3.10)

The boundary conditions for the above equations in Tj axis are:

U = 0 =I (3.11)

3.1 Local Arterial Flow Model 
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uR
at

a3u
= 0 1=

(3.12)

(3.13)

(3.14)w = 017, = 0

The basic idea of this hemodynamic modeling provided by Belardinelli and Cavalcanti

[17] is to assume that the velocity profile in the axial direction can be expressed as the fol-

lowing polynomial form:

u(I, z, t) =

N

I q,(k - 1)
k = 1

The velocity profile in the radial direction is also expressed as:

OR
W (7, Z, t) = 'I U

S3R N(1 2k

Nat kp - )
k = I

For simplicity, I choose N = 1 in this thesis, such as:

2
u (ij,z, t) = q (z, t) (rj-1

w(r,z,t) = Ru
OR

+at

(3.16)

(3.17)

(3.18)OR 2
-- (0-1)

The dynamic equations of q(zt) and R(z,t) is obtained by plugging eqs. (3.17) and

(3.18) into (3.9) and (3.10):

(3.15)

OR
+nt
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aq 4qaR + 2q2R IP 4qv (3.19)
it R t R z p z R

R R 2 q 3R
2R- + -- + q - 0 (3.20)

a3t 2 z Jz

Complete derivations of the above equations are found in [17].

Defining cross-sectional area S(z, t) and blood flow Q(zt) as:

S = tR 2, Q = ItR 2q (3.21)
2

The dynamic equations for the digital arterial flow can be rewritten in terms of Q and S

as:

3Q 3QaS 2Q2aS S 3P 4xTv (3.22)
Sat-+ s2 az 2p z S

- + Q 0 (3.23)

3.1.2 Viscoelastic Model of Arterial Wall

To study the hemodynamics of arterial blood flow, a modeling of the viscoelastic behavior

of the arterial wall is essential. In this thesis, I will derive a constitutive law of the arterial

wall from stress-strain relationship of the material. Let Y( and at be the circumferential

stress and tangential stress respectively, as shown in Figure 3.2. Ignoring the inertia of the

arterial wall and the external pressure, equilibrium with the blood pressure gives:

2
43lR

PR = aoe-ateR 2 (3.24)

3.1 Local Arter a lw M dl2
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Figure 3.2 Viscoelastic Arterial Wall.

S Qj S2 Q2 Q3

P2 P3  P4

Az

Figure 3.3 Discretization of the hemodynamic model.
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where R(z,t) and e are the radius of the arterial vessel and the thickness of the arterial

wall respectively.

From the geometric compatibility of the blood vessel, we get an expression of strains

such as

R-R 0  RI
E= R = 1+ -z (3.25)

where E- and et are circumferential and tangential strains respectively, and the constant

RO is the radius of the artery when P(z,t) = 0 and the system is in a steady state.

The most widely used model to describe the viscoelastic properties of the arterial wall

is the Kelvin-Voigt model [21], in which the stress-strain relationship is described as:

O = E- 0 + 1- , t = E-t +I (3.26)

in which E is the elastic modulus and T is the damping coefficient. The viscoelastic

constitutive law of the arterial wall is obtained by plugging eqs.(3.24) and (3.25) with So =

,tR0
2 and eliminating second and higher order terms:

P = 2 Se+ s3s (3.27)

3.1.3 Discretization and Linearization

The above nonlinear, partial differential equations given in eqs. (3.21), (3.22) and (3.26)

are discretized using a finite-difference method. First, the segment of the artery (length L)

is equally divided by N grids with a step size of Az=L/(N-1). The mesh points in the finite

difference grids are represented by j, where j = 1,2,...,N and N > 2. If the length of the

3.1 Local Arterial Flow Model 23



arterial element Az is sufficiently small then it is possible to approximate, in each section,

the derivatives with respect to the axial coordinate z with the following finite difference

scheme:

aP1 _ Pi+1 -Pi s _ Si+ I-Si 3Q _ Qi-Qi1 (3.28)
az Az 'az Az 'az Az

The constitutive law given in eq.(3.26) is modeled such that the viscoelasticity applies

only at mesh points. An example of the discretization when N=4 is shown in Figure 3.3.

Using the above equations, the hemodynamic model given in eqs. (3.21), (3.22) and (3.26)

can be discretized as:

a 3 i Pi+ - i 6(3.29)
at 4p Az Si

as= -Qi- i- 1(3.30)
at Az

p tEe 5  I~ - (3.31)
P S SFO( i 2E Az

The boundary conditions at proximal (PI, Qo) and distal (PN' QN) extremities of the

arterial segment are defined in association with the upstream and downstream arterial

blood flow models, as described below.

3.2 Upstream Blood Flow
For the simplicity, I use a lumped parameter model to describe the upstream dynamics. A

large amount of work has been done in this area. In this thesis, I apply a four-element

3.2 Upstream Blood Flow 
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modified Windkessel model proposed by Landes [22]. This model has been adopted by

many researchers for the analysis of blood pressure waveform of the radial artery [23].

Figure 3.4 shows the modified Windkessel model. The aorta and major arteries are

modeled as a single elastic chamber (C,), which stores the blood ejected from the left ven-

tricle during a systole. The distal vessels are modeled as capacitive (Ce) and resistive (Rcp,

RPP) elements, through which the blood drains during a diastole. The oscillatory effect of

blood propagation is taken into account by introducing an effective mass (Is). The

dynamic equations for the upstream are derived as below, where Qc is the cardiac output:

dPC 1
c= -(Qs-Q) (3.32)

dQ, 1
s = -(P-PO - RP QS) (3.33)

dP0  1
(Qs-Qo) (3.34)

where Q0 can be solved from the algebraic equation and the constitutive law of the

arterial wall on the 1st node of the local segment derived in Section 3.1:

Q O = (3.35)
RPP

- S SO 2 ; () (3.36)

3.2 Upstream Blood Flow 
25

3.2 Upstream Blood Flow 25



C, Cp

* I * Pp

QS Q0

Figure 3.4 Extended Windkessel model for upstream dynamics.

Cd

PN . Red Pd Rd

QN

Figure 3.5 Classic Windkessel model for downstream dynamics.
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3.3 Downstream Blood Flow
The downstream dynamics extends the hemodynamic model to the end of the artery. In

many literatures, it is common that veins are modeled as a reservoir in conjunction with

arterial hemodynamic modeling. Since our approach is currently applied to digital arteries,

which is close to veins, the inertia term in the downstream is negligible. The classic Wind-

kessel model is used to model the downstream as shown in Fig. 3.5, where Cd is the com-

pliance of the vessels in downstream, Rcd is the characteristic resistance, Rpd is the

peripheral resistance, P, is a constant pressure.

The dynamic equation for the downstream can be written as:

dPd _ lP(-P
-- =N R-d) (3.37)

dt Cd N pd )

where QN can be solved from the algebraic equation and the constitutive law of the

arterial wall on the Nth node:

QN R d (3.38)
Rcd

- ~ VE e (S SNOEA(N-N0 (3.39)
N A N 0 ~0 -

3.4 State-space Representation of Entire Arterial Model
In this section, the models for the local arterial hemodynamics, the upstream and down-

stream dynamics, described in Section 3.1, 3.2 and 3.3 respectively, are integrated to rep-

resent an entire systematic arterial stream in the state-space form.
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The entire arterial model has (2N+3) state variables and two inputs, defined as follow-

ing:

X = [Pe Qs PO Q i -- -I S ... SN Pd] ;(2N + 3) x 1 (3.40)

u = QC P ;2 x 1 (3.41)

From the continuity equation given by (3.22) and the constitutive law of the arterial

wall given by (3.26), the internal pressures Pi can be expressed in terms of the above state

variables as:

Pi te - TW )) (3.42)

2 So isi Az

For further analysis of the nature of the hemodynamic behavior of the arterial flow, we

linearized the dynamic model for local arterial segment given in (3.21) and (3.22) as fol-

lows:

dQ_ 47tv + tFEe 1, +tEe
i- +Q2 (+ 1 -2QQ+ Q 1 )- (S, +1 - S)dt So 4pAz JS0  4pAz s0

for i = 1,2,..., N-1 (3.43)

dSi Q -Qi _
for i = 1,2,..., N (3.44)

dt Az

From the dynamics equations for the upstream, eqs. (3.31) - (3.35), the downstream,

eqs. (3.36) - (3.38), and the local arterial segment, eqs. (3.41) - (3.43), we can derive the

state-space representation of the extended model in the following format:
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x = Ax + Bu

where A and B are:

[Kl
LK ;(2N + 3) x (2N + 3)
KN

;(2N + 3) x 2

1
Ad = -____Adg-~

-J Eeq J
4 , A 2 N -1
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-rEe 
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Chapter 4

Observability Analysis and Kalman Filter Design
In this Chapter, the blood pressure estimate function and the observation functions will be

formulated to complete the state-space representation of the hemodynamic monitoring

system. The observability analysis will be conducted based on the state-space formulation

and it will be found that the system is not observable but partially observable. Finally,

based on the observable/unobservable decomposition, it is shown that a low-order Kalman

filter can be designed to estimate the blood pressure under the partial observability condi-

tion.

4.1 Blood Pressure Estimation Function
From the viscoelastic model of the arterial wall, it has been shown that blood pressure can

be estimated from a part of state variables, such as:

P . n =Sei-So- wQi-Qi for i = 2,..., N (4.1)
2SOASO E Az

Since the objective of this thesis is to estimate temporal variation of the blood pressure

at a point of the peripheral artery, I am concerned with only one blood pressure from the

above blood pressure variables. Let P2 be the primary concern and p(t) denote P2 (t) in

what follows in this thesis. Then the estimate function p can be expressed as a linear com-
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bination of the state variables x as

P = P2 = gT x (4.2)

where g is the estimation vector( 1 x (2N + 3)),

,Feq, Frce% 11 IEe0 0 __ 0 ... 0 __0 ... 0
g 2AzS0 SO 2AzS 0 I. 2S (.

St 4 th 5 th (N + 2 +i) th (2N + 3)th

4.2 Observation Functions

To formulate a state estimator for the hemodynamic system, the observation equation must

be defined based on the instrumentation methods to be used. As stated before, the objec-

tive of the Kalman filter is to continuously estimate blood pressure merely from noninva-

sive and non-intrusive sensors on a peripheral skin surface. For the purpose of ambulatory

and continuous patient monitoring, our group has been developing wearable sensors using

two photo plethysmographs (PPGs) and an electrical impedance plethysmograph (EIP) in

a ring configuration, as shown in Figure 4.1. In this thesis, I formulate and design a Kal-

man filter based on these sensor signals.

A PPG employs a pair of LED and photo detector to monitor the variation of the arte-

rial diameter. Suppose that a photo plethysmograph is attached on the skin surface at both

ends of the arterial segment under consideration. Then, the two observation functions y,

and Y2 can be simply described by using state variables as:

y1 (t) = S1(t), y2 (t) = S 2(t) (4.4)
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Figure 4.1 Conceptual implementation of the sensor design for cuff-less blood pressure
monitoring
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Figure 4.2 Prototype for the experiments
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An EIP uses four electrodes to measure the electrical impedance of the arterial seg-

ment surrounded by the electrodes. EIP is known to provide the absolute measurement of

volumetric change of the arterial segment. Therefore, supposing that the electrodes are

located at the both ends of the arterial segment under consideration, the output of EIP y3

can be described in terms of the state variables as:

y 3(t) = V(t) = ISAz + (S 2 + ... + SN - I)Az + SNAz (4.5)

Defining

defined as

y(t) = [yI(t), y 2 (t), y3 (t)] the observation equation can finally be

y(t) = Cx(t) (4.6)

where y is the output (3 x 1 ), x is the state variable ( (2N + 3) x 1 ), C is the output

matrix ( 3 x (2N + 3) ),

0
0

0

1st

0
0

0

(N + 2 )th

1
0

Az

(N + 3 )th

0
0

Az

0
0

Az

0
1

AZ
2

(2N +2)th

0
0

0

(2N + 3 )th

(4.7)

Summarizing the above formulations by eqs. (3.44), (4.2) and (4.6), the arterial hemo-

dynamic monitoring system can be represented as:

x = Ax + Bu,y = Cx,p = g x (4.8)

4.3 Observability Analysis

Before designing a Kalman filter for the system given in eq.(4.8), observability analysis
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has to be conducted to test the observability condition of the system. The standard test is

so called "Algebraic Observability Theorem [22]", and it states:

A system (A, C) of order n is observable if and only if the rank of the observability test

matrix, defined by eq. (4.9), equals to n.

C

O(A, C) = CA (49)

It is easily confirmed from numerical analysis that the hemodynamic system given by

eq.(4.8) does not meet the above observability condition. It was thus expected since the

sensor signals y are obtained only from the peripheral arterial segment and the entire state

variables x cannot be re-constructed from the limited sensor signals. However, since the

objective of this thesis is to estimate the blood pressure expressed by eq.(4.2), it is not nec-

essary to be able to estimate the entire state variables. In other words, it suffices if the

blood pressure p can be expressed as a linear combination of limited state variables as long

as these state variables are included in the observable subspace.

4.3.1 Observable-Unobservable Subspace Decomposition

To illustrate the argument, I first decompose the entire state space into the observable

and the unobservable subspaces. Let r(<n) be the rank of the observability matrix given in

eq.(4.9) for the system represented by eq.(4.8). The General Decomposition Theorem in

[24] states that there always exists a similarity transformation matrix T that transform the

system in the form

= Az+Bu (4.10)
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y = z(4.11)

where

x = Tz = [T 0 T0 ] zo (4.12)

= T~ AT = 0 (4.13)

Aj50 Ab

- -1 B (4.14)
B=T B

S=CT = Co 01 (4.15)

The dimensions of the matrices involved in equations are:

A0 : r x r A 5 : (n - r) x (n - r); Ab 0 : r x (n - r);

B 0 : r x h ;B5 : (n - r) x h ; CO: m x r ; zo : rx ; z :(n - r)x 1;.

In the transposed state space, the Z-space, the upper part of z, designated zo

embodies the observable or reconstructible part of the state space, and the lower part of z,

denoted z. , embodies the unobservable part. Namely, the original system can be

decomposed into the observable subspace and the unobservable subspace as follows:

Observable Sub-space zO = Aozo + BOu,y = Cozo (4.16)

4.3 Observability Analysis 
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Unobservable Sub-space z. = Aozo + Abzb + Bau (4.17)

An important implication from the above observable-unobservable subspace decom-

position is that the target variable p could be re-constructed from limited sensor signals y if

p is a linear combination of the observable variables zo, even if the entire system is not

observable. The condition of the observability of p is called "partially observability condi-

tion".

4.3.2 Partial Observability Theorem

Partial Observability Theorem states:

A system (A, C) is partially observable for the estimate function p = g x if and

only if

O(A, C) - g # 0 (4.18)

Proof of Partial-Observability Condition

From eqs. (4.8) and (4.12) - (4.15), the estimation variable p can be expressed with

observable and unobservable state variables as:

P= gT x = g T[To T5]jzj = gT Toz+gT Tz (4.19)

Therefore, the sufficient and necessary condition for p to be observable is:

T T5 = 0 
(4.20)

From the observability matrix given by eq. (4.9), it is found:
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- 0 0
C T C _

O(A, C) - T = CAT A COO 0 (4.21)

CA A- T -n-i
r n - r

Therefore,

O(A, C) - T5 = 0 (4.22)

Eq. (4.22) says that T5 represents the null space of O(A, C), while eq. (4.20) means

that g is orthogonal to T5 . Thus it can be concluded that, the partial-observability

condition for estimating p is simply that the vector g does not belong to the null space of

the observability matrix O(A, C):

O(A, C) - g # 0

4.3.3 Selection of Sensor Combination

I utilize the above theorem as a guideline for sensor selection. As the theorem stated,

blood pressure can be estimated based on a given sensor combination, given the part of

state variables necessary to estimate blood pressure lying in the observable subspace. This

concept is illustrated in Figure 4.3.

From trial and error, the sensor combination described in section 4.2 is found satisfy-

ing the partial observability condition for blood pressure estimation. Therefore, I can

design a Kalman filter to estimate the blood pressure.
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Figure 4.3 Schematic of Sensor Selection
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4.4 Design of a Kalman Filter for Blood Pressure Estimation

In general, a Kalman Filter is designed for a system described by eq. (4.9). However, in

the application of blood pressure estimation, we apply the Kalman filter to the observable

subspace only, because the 'reduced-order Kalman filter' has the following advantages

over full-scale Kalman filter:

- Computational Simplicity - Since the order of the estimator is smaller, the computa-

tion involved is less than the full-scale Kalman filter. Ideally, the estimation should be con-

ducted online, thus the computation simplicity is one of the most concern for the real

application. This issue is more significant when the number of the nodes in local segment

increases.

* Numerical Stability - Since the reduced-order Kalman filter does not involve the

unnecessary calculation for the un-observable subspace, it can avoid any numerical insta-

bility due to the divergence of the un-observable subspace.

The new design of the observable-subspace Kalman filter reconstructs only the observ-

able part of the state space, whose dynamics is given by eq. (4.16). Considering the inevi-

table process noise and measurement noise, the dynamic equations (4.16) must be

extended as:

ZO = AOzO+ Bou + Fv (4.23)

y = COzo +w (4.24)

where v and w are white noise processes, having known spectral density matrices, V

and W, respectively.
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Using the above equations, the observable sub-space zo can be estimated by the fol-

lowing dynamic equations:

zo = A z, + Pou + K(y -- S) (4.25)

Y = COZo (4.26)

where y(t) is the real measurement from sensors, y;(t) is the estimated measure-

ment from the Kalman filter, 20(t) is the estimated observable sub-space, and K is the

Kalman gain matrix, which is updated as:

K = MC W-1 (4.27)

T T -1 T (4.28)
M = AM+MA -MC W CM+FVF

where M(t) is the covariance matrix of the state estimation error z(t) = z0 (t) - z(t).

In the above derivation, v and w are assumes un-correlated. By updating the Kalman

gain based on the nature of the process noises as described in the above equation, the Kal-

man filter provides the optimal estimation of the observable sub-space. The proof of the

optimality of the Kalman filter follows the standard analysis of full-scale Kalman filters,

which can be found in [25].

Finally, the internal blood pressure p(t) can be estimated by substituting the estimated

state variables in eq. (4.25) into eq. (4.2),

p = g T (4.29)
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Chapter 5

Experimental Results and Discussions
To experimentally validate the approach, the Kalman filter designed in previous section is

implemented using the plethysmographic measurements obtained from left middle fingers.

The numerical computation is conducted in MATLAB on a PC. The blood pressure esti-

mated by the Kalman Filter is compared against the digital blood pressure measured by a

commercial FDA approved arterial tonometer.

5.1 Experimental Setup
The experiment was conducted on a digital artery because finger plethysmographs are

commercially available and easy to be miniaturized. Figure 5.1 shows the experimental

setup. Outputs S1 and S3 (as in Eq. 4.4) are measured on the left middle finger by dual

photo plethysmograms and V (as in Eq. 4.5) is measured on the same finger by an electri-

cal impedance plethysmogram. An arterial tonometer (Millar, TX, USA) is used to mea-

sure the digital blood pressure on the same location. The simultaneous measurements,

shown in Figure 5.2, are sampled by LabView (National Instruments, TX, USA) at a rate

of 1000 samples/second, and a PC is used for the Kalman filter computation, as shown in

Fig. 5.1.
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The following parameter values were used for the simulation, which are obtained from

published literatures such as [26]-[29]:

Blood density p = 1.06 g/cm3,

Blood viscosity g = 0.04 poise,

Arterial wall viscosity ri = 100 dyne-s/cm3,

Arterial wall elastic modulus E=7x10 5 N/M2 ,

Radius of digital artery r = 0.5 mm,

Thickness of the arterial wall e = 0.1mm,

Downstream characteristic resistance Rcd = 1-1x104 dyne-s/cm5 ,

Downstream peripheral resistance Rpd = 1.2x10 5 dyne-s/cm5,

Downstream compliance Cd = l.1x10~4 cm5 /dyne,

Upstream characteristic resistance RCP =1.18x103 dyne.s/cm5,

Upstream peripheral resistance RPP = 2.58x10 4 dyne-s/cm5,

Upstream compliance in large arteries C, = 1x10-5 cm5 /dyne,

Upstream compliance in small arteries C, = 1.94x10 6 cm5 /dyne,

Upstream inertia I, = 887.97gram,

Length of digital artery segment L = 1 cm,

Nodes of the system N = 3.

The distributed model of the arterial system used in the experiment is shown in Figure

5.3. The inputs, outputs and state variables of the simulated system are defined as

inputs u = [Qc pEY,

outputs y = [S] V S3]f,

state variables x = [Pc Qs P1 Q] Q2 S1 S2 S3 pd]T.

One of the inputs, cardiac output Q, is assumed as an impulse train as shown in Figure

5.4 because the model for upstream dynamics was designed such that the impulse

response of the model can reproduce radial pressure. The other input, venous pressure Pv,
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is assumed to be constant (20mmHg), since only the arterial dynamics is concerned and

the venous dynamics is relatively negligible. However, we still keep it as an input in our

application, since it is easier to extend this approach for pathological studies, where

venous pressure can not be treated as a constant any more.

5.2 Estimation of Blood Pressure
The Kalman filter designed in Section 4.4 was computed with the above parameter values

in MATLAB to estimate the observable state variables and the blood pressure. Inputs Q,

PV and measurement Y1, Y2 and Y3 are fed into the observable-subspace Kalman Filter.

The error covariance and the Kalman filter gain are calculated for each sample of the

sequence and the observable state variables are updated according to eq. (5.25) and (5.26).

The estimated state variables are then substituted into eq. (5.29) to estimate the blood

pressure.

During designing the Kalman filter, the system needs to be decomposed into the

observable-unobservable subspaces. In general, the singular value decomposition and the

eigen value decomposition are popular methods to de-couple the state space. A staircase

algorithm given by [30] is used here because the transformation matrix T in this algorithm

is a unitary matrix and this special property is beneficial for understanding the nature of

the observable subspace as follows.
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The observable subspace of this experimental setup is given by T0T such as

zO = T x . In this experiment, T0T can be calculated numerically, giving the result:

0 0 0 -0.7071 -0.7071 0 0 0 0
0 0 0 0.7071 -0.7071 0 0 0 0

T (5.1)
T 0 = 000 0 0 0 1 0 0

000 0 0 0.7071 0-0.7071 0
_0 0 0 0 0 -0.7071 0 -0.7071 0

Each row of T T matrix represents one observable combination of the state variables.

Thus, the observable subspace is expanded by: Q1+Q2, Q2-Q1, S2, S1-S3, S1 +S3 . Note that

the columns corresponding to upstream and downstream variables are zeros, and, there-

fore, the observable subspace is constructed only from the state variables in the local arte-

rial segment.

Recall from eq. (4.1) that the internal blood pressure P2 is a function of S2 and Q2-QJ:

= . TEe s QTlw2 - 1(5.2)
2 So iO E Az)

Therefore the digital blood pressure can be estimated from the observable subspace

using the observable subspace Kalman filter based on the selection of the sensors.

5.3 Results and Discussions

5.3.1 Accuracy of the Kalman Filter

Figure 5.5 shows the comparison between the sensor measurement and the Kalman Filter

estimation of the output, and Figure 5.6 compares the tonometer measurement and the

Kalman filter estimation of the digital blood pressure. Both figures show that the Kalman

filter can catch up with the real output and blood pressure in a short time. The experimen-
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tal results verify that it is feasible to estimate local blood pressure waveform accurately

based on the measurements of photo plethysmographs and electrical impedance plethys-

mograph, even though the inputs and the upstream and downstream dynamics are simpli-

fied.
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Figure 5.5 Comparison of output measurement V and estimation
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Important to note that the Kalman filter can estimate the blood pressure even with

great simplification of the hemodynamic modeling. In general, the performance of the

Kalman filter for tracking the states of the real plant and minimizing the estimation error

depends significantly on the accuracy of the modeling. The successful result of the Kal-

man filter in this paper is attributed to the following nature of the arterial hemodynamic

system. First, the local arterial segment was precisely modeled and the output signals were

measured from the local segment. Consequently the observable subspace is confined to the

local segment because of the serial, distributed configuration of the entire hemodynamic

model. Moreover, the Kalman filter used for the blood pressure estimation was designed

only for the observable subspace, the state variables of which are derived only from the

state variables related to the local segment. Therefore, the dynamics of the observable sub-

space is independent of that of the unobservable subspace, and the noises and uncertainties

in the unobservable subspace are isolated from the blood pressure estimation. The further

analysis about the robustness of this approach is given in the following sections.

5.3.2 Robustness Against Structural Uncertainties

The inputs and the models for the upstream and downstream blood flow were significantly

simplified to reduce the complication of the model and the computation. The input

impulse train was tuned by the systolic and diastolic blood pressure measurement from a

sphygmomanometer. The DC offset and AC amplitude of the impulse train was calibrated,

so that the blood pressure estimation had the same amplitude and mean value as the refer-

ence.

The effect of the uncertainties and errors in the upstream and downstream dynamics

was evaluated by numerical computation. Due to the serial structure of the model, the
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upstream and downstream affect the local model only via the variables on the boundaries,

such as Qo and QN. Since the observable subspace only involves the state variables in the

local arterial segment, the dependence of the observable subspace on the upstream and

downstream dynamics is determined by the dependence of Q0 and QN on the parameters in

the upstream and downstream.

From eq. (3.35), (3.36) and (3.38), (3.39), Q0 and QN can be solved as follows:

2S' AzP 0 + FrJei,,Q, - tEeAzS,
QO = 0 (5.3)

2S AzR, + Fer,

QN=Rkyk2  k kkk k=QN + S -kSI P (5.4)
N R 1+kIk2 dN-I R l+kIk2 N R 1+klk2

where ki and k2 are defined in eq.(3.46).

The upstream and downstream models influence the observable subspace through

these terms, where Rcd (downstream parameter) and Rpp (upstream parameter) are

involved. From the numerical computation, we found that the order of these terms is 100

times smaller than other terms. This implies that the effect of the parameters in the

upstream and the downstream models on the dynamics of the observable subspace

(reflected by AO matrix) is trivial, compared with the contribution from the parameters in

the local segment. Therefore, as we expected, the observable-subspace Kalman filter is

robust against the errors in the inputs and the models for upstream and downstream.

5.3.3 Robustness Against Parameter Uncertainties

The parameters used in the Kalman filter were assumed to be constant over time. How-

ever, it is natural that those parameters would change on the same person even within a

5.3Reuls ad isusson -
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short period of time due to the body temperature, stress, and so on. Therefore, it is quite

important to examine how the proposed approach is robust against the parameter uncer-

tainties.

There are totally 14 parameters involved in the Kalman filter. They can be categorized

into five groups:

1. geometric properties of the digital artery (radius r and thickness e);

2. properties of blood (density p and viscosity g);

3. mechanical properties of the arterial wall (wall viscosity Tj and wall elastic modulus

E);

4. fluidic parameters involved in upstream (characteristic resistance Rp, peripheral

resistance RP,, compliance in large arteries Cs, compliance in small arteries C, and

inertia Is);

5. fluidic parameters involved in downstream (characteristic resistance Rcd, peripheral

resistance Rpd and compliance Cd).

The influences of the parameters in the upstream and downstream dynamics on the

estimation accuracy were discussed in the last section. The properties of the blood, includ-

ing the density and viscosity of the blood, do not change rapidly, and therefore can be sep-

arated from the dynamics of the Kalman filter and will not affect the results significantly.

Thus we will concentrate on the geometric properties of the digital artery and the mechan-

ical properties of the arterial wall.

The radius of the digital artery varies significantly from subject to subject, and the

thickness of the digital artery may change quickly, when the skin temperature changes or

when the subject is in different mood. The mechanical properties of the arterial wall are

also controlled by the neutral system. They may change dramatically as well. Therefore, it

is very critical for the blood pressure estimation algorithm to withstand the influence of

the parameter uncertainties.
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Parameter Sensitivity - radius of digital artery
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Figure 5.7 Parameter sensitivity analysis: geometric properties of digital artery
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Parameter Sensitivity - elastic modulus
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Figure 5.8 Parameter sensitivity analysis: mechanical properties of the arterial wall
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The robustness of the Kalman filter against the parameter uncertainties was evaluated

by the parameter sensitivity analysis. One parameter was altered from its nominal value,

while others were held same. The root mean square error of the blood pressure estimation

was calculated. Figure 5.7 and 5.8 show the results of the sensitivity analysis for the geo-

metric properties of the digital artery and the mechanical properties of the arterial wall,

respectively. The x-axis is the relative error in the parameter, and the y-axis is the relative

root mean square error of the blood pressure estimation. We can conclude from the figures

that, the observable-subspace Kalman filter is robust against the parameter uncertainties.
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Chapter 6

Conclusions and Recommendations

6.1 Summary and Conclusions

A new method of noninvasive, continuous monitoring of arterial blood pressure has been

presented in this thesis. A prototype for this approach has been proposed and experiments

have been conducted on left-middle finger to verify the approach. The finger is instru-

mented with two photo plethysmographs and one electrical impedance plethysmograph in

order to monitor the dynamic behavior of the arterial blood flow. An observability analysis

proved that the digital blood pressure can be estimated from the observable subspace (i.e.

this system is only partially observable), even though the overall system is unobservable

from the limited peripheral sensors. Measured signals from these noninvasive sensors on

the digital arterial segment were integrated to estimate the state variables in the segment

based on the hemodynamic model. An observable-subspace Kalman filter was constructed

to estimate the state variables and the blood pressure. The experimental results indicate

that the approach can generate an accurate estimation of the arterial blood pressure even

from noisy sensor signals.

Unlike traditional blood pressure measurements, this approach uses only simple

plethysmographic sensors, which reduces the obstructions of the sensors to the human and

makes the miniaturization easier. Meanwhile, it is a feasible candidate for long-term con-

tinuously monitoring blood pressure.
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6.2 Recommendations for Future Work

To further improve this new approach, the following tasks are recommended for future

execution:

1. Investigate the interaction of the sensors with human body to ensure that signals are

properly measured.

2. Design miniaturized compact sensors to reduce the impact of the sensors on the

patients.

3. Quantitatively model the sensing processes to investigate the motion artefact.

4. Study the possibility of applying this approach in different body structures, such as

wrist, neck, etc., to reduce the motion artefact.

5. Investigate the robustness and sensitivity of the approach and design an adaptive

observer, which take into account varying parameters.
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