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Abstract

This thesis presents the first integrated treatment of the dynamic coupling between the
flowfield (aerodynamics) and rotor structural vibration (rotordynamics) in axial compres-
sion systems. This work is motivated by documented observations of tip clearance effects
on axial compressor flowfield stability, the destabilizing effect of fluid-induced aerodynamic
forces on the rotordynamics, and their potential interaction. This thesis elucidates the
nature of this interaction by extending the current understanding of aerodynamic forces
acting on the rotor, identifying the main nondimensional design parameters governing this
interaction, and assessing its impact on overall stability of the coupled system.

The model developed in this work employs a reduced-order Moore-Greitzer model for
the flowfield and a Jeffcott-type model for the rotordynamics. The coupling between the
fluid and structural dynamics is captured by incorporating a compressor pressure rise sensi-
tivity to tip clearance, together with a momentum based model for the aerodynamic forces
on the rotor. The resulting dynamic model suggests that the interaction is largely governed
by two nondimensional parameters: the sensitivity of the compressor to tip clearance and
the ratio of fluid mass to rotor mass.

A study of the aerodynamic forces reveals that they arise from three main contributions:
turning, pressure, and unsteady effects. Simple, analytical relations are developed which
allow these contributions as well as the net force to be evaluated in terms of a given com-
pressor geometry and operating point. These relations indicate that aerodynamic forces are
locked to the flowfield nonuniformity, and not to tip clearance asymmetry as is traditionally
assumed.

The aerodynamic-rotordynamic coupling is shown to generally have an adverse effect
on system stability. For a supercritical rotor and a typical value of the coupling parameter,
the stability margin to the left of the design point is shown to decrease by about 5% in
flow coefficient (from 20% for the uncoupled case). Doubling the value of the coupling
parameter produces a reduction of about 8% in the stability margin, and also gives rise to
rotordynamic instability at flow coefficients 7% higher than the design point.

A survey of the nonlinear post-instability behavior of the coupled system is presented,
in which a variety of limit cycle type instabilities (such as rotor whirl, rotating stall and
surge) are demonstrated, suggesting a rich dynamical character and highlighting several
examples that can be the basis for future research.

Thesis Supervisor: Dr. James D. Paduano
Title: Principal Research Engineer, Department of Aeronautics and Astronautics
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

The design and operation of axial turbomachines are plagued by different types of

aerodynamic and structural instabilities such as surge, rotating stall and shaft whirl.

These instabilities may subject the machine to forces and stresses beyond what the

components are designed for. In addition to the possibility of costly and catastrophic

mechanical failure of these components, the mere interruption of operation may be at

least as catastrophic (e.g., aircraft jet engines) or as costly (e.g., gas and oil production

plants).

Many advances in understanding and dealing with these phenomena have taken

place over the past few decades. Nevertheless, more demanding operational and eco-

nomic requirements are still posing significant challenges in this field. This study

addresses one such challenge; namely, the interaction of rotordynamics and aerody-

namics in axial compression systems.

The aerodynamic performance and flowfield stability of axial turbomachines are

known to strongly depend on the clearance gap between the tips of the rotating blades

and the stationary casing. Across this gap, known as the tip clearance, a leakage flow

that traverses the main blade-passage flow is established as a result of the pressure

difference between the two sides of each blade. The mixing of the two flow streams
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and the growth of the resulting tip vortex as it convects downstream are among

the main sources of viscous losses in axial turbomachines. In an axial compressor, for

instance, these losses are manifested as a reduction in both pressure rise capability and

efficiency, as well as an increase in the stalling mass flow rate (i.e., loss of stability). In

general, larger tip clearances correspond to higher losses. Further, change in the mean

tip clearance, as well as its circumferential variation, may impact both performance

and stability. Such considerations have been the subject of several studies concerned

with the flowfield stability of compression systems [31, 56, 57, 34, 44, 30, 28].

Tip clearance may change either permanently (e.g., due to rotor rubs against the

casing), or dynamically as the rotor moves within the casing or as the casing deforms

in shape. The motion of the rotor is governed by the structural dynamics of the

rotor-bearings subsystem (the study if which is known as rotordynamics) and by the

aerodynamic forces acting on the rotor blades and hub. Under certain conditions,

these forces can be of such magnitude and direction that they cause the rotor center

to follow a fixed orbit, possibly of large amplitude-a self-excited instability known

as rotor whirl. Such rotordynamic behavior under the influence of these forces is an

important consideration in the design and operation of rotating machinery. Together

with several other rotordynamic phenomena (e.g., response to imbalance and oil whip

in journal bearings), rotor whirl has long been recognized and addressed in the dis-

cipline of rotordynamics as an undesirable structural response of potentially severe

consequences [75, 3, 79, 7, 19, 6, 49, 71, 69, 73, 22, 2, 74].

These issues are further complicated by the fact that the dynamic behavior of

the flowfield and the rotordynamics in axial compression systems may be strongly

coupled. The coupling is established through the dependence of the rotordynamics on

the aerodynamic forces described above, and through the dependence of the flowfield

on the tip clearance. In other words, as a result of the rotor motion and the associated

changes in tip clearance distribution, the flowfield-and hence the aerodynamic forces

on the rotor-vary such that they influence subsequent rotor motion and flowfield

adjustments, see Figure 1.1.
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Figure 1-1: Aerodynamic-rotordynamic coupling mechanism.

There is evidence, both experimental (e.g. Weigl [81]), and theoretical (e,g.,

Gordan [28]), that this interaction is significant in that, under certain conditions,

the rotordynamic behavior may potentially alter (either favorably or adversely) the

aerodynamic stability, or vice versa. Ultimately, the understanding of such interac-

tion and its implications should open the door for new design and control concepts

which yield more reliable and stable machines. Specific examples are given below in

Section 1.2.

Given the fact that the performance and stability of axial compression systems are

very sensitive to tip clearance variation and distribution-which is directly influenced

by movement of the rotor-and that the rotordynamic stability may also depend on
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the forces generated by the flowfield, it becomes of interest to understand the overall

dynamic picture of the coupled system, where all these subsystems are interacting

together. It is the mission of this thesis to take the first steps towards establishing

this understanding.

1.2 Previous Work

This thesis builds on a large body of available research in the different disciplines that

it brings together; namely, aerodynamic stability of axial compression systems and

tip clearance effects on the one hand, and rotordynamics on the other. The following

is a brief survey of relevant previous work.

1.2.1 Aerodynamic Stability of Axial Compression Systems

General Stability

The early theoretical and experimental work of Emmons et al. [23] established some

of the fundamental concepts needed to examine and understand surge and rotating

stall. Greitzer [31] utilized these concepts to construct a lumped parameter, nonlinear

surge model. His experiments and numerical simulations showed the importance of

system parameters in determining the existence and type of instability. The next main

step in this field was due to Moore [56] and Moore and Greitzer [57, 34]. These works

provided a class of models that capture the dynamics of both axisymmetric, surge-

like and nonaxisymmetric, stall-like disturbances under uniform inlet flow conditions.

Hynes and Greitzer [44], and more recently Longley et al. [52], extended this approach

to account for the effects of stationary and rotating inlet distortions respectively.
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Tip clearance Effects

The early work by Smith [67] addressed the effect of tip clearance on axial compres-

sor performance and provided a compilation of several experimental data correlating

compressor pressure rise to tip clearance. Another compilation of such data was given

more recently by Baghdadi [4]. Storer and Cumpsty [45] proposed a simple model to

predict losses due to the tip clearance leakage flow in an axial compressor. Horlock

and Greitzer [42] developed a linearized steady analysis based on actuator-disc theory

to predict the distorted flowfield produced by a tip clearance asymmetry.

a = movement of neutral stability point as a result of asymmetry
0.84- change from 0 to 2% of clearance/chord, characteristic peaks

aligned
b = movement of neutral stability point as a result of peak shift to a

0.82- 45 degree line at 2% asymmetry

0
0.80-

0.78 -
01
0
a) 0.76 b

D 0.74 -

0.72

0.70
0.35 0.4 0.45 0.5 0.55 0.6 0.65

Flow Coefficient, 4

Figure 1-2: Effect of stationary tip clearance asymmetry on compressor stability, from
Graf et al. [30].

The effect of tip clearance on aerodynamic stability of axial compression systems

was addressed by Graf [29] and Graf et al. [30] who used a modified version of the

Hynes-Greitzer [44] model to examine compression system stability, both theoreti-

cally and experimentally, under stationary tip clearance asymmetry (e.g., distorted

casing). Figure 1-2 shows the locus of neutral stability points as the amplitude and

wavelength of the asymmetry are varied. The study showed that the asymmetry has

a destabilizing effect which is higher than that of a uniform clearance having the same

mean. Gordon [28] generalized that treatment to include tip clearance asymmetries
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Gordon [28]. (vwh is the rotor whirl frequency and el is the rotor offset.

that may be rotating at any frequency. He showed that the inception of instability is

adversely affected as this frequency becomes closer to a critical value, which is in the

neighborhood of the rotating stall first mode eigen-frequency. Figure 1-3 illustrates

this effect as calculated for the MIT 3-stage axial compressor.

Control of Instabilities

Several experimental and theoretical works branched from the original Moore-Greitzer

model, addressing various modifications and extensions. One such extension is of

particular significance. The concept of active control of aerodynamic instabilities,

first proposed by Epstein et al. [24], has evolved to be a major area of interest in

research and industry. A review of active control concepts is given by Paduano et

al. [65]. A relevant example from these active control efforts is the concurrent work

by Spakovszky [72] in which a detailed experimental investigation of using magnetic

bearings to stabilize rotating stall by means of actively moving the rotor and thus

adjusting the tip clearance distribution is proposed and assessed.
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Nonlinear Aspects

The nonlinear nature of the Moore-Greitzer type models together with the fact that

fully developed surge and rotating stall are ultimately nonlinear, limit-cycle type in-

stabilities, have attracted attention from the nonlinear dynamics community. Abed

et al. [1] addressed the bifurcation behaviour of the simple, lumped parameter surge

model. McCaughan [54] presented a detailed bifurcation analysis of the Moore-

Greitzer third order model and outlined the post-instability behaviour-including

both surge and rotating stall-of axial compression systems in the B--Y parameter

space (B and -y are the ratio of system compliance to inertia and the throttle coef-

ficient respectively). Finally, several investigations (e.g., Nayfeh [62] and Wang [80])

have been conducted to apply nonlinear control concepts to alter the undesirable

post-instability behaviour of the system. This, in general, amounts to attempting

to change the nature of the bifurcation from subcritical to supercritical. In order to

achieve this, Wang [80] theoretically examined the nonlinear aspects of actively con-

trolling surge and rotating stall by means of tip-clearance actuation through magnetic

bearings.

1.2.2 Rotordynamic Stability

General

The Jeffcott rotor' [46] is essentially stable since it is a damped vibratory system

consisting of a mass, springs and dampers. The potential for instability arises from the

interaction between centrifugal forces due to whirl-like rotation, and several internal

and external forces acting on the rotor. Examples of such forces include fluid forces

(such as those generated from tip clearance asymmetry, labyrinth seals flow, and oil

flow in journal bearings) and forces due to internal rotor damping. A physical and

'The Jeffcott rotor model is a dynamical representation of the rotor structure that consists of a
spinning disc with a point mass supported by springs and impeded by viscous damping. Section 2.2
of this thesis presents a detailed description of this model.
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concise description of such effects and how they lead to instability can be found in Den

Hartog [16] and Crandall [8]. More recent presentation can be found in Ehrich [18]

and Childs [6].

Source and Effect of Aerodynamic Forces Induced by Tip Clearance Asym-

metry

As we mentioned earlier, the role of aerodynamic forces in producing rotordynamic

whirl has long been recognized. In order to explain rotor whirl, Thomas [75] and Al-

ford [3] were the first to suggest simple models to link the whirl-inducing tangential

fluid force resulting from a tip clearance asymmetry produced by a displaced rotor.

Such models are of a phenomenological nature in that they assume a linear propor-

tionality between the tangential aerodynamic force, FA', on the rotor and the radial

rotor offset, r, with the proportionality factor, q, being based on efficiency arguments

[3, 18, 6], i.e., FA' = qr. It is argued that the factor q depends on another parameter

which we label as #^", and which is defined as the change of the turbomachine's ther-

modynamic efficiency per unit rotor displacement. Alford also carried out a linear

stability analysis of a Jeffcott type rotor and showed that the rotor loses stability

in the presence of aerodynamic forces according to the simple condition c > q/w,

where c is the damping coefficient and w is the undamped natural frequency of the

rotor structure. There is, however, a great deal of uncertainty involved in estimating

#Al and in determining its dependence on the turbomachine's geometry and flowfield

conditions.

As an example of the destabilizing effect of these forces on the rotordynamic

stability of an actual engine, Akin et al. [2] reported on aerodynamically-induced rotor

instability in the TF30 P111 engine. The authors accounted for different sources of

destabilizing forces and concluded that, in that case, the Alford-type forces generated

on the turbine side of the engine were responsible for the instability. Incorporating

an oil-film damper at the bearing was proposed, analyzed and implemented, and was

shown to eliminate the problem. The authors concluded, however, that the general

30



determination of the source of instability is difficult and requires careful testing and

analysis.

Measurement and Prediction of Aerodynamic Forces

Following Thomas and Alford's work, there has been a substantial amount of work

dedicated to understanding aerodynamic forces in turbomachines. On the turbine

side, Song et al. [70] developed and experimentally verified a first-principles based

model to predict these forces in an axial turbine. In order to estimate these forces

in an axial compressor, Colding-Jorgenson [7] adopted the actuator-disc based model

of Horlock and Greitzer [42], whereas Ehrich [19] used a parallel compressor model

together with experimental flowfield measurements at different clearance settings.

Very recently there has been a comprehensive study of aerodynamic forces that

specifically addresses axial compressors. In a two-part paper by Storace et al. [73]

and Ehrich et al. [22], an experimental and analytical effort is reported in which

an offset rotor in a low speed four stage research compressor is considered. Detailed

measurements of pressure distribution on the two sides of an airfoil as it travels

through regions of different tip clearance were recorded and used to calculate the

force on that blade. The net force on the rotor was then deduced. In a related

work by Spakovszky [71] (also partly reported in Ehrich et al. [22]) aerodynamic

forces are calculated by implementing a blade-passage control volume analysis for

which flowfield information is obtained from a separate calculation based on a Moore-

Greitzer type model. Song et al. [69] also presented an analytical calculation of these

forces along the same lines of his earlier work on turbines [70]. Examples of these

results are presented and compared to the results of this thesis in Chapter 3.

These efforts have established a foundation for understanding the nature of aero-

dynamic forces, and produced a database of measurements against which analytical

calculations can be compared. Nevertheless, these efforts are limited in one or more

of the following ways:
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" The configurations considered are usually static or steady in some sense (i.e.,

either the rotor is fixed or the flowfield dynamics are excluded). The dynamic

nature of the problem which ultimately decides the presence and direction of

whirl is not addressed, and sometimes is overlooked when making qualitative

predictions about stability.

" Except for Spakovszky [71} and Song [69], the force is generally linked directly

to the tip clearance distribution, ignoring the fact that the flowfield velocity

and pressure nonuniformity-which is the true source of the force-may be

considerably out of phase with the geometric tip clearance distribution. The

result is a possibly incorrect intuition about the direction of the net force.

" The force contribution due to the hydrostatic pressure nonuniformity is usually

not accounted for in the rotordynamic stability analysis, and has been over-

looked in most previous treatments.

" Most of these efforts are either specific to one configuration or compression

system, restricted to a small range of operating conditions, or are computation-

ally intensive. The result is an inability to extract general trends, to establish

dependency on parameters, or to build an overall system dynamic model of a

manageable complexity.

1.2.3 Aerodynamic-Rotordyanmic Coupling

In the course of active control experiments of rotating stall, Weigl [81] reported on

potential coupling between the rotordynamic and aerodynamic domains when he ob-

served that the frequency of rotor whirl (due to a deteriorating journal bearing) and

that of rotating stall coincided when they were simultaneously present. He also ob-

served that the first mode of circumferential flow disturbances had a much higher

energy content prior to the onset of instability, as compared to runs with the healthy

bearing, Figure 1-4.

Another indication of possible coupling comes from a recent problem observed
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during the testing of a new engine which is still in the developmental stage, Ehrich [21].

The problem included the loss of aerodynamic stability (surge event) at the design

point in the presence of a rotordynamic, subsyncronous, whirl-like behaviour which

has been identified as a subharmonic, nonlinear response to imbalance.
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Figure 1-4: Effect of rotor whirl on rotating stall inception, data from Weigl [81].

The above overview of previous research establishes strong links between some

aspects of axial compressor aerodynamics and rotordynamics in that it sheds light

on several ways in which one of the two domains can impact the other. Having said

that, and realizing that these two dynamic systems (fluid and structural) are in fact

coupled and interacting, the next logical step is to understand this coupling and assess

its significance.

1.3 Research Objectives

The mission of this thesis is to present the first integrated treatment of aerodynamic-

rotordynamic coupling in axial compression systems. This treatment is aimed at

developing a better understanding of phenomena that have not been explored before

and that may directly contribute to the design and operation of more stable and

reliable compression systems.

To that end, the following research objectives have been identified:
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" Extend the current understanding of the nature of aerodynamic forces gener-

ated by asymmetric tip-clearance in axial compressors. In particular, establish

simple, first-principles based relations, between these forces and a given flow

nonuniformity, that accounts for all force contributions and that is valid over a

wide range of compressor operating conditions.

" Determine the set of nondimensional parameters governing the coupling of aero-

dynamics and rotordynamics in an axial compression system, and relate these

parameters, and how they scale, to a physical description of the mechanisms at

work.

* In terms of these parameters, determine the conditions under which aerodynamic-

rotordynamic coupling is important.

* Predict the potential impact of this coupling on the stability of the flowfield and

rotor structure. In particular, determine physical arguments and relative design

parameter values that are potentially: i) dangerous or destabilizing, and/or ii)

beneficial to overall stability.

1.4 Approach and Scope

In order to achieve the above objectives, the following approach is adopted:

Modeling of the coupled System: This involves developing and integrating the

following sub-models

* A fluid dynamic model of the flowfield: A Moore-Greitzer type model is adopted,

with modifications to account for tip clearance variation. Such models have

been used extensively by many researchers and have been proven to capture

the main aspects of the physics relevant to the study of flowfield stability. In

addition, the assumptions and limitations of such models are recognized and

understood. Once the model is formulated, a Galerkin procedure is implemented

to transform the partial differential equations into a compact set of ordinary
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differential equations that are more amenable to analytical work and reliable

numerical simulations. In that procedure, a truncated Fourier series is used as

the basis function to simplify the periodic circumferential dependence.

* A rotordynamic model of the structural dynamics: A simple, Jeffcott-rotor type

(mass-spring-damper) model is utilized for the purposes of the "baseline" model.

Despite its simplicity, this model is frequently used within the rotordynamic

community to demonstrate basic features of the rotor structural response. The

limitations of this class of models are also well-understood and can be accounted

for.

9 A model of tip clearance effects on compressor performance: This is the first

coupling channel between the two domains. To capture this effect in the current

study, the compressor pressure rise characteristic function may be modified with

additional term(s) to account for the local loss in pressure rise at locations of

large clearances. This is motivated by the desire to avoid modeling the complex

details of the tip leakage flow, and is supported by several compilations of

experimental data (e.g., Smith [67] and Baghdadi [4]) for different compressors.

The same approach has been used by Graf [29] and Gordan [28] in the context

of compression system stability

* A model of the aerodynamic forces on the compressor rotor: This is the second

coupling channel between the two domains. Unlike the first three sub-models,

which are readily available for incorporation into this study with only minor

modifications, the force model requires special attention and a different ap-

proach. As discussed in Section 1.2, the work previously done on aerodynamic

forces acting on compressor rotors has so far been inconclusive as to when and

how these forces can lead to rotor whirl instability. In addition, it has not pro-

vided a general and simple characterization of how these forces depend on both

flowfield nonuniformity and system parameters. In the context of aerodynamic-

rotordynamic interaction, in which these forces play a dominant coupling role, it

is essential to correctly include all the forces on the rotor in the overall dynamic
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model. Therefore, a first-principles, control volume approach is adopted in this

study. The unsteady momentum balance on this system gives an estimate of

the magnitude and direction of the total force on the rotor as a function of flow-

field quantities that are available from the reduced-order fluid dynamic model

described above. The combined sub-models provide a compact means of simul-

taneously calculating the flowfield quantities and the aerodynamic forces in one

unified model, allowing the dynamics of the overall system to be explored. As

a by-product of this modeling approach, a generalized characterization of the

nature of these forces may be explored in terms of their dependency on system

parameters, such as the compressor characteristics, and flowfield pressure and

velocity nonuniformities, which in turn depend on tip clearance.

Analysis of the resulting models: To achieve the objectives of this research, a

variety of analytical and numerical tools are applied to the resulting models.

" The features of the overall system equations are examined to determine their

numerical structure, physical scaling and other dynamic properties based on the

governing nondimensional parameters and general coupling trends.

" Several analytical methods are used to examine the stability of the overall

system and the impact of any possible interaction on both aerodynamic and

structural domains. Analytical methods to be applied include linear stability

analysis, examination of fixed points, and calculation of bifurcations and limit

cycles. Direct numerical simulations will be utilized to demonstrate and verify

interesting dynamic trends.

* Comparison with simpler, uncoupled models (e.g., the Moore-Greitzer compres-

sor model) is used for assessing the predictive capabilities of this approach in

determining the significance of the interaction.

Model Validation. With the exception of the sub-model describing the aerodynamic

forces on the rotor, all other sub-models considered in this study have been examined
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and utilized both analytically and experimentally by many authors in the literature.

Therefore, given the objectives and scope of this study these sub-models are deemed

suitable and reliable based on the existing understanding of their assumptions and

limitations.

The aerodynamic force sub-model, on the other hand, represents one of the contri-

butions of this research, and will therefore be validated against the recently published

data by Storace et al. [73] and the accompanying analysis by Ehrich et al. [22], and

presented in Chapter 3.

1.5 Thesis Organization

This thesis is organized as follows. In Chapter 2 we present a generalized devel-

opment of the aerodynamic-rotordynamic interaction model. We then implement

several approximations and assumptions to produce the baseline model upon which

the the analysis for the rest of this thesis is based. In Chapter 3 we explore the

general features of the interaction phenomena by considering several special, simple

cases through which insight may be gained. In particular we investigate the nature

of the aerodynamic forces under steady rotor offset and forced rotor whirl at different

compressor operating points. Chapter 4 presents the linear stability analysis through

which we quantify the impact of coupling on the inception of aerodynamic and rotor-

dynamic instabilities. The post-instability behavior is addressed in Chapter 5 where

standard numerical tools are utilized to solve for possible limit-cycles and identify

potential coupling effects on the nature of the nonlinear behavior. We finally sum-

marize the findings of this study, discuss their implications on compression system

design and operation, and lay out recommendations for future work in Chapter 6.
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CHAPTER 2

DEVELOPMENT OF

AERODYNAMIC-ROTORDYNAMIC

INTERACTION MODEL

In this chapter a generalized model describing the aerodynamic-rotordynamic interac-

tion is developed. Equations describing the flowfield, the rotating structure and their

interaction are derived and the underlying assumptions are outlined. Next, several

approximations and simplifications are applied to the generalized model yielding a

simpler, low-order baseline model which forms the basis for most of the subsequent

analysis. Finally, the main nondimensional parameters governing this baseline model

are noted and defined.

2.1 Flowfield Description

We consider a high hub-to-tip ratio, low speed axial compression system in which the

flowfield may be assumed incompressible and two dimensional. Such a compression

system may be adequately described by a slightly modified version of the original

Moore-Greitzer model [57] which has been extensively utilized in numerous studies

concerned with axial compression systems stability. The main modification in this

development (as well as in that of Graf [29], Gordon [28], and Spakovszky [71]) is

allowing the pressure-rise characteristic of the compressor to depend on the local tip
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Figure 2-1: Schematic of the compression system model.

clearance.

In what follows we present a summary of the Moore-Greitzer model. Further

details can be found in several references (see for example Moore and Greitzer [57]

and Longley [51]).

2.1.1 Derivation of the Basic Equations

Flowfield Quantities

Figure 2-1 depicts an axial slice of the compression system being considered, showing

the stationary coordinate system XYZ as well as the system's main components,

parameters and flowfield quantities. The axial stations A, I, E, P and T refer to

the atmosphere, compressor inlet, compressor exit, plenum, and throttle respectively.

In this two-dimensional model, where all radial variations are neglected, the flow
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is described by the nondimensional' velocity field (vz(G, Z, ), vo(6, Z, i)), and the

nondimensional pressure distribution p(o, ZI )/(pU 2). In general, these quantities

are nondimensionalized as follows

Velocity: V = /U = i3/(RQ)

Pressure: p/(pU 2 ) = p/(p(RQ) 2)

Lengths: For large, system-scale dimensions: Z = Z/R, L, =L/R,

1C = C/R,... and so on.

For small, blade-scale dimensions: r = r/l, E = ?/l,..., and so

on, where 1 is the blade chord.

Time: = tQ = tU/R

At the compressor inlet, point I, it is customary to use 0(0, ) = z(0, 0, ) to

indicate the axial flow velocity into and throughout the compressor, also known as

the flow coefficient. Further, 0 can be split into two parts

0(0, ) = <I(') + 6q(Q, ) (2.1)

where <1(s) is the annulus-averaged, axisymmetric axial flow coefficient and 60(6,6)

is the circumferentially varying (not necessarily small) disturbance representing the

angle-dependent flow nonuniformity. These definitions can also be stated as

1 j
2 7

r q$(0, ) dO = Ib(6) and 4- 60(0,) dO = 0 (2.2)

We also note that, even in the case of uniform axial flow at the inlet (i.e. vo(O, Z =

-L 1 , 6) = 0 and vz(Z = -LI) = constant with 0), the presence of a nonzero 6O at

the compressor inlet, point I, mandates the existence of a nonzero circumferential

'Dimensional quantities that share the same symbol with their nondimensional counterpart are
distinguished by a tilde. For example, 6 and v are the dimensional and nondimensional flow velocities
respectively.
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component 6Oq - vO(6, Z = 0, ) such that

1 60(0, ) dO = 0 (2.3)
27

where the subscript 0 indicates circumferential flow, rather that differentiation.

Compressor Inlet Duct

The flow in the compressor inlet duct is assumed to be unsteady, incompressible, in-

viscid, two-dimensional (in 6 and Z) and irrotational. Thus, a flow potential function,

yo(O, Z, ), which satisfies Laplace's equation exists in the inlet duct and is related to

the flow coefficient q according to

vz- =Z and v9 = 0 (2.4)

Therefore, the axial flow coefficient at the compressor inlet, point I, may be written

in terms of o as

D( (2.5)

Integrating the above equation between point A and any point along the Z-axis within

the constant-area inlet duct, and invoking the boundary condition at A, namely that

y9(G, -Lj, ) 0, we obtain

o(O, Z, ) = (Z + LI)<D( ) + 6yo(O, Z, () (2.6)

We take this one step further by differentiating both sides with respect to and

setting Z = 0

0p _~ ___=V Ld + (2.7)

Now, the momentum balance in the inlet duct is obtained by applying the un-
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steady Bernoulli's equation between points A and I

PtA + 19' _ Pt' + &S(28

pU 2  19 A pU 2  &6

Since ( =0 at point A, the pressure difference across the inlet duct can be written

as

PtRA -- PI _ 2 + (6qo)2) + 9 (2.9)
pQ2R2 2 a I

Finally, substituting Eq. (2.7) into Eq. (2.10) gives the required pressure balance

across the inlet duct

PtA - PI 1 2 2) d 06&p
- (#2 + (00) 2 ) + L 1- + (2.10)

pQ2R2 2 d a6I

The pressure difference across the inlet guide vanes (IGV's), point I to point 1

(where point 1 refers to the inlet plane of the first rotor blade row), can be expressed

as

Pi- = -KIGV(600) 2  (2.11)
pQ2R 2  2

We will later assume lossless IGV's for which KIGV = 1. This assumption eliminates

the presence of 6q0 from the final pressure balance equation.

Compressor local momentum balance

Consistent with the actuator disc model of the axial compressor, the pressure rise

across the compressor includes a steady state, axisymmetric contribution as well as

an unsteady contribution due to fluid inertia within the rotor and stator rows. This

is expressed as follows

PE -( 1 )o
pQ2 R 2 ~c - A o (2.12)
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where,

A = and y = (2.13)
roto R cos ,all R cos (,
only rows

where 1 is the blade chord and -y, is the stagger angle of rotor blades. For similar rotor-

stator pairs, i.e. N repeated stages, the A and p parameters may be approximated

as

Ntil (2Nst + 1)1A = and R = os ~ 1 2A (2.14)
t COS 'Yr R COs Y,

where Nt is the total number of compressor stages. Note in Eq. (2.12) the explicit

dependency of the compressor pressure-rise characteristic, 0/,", on the local tip clear-

ance, E(0, ), which is nondimensionalized by the rotor blade chord, 1. In the original

Moore-Greitzer model, 'c/" depended only on flow coefficient # and was thus called

the axisymmetric pressure-rise characteristics.

Compressor Exit Duct

Unlike the inlet duct, the flowfield in the exit duct is rotational and thus more com-

plex. We therefore adopt the same simplifying assumption used by Moore [56], and

Moore and Greitzer [57] as follows. The quantity P, defined as the deviation of the

duct pressure from the plenum pressure:

pP - p(0, Z, (2.15)
pQ2 R 2

is assumed to be small enough in the exit duct to satisfy Laplace's equation, V 27 = 0.

Realizing that the axial flow nonuniformity is assumed to pass through the compres-

sor unchanged (i.e., 6OIE = 601), the axial momentum equation evaluated at the
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compressor exit, point E, can then be written as follows

- = -- (b + jol|E) = -- + 601)OZ E & M

d= +0 (0 (2.16)
dg og&Z j

This equation has the same form as that of 2 from Eq. (2.5). We thus can obtain

a solution for P in the exit duct in terms of 6p by taking into account the difference

in Z direction which, unlike the inlet duct, increases away from the compressor.

Recognizing that all disturbances must vanish at Z = LE, we obtain

P= (Z-LE)d 0(21

Finally, at Z = 0 this becomes

PE pQ2 R 2

= d-L (M- 1) (2.18)

where the parameter m is introduced as an approximation which depends on the

degree of diffusion in the exit duct; for a sudden expansion immediately downstream

of the compressor, we set m = 1 and the second term is effectively omitted, while for

a constant area duct with no expansion, as is the case here, we set m = 2.

Overall Pressure Balance

The overall pressure balance across the compressor and inlet and exit ducts (from

point A to point P) can now be expressed as follows

PP - PtA

pQ2 R 2

= PP - PE PE - P1 Pi-PI +PI-A (2.19)
pQ 2 R 2 pQ2 R 2 pQ2 R 2 pQ2 R 2
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Substituting for these pressure differences from the corresponding equations derived

above and collecting terms, one finds

(= ss 12)-(LI1p+ LE) -M -699 _C 2 E0)

06q5 1 (.0
-p - 1 - KIGV) (600o) 2

a 2

which, for KIGV = 1, can be restated

E(-' ,)+ + =0 (2.21)
where~~d 0'(0 E) is th ot lt -s

where '(q, ) is the total-to-static (as opposed to the static-to-static, V)/s) axisym-

metric compressor pressure-rise characteristic 2, and C = LI + p + LE is the total

effective length of the flow path.

We now can integrate Eq. (2.21) over a cycle of 0 realizing that all terms are

functions only of time. Doing so and rearranging we obtain

d1 1 [ 1f2x -
- = --- w<(41 + 6#, E) d6 Wt (2.22)

d6 L _27r 0 ()

Eq. (2.21) and Eq. (2.22) are two of the three main equations describing the

flowfield behavior.

Plenum and Throttle

The third equation that completes the general description of the flowfield comes from

balancing the mass entering the plenum from the compressor, the mass leaving the

plenum through the throttle, and the mass being stored in the plenum. The processes

of gas compression and expansion in the plenum are assumed isentropic. Given the

2 The prime on any variable, such as ', indicates that the variable will be rescaled later, at which
time the prime will be removed.
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nondimensionalization adopted so far, the mass balance may be written

dqf 1
< 4B 2 (( - <(D(()) (2.23)

where

U V
B = (2.24)

2a 8 A12

is the familiar B-parameter representing the ratio of compliance to inertia in the

compression system, a, is the speed of sound, and <bT( ) is the flow through the

throttle. In the case of a short enough throttle duct, (DT becomes mainly governed

by the throttle pressure drop characteristics

I = IPD(T) or <= 41I - (4P ) (2.25)

where the pressure at the exit of the throttle duct is assumed to be the same constant

pressure as that at the system inlet, PtA.

2.1.2 Galerkin Approximation of Flowfield Equations

We now set out to transform the PDE in Eq. (2.21) into a set of ODE's by means of a

weighted residual method known as the Galerkin approximation [83]. In so doing we

exploit the circumferential periodicity of flowfield disturbances by representing them

as Fourier series in 0. We thus begin by writing down an approximate solution 3 for

the flow potential disturbance, 6yo, in the inlet duct, Z < 0. The following Fourier

series of N terms is selected

N

6V(9, Z, e) = ez [a' ( ) cos(nO) + b' ( ) sin(nO)] (2.26)
n=1

3The approximation is due to the truncation of the series.
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which approximately vanishes at Z = -LI, provided that L, is large enough such

that e"(LI) ~ 0. The flow coefficient disturbance can now be written as

=(, a) = =n + b sin nO (2.27)
az =Za con 9± sn nI n=1

Substituting the above expression into Eq. (2.21) negates the equality, producing

instead a residual R on the RHS. In order to minimize R, we set the inner product

of R with some weighting functions to zero. In the Galerkin approximation, the

weighting functions are chosen to be of the same form as the approximate solution

given in Eq. (2.26). These conditions are written as follows

R dO = 0 (2.28)

f/2-x
j R cos(nO) dO = 0 (2.29)
/27r

j R sin(nO) dO = 0 (2.30)

The first of these integrals reproduces Eq. (2.22), while the second and third integrals

produce

da' n [1 f2,r
" =cos(n) dO - nAb' (2.31)

<g mn+ ny Kr 0 n

db' n I f 2 cr
" = - 'sin(n) dO + nAa' (2.32)

< m + ny 7r 0 s n]

where n = 1, 2, ... , N. The flowfield description is now complete in this general form

consisting of 2 + 2N equations: the averaged system momentum balance, Eq. (2.21),

the plenum mass balance, Eq. (2.23), and the 2N equations describing the dynamics

of the flowfield nonuniformity, Eqs. (2.31) and (2.32).

It is useful also to derive the polar form of Eqs. (2.31) and (2.32) such that the

flowfield nonuniformity is represented in terms of amplitude and phase instead of the

Cartesian coordinates a' and b . The Fourier series for 6(p and JO in this case are
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given by

6 pO(9, Z,' E= eflz A' ( ) cos [n (0 - 7n(2.33)
n n

N

60(0, Zj) = A ') cos [n(( - r() (2.34)
n=1

For this to be equivalent to Eq. (2.26), one may easily show that the following relations

should hold

= A' cos(n?7n) and b= A' sin(nr7n) (2.35)

An= a 2 + b'n2 and 7= tan- 1 n(2.36)

Following a similar procedure as in the Cartesian case, and using cos nrOn and sin nfQ

as weighting functions (where gn = 0 - qn, n = - n and dge = dO), the polar

counterparts of Eqs. (2.31) and (2.32) are found to be

d A' n [1 f21r" = - 0' cos n(0 - rq) dO (2.37)
d - m+ ny [i 0  J
dr/ __ F 1 1 2 ,

S= n A + f2' sin n (0 - qn) dO (2.38)
d m nyi nA'i 7r 1 n I

This completes the general flowfield model. In order to take this any further,

we first need to introduce the geometry of the rotordynamic model and then choose

a mathematical representation of the two characteristic functions V/' and OT. We

defer the latter task until we reach the discussion of the baseline model, Section(2.3),

and start next with the rotordynamic aspects of the model in order to introduce the

relevant geometry.
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2.2 Rotordynamic Description

In general the rotating structure in an axial compression system is comprised of a

spinning shaft4 which carries the rotating discs and blades (which we call the rotor-

blade rows, as opposed to the stator-blade rows which are mounted to the stationary

casing). The shaft is usually supported by some arrangement of bearings which

carry the operational load and the weight of the rotating structure. The dynamic

characteristics of the bearings play an important role in determining the rotordynamic

behavior of the structure as a whole.

The geometry and configuration of this rotating assembly and its support is usu-

ally complicated. Nevertheless, the discipline of rotordynamics has produced elabo-

rate analytical and numerical models that-given the detailed configuration of a par-

ticular system-provide accurate predictions of the dynamic characteristics of such

complex rotating machines.

In this thesis, however, we limit our rotordynamic modeling to the simplest of

these models; namely the Jeffcott rotor model [46]. The main reason is that we are

mainly interested in understanding the basic nature of the coupling between aerody-

namics and rotordynamics, rather than in obtaining accurate quantitative predictions

for a specific machine or configuration. For such purposes, the modeling strategy

should be one that includes the minimum number of elements and the smallest set of

parameters, hence producing models that are readily amenable to analysis and ma-

nipulation while capturing the essential aspects of the physical system at hand. Such

models usually serve best in revealing the essence of phenomena that may otherwise

seem complicated and intractable. Further, the Jeffcott rotor model has been consis-

tently used as the standard tool for this class of analysis throughout the rotordynamic

literature.

41n modern jet engines, for example, more that one shaft could be arranged inside of one another,
separated by bearings and spinning at different speeds.
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2.2.1 Overview of the Jeffcott Rotor

The typical Jeffcott rotor is described in several sources such as [18, 6, 78]. However,

we adopt a slightly generalized version of the Jeffcott rotor suitable for our purposes.

We model the rotating assembly as a single disc whose mass represents the lumped

mechanical inertia of the whole rotating assembly, mounted on a massless shaft of

finite elasticity and uniform cross section. Both the shaft and the disc spin at a

constant speed about their common axis as one unit. The disc center of mass is

assumed to be eccentric from the spinning axis producing a "centrifugal force" known

as the imbalance force F" which is virtually always present in any type of rotating

machinery. Similar to any simple vibratory system, the Jeffcott rotor has a natural

frequency w proportional to the ratio of its stiffness to inertia. Furthermore, the

rotating assembly is acted upon by several other internal (e.g., shaft stiffness and

internal damping) and external forces (e.g., forces produced by the surrounding fluid

and/or support bearings).

Figure 2-2 is a schematic of the basic geometry of the Jeffcott rotor showing the

main dimensions and displacements (with highly exaggerated proportions). In this

figure, the whirl (or precessional) motion of the rotor is represented by the angle E
together with the radial displacement of the rotor disc r (i.e., the distance between

points Oc and 0). The time derivative O thus represents the whirl frequency w".

Alternatively, the Cartesian coordinates of the rotor disc center X and Y can be

used to describe the disc whirling motion. On the other hand, the spin (or running)

frequency of the disc about its axis (point 0) is labeled Q. The offset of the disc center

of mass (point CG) from the geometric center is known as the amount of imbalance

or eccentricity e = /l.

Several important relations can be deduced from the geometry shown in this

figure. The local tip clearance normalized by the blade chord, e(0, ) = 5/l, is related

to the rotor displacement, r = r/1, for small perturbatiosn, as follows

e(9, ) = f - r( ) cos(9 - 0( )) (2.39)
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Figure 2-2: A schematic showing the basic rotor geometry (exaggerated proportions).

where ! is the mean tip clearance when r = 0. Also the polar and Cartesian coordi-

nates of the rotor center are related as usual by

r = X i +Y j (2.40)

X( ) = r( ) cos(E( )) and Y( ) = r( ) sin(E( )) (2.41)

Y
r = 1/X 2 + Y 2  and tan 0 = - (2.42)X

At this point, it is perhaps instructive to summarize the main features of the

classical Jeffcott rotor in order to gain familiarity with the its dynamic character.

The effect of imbalance on the dynamic system response is the main phenomenon

originally addressed by the Jeffcott rotor model, which established that the presence

of imbalance results in a specific rotor response known as synchronous whirl motion,

in which the spin and whirl frequencies are equal, i.e., Q = wwh. It also explained
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the large amplitude in r observed when the spin frequency Q (which equals wwh for

imbalance) matches the natural frequency of the rotating assembly, w, as resonant

behavior. Finally, it demonstrated the phase relationship between the motion of the

center of mass (point CG) and the motion of the disc center (point 0). One counter-

intuitive result produced by this model is that when the disc spins at high enough

Q (relative to the natural frequency w), point CG is flying inward (i.e., point CG is

1800 out of phase with r), while the amplitude of the whirl is equal to the imbalance

(i.e., r = e). In other words, even at high spinning speeds (Q/w >> 1) and with the

presence of imbalance, points CG and Oc coincide and the response is bounded and

quite acceptable.

We conclude this section by noting that three important frequencies emerged so

far in describing the rotordynamic model, and are restated as follows. The first is £,
the spinning frequency of the disc and shaft about their common geometric axis. The

second is wwh = 0, the orbital frequency of point 0 about point 0,, Figure 2-2, called

the whirl frequency. The third is w, the natural frequency of the rotating assembly,

which we will predictably find later to be proportional to the ratio of mechanical

stiffness to inertia.

2.2.2 Classification of Forces Acting on the Rotor

We now provide a brief description of forces acting on the rotor, their sources and

modeling considerations.

Stiffness forces, (Ft). Traditionally, the basic Jeffcott rotor model makes a distinc-

tion between stiffness restoring forces due to shaft elasticity and those due to support

bearing compliance. The simplest Jeffcott rotor, for instance, assumes an elastic

shaft supported by rigid bearings. Adding the effect of bearing compliance can then

be viewed as adding another spring in series to that of the shaft. The distinction

however allows for a better quantitative evaluation of the stiffness parameters (spring

constants) based on the individual configuration and material properties of both the
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bearings and the shaft. It also allows the model to better guide the designer in making

specific design choices in order to achieve a desired dynamic response. More sophisti-

cated representations of stiffness forces have been included in the Jeffcott rotor model

to account for several observed behaviors. These are essentially concerned with:

" Stationary stiffness orthotropy in the bearings: This represents the case of

having different bearing spring constants in the X and Y directions. Such

orthotropy has a stabilizing effect in that it increases the critical spin frequency5

Q above which instability may occur (see for example Childs [6, Section 1.6]).

" Rotating stiffness orthotropy in the rotor: Because of the rotation of the shaft,

this kind of orthotropy produces a rotating spring force which does not al-

ways act as a pure restoring force. Instead, a component of this spring force

contributes to the whirling motion and may thus lead to what is known as a

parametric instability.

" Stiffness nonlinearity: This includes hardening and softening spring effects, as

well as the variation of stiffness over a cycle of the rotor whirl orbit due to rub-

bing (known as the normal-tight condition) or due to excessive bearing clear-

ance (known as normal-loose condition). The rotordynamic response under such

conditions can be very complicated and may even display chaotic behavior. An

overview of this topic is given by Ehrich [20].

In this thesis, we combine the stiffness effect of the shaft and bearings into one

lumped stiffness. However, we allow an additional nonlinear (cubic) term to represent

a hardening system spring. We also introduce a detuning parameter to allow the X

and Y bearing (stationary) stiffnesses to vary independently.

Damping forces, (Fda). These include forces due to aerodynamic drag, internal

shaft damping, oil-film damping in journal bearings, and squeeze-film damping used

commonly with roller-element bearings. Similar to the stiffness case, the internal

'It is more accurate to speak of the ratio Q/w which is equal to 1/v in this thesis.
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shaft damping may (e.g., in the presence of material hysteresis) produce a force that

contributes to whirl-like instabilities. In fact, this historically is the first effect to

be recognized as a source of whirl-type, self-excited instabilities. In order to limit

the sources of rotordynamic instability, we lump all damping effects in a single linear

term of the viscous drag type. We further assume no material hysteresis, yet allow

the X and Y damping coefficients to vary independently by introducing a detuning

parameter.

Imbalance force, (Fi"). The source of rotor imbalance is the presence of an offset

of center of mass from the geometric, rotational center. No rotor can be perfectly

balanced, and thus imbalance is often the main source of excitation in rotordynamics.

As we described earlier in Section 2.2.1, the main goal of the Jeffcott rotor model was

to address the rotordynamic response to imbalance.

Gravity force, (F9r). There are several effects of gravity on a horizontal rotor, all

of which arise from the interaction between the gravity force (which is constant in

magnitude and direction) on one hand, and the rest of the forces acting on the rotor

on the other. For example, the presence of gravity produces a harmonic forcing for

an observer in the rotor frame, which in turn produces alternating bending stresses in

the shaft, and hence, can influence the destabilizing effect of internal shaft damping

due to material hysteresis. Gravity can also cause the shaft to "sag" during times

of shut-down (also known as shaft-bow). Such a bow can change the rotordynamic

response to imbalance described above and should be taken into account if present.

In this thesis, however, we do not consider neither internal shaft damping nor

shaft-bow. Instead we introduce gravity force merely to produce a class of equilibrium

(or "fixed") points in which there is a steady offset in the rotor position corresponding

to a stationary tip-clearance asymmetry, and hence a steady nonuniform flow. This

class of equilibrium points may change the overall stability picture of the coupled

system as will be shown later.
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Aerodynamic (fluid) forces, (F"). Also known as fluid-induced rotordynamic

forces. In this thesis we restrict these to compressor forces. Other Aerodynamic

or fluid related forces, e.g., due to turbines and seals are classified under "other

forces" below. Given the current state of understanding of these forces discussed in

Section 1.2, the modeling and the effects of compressor aerodynamic forces comprise

an important component of this study and are described in detail in the remainder

of Chapter 2 and most of Chapter 3.

Harmonic (Periodic) excitation forces, (Fha). These forces are mainly intro-

duced to account for different sources of noise and disturbances to which the rotor

might be subjected, and to simulate rotordynamic excitations at any desired ampli-

tude and frequency that could result from external or internal unmodeled effects.

Other forces, (Fathe'). Several other forces may be acting on rotors of axial com-

pressors which are not considered in this study. Examples include Alford-type forces

on the turbine side of a gas turbine engine, fluid forces from seals and journal bearings,

and actuation forces of magnetic bearings. The uncoupled rotordynamic response to

most of these forces have been addressed by many researchers. Further, including

these forces in an integrated model such as the one considered in this thesis can re-

sult in unwarranted complexity and prevent clear understanding of the basic coupling

phenomena. Including these forces may therefore be viewed as a useful extension to

the current work that can be considered after the simplest, most basic coupling model

has been explored.

2.2.3 Modeling of Forces Acting on the Rotor

Three Contributions of Aerodynamic Forces

We start by realizing that there are in fact three contributing effects responsible for

generating the total aerodynamic force on the rotor of an axial turbomachine, all of

56



which can be traced to one source; namely the presence of a nonuniform flowfield sur-

rounding (and exchanging momentum with) the rotor6 . The first contribution arises

from the fact that a nonuniform flowfield generates a circumferential distribution of

flow velocity. As the flow passes through the rotor blade rows, the nonuniform flow

velocity distribution results in various blades having to do unequal amount of turning

and thus being subject to nonuniform loading. The integrated effect of this uneven

blade loading is a net force on the rotor we call the turning force, Fu. The sec-

ond contribution comes from the hydrostatic pressure distribution around the rotor

which also produces a net force we call the pressure force, FP'. Finally, the unsteady

momentum storage within the rotor gives rise to the third aerodynamic force contri-

bution which we label as the unsteady force, F". All these forces must be taken into

account for a reliable description of the coupling phenomena at hand.

Momentum Equation

To model these effects, we consider a control volume (CV) enclosing the rotating

assembly such that the flow entering and leaving every rotor blade row also enters and

leaves the control volume by crossing the control surface (CS) as shown in Figure 2-

3. Further, we assume that the control volume is non-rotating and is fixed to the

translating frame, xyz, which is in turn attached to the geometric center of the rotor,

point 0, and hence has the same rectilinear acceleration as that point. The advantage

of selecting such a control volume over other equally valid choices is the convenience

of accounting for momentum entering and leaving in terms of the flowfield quantities

available from the Moore-Greitzer model in a straightforward manner. The general

vector form of the momentum equation applicable to this choice of control volume is

given in terms of dimensional quantities (marked by the tilde, e.g., F) as follows

S F -J p dV-f pdV = -yz p d + xXyz p xyz - dA (2.43)
CS & & f

Body CV, fluid CV, solid Cv CS

'Flow nonuniformity can be the result of several effects. One such effect of particular importance
in an axial turbomachine is the tip clearance asymmetry which we consider in this study.
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Figure 2-3: A schematic of the control volume for one stage of the rotating assembly.

where all the accelerations are measured in the inertial frame XYZ while the velocities

are measured in the translating frame xyz. We may directly realize that the order

of the acceleration terms (second and third terms on the left hand side) can be

compared by the ratio of fluid to solid densities, p/ps, and that the second term could

be neglected in comparison to the third as long as p/p, < 1. We thus neglect the

second term involving p right from the start. Next, we rearrange this equation to take

the familiar form E F = Ma by collecting all the force terms on one side, including

the momentum influx and unsteady momentum terms which will soon be defined as

two of the three aerodynamic forces mentioned above. This generates the following
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J ps dV = ZF -
CS &

CV, solid Body CV

rxy, p dV - J xy p 9xyz - dA

CS

The acceleration term on the left hand side can simply be written as

p, dV = M z Nst Ms iiz (2.45)

CV, solid

where M and Mt are the total and per-stage mechanical mass of the rotating assem-

bly, Nt is the number of stages and &iCz is the acceleration of the center of mass of

the rotor in the absolute frame XYZ.

Forces

We start with the imbalance force, Fim , and show that it emerges from the acceler-

ation term in the last equation. This can be seen by writing &i4Z in terms of the

acceleration of point 0, 50 = j, and taking into account the rotation of CG (which

is fixed in the frame x'y'z'). Note that both 0 and CG are spinning with the disc at

the constant rate Q, see Figure 2-2. Therefore, we may write

~CG d 2(i+
aCxYZ= dt2

dt2

dt2
= (C dt _ 2 cosOt fi +

We leave only the (d2F/dt2) term on the LHS of

and define the imbalance force FP"' on the RHS

d2Y( 2 _ Q2 sin Qt)j
dt2 (2.46)

the momentum equation, Eq. (2.44),

to be

Pi" =-M [ n x (n x 6) ]

= Nt Mt a Q2 (cos Qt i + sin Qt j)
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Going back to Eq. (2.44), the first term on the right hand side represents all the

body forces (e.g., gravity) and the forces acting on the control surface which include

those due to damping, stiffness, and hydrostatic pressure. In other words,

13 P = Tda + Pl+ Pr+ Pa+ i~pr + Pohr(2.48)

CS &
Body

We start with the damping and stiffness forces which we define as

P"" = -cx5 i - CyY j (2.49)

P = -(kxX + k"X * 3) i - (kyY + k~y' 3) j (2.50)

where we lump the total damping on the rotor in the linear form of viscous drag,

while we include both linear and a cubic terms to represent the stiffness force of a

hardening spring. In addition, we allow the X and Y components of each of these

forces to be generally different.

The gravity and periodic excitation forces are simply

F9 = -Mgy j (2.51)

ha"= (7 cos Qhat i + Jy sin Qat j) (2.52)

where the gravity vector is assumed to be in the negative Y direction.

We now point out the first of the aerodynamic forces, FPr, which can be written

in the following general form

Ppr - p dA (2.53)
CS

Next we define the unsteady and turning aerodynamic forces, F" and Ft', to be the

unsteady momentum and momentum influx terms (second and third terms on RHS
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of Eq. (2.44) respectively

F =xyz dV (2.54)

tt = r- rxyz xyz - dA (2.55)
Cs

The above results are general in the sense that, given the flowfield quantities

(velocity and pressure distribution) as functions of space and time, the forces on any

rotor operating in (and exchanging momentum with) that flowfield may be calculated.

It should be noted that in order to evaluate the integrals in the above expressions,

details about the flow within the turbomachine (inlet, exit and inter-stage flow quan-

tities) are needed. In the case of an axial compressor, the Moore-Greitzer model

derived in the previous section provides knowledge of the flowfield quantities only

at the compressor inlet and exit. The detailed inter-stage flow information is not

directly available from such a model. To resolve this difficulty, we later introduce

assumptions regarding the stage-by-stage performance of a typical axial compressor

in order to relate the inter-stage flow velocities and static pressures to those at the

inlet and exit of the compressor. In other words, we need to write components of

v.yz entering and leaving each rotor-blade row in terms of the known flow coefficient

# = <D + 6# on the one hand, and write p in terms of the known pressures p, and PE

on the other.

2.2.4 Coupling Parameters and Nondimensionalization

The above expressions are now rewritten in a nondimensional form consistent with

that of the flowfield equations. In addition, we construct the main nondimensional

parameters governing this part of the model based on the derived equations and the

geometry shown in Figure 2-3. We thus proceed as before by letting = tQ and

v = ;'/(RQ). Pressure is again normalized by the factor p(RQ) 2 while the rotor

displacement f (and thus X and Y), as well as the imbalance are all normalized by
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the rotor blade chord 1. Therefore, the acceleration term becomes

d2r 1 d2i (2.56)
< 2 (2Q2 .2

The three aerodynamic forces are nondimensionalized as follows

Ftu = -pR 2Q 2Atu VXYZ V - dA (2.57)J f Z y Atu

Cs

f = 2Q 2 A (2.58)
- ~R 2 Ar pRQ dA

CS

un" = -pQ 2RVun vXYZ dV (2.59)
vun

CV

where A'u, Apr and Vuf are needed to complete the nondimensionalization, and are

factors proportional to the area through which the flow passes, the area upon which

the pressure is acting, and the volume within which the momentum may be stored,

respectively. Referring to Figure 2-3 we can see that for an axial compressor of Nt

similar rotor-blade rows, mean radius R, axial chord Iz = I cos -y,, and blade span h,

we may write these three factors as

Au = 27r Nt R h (2.60)

APr = 27 (2Net) R 1z (2.61)

V = 27 Nt R h lz tan yr (2.62)

where we take into account the fact that pressure forces act not only on the hub within

the rotor-blade row but also on the hub in-between the rotor-blade rows. Hence, the

factor 2Not is used in Apr assuming that rotor blade rows and stator-blade rows

have approximately the same axial extent. Another approximation used here is that

pressure forces act on a cylinder of constant radius R, thus neglecting the variation

in CV radius between rotor and stator regions (not significant for high hub-to-tip

ratio compressors, which we consider here). We also include (tan 'yr) in the definition

of V' in anticipation of a similar factor produced as a result of averaging the flow
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velocity within the control volume as will be shown in the derivation of the baseline

model. Finally, in case of the non-similar Nt stages, we may choose to define the

above factors based on the parameters of the first rotor blade row.

Incorporating the above expressions into Eq. (2.44), dividing through by (MlQ 2 ),

and collecting certain parameters, the momentum equation can be written in the

following nondimensional vector form

d2r hdA

<2 = Fa + FSL + Fr 7+ Fa + F'm + X -Xtu vY VXYZ - Atu
. CS

Pr p dA un a f dV
X]f pR22 Apr - x 6 VXYZ u (2.63)

CS CV

We first turn our attention to the nondimensional parameter, X, appearing before the

aerodynamic force bracket, and with which all the aerodynamic forces scale. This

parameter is defined by

Nt p (27r R h lz) mass of fluid within CV
X - Nst Mst mass of rotating assembly

(2.64)

and is called the aerodynamic-rotordynamic coupling parameter. We also note that

as X -+ 0 we recover the familiar Jeffcott rotor model in its generalized form. Further,

the X-parameter as constructed above may be viewed as the ratio of fluid mass within

the control volume to mechanical mass of the rotating assembly (or the ratio of mass of

fluid within one rotor blade row to the mechanical mass of that row). Since Mtg is also

roughly proportional to the dimensions R, h and 1z, the X-parameter may be viewed

as the ratio of fluid to solid densities, P/Ps. Therefore, for the same turbomachine

geometry, heavier fluid and/or lighter solid would lead to stronger influence of the

aerodynamics on the rotordynamics.

Furthermore, it can be seen that the turning, pressure and unsteady forces scale

individually with the parameters Xt', XPr and X" respectively. These parameters are
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defined as follows

(tu = z R COS1 COS7,'r (2.65)

pr (R 2 (l'\ co 2 l 2 1 1 2
xp = 2 R \2(1) OS2,= 2 1 cos 2 (2.66)

(R 1
X " = -R) Cos yr tany, = Cos 7r tan yr (2.67)Iz (AR)br

These parameters mainly depend on (AR)br and (AR)r, the stage and blade aspect

ratios, respectively. For instance, smaller values of (AR)br (i.e., smaller axial blade

chord and/or larger mean rotor radius) increase the influence of all three forces, more

so for the turning and pressure forces than the unsteady force. On the other hand,

smaller values (AR)r (e.g., shorter blade height) increase only the pressure force,

leaving the other two contributions unchanged.

Finally, the nondimensional rotordynamic model can be written in the following

compact form

d r - da +r F~ ha +Fr+ ae (.8
=2 F a+Fst+F +Fha+F'"+Fe (2.68)

where the nondimensional forces are given by

Fda -2( ( i - ,daY- j) (2.69)

Fs' - -(v 2X + LUX 3) i _ (Ustv2y + 6flSLy 3) j (2.70)

Fg= -Gyj (2.71)

Fa = I [cos(va) i + oha sin(va (2.72)

Fi" = e (cos i + sin j) (2.73)

Fae = Ftu + Fpr + FUf" (2.74)
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Ftu = x (Fu)i = X

Fr x = X

Fuf" = x (Fun), = X

In general, the

as the average

however, these

of these forces,

(F)2 = F/x.

-xtu vxyz vxyz -
. CS

-Pr ! p dA
2R2 AP

.CS

_XUn f VXZdv

.CV

(2.75)

(2.76)

(2.77)

quantities (Ftu)i, (FP')i and (Fun)j, appearing above may be viewed

aerodynamic force per stage of the compressor. For similar stages,

quantities are the nondimensional force per stage. In addition, any

(F)j, can be viewed as a rescaled version of aerodynamic force, i.e.,

Quantities appearing above which have not already been defined are given below

CX

2Mw
da CX

Cy

~)2 ()kns

Q =

f = QMlQ2

V -

0Stkx

ky

e= _
1

(ha _fx

fy

kx

n V _
k"s

k y"

GY- 1 Q2

GV =

ha ha

The rotor's undamped natural frequency, v, is worthy of special attention. It largely

determines the response of the Jeffcott rotor model to imbalance which has its maxi-

mum rotor deflection at the critical value v = 1.0. Rotors normally operating at val-

ues of v < 1 are called supecritical rotors, reflecting the fact that the spin frequency

Q is larger the the rotor's natural frequency. A subcritical rotor would naturally

have v > 1. In general, most modern, high speed turbomachines are in the range

0.1 < v < 0.5 and are therefore supercritical at their typical running speeds.
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Figure 2-4: Velocity triangles and terminology used in evaluating force expressions.

2.2.5 General Expressions of Aerodynamic Forces

In order to go any further with the evaluation of the integrals appearing in the aero-

dynamic force expressions, Eqs. (2.57), (2.58) and (2.59), we need to determine the

flowfield v,,z. In particular, the velocity entering and leaving each rotor blade row

must be determined. In addition, the static pressure distribution around the CV,

as well as some form of flow velocity average to be used in evaluating the unsteady

momentum terms, needs to be determined. For that we consider the velocity triangles

of one stage as shown in Figure 2-4, which depicts the plane containing a segment of

the two-dimensional flowfield (i.e., a plane parallel to Z and tangent to the rotor at

some circumferential location 0). In Figure 2-5 we show a three-dimensional view of

one of the velocity triangles indicating the X and Y components, the angles involved

and other relevant dimensions.

We may now write the following relation between the relative and absolute ve-
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0 (V ) a" = sii

(v()

in

h Iz 13r(i)

Y

A

de

X(6)

Figure 2-5: Three dimensional Components of velocity triangle.

locities

I dr
VXyz = VXYZ -

R <{

Using order-of-magnitude estimates, it can be shown that the second term on the right

hand side is very small compared to the flow velocities and may thus be neglected.

The required velocity vectors entering and leaving the ith rotor blade row can then

be written as

(viz)= -v i+v j + k

= q$ tan c4 ") [-sin 0 i + cos 0 j] + # k

(iout -out i + vout j + k

= tan aot [- sin 6 i + cos 0 j] + k

(2.79)

(2.80)

(2.81)(vXz)i - (Vi = (tana) - tan a ")) [- sin O i + cos 0 j]
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We note here that the angles appearing in the above expressions are those of the fluid

velocity vectors and not of the blade; the difference being the incidence for entering

flow and the deviation for exiting flow. These angles are mainly variations about the

blade metal angles d and # dictated by the flowfield and the behavior of the blade

row from which the flow is exiting. In other words, the angle of the flow entering the

ith rotor is set by the performance of the (i - 1)th stator upstream of that rotor at

the given flow coefficient, while the angle of the flow exiting the ith rotor is set by the

performance of the same rotor at the corresponding flow coefficient. To reflect this

causality argument, we rewrite the above expressions in terms of the angles ao'('
and /q3u, both of which are some function of # specific to the blade row at hand.

Further, when operating near the design point these angles are in general close to the

metal (blade) angles. It may however be necessary to account for the difference when

operating in the remainder of the operating range. For our baseline model discussed

in the next section, we will employ simple relations to account for this behavior in as

wide of an operating range as possible while avoiding task-defeating complexity. For

now, however, we carry on with the derivation of the force expressions in terms of the

unknown angle functions aH'(r)) arid # 'P(P)

From the velocity triangles we may write the following relations

ago_1) =argi (2.82)

tan ,. 3ut - tan ,.t (2.83)

and,

1ut
tan ! ()= -tan aosi) (2.84)

The flow velocity expressions can then be written in terms of these angles as

(vxyz)i = 0 tan ay'u 1 [- sin 0 i + cos 0 j] + k (2.85)

( = out)
-xz~ 1 tan r~i) [- sin 0 i + cos 0 j] ± q$ k (2.86)
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and,

(rz)i - (V )i= (1 - (tan a_ 1) + tan,")) [-sin 0 i + cos 0 j] (2.87)

As for the pressure force, the static pressure distribution around the stage is

required. We define the following average pressure distribution for the ith stage

= 4 (2.88)

which is equivalent to assuming linear variation (increase for a compressor) of static

pressure with the axial direction Z. This is a reasonable assumption that is supported

by data such as that presented by Lavrich [48].

Finally, to evaluate the unsteady momentum term we consider an average velocity

within the stage as follows

(VxyZ)i= Xz)i + (VYz)i (2.89)
2
tan i) + tan/

= 1 - # 2yrrri) [-sin 0 i + cos 6 j] + 0 k (2.90)

Incorporating the above definitions, and considering a compressor of Ns, (not

necessarily similar) stages, the average aerodynamic forces per stage (see note after

Eq. (2.77)) can be written as

Nst j27r 
-

(9(Ftu)i= -Xt" # q [(vXrz)i - (v'yz)i] dO (2.91)

x, R 2l r iz 1 pu+"[
(Fpr), X~rpr ] Z 2 -QR [cos 0 i +sin 0j] dO (2.92)

i=1 f 2pQR
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and,

(F" )i = -Xun R V 2ixyz dO (2.93)
i=1 ~ J

We note here that for identical NM stages the factors appearing right before the

integrals would sum to 1 after carrying out the integration, which is what we intended

when we previously defined A'u, APr and Vu".

The description of the generalized aerodynamic-rotordynamic coupled model is

now complete. It is mainly represented by Eqs. (2.22), (2.23), and the Cartesian

equations (2.31) and (2.32) (or their polar counterparts (2.37) and (2.38)) for the

flowfield, together with the X and Y components of the rotordynamic equation,

Eq. (2.68), along with the associated definitions.

2.3 The Baseline Model

We proceed now to reduce the above generalized model into a lower order form that

is more suited for analysis purposes. To achieve that we start by choosing mathemat-

ical forms for the pressure-flow characteristics of the compressor and throttle. That

allows for the evaluation of the integrals in the flowfield equations, (2.22), (2.31) and

(2.32) (or (2.37) and (2.38)). We then truncate the Fourier series at the first har-

monic yielding a fourth-order approximation of the Moore-Greitzer model. Finally

we simplify and integrate the expressions derived above for the aerodynamic forces

and collect the equations, thus completing the derivation of an eighth-order baseline

model of the coupled system.
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2.3.1 Choice of Compressor and Throttle Characteristics

Choice of Compressor Characteristic

The pressure-rise compressor characteristic, e'(#, c), is a simplified representation of

the relationship between the compressor's pressure-rise and flow coefficient when a

hypothetical steady and axisymmetric flowfield is imagined throughout the range of

flow coefficient. However, for certain values of flow coefficient such a flowfield is known

to be unstable and thus can not exist. One of the accomplishments of the Moore-

Greitzer model is that it provides an approximated correction to this relationship in

the case of unsteady, nonaxisymmetric flow conditions, including the conditions of

rotating stall and surge.

In the current model we start with the same form of V' adopted by Moore and

Greitzer as the nominal (axisymmetric) characteristic, and modify it with the depen-

dency on tip clearance to generate a family of characteristics as follows

'(#,E)=c0H + H + 1 - 1 + H (E -) (2.94)C 2 W 2 W D

where we assume linear dependency on local tip clearance (E - K). The sensitivity

factor 8 is in general a function of # and f but, in many cases, may reasonably

be assumed constant for added simplicity, Graf [29]. This constant is expected to be

negative to give the local effect of lower pressure rise for higher tip clearance. We

thus acknowledge this fact by defining a "positive" sensitivity constant c= - .

For further convenience, we rescale the main variables as follows

q = _Q= A'
2W 2W

0C= P =
H H
a' b' A'

an bn = n n An = n (2.95)
"' 2W '2W " 2W

71



6>

1)C

H

ON-~0

Figure 2-6: General features of the compressor pressure-rise characteristic.

The rescaled flow coefficient may then be expressed as

N

q = Q + an cos nO +bn sin nO
n=1
N

= Q + E A cos n( - 77n)
n=1

(2.96)

(2.97)

The above rescaling scheme is similar, but not identical, to that used by Mc-

Caughan [54, 55] in which nondimensional time was also rescaled by the factor L/S

and the flow coefficient was shifted by 1. While the rescaling adopted by McCaughan

simplifies the flowfield equations, its benefit is compromised once the rotordynamic

model is added into the picture. The rescaling adopted in this study and defined by

Eq. (2.95) is more appropriate for the coupled model at hand.

We may now write the compressor characteristic 0, as

'c(q, r, E) = Oco + 1 + 3 (q - 0.5) - 4 (q - 0.5) +cer cos(O - E) (2.98)

where the relation e - = -r cos(0 - E) from Eq. (2.39) is used. Figure 2-6 shows the

main features of this cubic characteristic. We note that the assumption of constant
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sensitivity, V),,, has the effect of vertically aligning the peaks of curves corresponding

to different tip clearance values. Also, we note that the rescaled compressor charac-

teristic is described only by two parameters, S and 0,0, and that its peak will always

be at (q, c) = (1, 2 + Vco) regardless of the value of S. Finally, we designate the point

at q = 1.2 as the design operating point, allowing a reasonable 20% stall margin.

Choice of Throttle Characteristic

The characteristic of the throttle is a simpler function relating the pressure drop and

the flow coefficient. A quadratic relationship that is usually used for this purpose and

is deemed quite sufficient may be written as

H 2  2W
T = OT(<bT) = 2_(D or 41) = -'(') = -y N'/T (2.99)

and in rescaled form as,

(2W)2P= bT(QT) 2 Q2  or QT==(P) =T 1P (2.100)

For steady, stable and axisymmetric flow conditions, the operating point of the

compression system is set by the two characteristics, 0, and OT, and is located at

their intersection. However, in the presence of a flow asymmetry, such as rotating

stall, the operating point is influenced by the nonaxisymmetric part of the flow as

described by the full model.

Integrated Forms of the Compressor Characteristic, N = 1

Having obtained the form of the compressor characteristic, we may now return to

the flowfield model, Eqs. (2.22), (2.31) and (2.32) (or (2.37) and (2.38)), and carry

out the integrals appearing therein. Setting N = 1 and dropping the corresponding

subscript for brevity (i.e., letting a = a,, A = A1 and so on) we find
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Cartesian version

= 1 j27 d

Oco + 1 + 3 (Q - 0.5) - 4 (Q - 0.5)3

4'c(Q)

1 27r
Oc _ - Oc cos 0 dO

= -3a [4Q(Q - 1) + (a2 + b2 )] + 'ceX
127r

OCslj sin0 dO
7r 0

= -3b [4Q(Q - 1) + (a2 + b2 )] + /ceY

Polar version

1 27r

2 7f c dO

= co + 1 + 3 (Q - 0.5)- 4

-- c cos(O -,q) dO
7F 0

-3A [4Q(Q - 1) + A2] +

127r

-1j4c sin(0 - r) dO
= 7r 0

=c #cr sin (0 - r)

(Q - 0.5)3

- 6(a2 +b 2 ) (Q - 0.5)
contribution of nonuniformity

(2.101)

- 6A 2 (Q - 0.5)

ce r cos(E - r)

(2.102)

Higher order flowfield models can be constrcted in a similar fashion by selecting

N > 1 as described in Appendix A.

2.3.2 Simplified Expressions of the Aerodynamic Forces

In order to reduce the complexity of the aerodynamic force expressions, Eqs. (2.91)-

(2.93), for the baseline model, we assume that the compressor has Nt repeated stages

of similar dimensions. Further, as discussed earlier, we need to approximate the
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behavior of different blade rows in regard to the two main flow angles: that of the

flow leaving the stator (in the absolute frame), aoSu, and that of the flow leaving

the rotor (in the relative frame), #,'j All other angles can then be deduced in terms

of these two from the velocity triangles shown in Figures 2-4 and 2-5. However, the

force expressions for the turning and unsteady contributions do not require explicit

knowledge of these angles, but instead only the following combinations are needed

[tan u_ ou tan #t] and 1 [tan/3m + tan /#Zout] (2.103)

Turning Force

The turning force involves only the first of the above two expressions for which we

utilize the Euler turbine equation as applied to a steady, axisymmetric flowfield, and

written in nondimensional form as

1
( = q$ [(v "i)i - (Viy) ]

[I (tan ou_ + tan /3 (ut)] (2.104)kbns(i 1) Pr(i)

This directly gives a relation for the needed angle expression. Further, comparing the

above Euler equation to Eq. (2.87), and considering similar stages, one finds that the

average (i.e., per stage) turning force is exactly given by

(Ftu)i = -Xtu f (Te) [- sin 0 i + cos 0 j] dO (2.105)
27r 0 2

where the stage torque is a quantity that is reasonably measurable or, at least, is

of known general qualitative features. For this purpose the following stage torque

characteristic may be adopted

(-rc i 1 (-Tc)
(ci= 1gRSA

=pQ2 R 3Ac

To +Tc, q±+Tc2 q 2+ Tc 3 q 3 _TCE (5e (2.106)
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where A, is the compressor flow through area, A, ~ 27rRh, and the total compressor

torque is simply Nt(-rc)i.

In order to determine the coefficients in the above equation, we try to match any

torque data available for the compressor of consideration. Such data is either available

only over a limited part of the operating range, or is reflective of the stalled (as

opposed to the axisymmetric) performance over part of the operating range. Therefore

we follow a rationale similar to that used in adopting an axisymmetric, hypothetical

pressure-rise characteristic in the Moore-Greitzer model. To that end, the torque

coefficients are chosen such that the resulting characteristic: has the usual S-shape,

matches any available measurements over the stable and reversed-flow portions, and

interpolated in between within the limits of a cubic polynomial. Measurements of

axial compressor torque over a wide range of operating conditions are reported by

Day [11], Gamash [26, 27] and Lavrich [48].

Carrying out the integration yields the final expression of the average turning

force required for the baseline model

(Ftu)i = Xtu [b Fj"(Q, a, b) + TCY] i + [-a Fu(Q, a, b) - TcX] j} (2.107)

where the function Fu(Q, a, b) is given by

Pu (Q, a, b) = Tci + 2T, 2 Q + 3Tc3 Q2 + I(a2 + b2) (2.108)
1 4

It is worth noting here that the above expression differs from that introduced by

Thomas [75], or Alford7 [3], in that the force not only depends on the rotor eccentricity,

but is also a function of flowfield variable quantities Q, a and b. Therefore, even if the

torque characteristic is assumed independent of tip clearance (i.e., setting Te equal

to zero), the main effect of eccentricity in producing the turning force would still be

captured through the flowfield nonuniformity described by the Moore-Greitzer model.

7A brief derivation and description of these early works may be found in several rotordynamics
books such as Ehrich [18] and Childs [6].
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Furthermore, in cases where detailed flowfield information about flow velocities and

inlet/exit angles is available (either from experiment or elaborate computations), the

more general turning force expression given by Eq. (2.91) may still be used. Finally,

this force contribution has traditionally been assumed to be only in the tangential

(8) direction. However, the above expression suggests that this force may in fact

have a radial component which can play a role in the overall stability picture.

Pressure Force

We recall here that the intermediate stage pressure averages, Aj, which appear in

Eqs. (2.88) and (2.92), are not directly available from the Moore-Greitzer model,

which gives the pressure only at the compressor inlet and exit, pi and PE. To over-

come this difficulty, we may estimate the intermediate pressures by starting from a

point at which the pressure is available, say pi. The exit pressure of the first blade

row can now be related to p, through the performance characteristic of that blade

row. We may then march through the blade rows and repeat the process. To avoid re-

quiring knowledge of the performance characteristic of individual blade rows, we may

alternatively carry the summation in Eq. (2.92) into the integral such that the pres-

sure averages of individual stages (assumed to be similar) can be combined into one

pressure average over the whole compressor. This produces the convenient expression

1 -27 1 PI + PE
2r 0 2 pQ2 R 2 [cos 0 i + sin 0 j] dO (2.109)

The required pressure average can be formed using the equations of the inlet and exit

ducts, Eqs. (2.10) and (2.18), yielding

PIE 1 PI +PE

pQ2 R 2  2 pQ 2 R2

_PtA 1 1 1dd<} 1 )Op
- P + - - -<2- -(LI - LE)) + -(m 2) (2.110)
pQ2R2 2 4 2 <{ 2 qq
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where the (6o) 2 term from Eq. (2.10) was neglected in comparison to 02 as discussed

for the IGV's and OGV's in Moore [56, Part I]. In addition, since we chose m = 2

for the exit duct, the last term in the above expression is also eliminated. Finally, we

note that quantities which are not functions of 0 will not contribute to the integral

in Eq. (2.109). The pressure force thus reduces to the following simple expression

(Fp)i = -X p -- 0 2 [cos 6 i + sin 0 j] dO (2.111)

= XPr W 2 Q [a i + b j] (2.112)

We observe here that, just like the turning force contribution, the pressure force may

have both tangential (whirl) and radial (restoring) components.

Unsteady Force

Evaluation of the unsteady force contribution involves the second angle combination

mentioned in Eq. (2.103). In order to avoid excessive complexity, we note that this

angle combination is commonly used to define the angle of the average velocity within

a blade passage. We will assume that this averaged angle remains, more or less,

constant and is approximated by the blade stagger angle, i.e.,

I [tan,34 + tan 'ut] ~ tanr (2.113)

Examination of detailed flow data, such as that given by Lavrich [48] suggests the

adequacy of this representation, especially in unstalled flow conditions.

The unsteady force contribution is therefore given by

(F uf)= -X 1 -2W q tanyr [-sinO i+cos j]+2W qk} dO27r tan -yr 0(

(2.114)

from which the final expression can be obtained by carrying out the integration yield-
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ing

(Fun), = Xun W dai + -- ] + - k (2.115)
[_ + + tan y, d

We may note here that the unsteady force has an axial component in the Z direction,

in contrast to the turning and pressure forces which were constrained to the XY

plane8 . However, since we are only interested in rotor vibrations in the XY plane,

the axial unsteady force identified above is not relevant in this study.

2.3.3 Summary of the Baseline Model Equations

In this section, we collect the equations developed so far which describe the dynamics

of the baseline model. In this eighth order model, the states are Q and P which

represent the global system (surge) states; a and b (or A and rq) which represent

the compressor flow nonuniformity (rotating-stall) states; and finally, X, Y, X, Y (or

r, e, r, O) which are the rotordynamic states. The model is given in terms of the

following nonlinear ordinary differential equations.

Flowfield Model. The surge-like dynamics are described by

S
1~ (2.116)Q =2[C (Q, a, b) - P] 216

PS=2[Q - QT(P)] (2.117)2SB2,C

whereas the dynamics of the flow nonuniformity are described by

I S
a= - V4'c(Q, a, b, X) - Ab] (2.118)

b= 1 S (Q, a, b,Y) + Aa (2.119)
(+ p) 2cI

8This is so because the control surfaces through which momentum flux enters and exits each
stage is in the XY plane; the axial flow coefficient is constant in Z; and, the control surface upon
which the pressure acts is parallel to the Z-axis.
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in Cartesian form, and

1 S
(m±+ p)[.2

( 12
(m~p)A

01 (Q, A, 71, r, E)J
S

+- 4,P(,r,+2A

in polar form. We note here that the surge-like dynamics are coupled to the rotordy-

namics only indirectly through the flow nonuniformity.

Integrated Characteristics. These expressions are given by Eqs. (2.101) and

(2.102) and are listed here again for convenience.

given by

The Cartesian expressions are

0 = = /co + 1 + 3 (Q - 0.5) - 4 (Q - 0.5)3 - 6(a 2 ± b2 ) (Q - 0.5)

C= -3a [4Q(Q - 1) + (a2 + b2 )] + pceX

C -3b [4Q(Q - 1) + (a2 + b2 )] + 'ceY

whereas the polar expressions are given by

'$L co + 1 + 3 (Q - 0.5) - 4 (Q - 0.5 6A 2 (Q - 0.5)

-3A [4Q(Q - 1) + A2] + 4c'r cos(O -

c cer sin(E - r7)

(2.125)

(2.126)

(2.127)

The throttle characteristic is given by

Q(P) = F t b l (2.128)

Rotordynamnic Model. For the baseline model, we assume any gravity force to be

in the negative Y direction. The X and Y components of Eq. (2.68) can then be
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written in Cartesian form as

X + 2(vX -v 2 X - v X 3 + ecos + fcos(vah,) + X(Fe), (2.129)

+ 2 ada, = _,IstV2 y _ aflS,1y3 + e sin ( - Gy + crha jsin(vhad ) + x(Fy" )i

(2.130)

In the case of symmetric damping, stiffness, and harmonic forces, the second equation

can be easily rewritten after setting oda = Ust = " -= a - 1.

These can be expressed in polar form as

- re 2 + [2(v(cos2  + Oda sin2 6)] + (a7a - 1) [2(v cos E sin E] e =

- [cos 2 e + -st sin2 2] V2 r - [cos 4 E + n"s sin' E] or 3 + e cos(e -)

+ / [cos E cos v ha + rha sin E sin vha] - Gy sin E + X(Fme)i (2.131)

re + 2#e + (-da - 1) [cos E sin E] (2(v) + [1 + (ada - 1) cos 2 E] (2(v)re =

- (r" - 1)[cos e sin E]v 2 r + [cos 2 e - as sin 2 E] (cos e sin E)r 3

- e sin(E - I) - f [sin E cos vha6 - ha cos E sin uha6]

-Gy cos E + X(Fje); (2.132)

It can be seen that the polar form is greatly simplified in the case of symmetric

damping, stiffness, and harmonic forces. In such a case, these equations reduce to

- r6 2 + 2(v4 = -v 2 r [ (cos4 e + sin 4] Crl + e cos(e -

+ f cos(O - Vha() - Gy sin E + x(Frae)i

rb + 2i 3 + 2(vrb = [2 cos 2 e - 1] (cos E sin E)Vr3 - e sin(e -

- fsin(E - Vha") - Gy cos E + X(Fae);

(2.133)

(2.134)

Inspection of the two versions of the polar equations indicates that the presence of

parameter asymmetry can introduce additional coupling between the tangential and

radial motions of the rotor, and thus may alter the overall rotordynamic stability.
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Aerodynamic Forces. The aerodynamic forces are given by the following expres-

sions

(Fae), = (Ftu)i + (FPr)i + (F uf)i (2.135)

where the turning force contribution is given by

(Fxj) i = X b (7,i + 2Tc2 Q + 3T4 Q2 +

(F?"u)i = - X tu a (Te + 2TC2 Q + 3Tc 3 [Q2 +

while the pressure force contribution is given by

(Fpr), - XPr W 2 Q

(Fr)i - XPr W 2 Q

- (a2
4

1 (a2

+ b2) + TceY}

+ b2)) + TCeX}

a

b

and, finally, the unsteady force contribution is given as

(Fr)=-X w b

(Fy"),= Xu" W il

We note that the force expressions can be written in terms of the polar variables

of the flowfield, A and r, or in terms of the polar variables of the rotordynamic model,

r and E, or a combination of these. That can be achieved using the following relations

a = A cos(q7) b = A sin(,q) A = Va2 + b2 77 = tan-1 b
a

i= A cos 77 - Ai sin n b = sin + Ai cosr

C 2 + b2 = A 2 +A A2g2
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(2.137)

(2.138)

(2.139)

(2.140)

(2.141)



and,

F, = Fx cos E + Fy sin E) Fe = -Fx sin 9 + Fy cos E) (2.142)

where, from here forward, the over-dot indicates differentiation with respect to nondi-

mensional time .
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CHAPTER 3

ANALYSIS OF AERODYNAMIC FORCES

This chapter begins by introducing four prototype compression systems representative

of different classes of compressors that can be adequately described by the baseline

model. Using these compressors, we explore the nature of the aerodynamic forces by

presenting their qualitative and quantitative features in two simplified special cases:

fixed offset of the rotor and steady forced rotor whirl. In doing so, we aim to gain

insight into the behavior of these forces as well as validate the model against recently

published data. We also address the effect of compressor geometry and characteristics

on these forces and give preliminary remarks about their role in inducing rotor whirl.

3.1 Prototype Compression Systems

We select four prototype compression systems which, in terms of the parameters of

the current model, differ mainly in the compressor they contain, as described by the

pressure-rise and torque characteristics (i.e., in terms of S, IcO, /ce, TcO, Ti, Tc2, Tc3)

on one hand, and the compressor geometry and inertia parameters (i.e., blade angles,

Nt, A and p) on the other. Further, the difference in the rotordynamic classification

(subcritical/supercritical) of these systems may also be linked to the compressor it-

self. For instance, although the rotors of system C1 and C2 (our first two prototype

systems) are assumed to have the same spinning speed Q, they are set up to be sub-
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critical and supercritical, respectively. The reason is that system C2 has more stages,

thus producing a higher pressure-rise and having a longer rotor span and therefore a

smaller natural frequency, w.

We now give a brief description of these compression systems, comment on the

reason behind including each, and then list the nominal values of their main param-

eters in Table 3.1. Note that the values of some of the parameters given in the table

(e.g., x, v and B) represent nominal choices or estimates that may be varied in the

course of the parametric stability studies of the next chapter. Details of parameter

selection and estimation are given in Appendix B.

3.1.1 Multistage Low Speed Axial Compressor, C1

System C1 represents a typical low-speed, low pressure-rise compression system with

a subcritical rotor (i.e., v > 1). The compressor in this system is based on the heavily

tested and well-documented MIT 3-Stage compressor.

Figure 3-1 depicts the pressure-rise and axisymmetric torque characteristics of

this compressor in terms of the variables: (#, ') and their rescaled counterparts

(q, 0c) for the pressure rise, and (q, (Tc)i) for the torque. These characteristics are

based mainly on detailed measurements which were originally reported by East-

land [17]. Other comprehensive description of such measurements, together with com-

pressor geometry, parameters and configuration details, were given by Gamache [26]

and more recently by Van Schalkwyk [76]. It may be helpful to refer to Figure 2-6 and

relate the parameters describing the cubic pressure-rise characteristic (i.e., H, W Oco

and oc,) to those shown here. Also shown in the figure is the exit flow angle of the

rotor blade row, /3,, corresponding to the chosen torque characteristic as calculated

from Eq. (2.104). It can be seen that the deviation is only a few degrees at design

point (which we choose to be at Q = 1.2, giving a 20% stall margin), but increases as

we move away from the design point in either direction. Further, the exit flow angle

is slightly more than 90 degrees in the reversed flow regime, which is qualitatively
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Figure 3-1: Pressure-rise and torque characteristics for C1.

consistent with measurements such as those given by Lavrich [48, e.g., Figure 5.18].

The range of flow coefficient (0.0 < q < 0.2) in which the angle prediction is not

realistic is ignored on the basis of being very small and away from typical stable and

even stalled operating points. In addition, this angle does not appear explicitly in

the formulation of the model; only the torque characteristic does.

3.1.2 Multistage High Pressure Ratio Compressor, C2

System C2 represents a low-speed, high pressure-rise compression system with a su-

percritical rotor (i.e., v < 1). This hypothetical compressor is thought of as being the

same as the MIT 3-stage compressor, C1, except with more stages stacked together.
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Figure 3-2: Pressure-rise and torque characteristics for C2.

We thus assume a 9-stage compressor for which S, A and y are three times those

of C1. The effective total duct length, L also increases (as a result of the increase

in P) together with the rotor axial span which is now roughly three times as long

(due to the additional stages). Everything else remains the same. The inclusion of

this compressor is motivated by the findings of Graf et al. [301 who suggested that

the higher curvature of the compressor pressure-rise characteristic can exacerbate the

destabilizing effect of tip-clearance asymmetry. In addition, the high pressure-rise

compressor and the supercritical rotor make this system a closer representation of a

modern compressor. The pressure-rise and torque characteristics for this compressor

are shown in Figure 3-2.
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Figure 3-3: Pressure-rise and torque characteristics for C3.

3.1.3 GE 4-Stage Low Speed Research Compressor, C3

Although the compressor in system C3 does not represent a different category, it is

introduced for the purpose of validating aerodynamic force calculations to be pre-

sented later in the chapter. The comparison is against experimental and numerical

data taken in the GE Low Speed Research Compressor (LSRC). In these experiments,

detailed measurements were taken of flow quantities within a blade passage under dif-

ferent values of fixed shaft offset, from which the aerodynamic forces were deduced

(see Storace et al. [73] and Ehrich et al. [22]). A brief review of this work was given

in Section 1.2.2.

The pressure-rise and torque characteristics for this compressor are shown in
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Figure 3-3, while other available and assumed parameters are given in Tables 3.1.

Note that the available torque measurement shown in the figure is clearly different

from the model characteristic. Attempting to match the torque data produced an

unrealistically large deviation in the flow exit angle. A more consistent value of

torque was therefore used.
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Figure 3-4: Pressure-rise and torque characteristics for C4 (Note the difference in scale).

3.1.4 Axial-Flow Liquid Pump, C4

As discussed in Section 2.2.4, the main aerodynamic-rotordynamic coupling parame-

ter, X, is essentially proportional to the ratio of two densities: that of the fluid being

pumped and that of the rotor structural material (i.e., X ~ P/Ps). Therefore, X is in

general expected to be small for gas compressors, Xgas ~ 10-5 to 10-4. On the other
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hand, in an axial liquid pump, X is about three orders of magnitude higher and, as

a result, the coupling may be more pronounced. Axial liquid pumps thus represent a

typical application in which high values of X are realistic.

We therefore consider a fourth compression system consisting of a hypothetical

axial liquid pump, for which the Moore-Greitzer model may still provide a reasonable

approximation. To that end, we recognize two important differences between a liquid

pumping system and a gas compression system. The first difference lies in the pump-

ing/compression device itself while the second difference has to do with the source of

fluid compliance in the system.

Typical axial-flow liquid pumps are usually of low hub-to-tip ratio and have a

single blade row that carries only a few large-sized blades, whereas axial compressors

typically have more stages with a larger number of small-sized blades. These differ-

ences give rise to a few difficulties regarding the use of the Moore-Greitzer model and

its assumptions to represent an axial liquid pump. First, an important assumption

of the Moore-Greitzer model (which was essentially developed with gas compressors

in mind) requires that the wavelength of circumferential disturbances be long enough

compared to the blade pitch (see Longley [51] for a precise review of these assump-

tions). Second, the assumption of high hub-to-tip ratio allows three-dimensional

effects to be neglected and a two-dimensional flow description to suffice. To overcome

these modeling difficulties, we base our hypothetical system on a pump which has a

relatively large number of blades and a high hub-to-tip ratio. Such a pump was used

by Murai et al. [58, 59] to study cavitation and rotating stall-like instabilities'. This

research axial pump is configured with 18 blades and has a hub-to-tip ratio of 0.7.

Further, in contrast to gas compression systems which have have compressible gas

in their plenums, the incompressibility of the liquid in this system results in a very

small B-parameter.

We finally note that axial liquid pumps are generally characterized by relatively

'The performance characteristic and the main results of the Murai's studies are summarized in
Brennen [5].
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very large flow rates and very low heads. As can be seen in Figure 3-4, this is captured

by the small value of the characteristic aspect ratio S and the large value of /co to

account for most of the pressure-rise. As a result of the small pressure rise, most

figures referring to this compression system will differ in scale as will be pointed out

in the corresponding caption. A reasonable match between the model and typical

measured pump characteristic is achieved over the flow range that matters the most,

i.e., 0.8 < q < 1.3, where q < 0.8 is not likely to be encountered because of the very

small B).

Param. C1 C2 C3 C4 Remarks
L 5.53 7.55 5.38 33.54 fixed dimension
B 0.1 0.1 0.1 0.001 nominal

Nst 3 9 4 1 data match
H, W 0.27, 0.25 0.81, 0.25 0.57, 0.18 0.021, 0.11 data match

S 1.08 3.24 3.1 0.19 ratio of H/W
A, p 0.68, 1.01 2.04, 3.03 0.848, 1.56 1.38, 2.77 fixed dimension

CO 0.926 0.309 0.612 4.76 data match
m 2 2 2 2 see Eq. (2.18)
v4 0.23 0.41 0.24 0.29 fixed (vr' = m-M+)

0.05 0.05 0.05 0.05 nominal
v 1.76 0.227 0.687 3.50 nominal
I (7.6)10+3 (1.267)10+2 (1.655)10+3 (9.24)10+3 nominal

Gy (3.4)10-3 (3.4)10-3 (1.46)10-2 (1.87)10-2 constant
all o-'s 1 1 1 1 nominal

CE 14.82 9.88 7.00 19.05 data match

Tce 0 0 0 0 assumption

X (7.83)10-5 (7.83)10-5 (4.81)10-4 (2.71)10-2 nominal estimate

Xtu 54.74 54.74 85.39 13.04 fixed geometry

Xpr 98.89 98.89 91.00 11.77 fixed geometry
XY" 5.9 5.9 8.91 5.80 fixed geometry
,/v" 7.78 0.559 2.88 12.05 nominal (& = - )
/ceX (1.16)10-3 (7.73)10-4 (3.37)10-3 (5.16)10-1 nominal

Table 3.1: Nominal and fixed values of nondimensional parameters for different prototype
compression systems.
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3.2 Qualitative Relationship Between Aerodynamic

Forces and Flowfield Nonuniformity

The aerodynamic force expressions derived in the last chapter indicate that these

forces are the direct result of the flowfield nonuniformity, and that they depend on

the operating point and compressor characteristic. Further, the compact form of these

expressions allow for the establishment of clear relations between the forces and the

quantities describing the flow nonuniformity. In this section, we demonstrate these

relations by giving numerical examples that are based on compressor C1. Comparison

of forces in the other compressors will be given in the following section.

Turning Force

Recalling the expressions for the two components of the turning force, FU and F}u,

given by Eqs. (2.136) and (2.137), and taking Tce = 0 from now on as the baseline

case, we can write expressions for the amplitude and phase of the turning force as

follows

Ftu = (Fty)2 + (Flu)2  tXAPctu (3.1)

= xtUA LTc +2Tc 2 Q(+Q3 2 + I A 2 (3.2)

and,

Rtu =- tan- a = 7 t 90 (3.3)b

The phase relation above indicates that, to first harmonic approximation of the flow-

field, the line of action of the turning force contribution is perpendicular to the peak

of the flow nonuniformity, and not to the tip clearance asymmetry as it is traditionally

assumed. The amplitude of the turning force is a somewhat complicated expression

that is cubic in A and quadratic in Q.
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To illustrate the features of the above relations, we consider compressor C1 as an

example, and assume a flowfield nonuniformity of amplitude A and some fixed phase

7, say 30 degrees. Figure 3-5 shows a plot of the X and Y components of the turning

force, together with its amplitude Ftu, and phase difference, rtu - r7, as a function

of mean flow coefficient Q and for different values of flow nonuniformity amplitude

A. It can be seen that for small values of A, and as the mean flow coefficient Q is
decreased, the turning force reverses direction twice along the line perpendicular to

A. That is, the phase difference ru - changes from 90 to -90 and then to 90 degrees

again. However, for a nonuniformity of large amplitude, e.g., A = 1.0, the turning

force maintains the same direction at 77tu - q = 90 for all Q. Small values of A are

representative of flow nonuniformities that are the result of a rotor offset, whereas

the large value of A = 1 represents a nonuniformity such as rotating stall.

Pressure Force

Using the X and Y components of the pressure force as given in Eqs. (2.138) and

(2.139), an expressions for the amplitude and phase of the pressure force contribution

can be written as follows

Fpr = XPrW 2 QA (3.4)

and,

,r = tanl = 0, 180 (3.5)
a

This indicates that the pressure force is always aligned with the flow nonuniformity.

This is consistent with the simple Bernoulli relation between flow pressure and veloc-

ity, which requires the point on the circumference passing the minimum flow to have

the maximum pressure. It should also be noted that, unlike the turning force, the

pressure force is a simple function which is linear in both A and Q. Figure 3-6 shows

a plot of the amplitude and phase difference of the pressure force and it X and Y
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Unsteady Force

Similarly, using the X and Y components of the unsteady force as given in Eqs. (2.140)

and (2.141), expressions for the amplitude and phase of this force contribution can

be written as follows

Fun = xu"W A2 + A 2i 2 (3.6)
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and,

_n Li _A1 cosqr - A sin r7
q -tan- -= -Atan . (3.7)

b Asin ri + A cosq

The relations of the unsteady force are more complicated than the other two. But

some insight can be gained by considering the special case of pure rotating stall in

which the flow nonuniformity has a constant amplitude, A = A" (i.e., A = 0), and

a constant rate of rotation, ii = v'. In such a case, the amplitude and phase of the

unsteady force reduce to

(Fu") = XunWAsv"s and (,q)T = tan 1 n = r t 0, 180 (3.8)
cos r1

which indicates that the unsteady force during rotating stall is also aligned with the

flow nonuniformity (and hence rotating at the same frequency) and that the amplitude

is a simple function that is linear in both A and v1, but is independent of Q.

Figure 3-7 is a plot of the above results showing the amplitude and phase dif-

ference of the unsteady force as a function of A and for different values of v". We

note that the amplitude of the unsteady force during rotating stall (i.e., A ~ 1) is

in general very small compared to the turning and pressure force contributions at

similar value of A.

Figure 3-8 is a schematic which summarizes the phase relations between the three

force contributions and flowfield nonuniformity described above.
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3.3 Calculation of Aerodynamic Forces in Simpli-

fied Cases: Fixed Rotor Offset and Forced Ro-

tor Whirl

The relations described in the previous section do not take into account the link be-

tween the tip-clearance asymmetry and the flowfield nonuniformity it generates. They

simply give the aerodynamic forces resulting from a given, arbitrary flow nonunifor-

mity without specifying how that nonuniformity is produced. As such, these relations

represent an insightful view of the forces which should carry over to more complicated

situations.

A more realistic picture can be obtained by realizing that the flow nonuniformity

as represented by (A, rj) is not arbitrary, but is rather the result of a tip-clearance

asymmetry. We assume that this asymmetry is produced by an offset of the rotor

within the casing. We therefore choose a static rotor offset, solve the flowfield equa-

tions for (A, rq) resulting from the tip clearance asymmetry, and then calculate the

resulting forces. In doing so, we quantify the relationship between the aerodynamic
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forces and a given, somewhat arbitrary tip-clearance asymmetry (or steady rotor de-

flection). To further generalize the problem without adding much more complexity,

we consider a rotor which is forced to whirl within the casing at some fractional fre-

quency, vWh = wwh/Q, and a fixed radial displacement rwh. The special case when

vwh = 0 corresponds to the fixed rotor offset configuration. Although the flowfield

under forced whirl is unsteady in the fixed frame XY, it is steady in the asymme-

try/whirl frame X*Y*, Figure 3-9, and can therefore be solved with relative ease.

These calculations are carried out and presented in this section for all four prototype

compressors introduced earlier.

Since the rotor motion is specified, the rotordynamics do not play a role in this

exercise. Nevertheless, the goal remains to give a quantitative and qualitative descrip-

tion of the aerodynamic forces in relatively simplified cases before the fully coupled

system is considered. In addition, this exercise allows for comparing the force model

predictions against experimental data obtained for a similar, fixed rotor offset config-

uration.

3.3.1 Transformation of Coordinate System

The first step in the analysis is to transform the dynamic equations of the flowfield

to a frame of reference which is rotating with tip clearance asymmetry. This requires

the following transformation of variables, (see Figure 3-9)

0* = O wh

r *

E*= rvwh

for independent variables, and

A*= A

100



yY

wh

1/Ile

Rotor disc

Casing

Figure 3-9: Schematic of main variables in the fixed and the whirling coordinate systems.

101



q * = - w

Q*=Q

P* =P2 -(v h)2

for dependent variables, where the asterisk indicates variables in the whirling frame

X*Y*. The spatial and temporal derivatives in the rotating frame are given by

a - a
ao* - o and

a + 0
- 9 = -0 (3.9)

respectively. To simplify the notation, we drop the asterisk from the variables Q, A

and r since they are the same in both fixed and rotating frames.

The flowfield equations in the rotating frame can now be derived using the same

procedure outlined in Chapter 2. The resulting equations are as follows

- (P* + I vwh)1
2 H

(P*)]

Q =P(Q, A, 17*)

1
P* = 2, [Q - QT(2SB2

A = 1 u [ PC(Q, A, r*, r, E*)]
(m + p) 12cI
('1
(m +p) [A +

S1--*, e *)I2Ac

(3.10)

(3.11)

(3.12)

(3.13)- v wh

where the integrated characteristics 0, O4 and V)/' remain the same as given before

in Eqs. (2.125)-(2.127), except that they are now evaluated in terms of the new

variables in the rotating frame.
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3.3.2 Solution of the Steady State Equations

We now examine the steady state version of the above equations by setting their LHS

to zero yielding

1
0 = OP(Q A1*)4-(P*+ H)

1o = Q -y P* + vwh (3.15)
2 H

0 = - 3A [4Q(Q - 1) + A2 ] + cer cos(E* - r7*) (3.16)

(M + [t + 2A r sin(E* - 7*)] - vwh (17

which, in principle, must be solved simultaneously for Q, P*, A, and i* as a function

of the parameters -y and vwh. We note however that the first two equations describing

the axisymmetric flow need not be solved simultaneously with those describing the

flow nonuniformity. The reason is that the latter two equations do not contain either y

or P*. We can therefore choose the value of Q to be that of any desired operating point

on the the compressor map. We may then proceed to solve the flow nonuniformity

equations for A and r*, thus obtaining all quantities needed to evaluate the expressions

of the aerodynamic forces. Having solved for A and r7*, and having chosen Q, we can

return to the first two equations and find the value of -y and P* that correspond to

that operating point. To further simplify the equations, we reduce the number of

variables by choosing the X*-axis to be exactly aligned with the point of minimum

clearance which results in 0* = 0, without loss of generality. In doing so, r1* is then

the phase angle around the circumference between the flow nonuniformity and the

rotor offset, or equivalently, the angle between the point of minimum tip-clearance

and the point of maximum axial flow coefficient.

The result of the above procedure is the following equation

A6 + [8Q(Q - 1)] A4 + 16Q2(Q _ 1 )2+ (2 [A - (M+ )Vwh)] A2 - cEr = 0

(3.18)
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which is sixth order in A, but only third order in A2 . After solving this cubic equation

and picking the real positive root, we may obtain 4* by rewriting Eq. (3.17) as follows

= sin- 2A[A-(M +1t)vwh] (3.19)

A few comments are in order regarding the above two equations. First, we note

that r and 0,4 play the same role in determining the flow nonuniformity amplitude

A and the phase q*. For instance, increasing the rotor offset r is equivalent to having

higher compressor sensitivity to tip clearance 0c', either of which will increase the

amplitude of the nonuniformity A. Second, there exists a critical whirling frequency,

vwh - A/(m + M) - Vs, at which the second part of the A2 coefficient becomes

zero, and at which A is maximized while the phase q* becomes equal to zero (i.e.,

peak flow nonuniformity is aligned with the minimum tip clearance, see Figure 3-9).

Finally, in the case of vwh = 0, we note that reducing the parameter ratio A/S has a

similar (yet weaker) effect on the steady state solution. For instance, higher values

of the pressure-rise characteristic parameter S = H/W-corresponding to steeper

characteristic-would (for the same A) increase A and reduce q*. A look at Tabel 3.1,

reveals that systems Cl and C2 have the same ratio A/S which is smaller than that

of system C3.

With A and q* available from the equations above, the aerodynamic forces can

now be evaluated at any given compressor operating point Q and any whirling fre-

quency vwh using the expressions developed in Chapter 2 and listed in Section 2.3.3,

keeping in mind that the resulting forces are now in the X*Y* frame instead of the

XY frame. As such, the X* component of the force will be along the line of the

rotor offset and thus will represent the (positive or negative) restoring force, while

the Y* component of the force will be perpendicular to the rotor offset and thus will

represent the (backward or forward) whirl-inducing force. Further, only the turning

and pressure force contributions are evaluated since the unsteady force contribution

is zero for the steady flow situation considered here. Finally, we note that although

no stable equilibrium points are expected to exist at very low (and negative) values of
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flow coefficient, Q, evaluating the above expressions in those regions may be thought

of as a means of estimating the instantaneous magnitude and direction of turning and

pressure force contributions that may be encountered during sever transients such as

during surge.

3.3.3 Case of Fixed Rotor Offset

We now carry on to show the results of the calculations described above by first

considering the simpler case of fixed rotor offset corresponding to v'h = 0. The

steady state flowfield equations given in Eqs. (3.18) and (3.19) reduce to

A6 + [8Q(Q - 1)] A4 + 16Q2(Q _ 1)2 + A2 -- cer = 0 (3.20)

and,

= sin- (2AA) (3.21)
Ocecr S

Figures 3-10 to 3-13 show the flowfield nonuniformity in terms of A and q* and

the corresponding aerodynamic forces generated as a result of a fixed rotor offset for

the different compression systems. These four figures correspond to the compression

systems C1, C2, C3 and C4 respectively. Further, each figure contains three rows

of sub-plots: the amplitude and phase of flow nonuniformity are shown on the first

row; the amplitude and phase of the aerodynamic forces on the second row; and, the

X* (restoring) and Y* (whirl-inducing) force components on the third row. Upon

examining these figures, we make the following several observations.

For a rotor offset of r = 1.0% chord (about 35% of maximum possible deflection),

the flow nonuniformity amplitude A is of order 0.01 at very high mean flow coefficient

Q; of order 0.05 at design flow of Q = 1.2; and, of order 0.1 at Q which corresponds to

the peak pressure rise. The high amplitude of the nonuniformity close to the the peak

of the characteristic is the result of the compressor's tendency to amplify distortions
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as it operates closer to its neutral stability point. Furthermore, compressor CI has

roughly a 50% higher value of A as compared to compressor C2. This is due to the fact

that the compressor's tip-clearance sensitivity parameter ce is also about 50% higher.

Compressor C3 has the highest A at Q = 1 since its sensitivity parameter V), is very

close to that of CI, but it has a higher value of the A/S ratio, which corresponds to

a larger fluid inertia in the rotor and/or a less steep compressor characteristic, both

of which mean less amplification of flow nonuniformities.

The phase 7* varies with Q in approximately the same way as A. The point of

maximum flow is about 10 degrees away from the minimum tip clearance point at

very high Q. These two points move apart as the flow is reduced towards the peak,

Q = 1, at which point the flow nonuniformity is 90 degrees out of phase with the

tip-clearance asymmetry. Comparing the phase 4* in the three compressors C1, C2

and C3 shows that Cl and C2 have identical phase trends, while C3 has smaller 7* for

all values of Q except at the peaks. The reason behind this can be seen by examining

Eq. (3.21) and recalling that C1 and C2 have the same A/S ratio, while the effect

of the smaller 0,e of C2 (in the denominator) is cancelled by the smaller amplitude

A (in the numerator). The physical interpretation of the phase can be linked to the

fluid inertia in the rotor blade rows represented by A. The larger this inertia is, the

more the flow nonuniformity lags behind the tip-clearance asymmetry. On the other

hand, a steeper characteristic (larger S) tends to counter that effect.

On the second row of sub-plots in Figures 3-10 to 3-13, we show the amplitude

and phase difference [( 1 *)(F) - 7*], where (T*)(F) denotes (*t *)P or (*)ae. We

observe that for all three compressors C1, C2 and C3, and over a wide range of Q
(the exception being 0.8 < Q < 1.2), the turning force is the dominant contribution

to the total aerodynamic force. However, within the range of 0.8 < Q < 1.2, the two

contributions are of comparable size. As for the phase of the aerodynamic forces, we

note that the turning force again has the dominant effect on the phase of the total

force. For all three compressors, the phase difference (,,*)a,- 17*, is roughly 90 degrees

out of phase with the flow nonuniformity over the range -0.4 < Q < 0.4; between
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-60 and -90 degrees within 0.4 < Q < 1.2; and, switches back to approach 90 degrees

for Q > 1.2. The phase behavior described above indicates a strong link to the

compressor torque characteristic in that the two phase jumps occur approximately at

values of Q that correspond to = 0. This is not always the case, however, sincea9Q

for larger flow nonuniformities (i.e., larger A), there could be no phase jumps over

the whole range of Q as shown in Figure 3-5 (A = 1 case).

On the third row of sub-plots we show the X* and Y* components of the aero-

dynamic forces. For the given rotor deflection, the X* component represents the

restoring force while the Y* component represents the whirl-inducing force. As Q is
varied over the operating range, both these forces are seen to change sign. In partic-

ular, for Q < 0.4, the X* force component is shown to provide a restoring force that

tends to oppose the rotor deflection, while for Q > 0.4 it becomes in the same direc-

tion as the deflection. On the other hand, the Y* component is shown to change sign

more than once over the whole range of Q, hence providing both forward and back-

ward whirl tendencies depending on the operating point. It is worth noting that the

pressure contribution, which has traditionally been neglected in studying compressor

and turbine whirl phenomena, may have a strong influence on the net whirl tendency

of the compressor. For example, the Y* force component sub-plot in Figure 3-10

shows that, around Q = 1, the pressure contribution is large enough to completely

reverse the net effect from backward whirl (due to turning alone) to positive whirl.

Finally, we note that the liquid pump, C4, differs from the other three com-

pression systems in that it exhibits smaller flow nonuniformit-owing to its very low

pressure rise (i.e., very small S)-which, together with the low xe" and XP', result in

much smaller aerodynamic force, (F"e)i), about two orders of magnitude lower than

the those of the other three compressors. Nevertheless, the total aerodynamic force

which appears in the dynamic equations, Fae = X(F")i, is still about an order of

magnitude higher for C4 than for the other three because of the much larger value of

the coupling parameter x.
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3.3.4 Validation Against Experimental Data for Compres-

sor C3

Here, we present the results of the previous calculation as applied to the compression

system C3 and compare them to the data available from Storace et al. [73] and the nu-

merical results reported by Ehrich et al. [22]. The results in these two references, and

many others, are reported in terms of a parameter known as the Alford -parameter,

which we need to introduce first. The Alford p-parameter, or /^A, emerged from

Alford's original analysis as a nondimensional "correction factor" which multiplies

the cross-coupled stiffness relating the aerodynamic force, say (Fy)i, to the rotor dis-

placement X. As such, the #A1 parameter can also be viewed as the change of local

thermodynamic efficiency per unit of rotor displacement. The value of 13 Al is usually

given an approximate number for a given machine. However, it later became appar-

ent that 1 Al is not constant, but rather is dependent on machine performance and

operating point. Ehrich [19] calculated this parameter for three different compres-

sors over a range of operating points using a parallel compressor model and torque

measurements at different tip-clearance levels. He showed that /3 l depends on the

operating point and that its operating-point dependency varies from one compressor

to another.

Mathematically, 3 AI is expressed as follows

41(Tc); #)
(Fy)= X -> #Al = 2Rh (FY)~

Y 2 Rh (Ti X
cross-coupled

stiffness

or, in terms of the current nondimensional quantities

oAl 4 (lZ) 2 (h) F)i (3.22)
cos -, R 1 (re) i X

where the aerodynamic force (Fy)i can be either that due to turning, (Fyu)i, which

gives (/yAl)'u, or that due to pressure, (Fyr)i, which gives (/3y^)pr. As mentioned
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earlier, until recently only the turning contribution was addressed in the literature,

and most mention of the Alford #-parameter refers to that contribution.

The next step is to compare the pressure-rise characteristic used in the model

to that obtained from measurements. Figure 3-14 shows two sets of characteristics.

The first set consists of two pressure-rise measurements that correspond to two dif-

ferent mean tip-clearance settings of the compressor. The other set consists of three

curves representing the modeled pressure-rise characteristic, using a rotor offset that

results in a tip clearance distribution whose maximum and minimum match the two

experimental clearance settings. It can be seen from the figure that the measured

characteristics are more sensitive to tip-clearance around the peak than they are

within the high flow coefficient part of the operating range. In addition, the peak

of the characteristic shifts to the right for the larger tip-clearance. Such variation in

sensitivity and shift in the peak can not be captured using the simple linear depen-

dency of the characteristic on tip-clearance adopted in this thesis. To work around

this limitation, we tune the parameters S = H/W and 4' such that the best match

between the modeled and measured loss in pressure rise is achieved in the neighbor-

hood of the design point, while being underestimated at the peak and overestimated

in the high flow region.

Figure 3-15 shows the whirl-inducing component (i.e., the Y* component) of the

turning and pressure force contributions in terms of (##i)tu and (#3i)P over the full

range of mean flow coefficient Q. The shaded area in both of these plots indicates the

approximate range for which the experimental data is available and to which other

numerical approaches are typically limited. Finally, Figure 3-16 zooms on that shaded

region and shows the calculation results of the current model against the data and

computational results in Storace et al. [73] and Ehrich et al. [22]. The predictions of

the current model are shown to compare well against the measurements especially near

the design point (i.e., Q = 1.2 to 1.3), where the characteristics matched the best. The

error in predicted values (#yA'*)t becomes larger as we move closer to the characteristic

peak at Q = 1. This is to be expected, however, because of the limitations in capturing
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the compressor sensitivity to tip-clearance. Tuning the characteristic parameters such

that the modeled characteristic in Figure 3-14 makes a better match around the peak

brings the (##*)t prediction into closer agreement with the measurements in that

region but causes it to deviate further in the high flow region (not shown).

The pressure contribution, as expressed in terms of (OiyA*)PT compares well against

the numerical results by Spakovszky [71], while the match against measurement data

is only good within the range 1.1 < Q < 1.25, but deviates for larger values of Q.

3.3.5 Case of Forced Rotor Whirl

Let us now examine the case of nonzero whirling frequency vwh. We choose three

values of vwh. In the backward whirl range, we consider one case at vwh = -0.5.

In the forward whirl range, on the other hand, we consider two cases. The first is

at vwh = Vrs where we expect the flow nonuniformity, and hence the forces, to be

maximized, Figure 3-17. The second is a higher value of vwh = 0.75 representative of

the rest of the forward whirl range. Based on examining additional values of vwh, it

is deemed that these three choices sufficiently represent the whole region.

To show the effects of forced whirl on flow nonuniformity and aerodynamic forces,

we consider the compression system C2. Figure 3-18 shows flow nonuniformity am-

plitude and phase for compressor C2 as a function of flow coefficient for 3 different

values of whirl frequency, while Figures 3-19, 3-20 and 3-21 show the associated aero-

dynamic forces for the same compressor with the same rotor offset, corresponding to

vwh - -0.5, v"/ and 0.75 respectively. The trends are in general similar to the fixed

rotor case, except for the case when the whirl frequency is equal to the rotating stall

frequency, Figure 3-20.

In the special case of vwh = v", Figure 3-20, we first note that the peak amplitude

of the forces is roughly twice that of the fixed rotor offset. This is mainly the result of

the larger flow nonuniformity amplitude A which was found to be maximized at this

whirl frequency in Eq. (3.18). Next we note that the flow nonuniformity is exactly
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0.41 = v', with r = 1.0% chord.

aligned with the asymmetry, Figure 3-18. This causes the X* force component (which

is aligned with the rotor deflection) to be comprised only of pressure contribution,

while the Y* component to be comprised only of the turning contribution. In other

words, the pressure force is exclusively providing the restoring force (mainly a nega-

tive spring effect) while the turning force is exclusively providing the whirl-inducing

force. These observations are consistent with the general phase relations described in

Section 3.2.

3.4 Summary and Discussion

In this chapter, the aerodynamic forces acting on the rotor have been examined. The

model is shown to reasonably predict these forces for a given compressor geometry
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and operating point. The following is a summary of the main conclusions of this

chapter.

9 Causality: an offset in rotor position introduces a tip-clearance asymmetry

which interacts with the compression system and sets up a flow nonuniformity

in flow velocity and pressure. This nonuniformity is typically out of phase with

the asymmetry, mainly due to fluid inertia in the compressor. The momentum

balance around the rotor gives rise to three force contributions, the amplitude

and phase of which are closely linked to those of the flow nonuniformity.

" The dominant contribution to the aerodynamic forces is that due to turning,

except for operating points between the peak and design points within which

most of normal operation takes place. In this region, both pressure and turning

contributions are of comparable importance.

" Whether the compressor whirls backward or forward due to these forces can not

be established at this point (as the rest of the forces and the dynamic nature

of the problem must be taken into account). Nevertheless, it is shown that, for

a fixed rotor offset, the net aerodynamic forces tend to induce forward whirl

for all operating points except in the region to the left of the design point,

where backward whirl may or may not be possible depending on compressor

parameters.

" The use of the -parameter has no special advantage except for its traditional

popularity. We have confirmed that this parameter is not a simple function of

the operating point, and that a second 3 parameter corresponding to the pres-

sure force contribution should be defined and considered in any such analysis.

" Many system parameters were shown to influence the aerodynamic forces either

directly (e.g., X", XP' and X") or indirectly by affecting the flow nonuniformity

that produces the forces (e.g., A/S and V),,).
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CHAPTER 4

COUPLING IMPACT ON STABILITY:

LINEARIZED ANALYSIS

In this chapter, we examine the linearized stability of the coupled baseline model,

in the context of the four prototype compression systems introduced in the previous

chapter. We first consider the case where the rotor is in equilibrium at the center

of the compressor casing with no tip-clearance asymmetry. The linearized system

equations about such an equilibrium (fixed point) are obtained by means of a Taylor

series expansion of the baseline model equations. The stability of the system is then

examined for various values of coupling parameters (i.e., 0, x) and other system

parameters (e.g., y, B, and v). The stability of a second class of equilibrium points,

in which the rotor has a fixed offset within the casing, is then considered. We finally

conclude the chapter by discussing the different trends observed from the analysis

and attempting to link them to the design of axial compressors.

4.1 Linearized Baseline Model

4.1.1 Linearization of System Equations

The linearization of the system equations follows the standard Taylor series expansion

about an equilibrium point, see for example Nayfeh [60]. In such a procedure, the
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system equations are usually expressed as

k = f(x, k) (4.1)

where x is the state vector, f is the vector field, and k is a vector of control pa-

rameters. In the neighborhood of an equilibrium point1 xe corresponding to a set

of control parameters ke, the solution x is expressed as x = xe + x', where x' is a

small disturbance. The linearized system equations are then obtained by substituting

this solution into the original nonlinear equations, expanding in a Taylor series, and

keeping only first order terms, yielding

Of
'= (x -Xe)

OXXe

A x' (4.2)

where A = o is the Jacobian matrix, which is comprised of the first partial

derivatives of the vector field f with respect to the states x and evaluated at the

equilibrium point xe. The eigenvalues of the Jacobian matrix A determine the local

stability of the system in the neighborhood of the equilibrium point xe.

For our baseline model, the state vector is x = [Q P a b X Vx Y Vy],

the vector field f contains the RHS of the baseline system equations given in Sec-

tion 2.3.3, and the control parameter vector contains one element; namely the throt-

tling coefficient -y. The equilibrium point is defined by the vector xe = [Qe Pe

ae be Xe (VX)e Ye (Vy)e] and the control parameter -ye, at which the LHS of

Eq. (4.1) vanishes. Expressions for the elements of the Jacobian matrix A of the

baseline model are given in Appendix C. Finally, within this chapter of linearized

analysis and for brevity in notation, we drop the prime in x' and use x to indicate

the disturbance state vector.

'Equilibrium points are also called fixed points or operating points. In this thesis we use these
names interchangeably but settle for the subscript e to reference them.
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4.1.2 Equilibrium Solutions

The equilibrium points, xe, encountered in this chapter are two types. The first

corresponds to the simpler case of a centered rotor where the steady state solution

xe to the equations f = 0 is almost trivial in that only (Qe, Pe) are non-zero at

equilibrium. Determining (Qe, Pe) that correspond to some throttling coefficient -Ye

requires the solution of two simultaneous algebraic equations; namely

0 = f (Qe, ae = 0, be = 0) - Pe

= co + I + 3 (Qe - 0.5) - 4 (Qe - 0.5) 3 Pe (4.3)

and,

0 = Qe - Ye e (4.4)

The second type of fixed points corresponds to the case where the rotor is de-

flected under the effect of gravity. Finding the fixed points in this case is more involved

as it requires the solution of the following eight simultaneous algebraic equations

0 = "P(Qe, ae, be) - Pe

= co l+3 (Q-0.5)-4 (Q-0.5)3 -6(a 2 +b 2 ) -Pe (4.5)

0 = Qe - ye Fe (4.6)

0 = 3c (Qe, ae, be, Xe) - Abe

= - 3ae [4Qe(Qe - 1) + (a2 + b )] + 4'ceXe - Abe (4.7)

0 -C 8(Qe, ae, be, Ye) + Aae

= - 3be [4Qe(Qe - 1) + (a2 + b )] + IceYe + Aae (4.8)
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0 = (Vx)e (4.9)

o = -V 2 Xe - Xe3 + x [(Fy) + (Fxr)i] (4.10)

0 = (Vy)e (4.11)

0 =- V2y _ - + x [(Fyu)i + (Fy)i] - Gy(4.12)

which usually calls for the implementation of a numerical technique such as the

Newton-Raphson method.

In both cases, however, we recognize that a change in our choice of control pa-

rameter can greatly reduce the computational cost of finding these equilibrium points.

In fact, specifying the mean flow coefficient Qe at the desired operating point as the

control parameter instead of -ye achieves just that. This is so because the complex-

ity of these equations comes from the fact that Qe appears mostly in the nonlinear

terms such as the integrated characteristics and the aerodynamic force expressions.

By choosing Qe as a known control parameter, the equations become less coupled and

easier to solve. Further, choosing values for Qe is more intuitive since they can be

read directly from the compressor map (e.g., Qe = 1.2 is the design operating point

and Qe = 1.0 is the point of peak pressure rise on the compressor characteristic).

Therefore, in the case of the centered rotor, the equilibrium points are determined

as follows. The compressor operating point at equilibrium is chosen by selecting a

value of Qe. Then Eq. (4.3) gives P by direct substitution. Equation (4.4) is then

easily solved for ye = Qe/VI/Pe.

In the off-centered rotor case, solving for the equilibrium points proceeds as fol-

lows. The compressor operating point at equilibrium is again chosen by selecting

a value of Qe. Now, only four (instead of eight) equations need to be solved si-

multaneously. Namely, Eqs. (4.7), (4.8), (4.10) and (4.12) are solved numerically

for (ae, be, Xe, Y). Finally, direct substitution gives Pe and Ye from Eq. (4.5) and
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Eq. (4.6) respectively.

4.2 Stability Bounds of the Coupled System: Para-

metric Studies

We now examine the stability of the coupled system by computing the eigenvalues

and eigenvectors of the linearized baseline model in order to determine the stable and

unstable regions in its multi-dimensional parameter space defined by the nondimen-

sional parameters Qe, X, 0,e and v. In addition, various prototype compressors are

examined to capture the effects of compressor geometry (vS, X tu, X", X",...) and

pressure rise characteristic (0,o, S). Given the relatively large number of relevant

parameters, we follow a strategy in which we choose three parameters at a time, com-

pute the stability boundaries as these parameters are varied, and observe the resulting

trends. We also attempt to deduce parameter combinations that would reduce the

total number of parameters needed to describe the impact of coupling.

In this section we choose the parameter set (Qe, X, v) and examine all four pro-

totype compression systems: C1, C2, C3 and C4.

4.2.1 Case of Centered Rotor

General features of the stability boundary

We start with the simpler case of centered rotor (i.e., no gravity). As described above,

the equilibrium point in this case depends only on the compressor characteristic and

throttle setting (represented by Qe), and is therefore not altered as we change x or v.

These equilibrium points are characterized by symmetric tip clearance and uniform

steady flow (i.e., ae = be = Xe = Ye = 0 or Ae = re = 0).

In order to demonstrate the main features of aerodynamic-rotordynamic coupling

effects on the stability of the overall system, we first present one set of results per-
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Figure 4-1: Coupled system linear stability boundary in the Qe - x parameter space: case
of compressor C2, centered rotor, all parameters are at nominal values.(v =
0.23 and B = 0.1).

taining to compressor C2 in which several important features are captured with the

nominal set of system parameters. We recall that system C2 is a high pressure-rise

compressor with a supercritical rotor, see Table 3.1. This set of results is then used as

a benchmark case to compare the results that follow as we consider other prototype

compressors and vary other parameters.

Figure 4-1 depicts the stability boundary for compressor C2 in the (Qe, X) space

for the nominal value of v, where the unstable region is that below and to the right of

the solid line. In contrast to the uncoupled compressor which, according to the Moore-

Greitzer model, loses stability (typically in the form of rotating stall) at the peak of the

characteristic (Qe 1), the stability of the coupled system is shown to be degraded

in that the onset of instability is encountered at operating points with a higher flow

coefficient Qe. (On a compressor map, the stability boundary of the coupled system

would lie to the right of the peak of the characteristic). For instance, for values of

X = (2.5)104 and (5)104, a reduction of the flow coefficient by throttling, say from

the design point at Qe = 1.2, takes the system into instability at Qe = 1.05 and

1.08, respectively-a reduction of 5% and 8% in the stability margin predicted for

the uncoupled compressor. For higher values of X, the stability margin is further
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Figure 4-2: Effect of rotor's natural frequency (v) on the coupled system linear stability
boundary: compressor C2, centered rotor, all other parameters are kept at
nominal values, (B = 0.1).

reduced until a critical value is reached around X = (1)10-3, at which the system

becomes unstable for all operating points Qe. Furthermore, we observe that there

exists a range of values of X below the critical (in the range (3)10-4 < X < (1)10-3),

for which instability may be encountered at flow coefficients higher than the design

point. For example, at a value of x = (5)10-4, instability is encountered at Qe = 1.27,

giving a stability margin of only 7% in flow coefficient to the right of the design point.

Effect of Rotor's Natural Frequency, v

The effect of the the rotor's natural frequency v on this stability boundary is depicted

in Figure 4-2 which, in addition to the stability boundary in the previous figure,

shows the boundaries corresponding to three other values of v selected as follows:

V = 0.2 represents the highly supercritical rotor; v = v' represents the case where the

aerodynamic and rotordynamic uncoupled and undamped natural frequencies match;

v = 0.75 represents the case of moderately supercritical rotor; and, finally, v = vom

is the nominal case. Note that the cases with v = v' and v = unom will be different
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when we consider different prototype compressors, as those two special frequencies

are properties of the system. In all these cases, the unstable region remains below

and to the right of any of the solid lines. It can be seen from the figure that higher

values of v (e.g., corresponding to a stiffer rotor) have a larger stable region. For the

cases with high enough v (usually in subcritical range), the adverse effect of coupling

is greatly reduced and the stability is closer to the uncoupled system. The stability

boundary in such a case has only one branch that can be observed within this realistic

range of flow coefficients. Also shown in the figure are the relative values of v to v'

from which the closeness of these two frequencies can be inferred. As we will see later,

this ratio determines some aspects of the stability of this coupled system.

Effect of Compressor Sensitivity to Tip-Clearance, V),,

We now examine the effect of the second coupling parameter, namely, the compressor

sensitivity to tip clearance V),. Figure 4-3 shows the stability boundary of compressor

C2 for three different values of 0,. The less sensitive the compressor is to tip clearance

the larger the stability margin for any given X. This points towards the similar effect

that the two coupling parameters have. We later make use of this observation and

combine the two coupling parameters into one.

Comparison Between Prototype Compressors

To assess the effect of compressor geometry and characteristics on the overall system

stability, we construct figures similar to Figure 4-2 for the other three compression

system; namely C1, C3 and C4. The results are Figures 4-4, 4-5 and 4-6 respectively

The stability boundary of compression system C1 has similar features to that of

C2, except that for the same value of v system C1 has a lower critical value of X

(8.75e-3 and le-4 for C1 and C2 respectively) indicating a smaller stability margin

for a given X. As was shown above, this can be linked to the fact the C1 has a higher

compressor tip-clearance sensitivity 0,,, see Table 3.1.
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V = 0.2 all other parameters are kept at nominal values, (B = 0.1).

In contrast to systems C1 and C2, system C3 shows different qualitative and

quantitative features that are mainly the result of it having the lowest value of 0c,

and A/S. The region in the neighborhood of the design point of system C3 maintains

its stability for much higher values of X than systems C1 and C2.

Just like C3, the axial liquid pump, system C4, shows qualitative an quantitative

differences in terms of its stability, as shown in Figure 4-6. These differences are

mainly the result of the high coupling parameter X, the high value of the pump

sensitivity to tip-clearance 2, 0ce, and the very small value of S (or more precisely

larger value of A/S). Several remarks are in order regarding to the stability of the

axial liquid pump. To accomodate the same set of v values as the previous systems,

it was necessary to change to a logarithmic scale in this case. Having said that, we

observe that for the case of highly supercritical rotor, v = 0.2, the stability boundary

displays similar features to those of the other systems in the neighborhood of their

respective nominal values of X. For higher rotor natural frequencies, there emerges a

2Note that this is the rescaled sensitivity parameter, ce = $'1e/H. For system C4, V is much
smaller than that of any of the other (gas) compressors but H is even smaller, producing the net
effect of higher Vce.
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rotor, four values of v, all other parameters are kept at nominal values, (B =

0.1).

finite stabilizing influence of the coupling that persists over a wide range of v, reaching

a maximum of about 5% in stability margin extension at a value of v = 0.35 (not

shown in the figure). Finally, for values of v > 0.75, the complete loss of stability at

high coupling occurs abruptly (even on a linear scale) as X is increased, and does so

right after the stability margin reaches a maximum. Comparing the nature of this

transition in all four cases reveals that high values of c, and A/S (which are highest

in C4) correspond to abrupt loss of stability at high x, while small values of 0,, and

A/S (which are smallest in C3) correspond to a gradual loss of stability at high x,

especially in the neighborhood of the design point (note the elongation to the right

of the stable region of C3 in Figure 4-5).

Effect of the B-parameter

Similar calculations for various values of the B-parameter indicate that it has no

effect on the stability boundary of the coupled system. This is expected since the

B-parameter is known to be mostly influential in determining the post-instability

behavior of the system. In particular, large values of the B-parameter (B ~ 1)
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are typically associated with surge while small values (B - 0.1) are associated with

rotating stall. In the class of lumped parameter models of pumping systems that do

not account for any spatial flow nonuniformity (e.g., Greitzer [31] and Abed et al.

[1]), the B-parameter is the main system parameter and the only mode of instability

captured by such models is, in fact, surge. Rotating stall, on the other hand, appears

as a stable operating point on the stalled compressor characteristic used as the main

input to these models.

In the current model, however, the effect of the B-parameter is addressed when

we discuss the post-instability behavior in the next chapter.
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Figure 4-7: Linear stability in the design parameter space: combining the two coupling
parameters as ?ceX, for compressor C2, all other parameters are at nominal
values.
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4.2.2 Stability Bounds in the Design Parameter Space: Re-

duction of Coupling Parameters

An alternative way to view the stability results is to consider the parameter space

X vs. v. In such a space, we construct a stability boundary, corresponding to some

operating point flow coefficient Qe, which splits the space into a stable and unstable

parameter combinations (x,v). This view serves to elucidate how the stability of the

system is affected as these two design parameters are changed. Further, the effect
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Figure 4-8: Linear stability in the design parameter space: compressor C1, for four dif-
ferent operating flow coefficients. All other parameters are at their nominal
values.

of compressor sensitivity to tip clearance on stability, shown in Figure 4-3, suggests
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that the two coupling parameters OcE and x influence the stability of the coupled

system in a similar manner. In fact, looking back at the system equations given in

Section 2.3.3, we note that a rescaling can be adopted such that only the product of

these two parameters appear. In particular, rescaling the rotor displacement variables

X and Y with X causes the latter to disappear from the rotordynamic equations and

appear instead in the equations of & and b as the product 0,,X. This reduction in

coupling parameters is captured in Figure 4-7, where the stability boundaries due

to different values of tip clearance sensitivity in the first sub-plot collapse onto one

boundary in the reduced parameter space in the second sub-plot.
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Figure 4-9: Linear stability in the design parameter space: compressor C2, for four dif-
ferent operating flow coefficients. All other parameters are at their nominal
values.
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In each of the following four figures, Figures 4-8 to 4-11, corresponding to the

four prototype compression systems, we show two versions of this design parameter

space: the first shows X vs. v while the second shows 0cX vs. v/v". Each line in these

figures corresponds to an operating point flow coefficient Qe and divides the plane into

a stable and unstable regions-the unstable region being that below and to the right

of these lines (except for Qe = 1.0 where the stable region is confined to the lower left

corner of the plane). The use of the ratio v/v" = w/w" (which does not depend on

the rotor spinning speed Q) in the second sub-plots of these figures is motivated by

the observation that for the first three prototype systems C1, C2 and C3, the stability

boundary for flow coefficients to the right of the characteristic peak (i.e., Qe > 1)

changes monotonically with v, while for Qe = 1 rotors with natural frequencies v

higher than their compressor's rotating stall frequency v' become unstable first for

all values of X. However, any further throttling (i.e., for Qe < 1) renders the system

unstable for all values of X and v. Although the difference between systems above and

below this critical frequency (v/yvi = 1.0) does not amount to a significant change

in stability margin, it is shown later that this is linked to the different modes of

instability that can take place in these systems. By inspecting the second of the

two sub-plots in Figures 4-8, 4-9 and 4-10, we observe that the stability boundaries

are roughly in the same range, suggesting that the parameter space (4ceX',v/v") is

somewhat universal for this class of compression systems.

The qualitative and quantitative differences observed previously in the case of

the liquid axial pump are also reflected here and are shown in Figure 4-11. For the

purpose of clarity, we split this figure into a series of four sub-plots, each corresponding

to an operating point flow coefficient Qe. We note that the effect of the ratio v/V 8

discussed above for C1, C2 and C3, is somewhat reversed in the case of C4 (third and

forth sub-plots) in that rotors with natural frequencies, v, that are lower than their

compressor's (or pump, in this case) rotating stall frequency v", (i.e., v/vm < 1.0),

become unstable first for all values of X as the compressor is throttled to Qe < 1.0. In

addition, unlike the first three compression systems, this extension in stability margin

in the case of C4 extends further (just as discussed previously) to include operating
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Figure 4-10: Linear stability in the design parameter space: compressor C3, for four dif-
ferent operating flow coefficients. All other parameters are at their nominal
values.

points to the left of the characteristic peak. This is reflected in the fourth sub-plot

where a band of parameters that corresponds to stable operation exists even at the

low flow operating point of Qe= 0.98.

4.2.3 Case of Off-Centered Rotor

We now turn our attention to the case where the rotor is displaced from the geometric

center of the compressor casing and is kept in equilibrium by the action of an addi-

tional constant force, which we take as gravity. In such a steady state configuration,
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Figure 4-11: Linear stability in the design parameter space: compressor C4, for four dif-
ferent operating flow coefficients. All other parameters are at their nominal
values.

a tip-clearance asymmetry is present, together with a flow nonuniformity. In order

to examine the stability of this type of equilibrium point, the steady state equations

need to be solved for the equilibrium point xe as described in section 4.1.2. Conse-

quently, as we vary any parameter (e.g., Qe or X), the equilibrium point will change

accordingly.

The results of such an exercise are shown in Figure 4-12 for system C2. The

figure shows the stability boundary in the (Qe, x) parameter space, just as before,

in addition to four more sub-plots showing the migration of the equilibrium points

that are neutrally stable (i.e., exactly on the stability boundary) as a function of

the coupling parameter x. Inspection of the stability boundary in this case shows

that the deflection of the rotor has a stabilizing effect in that the loss in stability

margin is limited to about 3 to 4% over the same range of coupling parameter values
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Figure 4-12: Linear stability boundary of the coupled system: compressor C2, off-
centered rotor, two values of v, all other parameters are kept at nominal
values, (B = 0.1).

considered in the centered case. As we move along the stability boundary towards

higher values of coupling parameter x, it is seen that the rotor displacement due to

gravity, r, increases while its orientation, E, becomes closer to the X axis. In order

to compare this case to the centered rotor, the stability boundary of both cases are

shown in Figure 4-13 for the same value of v.
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the
pa-

4.3 Modes of Instability: Aerodynamic vs. Rotor-

dynamic Instabilities

We now set out to examine the nature of instability encountered as the stability

boundaries discussed above are crossed. For an uncoupled compressor with a low

B parameter, the dominant mode of instability encountered as the compressor is

throttled to flow coefficients Qe < 1 is known to be rotating stall. In what follows,

we address the question of how the coupled system differs from the uncoupled system

as it loses stability at either end of the stability margin. To that end, we identify

the first pair of eigenvalues to cross the imaginary axis as the coupled system loses

stability, and examine the modal structure of the corresponding eigenvector.

4.3.1 Case of Centered Rotor

In order to answer the above question for the case of the centered rotor, we present

four scenarios in which one of the prototype compressors, say C2, loses stability. In

particular, we consider two of the stability boundaries shown in Figure 4-2 correspond-
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ing to two rotor frequencies that are far apart, say v = 0.23 which is the nominal

value of C2, and v = 0.75. In terms of the ratio v/v', these two correspond to 0.56

and 1.85 respectively (i.e., the rotor frequency is below the rotating stall frequency

for the first and above for the second). Next, we choose a value of the coupling pa-

rameter for each case, say x = (0.5)10-3 for the case of v = 0.23 and x = (1.5)10-3

for v = 0.75. We note from Figure 4-2 that for the smaller v, the stability margin

is bound on both sides, while for the larger v the system loses stability only as the

flow coefficient is decreased. Table 4.1 summarizes these scenario as well as the main

findings, which we describe next.

V = 0.23 (nominal) ii = 0.75

V / 0.56 1.85

X (0.5) 10-3 (1.5) 10-3

Qe at lower stability boundary 1.07 1.02
unstable mode frequency/vrs 0.35 0.83

unstable mode rotordynamic aerodynamic

Qe at upper stability boundary 1.27 none
unstable mode frequency/vrs 0.51

unstable mode rotordynamic

Table 4.1: Summary of scenarios of losing system stability for compressor C2, and iden-
tification of different modes of instability.

Figure 4-14 shows the eigenvalues and eigenvectors corresponding to the case

of v = 0.23. We start with the first column of sub-plots which depicts the locus of

eigenvalues (only positive frequencies are shown) as the operating point Qe is reduced

from design point Qe = 1.2 to 0.9; the magnitude of the eigenvectors at crossing; and

the locus of equilibrium points represented by the nonuniformity amplitude A (this

is zero for all operating points in this case of centered rotor). The frequency of the

crossing eigenvalue and the structure of the corresponding eigenvector suggest that

the instability encountered here is of a rotordynamic nature. We note however, that

the aerodynamic (rotating stall) eigenvalue also becomes unstable as the compressor

is throttled further. On the other hand, the second column of sub-plots shows the
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Figure 4-14: Eigenvalues and eigenvectors at crossing of stability boundary: for compres-
sor C2, centered rotor, nominal v = 0.23, and B = 0.1.
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same information for the case where the throttle is opened and Qe is increased from

the design point of 1.2 towards the chocked region of the characteristic. Here too

a rotordynamic mode becomes unstable with the corresponding eigenvector showing

larger contributions due to the structural states X and Y. Note that the scaling

of different states should be taken into account when comparing their respective

contributions to the mode shape. The current scaling of the dynamic equations has

the aerodynamic states a and b at about an order of magnitude higher than the

structural states X and Y.

Qcr = 1.02. Crossing eigenvalue = 0.0403-0.832i
r2 1

0.8 Unstable mode
-a t crossing

0.6

1 -- 0.4 -

0

-3 -2 -1 0 1
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Fixed point magnitude
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Figure 4-15: Eigenvalues and eigenvectors at crossing of stability boundary: for compres-
sor C2, centered rotor, high v = 0.75, and B = 0.1.

Figure 4-15 shows the case of the higher rotor natural frequency V = 0.75 for

which the stability margin is only bound on one side. In this scenario, the operating

point is taken from Qe = 1.4 and reduced all the way to 0.9, encountering only

one crossing. Unlike the small v case, an aerodynamic mode becomes unstable at

a frequency very close to that of an uncoupled compressor. Further, the instability

occurs at a much lower flow coefficient (Qe = 1.02) which suggests a reduced influence
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of the coupling.

4.3.2 Case of Off-centered Rotor

Typical Values of Coupling (x)

In this case, we consider one scenario involving compressor C2 with nominal v and

same coupling used in the centered rotor case X = (0.5)10-3. The results depicted in

Figure 4-16 show that, in this case, there is only one stability boundary at low flow

coefficients (i.e., as the compressor is throttled to low Qe). The instability encountered

as that boundary is crossed corresponds to a rotordynamic mode becoming unstable

at a frequency of 53% of v" which is very close to the rotor's natural frequency v.

Inspection of the mode shapes at crossing reveals that the unstable mode-unlike the

centered case-is coupled to the surge states (Q, P). We also show in the figure the

values of the main system states (i.e., A, r, r and E) at the various equilibrium points

encountered as we lower Qe. Recalling the aerodynamic force results obtained in

Chapter 3 (see for example Figure 3-11), we note that the movement of the equilibrium

points is consistent with the increase of aerodynamic forces as Qe is reduced towards

the peak of the compressor characteristic. In addition, the phase relation between

the flow nonuniformity and the tip-clearance asymmetry discussed earlier in Chapter

3 is also maintained.

Very High Values of Coupling (x): Existence of Multiple Fixed Points

It is interesting to observe-despite the lack of a clear practical application-that at

very high values of X, several branches of equilibrium points may appear, forming a

complex picture of the stability of these equilibria such as the two examples shown in

Figures 4-17 and 4-18. Although compressor C1 is the basis of these two examples,

compressors C2 and C3 displayed similar behavior at very high values of x, espe-

cially in the highly supercritical range of the rotor's natural frequency (e.g., in the

neighborhood of v'). In reference to Figure 4-12, these observations indicate that
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Figure 4-16: Eigenvalues and eigenvectors at crossing of stability boundary: for compres-
sor C2, centered rotor, nominal v = 0.23, and B = 0.1.

the stability boundary established in that figure can not be extended to very large

values of X, since no single stability boundary can be established for the multiple

equilibrium points that can exist in that region.

4.4 Summary and Discussion

The parametric studies presented in this chapter establish the significance of the inter-

action between aerodynamics and rotordynamic in determining the overall, coupled
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system stability. We summarize the overall stability picture of the coupled system in

the schematic shown in Figure 4-19 together with the following conclusions.

" The coupling changes the nature of overall stability picture in that it creates

a stability margin with two bounds, one on each side of the design operating

point.

" As the coupling is increased, these two bounds move closer to the design point

resulting in a smaller stable operating range.

" Locally, the mode that loses stability upon crossing either of the two boundaries

is mostly rotordynamic (except when the rotor's natural frequency is very high

and the coupling impact is minimal). Nevertheless, we expect rotating stall to

appear soon after crossing the low flow boundary as the growing rotordynamic

instability promotes larger flow nonuniformity. This, however, can not be shown

from the linearized analysis, and requires examining the post-instability behav-

ior of the system-the subject of the next chapter.
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Figure 4-18: Multiple equilibrium points at higher coupling: compressor C1, x 0.03,
v = 0.23, and B = 0.1.

* Highly supercritical rotors tend to be more susceptible to fluid-induced instabil-

ities. This is confirmed by the above results and is consistent with observations

(Ehrich [21]).

" Variation of the rotor's natural frequency (from supercritical to subcritical) sta-

bilizes the rotor and thus reduces the overall destabilizing effect of the coupling.

This variation takes place gradually except in the neighborhood of the rotating

stall frequency and for operating points close to the peak of the characteristic.

In such cases (except for the axial liquid pump C4), rotors with v/v < 1 tend

to retain their stability only for a very small further reduction in flow coefficient.

* This gain in stability margin is reversed in the case of the axial liquid pump

where rotors with v/v > 1 retain their stability at operating points to the

left of the peak. In addition, the gain in stability margin in this case is finite,

Figure 4-6.

" In general, introducing a fixed rotor deflection has a stabilizing effect on the

coupled system in that it restricts the movement of the rotor and thus prevents
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whirl-like disturbances that, in turn, produce rotating flow nonuniformities.

e For compression systems in the same class as C1, C2 and C3, a design parameter

space is identified in which the effects of all the relevant system parameters

are captured, and in which the stability boundaries for any compressor in this

class are roughly the same. This parameter space is defined by the ratio of

rotordynamic to aerodynamic uncoupled frequencies, v/yv" on one hand and the

product of the two coupling parameters, 'V)X, on the other, with the operating

point Qe as the third parameter.
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CHAPTER 5

POST-INSTABILITY BEHAVIOR

A numerical survey of the nonlinear post-instability behaviour of the baseline model is

presented in this chapter. First, we present numerical simulations which demonstrate

the different modes of instability encountered as the coupled system crosses the stabil-

ity boundaries described in the previous chapter. Also through a series of simulations,

we show an example of how the coupling can alter the nature of the post-instability

behavior by forcing the system into a rotating stall mode instead of the surge mode

known to be dominant for the uncoupled system with the same set of parameters. We

end this chapter by presenting an overview of the map of post-instability behavior

for both small and large values of the B parameter.

5.1 Demonstration of Post-Instability System Re-

sponses

In order to demonstrate the different modes of instability that the coupled system

can exhibit, we consider one of the prototype compressors; namely C2, operating at

a steady equilibrium point, say the design point Qe = 1.2. We numerically inte-

grate the nonlinear baseline model equations in nondimensional time to obtain the

system response to either a set of initial conditions or to a step change in throttle set-

ting. The numerical integrations are carried out in the computational environment of
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MATLAB [53] and using its ODE numerical integration suite. In many cases, differ-

ent integration routines, such as ODE45, ODE23s and ODE15s, are used to generate

the same scenario in order to increase confidence in the results and eliminate the

possibility of numerical artifacts.

5.1.1 Aerodynamic and Rotordynamic Instabilities

We now present simulation results for three scenarios pertaining to compressor C2.

We first recall that the linear analysis of this compressor with a nominal rotor natural

frequency of v = 0.23 and a value of coupling X = (0.5)10-3, as shown in Figures 4-1

and 4-14, predicted that the system is stable for operating points within 1.07 < Q, <

1.27.

The first simulation we present here corresponds to crossing the upper boundary

at Qe = 1.27. Figure 5-1 shows the phase plane and time histories as the system is

taken from the design point at Qe = 1.2 to Qe = 1.32 through a step change in the

throttle. We observe that the surge states shift smoothly to the new operating point

and remain there, while the rotor deflection r grows with time in a forward whirl

motion until it is limited by the rotor stiffness nonlinearity. In addition, a small flow

nonuniformity (A ~ 0.025) is associated with this final deflection. The last row of

sub-plots shows the ratio of whirl frequency e to flow nonuniformity frequency ; the

radial (restoring) and tangential (whirl-inducing) force amplitudes; and the tangential

components of the three force contributions. It can be seen that the rotor and the

flow nonuniformity are orbiting at the same frequency, (i.e., 6/ = 1), and that all

the tangential contributions as well as the net tangential force are positive throughout

the simulation, consistent with the positive whirl observed. In addition, these forces

are also consistent with the predictions of Chapter 3 for the given deflection and

operating point.

In the second simulation, shown in Figure 5-2, the lower boundary at Qe = 1.07

is crossed as the system is taken from the design point Qe = 1.2 to Qe = 1.07 through
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Figure 5-1: Demonstration of post-instability behavior: rotor whirl at high Q, = 1.32 for
compressor C2, no gravity, X = (0.5)10-3, nominal v = 0.23, and B = 0.1.

a step change in throttling. Just as predicted by the linear analysis, a rotordynamic

instability emerges in the form of forward rotor whirl. However, in this case of low

flow coefficient, the amplitude of the whirl orbit is about 50% smaller than in the pre-

vious case of high flow. Further, the aerodynamic force forces are different in that the

turning contribution tends to induce backward whirl while the pressure contribution

(which is larger) tends to induce forward whirl. The net effect is a forward whirl mo-

tion of a smaller amplitude. Although there are no aerodynamic instabilities present

at this point, we note that the flow nonuniformity is larger in amplitude (A ~ 0.05)

than in the previous case, despite the smaller rotor deflection. This is because of
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Figure 5-2: Demonstration of post-instability behavior: rotor whirl at low Qe = 1.08 for
compressor C2, no gravity, x = (0.5)10-3, nominal v = 0.23, and B = 0.1.

the proximity of this operating point to the peak of the characteristic, where the

compressor tends to strongly amplify nonuniformities. Both of these observations are

consistent with the results presented in Chapter 3, which suggest similar trends as the

operating point is moved from right to left (towards the peak of the characteristic)

on the compressor map.

In the third simulation, shown in Figure 5-3, the operating point is moved from

design at Q, = 1.2 to Qe = 1.06, a point slightly further to the left from the previous

case. In this case, an aerodynamic instability arises in the form of rotating stall indi-

cated by the large amplitude of the flow nonuniformity (A ~ 1.0). The rotordynamic
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behavior is even more violent here1 as the aerodynamic forces are much higher due

to the large amplitude of the flow nonuniformity. In the early part of the simulation,

the different force contributions tend to follow a trend similar to that of the previous

case. However, as the flow nonuniformity magnitude grows, the turning and pressure

contributions reverse signs while net effect remains in the forward whirl direction.

Finally, we note that the unsteady force contribution is very small as compared to

'Although the rotor deflection is larger that the maximum clearance for this system, the simu-
lation is allowed to continue until the system approaches a final state. However, in evaluating the
integrated characteristics c and C', the maximum deflection is used whenever the instantaneous
rotor deflection exceeds it.
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the other two, largely due to the difference in their respective scaling terms Xu, XPr

and X" as given in Table 3.1.

5.1.2 Coupling Alters the Post-instability Behavior

In this section, we present a series of four simulations that demonstrate how the

aerodynamic-rotordynamic interaction may alter the nature of the post-instability

behavior of the coupled system. The response of compression system C1 with a

rotor natural frequency in the supercritical range is considered (We take V = 0.44,

25% of the nominal value). We also assign a large value of the B-parameter so that

surge is the dominant mode of instability for the uncoupled system. We start by

examining the stability of an operating point to the left of the characteristic peak,

say at Qe = 0.95. The first simulation, part (a) in Figure 5-4, shows the system

response to initial conditions with no coupling, i.e., X = 0.0.

As expected, the uncoupled compressor displays a surge instability where sus-

tained oscillations in axisymmetric flow and pressure are dominant. The second sim-

ulation, part (b) in Figure 5-4, shows the system response in an identical situation

except for the introduction of coupling by setting X = (0.5)10-. In this case, the sys-

tem response exhibits one surge-like cycle (due to the large initial conditions) but goes

into rotating stall as the the ultimate form of post-instability behavior. Equilibrium

points further to the left show the same change in behavior until the point Qe = 0.9

is reached, Figure 5-4(c). Any further throttling gives rise to sustained surge oscil-

lations that are slightly modified due to the interaction with the flow nonuniformity

and rotor vibrations, both of which are present and large in this case, Figure 5-4(d).

Similar simulations carried out for system C2 with its nominal value of v show

that it exhibits the same behavior. In that case, rotating stall dominates until the

operating point is throttled back to Qe = 0.86, as opposed to 0.89 for C1.
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5.2 Overall Map of Post-Instability Behavior

The results presented so far in this chapter suggests that the post-instability behavior

of the coupled system may, in certain regions of the parameter space, exhibit remark-

able differences from either the uncoupled compressor or the uncoupled rotor. There-

fore, we set out in this section to construct bifurcation maps of the post-instability

behavior for a few cases of parameter combinations. We divide this exercise into two

main groups: low B-parameter systems where only rotordynamic and rotating stall

type instabilities are expected, and high B-parameter systems where surge is also

possible. In each group, we construct a bifurcation map with the compressor operat-

ing point Qe as a bifurcation parameter (which is equivalent to using the throttling

coefficient -y). We also compare different values of coupling parameters x, but re-

strict the rotor natural frequency to the supercritical region where coupling effects

are observed the most.

5.2.1 Low B-Parameter

We consider the prototype compression system C2 with B = 0.1 and nominal v =

0.23, and compare the two cases of moderate coupling (x = (0.5)10-3) and no coupling

(x = 0.0).

Figure 5-5 shows the various limit cycles that exist throughout the operating

range in terms of the maximum and minimum of sustained oscillations in Q, and the

peak amplitude of the nonuniformity A and rotor deflection r. Starting from operating

points with high flow coefficient, say Qe = 1.4, and following the coupled case first,

we observe that the post-instability behavior is mainly rotordynamic, characterized

by a (forward) whirling motion with a large rotor deflection and a relatively small

aerodynamic nonuniformity, consistent with the simulation shown in Figure 5-1. As

the operating point is moved to the left (towards the peak of the characteristic) the

amplitude of rotor whirl decreases while that of the flow nonuniformity remains small

and constant. This is so because the compressor tends to generate larger distortions
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Figure 5-5: Bifurcation map for compressor C2, centered rotor, x = 0.0, (0.5)10-3, nom-
inal v = 0.23, and B = 0.1.

per unit rotor deflection as it operates closer to the characteristic peak. Further

reduction in Qe eventually results in the disappearance of the instability and the

convergence to a stable equilibrium point around Qe = 1.27. The gradual decrease in

the amplitude of rotor whirl and the lack of hysteresis indicate that the bifurcation

at Qe = 1.27 is of the supercritical type. Further throttling moves the operating

point through a series of locally stable operating points that extend between 1.07 <

Qe < 1.27. Once below Qe = 1.07, aerodynamic instability dominates in the form

of rotating stall. The large aerodynamic nonuniformity associated with rotating stall

produces large forces in the rotor and results in a large rotordynamic response. The

presence of a large hysteresis at Qe = 1.07 indicates that the bifurcation is of the

more harmful, subcritical type. The size of the hysteresis in this case is about 20% of
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peak flow coefficient. In contrast, the uncoupled case exhibits only an aerodynamic

instability in the form of rotating stall. The uncoupled compressor loses its stability

at Qe = 1.0 as expected, and the size of the hysteresis is about 18%.

From these results, it can be seen that the coupling not only increases the hys-

teresis (by 2% in this case), but also renderes the whole operating range unstable for

large disturbances.

5.2.2 High B-Parameter

Motivated by the results of Section 5.1.2, we return to system C1 and consider again

a large value of B = 1.0 and a supercritical rotor with v = 0.44 (25% of the nominal

value). We then perform a set of three simulation-based experiments to construct a

picture of the limit cycle responses that exist at different operating points. We note

that the post instability behavior here depends not only on the parameters B, v and

the operating point Qe, but also on the size of disturbances the system is subjected

to at each operating point (i.e., initial conditions of the simulation).

In the first experiment, whose results are shown in Figure 5-6, we present the

uncoupled case, X = 0, where the main mode of instability is shown to be deep surge2

In this experiment, we start from an equilibrium point with a small flow coefficient,

Qe = 0.8, and impose a large initial condition (Q(0) = 1.5Qe) where the mode of

instability is, indeed, deep surge. As we open the throttle to higher flow coefficients,

we note that deep surge persists until stable operation is achieved at Qe = 1.0.

The second experiment, Figure 5-7, is performed with a value of coupling pa-

rameter X = (0.5)10-, equal to that used in most previous simulations. Here, we

start from an equilibrium point with a small flow coefficient, Qe = 0.8, and impose

a small initial condition (Q(0) = 1.05Qe). In this case, the compressor goes into ro-

2Deep surge and classic surge are two types of surge instabilities encountered in axial compression
systems, [31], [54]. In deep surge, sustained oscillations in axisymmetric flow are accompanied by
small flow nonuniformities observed over a limited portion of the cycle. On the other hand, in
classic surge, oscillations in axisymmetric flow are accompanied by larger flow nonuniformities over
a significant part of the cycle.
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Figure 5-6: Map of post-instability behavior of compressor Cl: deep surge for uncoupled
case, x = 0, v = 0.44, and B = 1.0.

tating stall accompanied by a relatively large deflection of the rotor. As we open the

throttle, the same behavior persists until stable operation is achieved at Qe = 1.077,

more than 5% higher than the linear stability boundary of 1.02 which reflects the

hysteresis involved in recovering from rotating stall. It can also be seen that for this

relatively high value of v there exists no rotordynamic instability at operating points

with 1.077 < Qe < 1.4, in contrast to cases with lower values of v, such as the results

shown in Figure 5-5.

In the third experiment, we start again from Qe = 0.8 and impose a large initial

condition (Q(0) = I. 5 Qe). In contrast to the uncoupled case, the compressor goes

into classic surge where rotating stall is present over most of the cycle, accompanied

by a very large rotor deflection due to the very large aerodynamic forces resulting
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from the coexistence of surge and rotating stall. As we open the throttle to higher

flow coefficients, surge disappears at about Qe = 0.9 (as suggested by the series

of simulations in Figure 5-4). Now, throttling the compressor back to lower flow

coefficients does not produce surge again unless large disturbances are imposed (not

the case in this figure). At higher flow coefficients, the transition from rotating stall

to stable operation is similar to that observed in the second experiment, Figure 5-7.

In closing, we state that the above results do not constitute a complete bifurcation

map of the system post-instability behavior. Nevertheless, they shed some light on

several important aspects of the impact of aerodynamic-rotordynamic interaction on

the complex behavior of these systems.
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CHAPTER 6

CONCLUSIONS

6.1 Summary and Conclusions

In this thesis, we addressed the interaction between the aerodynamics and rotor struc-

tural vibrations in axial compression systems. The work presented involved modeling

of the coupling between the aerodynamic and rotordynamic domains, a comprehen-

sive parametric investigation of the linearized stability of the coupled system, and a

survey of the impact of coupling on the post-instability behavior.

Summary of the Modeling Efforts

The baseline model developed and used in this thesis is comprised of a single-harmonic,

two-dimensional version of the Moore-Greitzer model that describes the flowfield and

a simple, mass-spring-damper Jeffcott-type model of the rotor that describes the ro-

tordynamics. The coupling between the fluid and structural dynamics is captured by

a linear compressor sensitivity to tip clearance, and a momentum-based model of the

aerodynamic forces on the rotor. Careful nondimensionalization of the overall model

gives rise to a set of parameters that govern the system behavior. There are two main

coupling parameters, each of which governs the influence of one domain on the other:

The nondimensional sensitivity of the compressor pressure-rise characteristic to tip

clearance describes the rotordynamic influence on aerodynamics, while the ratio of
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fluid mass (or density) to the rotor solid mass (or density) describes the aerodynamic

influence on rotordynamics.

Aerodynamic Forces on Compressor rotors

The aerodynamic force model reveals that there are three physical contributions to

the total aerodynamic force on the rotor. In the presence of a flow nonuniformity, the

three contributions arise, respectively, from nonuniform turning done by the blades,

nonuniform hydrostatic pressure acting on the hub (directly on the rotor), and the

unsteady momentum storage within the rotor blade passages. Each of the three force

contributions scales with a nondimensional parameter that depends only on blade

and stage geometry.

We also derived simple analytical expressions for the aerodynamic forces for a

given compressor geometry, characteristics, operating point, and rotor deflection.

These expressions give physical insight which establishes a link between the direc-

tion of the three force contributions and the flow nonuniformity. Consequently, the

aerodynamic forces are locked to the flow nonuniformity and not to the tip-clearance

asymmetry as is traditionally assumed. Using the analytical and numerical results of

this force model (presented in Chapter 3), we showed that in order to predict whether

the rotor tends to whirl backward or forward, all force contributions as well as the

compressor operating point have to be taken into account. This is especially true

close to the design operating point where the pressure and turning contributions are

of comparable magnitude but different signs. The force model compares well with re-

cently published data of aerodynamic force measurements and computational results

over the narrow range of operating conditions in which they are available.

Stability of the Coupled System

Using a linearized version of the model, we studied the stability of the coupled system

through a comprehensive set of parametric studies. In doing so, we determined the
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regions in the parameter space where coupling has the most effect. We also shed light

on the nature of the different types of instabilities that may be encountered as the

stability boundaries are crossed. From these results, we conclude that the coupling

generally has an adverse effect on system stability in that the stability margin for

the coupled system is smaller than that of the uncoupled compressor. This adverse

effect was found to be most pronounced in the cases of supercritical rotors. Further,

we found that as the coupling increases this effect grows, until a coupling limit is

reached. Above this limit the system becomes unstable for all operating conditions.

For typical levels of coupling, we found that the stability margin to the left of the

design operating point can be reduced relative to that of the uncoupled compressor

by as much as 5% to 10% in flow coefficient. In addition, at such coupling levels,

the system displays another instability at operating points higher than design. This

instability is mostly in the form of rotordynamic forward whirl.

The scope of these parametric studies also includes the effects of compressor ge-

ometry and characteristics, which we accounted for by considering four prototype

compression systems representative of low and high pressure-rise compressors as well

as subcritical and supercritical rotors. Among the prototype systems studied is an

axial liquid pump for which the large difference in characteristics and coupling param-

eter values translated into several qualitative and quantitative changes in the overall

stability picture.

Post-instability behavior

Having identified an upper and lower linear stability boundary, we employed numerical

simulations to study the post-instability behavior of the system. The instability

is of rotordynamic nature (forward rotor whirl) at typical coupling levels and as

the operating point is moved to higher flow coefficients. On the other side of the

stability margin, we showed that a rotordynamic instability also arises at operating

points just past the stability boundary. But, aerodynamic instabilities dominate for

any further throttling of the compressor. In such cases, the rotordynamic response
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is very violent owing to the large forces associated with aerodynamic instabilities.

Also using numerical simulations, we identified examples in which the coupling has a

noticeable effect on the dominant post-instability mode. We showed that the coupled

system with a large B parameter exhibited rotating stall within an operating range

of about 10% to the left of the peak where surge is known to be the dominant mode

of instability of the uncoupled compressor.

Finally, we surveyed a wide range of the operating range and constructed maps

of the overall post-instability picture for two representative cases.

6.2 Recommendations for Future Rersearch

Since this work represents the first treatment of the aerodynamic-rotordynamic in-

teraction in axial compression systems, we sought the simplest possible models that

capture the phenomena of interest while remaining tractable. Such models are usually

the best tools to explore basic phenomena and gain physical insight. Nevertheless,

more sophisticated models may be constructed in order to build on the understanding

developed in this thesis.

In order to obtain a quantitative representation of an actual gas turbine or a

jet engine, several modeling extensions may be included. A higher order flowfield

description can be considered by including more than one mode in the Fourier se-

ries representing the flow coefficient. Further, a more sophisticated representation of

the compressor sensitivity to tip clearance can be incorporated to capture the shift

in the peaks of the pressure-rise characteristic (in contrast to the vertically aligned

peaks of this model). Other aerodynamic forces should also be accounted for-with

those due to axial turbines that may be mounted on the same rotor being the most

important. Other forces that may be considered include those due to seals and jour-

nal bearings. Several rotordynamic effects that were briefly described in Chapter 2,

such as internal rotor damping with hysteresis and parametric excitaion due to shaft

stiffness orthotropy, should be considered. In particular, the forced response of the
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coupled system (e.g., to imbalance) should also be investigated and compared to that

of uncoupled rotors.

The regions of the multi-dimensional parameter space of such systems that have

been considered in this thesis reveal few desirable effects of the coupling. Nevertheless,

the case of the axial liquid pump indicates that such a favorable interaction is, in

principle, feasible. Further exploration should be carried out in order to exploit such

effects and utilize them in the design of more stable machines.

A full understanding of the post-instability dynamics of the system will require a

detailed bifurcation analysis. Simulation results show that under most conditions the

loss of stability is subcritical (i.e., the bifurcation map shows hysteresis). In addition,

the transition from rotating stall to surge appears to involve a crisis-type bifurcation.

Active control of aerodynamic instabilities using magnetic bearings have been

proposed and assessed by several researchers. The model and results developed in

this thesis may be used as the basis for designing and carrying out such experiments.

Finally, perhaps in the course of such experiments, the stability boundaries and post-

instability behaviors predicted by this model can be validated.
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APPENDIx A

HIGHER ORDER FLOWFIELD MODEL

In this appendix, we give further details pertaining the flowfield model developed in

Chapter 2 and provide expressions for the integrated characteristics obtained when

considering higher harmonics in the Fourier series solution used in the Galerkin pro-

cedure.

The main equations describing the flowfield were given in Eqs. (2.22), (2.31) and

(2.32), which are listed here in the rescaled version as

-- -S c -C P] (A. 1)
<& 2L M

da, = A -- Cc" - nb,, (A.2)
< m+np 12A

-bn n m r [ C + naJ (A.3)<g m +np 12A cnI

where n = 1,2,... , N is the mode number and N is the total number of modes

considered in the Fourier series. Since our goal in this thesis is to develop the simplest

possible model that describes the phenomena of interest, the baseline model used in

this thesis is based on the case where N = 1. However, including higher harmonics

should improve the accuracy of the flowfield description and should therefore be

considered whenever precise, machine-specific predictions are sought.

Using the same compressor characteristic 0, and rescaling introduced in Section
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2.3, we may carry out integrations and write the above flowfield equations for any

N > 1 which will produce 2N + 1 equations. Below we provide a sample (Maple V)

code that would generate such results. We set N = 5 in this code just for demonstra-

tion, while higher modes can be obtained by setting N appropriately and adding the

corresponding expressions towards the end.

> restart:

> assume(n,integer):

Choose total number of modes to include in Fourier series, N

[> N := 5:
> psi c := psi cO + 1 + 3*(q-1/2) - 4*(q-1/2)^3 +

psi ce*r*cos (theta-Theta):

> q := Q + sum(a[n] * cos(n*theta) + b[n] * sin(n*theta), n =1. .N);

q := Q + a, cos(9) + b, sin(9) + a 2 cos(2 0) + b2 sin(2 0) + a3 cos(3 9) + b3 sin(3 9)

+ a 4 cos(4 0) + b4 sin(4 0) + a, cos(5 0) + b, sin(5 0)

Evaluate all integrated characteritics

> psi barCN
collect(expand(1/(2*Pi)*int(psi_c,theta=O. .2*Pi)) ,Q):

> psi barCcN_1
collect (expand( (1/ (Pi) *int(psi c*cos (theta) ,theta=O. .2*Pi))) ,Q):

> psi barCsN_1 :=
collect(expand((1/(Pi)*int(psic*sin(theta) ,theta=O. .2*Pi))) ,Q):

> psi barCcN_2
collect(expand((1/(Pi)*int(psic*cos(2*theta) ,theta=O. .2*Pi))) ,Q):

> psi barCsN_2 =
collect(expand( (l/(Pi)*int(psi c*sin(2*theta) ,theta=O. .2*Pi))) ,Q):

> psi-barCcN_3

collect(expand((l/(Pi)*int(psic*cos(3*theta) ,theta=O. .2*Pi))) ,Q):
> psibarCsN_3 :
collect(expand((1/(Pi)*int(psic*sin(3*theta) ,theta=O. .2*Pi))) ,Q):

> psi barCcN 4

collect(expand((1/(Pi)*int(psi c*cos(4*theta) ,theta=O. .2*Pi))) ,Q):
> psi barCsN 4 :=
collect(expand((1/(Pi)*int(psic*sin(4*theta) ,theta=O. .2*Pi))) ,Q):

> psi barCcN_5

collect(expand((1/(Pi)*int(psic*cos(5*theta) ,theta=O. .2*Pi))) ,Q):
> psi-barCsN_5 :

collect(expand( (1/ (Pi) *int(psic*sin(5*theta) ,theta=O. .2*Pi))) ,Q):

We also provide expressions for the case of N = 2, obtained using the above code,

172



as follows

q(0,() = Q( ) + a1() cos + bi( ) sinG + a2 () cos 20 + b2 ( ) sin 29

- ,1 2 f V ~c dOc2 2,7 r c

= Vco - 4Q3 + 6Q 2 - 6 [a 2 + b + a +b] Q

+3 [a2 + b2 + a2 + b2 - a2(a2 - b2) - 2abib2]

iry3 Cc1 = ] '$c cos(0) dO

- 12a1Q 2 - 12 [-a, + aia 2 + b1b2] Q

- 3a1 [a, + bi + 2(a+ b2 - a2 )] + 6bib 2 + 4c'5X

ycc2= "c cos(20) dO

- 12a 2Q 2 - 12 (a

-3 [a2 (2(a2 + b2) + a2 + b2) - a2]

0Cs1 = 
2

c sin(0) dO

= - 12biQ 2 - 12 [aib2 - bia 2 - b1] Q

--3b [a b +2(a+ b2+ a2 )] + 6a1 b2 + cCEY

0Cs2 = 
2

0, sin(20) dO

- 12b 2Q 2 - 12 (ai bi - b2) Q

-3 [b2 (2(a2 + b2) + a2 + b2) + 2a1bi]
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APPENDIx B

SELECTION AND ESTIMATION OF

COMPRESSION SYSTEMS PARAMETERS

As described briefly in Chapter 3, the parameters of the four prototype compression

systems are either based on available dimensions and quantities, or are chosen (and

varied) to represent certain regions in the parameter space. In this Appendix, we give

further details pertaining to the selection and estimation of the main dimensional and

nondimensional parameters, especially those that are not discussed in the body of the

thesis.

Compression System Parameters

These include inlet, exit and stagger blade angles, blade chord and span, rotor mean

radius, hub-to-tip ratio, compressor inlet and exit duct lengths, plenum volume, and

compressor flow-through area. Derived from these are nondimensional parameters

that include the B parameter, the nondimensional duct lengths, and compressor in-

ertia parameters. With the exception of C4, all of these dimensional and nondimen-

sional quantities are based on actual dimensions and geometry of the first stage of the

compression system at hand. In the case of C4, parameters that are not reported in

the original references (e.g., some blade angles) were assigned reasonable values and

the compressor characteristics were then adjusted on the basis of the Euler turbine

equation using these assumed parameters. Also included are the running (spinning)
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Param. Units C1 C2 C3 C4

I m 0.0452 0.0452 0.0955 0.0923

h m 0.0366 0.0366 0.1143 0.07

R m 0.286 0.286 0.705 0.195

N.D. 0.88 0.88 0.85 0.6952
Rtip

an deg. 0.0 0.0 13.0 0.0

ut deg. 41.0 41.0 36.0 68.0

7r deg. 43.0 43.0 50.4 70.0

p kg/m 3  1.2 1.2 1.17 1000.0

Q rad/s 251.33 251.33 84.0 75.4

Table B.1: Compression system parameters for different prototype systems.

speed of the rotor and fluid density. Table B.1 shows a list of this group of parame-

ters (excluding those already listed in Table 3.1 and those which can easily be derived

from these tables.)

Rotordynamic Parameters

These include rotor mass, shaft length and average radius, linear and nonlinear shaft

stiffness, and average coefficient of viscous damping. Table B.2 gives a list of the

nominal values used for the four prototype compression systems.

These parameters are estimated as follows. The nominal value of the mass of

the rotor is approximated based on its dimensions, material, and configuration. The

linear stiffness coefficient is approximated as that of a simply supported beam having

a uniform circular cross section as given by the formula

kx = 4 8 E(shaft) I(shaft)

(shaft)
(B.1)

where i(shaft) = 7R saf) is the area moment of inertia of the rotor shaft, R(,shaft) is
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Table B.2: Rotordynamic parameters for different prototype compression systems.

its average radius, L(shaft) is its axial length, and E(shaft) is the Young's modulus of

elasticity of the shaft material and is taken as (2.0)1011 Pa in all cases. The rotor's

natural frequency is simply w = v/kx/M. The value of the nonlinear stiffness k"XS

is linked to the linear stiffness by requiring that the total spring force (linear and

nonlinear) at maximum rotor deflection is three times the force produced by the

linear stiffness alone. This gives the following relation

u = 2v 2 /r, (B.2)

The viscous damping coefficient ( is fixed in all cases at an average value of 0.05,

from which cx = 2(wM can be calculated.
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Param. Units C1 C2 C3 C4

M kg 100.0 300.0 300.0 100.0

kx N/rn (1.95)107 (9.75)105 (6.4)107 (6.95)106

L(shaft) m 0.463 1.256 1.62 1.5

R(shaft) m 0.0225 0.0225 0.0775 0.042
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APPENDIX C

LINEARIZED EQUATIONS OF THE

BASELINE MODEL

In this appendix, we give the elements of the Jocobian matrix A which was described

in Chapter 4. For the eighth order baseline model, A is a constant 8x8 matrix with

elements Aj where i indicates the row number of the element in A (corresponding to

the eight system equations given in Section 2.3.3), and j indicates the column number

(corresponding to the state with respect to which the equation is differentiated). In

other words, for the equation ,±j fi(XiX 2,... ,X,...), the element Aj, in the

Jacobian matrix is given by A = evaluated at the equilibrium point.

We now substitute the expressions of the integrated characteristics and aero-

dynamic forces into the system equations, define new parameters to simplify the

notation, and list the resulting equations again for convenience.

Q=f1=kQ [lk>(Qa,b) - P]

= kQ [co + I + 3(Q - 0.5) - 4(Q - 0.5) 3 - 6(a2 + b2 ) (Q - 0.5) - P]

(C.1)

P f 2 = kp Q - 7V] (C.2)
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= = kai/CCC(Q, a, b, X) - ka2 b

= kai {-3a [4Q(Q - 1) + (a2 + b2 )] + 4ceX}

b=f 4= k1OC/cs(Q,a,b,Y) + kb2a

= kbi {-3b [4Q(Q - 1) + (a2 + b2 )] + 'icY}

Xf =Vx

Vy = f6 = -2(v Vx -v 2 X - WX3+ X(Fre)i

= -2(v Vx - v2 X - WX 3

+ x xt { b (Tc1 + 2Tc2 Q + 3Te3 [Q2 + 1(a2

- ka2 b

+ kb2 a

+ b2) + Tc Y}

+ Xpr W 2 Q a

- XUn W {kbl {-3b [4Q(Q - 1) + (a2 + b2 )] + 'ceY} + kb2 a}]

Y = f 7 = Vy

Vfy = f8 -- 2a, y

+ x
1 X tu
47~ a

- Stv2y - ,nsy 3
- Gy

(Tc + 2 Tc2 Q + 3 Tc3 E2 +
a2 + b2

+ Xpr W 2 Q b

+ XUn W {kai {-3a [4Q(Q - 1) + (a2 + b2 )] +4'eX} - ka2b}] (C.8)

where the the new coefficients are defined as

S

kai = kb1 =
2(m + )

1
2SB 2

ka2 = kb2 = A vrS
m +

The elements of the Joacobian matrix evaluated at an equilibrium point xe are
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(C.4)

(C.5)

(C.6)

(C.7)

)+ TceX}



given below. Note that only nonzero elements are listed.

= kQ[3Qe - 12(Qe - 0.5)2 - 6(a2 + b )]

- -12kQ(Qe - 0.5)ae

= -12kQ(Qe - 0.5)be

=kai[-3(8Qe - 4)ae]

ka1[-12Qe(Qe - 1) - 9a2 - 3b ]

kai(-6aebe) - ka2

=kaiVce
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= f

=9f = -kQ
O9P Xe

4a X.

ob X

All

A 12

A 13

A14

A21

A22

A31

A 3 3

A 34

A35

(C.9)

(C.10)

(C.11)

(C.12)

(C.13)

(C.14)

0f2

OQ xe

0f2e 2 Vyke

0f3

OQ Xe

(9f3
Oa Xe

0fh
Ob x

0f3

aX e

(C.15)

(C.16)

(C.17)

(C.-18)



A41

A43

A44

A47

A56

A61

O9Q Xe

0fh

ObXe

0f5

0f6

OQ Xe

'9f6

iaXe

0f6

bXe
Ix tu4 (TeT +

2Tc2Qe + 3Tc3 (Q + -a + - b )4 e4 e ]

-X XuflWA44]

OfA ~2 -vX2

a0f6 X -2(v

=f6

OYXe
- Ix unWA47}

- f7 =1.0
ayXe

= kbl[-3(8Qe - 4)be]

= kbl(-6aebe) + kb2

= kbl[12Qe(Qe - 1)- 3a - 9b:

=1.0

(C.19)

(C.20)

(C.21)

(C.22)

411[tube(2T-+ 6Tc3Qe)] + [XprW 2 ae] - [X unWA4il

[13X tu Tc3aebe ] + [XprW 2QeI - [X un WA4}

(C.23)

A63

A64

}
(C.24)

(C.25)

A65

A66

A67

A78

IxI x 
ctu[4tt1

(C.26)

(C.27)

(C.28)

(C.29)

(C.30)
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X tuae(2Tc2+67 3Qe)] + [XPrW 2 be] + [XunWA 3 1]
0f8

c9Q Xe

'9f8

aa C

-a + 1b )4 e 4 eJ)

+ [Xun WA 34]

X 3 c3ae be] + [XPrW2 Qe] + [Xun WA341
0f8 'e 1Xuc-8 XW3i

IM = X { [x tuTCE] + [XunWA 35 ]}

f8 = st 2 n, y 2

af8 2o a(
ay e
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A 81

+ 27c2Qe + 3(+4 (TeiA83

A84

A85

A87

A88

(C.31)

(C.32)

(C.33)

(C.34)

(C.35)

(C-36)
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